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Preface

This book provides an introduction to complex analysis for students with
some familiarity with complex numbers from high school. Students should
be familiar with the Cartesian representation of complex numbers and with
the algebra of complex numbers, that is, they should know that i2 = —1. A
familiarity with multivariable calculus is also required, but here the funda-
mental ideas are reviewed. In fact, complex analysis provides a good train-
ing ground for multivariable calculus. It allows students to consolidate
their understanding of parametrized curves, tangent vectors, arc length,
gradients, line integrals, independence of path, and Green’s theorem. The
ideas surrounding independence of path are particularly difficult for stu-
dents in calculus, and they are not absorbed by most students until they
are seen again in other courses.

The book consists of sixteen chapters, which are divided into three parts.
The first part, Chapters I-VII, includes basic material covered in all un-
dergraduate courses. With the exception of a few sections, this material is
much the same as that covered in Cauchy’s lectures, except that the em-
phasis on viewing functions as mappings reflects Riemann’s influence. The
second part, Chapters VIII-XI, bridges the nineteenth and the twentieth
centuries. About half this material would be covered in a typical under-
graduate course, depending upon the taste and pace of the instructor. The
material on the Poisson integral is of interest to electrical engineers, while
the material on hyperbolic geometry is of interest to pure mathematicians
and also to high school mathematics teachers. The third part, Chapters
XII-XVI, consists of a careful selection of special topics that illustrate the
scope and power of complex analysis methods. These topics include Julia
sets and the Mandelbrot set, Dirichlet series and the prime number theo-
rem, and the uniformization theorem for Riemann surfaces. The final five
chapters serve also to complete the coverage of all background necessary
for passing PhD qualifying exams in complex analysis.

Note to the instructor
There is a glut of complex analysis textbooks on the market. It is a beauti-
ful subject, so beautiful that a large number of experts have been moved to
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write their own accounts of the area. In spite of the plethora of textbooks,
I have never found an introduction to complex analysis that is completely
suitable for my own teaching style and audiences.

The students in each of my various audiences have begun the course with
a wide range of backgrounds. Teaching to students with disparate back-
grounds and preparations has posed a major teaching challenge. I respond
by including early some topics that can be treated in an elementary way and
yet are usually new and capture the imagination of students with already
some background in complex analysis. For example, the stereographic pro-
jection appears early, the Riemann surface of the square root function is
explained early at an intuitive level, and both conformality and fractional
linear transformations are treated relatively early. Exercises range from the
very simple to the quite challenging, in all chapters. Some of the exercises
that appear early in the book can form the basis for an introduction to a
more advanced topic, which can be tossed out to the more sophisticated
students. Thus for instance the basis is laid for introducing students to
the spherical metric already in the first chapter, though the topic is not
taken up seriously until much later, in connection with Marty’s theorem in
Chapter XII.

The second problem addressed by the book has to do with flexibility
of use. There are many routes through complex analysis, and many in-
structors hold strong opinions concerning the optimal route. I address this
problem by laying out the material so as to allow for substantial flexibil-
ity in the ordering of topics. The instructor can defer many topics (for
instance, the stereographic projection, or conformality, or fractional linear
transformations) in order to reach Cauchy’s theorem and power series rel-
atively early, and then return to the omitted topics later, time permitting.

There is also flexibility with respect to adjusting the course to under-
graduate students or to beginning graduate students. The bulk of the
book was written with undergraduate students in mind, and I have used
various preliminary course notes for Chapters I-XI at the undergraduate
level. By adjusting the level of the lectures and the pace I have found the
course notes for all sixteen chapters appropriate for a first-year graduate
course sequence.

One of my colleagues wrote in commenting upon the syllabus of our
undergraduate complex analysis course that “fractional powers should be
postponed to the end of the course as they are very difficult for the stu-
dents.” My philosophy is just the reverse. If a concept is important but
difficult, I prefer to introduce it early and then return to it several times, in
order to give students time to absorb the idea. For example, the idea of a
branch of a multivalued analytic function is very difficult for students, yet it
is a central issue in complex analysis. I start early with a light introduction
to the square root function. The logarithm function follows soon, followed
by phase factors in connection with fractional powers. The basic idea is
returned to several times throughout the course, as in the applications of



Preface ix

residue theory to evaluate integrals. I find that by this time most students
are reasonably comfortable with the idea.

A solid core for the one-semester undergraduate course is as follows:

Chapter 1

Chapter II

Sections II1.1-5

Sections IV.1-6

Sections V.1-7

Sections VI.1-4

Sections VII.1-4

Sections VIII.1-2

Sections IX.1-2

Sections X.1-2

Sections XI.1-2
To reach power series faster I would recommend postponing 1.3, I1.6-7,
II1.4-5, and going light on Riemann surfaces. Sections I1.6-7 and III.4-5
should be picked up again before starting Chapter IX.

Which additional sections to cover depends on the pace of the instructor
and the level of the students. My own preference is to add more contour
integration (Sections VII.5 and VIIL.8) and hyperbolic geometry (Section
IX.3) to the syllabus, and then to do something more with conformal map-
ping, as the Schwarz reflection principle (Section X.3), time permitting. To
gain time, I mention some topics (as trigonometric and hyperbolic func-
tions) only briefly in class. Students learn this material as well by reading
and doing assigned exercises. Finishing with Sections XI.1-2 closes the cir-
cle and provides a good review at the end of the term, while at the same
time it points to a fundamental and nontrivial theorem (the Riemann map-
ping theorem).

Note to the student

You are about to enter a fascinating and wonderful world. Complex analysis
is a beautiful subject, filled with broad avenues and narrow backstreets
leading to intellectual excitement. Before you traverse this terrain, let me
provide you with some tips and some warnings, designed to make your
journey more pleasant and profitable.

Above all, give some thought to strategies for study and learning. This
is easier if you are aware of the difference between the “what,” the “how,”
and the “why,” (as Halmos calls them). The “what” consists of defini-
tions, statements of theorems, and formulae. Determine which are most
important and memorize them, at least in slogan form if not precisely. Just
as one maintains in memory the landmark years 1066, 1453, and 1776 as
markers in the continuum of history, so should you maintain in memory
the definition of analytic function, the Cauchy-Riemann equations, and the
residue formula. The simplest of the exercises are essentially restatements
of “what.”
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The “how” consists in being able to apply the formulae and techniques
to solve problems, as to show that a function is analytic by checking the
Cauchy-Riemann equations, or to determine whether a polynomial has a
zero in a certain region by applying the argument principle, or to evaluate
a definite integral by contour integration. Before determining “how” you
must know “what.” Many of the exercises are “how” problems. Working
these exercises and discussing them with other students and the instructor
are an important part of the learning process.

The “why” consists in understanding why a theorem is true or why a
technique works. This understanding can be arrived at in many different
ways and at various levels. There are several things you can do to under-
stand why a result is true. Try it out on some special cases. Make a short
synopsis of the proof. See where each hypothesis is used in the proof. Try
proving it after altering or removing one of the hypotheses. Analyze the
proof to determine which ingredients are absolutely essential and to deter-
mine its depth and level of difficulty. The slogan form of the Jordan curve
theorem is that “every closed curve has an inside and an outside” (Section
VIIL.7). What is the level of difficulty of this theorem? Can you come up
with a direct proof? Try it.

Finally, be aware that there is a language of formal mathematics that is
related to but different from common English. We all know what “near”
means in common English. In the language of formal mathematics the
word carries with it a specific measure of distance or proximity, which is
traditionally quantified by € > 0 or a “for every neighborhood” statement.
Look also for words like “eventually,” “smooth,” and “local.” Prepare to
absorb not only new facts and ideas but also a different language. Develop-
ing some understanding of the language is not easy — it is part of growing
up and becoming mathematically sophisticated.

Acknowledgments
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Introduction

Complex analysis is a splendid realm within the world of mathematics,
unmatched for its beauty and power. It has varifold elegant and often-
times unexpected applications to virtually every part of mathematics. It
is broadly applicable beyond mathematics, and in particular it provides
powerful tools for the sciences and engineering.

Already in the eighteenth century Euler discovered the connection be-
tween trigonometric functions and exponential functions through complex
analysis. (It was he who invented the notation e®.) However, it was not
until the nineteenth century that the foundations of complex analysis were
laid. Among the many mathematicians and scientists who contributed,
there are three who stand out as having influenced decisively the course of
development of complex analysis. The first is A. Cauchy (1789-1857), who
developed the theory systematically along the lines we shall follow, with
the complex integral calculus, Cauchy’s theorem, and the Cauchy inte-
gral formula playing fundamental roles. The other two are K. Weierstrass
(1815-1897) and B. Riemann (1826-1866), who appeared on the mathe-
matical scene about the middle of the nineteenth century. Weierstrass
developed the theory from a starting point of convergent power series, and
this approach led towards more formal algebraic developments. Riemann
contributed a more geometric point of view. His ideas had a tremendous
impact not only on complex analysis but upon mathematics as a whole,
though his views took hold only gradually.

In addition to the standard undergraduate material, we shall follow sev-
eral strands and obtain several poster theorems, which together with the
more elementary material cover what might be called the “complex anal-
ysis canon,” the part of complex analysis included in the syllabus of the
typical PhD qualifying exam.

One of the strands we shall follow culminates in the prime number theo-
rem. Already Euler in the eighteenth century had written down an infinite
product for the zeta function, connecting the prime numbers to complex
analysis. In the 1830’s Dirichlet used variants of the zeta function to prove
the existence of infinitely many primes in arithmetic progressions. Riemann
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did fundamental work connecting the zeta function to the distribution of
prime numbers. And finally just before the close of the nineteenth century
J. Hadamard and C.J. de la Vallée Poussin independently proved the prime
number theorem using techniques of complex analysis.

Another strand we shall follow is the conformal mapping of domains
in the plane and more generally of Riemann surfaces. We shall aim at
two poster results: the Riemann mapping theorem and the uniformization
theorem for Riemann surfaces. The definitive version of the Riemann map-
ping theorem, which one finds in all complex analysis textbooks today, was
proved by W. Osgood in 1900. The uniformization theorem for Riemann
surfaces was proved independently in 1907 by P. Koebe and H. Poincaré,
thereby solving Hilbert’s 22nd problem from his famous address to the
International Mathematical Congress in 1900.

The first quarter of the twentieth century was one of rapid development
of the foundations of complex analysis. P. Montel put his finger on the
notion of compactness in spaces of meromorphic functions and developed
the theory of normal families. P. Fatou and G. Julia used Montel’s theorem
in their seminal work around 1914-1921 on complex iteration theory. On
another front, O. Perron developed in 1923 a powerful method for solving
the Dirichlet problem.

By the end of the first quarter of the twentieth century, the complex anal-
ysis canon had been established, and nearly all the main results constituting
the undergraduate and first-year graduate courses in complex analysis had
been obtained. Nevertheless, throughout the twentieth century there has
been much exciting progress on the frontiers of research in complex anal-
ysis, and meanwhile proofs of the most difficult foundational results have
been gradually simplified and clarified. While the complex analysis canon
has remained relatively static, the developments at the frontier have led
to new perspectives and shifting emphases. For instance, the current re-
search interest in dynamical systems and the advent of computer graphics
contributed to elevating the work of Fatou and Julia to a more prominent
position.

What lies before you is the distillation of the essential, the useful, and
the beautiful, from two centuries of labor. Enjoy!



I

The Complex Plane and
Elementary Functions

In this chapter we set the scene and introduce some of the main charac-
ters. We begin with the three representations of complex numbers: the
Cartesian representation, the polar representation, and the spherical rep-
resentation. Then we introduce the basic functions encountered in complex
analysis: the exponential function, the logarithm function, power functions,
and trigonometric functions. We view several concrete functions w = f(z)
as mappings from the z-plane to the w-plane, and we consider the problem
of describing the inverse functions.

1. Complex Numbers

A complex number is an expression of the form z = z+1y, where z and y
are real numbers. The component z is called the real part of z, and y is
the imaginary part of z. We will denote these by

z = Rez,

y = Imz.

The set of complex numbers forms the complex plane, which we denote
by C. We denote the set of real numbers by R, and we think of the real
numbers as being a subset of the complex plane, consisting of the complex
numbers with imaginary part equal to zero.

The correspondence

z=z+iy « (z,9)

is a one-to-one correspondence between complex numbers and points (or
vectors) in the Euclidean plane R2. The real numbers correspond to the
z-axis in the Euclidean plane. The complex numbers of the form iy are
called purely imaginary numbers. They form the imaginary axis iR

1



2 I The Complex Plane and Elementary Functions

2=x+iy Z+w=x+uw)+i(y+v)

iye ex+iy

w=u+iv

=e

in the complex plane, which corresponds to the y-axis in the Euclidean
plane.
We add complex numbers by adding their real and imaginary parts:

(z+iy)+ (u+iw) = (z+u)+i(y+v).

Thus Re(z + w) = Re(z) + Re(w), and Im(z + w) = Im(z) + Im(w) for
z,w € C. The addition of complex numbers corresponds to the usual
componentwise addition in the Euclidean plane.

The modulus of a complex number 2z = z +1y is the length 1/z2 + y2 of
the corresponding vector (z,y) in the Euclidean plane. The modulus of z
is also called the absolute value of 2, and it is denoted by |z|:

lz] = Vz?+y2
The triangle inequality for vectors in the plane takes the form
lz+w| < |z + |wl, z,w € C.

By applying the triangle inequality to z = (z — w) + w, we obtain |z] <
|z — w| + |w|. Subtracting |w|, we obtain a very useful inequality,

(1.1) lz—w| > |z| = |wl, z,w e C.

Complex numbers can be multiplied, and this is the feature that distin-
guishes the complex plane C from the Euclidean plane R2. Formally, the
multiplication is defined by

(z+iy)(u+w) = zu—yv+i(zv+ yu).

One can check directly from this definition that the usual laws of algebra
hold for complex multiplication:

(z122)23 = 21(2223), (associative law)
2122 = 2971, (commutative law)
z21{z2 + 23) = 2122 + 2123. (distributive law)

With respect to algebraic operations, complex numbers behave the same as
real numbers. Algebraic manipulations are performed on complex numbers
using the usual laws of algebra, together with the special rule i = —1.
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Every complex number z # 0 has a multiplicative inverse 1/z, which is
given explicitly by

1 T —1y .
zzm, z=z+iyeC, z#0.
Thus for instance, the multiplicative inverse of i is 1/i = —i.
z=x+1iy
0
9
Z=x-1y

The complex conjugate of a complex number z = z + iy is defined to
be z = z — iy. Geometrically, Z is the reflection of z in the z-axis. If we
reflect twice, we return to z,

zZ = z, zeC.

Some other useful properties of complex conjugation are

Z+w = zZ+w, z,w € C,
ZW = ZzZW, z,w € C,
lz| = |z, z€C,
2|2 = 23, zeC.

Each of these identities can be verified easily using the definition of z
and |z|. The last formula above allows us to express 1/z in terms of the
complex conjugate z:

1/z = z/|2]%, 2€C,z#0.
The real and imaginary parts of z can be recovered from z and Z, by
Rez = (2+2)/2, z€C,
Imz = (2 -—2)/2i, zeC.
From |zw|? = (zw)(zZW) = (2Z)(ww) = |z|?|w|?, we obtain also
lzw| = |z||w), z,we C.
A complex polynomial of degree n > 0 is a function of the form

p(z) = anz" + an~1z"‘1 +---4+aiz+ ag, z € C,
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where ay, . .. ,a, are complex numbers, and a,, # 0. A key property of the
complex numbers, not enjoyed by the real numbers, is that any polynomial
with complex coefficients can be factored as a product of linear factors.

Fundamental Theorem of Algebra. Every complex polynomial p(z) of
degree n > 1 has a factorization

p(z) = c(z—2z1)™ (2 — 2x)™,

where the z;’s are distinct and m; > 1. This factorization is unique, up to
a permutation of the factors.

We will not prove this theorem now, but we will give several proofs later.
Some remarks are in order.

The uniqueness of the factorization is easy to establish. The points
Z1,... ,2k are uniquely characterized as the roots of p(z), or the zeros
of p(z). These are the points where p(z) = 0. The integer m; is character-
ized as the unique integer m with the property that p(z) can be factored
as (z — z;)™q(2) where g(z) is a polynomial satisfying g(z;) # 0.

For the proof of the existence of the factorization, one proceeds by induc-
tion on the degree n of the polynomial. The crux of the matter is to find
a point z; such that p(z;) = 0. With a root z; in hand, one easily factors
p(z) as a product (z — z1)q(z), where ¢(z) is a polynomial of degree n — 1.
(See the exercises.) The induction hypothesis allows one to factor ¢(z) as a
product of linear factors, and this yields the factorization of p(z). Thus the
fundamental theorem of algebra is equivalent to the statement that every
complex polynomial of degree n > 1 has a zero.

Example. The polynomial p(z) = z? + 1 with real coefficients cannot be
factored as a product of linear polynomials with real coefficients, since it
does not have any real roots. However, the complex polynomial p(z) =
22 4+ 1 has the factorization

241 = (z—-19)(z+19),
corresponding to the two complex roots +i of 22 + 1.
Exercises for 1.1

1. Identify and sketch the set of points satisfying:

(a) [z—1—-4] =1 (f)o<Imz<7
(b)1< |22z —6| <2 (g) -T<Rez<m

() lz=12+|z+12< 8 (h) |Rez| < |2
(d)|z—-1]+|z+1| <2 (i) Re(iz+2)>0

(e) |z—1] < |2 G) lz—i2+1z+i2<2

2. Verify from the definitions each of the identities (a) z +w = Z +
w, (b) zw = zw, (c) |z| = |z|, (d) |z|> = 2z. Draw sketches to
illustrate (a) and (c).
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3.

10.

11.

Show that the equation |z|2—2 Re(az)+|a|? = p? represents a circle
centered at a with radius p.

. Show that |z| < |Rez| + |Imz|, and sketch the set of points for

which equality holds.

Show that |Rez| < |z| and |Im z| < |2|. Show that
lz+w®> = |2* + |w* + 2 Re(zw).

Use this to prove the triangle inequality |z + w| < |2| + |w].

. For fixed a € C, show that |z — a|/]l —@z| = 1if |z] = 1 and

1—-az#0.

. Fix p > 0, p # 1, and fix zg, z; € C. Show that the set of z satisfying

|z — 20| = p|z — 21| is a circle. Sketch it for p = § and p = 2, with
zo = 0 and z; = 1. What happens when p = 17

. Let p(z) be a polynomial of degree n > 1 and let zp € C. Show that

there is a polynomial h(z) of degree n — 1 such that p(z) = (2 —
20)h(2) +p(20). In particular, if p(zo) = 0, then p(z) = (z — 20)h(2).

Find the polynomial h(z) in the preceding exercise for the following
choices of p(z) and zo: (a) p(2) = 2% and 29 = i, (b) p(2) = 23+2%+2
and 20 = -1, (¢) p(z) =1+2+22+---+ 2™ and 20 = —1.

Let ¢(z) be a polynomial of degree m > 1. Show that any polyno-
mial p(z) can be expressed in the form

p(2) = h(2)q(2) +r(2),

where h(z) and r(z) are polynomials and the degree of the remain-
der r(z) is strictly less than m. Hint. Proceed by induction on
the degree of p(z). The resulting method is called the division
algorithm.

Find the polynomials h(z) and r(z) in the preceding exercise for
p(z) = 2" and ¢(z) = 22 - 1.

2. Polar Representation

Any point (z,y) # (0,0) in the plane can be described by polar coordi-
nates 7 and 8, where r = \/z2 + y2 and 6 is the angle subtended by (z,y)
and the z-axis. The angle 6 is determined only up to adding an integral
multiple of 2w. The Cartesian coordinates z, y are recovered from the polar
coordinates 7, by

{zzrcos&,

y =rsind.
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r=l|

f=argz

If we write the polar representation in complex notation, we obtain
(2.1) z = z+1iy = r(cosf +isinf).

Here r = |z| is the modulus of z. We define the argument of z to be the
angle 8, and we write

0 = argz.

Thus arg z is a multivalued function, defined for z # 0. The principal
value of arg z, denoted by Arg z, is specified rather arbitrarily to be the
value of 8 that satisfies —m < 8 < 7. The values of arg z are obtained from
Arg 2 by adding integral multiples of 27:

argz = {Argz+2nk : k=0,+1,£2,...}, z#0.
Example. The principal value of argi is Argi = 7/2. The principal value

of arg(l — 1) is Arg(l —i) = —7/4.

ie

<—| w2

-1 _nih 1

—ie 1-i

It will be convenient to introduce the notation
(2.2) e? = cosf+isiné.
From (2.1) we obtain
z = re¥, r=|z|, § = argz.

This representation is called the polar representation of z. The sine and
cosine functions are 27-periodic, that is, they satisfy sin(6 + 27m) = sin#,
cos(f + 2mm) = cosf. Thus the various choices of argz yield the same
value for e,

ei(8+27rm) - eiO’ m=0,+1,42,....
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Example. Some common complex exponentials are
en 1, e s JLEVB g 14
I 7 2 b ‘\/5
Also note that
e = 1, m=0,%+1,42,... .

ie ein/3=1+iﬁ ie
2 2 o™ = 1, L
1 ; V2 V2
/3 /4
101 1
2 V2
Several useful identities satisfied by the exponential function are
(2.3) ] = 1,
(2.4) e = e
(2.5) 1/e? = 7%,

The identity (2.3) is equivalent to the trigonometric identity cos? 8+sin® § =
1, while (2.4) follows from cos(—6) = cos 8 and sin(—6) = —siné.
One of the most important properties of the exponential function is the
addition formula
(2.6) ' 0+9) — ¥eiv, —00 < 6, ¢ < oo.
In view of the definition (2.2), this is equivalent to
cos(@ + @) +isin(6 + ¢) = (cosf + isinf)(cosy + isinyp).

Multiplying out the right-hand side and equating real and imaginary parts,
we obtain the equivalent pair of identities

@) { cos(f +¢) = cosfcosp —sinfsinp,
' sin(f + ¢) = cosfsinyp + sinfcos p,

which are the addition formulae for sine and cosine. Thus the addition
formula (2.6) for the complex exponential is a compact form of the addition
formulae (2.7) for the sine and cosine functions, and it is much easier to
remember!

The properties (2.4), (2.5), (2.6) of the exponential function correspond
respectively to the following properties of the argument function:

(2.8) argz = —argz,
(2.9) arg(l/z) = —argz,

(2.10) arg(z122) = argz + arg zg,
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where each formula is understood to hold modulo adding integral multiples
of 2. To establish (2.8) and (2.9), note that if the polar representation
of z is re'®, then the polar representation of z is re~*, and that of 1/z is
(1/r)e~%. For (2.10), write 2; = r1e*?!, 2z = roe*®2, and use the addition
formula to obtain the polar form of z; 2,

2129 = Treet®e?®? = piryetf1102),

The addition formula (2.6) can be used to derive formulae for cos(nf)
and sin(nf) in terms of cosf and sin§. Write

cos(nf) +isin(nf) = e = ()" = (cosf +isinh)",

expand the right-hand side, and equate real and imaginary parts. This
yields expressions for cos(nf) and sin(nf) that are polynomials in cos # and
sin #. These identities are known as de Moivre’s formulae. For instance,
by equating cos(36) + isin(36) to

(cos@ +isinf)® = cos®# — 3cosfsinb 4 (3 cos? fsinf — sin® f)
and taking real and imaginary parts, we obtain
cos(30) = Re(cosf +isinf)® = cos®f — 3cosfsin? 4,
sin(30) = Im(cosf +isinf)® = 3cos?Hsinf —sin®4.

A complex number z is an nth root of w if 2™ = w. Thus the nth roots
of w are precisely the zeros of the polynomial z™ —w of degree n. Since this
polynomial has degree n, w has at most n nth roots. If w # 0, then w has
exactly n nth roots, and these are determined as follows. First express w
in polar form,

w = pe*’.
The equation 2™ = w becomes
n ind

r"e = pe'®.

Thus r™ = p and nf = ¢+ 27k for some integer k. This leads to the explicit
solutions

r = pl/n7
0 = £+2_7Tk., k=0,1,2,... ,n—1,
n n

where we take the usual positive root of p. Since these n roots are distinct,
and there are at most n nth roots, this list includes all the nth roots of w.
Other values of & do not give different roots, since any other integer k leads
to a value of § that is obtained from the above list by adding an integral
multiple of 2. Graphically, the roots are distributed in equal arcs on the
circle centered at 0 of radius |w|'/™.
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[ 7= rei& = pl/nei’,a/n
0=ln

Example. To find and plot the square roots of 4i, first express 4 in polar
form pe*®. Here p = |4i| = 4 and ¢ = arg(4i) = 7/2. One root is given by
VP €%/% = 2¢"™/4. The other is 2¢(™/4+™ = _2¢'"/4. In Cartesian form,

the roots are v/4i = +(v/2 + \/52)

Example. To find and plot the cube roots of 1 + 7, express 1 + ¢ in polar
form as v/2 e™/4. The polar form of the three cube roots is given by

91/6¢i(m/12+2kn/3) k=0,1,2.

o1 +i=+2e™ .
2= 916 3714 £ 27il3
29 = 21612
1
4zif3
; e
2, = 2V6¢il77/12
cube roots of 1 +i cube roots of unity

The nth roots of 1 are also called the nth roots of unity. They are
given explicitly by

wp = eZ™k/n o<k <n-1.

Graphically, they are situated at equal intervals around the unit circle in
the complex plane. Thus the two square roots of unity are e = 1 and
e = —1.

The procedure for finding the nth roots of w # 0 can be rephrased in
terms of the nth roots of unity. We express w = pe*?/™ in polar form
as above. One root is given by zg = p!/™e*/™. The others are found by
multiplying zy by the nth roots of unity:

2 = zowg = p'/meP/me2mik/n 0<k<n-1.
Exercises for 1.2

1. Express all values of the following expressions in both polar and
cartesian coordinates, and plot them.
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i= eiﬂ'/Z

e 3ril4 ei7r/4

The eight eighth roots of unity

OR% @V @©EP @a
OVET @ 06— ()
. Sketch the following sets:
(a) |argz| < m/4 (c) |2]| = argz
(b) 0 < arg(z —1—14) < m/3 (d) log|z| = —2arg 2

. For a fixed complex number b, sketch the curve {e® + be™" : 0 <

6 < 2r}. Differentiate between the cases |b| < 1, |b| =1 and |b] > 1.
Hint. First consider the case b > 0, and then reduce the general
case to this case by a rotation.

. For which n is ¢ an nth root of unity?

. For n > 1, show that

(@) 1+z+22+--+2"=(1-2""1)/(1 —2), z#1,
sin (n + 1)0

1
(b) 1+cos0+cos2«9+-'-+cosn0—§+ 25ind)2

. Fix n > 1. Show that the nth roots of unity wg, . ..,w,_1 satisfy:

(a) (z—wo)(z—wl) (z—wp-1) =2" — 1,
(b wo-I— Fwp_1=0ifn > 2,

(c

(

)

) _1 *Wn— 1_(_1)71 17
d wj =

) T -{

0, 1<k<n-1,

n, k=n.

. Fix R>1and n>1, m > 0. Show that

—R
w1 S o1 M

2m R™
‘ <

Sketch the set where equality holds. Hint. See (1.1).
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8. Show that cos20 = cos?f — sin 6 and sin20 = 2cosfsinf using
de Moivre’s formulae. Find formulae for cos46 and sin 46 in terms
of cos @ and sin 6.

3. Stereographic Projection

The extended complex plane is the complex plane together with the
point at infinity. We denote the extended complex plane by C*, so that
C* = CU{o0}. One way to visualize the extended complex plane is through
stereographic projection. This is a function, or map, from the unit sphere
in three-dimensional Euclidean space R3 to the extended complex plane,
which is defined as follows. If P = (X, Y, Z) is any point of the unit sphere
other than the north pole N = (0,0,1), we draw a straight line through N
and P, and we define the stereographic projection of P to be the point
z =z + iy ~ (z,y,0) where the straight line meets the coordinate plane
Z = 0. The stereographic projection of the north pole N is defined to
be oc, the point at infinity.

An explicit formula for the stereographic projection is derived as follows.
We represent the line through P and N parametrically by N + ¢(P —
N), —oo <t < oo. The line meets the (z,y)-plane at a point (z,y, 0) that
satisfies

(0,0,1) + £[(X, Y, Z) — (0,0, 1)]
(X, tY,1+t(Z — 1))

(z,9,0)

I

for some parameter value t. Equating the third components, we obtain
0 =1+#(Z — 1), which allows us to solve for the parameter value t,

t = 1/1-2).
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Equating the first two components and substituting this parameter value,
we obtain equations for  and y in terms of X, Y, and Z,

{x = tX X/(1-2),
y =1tY =Y/(1-2).

To solve for X,Y, Z in terms of z and y, we use the defining equation
X2 4+ Y24+ Z% =1 of the sphere. Multiplying this equation by t> and

substituting tX =z, tY =y, tZ = t—1, we obtain 22 +y% +t> -2t +1 = 2,
which becomes

¢ = %(Iz|2+1).
This yields
X = 2z/(|z|>+1),
Y o= 2y/(z” + 1),
Z =1-1/t = (|22 -1)/(|z2 +1).

The point (X,Y,Z) of the sphere is determined uniquely by the point
z = z + iy of the plane. Thus the stereographic projection provides a one-
to-one correspondence between points P of the sphere, except the north
pole N, and points z = z + iy of the complex plane.

Lines of longitude on the sphere correspond to straight lines in the plane
through 0, while lines of lattitude on the sphere correspond to circles cen-
tered at 0. As the radii of the circles tend to oo, the lines of lattitude on
the sphere tend to the north pole, so we are justified in making the north
pole N correspond to the point at oo.

Theorem. Under the stereographic projection, circles on the sphere cor-
respond to circles and straight lines in the plane.
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To see this, we will use the fact that the locus of points in the plane
satisfying a quadratic equation of the form

(3.1) 2+ +ax+bytec =0

is either a circle, a point, or empty. This can be seen by completing the
square and rewriting (3.1) as (z +a/2)? + (y+b/2)? = (a®> +b?)/4 — c.
The three cases correspond respectively to whether (a?+b?)/4—c is strictly
positive, zero, or strictly negative.

‘We begin with a circle on the sphere, and we express it as the intersection
of the sphere and a plane AX+BY +CZ = D. The stereographic projection
of the circle then consists of points z =  + iy that satisfy

2z 2y |22 —1
A B c
EEr S e e

= D.

We rewrite this as
(3.2) (C — D)(z? + y*) + 24z + 2By — (C+ D) = 0.

If C = D, the locus of (3.2) is a straight line. If C # D, then we divide by
C — D, and the equation (3.2) has the form (3.1). Being the projection of
a circle on the sphere, the locus cannot be a point or empty, so it must be
a circle in the plane.

The argument is reversible. Every circle in the plane is the locus of
solutions of an equation of the form

22+y?+A'z+By+D = 0.

Define A,B,C,D so that 2A=A",2B=B',C-D=1,—-(C+ D) =D/,
and the corresponding set on the sphere is the intersection of the sphere
with the plane AX +BY +CZ = D. The intersection cannot be empty or a
point; hence it is a circle on the sphere. Similarly, every straight line in the
plane is the locus of solutions of an equation of the form A’z + B’y = D',
which also determines a plane via 24 = A’, 2B =B’ C =D = D’/2, and
this plane meets the sphere in a circle through the north pole.

Since straight lines in the plane correspond to circles on the sphere
through the north pole, it is convenient to regard a straight line in the
complex plane as a circle through co. With this convention the theorem
asserts simply that stereographic projection maps circles on the sphere to
circles in the extended complex plane.

Exercises for 1.3

1. Sketch the image under the spherical projection of the following
sets on the sphere: (a) the lower hemisphere Z < 0, (b) the polar
cap 2 < Z <1, (c) lines of lattitude X = v1—Z2cosf, ¥ =
V1—Z2siné, for Z fixed and 0 < 6 < 2r, (d) lines of longitude
X =vV1-22%cos0,Y =+/1— Z2%siné, for § fixedand -1 < Z < 1.
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(e) the spherical cap A < X < 1, with center lying on the equator,
for fixed A. Separate into cases, according to various ranges of A.

. If the point P on the sphere corresponds to z under the stereo-

graphic projection, show that the antipodal point —P on the sphere
corresponds to —1/Z.

. Show that as z traverses a small circle in the complex plane in the

positive (counterclockwise) direction, the corresponding point P on
the sphere traverses a small circle in the negative (clockwise) direc-
tion with respect to someone standing at the center of the circle and
with body outside the sphere. (Thus the stereographic projection
is orientation reversing, as a map from the sphere with orientation
determined by the unit outer normal vector to the complex plane
with the usual orientation.)

. Show that a rotation of the sphere of 180° about the X-axis cor-

responds under stereographic projection to the inversion z — 1/z

of C.

. Suppose (z,y,0) is the spherical projection of (X,Y, Z). Show that

the product of the distances from the north pole N to (X,Y, Z) and
from N to (z,y,0) is 2. What is the situation when (X,Y, Z) lies
on the equator of the sphere?

. We define the chordal distance d(z,w) between two points z,w €

C* to be the length of the straight line segment joining the points P
and @ on the unit sphere whose stereographic projections are z
and w, respectively. (a) Show that the chordal distance is a metric,
that is, it is symmetric, d(z,w) = d(w, 2); it satisfies the triangle
inequality d(z,w) < d(z,() + d(¢,w); and d(z,w) = 0 if and only if
z = w. (b) Show that the chordal distance from z to w is given by

2|z — w|

T it E it R

(c) What is d(2,00)? Remark. The expression for d(z,w) shows
that infinitesimal arc length corresponding to the chordal metric is
given by

d(z,w)

z,w € C.

2ds
dO’ (Z) = I-——}-—lz_P’
where ds = |dz| is the usual Euclidean infinitesimal arc length.

The infinitesimal arc length do(z) determines another metric, the
spherical metric o(z,w), on the extended complex plane. See
Section IX.3.
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7. Consider the sphere of radius % in (X,Y, Z)-space, resting on the
(X,Y,0)-plane, with south pole at the origin (0,0,0) and north pole
at (0,0,1). We define a stereographic projection of the sphere onto
the complex plane as before, so that corresponding points (X,Y, Z)
and z ~ (z,y,0) lie on the same line through the north pole. Find
the equations for z = z + ¢y in terms of X, Y, Z, and the equations
for X,Y, Z in terms of 2. What is the corresponding formula for the
chordal distance? Note. In this case, the equation of the sphere is

2
X2+Y’+(Z2-3)" =1

4. The Square and Square Root Functions

Real-valued functions of a real variable can be visualized by graphing them
in the plane R?. The graph of a complex-valued function f(z) of a complex
variable z requires four (real) dimensions. Thus some techniques other
than graphing in R* must be developed for visualizing and understanding
functions of a complex variable. One technique is to graph the modulus of
the function |f(z)| as a surface in three-dimensional space R3. Another is
to graph separately the real and imaginary parts of f(z) in R3.

We describe a different technique for gaining insight into the behavior
of the function f(z). We create two planes, a z-plane for the domain
space and a w-plane for the range space. We then view f(z) as a mapping
from the z-plane to the w-plane, and we analyze how various geometric
configurations in the z-plane are mapped by w = f(z) to the w-plane.
Which geometric configurations in the z-plane to consider depends very
much on the specific function f(z). To illustrate how this method works,

we consider the simplest nontrivial function, the square function w = 22.
w=f(2)
z-plane w-plane
From the polar decomposition w = 22 = 2%, we have
2
(41) lwl = |2,
(4.2) argw = 2argz.

Equation (4.1) shows that the circle |z| = rp in the z-plane is mapped to
the circle |w| = r in the w-plane. As z = rpe*® moves around the circle
in the positive direction at constant angular velocity, the image w = r3e?*

moves around the image circle, in the same direction but at double the
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z-plane w-plane

angular velocity. As z makes one complete loop, the image w makes two
complete loops around the image circle.

Equation (4.2) shows that a ray {argz = 6y} issuing from the origin
in the z-plane is mapped to a ray in the w-plane of twice the angle. As
z traverses the ray from the origin to oo at constant speed, the value w
traverses the image ray from 0 to oo, starting slowly and increasing its
speed. The positive real axis in the z-plane, which is a ray with angle 0, is
mapped to the positive real axis in the w-plane by the usual rule z — z2.
As z traverses the ray {argz = m/4}, the image w traverses the positive
imaginary axis, and as z traverses the positive imaginary axis, the image w
traverses the negative axis. As the rays in the z-plane sweep out the first
quadrant, the image rays in the w-plane sweep out the upper half-plane,
and as the rays in the z-plane sweep out the second quadrant, the image
rays in the w-plane sweep out the lower half-plane. Eventually, we reach
the ray along the negative real axis in the z-plane, which is mapped again
to the positive real axis in the w-plane, and as we continue, the behavior
is repeated in the lower half of the z-plane.

Now we turn to the problem of finding an inverse function for w = 22.
Every point w # 0 is hit by exactly two values of z, the two square roots
+y/w. In order to define an inverse function, we must restrict the domain
in the z-plane so that values w are hit by only one z. There are many ways
of doing this, and we proceed somewhat arbitrarily as follows.

Note that as rays sweep out the open right half of the z-plane, with the
angle of the ray increasing from —7/2 to 7/2, the image rays under w = 22
sweep out the entire w-plane except for the negative axis, with the angle of
the ray increasing from —m to 7. This leads us to draw a slit, or branch
cut, in the w-plane along the negative axis from —oo to 0, and to define
the inverse function on the slit plane C\(—o0,0]. Every value w in the slit
plane is the image of exactly two z-values, one in the (open) right half-plane
{Re z > 0}, the other in the left half-plane {Re z < 0}. Thus there are two
possibilities for defining a (continuous) inverse function on the slit plane.
We refer to each determination of the inverse function as a branch of the
inverse. One branch fi{w) of the inverse function is defined by declaring
that fi(w) is the value z such that Rez > 0 and 22 = w. Then f;(w) maps
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the slit plane C\(—o0, 0] onto the right half-plane {Re z > 0}, and it forms
an inverse for 22 on that half-plane. To specify fi(w) explicitly, express
w = pe*¥ where o lies in the range —7 < ¢ < 7, and then

filw) = /p /2, w=pe¥, -t <p<T.

The function f;(w) is called the principal branch of /w. It is expressed
in terms of the principal branch of the argument function as

filw) = |w|1/zei(Arg“’)/2, w € C\(~00,0].

As w approaches a point —r on the negative real axis (—o0, 0) from above,
the values f;(w) approach the value i/7 on the positive imaginary axis. We
express this by writing f;(—r + ¢0) = iy/r. Similarly, as w approaches —r
from below, the values fi1(w) approach the value —iy/7 on the negative
imaginary axis, that is, fi(—r — i0) = —i,/r. The branch cut (—o0,0] in
the w-plane can be regarded as having two edges, and the function f;(w)
extends continuously to each edge. The top edge, labeled “+” in the figure,
is mapped to the positive imaginary axis by fi(w), and the bottom edge,
labeled “~”, is mapped to the negative imaginary axis by fi(w).

z=f,(w) = /w (principal branch)
N

tHE+

et I NE+++++H+

z=f(w) =-fi(w)
&~

+HFFFF++

L IN+++++H+

We use the other value of y/w to define a second branch fa(w) of the
inverse function y/w. For this we use a second copy of the w-plane, as in
the figure. On this sheet the second branch of \/w is defined by fa(w) =
—fi(w). This branch maps the slit plane onto the left half-plane {Rez <
0}. As w approaches a point —r on the negative axis (—o0, 0) from above,
the values f2(w) approach the value —i./r on the negative imaginary axis,
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and as w approaches —r from below, the values fa(w) approach the value
+i4/7 on the positive imaginary axis. Again we think of the slit as having
two edges, though on this sheet the top edge is mapped to the negative
imaginary axis and the bottom edge is mapped to the positive imaginary
axis. Further, we have

fil=r440) = iv/F = fo(—r —i0), fi(—r —i0) = —iv/F = fo(—7 +0).

This leads us to the idea of constructing a surface to represent the inverse
function by gluing together the edges where the functions f;(w) and fo(w)
coincide. We glue the top edge of the branch cut on the sheet corresponding
to fi(w) to the bottom edge of the branch cut on the sheet corresponding
to fa(w), and similarly for the remaining two edges, to obtain a two-sheeted
surface. Since the values of f1(w) and fa(w) coincide on the edges we have
glued together, they determine a function f(w) defined on the two-sheeted
surface, with values in the z-plane that move continuously with w.

\

Since each sheet of the surface is a copy of the slit w-plane, we may think
of the sheets as “lying over” the w-plane. Each w € C\{0} corresponds
to exactly two points on the surface. The function f(w) on the surface
represents the multivalued function /w in the sense that the values of v/w
are precisely the values assumed by f(w) at the points of the surface lying
over w.

The surface we have constructed is called the Riemann surface of /w.
The surface is essentially a sphere with two punctures corresponding to 0
and oco. One way to see this is to note that the function f(w) maps the
surface one-to-one onto the z-plane punctured at 0. Another way to see this
is to deform the surface by prying open each sheet at the slit, opening it to
a hemisphere, and then joining the two hemispheres along the slit edges to
form a sphere with two punctures corresponding to the endpoints 0 and oo
of the slits.

Exercises for 1.4

1. Sketch each curve in the z-plane, and sketch its image under w = 22.

(@) |z—1=1 (c)y=1 (e)y?=22-1,2>0
(byz=1 dy=z+1 y=1/z, z#0

2. Sketch the image of each curve in the preceding problem under the
principal branch of w = /2, and also sketch, on the same grid but
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in a different color, the image of each curve under the other branch

of /z.

3. (a) Give a brief description of the function z — w = 23, considered
as a mapping from the z-plane to the w-plane. (Describe what
happens to w as z traverses a ray emanating from the origin, and
as z traverses a circle centered at the origin.) (b) Make branch cuts
and define explicitly three branches of the inverse mapping. (c)
Describe the construction of the Riemann surface of z!/3.

4. Describe how to construct the Riemann surfaces for the following
functions: (a) w = z!/4, (b) w = vz — 1, (¢) w = (2—1)%*°. Remark.
To describe the Riemann surface of a multivalued function, begin
with one sheet for each branch of the function, make branch cuts
so that the branches are defined continuously on each sheet, and
identify each edge of a cut on one sheet to another appropriate edge
so that the function values match up continuously.

5. The Exponential Function

We extend the definition of the exponential function to all complex num-
bers z by defining

e = e cosy+ie“siny, z=zxz+1y e C.

Since e®¥ = cosy + isiny, this is equivalent to
e = eV, z=2z+iy.
This identity is simply the polar representation of e?,
(5.1) le*] = €7,
(5.2) arge® = y.
If z is real (y = 0), the definition of e* agrees with the usual exponential

function e®. If z is imaginary (z = 0), the definition agrees with the
definition of €% given in Section 2.
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A fundamental property of the exponential function is that it is periodic.
The complex number A is a period of the function f(z) if f(z+ \) = f(2)
for all z for which f(z) and f(z + A) are defined. The function f(z) is
periodic if it has a nonzero period. Since sinxz and cosy are periodic
functions with period 2w, the function e® is periodic with period 2i:

e# T = 7, zeC.

In fact, 2tk is a period of e for any integer k.
Another fundamental property of the exponential function is the addi-
tion formula

(5.3) etV = e%e?, z,w € C.

To check this, let z =z + iy and w = u + 1v. Then

ertY — em+uei(y+v) — ezeueiyeiv - eze'w,
where we have used the addition formulae for e* and .

From the addition formula (5.3) we have e?e™% = €® = 1. Consequently,
the inverse of e* is e™*

1/e® = e7?, zeC.

To understand the exponential function better, we view w = €* as a
mapping from the z-plane to the w-plane. If we restrict the exponential
function to the real line R, we obtain the usual exponential function z
€*, —o0 < r < 00, which maps the real line R to the positive real axis
(0, 00). The equation (5.2) shows that an arbitrary horizontal line z 4 iyo,
—00 < T < 00, is mapped to the curve e®e'¥, —0o < T < oo, which is a
ray issuing from the origin at angle yp. If we move the horizontal line up,
the angle subtended by the ray increases, and the image ray is rotated in
the positive (counterclockwise) direction. As we move the horizontal line
upwards from the z-axis at yo = 0 to height yo = 7/2, the image rays
sweep out the first quadrant in the w-plane. The horizontal line at height
yo = /2 is mapped to the positive imaginary axis, the horizontal line of
height yo = 7 is mapped to the negative real axis, and when we reach the
horizontal line of height yo = 27, the image rays have swept out the full
w-plane and returned to the positive real axis. The picture then repeats
itself periodically. Each point in the w-plane, except w = 0, is hit infinitely
often, by a sequence of z-values spaced at equal intervals of length 27 along
a vertical line.

While the images of horizontal lines are rays issuing from the origin, the
images of vertical lines are circles centered at the origin. The equation (5.1)
shows that the image of the vertical line ¢ + iy, —00 < y < 00, is a circle
in the w-plane of radius e®. As z traverses the vertical line, the value w
wraps infinitely often around the circle, completing one turn each time
y = Im 2z increases by 2.
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Y

horizontal lines — rays

vertical lines — circles

Exercises for 1.5

1. Calculate and plot e* for the following points z:
(a) o (c) m(t—1)/3 (e) mi/m, m=1,23...
(b)mi+1 (d) 37mi (f) m(i — 1), m=123,...

2. Sketch each of the following figures and its image under the expo-
nential map w = €. Indicate the images of horizontal and vertical
lines in your sketch.

(a) the vertical strip 0 < Rez < 1,

(b) the horizontal strip 57 /3 < Im 2z < 8xn/3,
(c) the rectangle 0 <z <1, 0 <y < w/4,
(d) the disk |z| < /2,

(e) the disk |z| <,

(f) the disk |z| < 3x/2.

3. Show that e* = e=.

4. Show that the only periods of e* are the integral multiples of 27,
that is, if e*t* = e? for all 2, then X is an integer times 2.

6. The Logarithm Function

For z # 0 we define log z to be the multivalued function

logz = log|z| +iargz

= log|z| + i Arg z + 2mim, m=0,£1,£2,....

The values of log z are precisely the complex numbers w such that e¥ = z.
To see this, we plug in and compute. If w = log|z| + ¢ Arg z 4+ 2mim, then

¥ — elog[z|ezArgzeQ1mm - lzlezArgz = 2,
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where we have used the identities ¢!°6™ = r for r > 0 and €™ = 1.
On the other hand, suppose that w = u + v is an arbitrary complex
number such that e¥ = 2. Then the polar representation of z is z = re®?,
where r = |z| = e¢*. Thus u = log|z|, and v is a value of argz, so that
v = Arg z 4+ 2mm for some integer m.

Recall that the principal value Argz of argz is the value 6 satisfying
—m < 8 < 7. We define the principal value of log z to be

(6.1) Logz = logl|z| +i1Argz, z#0.

Thus Log z is a single-valued inverse for e, with values in the horizontal
strip —7 < Imw < . Once we know the principal value of log z, we obtain
all values by

logz = Logz+ 2mim, m=0,+1,%2,....
Example. The values of log(1 + i) are given by
log(1+1) = log|l+ | +iarg(1l+ 1)
= log\/§+i7r/4+2m'm, m=0,+1,+2,....
The principal value is
Log(1+i) = logv2+ir/4.

The values form a vertical two-tailed sequence of equally spaced points.

47i —
3mi <
2mi - ®

™, Log(l + ) =log V2 + in/4

—Ti —
27— ®
37 —
—Ami o ®

Now we regard w = Logz as a map from the slit z-plane C\(—o0, 0]
to the w-plane. Since the exponential function maps horizontal lines to
rays issuing from the origin, its inverse, the logarithm function, maps rays
issuing from the origin to horizontal lines. In fact, formula (6.1) shows that
the ray {Argz = 6} is mapped onto the horizontal line {Imw = 6p}. As 2z
traverses the ray from 0 to oo, the image w traverses the entire horizontal
line from left to right. As 6, increases between —m and =, the rays sweep
out the slit plane C\(—00,0], and the image lines fill out a horizontal strip
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{-7 < Imw < 7} in the w-plane. Similarly, the formula (6.1) shows
that the image of a punctured circle {|z] = r, —m < argz < =} is the
vertical interval {Rew = log|z|, —m < Im 2 < 7}, where the vertical line
{Rew =log|z|} meets the horizontal strip.

w=logz F+t
A A A
0

As with the inverse 1/z of 22, we can represent the multivalued function
log z as a single-valued function on a Riemann surface spread over the z-
plane, with one sheet for each branch of the function. The construction
is as follows. This time we have infinitely many branches f,,(z) of the
logarithm function, defined for z # 0 and given explicitly by

fm(z) = Logz+ 2mim, —00 <M < .

For each branch, we take a copy of the complex plane and slit it along
the negative real axis as before, to obtain a copy S,, of the slit plane
C\(—00,0]. We regard the function f,,(2) as defined on the mth sheet Sp,.
Since the values of f,,,(z) at the top edge of the slit on S,,, match the values
of fm+1(2) at the bottom edge of the slit on S;,41, we glue together these
two edges. We do this for each m, and we obtain a surface resembling a
spiral stairway leading infinitely far both up and down. The composite
function f(z) defined to be fn(z) on the mth sheet is then continuously
defined on the surface. It represents the total function log z, in the sense
that the values of log = are precisely the values of f(z) at the points of the
surface that correspond to z.
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Exercises for 1.6

1. Find and plot log z for the following complex numbers z. Specify
the principal value. (a) 2, (b) 4, (¢) 1+, (d) (1+iv/3)/2.

2. Sketch the image under the map w = Log 2z of each of the following
figures.
(a) the right half-plane Rez > 0,
(b) the half-disk |z| <1, Rez >0,
(c) the unit circle |z| =1,
(d) the slit annulus /e < |z| < €2, z ¢ (—e?, —/e),
(e) the horizontal line y =,
(f) the vertical line = =e.

3. Define explicitly a continuous branch of log z in the complex plane
slit along the negative imaginary axis, C\[0, —io0).

4. How would you make a branch cut to define a single-valued branch
of the function log(z + ¢ — 1)? How about log(z — 2¢)?

7. Power Functions and Phase Factors

Let « be an arbitrary complex number. We define the power function z®
to be the multivalued function

20 = ealogz’ 2750.

Thus the values of z* are given by

2% = ea[log{z]+iArgz+27rim]

= exlogzgmiam oy — 0 41,42,....

The various values of z® are obtained from the principal value 082
by multiplying by the integral powers (e2™*)™ of e?™  If q is itself an
integer, then €2™® = 1, and the function 2® is single-valued, the usual
power function. If @ = 1/n for some integer n, then the integral powers
e2mim/n of e2mi/m are exactly the nth roots of unity, and the values of z!/”
are the n nth roots of z discussed earlier (Section 2).

Example. The values of i* are given by
eilogi — e—Argi—27rm — e—7r/2e—27rm’ m=0,+1,+2,....

The values form a two-tailed sequence of positive real numbers, accumu-
lating at 0 and at +o00. Similarly, the values of ¢™* are given by

e—ilogi — e—Al‘g(_i)_zﬂ'k — eﬂ/QG_QWk, k;:O,:l:l :i:2,
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I € e—57r12 e -T2 e 37/2 >
‘]

Danger! If we multiply the values of i* by those of i~%, we obtain infinitely
many values 2™, —oco < n < 0o. Thus

@O # =1,

and the usual algebraic rules do not apply to power functions when they
are multivalued.

If a is not an integer, we cannot define z* on the entire complex plane
in such a way that the values move continuously with z. To define the
function continuously, we must again make a branch cut. We could make
the cut along the negative real axis, but this time let us make the cut along
the positive real axis, from 0 to +00. We define a continuous branch of z*
on the slit plane C\[0, 00) explicitly by

w = r%%, for z=re®, 0 <6< 2r.

At the top edge of the slit, corresponding to 6 = 0, we have the usual power
function r* = e 1987 At the bottom edge of the slit, corresponding to
6 = 2w, we have the function r*e2™*®, If we fix r and let 8 increase from 0
to 2m, z = re' starts at the top edge of the slit and proceeds around a
circle, ending at the bottom edge of the slit. As z describes this circle, the
values w = r*€** move continuously, starting from r* at the top edge of
the slit and ending at r*e?™*® at the bottom edge. Thus the values of this
branch of 2* on the bottom edge are e>™** times the values at the top edge.
The multiplier €27** is called the phase factor of z* at z = 0.

If we continue any other choice w = r®ei®(#+27m) of 2@ 3round the same
circle, the values of w move continuously from r*e?™%@™ at the top edge of
the slit to r@eia(2m+2mm) — pog2riame2mia 4t the bottom edge. Again the
final w-value is the phase factor 2™ times the initial w-value.

The same analysis shows that the function (z — zp)* has a phase factor
of €2™@ at z = z, in the sense that if any branch of w = (2 — 2)® is
continued around a full circle centered at z¢ in the positive direction, the
final w-value is €27** times the initial w-value. This can be seen by making
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a change of variable ( = z — 2. Further, this result does not change if
we multiply (z — 2p)® by any (single-valued) function. We state the result
formally for emphasis.

Phase Change Lemma. Let g(z) be a (single-valued) function that is
defined and continuous near zy. For any continuously varying branch of
(z—2z0)® the function f(z) = (z— 29)*g(z) is multiplied by the phase factor
€?™@ when 2 traverses a complete circle about zg in the positive direction.

Example. If a is an integer, the phase factor of z* at 0 is €*™® = 1, in
accord with the fact that z® is single-valued.

Example. The phase factor of v/z — 29 at zg is €™ = —1. As z traverses a
circle about zg, the values of f(z) = \/z — 2y return to —f(z). The phase
factor of 1/y/z0 — z = i/+/z — 2z¢ at z is also —1.

Example. The function 1/z(1 — z) has two branch points, at 0 and at 1.
At z = 0, each branch of /1 — z is single-valued, so the phase factor of
each branch of 1/z(1 — 2) at z = 0 is the same as that of \/z, which is
—~1. Similarly, the phase factor of \/2(1 —2) at z = 1 is the same as
that of /1 — z, which is —1. Now suppose we draw a branch cut from 0
to 1 and consider the branch f(z) of 1/z(1 — z) that is positive on the top
edge of the slit. As z traverses a small circle around 0, the values of f(z)
return to — f(2) on the bottom edge of the slit, corresponding to the phase
factor —1 at z = 0. As z traverses the bottom edge of the slit and returns
to the top edge around a small circle at z = 1, the values of —f(z) are
again multiplied by the phase factor —1. Thus the values of f(z) return
to the original positive value on the top edge of the slit when z traverses
a dogbone path encircling both branch points. It follows that the branch
f(2) is a continuous single-valued function in the slit plane C\[0,1]. Now
we may proceed, in analogy with /2 and log z, to define a Riemann surface
for the function y/z(1 — z) that captures both branches of the function. We
require two sheets, since there are two choices of branches for the function
V2(1 — z). On each sheet we make the same cut, to form two copies of
C\[0,1]. On one sheet we define F(z) to be the branch f(z) of /2(1 — 2)
specified above, and on the other sheet we define F(z) to be the other
branch —f(z) of 1/2(1 — z). The sheets are then joined by identifying edges
of the slits in such a way that F(z) extends continuously to the surface.
In this case, the top edge of the slit [0,1] on one sheet is identified to the
bottom edge of the slit on the other sheet, and the remaining two edges
are identified, to form the two-sheeted Riemann surface of 1/z(1 — z).

In constructing the Riemann surface of a multivalued function, the num-
ber of sheets always coincides with the number of branches of the function.
However, the branch cuts can be made in many ways, as long as there are
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enough branch cuts so that each branch of the function can be defined con-
tinuously in the slit plane. For instance, the branch cuts for the function
f(z) = v/2(1 — 2) could as well be made from —oo to 0 along the negative
real axis and from +1 to +oco along the positive real axis. The branch cuts
could also be made along more complicated paths from 0 to 1.

Example. Consider y/z — 1/z. We rewrite this as vz — 1y/z + 1/y/z. The

function has three finite branch points, at 0 and +1. We must also con-
sider oo as a branch point, since there is a phase change corresponding to
a phase factor —1 as z traverses a very large circle centered at 0. Each
branch point has phase factor —1, so any branch of the function returns
to its original values when z traverse a path encircling two of the branch
points. Thus it suffices to make two cuts, say (—o0o, —1] and [0,1]. Each
branch of the function is continuous on C\((—o0,—1] U [0,1]). Again top
edges of slits on one sheet are identified to bottom edges of the others.
The resulting surface is a torus (doughnut, or inner tube), with punctures
corresponding to the branch points. What would happen if we were to
make initially an additional branch cut along [—1,0], in addition to the
two branch cuts above? The values of each branch at the top edge of
the new cut would agree with the values of the same branch on the bot-
tom edge. Consequently, we would identify the top and bottom edges of
the slit [—1,0] on the same sheet, thereby effectively erasing the slits and
arriving at the same doughnut surface.

-
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Exercises for 1.7

1. Find all values and plot: (a) (1+44)?, (b) (—i)!*?, (c) 2-%/2, (d) (1+
iv/3)(-9,

2. Compute and plot log [(1 +i)%].
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Sketch the image of the sector {0 < argz < 7/6} under the map
w=2z2%for (a) a =32, (b) a =1, (c) a=1i+2 Use only the
principal branch of 2.

Show that (zw)® = z%w®, where on the right we take all possible
products.

. Find i*. Show that it does not coincide with %% = §~1.

Determine the phase factors of the function z%(1—2)® at the branch
points z = 0 and z = 1. What conditions on a and b guarantee that
2%(1 — 2)® can be defined as a (continuous) single-valued function
on C\[0,1]?

Let r; < 23 < --- < x,, be n consecutive points on the real axis.
Describe the Riemann surface of \/(z — 1) - - - (2 — z,) . Show that
for n = 1 and n = 2 the surface is topologically a sphere with certain
punctures corresponding to the branch points and oo. What is it
when n = 3 or n = 4? Can you say anything for general n? (Any
compact Riemann surface is topologically a sphere with handles.
Thus a torus is topologically a sphere with one handle. For a given
n, how many handles are there, and where do they come from?)

. Show that /22 —1/z can be defined as a (single-valued) continu-

ous function outside the unit disk, that is, for |z| > 1. Draw branch
cuts so that the function can be defined continuously off the branch
cuts. Describe the Riemann surface of the function.

Consider the branch of the function 1/z(z% — 1)(z + 1)3 that is pos-
itive at z = 2. Draw branch cuts so that this branch of the function
can be defined continuously off the branch cuts. Describe the Rie-
mann surface of the function. To what value at z = 2 does this
branch return if it is continued continuously once counterclockwise
around the circle {|z| = 2}?

Consider the branch of the function 1/z(2% —1)(z + 1)3(z — 1) that
is positive at z = 2. Draw branch cuts so that this branch of the
function can be defined continuously off the branch cuts. Describe
the Riemann surface of the function. To what value at z = 2 does
this branch return if it is continued continuously once counterclock-
wise around the circle {|z| = 2}?

Find the branch points of /23 —1 and describe the Riemann
surface of the function.
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8. Trigonometric and Hyperbolic Functions

If we solve the equations
&0

e = cosf—isinf

cosf +isind,

for cos 8 and sin 8, we obtain

ei0 +e—z’0
cosf = ———2—,
eiO _ e—iO
sinf = -
21

This motivates us to extend the definition of cosz and sinz to complex
numbers z by

eiz _I_e—iz
cosz = — z€C,
. e'iz _ e—iz
sinz = ———, zeC.
13

This definition agrees with the usual definition when z is real. Evidently,
cos z is an even function,

cos(—z) = cosz, zeC,
while sin z is an odd function,
sin(—z) = —sinz, zeC.
As functions of a complex variable, cosz and sinz are periodic, with pe-
riod 2,
cos(z +2m) = cosz, zeC,
sin(z + 27) = sinz, zeC.

After some algebraic manipulation, one checks (Exercise 1) that the addi-
tion formulae for cos z and sin z remain valid,

cos(z + w) = coszcosw — sin z sinw, z,weC,
sin(z +w) = sinzcosw + cos zsinw, z,weC.
If we substitute w = —z in the addition formula for cosine, we obtain the

familiar identity
cos?z +sin?z = 1, zeC.

We shall see, in fact, that any reasonable identity that holds for analytic
functions of a real variable, such as cosz and sinz, also holds when the
functions are extended to be functions of a complex variable. This will be a
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special case of the principle of permanence of functional equations,
proved in Chapter V.

The hyperbolic functions coshz = (e*+e~*)/2 and sinhz = (e*—e™%)/2
are also extended to the complex plane in the obvious way, by

e’ +e?
coshz = —5 z€C,
] e’ —e”?
sinhz = — zeC.

Both cosh z and sinh z are periodic, with period 27,

cosh(z + 27i) = coshz, z€C,
sinh(z + 271) = sinhz, zeC.
Evidently, cosh z is an even function and sinh z is an odd function. There
are addition formulae for cosh z and sinh z, derived easily from the addition
formulae for cos z and sin z (Exercise 1).
When viewed as functions of a complex variable, the trigonometric and

the hyperbolic functions exhibit a close relationship. They are obtained
from each other by rotating the domain space by /2,

cosh(iz) = cosz, cos(iz) = coshz,
sinh(iz) = isinz, sin(iz) = isinhz.
If we use these equations and the addition formula
sin(z + iy) = sinzcos(iy) + cos zsin(iy),
we obtain the Cartesian representation for sin z,
sinz = sinzcoshy + icoszsinhy, z=z+1iyeC.

Thus

2

|sinz|? = sin®zcosh®y + cos® zsinh? y.

Using cos? z + sin? z = 1 and cosh? y = 1 + sinh? g, we obtain
|sinz|?> = sin?z + sinh?y.

From this formula it is clear where the zeros of sin z are located; sinz = 0
only when sinz = 0 and sinhy = 0, and this occurs only on the real axis
y = 0, at the usual zeros 0, &7, £27,... of sinz. Similarly, the only zeros
of cos z are the usual zeros of cosz on the real axis (Exercise 2).

Other trigonometric and hyperbolic functions are defined by the usual
formulae, such as

sin z sinh z
tanz = , tanhz =
cos z

z € C.

coshz’
Thus tan z and tanh z are odd functions, and tanh(iz) = itan 2.
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The inverse trigonometric functions are multivalued functions, which can
be expressed in terms of the logarithm function. Suppose w = sin™! 2, that
is,

sinw = —— = 2.

Then ¥ — 2ize*” — 1 = 0. This is a quadratic equation in e**, which can
be solved by the usual quadratic formula. The solutions are given by

e = jz+ 41— 22.

Taking logarithms we obtain
sin"!z = —ilog (iz ++/1- z2) .

This identity is to be understood as a set identity, in the sense that w sat-
isfies sinw = z if and only if w is one of the values of —ilog (z’z + 1 -22).
To obtain a genuine function, we must restrict the domain and specify the
branch. One way to do this is to draw two branch cuts, from —oo to —1 and
from +1 to +o0 along the real axis, and to specify the branch of /1 — 22
that is positive on the interval (—1,1). With this branch of v/1 — 22, we

obtain a continuous branch —iLog (iz + v/1 — 22) of sin™! 2.

Exercises for 1.8

1. Establish the following addition formulae:
(a) cos(z 4+ w) = cos zcosw — sin z sinw,
(b) sin(z + w) = sin z cosw + cos z sinw,
(c) cosh(z + w) = cosh z coshw + sinh z sinh w,
(d) sinh(z + w) = sinh z cosh w + cosh z sinh w,

2. Show that |cosz|? = cos®z + sinh®y, where z = z + 4. Find all
zeros and periods of cos z.

3. Find all zeros and periods of cosh z and sinh 2.

4. Show that

1 1+1z
tan"lz = =1 ,
moE =y Og<1—iz>

where both sides of the identity are to be interpreted as subsets of
the complex plane. In other words, show that tanw = z if and only
if 24w is one of the values of the logarithm featured on the right.

5. Let S denote the two slits along the imaginary axis in the complex
plane, one running from i to +ico, the other from —i to —ico. Show
that (1 +42)/(1 — z) lies on the negative real axis (—o0,0] if and



32

I The Complex Plane and Elementary Functions

only if z € §. Show that the principal branch

1 1414
Tan 'z = — Log +Z.Z
23 1—14z

maps the slit plane C\S one-to-one onto the vertical strip {| Rew| <

w/2}.

. Describe the Riemann surface for tan™! z.

. Set w = cosz and ¢ = e**. Show that ( = w £ v/w? — 1. Show that

cos tw = —ilog [w:tx/uﬂ—l] ,

where both sides of the identity are to be interpreted as subsets of
the complex plane.

. Show that the vertical strip | Re(w)| < 7/2 is mapped by the func-

tion z(w) = sinw one-to-one onto the complex z-plane with two
slits (—oo, —1] and [+1,+00) on the real axis. Show that the in-
verse function is the branch of sin™!z = —iLog (iz +v1- z2)
obtained by taking the principal value of the square root. Hint.
First show that the function 1 — 22 on the slit plane omits the nega-
tive real axis, so that the principal value of the square root is defined
and continuous on the slit plane, with argument in the open interval
between —7/2 and /2.
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Analytic Functions

In this chapter we take up the complex differential calculus. After review-
ing some basic analysis in Section 1, we introduce complex derivatives and
analytic functions in Section 2 and we show that the rules for complex differ-
entiation are the same as the usual rules for differentiation. In Section 3 we
characterize analytic functions in terms of the Cauchy-Riemann equations.
In Sections 4 and 5 we give several applications of the Cauchy-Riemann
equations, to inverses of analytic functions and to harmonic functions. In
Section 6 we discuss conformality, which is a direct consequence of complex
differentiability. We close in Section 7 with a discussion of fractional linear
transformations, which form an important class of analytic functions.

1. Review of Basic Analysis

We begin by reviewing the background material in analysis that will (even-
tually) be called upon, and we say something about the language of formal
mathematics. For the most part, we will not phrase our arguments com-
pletely formally, though any bilingual person will be able to translate easily
to the language of formal mathematics in such a way that our development
becomes completely rigorous.

Since the complex derivative is defined as a limit, we require some back-
ground material on limits and continuity. To be able to define and work
with analytic functions, we also require some basic topological concepts,
including open and closed sets, and domains. The confident reader may
pass directly to the definitions of complex derivative and analytic function
in the next section, and refer back to the material in this section only when
needed.

We begin with the notion of a convergent sequence. For this we have
two definitions.

Informal Definition. A sequence {s,} converges to s if the sequence
eventually lies in any disk centered at s.

33
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The language of formal mathematics serves to quantify this statement
and make it precise. The “small disk” is traditionally given radius € > 0.
That “sp, lies in the disk” means that |s, — s| < e. That an event “even-
tually” occurs is translated to the statement that there is N > 1 such
that the event occurs for n > N. Thus the translation of the definition of
convergent sequence to the language of formal mathematics is as follows.

5°

. . |s,—s| <eforn=4
2. 08

Formal Definition. A sequence of complex numbers {s,} converges to s
if for any € > 0, there is an integer N > 1 such that |s, — s| < ¢ for all
n>N.

If {s,} converges to s, we write s, — s, or lims, = s. Some examples
of convergent sequences that appear frequently are

. 1
(1.1) nlLHc;lo - = 0, 0<p<oo,
(1.2) lim |2|* = 0, lz] <1,
n—oQ
(1.3) lim {n = 1.
n—oo

To prove (1.1) formally, we would for a given € > 0 take N to be an integer
satisfying N > 1/e!/P. Then for n > N we have n? > N? > 1/e, and
1/n? < e. To prove (1.2) formally, we would take N to be an integer
satisfying N > (loge)/(log|z|). To prove (1.3) formally, we resort to a
trick. Let t,, = {/n — 1. We estimate t,, from the binomial expansion
n = (1+t,)" = 1+ nt, + in27—9t$, + e+ R > M"T-Utﬁ.
This yields t2 < 2/(n—1). Thus |t,| = | {/n — 1| < € whenever 2/(n—1) <
€2, that is, for n > 1+ 2/¢2. For the formal definition we can take N to be
any integer satisfying N > 1+ 2/¢2.

We give some definitions and state some theorems, without proofs, that
we will be using.

A sequence of complex numbers {s,} is said to be bounded if there is
some number R > 0 such that |s,| < R for all n. In other words, the
sequence is bounded if it is contained in some disk.

Theorem. A convergent sequence is bounded. Further, if {s,} and {t,}
are sequences of complex numbers such that s, — s and t, — t, then

(a) sn + tn —» s + ¢,

(b) sntn — st,

(¢c) sn/tn — s/t, provided that t # 0.
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Thus the limit of a sum is the sum of the limits, the limit of a product
is the product of the limits, and the limit of a quotient is the quotient of
the limits, provided that the denominator is not 0.

Example. We can use these rules to evaluate the limit of a rational ex-
pression of the form
. 3mP+2n-1 3
lim ————— = —.
n—oo 5n% —4n + 8 5
As a preliminary trick, we divide numerator and denominator by the lead-
ing power, and rewrite the expression as

3+(2/n) —1/n?
5 - (4/n) + (8/n%)
Since 1/n — 0 and 1/n? — 0, the sum and product statements show that

the numerator converges to 3 and the denominator converges to 5. By the
quotient statement, the quotient then converges to %

The most useful criteria for convergence of sequences of real and complex
numbers are gathered in the next several theorems. The first criterion is
sometimes called the in-between theorem.

Theorem. Ifr, <s, <t,,and ifr, —» L andt, — L, then s,, — L.

A sequence of real numbers {s,} is said to be monotone increasing
if sp+1 > s, for all n, monotone decreasing if 5,11 < s, for all n, and
monotone if it is either monotone increasing or decreasing. The following
criterion is a version of the completeness axiom for the real numbers.

S5 EY) 53 §4 S5

bounded monotone increasing sequence
Theorem. A bounded monotone sequence of real numbers converges.

A sequence {s,} of real numbers can behave rather wildly. It is still
possible to assign an “upper limit” to {s,}, denoted by lim sup s,,, which is
the largest possible limit of a subsequence of {s,}. Our working definition
is that limsup s, is the unique extended real number S, ~o0 < § < +o0,
such that if t > S, then s, > t for only finitely many indices n, while if
t < S, then s, > t for infinitely many indices n. It is easy to see that
any such S is unique. The existence of such an S can be deduced from the
preceding theorem. In fact, the existence is equivalent to the completeness
axiom of the real numbers.
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A “lower limit” of the sequence {s,}, denoted by liminfs,, is defined
similarly. It satisfies

liminf s,, = — limsup(—s,).

The sequence {s,} converges if and only if its lim sup and lim inf are finite
and equal.

Example. The sequence {(-1)"}%, = {+1,-1,+1,-1,...} does not
converge. Its upper and lower limits are

limsup (—1)" = +1, liminf (-1)" = —-1.

n—00 n—=00

For complex sequences, the following simple criterion is used very often.

Theorem. A sequence {s;} of complex numbers converges if and only if
the corresponding sequences of real and imaginary parts of the si’s con-
verge.

We define a sequence of complex numbers {s,} to be a Cauchy se-
quence if the differences s, — s, tend to 0 as n and m tend to oc. In
the language of formal mathematics, this means that for any € > 0, there
exists N > 1 such that |s, — sp,| < € if m,n > N. The following theorem
is an equivalent form of the completeness axiom. It is important because it
provides a means of determining whether a sequence is convergent without
producing explicitly the limit of the sequence.

Theorem. A sequence of complex numbers converges if and only if it is a
Cauchy sequence.

We say that a complex-valued function f(z) has limit L as z tends
to zp if the values f(z) are near L whenever z is near 29, z # 2. The
formal definition is that f(z) has limit L as z tends to z if for any € > 0,
there is 6 > 0 such that |f(z) — L| < € whenever z in the domain of f(2)
satisfies 0 < |z — 29| < 4. In this case we write

lim f(z) = L,
2—20

or f(z) — L as z — z. It is implicitly understood that there are points
in the domain of f(z) that are arbitrarily close to 29 and different from z.
The definition can be rephrased in terms of convergent sequences.

Lemma. The complex-valued function f(z) has limit L as z — 2 if and
only if f(2,) — L for any sequence {z,} in the domain of f(z) such that

Zn # %9 and z, — 2.

From the theorem on limits, we obtain easily the following.
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Theorem. If a function has a limit at zy, then the function is bounded
near zy. Further, if f(z) — L and g(z) — M as z — zq, then as z — zo we
have

(a) f(z) + g(z) -» L + M,

(b) f(2)9(zx) — LM,

(c) f(2)/9(z) — L/M, provided that M # 0.

We say that f(z) is continuous at 2z if f(2) — f(z20) as 2 — 2.
A continuous function is a function that is continuous at each point
of its domain. The preceding theorem shows that sums and products of
continuous functions are continuous, and so are quotients, provided that the
denominator is not zero. Further, the composition of continuous functions
is continuous.

Example. Any constant function is continuous. The coordinate function
f(z) = z is continuous. Thus any polynomial function p(z) = a,2" +
---+a1z + ag is continuous. Any rational function p(z)/q(z) is continuous
wherever the denominator ¢(2) is not zero.

A useful strategy for showing that f(z) is continuous at zg is to obtain
an estimate of the form |f(z) — f(z0)] < C|z — z| for z near z,. This
guarantees that |f(z) — f(20)| < € whenever |z — 29| < £/C, so that we can
take § = €/C in the formal definition of limit.

Example. The estimates
|Re(z — zp)| <
|Im(z — 20)| < |2 — 2|,
2] = 20| | <

show respectively that the functions Re(z), Im(z), and |z| are continuous.

IZ_ZOIa
IZ—ZOI’

A subset U of the complex plane is open if whenever z € U, there is a
disk centered at z that is contained in U.

o’ oG

open set: no boundary points closed set: includes boundary

Any open disk {|2—29| < p} is an open set. The closed disk {|z—zo| < p}
is not an open set, since any open disk centered at a point on the boundary
circle {|z — zo| = p} extends outside the closed disk.

In general, any set described by strict inequalities of continuous functions
is open. For instance, the open upper half-plane is described by the strict
inequality Im(z) > 0, so that it is an open set. Other examples of open sets
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described by strict inequalities are the open sector {6y < argz < 6}, the
open horizontal strip {—1 < Imz < +1}, the open annulus {r < |2| < s},
and the punctured disk {0 < |z| < r}.

A subset D of the complex plane is a domain if D is open and if any two
points of D can be connected by a broken line segment in D. Open half-
planes, open disks, open sectors, open annuli, and open punctured disks
are all domains. An example of an open set that is not a domain is the
union of the open upper and lower half-planes, U = C\R. It is impossible
to connect a point in the upper half-plane to a point in the lower half-plane
by a broken line segment that does not cross the real line.

= €

domain not a domain

The most important property of domains for us is the following property,
which actually characterizes domains (Exercise 18).

Theorem. If h(z,y) is a continuously differentiable function on a do-
main D such that Vh = 0 on D, then h is constant.

This theorem is easy to justify. Since Vh = 0, the directional derivative
of h(z,y) in any direction is zero. Consequently, h(zx,y) is constant on any
straight line segment contained in D, hence on any broken line segment.
Since any two points of D can be joined by a broken line segment in D,
h(z,y) is constant on D.

A set is convex if whenever two points belong to the set, then the
straight line segment joining the two points is contained in the set. An
open or closed disk is convex, but a punctured disk is not convex.

D

convex not convex

A set is star-shaped with respect to zj if whenever a point belongs to
the set, then the straight line segment joining 2o to the point is contained
in the set. In other words, a set is star-shaped with respect to zg if every
point of the set is visible from zy. Any convex set is star-shaped with
respect to each of its points. The slit plane C\(—o0, 0] is star-shaped with
respect to any point on the positive real axis. However, it is not convex,
and it is not star-shaped with respect to any point not on the real axis.
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star-shaped with respect to z; but not z; not star-shaped

A star-shaped domain is a domain that is star-shaped with respect to
one of its points. Thus C\(—o0,0] is a star-shaped domain. Any convex
domain is a star-shaped domain. An open annulus is not star-shaped.

A subset E of the complex plane is closed if it contains the limit of every
convergent sequence in E. The closed disk {|z — 29| < r} is a closed set,
since if |s, — zp| < 7 and s, — s, then |s — 2p] < 1.

Sets of the form {f(z) > ¢} or {f(z) < ¢}, where f(z) is a continuous
real-valued function, are closed. Thus for instance the closed upper half-
plane, consisting of points z such that Re(z) > 0, is a closed set.

The boundary of a set E consists of points z such that every disk
centered at z contains both points in F and points not in E. Thus a set is
closed if it contains its boundary, and a set is open if it does not include
any of its boundary points. For example, the boundary of the closed disk
{lz — 20| < r} is its boundary circle {|z — zo| = r}, and the boundary of
the open disk {|z — 20| < r} is also the boundary circle.

A subset of the complex plane that is closed and bounded is said to
be compact. A closed disk {|z — 29| < 7} is compact, as is a closed
interval [a, b] on the real line. We will use the following important property
of compact sets in our discussion of the maximum principle for harmonic
and analytic functions.

Theorem. A continuous real-valued function on a compact set attains its
maximum.

Exercises for I1.1

1. Establish the following:

2nP +5n +1
1' :1 1 _— = ]_
(&) fm 2= (c) Jim, P+ 30+ 1 % P>
. n -
O =0 @l =0 =cC

2. For which values of z is the sequence {2"}32 ; bounded? For which
values of z does the sequence converge to 0?7

3. Show that {n"z"} converges only for z = 0.

|
4. Show that lim N

—_— = >
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5.

10.

11.

12.

II Analytic Functions

Show that the sequence

bn:1+l+1+-~-+l—logn, n>1,
2 3 n
is decreasing, while the sequence a, = b, —1/n is increasing. Show
that the sequences both converge to the same limit . Show that
% <y < % Remark. The limit of the sequence is called Euler’s
constant. It is not known whether Euler’s constant is a rational
number or an irrational number.

For a complex number «, we define the binomial coefficient “o
choose n” by

<a> . (a) _afa-lo(antl) o

0 n n!

Show the following.
(a) The sequence (a) is bounded if and only if Rea > —1.
n

(b) z — 0 if and only if Rea > —1.

(67

o’
(c) Ha#0,1,2,..., then (n+1>/(n) — —1.

(n20)|>|(5) s o =0
(5)<1C))

Define 2o = 0, and define by induction zn41 = z2 + § for n > 0.
Show that z,, — % Hint. Show that the sequence is bounded and
monotone, and that any limit satisfies z = % + 1.

(d) f Rea < -1, o # —1, then

(e) If Reaw > —1 and « is not an integer, then

for n large.

Show that if s, — s, then |s, — s,—1| — 0.

Plot each sequence and determine its liminf and lim sup.
1
(a) sp =1+ o (=" (¢) sp =sin(mn/4)
(b) sp = (—n)" (d) sp=2" (z € R fixed)

At what points are the following functions continuous? Justify your
answer. (a) z, (b) z/[2l, (c) 2%/|2], (d) 2%/|2[.

At what points does the function Argz have a limit? Where is
Arg 2z continuous? Justify your answer.

Let h(z) be the restriction of the function Argz to the lower half-
plane {Im z < 0}. At what points does h(z) have a limit? What is
the limit?
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13.

14.

15.

16.

17.

18.

19.

For which complex values of & does the principal value of z* have
a limit as z tends to 07 Justify your answer.

Let h(t) be a continuous complex-valued function on the unit inter-
val [0, 1], and consider

1
H(z):/0 Mdt.

t—2z

Where is H(z) defined? Where is H(z) continuous? Justify your
answer. Hint. Use the fact that if |f(t) —g(t)] <e for 0<t <1,
then [ |f(t) — g(t)|dt < e.

Which of the following sets are open subsets of C? Which are closed?
Sketch the sets. (a) The punctured plane C\{0}, (b) the exterior
of the open unit disk in the plane, {|z| > 1}, (c) the exterior of the
closed unit disk in the plane, {|z| > 1}, (d) the plane with the open
unit interval removed, C\(0,1), (e) the plane with the closed unit
interval removed, C\[0, 1], (f) the semidisk {|z| < 1, Im(z) > 0}, (g)
the complex plane C.

Show that the slit plane C\(—o00,0] is star-shaped but not convex.
Show that the slit plane C\[—1,1] is not star-shaped. Show that a
punctured disk is not star-shaped.

Show that a set is convex if and only if it is star-shaped with respect
to each of its points.

Show that the following are equivalent for an open subset U of the
complex plane.

(a) Any two points of U can be joined by a path consisting of
straight line segments parallel to the coordinate axes.

(b) Any continuously differentiable function h(z,y) on U such that
Vh = 0 is constant.

(c) IfV and W are disjoint open subsets of U such that U = VUW,
then either U = V or U = W. Remark. In the context of
topological spaces, this latter property is taken as the definition
of connectedness.

Give a proof of the fundamental theorem of algebra along the fol-
lowing lines. Show that if p(z) is a nonconstant polynomial, then
|p(2)| attains its minimum at some point zo € C. Assume that the
minimum is attained at z9 = 0, and that p(z) = 1 +az™ +---,
where m > 1 and a # 0. Contradict the minimality by showing
that | P(ee*%)| < 1 for an appropriate choice of .
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2. Analytic Functions

If the development in this section has a familiar ring, it should. The basic
definitions and rules for the complex derivative are exactly the same as
those for the usual derivative in elementary calculus. The only difference is
that multiplication and division are now performed with complex numbers
instead of real numbers.

A complex-valued function f(z) is differentiable at zg if the difference
quotients

- 1) - £(20)

zZ— 20
. o daf
have a limit as z — zg. The limit is denoted by f’(zp), or by E(ZO)’ and
we refer to it as the complex derivative of f(z) at zp. Thus

(2-2) d—f(zo) = f'(z) = lim f_(z);f(_zi)l.

dz Z2—20 zZ— 2

Example. A constant function f(z) = c has derivative f'(2p) = 0 at any
point zp. In this case the difference quotients (2.1) are all zero, so that the
limit is also 0.

It is often useful to write the difference quotient (2.1) in the form

f(z0 + Az) — f(20)

Az ’
so that z — zp is replaced by Az. The formula for the complex derivative
becomes

(2.4) f(zo) = Jim

(2.3)

f(20 + Az) — f(20)
0 Az )

Occasionally we use z instead of zp in the expression (2.4).

Example. The power function f(z) = z™ has derivative f'(z) = mz™"1.
In this case the binomial expansion
m(m — 1)

(z4+A2)™ = 2™ + mz™ Az + 5

™ 2(Az2)2 + - + (A)™
yields

Het 8D JE) _ s, mim =)

which has limit mz™ ! as Az — 0.

2" 2Az + -+ (A2)™TY

Example. The function f(z) = Z is not differentiable at any point z. In
this case the difference quotient (2.3) becomes

((z+A2) —2) /Az = Az/Az
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If Az = € is real, then this difference quotient is equal to 1, whereas if
Az = ie is imaginary, then the difference quotient is equal to —1. Thus the
difference quotients do not have a limit as Az — 0.

The various properties of the complex derivative can be developed in
exactly the same way as the properties of the usual derivative.

Theorem. If f(z) is differentiable at zy, then f(z) is continuous at z.

This follows from the sum and product rules for limits. We write

() = flzo) + (f—(flii(z"—))u—z@).

zZ—2p

Since the difference quotient tends to f’(z) as z — 29, and z — 2y tends
to 0 as z — 2p, the product on the right tends to 0, and consequently,
f(2) = f(z0) as z — 2.

The complex derivative satisfies the usual rules for differentiating sums,
products, and quotients. The rules are

(2.5) (cf)(z) = cf'(2),

(2.6) (F+9)(2) = f(2)+4'(2),

@7) (f9)'(2) = f(2)g'(2) + f'(2)g(2),

(28) (f/g)l(z) - g(z)f’(z)—f(z)g'(z)’ g(z);éO

9(2)?

Here we are assuming that f(z) and g(z) are differentiable at z, and that
¢ is any complex constant. The conclusion is that cf(z), f(z) + g(z),
f(2)g(z), and, provided that g(z) # 0, also f(z)/g(z) are all differentiable
at z and satisfy the rules (2.5) to (2.8) listed above. The proofs depend on
the theorems for limits of sums, products, and quotients. For instance, to
establish the product rule (2.7) we begin with the usual trick and rewrite
the difference quotient [(fg)(z + Az) — (fg)(z)]/Az for the product as

z — z -
fo+ At ‘Xg 9 f(ZHXz 13 g2y,
We now take a limit as Az — 0 and apply the rules for limits of sums and
products, and we obtain (2.7).

The identities (2.5) and (2.6) express the fact that complex differentiation
is a linear operation. Note that (2.5) is a consequence of the product
rule (2.7) and the fact that the derivative of a constant function c is 0.

To establish the identity (2.8), it suffices to establish the simpler identity

(2.9) (1/9)(2) = —4'(2)/9(2)*,  g(2) #0,

and then to apply the product rule.
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Example. Any polynomial

n-—1

p(z) = anz" +ap—12"" +---ta1z+ap

has a complex derivative, which is given by the usual formula
P'(2) = 02" P+ (n—1)an 12" 2+ +a1.

This follows from the linearity rules (2.5) and (2.6), since 2™ is differen-
tiable with derivative mz™~1. Further, any rational function p(z)/q(z) is
differentiable at all points z except for the (finitely many) zeros of ¢(z).

The chain rule is also valid for the complex derivative. We give a careful
statement and proof.

Theorem (Chain Rule). Suppose that g(z) is differentiable at 2y, and
suppose that f(w) is differentiable at wy = g(29). Then the composition
(f 0 9)(2) = f(g(2)) is differentiable at zy and

(2.10) (fog)(20) = f'(9(20))9'(20)-

w=g() (=fw)

7 T T
o f(wp) = f(8(zy)),

A useful mnemonic device for remembering the chain rule is

¥ _ 4w

dz dw dz’

where we have written w = g(z). Danger! We regard f on the right-hand
side as a function of w, and we regard f on the left-hand side as the function
f(g(2)) of z. The mnemonic device can be justified by the proof, which
involves multiplying and dividing by Aw. The proof goes as follows.

We consider two cases. For the first case, we assume that g¢’(2o) # 0.
Then g(z) # g(zo0) for 0 < |z — zp| < €, so we are justified in writing

eiy  JUE) = feE) _ 166) - fe) 9(2) - g(z0)
' zZ— 20 9(z) — 9(20) z—z

Since g(z) is differentiable at 2o, it is continuous at zo, that is, g(z) — g(zo)
as z — zp. Consequently,

f(9(2)) — f(g(20))
9(2) — g(20)

as z — 2. Thus we can pass to the limit in (2.11), and we obtain (2.10).

— f'(9(20))
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For the second case, we assume that g’(z9) = 0. Since f(w) is differen-
tiable at wo, the difference quotients (f(w) — f(wo)/(w — wp) are bounded
near wo, say

fo)= s

w — Wy

for some constant C and 0 < |w — wp| < €. Hence |f(g(2)) — f(g(z0))] <
Clg(z) — 9(zo)| for z near zy, and consequently,

f(g(2)) = f(g(20))

zZ—2p

9(2) — 9(=0)
z— 20

<C

Since the right-hand side tends to 0 as z — 29, we obtain (f o0 g)'(z0) = 0.
Thus both sides of (2.10) are 0, and in particular, the identity (2.10) holds.

Example. Suppose f(w) = 1/w, and g(z) = 22 — 1. Then f(g(z)) =
1/(z2—1). Using f'(w) = —1/w? and ¢/(z) = 2z, we obtain from the chain
rule

d 1 1 2z
R S (. 2) = —— .
dz 22 -1 ( w2 w:22_1)( Z) (22 — 1)2, z '7£ +1

This is, of course, the same as the result we would have obtained by apply-
ing the quotient rule. More generally, the rule (2.9) follows from the chain
rule and the formula for the derivative for 1/w.

Now we turn to the definition of the class of functions that is the main
subject of complex analysis. As usual, all our functions will be complex-
valued functions defined on a subset of the complex plane.

Definition. A function f(z) is analytic on the open set U if f(z) is
(complex) differentiable at each point of U and the complex derivative f’(z)
is continuous on U.

We have seen that any polynomial in z has a complex derivative at any
point, and the complex derivative is a polynomial, hence continuous. Thus
any polynomial in z is analytic on the entire complex plane. Rational
functions are analytic wherever they are finite.

More generally, the rules established for complex derivatives show that
sums and products of analytic functions are analytic. Quotients of analytic
functions are analytic wherever the denominator does not vanish.

An example of a function that is not analytic is f(z) = Z, which does
not have a complex derivative at any point.

The requirement that f’(z) be continuous is a nuisance to verify. The
student will be happy to learn that this condition is redundant. In Chap-
ter IV we will prove Goursat’s theorem, that if f’(z) exists at each point
of an open set U, then f’(z) is automatically continuous on U. Meanwhile,
the student who is willing to take this theorem on faith need not check the
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continuity of f’(z), though in all cases we will treat, where f'(z) can be
shown to exist, it will also be apparent that f’(z) is continuous.

Exercises for I1.2

1. Find the derivatives of the following functions.
(8)22-1 (0) (Z-1" (1/(2+3) (g) (az+b)/(cz+4d)
(b)z" =1 (d)1/(1—2) (f) 2/(*-5) (h)1/(cz+d)’

2. Show that

1-2" nz™

14224322+ el
+2z+32°+---+nz =2 1-2

3. Show from the definition that the functions r = Rez and y =Im 2
are not complex differentiable at any point.

4. Suppose f(z) = az?+bzz +cz?, where a, b, and c are fixed complex
numbers. By differentiating f(z) by hand, show that f(z) is complex
differentiable at z if and only if bz+2¢Z = 0. Where is f(z) analytic?

5. Show that if f is analytic on D, then g(z) = f(Z) is analytic on the
reflected domain D* = {Z: z € D}, and ¢'(2) = f'(2).

6. Let h(t) be a continuous complex-valued function on the unit inter-
val [0, 1], and define

1
m@:/-ﬂﬂm, 2€C\[0,1].
0 t—z
Show that H(z) is analytic and compute its derivative. Hint. Dif-
ferentiate by hand; that is, use the defining identity (2.4) of the
complex derivative.

3. The Cauchy-Riemann Equations

Suppose f = u + tv is analytic on a domain D. Fix a point z €D. We will
compute the complex derivative

. fz+Az) - f(2)
Aligo Az

) =

in two different ways, first by letting z + Az tend to z along the horizontal
line through z (that is, Az = Az real), then by letting z + Az tend to 2
along the vertical line through z (that is, Az = iAy imaginary). This yields
two expressions for f’(z), which lead to the Cauchy-Riemann equations.
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z+ily

z 7+ Ax

Expressing the difference quotient in terms of u and v and setting Az =
Az, we obtain

flz+ Az) — f(2) _ u(z + Az, y) + iv(z + Az, y) — (u(z,y) + iv(z,y))
Az Az
_ u(z + Az, y) — u(z,y) + iv(:c + Az,y) —v(z,y)
Az Ax ’

Passing to the limit, we see that the z-derivatives of u and v exist, and

0
(3.1) Fe) = @) + igelmy),  z=zti

Since f'(z) is continuous, (3.1) shows that the z-derivatives of v and v are
continuous.

Next we set Az = iAy, and we play the same game. The difference
quotient becomes

f(z+1Ay) — f(2) _ u(z,y+Ay) +iv(z, y + Ay) — (u(z,y) + v(z,y))
iAy N iAy
vz,y+Ay) —v(z,y)  ulz,y+ Ay) —u(z,y)
Ay Ay ’

Passing to the limit as before, we see that the y-derivatives of u and v are
continuous and satisfy

o
(32) £ = oy - ig—;;(x,y), s=z+iy.

Now we have two expressions, (3.1) and (3.2), for f'(z). We equate their
real and imaginary parts, and we obtain
Ou Ov ou Ov
3.3 v o w9
(33) oz Oy Oy oz
These equations are called the Cauchy-Riemann equations for u and v.
We have proved half of the following theorem.

Theorem. Let f = u + tv be defined on a domain D in the complex
plane, where v and v are real-valued. Then f(z) is analytic on D if and
only if u(z,y) and v(z,y) have continuous first-order partial derivatives
that satisfy the Cauchy-Riemann equations (3.3).
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It remains to be shown that if the partial derivatives of u and v exist, are
continuous, and satisfy the Cauchy-Riemann equations, then f = u+iv is
analytic. For this, we use Taylor’s theorem. Fix z € D. Taylor’s theorem
with remainder provides an approximation

o
u(z + Az, y + Ay) = u(z,y) + i
or
where R(Az, Ay)/|Az| has limit 0 as Az approaches 0. (The continuity of
the first-order partial derivatives of u must be used to obtain the estimate
for R.) Similarly,

o
(z,9)Az + 515(:& y)Ay + R(Az, Ay),

oz +Az,y +Ay) = (z9) + oo (a,y)Az + o0

B (z,y)Ay + S(Az, Ay),

where S(Az, Ay)/|Az| — 0 as Az — 0. Thus

flz+Az)=f(2) + %(z, y)Az + @(z, y)Ay + R(Az)

8
T,Y)AT +i—
( Y) 3y
If we use the Cauchy-Riemann equations to replace the y-derivatives by
z-derivatives, and we use Ax + iAy = Az, a minor miracle occurs. The
identity becomes

(z,y)Ay + iS(Az).

flz+Az)=f(2) + (gu

Thus

Az) — 8 8 R(Az) +iS(A
flz+ Azi fz) _ 5%(%1/)”52(%9)7“ ( Z)ZzZ (A2)

(z,y) + z (a: y)) Az + R(Az) +1iS(Az).

which tends to
Ou Ov
—8—5(1:’ y) + 7‘-8;(1"7 y)
as Az tends to 0. This shows that f'(z) exists and is given by (3.1), so

that f'(z) is continuous, and thus f(z) is analytic. Both directions of the
theorem are now established.

Example. The functions u(z,y) = = and v(z,y) = y, corresponding to
z = x + 1y, satisfy the Cauchy-Riemann equations, since

o _ % Ou_,_ O
Oz dy’ Ay Oz
The functions u(z,y) = = and v(z,y) = —y, corresponding to z = z — 1y,
do not satisfy the Cauchy-Riemann equations, since
Ou v

9z Oy
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We may use the Cauchy-Riemann equations to show that the function e?
is analytic and satisfies
d
—e
dz
In this case, u(z,y) = e*cosy and v(z,y) = e®siny. We check that the
Cauchy-Riemann equations hold:

zzez.

Ou _ éfiaCCOS = e®cosy = —a—ezsin — @
ou _ 0 T cos _ Z gin _ _2 % sin _ ‘_81}
6y—6yecy— e smy = oz my = o7
Thus f(2) = e* is analytic, and (3.1) yields
f/(z):%+ig§=e$c05y+ie‘”siny:ez_

From the chain rule we deduce further that any complex exponential func-
tion of the form e**, where a is a complex constant, is analytic and satisfies
d
e
Linear combinations, such as sin z and cos z, of complex exponential func-
tions are also analytic, and the usual formulae for the derivatives hold:

az — aeaz

—sinz = cosz
dz ’
—cosz = —sinz,
dz
—sinhz = cosh z,
dz
—coshz = sinhz.
dz
To verify the formula for the derivative of sin z, for instance, we compute
d eiz _ e—iz ,ieiz + Z'e—iz
— sinz = — . = - = COs 2.
dz dz 23 2

Two important consequences of the Cauchy-Riemann equations and the
equations for f’(z) are as follows.

Theorem. If f(z) is analytic on a domain D, and if f'(z) = 0 on D, then
f(#) is constant.

In this case, the equations (3.1) and (3.2) yield

oo
or 8y 8z Oy
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Since D is a domain, the theorem in Section 1 shows that u and v are
constant on D. Thus f = u + iv is constant.

Theorem. If f(z) is analytic and real-valued on a domain D, then f(z)
is constant.

In this case, v = 0 on D, and the Cauchy-Riemann equations become
ou du

or — 0 By

Since D is a domain, u is constant in D.

Exercises for I1.3

1. Find the derivatives of the following functions.

sin z sinh z
a)t = — b) tanhz =
() tanz cos z (b) ta cosh z

(c) secz=1/cosz

2. Show that u = sinz sinhy and v = cosz cosh y satisfy the Cauchy-
Riemann equations. Do you recognize the analytic function f =
u + iv? (Determine its complex form.)

3. Show that if f and f are both analytic on a domain D, then f is
constant.

4. Show that if f is analytic on a domain D, and if |f| is constant,
then f is constant. Hint. Write f = |f|?/f.

5. If f = u+ v is analytic, then |Vu| = |Vv| = |f'.

6. If f =u + iv is analytic on D, then Vv is obtained by rotating Vu
by 90°. In particular, Vu and Vv are orthogonal.

7. Sketch the vector fields Vu and Vv for the following functions f =
u +iv. (a) iz, (b) 22, (c) 1/z.

8. Derive the polar form of the Cauchy-Riemann equations for u and v:
ou 10v Ou v

or ~ roe’ o9 or
Check that for any integer m, the functions u(re®®) = r™ cos(m#)
and v(re*) = r™ sin(m#) satisfy the Cauchy-Riemann equations.



4. Inverse Mappings and the Jacobian 51
4. Inverse Mappings and the Jacobian
Let f = u +iv be analytic on a domain D. We may regard D as a domain

in the Euclidean plane R? and f as a map from D to R? with components
(u(z,y),v(z,y)). The Jacobian matrix of this map is

ou 3_u
_ | or 0y
T e o)
0 Oy
and the determinant of the Jacobian matrix is
oudv Ouodv
tJf = e —
detJr = 528y " By oz

If we use the Cauchy-Riemann equations to replace the y-derivatives by
z-derivatives, we obtain

ou\? v\ ?

By equation (3.2), this is equal to |f/(z)|2. We have shown the following.

ou _Ov 2

oz ‘oz

Theorem. If f(z) is analytic, then its Jacobian matrix J; (as a map
from R? to R?) has determinant

det J5(2) = |f'(2)|*.

Now we can invoke the inverse function theorem from multivariable cal-
culus, and this leads to the following.

Theorem. Suppose f(z) is analytic on a domain D, 29 € D, and f'(z0) #
0. Then there is a (small) disk U C D containing 29 such that f(z) is one-
to-one on U, the image V = f(U) of U is open, and the inverse function

FFL:v—vu
is analytic and satisfies
(4.1) (@) = 1/f(z), zeU
w=f(2)

@@
N~

z=f"'w)
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All of the assertions of this theorem are consequences of the inverse func-
tion theorem, except for the assertions concerning the analyticity of f~1.
To check that f~! is analytic, we write g = f~! on U and differentiate by
hand. Fix w,w; € U with w # wy, and set z = g(w), z; = g(wy). Then
z# =1, f(2) =w, f(z1) = w1, and we have

gw)—glwr) = z-=z 1/(f(2)—f(zl)>_

zZ—21

w-wr  f@)-fla)

As w tends to wi, z tends to z1, and the right-hand side tends to 1/f’(21).
Thus g is differentiable at w,, and ¢’(w;) = 1/f'(21), which is the required
identity (4.1) at z;. Since 1/f/(z) is continuous, (f~!)’ is continuous, and
thus f~! is analytic.

If we write w = g(z), the identity (4.1) becomes

dz 1
W@
dz

which is the usual mnemonic device for remembering the derivative of the
inverse function. The device is justified by the proof. Danger! Take care
to evaluate the derivatives at the right points.

Once we know that f~! is analytic, we can easily derive the formula (4.1)
for the derivative from the chain rule. Since f~!(f(z)) = 2, the chain rule
yields (F71)'(f(2))f'(z) = 1, which is (4.1).

Example. The principal logarithm function w = Logz is a continuous
inverse for z = e¥ for —m < argw < 7. Since e" is analytic and (e*)’ # 0,
the preceding theorem applies, with 2 and w interchanged. From that
theorem we conclude that Logz is analytic. If we use the chain rule to
differentiate

7 = eLog z’

we obtain

d d

1 = Logz & — . .
et (Logz) = 2 % (Logz)

Thus

d 1

4.2 — L o = -,

( ) dz OD z z

Any other continuous branch of the logarithm differs from the principal
branch by a constant, hence has the same derivative.

Example. Any continuous branch of 1/z is analytic, and

(43) 2V = %
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where we use the same branch of \/z on both sides of the identity. To see
this, note first that no continuous branch of 1/z can be defined on a domain
containing 0, so that z # 0 in (4.3). Each branch w = /z satisfies w? = 2.
Since (w?)" = 2w is not zero for w # 0, the continuous inverse branch /z
is analytic. Differentiating w? = z, we obtain
dw dw 1
Q’Il)a = 1, —d—; - '2'20—,
which is (4.3).

We will give in Section VIIL.4 another proof of the existence and ana-
lyticity of the inverse of an analytic function, which does not depend on
the inverse function theorem from calculus but rather on residue theory.
That proof will provide an explicit integral representation formula for the
inverse function.

Exercises for I1.4

1. Sketch the gradient vector fields Vu and Vv for (a) u +iv = €7, (b)
u + v = Log z.

2. Let a be a complex number, a # 0, and let f(z) be an analytic
branch of 2* on C\(—00,0]. Show that f'(z) = af(z)/z. (Thus
f'(2) = az®"1, where we pick the branch of z2~! that corresponds
to the original branch of 2% divided by z.)

3. Consider the branch of f(z) = 1/z(1 — z) on C\[0, 1] that has posi-
tive imaginary part at z = 2. What is f/(z)? Be sure to specify the
branch of the expression for f'(z).

4. Recall that the principal branch of the inverse tangent function was
defined on the complex plane with two slits on the imaginary axis
by

141z

1—iz

1
Tan™'z = % Log( ) , z ¢ (—ioo, —i] U [i, i00).

Find the derivative of Tan~!z. Find the derivative of tan~1z for
any analytic branch of the function defined on a domain D.

5. Recall that cos™!(z) = —ilog[z + V22 —1]. Suppose g(z) is an
analytic branch of cos™!(z), defined on a domain D. Find ¢'(2).
Do different branches of cos™(z) have the same derivative?

6. Suppose h(z) is an analytic branch of sin™*(z), defined on a do-
main D. Find h/(z). Do different branches of sin~!(z) have the
same derivative?

7. Let f(z) be a bounded analytic function, defined on a bounded
domain D in the complex plane, and suppose that f(z) is one-to-
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one. Show that the area of f(D) is given by

Area(f / If'(2)|?dz dy.

8. Sketch the image of the circle {|z—1| <1} under the map w = 22.
Compute the area of the image.

9. Compute

/ () P dy,
D

for f(2) = 2? and D the open unit disk {|z| < 1}. Interpret your
answer in terms of areas.

10. For smooth functions g and h defined on a bounded domain U, we
define the Dirichlet form Dy (g, h) by

/ / Bg Oh 89 Oh ded
oz 83: 8y 8y v
Show that if z = f({) is a one-to-one analytic function from the

bounded domain V onto U, then
DU(g7h) = DV(gOfvhof)'

Remark. This shows that the Dirichlet form is a “conformal invari-
ant.”

5. Harmonic Functions

The equation

0%u 0%u
—833_§ + -+ @ =0
is called Laplace’s equation. The operator
0? 02
A = (9.722 + - 3_$%
is called the Laplacian. In terms of this operator, Laplace’s equation
becomes simply Au = 0. Smooth functions u(zi,...,z,) that satisfy

Laplace’s equation are called harmonic functions. Laplace’s equation
is one of the most important partial differential equations of mathematical
physics. Some indication of the applications will be given in Chapter III.
We will be concerned with harmonic functions of two variables, that is,
solutions of
0u  0%u
Au = 922 + 52 =0.
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We say that a function u(z, y) is harmonic if all its first- and second-order
partial derivatives exist and are continuous and satisfy Laplace’s equation.
In the case of functions of two variables, there is an intimate connection
between analytic functions and harmonic functions.

Theorem. If f = u + {v is analytic, and the functions v and v have
continuous second-order partial derivatives, then u and v are harmonic.

The second hypothesis of the theorem is redundant. We will show in
Chapter IV that an analytic function has continuous partial derivatives of
all orders.

The harmonicity of v and v is a simple consequence of the Cauchy-
Riemann equations,

ou ov
(5.1) ‘6_1-: _— '_a—;,

ou ov
(5.2) a_y —_ 55 .

Using these, we obtain

Pu 0w Bu

0z2 0z dy oyor  oy?’
which shows that u is harmonic. The verification that v is harmonic is the
same.

If u is harmonic on a domain D, and v is a harmonic function such that

u + tv is analytic, we say that v is a harmonic conjugate of u. The
harmonic conjugate v is unique, up to adding a constant. Indeed, if vy is
another harmonic conjugate for u, so that u + vy is also analytic, then the

difference i(v —vg) is analytic, and v — v is a real-valued analytic function,
hence constant on D.

Exercise. Show that u(z,y) = zy is harmonic, and find a harmonic con-
jugate for u.
Solution. We have

32 82

3}—2:61/=0= —a—nyy,

so that zy is harmonic. To find a harmonic conjugate v, we solve the
Cauchy-Riemann equations. From (5.1) we have

o _ o
ar YT By
Thus

2
ve,y) = £ +h),
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where h(z) depends only on z and not on y. Equation (5.2) becomes
z = —h/(z), which has solution h(z) = —22/2 + C. Thus
¥

z
v(z,y) = —2——74‘07

where C is a constant. The analytic function f = u + ¢v is given by
22
f(Z) B —i? +1iC.

The method used above actually shows that any harmonic function on a
rectangle with sides parallel to the axes has a harmonic conjugate on the
rectangle. Indeed, let u(z,y) be harmonic on such a rectangle D, and let
(zo0,y0) be any fixed point of D. If we integrate the first Cauchy-Riemann
equation (5.1) along a vertical segment from yo to y, with z fixed, we obtain

o

(z,t)dt + h(z),
Yo oz

v(z,y) =
where h(z) is the constant of integration with respect to y. Though h(x)
does not depend on y, it may depend on z. The second Cauchy-Riemann
equation (5.2) then becomes

ou 0 [You ,
%(z,y) = "%, £(x,t)dt ~ h(z).

If we differentiate under the integral sign (as we may) and use Laplace’s
equation, we obtain
ou Y 5%u Y 9%y
8—y($7y) =, 2@t dt — h(z) = rr
0 (1]

_ Ou Ou ,
= a—y(x,y) - %(z,yo) — k().

(z,t)dt — h'(z)

Thus we obtain
ou

K(z) = —a—y(z, Yo)-

This has the solution
* ou
h(z) = ——-/ = \S Y ds + C,
@ =~ | Z 6w

where C is a genuine constant. Thus we see that a harmonic conjugate
v(z,y) for u(z,y) is given explicitly by

Y du

(53)  v(z,y) = (z,6)dt — / I%(s,yo)ds e

Yo oz
The formula (5.3) is also valid if D is the entire complex plane, or if D is
an open disk with center (x,y). Note that if we specify v(zo,y0) = 0,
then C = 0, and the solution is unique.
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(x0. ¥0) (%, ¥p)

We summarize in the following theorem.

Theorem. Let D be an open disk, or an open rectangle with sides parallel
to the axes, and let u{x,y) be a harmonic function on D. Then there is
a harmonic function v(z,y) on D such that u + iv is analytic on D. The
harmonic conjugate v is unique, up to adding a constant.

We will see in Chapter III that this theorem holds in star-shaped do-
mains. However, the theorem fails in annuli and in the punctured plane
(Exercise 7). Roughly speaking, the theorem holds only in domains that
have no “holes.” Such domains are called “simply connected domains.”
They will be discussed in Chapter VIII.

Exercises for I1.5

1. Show that the following functions are harmonic, and find harmonic
conjugates:
(a) 22 — y? (c) sinhzsiny (e) tan~(y/z), >0
(b) zy+32%y — 3 (d)e” ¥ cos(2ay) (F) 2/(a* + )

2. Show that if v is a harmonic conjugate for u, then —u is a harmonic
conjugate for v.

3. Define u(z) = Im(1/22) for z # 0, and set u(0) = 0.
(a) Show that all partial derivatives of u with respect to z exist at
all points of the plane C, as do all partial derivative of u with

respect to y.
0%y  8%u
(b) Show that 922 + X =0.

(c) Show that u is not harmonic on C.

8%u
(d) Show that 520y

4. Show that if h(2) is a complex-valued harmonic function (solution
of Laplace’s equation) such that zh(2) is also harmonic, then h(z)
is analytic.

does not exist at (0,0).

5. Show that Laplace’s equation in polar coordinates is

8%y 106u 1 0%

a2 Tror toge = O
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6. Show using Laplace’s equation in polar coordinates that log|z| is
harmonic on the punctured plane C\{0}.

7. Show that log |z| has no conjugate harmonic function on the punc-
tured plane C\{0}, though it does have a conjugate harmonic func-
tion on the slit plane C\(—o0, 0].

8. Show using Laplace’s equation in polar coordinates that u(re®) =
@logr is harmonic. Use the polar form of the Cauchy-Riemann
equations (Exercise 3.8) to find a harmonic conjugate v for u. What
is the analytic function u + w?

6. Conformal Mappings

Let y(t) = z(t) + iy(t), 0 < t < 1, be a smooth parameterized curve
terminating at zg = y(0). We refer to
t) — (0 .
¥ (0) = tlin(l) M = 2'(0) +1y'(0)
as the tangent vector to the curve <y at zp. It is the complex representation
of the usual tangent vector. We define the angle between two curves
at zg to be the angle between their tangent vectors at zg.

Theorem. Ify(t),0 <t <1, is a smooth parameterized curve terminating
at zp = ¥(0), and f(z) is analytic at z, then the tangent to the curve
F(y(t)) terminating at f(zo) is

(6.1) (fo)(0) = f'(20)7'(0).
7'
w=f()
Y(® P wo =f(z0)
2="(0)

(Fon©)
FO@) K

The proof is a close relative of the proof of the chain rule for the compo-
sition of analytic functions (Section 2). If 4/(0) # 0, then ~(t) # ~(0) for ¢
near 0, t # 0, so we may write

fOo@®) - f0) _ fO®) - f(x(0) ¥(t) —~(0)
t 7(t) —~(0) t
and pass to the limit, to obtain the formula (6.1). If 4/(0) = 0, then

proceeding as in Section 2, we obtain (fo+)'(0) = 0, and again the formula
holds.
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We may think of the tangent vector as a vector in the plane with tail
at z9. Composing a parameterized curve with f(z) then has the effect upon
the tangent vector of multiplying it by f’(zp) (complex multiplication) and
moving the tail to wo = f(z9). If the tangent vector is represented by
z — zp, then the tangent to the image curve is represented by w — f(z) =
f'(z0)(z — zp). As far as the tangent vector at zp is concerned, the effect
of composing with f(z) is the same as the effect of composing with the
function f(z0)+ f'(20)(z—20), which is the first-order Taylor approximation
to f(z) at 29. The remainder term R(z) in the Taylor approximation
satisfies R(z)/(z — 20) — 0 as z — 2zp, so that R(z) has no effect on
tangent vectors.

A function is conformal if it preserves angles. More precisely, we say
that a smooth complex-valued function g(z) is conformal at 2 if whenever
~o and ~y; are two curves terminating at zo with nonzero tangents, then the
curves g o~y and g oy have nonzero tangents at g(zp) and the angle from
(9°70)(20) to (g°71)(20) is the same as the angle from 74(20) to v;(20)-
A conformal mapping of one domain D onto another V' is a continuously
differentiable function that is conformal at each point of D and that maps D
one-to-one onto V.

fom

T2 w=f() fem

% M

wo

The translation f(z) = z + b and the complex multiplication g(z) = az,
where a # 0, evidently preserve angles, hence are conformal everywhere:
They are conformal mappings of the complex plane onto itself. On the
other hand, the function az reverses angles and orientation, so it is not
conformal. For n > 1, the function 2™ multiplies angles at the origin by n,
so it is not conformal at z = 0. The following theorem shows that 2™ is
conformal at any point z other than 0.

Theorem. If f(z) is analytic at zp and f'(z) # 0, then f(z) is conformal
at 2p.

Let o and ; be two curves terminating at zp with nonzero tangents.
By the preceding theorem, the tangents to the curves g o~y and go~; are
obtained by multiplying the respective tangents to vy and v; by f'(zo).
Thus the arguments of both tangents are increased by the same angle,
namely the argument of f’(z9). Consequently, the angle between them is
preserved.
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There is a converse to this theorem, to the effect that conformal map-
pings are analytic. Though the result is elementary, we postpone it to
Section IV.8. (But see Exercise 9.)

Example. The function w = 2? maps the right half-plane {Re z > 0} con-
formally onto the slit plane C\(—00,0]. For any fixed 8, 0 < 6y < 7/2, it
maps the sector {|argz| < 6y} conformally onto the sector {]argz| < 26o}
of twice the aperture.

Example. Fix 6y, 0 < 6y < 7. If 0 < a < 7/6y, the function 2* maps
the sector {|argz| < 6} conformally onto the sector {|argz| < abp}. In
particular, the function 27/2% maps the sector {|argz| < 6o} conformally
onto the right half-plane.

[(SIE]

Example. The exponential function e* is conformal at each point z € C,
since its derivative does not vanish at z. Its image is the punctured plane
C\{0}. However, it is not a conformal mapping of the plane onto the
punctured plane, since it is not one-to-one. Its restriction to the horizontal
strip {|Im 2| < 7} is a conformal mapping of the strip onto the slit plane
C\(—00,0].

Example. The principal branch Logz of the logarithm is a conformal
mapping of the slit plane C\(—o0, 0] onto the horizontal strip {|Imw| < 7}.
See the figure in Section I.6.
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Any conformal mapping carries orthogonal curves to orthogonal curves,
and it carries orthogonal families of curves to orthogonal families of curves.
In the case of the exponential function e?, the orthogonal grid consisting
of horizontal and vertical lines is mapped to an orthogonal grid consisting
of rays emanating from the origin and circles centered at the origin.

Something similar happens for any nonconstant analytic function f =
u + iv on a domain D. Fix a point z9 where f'(29) # 0, and consider
the two curves {u(z) = u(z)} and {v(z) = v(20)}, which meet at z,.
The function f(z) is one-to-one near zg, it maps the part of the level set
{u(z) = u(zp)} near zy to a vertical line segment through f(zg), and it
maps the part of the level set {v(z) = v(2)} near zp to a horizontal line
segment through f(zp). Since these line segments are orthogonal at f(zg),
the level sets of u and v are orthogonal at z9. Thus the two families of
curves {u = constant} and {v = constant} are orthogonal except at points
where f'(29) = 0.
Example. For f(z) = 22 = 22 — y? + 2ixy, the families of curves u = con-
stant and v = constant form two families of hyperbolas that are orthogonal
except at the origin.

u = constant

v = constant

Exercises for I1.6

1. Sketch the families of level curves of u and v for the following func-

tions f = u +iv. (a) f(2) = 1/z, (b) f(2) = 1/22, (c) f(z) = 25.

Determine where f(z) is conformal and where it is not conformal.

2. Sketch the families of level curves of u and v for f(z) = Logz =
u + tv. Relate your sketch to a figure in Section I.6.

3. Sketch the families of level curves of v and v for the functions f =
u+iv given by (a) f(z) =e?, (b) f(z) = e**, where « is complex.
Determine where f(z) is conformal and where it is not conformal.
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4. Find a conformal map of the horizontal strip {—A4 < Imz < A}

onto the right half-plane {Rew > 0}. Hint. Recall the discussion of
the exponential function, or refer to the preceding problem.

. Find a conformal map of the wedge {—B < argz < B} onto the

right half-plane {Rew > 0}. Assume 0 < B < 7.

. Determine where the function f(z) = z+1/z is conformal and where

it is not conformal. Show that for each w, there are at most two
values z for which f(z) = w. Show that if r > 1, f(z) maps the circle
{|z] = r} onto an ellipse, and that f(z) maps the circle {|z] = 1/r}
onto the same ellipse. Show that f(z) is one-to-one on the exterior
domain D = {|z| > 1}. Determine the image of D under f(z).
Sketch the images under f(z) of the circles {|z| =r} for r > 1, and
sketch also the images of the parts of the rays {argz = (3} lying
in D.

. For the function f(z) = z + 1/2 = u + iv, sketch the families of

level curves of u and v. Determine the images under f(z) of the top
half of the unit disk, the bottom half of the unit disk, the part of
the upper half-plane outside the unit disk, and the part of the lower
half-plane outside the unit disk. Hint. Start by locating the images
of the curves where u = 0, where v = 0, and where v = 1. Note
that the level curves are symmetric with respect to the real and
imaginary axes, and they are invariant under the inversion z — 1/z
in the unit circle.

. Consider f(z) = z + €'®/z, where 0 < a < . Determine where

f(2) is conformal and where it is not conformal. Sketch the images
under f(z) of the unit circle {|z2| = 1} and the intervals (—oo, —1]
and [+1, +00) on the real axis. Show that w = f(z) maps {|z]| > 1}
conformally onto the complement of a slit in the w-plane. Sketch
roughly the images of the segments of rays outside the unit circle
{argz = 3, |2| > 1} under f(z). At what angles do they meet the
slit, and at what angles do they approach oco?

. Let f = u+1v be a continuously differentiable complex-valued func-

tion on a domain D such that the Jacobian matrix of f does not
vanish at any point of D. Show that if f maps orthogonal curves to
orthogonal curves, then either f or f is analytic, with nonvanishing
derivative.
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7. Fractional Linear Transformations

A fractional linear transformation is a function of the form

az+b
7.1 w = A = —
() fla) = 222
where a, b, ¢, d are complex constants satisfying ad — bc # 0. Fractional
linear transformations are also called M6bius transformations. Since

o) = 2,
(cz+d)
the condition ad — bc # 0 simply guarantees that f(z) is not constant.
If we multiply each of the parameters a,b,c,d in (7.1) by the same
nonzero constant, we obtain the same function. Thus different choices
of the parameters may lead to the same fractional linear transformation.

Example. A function of the form f(z) = az + b, where a # 0, is called an
affine transformation. These are the fractional linear transformations
of the form (7.1) with ¢ = 0. Special cases are the translations z — z+b
and the dilations z — az.

Example. The fractional linear transformation f(z) = 1/z is called an
inversion.

It is convenient to regard a fractional linear transformation as a map
from the extended complex plane C* = CU {oo} to itself. If f(z) is affine,
we define f(00) = 00. Otherwise, f(z) has the form (7.1) where ¢ # 0, and
we define f(—d/c) = 0o and

s . a+b/z  a
floo) = zll.nolof(z) - zll»nc}oc-{-d/z T

Thus translations and dilations map oo to oo, while the inversion z — 1/z
interchanges 0 and oo.

The inverse of a fractional linear transformation is again a fractional
linear transformation. To see this, we solve (7.1) for z, to obtain

—dw+b
cw—a

The condition on the coefficients is satisfied, since (—d)(—a)—bc = ad—bc #
0, or alternatively, since the function 2z = z(w) is not constant. This shows
that each fractional linear transformation is a one-to-one function from the
extended complex plane onto itself.

The composition of two fractional linear transformations is again a frac-
tional linear transformation. To see this, suppose f(z) = (az +b)/cz + d)
and g(z) = (az + B)/(vz + ), and compute

fole)) = Wzt B)/(z+8) +b _ (aatby)z+af+bd
? T c((az+B)/(yz+08)+d  (ca+dy)z+cB+ds
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Since the composition f o g cannot be constant, the condition on the pa-
rameters is met, and f o g is a fractional linear transformation.
Note that the composition corresponds to matrix multiplication,

a b a B\ _ [ax+by aB+bs

c d)\~v &§) (ca+d'y cB+dd )"
The condition ad — bc # 0 on the parameters is simply the condition that
the matrix associated with the fractional linear transformation has nonzero
determinant, that is, that the matrix is invertible.

The fact that matrix multiplication corresponds to composition can be
reformulated in the language of group theory. If we assign to each 2 x 2
invertible matrix the corresponding fractional linear transformation, we
obtain what is called a “group homomorphism,” from the group of 2 x 2
invertible matrices with complex entries onto the group of fractional linear
transformations with operation composition.

A fractional linear transformation depends on four complex parameters.
One of these can be adjusted without changing the transformation, for
instance by multiplying all the parameters by the same nonzero constant.
That leaves three parameters to be specified. The next theorem shows that
there are three independent complex parameters that describe fractional
linear transformations uniquely, namely, the images of any three prescribed
points.

Theorem. Given any three distinct points zy, z1, z2 in the extended com-
plex plane, and given any three distinct values wo,w;,ws in the extended
complex plane, there is a unique fractional linear transformation w = w(z)
such that w(zp) = wo, w(z1) = wy, and w(z3) = wa.

To establish the existence assertion, it suffices to show that any three
distinct points can be mapped by a fractional linear transformation to 0,
1, and oo. Indeed, if f maps 2y, 21, 22 respectively to 0,1, 00, and g maps
wg, Wy, w respectively to 0, 1, co, then the composition g~ 1o f, of f followed
by the inverse of g, maps zg, 21, 22 to wp, w1, ws. If now none of the points
20, 21, 22 18 00, a transformation mapping them to 0, 1, 0o is given explicitly
by

(7.2) w = f(z) =
If one of the z;’s is co, we define f(2) by sending that z; to oo in the above
formula. For instance, if 2y = 0o, we rewrite the right-hand side of (7.2) as

(z2/20) =1 21— 2
z—2zz (z1/20) =1

and take a limit as zg — 0o, to obtain

Z2—20 21— 22
2—29 21— 20

Z] — 22
w = f(2) = Py
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This maps oo, 21, z2 to 0, 1, co. There are similar formulae for the cases
z1 = o0 and z9 = 00.

For the uniqueness, suppose first that f(2) is a fractional linear trans-
formation that fixes 0, 1, and oo. Since f(c0) = o0, f(z) = az + b for some
a # 0. From f(0) = 0 we obtain b = 0, and from f(1) = 1 we obtain a = 1.
Thus f(z) = z is the identity transformation.

Now suppose that g(z) and h(z) are both fractional linear transforma-
tions mapping the z;’s to the respective w;’s. Let k(z) map the z;’s respec-
tively to 0,1,00. Then f = koh logok™! maps 0to 0, 1 to 1, and oo to co.
Hence f(z) = z is the identity, and g = hok™lo fok=hok lok = h.
This establishes the uniqueness assertion of the theorem.

Exercise. Find the fractional linear transformation mapping —1 to 0, 0o
to 1, and i to oo.

Solution. We could use (7.2) and send z; to co. However, it is easier
to proceed directly. Since w(i) = oo, we place z — i in the denominator,
and since w(—1) = 0, we place z + 1 in the numerator, to obtain w(z) =
a(z +1)/(z — i). Since w(z) — 1 as z — oo, we obtain a = 1, and hence
w(z) = (z+1)/(z —1).

Theorem. Every fractional linear transformation is a composition of di-
lations, translations, and inversions.

A fractional linear transformation mapping co to oo has the form w =
az + b where a # 0. This is the composition of the translation z — z+b/a
and the dilation z — az:

z — z+b/a — a(z+bja) = az+b.

If w(oo) is finite, then w has the form (7.1) where ¢ # 0. In this case we
may divide each of the parameter values by ¢ and assume that ¢ = 1. Then
w(z) = (az + b)/(z + d). Now we conjure up by magic the identity

w(z) = az+b _ a+b—ad‘
z+d z+d
This expression allows us to represent w(z) as
1 b—ad b—ad
1d  z+d T Ira

and consequently, w(z) is a composition of a translation, an inversion, a
dilation, and a translation.

z— z+d —

Theorem. A fractional linear transformation maps circles in the extended
complex plane to circles.

It suffices to establish the theorem for translations, dilations, and inver-
sions, since every fractional linear transformation is a composition of these.
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It is clear (or it should be) that translations and dilations map circles to
circles. Thus it suffices to check that the inversion w = 1/2z maps circles to
circles.

Consider first a circle that does not pass through oco. It has an equation
of the form |z — al? = 72, where a is its center and r its radius. The
image of the circle under the inversion w = 1/z consists of points satisfying
|1 — aw|? = r?|w|?, that is,

0 = [1-awf-r*wf = (1-aw) (I -aw) - r’w?
= (]al2 - r2) [w|? — aw — @@ + 1.
Set w = u + tv where u and v are real. The equation assumes the form
(lal* =) (v® +v®) + Au+ Bv+1 = 0,

where A and B are real constants. If r = |a|, the equation represents a
straight line in the plane, which is a circle through oco. If r # |a|, this is a
quadratic equation in u and v of the form met in Section I.3. It has more
than one solution, so the solutions form a circle. (To obtain the center and
radius, complete the square.)

Next consider a circle passing through oo, that is, a straight line. It has
an equation of the form Cxz + Dy = E. A calculation similar to the one
given above shows that the image is a circle if E # 0 and a straight line if
E =0 (Exercise 6).

Exercise. Find the equation of the fractional linear transformation map-
ping 0 to —1, % to 0, and oo to 1.

Solution. Since i — 0, we can normalize a to be 1 and write the fractional
linear transformation in the form w = (z — i)/(cz + d). The condition
0 — —1 yields —i/d = —1, and so d = i. Finally, the condition co — 1
yields 1/¢ =1, and so ¢ = 1. Thus w = (z —1)/(z + 1).

Exercise. Determine the images of each of the following sets under the
above fractional linear transformation: (a) the imaginary axis, (b) the right
half-plane, (c) the real axis, (d) the upper half-plane, (e) the horizontal line
through i. Sketch the images of horizontal lines and of vertical lines under
the transformation.

Solution. We will solve this exercise without referring to the explicit for-
mula for the transformation. We use two facts. First, to determine the
image of a circle under a fractional linear transformation, it suffices to
determine the images of three points on the circle. Since three points de-
termine a circle, the image of the circle is then the circle passing through
the three image points. Second, fractional linear transformations map or-
thogonal circles to orthogonal circles, since they are conformal.

(a) The three points 0, i, co lie on the circle corresponding to the imagi-
nary axis in the extended complex plane. The image of the imaginary axis
is then the circle through the three image points —1,0,+1, which is the
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real line.

(b) The ordered triple 0,4, 00 is mapped to the ordered triple —1,0,1, so
the image w moves forward on the real line as z moves upwards on the
imaginary axis. Since orientations are preserved, the right half-plane is
mapped to the domain on the right of the positively traversed real line,
which is the lower half-plane.

(c) The real axis is mapped to a circle through w(0) = —1 and w(o0) = +1.
Since the real and imaginary axes are orthogonal, their images are orthogo-
nal. Thus the image of the real line is a circle through +1 that is orthogonal
to the real line. There is only one such circle, the unit circle. Consequently,
the image of the real line is the unit circle {|jw| = 1}.

(d) Since the image of the real line is the unit circle, the image of the
upper half-plane does not cross the unit circle, and it must coincide either
with the inside {|w| < 1} or with the exterior domain {|w| > 1} together
with oo. Since ¢ is mapped to 0, which is inside the unit circle, the image of
the upper half-plane is the inside, that is, it is the open unit disk {|w| < 1}.
(e) The image of the horizontal line through i is a circle passing through 0
and 1, and it lies inside the unit disk, so it must be the circle centered at
3 of radius 3.

The image of any horizontal line is a circle through w(co) = 1, and it is
orthogonal to the real line (the image of the imaginary axis). These images
of the horizontal lines form a pencil of circles as sketched in the figure. The
images of vertical lines are circles through w(oco) = 1. Since the real axis is
the image of the imaginary axis, these circles must be tangent to the real
axis at 1. The images of the vertical lines are also sketched in the figure.
Note that the images of the horizontal and vertical lines are orthogonal to
each other.

Exercises for I1.7

1. Compute explicitly the fractional linear transformations determined
by the following correspondences of triples:
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(a) (1+41,2,0)— (0,00,i—1)

(e) (1,2,00) — (0,1,00)
(b)  (0,1,00) > (1,1 +3,2) (

(

(

)

) (0,00,2) = (0,1,00)
) (0,1,00) = (0,00,%)
) (1,4,-1) = (1,0,~1

e

f
(¢)  (00,14+14,2)—(0,1,00) g
d) (-2,i,2)— (1-2i,0,1+2) (h

)

. Consider the fractional linear transformation in Exercise 1a above,

which maps 1+ to 0, 2 to 0o, and 0 to i — 1. Without referring to
an explicit formula, determine the image of the circle {|z — 1| = 1},
the image of the disk {|z — 1| < 1}, and the image of the real axis.

Consider the fractional linear transformation that maps 1 to ¢, 0 to
1+, and —1 to 1. Determine the image of the unit circle {|z| = 1},
the image of the open unit disk {|z| < 1}, and the image of the
imaginary axis. Illustrate with a sketch.

. Consider the fractional linear transformation that maps —1 to —i,

1 to 24, and i to 0. Determine the image of the unit circle {|z| = 1},
the image of the open unit disk {|z| < 1}, and the image of the
interval [—1,+41] on the real axis. Illustrate with a sketch.

What is the image of the horizontal line through i under the frac-
tional linear transformation that interchanges 0 and 1 and maps —1
to 1 + ¢? Illustrate with a sketch.

Show that the image of a straight line under the inversion z — 1/z
is a straight line or circle, depending on whether the line passes
through the origin.

. Show that the fractional linear transformation f(z) = (az+b)/(cz+

d) is the identity mapping z if and only f b=c=0and a =d # 0.

. Show that any fractional linear transformation can be represented

in the form f(z) = (az + b)/(cz + d), where ad — bc = 1. Is this
representation unique?

Show that the fractional linear transformations that are real on
the real axis are precisely those that can be expressed in the form
(az +b)/(cz + d), where a, b, ¢, and d are real.

Suppose the fractional linear transformation (az+b)/(cz+d) maps R
to R, and ad — bc = 1. Show that a, b, ¢, and d are real or they are
all pure imaginary.

Two maps f and g are conjugate if there is h such that g = ho
f o h~L. Here the conjugating map h is assumed to be one-to-one,
with appropriate domain and range. We can think of f and g as
the “same” map, after the change of variable w = h(z). A point z
is a fixed point of f if f(z9) = 29. Show the following. (a) If f
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is conjugate to g, then g is conjugate to f. (b) If f; is conjugate
to f2 and f2 to fs, then f; is conjugate to f3. (c) If f is conjugate
to g, then fo f is conjugate to g o g, and more generally, the m-fold
composition fo---of (m times) is conjugate to go---og (m times).
(d) If f and g are conjugate, then the conjugating function h maps
the fixed points of f to the fixed points of g. In particular, f and g
have the same number of fixed points.

Classify the conjugacy classes of fractional linear transformations
by establishing the following:

(a)
(b)

A fractional linear transformation that is not the identity has
either 1 or 2 fixed points, that is, points satisfying f(20) = 2o.
If a fractional linear transformation f(z) has two fixed points,
then it is conjugate to the dilation z — az with a #0, a # 1,
that is, there is a fractional linear transformation h(z) such
that h(f(z)) = ah(z). Is a unique? Hint. Consider a fractional
linear transformation that maps the fixed points to 0 and oo.
If a fractional linear transformation f(z) has exactly one fixed
point, then it is conjugate to the translation ¢ — (+1. In other
words, there is a fractional linear transformation h(2) such that
R(f(R71(¢))) = ¢ + 1, or equivalently, such that h(f(z)) =
h(z) + 1. Hint. Consider a fractional linear transformation
that maps the fixed point to oc.
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Line Integrals and Harmonic
Functions

In Sections 1 and 2 we review multivariable integral calculus in order to
prepare for complex integration in the next chapter. The salient features
are Green’s theorem and independence of path for line integrals. In Sec-
tion 3 we introduce harmonic functions, and in Sections 4 and 5 we discuss
the mean value property and the maximum principle for harmonic func-
tions. Sections 6 and 7 include various applications to physics. The student
may proceed directly to complex integration in the next chapter after pag-
ing through the review of multivariable calculus in Sections 1 and 2 and
reading about harmonic conjugates in Section 3.

1. Line Integrals and Green’s Theorem

Line integrals play an important role in complex analysis. In this section
and the next we review line integrals in the plane, without filling in all the
details. We begin by saying something about paths and curves.

A path in the plane from A to B is a continuous function ¢ +— «(t) on
some parameter interval a <t < b such that v(a) = A and (b) = B. The
path is simple if y(s) # «(t) when s # t. The path is closed if it starts
and ends at the same point, that is, v(a) = y(b). A simple closed path
is a closed path 7 such that y(s) # y(t) fora <s <t <b.

Ar\//B A./f)\k/’B A©

simple path path (not simple) simple closed path

If 4(t), a <t < b, is a path from A to B, and if ¢(s), a < s< 3, is a
strictly increasing continuous function satisfying ¢(a) = a and ¢(8) = b,
then the composition v(¢(s)), @ < s < B, is also a path from A to B.
The composition v o ¢ is a “reparametrization” of . For our purposes we

70
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can usually regard v and any of its reparametrizations as being the same
path. (Technically, we should consider equivalence classes of paths.) Note
that reparametrization preserves the order of points of a path; that is, it
preserves orientation.

The trace of the path v is its image v([a,b]), which is a subset of the
plane. When it is clear from context, we will denote the trace of a path
also by v. It will not be until Chapter VIII that we need to be careful
about distinguishing the path v from its trace.

If one path ends where another begins, the two paths can be concatenated
by following one and then the other, after suitable reparametrization.

A smooth path is a path that can be represented in the form «(t) =
(z(t),y(t)), a <t < b, where the functions z(t) and y(t) are smooth, that
is, have as many derivatives as is necessary for whatever is being asserted to
be true. A piecewise smooth path is a concatenation of smooth paths.
By a curve we mean (usually) a smooth or piecewise smooth path.

Let 7 be a path in the plane from A to B, and let P(z,y) and Q(z,y) be
continuous complex-valued functions on y. We consider successive points
on the path, A = (zo,%), (1,%1), ---, B = (Zn,¥n), and we form the sum

(L.1) > P(zj,y;)(zi01 — 75) + > Qx5 95) Wi+1 = v5)-
If these sums have a limit as the distances between the successive points

on v tend to 0, we define the limit to be the line integral of Pdz + Qdy
along v, and we denote it by

(1.2) /sz + Qdy.
o

Suppose the path v(t) = (z(t),y(t)), a <t < b, is continuously differen-
tiable, that is, the parameter functions z(t) and y(t) are continuously dif-
ferentiable. Suppose the parameter values t; satisfy z(t;) = z;, y(¢;) = y;,
where a = tg < t; < --- < t, = b. By the mean value theorem, there are
points t; between t; and ¢;11 such that z(t;11) — z(t;) = ='(t}) (tj41 — t5)-
If we substitute this into the first sum in (1.1), we obtain

> Pla(ty), y(t:)z' (85)(tie1 — t5),

which is a Riemann sum approximating the integral f: P(z(t),y(t))z'(t)dt.
Similarly, the second sum in (1.1) is a Riemann sum approximating the
integral |, : Q(z(t), y(t))y'(t)dt. As the distances between the successive t;’s
tend to 0, the sums in (1.1) converge to an ordinary garden-variety Riemann
integral, and we obtain

b b
(3) [Par+@ay = [ Pa )G + [ QoG

Thus to evaluate a line integral over a smooth curve, we simply parametrize
the curve by t — (z(t),y(t)), calculate the derivatives dz/dt and dy/dt of
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the components, and plug these into the definite integral in (1.3). To
evaluate the line integral over a path that is only piecewise smooth, we
parametrize each smooth subpath, calculate the corresponding integrals
by (1.3), and add them.

v B =(x,, y,)
(x2, ¥2) nt Yn1)
(x1. y)
A =(xg, ¥o)

Note that the definition of the line integral over < is independent of the
parameterization of 4. The parameterization enters only in determining
the ordering of the points on the curve . Thus different parameterizations
give the same integral in (1.3). Also note that if we reverse the direction
of v, then the line integral is replaced by its negative.

Example. To evaluate f7 zydz, where v is the quarter-circle from (1,0)
to (0,1) on the unit circle, we parametrize v by

(x(8),y(8)) = (cosh,sinb), 0<0<7/2,

and we substitute into (1.3). This gives

w/2 /2
/a:yd:l: = / cosfsinfd(cosf) = —/ cos 0sin? 6 df
0% 0 0
n/2
0 3

Note that the sign is correct, since zy > 0 in the curve -y, while dr < 0 on
the curve (since z decreases on the curve).

sin® @
3

©,1) ©,1) 4
~v(6) = (cos 8, sin 6)

1,0 ©.0 1,0

A domain D has piecewise smooth boundary if the boundary of D
can be decomposed into a finite number of smooth curves meeting only
at endpoints. By “smooth” we usually mean “continuously differentiable,”
though in applications the curves making up the boundary will usually be
straight line segments or arcs of circles. We denote the boundary of D
by dD. For purposes of integration, the orientation of 4D is chosen so
that D lies on the left of a curve in D as we traverse the boundary curve
in the positive direction, that is, as the parameter value increases.
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Example. To evaluate f op LY dz, where D is the quarter-disk in the first
quadrant, we divide the integral into three pieces,

(0,0) (1,0)
/ zydr = /xydz + / zydzr + / zydzx,
8D ¥ (1,0) (0,0)

where vy is the quarter-circle in the preceding example, and the other two
paths are straight line segments. The integral along the horizontal interval
on the z-axis is 0, because zy = 0 there. The integral along the vertical
interval on the y-axis is 0, because dz = 0 there. (To see this, either
parametrize the line segment explicitly, or go back to the definition (1.1)
and observe that each of the z;’s is 0.) Using the result of the preceding
example, we find that the value of the integral around 0D is —%.

A very useful tool for evaluating line integrals is provided by Green’s
theorem, which converts a line integral around the boundary of a domain
to an area integral over the domain.

Green’s Theorem. Let D be a bounded domain in the plane whose
boundary 8D consists of a finite number of disjoint piecewise smooth closed
curves. Let P and Q be continuously differentiable functions on D U dD.
Then

(1.4) /a Pdr + Qdy = // (— - —)d dy.

Example. We again evaluate |, ap LY dz, where D is the quarter-disk in the
first quadrant, this time using Green’s theorem. In this case, P(z,y) = zy
and Q(z,y) =0, so (1.4) becomes

/aD:cydz = // zdrdy = —//rcos&rdrd@
—/0 cos0d9/ r2dr = —(1)( 2)

Since Green’s theorem is of fundamental importance, we provide a sketch
of the ideas behind the derivation of the formula (1.4). One basic idea is
to cut the domain into little curvilinear triangular pieces and treat each
piece separately. Another is to reduce the double integral over a triangle

as before.
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to a line integral by applying the fundamental theorem of calculus in one
variable with the other variable as a parameter. For convenience, we break
the proof-sketch into three steps.

The first step is to establish the formula (1.4) for the triangle T with
vertices at (0,0), (1,0), and (0,1). We must establish the two identities

/ Pdx = // — dz dy, Qdy =/ @dxdy.
aT T Oz

Consider just the first identity here. We represent the double integral as
an iterated integral and use the fundamental theorem of calculus, to obtain

// —dzdy = /01 [/01 mZjdy}dz—/OlP(:r,l—x)dz—/olP(:z;,O)dz.

The sum on the right we recognize as — faTde, after we parametrize
separately the three sides of 9T'. Indeed, the line integral of Pdx along the
vertical edge of T is 0, smce da: = 0 there; the line integral of Pdx along
the bottom edge of T is fo (z,0)dz; and the line integral of Pdz back

along the hypotenuse of T is — fol P(z,1 — z)dz, where we have used the
parameterization y = 1 — x.

©,1)
7 T

0,0 1,0

differentiable triangle

The second step of the proof is to establish the formula for any domain D
that can be obtained from the triangle T by a change of variables. (See
Exercise 7.)

The final step in the proof, for an arbitrary domain D, involves triangu-
lating D, that is, cutting D into small triangular pieces, each of which can
be obtained from the triangle T by a change of variables. Green’s theorem
is applied to each triangular piece, and the results are added. The sum of
the area integrals over the triangular pieces is the area integral over D. The
boundary integrals over the sides of the triangular pieces inside D cancel
in pairs, since each curvilinear triangle side is traversed twice, once in each
direction, and the opposing directions cancel. The boundary integrals over
the curvilinear triangle sides in 8D add up to the integral over dD.

triangulation
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Note that we will be using Green’s theorem only for relatively simple do-
mains, those whose boundaries consist of straight line segments and circular
arcs, for which Green’s theorem can be established relatively easily.

Exercises for II1.1

1.

Evaluate f7 y?dz + z%dy along the following paths v from (0,0) to
(2,4): (a) the arc of the parabola y = x%; (b) the horizontal interval
from (0,0) to (2,0), followed by the vertical interval from (2,0) to
(2,4); (c) the vertical interval from (0,0) to (0,4), followed by the
horizontal interval from (0,4) to (2,4).

Evaluate [ zydz both directly and using Green’s theorem, where
<y is the boundary of the square with vertices at (0,0), (1,0), (1,1),
and (0,1).

. Evaluate [, z2dy both directly and using Green’s theorem, where

D is the quarter-disk in the first quadrant bounded by the unit circle
and the two coordinate axes.

. Evaluate f,y ydz both directly and using Green’s theorem, where -y

is the semicircle in the upper half-plane from R to —R.

Show that [, xdy is the area of D, while [;,ydz is minus the
area of D.

Show that if P and @ are continuous complex-valued functions on
a curve v, then

F(w) = / ZP_‘12+/ LW sty

,YZ—’LU

is analytic for w € C\vy. Express F'(w) as a line integral over ~.

Show that the formula in Green’s theorem is invariant under coor-
dinate changes, in the sense that if the theorem holds for a bounded
domain U with piecewise smooth boundary, and if F(z,y) is a
smooth function that maps U one-to-one onto another such do-
main V and that maps the boundary of U one-to-one smoothly onto
the boundary of V, then Green’s theorem holds for V. Hint. First
note the change of variable formulae for line and area integrals, given

by
d
/ Pde¢ /aU(PoF) (%dx + a—jdy),

1%
// Rd¢dn // (Ro F) det Jp dz dy,
v U
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where F(z,y) = (£(z,y),n(z,y)), and where Jg is the Jacobian
matrix of F'. Use these formulae, with R = —0P/0n. The summand
J Qdn is treated similarly.

8. Prove Green’s theorem for the rectangle defined by zp < z < 21
and yo < y < y1 (a) directly, and (b) using the result for triangles.

2. Independence of Path

In order to draw a useful analogy with single-variable calculus, we begin
by reviewing the fundamental theorem of calculus. Recall that F(¢) is an
antiderivative for f(t) if its derivative is f, that is, F’ = f.

Fundamental Theorem of Calculus.
Part I. If F(t) is an antiderivative for the continuous function f(t), then

/ f(t)dt = F(b) - Fla).

Part II. If f(t) is a continuous function on [a, b], then the indefinite integral

t
= /f(s)ds, a<t<hb,

is an antiderivative for f(t). Further, each antiderivative for f(t) differs
from F(t) by a constant.

If h(z,y) is a continuously differentiable complex-valued function, we
define the differential dh of h by

oh oh

We say that a differential Pdx + Qdy is exact if Pdx + Qdy = dh for some
function h. The function h plays the role of the antiderivative, and the
following theorem is the analogue of Part I of the fundamental theorem of
calculus. It provides a useful tool for evaluating line integrals.

Theorem (Part I). If«y is a piecewise smooth curve from A to B, and if
h(z,y) is continuously differentiable on v, then

(2.1) / dh = h(B) — h(4).

To see this, let the curve be given by ¢ — (x(t),y(t)), a <t < b. From
(1.3) we have

/dh = /Q’fdz + B—hd / ahd” / Ohdy 4y
. ., 0z ; By dt
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By the chain rule and the fundamental theorem of calculus, this is

b
[ Enetruena = new.v0)| = wB)-na,
Example. To evaluate f 2zy dzx + (x2 + 2y) dy, where v is the quarter-
circle given by y(8) = (cos€ sinf), 0 < § < 7/2, we could proceed as
in the preceding section and plug the parameterizing functions into (1.3).
However, in this case it is easier to observe that 2xy dz + (2% +2y) dy = dh
for h(z,y) = 2%y + y2. Consequently,

(0,1)
/2xydx+(x2+2y)dy = (z%y + %) =1-0 = 1.

¥ (1,0)
Unfortunately, not every differential Pdx + Qdy is exact. We aim to give
some conditions that can be used to determine when a differential is exact.
Let P and @ be continuous complex-valued functions on a domain D.
We say that the line integral [ Pdz + Qdy is independent of path in D
if for any two points A and B of D, the integrals f Pdz + Qdy are the
same for any path v in D from A to B. This is tantamount to requiring
f Pdz + Qdy = 0 for any closed path « in D. Indeed, if v; and 7, are two
paths in D from A to B, then we can form a closed path v in D, starting and
ending at A, by following ; from A to B and then following 2 backwards
from B to A. Since the reversal of direction along <y, changes the sign of

the integral, we have [ = [ — [ ,sothat [ =0ifandonlyif [ =
"2 B

A@ A-Q;‘_’j

M Y=N—""2

B

Formula (2.1) shows that the integrals of exact differentials are indepen-
dent of path. The converse is easily seen to be true also.

Lemma. Let P and (Q be continuous complex-valued functions on a do-
main D. Then [ Pdx + Qdy is independent of path in D if and only if
Pdzx + Qdy is exact, that is, there is a continuously differentiable function
h(z,y) such that dh = Pdx + Qdy. Moreover, the function h is unique, up
to adding a constant.

Suppose that f Pdz + Qdy is independent of path in D. Fix a point A
in D, and define a function h(z,y) on D by

B
h(B) = / Pdz + Qdy, Be D,
A

where we may take any path in D from A to B. We compute the partial
derivatives of h(zx,y) by choosing some special paths. Fix (zg,y0) in D,
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and fix a path v from A to (z,y0). For z near g, we evaluate h(z, yo)
by following the path v from A to (zo,yo) and then the straight line path
z(t) = ¢, y(t) = yo from (o, Yo) to (z,yo). This gives

T

h(z,30) = / Pdz + Qdy + / P(t, o) dt.
Yy T

0

Since the first summand on the right is a constant, we obtain from the
fundamental theorem of calculus that

oh
g(lo,yo) = P(zo,y0)-

Similarly, we obtain

oh
6—y(zo7yo) = Q(z0,%0),

and consequently dh = Pdx + Qdy. For the uniqueness, note that if h; is
any other function such that dh; = Pdz + Qdy, then d(h — hq) = 0, that
is,

E; E;
gglh—h) = 0 = Z-(h=h).

Since D is a domain, h — h; is constant on D.
Let P and Q be continuously differentiable complex-valued functions on
a domain D. We say that the differential Pdx + Qdy is closed on D if

oP _ 0Q
oy Oz’
This is precisely the condition that the integrand in Green’s theorem is
zero. Thus Green’s theorem implies that if Pdz + Qdy is closed on D, then

faU Pdx + Qdy = 0 for any bounded domain U with piecewise smooth
boundary such that U together with its boundary is contained in D.

(22)

Lemma. Exact differentials are closed.

Indeed, if Pdx + Qdy = dh is exact, then
oP 0 Oh 8 Oh oQ

dy  Oydx  9xdy Oz’

Not every closed differential is exact. For certain domains, the so-called
simply connected domains, any closed differential is exact; in fact, this
statement characterizes simply connected domains. We content ourselves
with the following theorem for star-shaped domains, which includes the
simply connected domains of most interest to us. The theorem is the ana-
logue of Part II of the fundamental theorem of calculus. It gives conditions
on a smooth differential to have an antiderivative, that is, to be exact.
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Theorem (Part II). Let P and Q be continuously differentiable complex-
valued functions on a domain D. Suppose

(i) D is a star-shaped domain (as a disk or rectangle), and

(ii) the differential Pdzx + Qdy is closed on D.

Then Pdx + Qdy is exact on D.

The proof is similar to the one given just above. Suppose that D is
star-shaped with respect to the point A € D. We define h(B) at any point
Be Dby

B
h(B) = / Pdz + Qdy,
A

where the path of integration is the straight line segment from A to B.
We claim that dh = Pdz + Qdy. To see this, fix B = (z9,y0), and let
C = (z, o) lie on the horizontal line through B and close enough to B so
that the triangle with vertices A, B, C lies within D. We apply Green’s
theorem to the triangle, to obtain

(/AB +/BC+/CA)(de+ Qdy) = 0.

c B c
/ (Pdx + Qdy) — / (Pdz + Qdy) = / (Pdz + Qdy),
A

A B

Thus

or

T

h(z, %) — h(z0,%0) = / P(t, yo) dt.

Zo
From the fundamental theorem of calculus we obtain

oh
%(ﬁo,yo) = P(z0,%0)-

Similarly,
oh
5'?;(560, %) = Q(zo,Yo)-

Consequently, dh = Pdzx + Qdy, and Pdz + Qdy is exact.
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Example. Consider the differential

—ydr + zdy

i z + iy € C\{0}.

A straightforward calculation (Exercise 2) reveals that the differential is
closed on C\{0}. If we integrate the differential around the unit circle,
using the parameterization £ = cos 6, y = sin 8, we obtain

—yd 27
§olrd [T o
lz2]=1 T°+Y 0

Thus the integral is not independent of path, and the differential is not
exact on C\{0}. On the other hand, since C\(—00,0] is a star-shaped do-
main, the differential is exact on C\(—o0,0]. On this domain the differential
coincides with d(Arg z).

Now suppose that Pdz + Qdy is a closed differential on a domain D.
We fix points A,B € D, and we consider paths v in D from A to B.
The integral f7 Pdz + Qdy may depend on the path v. We claim, how-
ever, that if two paths ¢ and v are “sufficiently near” to each other,
then f% Pdz + Qdy = [ Pdz + Qdy. By “sufficiently near” we mean
that there are successive points A = Ag, A1,As,... ,A, = B on vy and
A=Cy,C1,Cs,...,C, = B on v such that the intervals on vy from Ag_;
to Ax and on v from Cj_1 to Cy, are contained in the same disk A, which
is contained in D. To see that the integrals are the same, we let v, be the
path in D that follows v from A to the point Cj, then follows a straight line
segment in Ay from Ci to Ag, then follows vy from Ay to B. Thus 7 is
obtained from ~,_; by changing only the subpath in Ay from Cy_; to Ag,
so that instead of following the straight line from Cy_; to Ax_; and then
o from Ag_; to Ag, we follow <y from Ci_; to Cy and then the straight
line from Cj, to Ag. Since the integral of Pdx + Qdy is independent of path
in the disk Ag, this change in yx_; to % does not affect the integral,

/ Pdx + Qdy = / Pdz + Qdy, 1<k<n.
Ye—1 Yk
Since v,, = v, we obtain after n steps
/de+Qdy = / Pdz + Qdy.
Y Yo

This identity holds not only if -y is near 9 but whenever v can be obtained
by deforming «yy continuously. We state the deformation theorem formally.

A, Ap_1

I e Ay #B=A,=C,
G G G C

A=A0=C0 k
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Theorem. Let D be a domain, and let vo(t) and v1(t), a <t < b, be two
paths in D from A to B. Suppose that v can be continuously deformed
to 7y1, in the sense that for 0 < s <1 there are paths v,(t), a <t < b, from
A to B such that vs(t) depends continuously on s and t for 0 < s < 1,
a <t <b. Then

(2.3) / Pdz 4+ Qdy = Pdz + Qdy
Yo

"
for any closed differential Pdx + Qdy on D.

The idea of the proof is that any continuous deformation of v can be
realized as a finite number of successive modifications by paths in D from A
to B that are close to each other. The proof requires a compactness ar-
gument, but otherwise it is straightforward. The compactness argument
allows us to find paths corresponding to 0 = sp < 87 < -+ < 8, = 1,
and successive t-values @ = tg < t; < --- < t, = b such that the subpaths
¥s;_,(t) and 7, (t), tk—1 < t < tg, lie in the same disk Ajx in D. This
can be done on account of the continuity of v,(t) in s and t. Then ~,;,_, is
“sufficiently near” to vy, for each j, and the rolling wave argument above
shows that the integrals of Pdx + Qdy over the two paths are the same,
this for 1 < j < n, so that (2.3) holds.

A slight variation of the argument establishes a deformation theorem for
closed paths in D. These are paths in D that start and end at the same
point. When we deform closed paths, we allow the starting point to move
also.

Theorem. Let D be a domain, and let vo(t) and v;1(t), a <t < b, be two
closed paths in D. Suppose that 7y can be continuously deformed to 71, in
the sense that for 0 < s < 1 there are closed paths ~y;(t), a <t < b, such
that ~y,(t) depends continuously on s andt for 0 < s<1,a <t <b. Then

/ Pdzr +Qdy = / Pdx + Qdy
Yo "

for any closed differential Pdx + Qdy on D.

Summary. We have defined what it means for a differential Pdz + Qdy
to be exact, to be closed, and to be independent of path. We have
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shown that

independent of path <= exact = closed.

For star-shaped domains we have shown that

independent of path < exact <= closed.

We have also shown that if Pdxr + Qdy is a closed differential, then a
deformation in the path from A to B does not change the value of the
integral of Pdx + Qdy along the path.

Exercises for I11.2

1.

Determine whether each of the following line integrals is indepen-
dent of path. If it is, find a function h such that dh = Pdx + Qdy.
If it is not, find a closed path 7 around which the integral is not
zero. (a) zdzr +ydy, (b) z2dz +y5dy, (c) ydz + zdy, (d) ydz — zdy.

Show that the differential

—ydz + zdy
W’ (z,y) # (0,0),

is closed. Show that it is not independent of path on any annulus
centered at 0.

. Suppose that P and @ are smooth functions on the annulus {a <

|z] < b} that satisfy OP/0y = 8Q/dz. Show directly using Green’s
theorem that flz Pdz + Qdy is independent of the radius r, for
a<r<b.

|=r

Let P and Q be smooth functions on D satisfying dP/0y = 0Q/0z.
Let 9 and 71 be two closed paths in D such that the straight line
segment from () to v1(t) lies in D for every parameter value t.
Then [ Pdr+Qdy = fﬂy1 Pdzx + Qdy. Use this to give another
solution to the preceding exercise.

Let yo(t) and y1(t), 0 < ¢t < 1, be paths in the slit annulus {a < |2z| <
b}\(—b,—a) from A to B. Write down explicitly a family of paths
~s(t) from A to B in the slit annulus that deforms o continuously
to v1. Suggestion. Deform separately the modulus and the principal
value of the argument.

. Show that any closed path 7(t), 0 < ¢t < 1, in the annulus {a <

|z| < b} can be deformed continuously to the circular path o(t) =
v(0)e2™*™t 0 < t < 1, for some integer m. Hint. Reduce to the
case where |y(t)] = |y(0)| is constant. Then start by finding a
subdivision 0 =ty < t; < --- < t, = 1 such that arg~(¢) has a
continuous determination on each interval t;_; <t <¢;.
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7. Show that if 0 and oo lie in different connected components of the
complement C*\D of D in the extended complex plane, then there
is a closed path v in D such that f7 df # 0. Hint. The hypothesis
means that there are § > 0 and a bounded subset E of C\D such
that 0 € F, and every point of E has distance at least 5§ from every
point of C\D not in E. Lay down a grid of squares in the plane
with side length 4, and let F be the union of the closed squares in
the grid that meet E or that border on a square meeting E. Show
that OF is a finite union of closed paths in D, and that [ df = 2.

3. Harmonic Conjugates

The basis for application of Green’s theorem to harmonic functions is the
following important observation.

Lemma. If u(z,y) is harmonic, then the differential
(3.1) ——dz + —dy
is closed.

Indeed, for this differential the condition (2.1) for P = —9u /0y and Q =
Ou/dr becomes —8%u/0y? = 8%u/822, which is equivalent to Laplace’s
equation.

Now suppose that u(z,y) is harmonic on a star-shaped domain D. If we
apply the theorem in Section 2 to the differential given in (3.1), we obtain
a smooth function v(z,y) such that

(3.2) dv = —Z—de + %dy.
The equation (3.2) is equivalent to
w o w w_ o
Oz dy’ oy Oz’

which are the Cauchy-Riemann equations. Thus u + iv is analytic, and we
have established the following theorem.

Theorem. Any harmonic function u(z,y) on a star-shaped domain D (as
a disk or rectangle) has a harmonic conjugate function v(z,y) on D.

By (3.2), the harmonic conjugate v(z,y) is given explicitly up to an
additive constant by

B
Ou Ou
(3.3) v(B) = /A —b—;dx + %dy,
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where A is fixed, and the integral is independent of path in D. If D is a
disk, and we take the path from A to B to be a vertical interval followed by
a horizontal interval, we obtain the formula (5.3) derived in Section II.5.

Example. To find a harmonic conjugate v(z) for u = log|z| on the star-
shaped domain C\(—o00,0], we express u in the form

1
u(z,y) = 510g(w2+y2),

and we compute

— z Y
Equation (3.2) becomes
_ Y z
dv = — m dzx + m dy

This leads to the identity

zZ
- -y z
Argz = /1 de + sc2—+y2dy’ z ¢ (—00,0],
since the principal branch Arg z is the unique harmonic conjugate of log |z|
on C\(—o0, 0],