Mercredi 14 octobre 2015

Séries numériques

1. (a) Considérons pour $n \in \mathbb{N}^*$ la fonction $f_n : \begin{cases} [0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \ln(1+x) - \sum_{k=1}^n \frac{(-1)^{k-1}}{k} x^k \end{cases}$.

Calculer sa dérivée puis simplifier l'écriture de $f'_n(x)$

- (b) En déduire : $\forall x \in [0, 1], \left| \ln(1+x) \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k \right| \le \frac{1}{n+1}$
- (c) Puis: $\forall x \in [0,1]$, $\ln(1+x) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} x^k$.
- (d) Montrer la convergence et calculer la somme de la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.
- 2. Étudier la convergence (et éventuellement la somme) des séries $\sum u_n$ suivantes :

(a)
$$u_n = \ln\left(1 - \frac{1}{n^2}\right), \ n \geqslant 2.$$

- (b) $u_n = \frac{3n+4}{n(n+1)(n+2)}$, $n \geqslant 1$ (commencer par écrire u_n sous la forme $\frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$).
- (c) $u_n = \ln\left(1 + \frac{(-1)^n}{n}\right)$, $n \ge 2$ (on pourra étudier les sommes partielles d'ordre pair et impair).
- 3. Soit (u_n) une suite de réels positifs telle que la série $\sum u_n$ converge.
 - (a) Quelle est la nature de la série $\sum u_n^2$?
 - (b) La réciproque est-elle vraie?
- 4. Déterminer la nature des séries $\sum u_n$ suivantes.

a)
$$u_n = \frac{1}{n + \sqrt{n}}$$
 b) $u_n = \operatorname{Arctan}\left(\frac{n}{\pi^n}\right)$ c) $u_n = \frac{1}{\ln(n)}$
d) $u_n = \cos\left(\frac{1}{n}\right)$ e) $u_n = e^{-n^2}$ f) $u_n = \sin\left(\frac{1}{n}\right)$

$$b) \quad u_n = \operatorname{Arctan}\left(\frac{n}{\pi^n}\right)$$

$$c) \quad u_n = \frac{1}{\ln(n)}$$

$$d) \quad u_n = \cos\left(\frac{1}{n}\right) \qquad e) \quad u_n = e^{-n^2}$$

$$e) \quad u_n = e^{-n^2}$$

$$f$$
) $u_n = \sin\left(\frac{1}{3^n}\right)$

$$g) \quad u_n = \frac{n^2 \cos^3(n)}{\sqrt{n} + 2^n}$$

- 5. Que dire du nombre x = 0,99999999...?
- 6. Montrer la convergence des séries $\sum u_n$ suivantes puis calculer leurs sommes.

a)
$$u_n = \frac{1}{(3 + (-1)^n)^n}$$

a)
$$u_n = \frac{1}{(3 + (-1)^n)^n}$$
 b) $u_n = \frac{\sin^2(n)}{3^n} (Noter \ que \ \cos(x) = \text{Re} \left(e^{ix}\right))$ c) $u_n = n^2 5^{-n}$

- 7. Soient (a_n) et (b_n) deux suites réelles positives telles que $a_n \underset{+\infty}{\sim} b_n$.
 - (a) Montrer qu'il existe $N_0 \in \mathbb{N}$ tel que : $\forall n \geqslant N_0, \frac{1}{2}b_n \leqslant a_n \leqslant \frac{3}{2}b_n$. (on pourra écrire que $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ puis traduire cette égalité grâce à la définition).
 - (b) En déduire que les séries $\sum a_n$ et $\sum b_n$ sont de même nature.
 - (c) Application : étudier la nature de la série $\sum u_n$ où $u_n = \frac{1}{\sqrt{4^n 3^n + n}}$

8. On s'intéresse dans cet exercice aux deux suites (S_n) et $(S_n^{'})$ définies pour $n\geqslant 2$ par :

$$S_n = 1 + \frac{1}{2\ln(2)} + \ldots + \frac{1}{n\ln(n)}$$

$$S'_n = 1 + \frac{\ln(2)}{2} + \ldots + \frac{\ln(n)}{n}$$

- (a) Montrer que la fonction $x \mapsto \frac{1}{x \ln(x)}$ est décroissante sur $]1, +\infty[$.
- (b) Établir que : $\forall k \in \mathbb{N} \setminus \{0,1\}$, $\frac{1}{(k+1)\ln(k+1)} \leqslant \int_{k}^{k+1} \frac{1}{x\ln(x)} dx \leqslant \frac{1}{k\ln(k)}$.
- (c) En déduire que $S_n \underset{+\infty}{\sim} \ln \left(\ln(n) \right)$.
- (d) Quelle est la nature de la série $\sum_{n\geq 2} \frac{1}{n\ln(n)}$.
- (e) Par le même raisonnement, montrer que $S_n^{'} \underset{+\infty}{\sim} \frac{1}{2} \big(\ln(n)\big)^2$ et déterminer la nature de $\sum_{n\geq 2} \frac{\ln(n)}{n}$.
- 9. (a) Montrer que la série $\sum \frac{1}{n!}$ converge. Pour tout $n \in \mathbb{N}$, on pose $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.
 - (b) Soient $n \in \mathbb{N}$ et $k \geqslant n+1$. Montrer que $\frac{1}{k!} \leqslant \frac{1}{n+1} \times \frac{1}{(k-1)!}$ puis que $\frac{1}{k!} \leqslant \left(\frac{1}{n+1}\right)^{k-n} \frac{1}{n!}$.
 - $\text{(c) Soient } n \in \mathbb{N}^* \text{ et } N \geqslant n+1 \text{ ; \'etablir que : } \sum_{k=n+1}^N \frac{1}{k!} \leqslant \frac{1}{n.n!} \Big[1 \big(\frac{1}{n+1}\big)^{N-n} \Big].$
 - (d) Établir que : $\forall n \in \mathbb{N}^*$, $0 \leqslant R_n \leqslant \frac{1}{n \cdot n!}$.
- 10. Étudier la suite (p_n) définie pour $n \ge 0$ par : $p_n = \prod_{k=0}^n \left(1 + \frac{1}{2^k}\right)$.
- 11. Soit (a_n) une suite réelle positive et majorée telle que la série $\sum a_n$ diverge.
 - (a) Étudier la nature de la série $\sum \frac{a_n}{1+a_n}$.
 - (b) Montrer que la série $\sum \frac{a_n e^{in}}{1+a_n e^{in}}$ n'est pas absolument convergente.