Variables aléatoires à densité Lois usuelles

1. Au pays des 7 nains, ne circulent que des petites voitures rouges et des petites voitures vertes.

Le temps d'attente R d'une voiture rouge suit la loi $\mathscr{E}(\lambda)$.

Le temps d'attente V d'une voiture verte suit la loi $\mathscr{E}(\mu)$.

On suppose que les variables aléatoires R et V sont indépendantes.

On note X le temps d'attente d'une voiture.

- (a) Exprimer X en fonction de R et V.
- (b) Déterminer la fonction de répartition X.
- (c) Quelle est la loi de X? Quelle est son espérance et sa variance?
- 2. (a) Soit X une VAR suivant une loi $\mathcal{N}(0,1)$. Déterminer t de sorte que P(-t < X < t) = 0,95.
 - (b) Soit X une VAR suivant une loi $\mathcal{N}(8,4)$. Calculer:

a)
$$P(X < 7,5)$$
 b) $P(X > 8,5)$ c) $P(6,5 < X < 10)$

- 3. Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathscr{A}, P) . On suppose que X suit la loi uniforme sur [0, 1].
 - (a) Montrer que la variable Z = 1 X suit la même loi que X.
 - (b) Soit λ un réel strictement positif. On considère la variable aléatoire Y définie sur (Ω, \mathcal{A}, P) par :

$$Y = \begin{cases} -\frac{1}{\lambda} \ln(X) & \text{si } X > 0\\ 0 & \text{sinon} \end{cases}$$

- i. Déterminer une densité de Y.
- ii. Calculer l'espérance et la variance de Y.
- (c) On étudie maintenant la réciproque. Soit λ un réel strictement positif. On considère une variable aléatoire Y qui suit la loi exponentielle de paramètre λ sur \mathbb{R}_+ , et on envisage la variable aléatoire X définie par $X = e^{-\lambda Y}$. Déterminer la loi de X.
- 4. Soient $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes suivant chacune une loi uniforme sur [0, 1]. Déterminer la loi de $Z = \min(X_1, ..., X_n)$.
- 5. La taille Y d'une plante suit, en conditions naturelles, une loi uniforme sur l'intervalle [3,8]. Dans une pépinière à la fin de la croissance naturelle, si sa taille est inférieure à 4, on lui met un produit chimique qui fait doubler sa taille. Si sa taille est supérieure à 4, on ne fait rien. On note X sa taille finale. Quelle est la loi de X? Calculer l'espérance de X.
- 6. Soient X une variable aléatoire suivant une loi normale $\mathcal{N}(0,1)$ et Y une variable aléatoire suivant une loi uniforme sur [-1,1]. On suppose que les variables X et Y sont indépendantes.
 - (a) Déterminer la loi de la variable Z = XY.
 - (b) A-t-on affaire à une variable aléatoire à densité?
- 7. N clients d'une boîte de nuit arrivent entre minuit et une heure du matin. Les instants d'arrivées X_1, \ldots, X_N des clients sont des variables aléatoires indépendantes suivant toutes une loi uniforme.
 - (a) Soit $i \in [1, N]$. Calculer la probabilité $P(X_i \leq x)$.
 - (b) On note G_t la variable aléatoire décrivant le nombre de personnes arrivant avant le moment t. Donner la loi de la variable aléatoire G_t .
 - (c) On note Y_r l'instant d'arrivée du r-ième client. Montrer que :

$$P(Y_r \leqslant t) = \sum_{k=r}^{N} {N \choose k} t^k (1-t)^{N-k}$$

- (d) Montrer que Y_r est une variable aléatoire à densité.
- 8. Soit X une variable aléatoire à densité suivant une loi normale centrée réduite.
 - (a) Calculer, si elle existe, l'espérance de $Y = e^X$.
 - (b) Soit $a \in \mathbb{R}$. Calculer, si elle existe, l'espérance de $Z = e^{aX}$.

- 9. Soit X une variable aléatoire réelle.
 - (a) Soient a et b deux réels tels que a < b, et $Y = \frac{X a}{b a}.$ Montrer l'équivalence :

$$X \hookrightarrow \mathscr{U}([a,b]) \iff Y \hookrightarrow \mathscr{U}([0,1])$$

(b) Soient $\lambda > 0$ et $Y = \lambda X$. Montrer l'équivalence :

$$X \hookrightarrow \mathscr{E}(\lambda) \iff Y \hookrightarrow \mathscr{E}(1)$$

(c) Soient $m \in \mathbb{R}, \ \sigma \in \mathbb{R}_+^*$ et $Y = \frac{X-m}{\sigma}.$ Montrer l'équivalence :

$$X \hookrightarrow \mathcal{N}(m, \sigma) \iff Y \hookrightarrow \mathcal{N}(0, 1)$$

- 10. (a) Soit $a \in \mathbb{R}$. Montrer que la recherche des valeurs propres de la matrice $\begin{bmatrix} 2a & 1 \\ -4 & a \end{bmatrix}$ revient à la résolution de l'équation du second degré $\lambda^2 3a\lambda + 4 + 2a^2 = 0$.
 - (b) Soient X une VAR suivant une loi normale $\mathcal{N}(0,4)$ et $M=\begin{bmatrix}2X&1\\-4&X\end{bmatrix}$
 - i. Calculer la probabilité que M possède deux valeurs propres réelles distinctes.
 - ii. Calculer la probabilité que M possède deux valeurs propres complexes non réelles.
 - iii. Calculer la probabilité que M possède des valeurs propres imaginaires pures.