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Preface 

This book provides an introduction to complex analysis for students with 
some familiarity with complex numbers from high school. Students should 
be familiar with the Cartesian representation of complex numbers and with 
the algebra of complex numbers, that is, they should know that i 2 = -1. A 
familiarity with multivariable calculus is also required, but here the funda­
mental ideas are reviewed. In fact, complex analysis provides a good train­
ing ground for multivariable calculus. It allows students to consolidate 
their understanding of parametrized curves, tangent vectors, arc length, 
gradients, line integrals, independence of path, and Green's theorem. The 
ideas surrounding independence of path are particularly difficult for stu­
dents in calculus, and they are not absorbed by most students until they 
are seen again in other courses. 

The book consists of sixteen chapters, which are divided into three parts. 
The first part, Chapters I-VII, includes basic material covered in all un­
dergraduate courses. With the exception of a few sections, this material is 
much the same as that covered in Cauchy'S lectures, except that the em­
phasis on viewing functions as mappings reflects Riemann's influence. The 
second part, Chapters VIU-XI, bridges the nineteenth and the twentieth 
centuries. About half this material would be covered in a typical under­
graduate course, depending upon the taste and pace of the instructor. The 
material on the Poisson integral is of interest to electrical engineers, while 
the material on hyperbolic geometry is of interest to pure mathematicians 
and also to high school mathematics teachers. The third part, Chapters 
XII-XVI, consists of a careful selection of special topics that illustrate the 
scope and power of complex analysis methods. These topics include Julia 
sets and the Mandelbrot set, Dirichlet series and the prime number theo­
rem, and the uniformization theorem for Riemann surfaces. The final five 
chapters serve also to complete the coverage of all background necessary 
for passing PhD qualifying exams in complex analysis. 

Note to the instructor 
There is a glut of complex analysis textbooks on the market. It is a beauti­
ful subject, so beautiful that a large number of experts have been moved to 
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write their own accounts of the area. In spite of the plethora of textbooks, 
I have never found an introduction to complex analysis that is completely 
suitable for my own teaching style and audiences. 

The students in each of my various audiences have begun the course with 
a wide range of backgrounds. Teaching to students with disparate back­
grounds and preparations has posed a major teaching challenge. I respond 
by including early some topics that can be treated in an elementary way and 
yet are usually new and capture the imagination of students with already 
some background in complex analysis. For example, the stereographic pro­
jection appears early, the Riemann surface of the square root function is 
explained early at an intuitive level, and both conformality and fractional 
linear transformations are treated relatively early. Exercises range from the 
very simple to the quite challenging, in all chapters. Some of the exercises 
that appear early in the book can form the basis for an introduction to a 
more advanced topic, which can be tossed out to the more sophisticated 
students. Thus for instance the basis is laid for introducing students to 
the spherical metric already in the first chapter, though the topic is not 
taken up seriously until much later, in connection with Marty's theorem in 
Chapter XII. 

The second problem addressed by the book has to do with flexibility 
of use. There are many routes through complex analysis, and many in­
structors hold strong opinions concerning the optimal route. I address this 
problem by laying out the material so as to allow for substantial flexibil­
ity in the ordering of topics. The instructor can defer many topics (for 
instance, the stereographic projection, or conformality, or fractional linear 
transformations) in order to reach Cauchy'S theorem and power series rel­
ativelyearly, and then return to the omitted topics later, time permitting. 

There is also flexibility with respect to adjusting the course to under­
graduate students or to beginning graduate students. The bulk of the 
book was written with undergraduate students in mind, and I have used 
various preliminary course notes for Chapters I-Xl at the undergraduate 
level. By adjusting the level of the lectures and the pace I have found the 
course notes for all sixteen chapters appropriate for a first-year graduate 
course sequence. 

One of my colleagues wrote in commenting upon the syllabus of our 
undergraduate complex analysis course that "fractional powers should be 
postponed to the end of the course as they are very difficult for the stu­
dents." My philosophy is just the reverse. If a concept is important but 
difficult, I prefer to introduce it early and then return to it several times, in 
order to give students time to absorb the idea. For example, the idea of a 
branch of a multivalued analytic function is very difficult for students, yet it 
is a central issue in complex analysis. I start early with a light introduction 
to the square root function. The logarithm function follows soon, followed 
by phase factors in connection with fractional powers. The basic idea is 
returned to several times throughout the course, as in the applications of 
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residue theory to evaluate integrals. I find that by this time most students 
are reasonably comfortable with the idea. 

A solid core for the one-semester undergraduate course is as follows: 
Chapter I 
Chapter II 
Sections III.1-5 
Sections IV. 1-6 
Sections V.1-7 
Sections VI.1-4 
Sections VII.1-4 
Sections VIILl-2 
Sections IX.1-2 
Sections X.1-2 
Sections XI.1-2 

To reach power series faster I would recommend postponing 1.3, 11.6-7, 
111.4-5, and going light on Riemann surfaces. Sections 11.6-7 and 111.4-5 
should be picked up again before starting Chapter IX. 

Which additional sections to cover depends on the pace of the instructor 
and the level of the students. My own preference is to add more contour 
integration (Sections VI1.5 and VI1.8) and hyperbolic geometry (Section 
IX.3) to the syllabus, and then to do something more with conformal map­
ping, as the Schwarz reflection principle (Section X.3), time permitting. To 
gain time, I mention some topics (as trigonometric and hyperbolic func­
tions) only briefly in class. Students learn this material as well by reading 
and doing assigned exercises. Finishing with Sections XI.1-2 closes the cir­
cle and provides a good review at the end of the term, while at the same 
time it points to a fundamental and nontrivial theorem (the Riemann map­
ping theorem). 

Note to the student 
You are about to enter a fascinating and wonderful world. Complex analysis 
is a beautiful subject, filled with broad avenues and narrow backstreets 
leading to intellectual excitement. Before you traverse this terrain, let me 
provide you with some tips and some warnings, designed to make your 
journey more pleasant and profitable. 

Above all, give some thought to strategies for study and learning. This 
is easier if you are aware of the difference between the ''what,'' the "how," 
and the ''why," (as Halmos calls them). The ''what'' consists of defini­
tions, statements of theorems, and formulae. Determine which are most 
important and memorize them, at least in slogan form if not precisely. Just 
as one maintains in memory the landmark years 1066, 1453, and 1776 as 
markers in the continuum of history, so should you maintain in memory 
the definition of analytic function, the Cauchy-Riemann equations, and the 
residue formula. The simplest of the exercises are essentially restatements 
of ''what.'' 
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The "how" consists in being able to apply the formulae and techniques 
to solve problems, as to show that a function is analytic by checking the 
Cauchy-Riemann equations, or to determine whether a polynomial has a 
zero in a certain region by applying the argument principle, or to evaluate 
a definite integral by contour integration. Before determining "how" you 
must know "what." Many of the exercises are "how" problems. Working 
these exercises and discussing them with other students and the instructor 
are an important part of the learning process. 

The ''why'' consists in understanding why a theorem is true or why a 
technique works. This understanding can be arrived at in many different 
ways and at various levels. There are several things you can do to under­
stand why a result is true. 'Thy it out on some special cases. Make a short 
synopsis of the proof. See where each hypothesis is used in the proof. Try 
proving it after altering or removing one of the hypotheses. Analyze the 
proof to determine which ingredients are absolutely essential and to deter­
mine its depth and level of difficulty. The slogan form of the Jordan curve 
theorem is that "every closed curve has an inside and an outside" (Section 
VIII. 7). What is the level of difficulty of this theorem? Can you come up 
with a direct proof? Try it. 

Finally, be aware that there is a language of formal mathematics that is 
related to but different from common English. We all know what "near" 
means in common English. In the language of formal mathematics the 
word carries with it a specific measure of distance or proximity, which is 
traditionally quantified bye> 0 or a ''for every neighborhood" statement. 
Look also for words like "eventually," "smooth," and "local." Prepare to 
absorb not only new facts and ideas but also a different language. Develop­
ing some understanding of the language is not easy - it is part of growing 
up and becoming mathematically sophisticated. 

Acknowledgments 
This book stems primarily from courses I gave in complex analysis at the 
Interuniversity Summer School at Perugia (Italy). Each course was based 
on a series of exercises, for which I developed a computer bank. Gradually 
I deposited written versions of my lectures in the computer bank. When I 
finally decided to expand the material to book form, I also used notes based 
on lectures presented over the years at several places, including UCLA, 
Brown University, Valencia (Spain), and long ago at the university at La 
Plata (Argentina). I have enjoyed teaching this material. I learned a lot, 
both about the subject matter and about teaching, through my students. 
I would like to thank the many students who contributed, knowingly or 
unknowingly, to this book. 

The origins of many of the mathematical ideas have been lost in the 
thickets of the history of mathematics. Let me mention the source for one 
item. The treatment of the parabolic case of the uniformization theorem 
follows a line of proof due to D. Marshall, and I am grateful for his sharing 
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his work. Ai:, far as I know, everything else is covered by the bibliography, 
and I apologize for any omissions. 

Each time I reread a segment of the book manuscript I found various 
mathematical blunders, grammatical infringements, and stylistic traves­
ties. Undoubtedly mistakes have persisted into the printed book. I would 
appreciate receiving your email about any egregious errors you come across, 
together with your comments about any passages you perceive to be par­
ticularly dense or unenlightening. My email address.whileIamaround.is 
twg@math.ucla.edu. I thank you, dear reader, in advance. 

Julie Honig and Mary Edwards helped with the preparation of class notes 
that were used for parts of the book, and for this I thank them. Finally, 
I am happy to acknowledge the skilled assistance of the publishing staff, 
who turned my doodles into figures and otherwise facilitated publication 
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Introduction 

Complex analysis is a splendid realm within the world of mathematics, 
unmatched for its beauty and power. It has varifold elegant and often­
times unexpected applications to virtually every part of mathematics. It 
is broadly applicable beyond mathematics, and in particular it provides 
powerful tools· for the sciences and engineering. 

Already in the eighteenth century Euler discovered the connection b~ 
tween trigonometric functions and exponential functions through complex 
analysis. (It was he who invented the notation ei9 .) However, it was not 
until the nineteenth century that the foundations of complex analysis were 
laid. Among the many mathematicians and scientists who contributed, 
there are three who stand out as having influenced decisively the course of 
development of complex analysis. The first is A. Cauchy (1789-1857), who 
developed the theory systematically along the lines we shall follow, with 
the complex integral calculus, Cauchy's theorem, and the Cauchy int~ 
gral formula playing fundamental roles. The other two are K. Weierstrass 
(1815-1897) and B. Riemann (1826-1866), who appeared on the math~ 
matical scene about the middle of the nineteenth century. Weierstrass 
developed the theory from a starting point of convergent power series, and 
this approach led towards more formal algebraic developments. Riemann 
contributed a more geometric point of view. His ideas had a tremendous 
impact not only on complex analysis but upon mathematics as a whole, 
though his views took hold only gradually. 

In addition to the standard undergraduate material, we shall follow sev­
eral strands and obtain several poster theorems, which together with the 
more elementary material cover what might be called the "complex anal­
ysis canon," the part of complex analysis included in the syllabus of the 
typical PhD qualifying exam. 

One of the strands we shall follow culminates in the prime number theo­
rem. Already Euler in the eighteenth century had written down an infinite 
product for the zeta function, connecting the prime numbers to complex 
analysis. In the 1830's Dirichlet used variants of the zeta function to prove 
the existence of infinitely many primes in arithmetic progressions. Riemann 
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did fundamental work connecting the zeta function to the distribution of 
prime numbers. And finally just before the close of the nineteenth century 
J. Hadamard and C.J. de la Vallee Poussin independently proved the prime 
number theorem using techniques of complex analysis. 

Another strand we shall follow is the conformal mapping of domains 
in the plane and more generally of Riemann surfaces. We shall aim at 
two poster results: the Riemann mapping theorem and the uniformization 
theorem for Riemann surfaces. The definitive version of the Riemann ma~ 
ping theorem, which one finds in all complex analysis textbooks today, was 
proved by W. Osgood in 1900. The uniformization theorem for Riemann 
surfaces was proved independently in 1907 by P. Koebe and H. Poincare, 
thereby solving Hilbert's 22nd problem from his famous address to the 
International Mathematical Congress in 1900. 

The first quarter of the twentieth century was one of rapid development 
of the foundations of complex analysis. P. Montel put his finger on the 
notion of compactness in spaces of meromorphic functions and developed 
the theory of normal families. P. Fatou and G. Julia used Montel's theorem 
in their seminal work around 1914-1921 on complex iteration theory. On 
another front, O. Perron developed in 1923 a powerful method for solving 
the Dirichlet problem. 

By the end of the first quarter of the twentieth century, the complex anal­
ysis canon had been established, and nearly all the main results constituting 
the undergraduate and first-year graduate courses in complex analysis had 
been obtained. Nevertheless, throughout the twentieth century there has 
been much exciting progress on the frontiers of research in complex anal­
ysis, and meanwhile proofs of the most difficult foundational results have 
been gradually simplified and clarified. While the complex analysis canon 
has remained relatively static, the developments at the frontier have led 
to new perspectives and shifting emphases. For instance, the current re­
search interest in dynamical systems and the advent of computer graphics 
contributed to elevating the work of Fatou and Julia to a more prominent 
position. 

What lies before you is the distillation of the essential, the useful, and 
the beautiful, from two centuries of labor. Enjoy! 



I 

The Complex Plane and 
Elementary Functions 

In this chapter we set the scene and introduce some of the main charac­
ters. We begin with the three representations of complex numbers: the 
Cartesian representation, the polar representation, and the spherical rep­
resentation. Then we introduce the basic functions encountered in complex 
analysis: the exponential function, the logarithm function, power functions, 
and trigonometric functions. We view several concrete functions w = J(z) 
as mappings from the z-plane to the w-plane, and we consider the problem 
of describing the inverse functions. 

1. Complex Numbers 

A complex number is an expression of the form z = x+iy, where x and y 
are real numbers. The component x is called the real part of z, and y is 
the imaginary part of z. We will denote these by 

x = Rez, 

y = Imz. 

The set of complex numbers forms the complex plane, which we denote 
by C. We denote the set of real numbers by JR, and we think of the real 
numbers as being a subset of the complex plane, consisting of the complex 
numbers with imaginary part equal to zero. 

The correspondence 

z=x+iy +------+ (x,y) 

is a one-to-one correspondence between complex numbers and points (or 
vectors) in the Euclidean plane JR2. The real numbers correspond to the 
x-axis in the Euclidean plane. The complex numbers of the form iy are 
called purely imaginary numbers. They form the imaginary axis iJR 

1 
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z + w = (x + u) + i(y+ v) 

iy ex+iy 

x 

in the complex plane, which corresponds to the y-axis in the Euclidean 
plane. 

We add complex numbers by adding their real and imaginary parts: 

(x+iy)+(u+iv) = (x+u)+i(y+v). 

Thus Re(z + w) = Re(z) + Re(w), and Im(z + w) = Im(z) + Im(w) for 
z, w E C. The addition of complex numbers corresponds to the usual 
componentwise addition in the Euclidean plane. 

The modulus of a complex number z = x+iy is the length Jx2 + y2 of 
the corresponding vector (x, y) in the Euclidean plane. The modulus of z 
is also called the absolute value of z, and it is denoted by IzI: 

Izl = JX2 + y2. 

The triangle inequality for vectors in the plane takes the form 

Iz + wi ::; Izl + Iwl, z,WEC. 

By applying the triangle inequality to z = (z - w) + w, we obtain Izl ::; 
Iz - wi + Iwl· Subtracting Iwl, we obtain a very useful inequality, 

(1.1) Iz - wi ~ Izl - Iwl, Z,WEC. 

Complex numbers can be multiplied, and this is the feature that distin­
guishes the complex plane C from the Euclidean plane ]R2. Formally, the 
multiplication is defined by 

(x + iy)(u + iv) = xu - yv + i(xv + yu). 

One can check directly from this definition that the usual laws of algebra 
hold for complex multiplication: 

ZlZ2 = Z2Zl, 

Zl(Z2 + Z3) = ZlZ2 + ZlZ3· 

(associative law) 

(commutative law) 

(distributive law) 

With respect to algebraic operations, complex numbers behave the same as 
real numbers. Algebraic manipulations are performed on complex numbers 
using the usual laws of algebra, together with the special rule i 2 = -1. 
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Every complex number z =f 0 has a multiplicative inverse 1/ z, which is 
given explicitly by 

I 

z 
x-iy 
X2+y2' z = x + iy E C, z =f O. 

Thus for instance, the multiplicative inverse of i is lji = -i. 

z=x+iy 

z=x-iy 

The complex conjugate of a complex number z = x + iy is defined to 
be z = x - iy. Geometrically, Z is the reflection of z in the x-axis. IT we 
reflect twice, we return to z, 

Z = z, z E C. 

Some other useful properties of complex conjugation are 

z+w z+w, z,WEC, 

zw ZW, Z,WEC, 

Izl = Izl, z E C, 
Izl2 zz, zEC. 

Each of these identities can be verified easily using the definition of z 
and 14 The last formula above allows us to express l/z in terms of the 
complex conjugate z: 

z E C,Z =f O. 

The real and imaginary parts of z can be recovered from z and z, by 

Rez = (z + z)/2, 

Imz = (z - z)/2i, 

ZEC, 
z E C. 

From IzwI2 = (zw)(zw) = (zz)(ww) = Iz121w12, we obtain also 

Izwi = Izllwl, z,w E C. 

A complex polynomial of degree n ~ 0 is a function of the form 

( ) n + n-l p Z = anz an-lZ + ... + alZ + ao, ZEC, 
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where ao, ... ,an are complex numbers, and an =I o. A key property of the 
complex numbers, not enjoyed by the real numbers, is that any polynomial 
with complex coefficients can be factored as a product of linear factors. 

Fundamental Theorem of Algebra. Every complex polynomial p( z) of 
degree n ~ 1 has a factorization 

p(z) = c(z - Zl)mt ••• (z - Zk)mk , 

where the Zj 's are distinct and mj ~ 1. This factorization is unique, up to 
a permutation of the factors. 

We will not prove this theorem now, but we will give several proofs later. 
Some remarks are in order. 

The uniqueness of the factorization is easy to establish. The points 
Zl, ... ,Zk are uniquely characterized as the roots of p(z), or the zeros 
of p(z). These are the points where p(z) = o. The integer mj is character­
ized as the unique integer m with the property that p( z) can be factored 
as (z - Zj)mq(z) where q(z) is a polynomial satisfying q(Zj) =I o. 

For the proof of the existence of the factorization, one proceeds by induc­
tion on the degree n of the polynomial. The crux of the matter is to find 
a point Zl such that P(ZI) = o. With a root Zl in hand, one easily factors 
p(z) as a product (z - ZI)q(Z), where q(z) is a polynomial of degree n-1. 
(See the exercises.) The induction hypothesis allows one to factor q(z) as a 
product of linear factors, and this yields the factorization of p( z). Thus the 
fundamental theorem of algebra is equivalent to the statement that every 
complex polynomial of degree n ~ 1 has a zero. 

Example. The polynomial p(x) = x2 + 1 with -real coefficients cannot be 
factored as a product of linear polynomials with real coefficients, since it 
does not have any real roots. However, the complex polynomial p(z) = 
Z2 + 1 has the factorization 

z2 + 1 = (z - i)(z + i), 
corresponding to the two complex roots ±i of z2 + 1. 

Exercises for 1.1 

1. Identify and sketch the set of points satisfying: 
(a) Iz-l-il=1 (f) O<Imz<7I" 
(b) 1 < 12z - 61 < 2 (g) -71" < Re Z < 71" 

(c) IZ-112+lz+112<8 (h) IRezl<lzl 
(d) Iz - 11 + Iz + 11 ~ 2 (i) Re(iz + 2) > 0 
(e) Iz -11 < Izl (j) Iz - il2 + Iz + il2 < 2 

2. Verify from the definitions each of the identities (a) z + w = z + 
w, (b) zw = zw, (c) Izl = Izl, (d) Izl2 = zz. Draw sketches to 
illustrate (a) and (c). 
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3. Show that the equation Iz12_2 Re(az)+laI2 = p2 represents a circle 
centered at a with radius p. 

4. Show that I z I ~ I Re z I + I 1m zl, and sketch the set of points for 
which equality holds. 

5. Show that I Rezl ~ Izl and I Imzl ~ 14 Show that 

Iz + Wl2 = Izl2 + Iwl2 + 2 Re(zw). 

Use this to prove the triangle inequality Iz + wi ~ Izl + Iwl. 

6. For fixed a E C, show that Iz - al/ll - azl = 1 if Izl = 1 and 
l-az # 0. 

7. Fix p > 0, p # 1, and fix Zo, Zl E C. Show that the set of z satisfying 
Iz - zol = plz - zll is a circle. Sketch it for p = ! and p = 2, with 
Zo = ° and Zl = 1. What happens when p = I? 

8. Let p( z) be a polynomial of degree n 2: 1 and let Zo E C. Show that 
there is a polynomial h(z) of degree n - 1 such that p(z) = (z -
zo)h(z)+p(zo). In particular, ifp(zo) = 0, thenp(z) = (z-zo)h(z). 

9. Find the polynomial h(z) in the preceding exercise for the following 
choices ofp(z) and Zo: (a) p(z) = z2 and Zo = i, (b) p(z) = z3+z2+z 
and Zo = -1, (c) p( z) = 1 + z + z2 + ... + zm and zo = -1. 

10. Let q(z) be a polynomial of degree m 2: 1. Show that any polyno­
mial p( z) can be expressed in the form 

p(z) = h(z)q(z) + r(z), 

where h(z) and r(z) are polynomials and the degree of the remain­
der r(z) is strictly less than m. Hint. Proceed by induction on 
the degree of p(z). The resulting method is called the division 
algorithm. 

11. Find the polynomials h(z) and r(z) in the preceding exercise for 
p(z) = zn and q(z) = Z2 - 1. 

2. Polar Representation 

Any point (x,y) # (0,0) in the plane can be described by polar coordi­
nates rand e, where r = Jx2 + y2 and e is the angle subtended by (x,y) 
and the x-axis. The angle e is determined only up to adding an integral 
multiple of 271". The Cartesian coordinates x, yare recovered from the polar 
coordinates r, e by 

{
X = r cos e, 
y=rsine. 
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z 

If we write the polar representation in complex notation, we obtain 

(2.1) z = x + iy = r(cosO + isinO). 

Here r = JzJ is the modulus of z. We define the argument of z to be the 
angle 0, and we write 

o = argz. 

Thus arg z is a multivalued function, defined for z # o. The principal 
value of arg z, denoted by Arg z, is specified rather arbitrarily to be the 
value of 0 that satisfies -11" < 0 ::; 11". The values of arg z are obtained from 
Arg z by adding integral multiples of 211": 

argz = {Argz + 211"k : k = 0, ±1,±2, ... }, z #0. 

Example. The principal value of arg i is Arg i = 11"/2. The principal value 
of arg(l - i) is Arg(l - i) = -11"/4. 

-1 

-i l-i 

It will be convenient to introduce the notation 

(2.2) ei(J = cos 0 + i sin O. 

From (2.1) we obtain 

z = rei(J , r = JzJ, 0 = argz. 

This representation is called the polar representation of z. The sine and 
cosine functions are 211"-periodic, that is, they satisfy sin(O + 211"m) = sinO, 
cos ( 0 + 211"m) = cos O. Thus the various choices of arg z yield the same 
value for ei(J, 

m = 0,±1, ±2, .... 



2. Polar Representation 

Example. Some common complex exponentials are 

ei7r = -1, ei7r/ 2 = i, ei7r/ 3 _ 1 + V3i 
- 2 ' 

Also note that 

i7r/4 _ 1 + i 
e - v'2. 

m = O,±1,±2, .... 

1 
2 

i,,/3 _ 1 + . ..[3 e -- 1-
2 2 

1 

..fi 

Several useful identities satisfied by the exponential function are 

(2.3) l ei9 1 1, 

(2.4) e i9 -i9 
e , 

(2.5) 1/ei9 -i9 e . 

7 

The identity (2.3) is equivalent to the trigonometric identity cos2 0+sin2 0 = 
1, while (2.4) follows from cos( -0) = cos 0 and sine -0) = - sin O. 

One of the most important properties of the exponential function is the 
addition formula 

(2.6) -00 < 0, rp < 00. 

In view of the definition (2.2), this is equivalent to 

cosCO + rp) + i sinCO + rp) = (cos 0 + i sin O)(COSip + i sin ip). 

Multiplying out the right-hand side and equating real and imaginary parts, 
we obtain the equivalent pair of identities 

{ 
cos(O + rp) = cos o cos ip - sin 0 sin ip, 

(2.7) 
sin(O + rp) = cos 0 sin rp + sin 0 cos rp, 

which are the addition formulae for sine and cosine. Thus the addition 
formula (2.6) for the complex exponential is a compact form of the addition 
formulae (2.7) for the sine and cosine functions, and it is much easier to 
remember! 

The properties (2.4), (2.5), (2.6) of the exponential function correspond 
respectively to the following properties of the argument function: 

(2.8) 

(2.9) 

(2.10) 

argz 

arg(l/z) 

arg(zlz2) 

- argz, 

-argz, 
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where each formula is understood to hold modulo adding integral multiples 
of 27r. To establish (2.8) and (2.9), note that if the polar representation 
of z is rei(), then the polar representation of z is re-i(), and that of 1/ z is 
(l/r)e- i(). For (2.10), write Zl = rlei'Pl, Z2 = r2ei()2, and use the addition 
formula to obtain the polar form of ZlZ2, 

The addition formula (2.6) can be used to derive formulae for cos (nO) 
and sin(nO) in terms of cosO and sinO. Write 

cos(nO) +isin(nO) = ein() = (ei())n = (cosO+isinOt, 

expand the right-hand side, and equate real and imaginary parts. This 
yields expressions for cos( nO) and sin( nO) that are polynomials in cos 0 and 
sinO. These identities are known as de Moivre's formulae. For instance, 
by equating cos(30) + i sin(30) to 

(cosO + i sin 0)3 = cos3 0-3cosOsinO+i(3cos2 0sinO-sin3 0) 

and taking real and imaginary parts, we obtain 

cos(30) 

sin(30) 

Re( cos 0 + i sin 0)3 

Im( cos 0 + i sin 0)3 

cos30 - 3 cos 0 sin2 0, 

3 cos2 0 sin 0 - sin3 O. 

A complex number Z is an nth root of w if zn = w. Thus the nth roots 
of ware precisely the zeros of the polynomial zn - W of degree n. Since this 
polynomial has degree n, w has at most n nth roots. If w =1= 0, then w has 
exactly n nth roots, and these are determined as follows. First express w 
in polar form, 

w = pei'P. 

The equation zn = w becomes 

Thus rn = p and nO = cp+27rk for some integer k. This leads to the explicit 
solutions 

r //n, 
cp 27rk 

0=-+-, 
n n 

k = 0,1,2, ... , n - 1, 

where we take the usual positive root of p. Since these n roots are distinct, 
and there are at most n nth roots, this list includes all the nth roots of w. 
Other values of k do not give different roots, since any other integer k leads 
to a value of 0 that is obtained from the above list by adding an integral 
multiple of 27r. Graphically, the roots are distributed in equal arcs on the 
circle centered at 0 of radius Iwl l / n . 
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w=~'P 

Example. To find and plot the square roots of 4i, first express 4i in polar 
form peicp. Here p = 14il = 4 and cp = arg( 4i) = 7r /2. One root is given by 
v'P e icp/ 2 = 2ei1r/ 4 • The other is 2ei(1r/4+1r) = _2ei1r/ 4• In Cartesian form, 
the roots are J4i = ±(.J2 + .J2i). 
Example. To find and plot the cube roots of 1 + i, express 1 + i in polar 
form as .J2 e i1r / 4 . The polar form of the three cube roots is given by 

21/6 ei(1r /12+2k1r/3) , k = 0,1,2. 

cube roots of 1 + i cube roots of unity 

The nth roots of 1 are also called the nth roots of unity. They are 
given explicitly by 

O::;k::;n-l. 

Graphically, they are situated at equal intervals around the unit circle in 
the complex plane. Thus the two square roots of unity are eO = 1 and 
e i1r = -l. 

The procedure for finding the nth roots of w #- 0 can be rephrased in 
terms of the nth roots of unity. We express w = peicp/n in polar form 
as above. One root is given by Zo = p1/neicp/ n • The others are found by 
multiplying Zo by the nth roots of unity: 

__ p1/ne icp/ne 21rik/n, 
Zk = ZOWk 

Exercises for 1.2 

O::;k~n-l. 

1. Express all values of the following expressions in both polar and 
cartesian coordinates, and plot them. 
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e77ril4 

-i = e37ri12 

The eight eighth roots of unity 

(a) Vi 

(b) y'Z-l 

(c) A 

(d) ~ 

2. Sketch the following sets: 
(a) largzl < 7f/4 

(e) (_8)1/3 

(f) (3 - 4i)1/8 

(c) Izl = argz 

(g) (1 + i)8 

(h) (1~ir5 

(b) 0 < arg(z -1- i) < 7f/3 (d) loglzl = -2argz 

3. For a fixed complex number b, sketch the curve {ei() + be-i() : 0 :S 
() :S 27f}. Differentiate between the cases Ibl < 1, Ibl = 1 and Ibl > 1. 
Hint. First consider the case b > 0, and then reduce the general 
case to this case by a rotation. 

4. For which n is i an nth root of unity? 

5. For n ;::: 1, show that 
(a) 1+z+z2 +···+zn =(1-zn+1)/(1-z), z#l, 

1 sin (n + 1.)0 
(b) 1 + cos () + cos 2() + ... + cos n() = "2 + 2sin()/~ . 

6. Fix n ;::: 1. Show that the nth roots of unity Wo, ... ,Wn-1 satisfy: 
(a) (z - wo)(z - WI) ... (z - wn-d = zn - 1, 
(b) Wo + ... + Wn-I = 0 if n ;::: 2, 
(c) wo···wn_I=(-l)n-l, 

n-I { 0 1 :S k :S n - 1, 
(d)Lwj= ' 

j=O n, k = n. 

7. Fix R > 1 and n ;::: 1, m ;::: O. Show that 

Izl =R. 

Sketch the set where equality holds. Hint. See (1.1). 
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8. Show that cos 28 = cos2 8 - sin2 8 and sin 28 = 2 cos 8 sin 8 using 
de Moivre's formulae. Find formulae for cos 48 and sin 48 in terms 
of cos 8 and sin 8. 

3. Stereographic Projection 

The extended complex plane is the complex plane together with the 
point at infinity. We denote the extended complex plane by C*, so that 
C* = cui oo}. One way to visualize the extended complex plane is through 
stereographic projection. This is a function, or map, from the unit sphere 
in three-dimensional Euclidean space ]R3 to the extended complex plane, 
which is defined as follows. If P = (X, Y, Z) is any point of the unit sphere 
other than the north pole N = (0,0,1), we draw a straight line through N 
and P, and we define the stereographic projection of P to be the point 
z = x + iy '" (x, y, 0) where the straight line meets the coordinate plane 
Z = 0. The stereographic projection of the north pole N is defined to 
be 00, the point at infinity. 

z 

y 

x 

An explicit formula for the stereographic projection is derived as follows. 
We represent the line through P and N parametrically by N + t(P -
N), -00 < t < 00. The line meets the (x,y)-plane at a point (x,y,O) that 
satisfies 

(x,y,O) = (O,O,I)+t[(X,Y,Z)-(O,O,I)] 

= (tX, tY, 1 + t(Z - 1)) 

for some parameter value t. Equating the third components, we obtain ° = 1 + t(Z - 1), which allows us to solve for the parameter value t, 

t = 1/(1 - Z). 
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Equating the first two components and substituting this parameter value, 
we obtain equations for x and y in terms of X, Y, and Z, 

{
X = tX = X/(l - Z), 

y = tY = Y/(l-Z). 

To solve for X, Y, Z in terms of x and y, we use the defining equation 
X 2 + y2 + Z2 = 1 of the sphere. Multiplying this equation by t2 and 
substitutingtX = x, tY = y, tZ = t-1, we obtain x2+y2+t2-2t+1 = t2, 
which becomes 

This yields 

1 2 
t = 2(lzl + 1). 

{
X = 2x/(lzI2 + 1), 

Y = 2y/(lzI2 + 1), 

Z = 1 - l/t = (lzl2 - 1)/(lzI2 + 1). 

The point (X, Y, Z) of the sphere is determined uniquely by the point 
z = x + iy of the plane. Thus the stereographic projection provides a one­
to-one correspondence between points P of the sphere, except the north 
pole N, and points z = x + iy of the complex plane. 

Lines of longitude on the sphere correspond to straight lines in the plane 
through 0, while lines of lattitude on the sphere correspond to circles cen­
tered at o. As the radii of the circles tend to 00, the lines of lattitude on 
the sphere tend to the north pole, so we are justified in making the north 
pole N correspond to the point at 00. 

Theorem. Under the stereographic projection, circles on the sphere cor­
respond to circles and straight lines in the plane. 

z 

y 

x 
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To see this, we will use the fact that the locus of points in the plane 
satisfying a quadratic equation of the form 

(3.1) 

is either a circle, a point, or empty. This can be seen by completing the 
square and rewriting (3.1) as (x + a/2)2 + (y + b/2)2 = (a2 + b2)/4 - c. 
The three cases correspond respectively to whether (a2 + b2 ) /4- c is strictly 
positive, zero, or strictly negative. 

We begin with a circle on the sphere, and we express it as the intersection 
of the sphere and a plane AX + BY +C Z = D. The stereographic projection 
of the circle then consists of points z = x + iy that satisfy 

A 2x + B 2y + C Izl2 - 1 = D. 
Izl2 + 1 Izl2 + 1 Izl2 + 1 

We rewrite this as 

(3.2) (C - D)(x2 + y2) + 2Ax + 2By - (C + D) = o. 
If C = D, the locus of (3.2) is a straight line. If C #- D, then we divide by 
C - D, and the equation (3.2) has the form (3.1). Being the projection of 
a circle on the sphere, the locus cannot be a point or empty, so it must be 
a circle in the plane. 

The argument is reversible. Every circle in the plane is the locus of 
solutions of an equation of the form 

x2 + y2 + A'x + B'y + D' = O. 

Define A,B,C,D so that 2A = A', 2B = B', C - D = 1, -(C + D) = D', 
and the corresponding set on the sphere is the intersection of the sphere 
with the plane AX + BY + C Z = D. The intersection cannot be empty or a 
point; hence it is a circle on the sphere. Similarly, every straight line in the 
plane is the locus of solutions of an equation of the form A' x + B' y = D', 
which also determines a plane via 2A = A', 2B = B', C = D = D' /2, and 
this plane meets the sphere in a circle through the north pole. 

Since straight lines in the plane correspond to circles on the sphere 
through the north pole, it is convenient to regard a straight line in the 
complex plane as a circle through 00. With this convention the theorem 
asserts simply that stereographic projection maps circles on the sphere to 
circles in the extended complex plane. 

Exercises for 1.3 

1. Sketch the image under the spherical projection of the following 
sets on the sphere: (a) the lower hemisphere Z ~ 0, (b) the polar 
cap ~ ~ Z ~ 1, (c) lines of lattitude X = Jl- Z2COS(}, Y = 
v'1 ! Z2 sin(}, for Z fixed and 0 ~ () ~ 211", (d) lines of longitude 
X = v'1 - Z2 cos(}, Y = v'1- Z2 sin(}, for () fixed and -1 ~ Z ~ 1. 
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(e) the spherical cap A :S X :S 1, with center lying on the equator, 
for fixed A. Separate into cases, according to various ranges of A. 

2. If the point P on the sphere corresponds to z under the stereo­
graphic projection, show that the antipodal point - P on the sphere 
corresponds to -1/z. 

3. Show that as z traverses a small circle in the complex plane in the 
positive (counterclockwise) direction, the corresponding point P on 
the sphere traverses a small circle in the negative (clockwise) direc­
tion with respect to someone standing at the center of the circle and 
with body outside the sphere. (Thus the stereographic projection 
is orientation reversing, as a map from the sphere with orientation 
determined by the unit outer normal vector to the complex plane 
with the usual orientation.) 

4. Show that a rotation of the sphere of 1800 about the X-axis cor­
responds under stereographic projection to the inversion z f-+ l/z 
ofC. 

5. Suppose (x, y, 0) is the spherical projection of (X, Y, Z). Show that 
the product of the distances from the north pole N to (X, Y, Z) and 
from N to (x, y, 0) is 2. What is the situation when (X, Y, Z) lies 
on the equator of the sphere? 

6. We define the chordal distance d(z, w) between two points z, wE 
C* to be the length of the straight line segment joining the points P 
and Q on the unit sphere whose stereographic projections are z 
and w, respectively. (a) Show that the chordal distance is a metric, 
that is, it is symmetric, d( z, w) = d( w, z) j it satisfies the triangle 
inequality d(z, w) :S d(z, () + d((, w)j and d(z, w) = 0 if and only if 
z = w. (b) Show that the chordal distance from z to w is given by 

d 2jz-wj 
(z w) -

, - y'1 + jzj2 y'1 + jwj2 ' 
z,WEC. 

(c) What is d(z,oo)? Remark. The expression for d(z,w) shows 
that infinitesimal arc length corresponding to the chordal metric is 
given by 

2ds 
da(z) = 1 + jzj2 ' 

where ds = jdzj is the usual Euclidean infinitesimal arc length. 
The infinitesimal arc length da(z) determines another metric, the 
spherical metric a(z, w), on the extended complex plane. See 
Section IX.3. 
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7. Consider the sphere of radius ~ in (X, Y, Z)-space, resting on the 
(X, Y,O)-plane, with south pole at the origin (0,0,0) and north pole 
at (0,0,1). We define a stereographic projection of the sphere onto 
the complex plane as before, so that corresponding points (X, Y, Z) 
and z rv (x, y, 0) lie on the same line through the north pole. Find 
the equations for z = x + iy in terms of X, Y, Z, and the equations 
for X, Y, Z in terms of z. What is the corresponding formula for the 
chordal distance? Note. In this case, the equation of the sphere is 
X2 + y2 + (Z _ ~) 2 = ~. 

4. The Square and Square Root Functions 

Real-valued functions of a real variable can be visualized by graphing them 
in the plane ]R2. The graph of a complex-valued function J(z) of a complex 
variable z requires four (real) dimensions. Thus some techniques other 
than graphing in ]R4 must be developed for visualizing and understanding 
functions of a complex variable. One technique is to graph the modulus of 
the function IJ(z)1 as a surface in three-dimensional space ]R3. Another is 
to graph separately the real and imaginary parts of J(z) in ]R3. 

We describe a different technique for gaining insight into the behavior 
of the function J(z). We create two planes, a z-plane for the domain 
space and a w-plane for the range space. We then view J(z) as a mapping 
from the z-plane to the w-plane, and we analyze how various geometric 
configurations in the z-plane are mapped by w = J(z) to the w-plane. 
Which geometric configurations in the z-plane to consider depends very 
much on the specific function J(z). To illustrate how this method works, 
we consider the simplest nontrivial function, the square function w = z2. 

.. -plane 

w =/( .. ) 
~ 

w-plane 

From the polar decomposition w = z2 = T2e2iO , we have 

(4.1) 

(4.2) 
Iwl = Iz1 2 , 

argw = 2 argz. 

Equation (4.1) shows that the circle Izl = TO in the z-plane is mapped to 
the circle Iwl = T5 in the w-plane. As z = ToeiO moves around the circle 
in the positive direction at constant angular velocity, the image w = T5e2iO 

moves around the image circle, in the same direction but at double the 
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z-plane w-plane 

angular velocity. As z makes one complete loop, the image w makes two 
complete loops around the image circle. 

Equation (4.2) shows that a ray {argz = Bo} issuing from the origin 
in the z-plane is mapped to a ray in the w-plane of twice the angle. As 
z traverses the ray from the origin to 00 at constant speed, the value w 
traverses the image ray from 0 to 00, starting slowly and increasing its 
speed. The positive real axis in the z-plane, which is a ray with angle 0, is 
mapped to the positive real axis in the w-plane by the usual rule x !--+ x2 • 

As z traverses the ray {arg z = 7r / 4}, the image w traverses the positive 
imaginary axis, and as z traverses the positive imaginary axis, the image w 
traverses the negative axis. As the rays in the z-plane sweep out the first 
quadrant, the image rays in the w-plane sweep out the upper half-plane, 
and as the rays in the z-plane sweep out the second quadrant, the image 
rays in the w-plane sweep out the lower half-plane. Eventually, we reach 
the ray along the negative real axis in the z-plane, which is mapped again 
to the positive real axis in the w-plane, and as we continue, the behavior 
is repeated in the lower half of the z-plane. 

Now we turn to the problem of finding an inverse function for w = z2. 

Every point w -:j:. 0 is hit by exactly two values of z, the two square roots 
±y'W. In order to define an inverse function, we must restrict the domain 
in the z-plane so that values w are hit by only one z. There are many ways 
of doing this, and we proceed somewhat arbitrarily as follows. 

Note that as rays sweep out the open right half of the z-plane, with the 
angle of the ray increasing from -7r /2 to 7r /2, the image rays under w = z2 

sweep out the entire w-plane except for the negative axis, with the angle of 
the ray increasing from -7r to 7r. This leads us to draw a slit, or branch 
cut, in the w-plane along the negative axis from -00 to 0, and to define 
the inverse function on the slit plane C\( -00,0]. Every value w in the slit 
plane is the image of exactly two z-values, one in the (open) right half-plane 
{Rez > O}, the other in the left half-plane {Rez < O}. Thus there are two 
possibilities for defining a (continuous) inverse function on the slit plane. 
We refer to each determination of the inverse function as a branch of the 
inverse. One branch h (w) of the inverse function is defined by declaring 
that hew) is the value z such that Rez > 0 and z2 = w. Then hew) maps 
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the slit plane C\(-oo,O] onto the right half-plane {Rez > O}, and it forms 
an inverse for z2 on that half-plane. To specify ft(w) explicitly, express 
w = peil{J where 'P lies in the range -1C' < 'P < 1C', and then 

The function ft (w) is called the principal branch of ..jW. It is expressed 
in terms of the principal branch of the argument function as 

ft(w) = IwI1/ 2ei (Arg w)/2, wE C\(-oo,O]. 

As w approaches a point -r on the negative real axis ( -00,0) from above, 
the values ft (w) approach the value i.jT on the positive imaginary axis. We 
express this by writing ft ( -r + iO) = i.jT. Similarly, as w approaches -r 
from below, the values fl(W) approach the value -i.jT on the negative 
imaginary axis, that is, ft (-r - iO) = -i.jT. The branch cut (-00,0] in 
the w-plane can be regarded as having two edges, and the function ft (w) 
extends continuously to each edge. The top edge, labeled "+" in the figure, 
is mapped to the positive imaginary axis by ft(w), and the bottom edge, 
labeled "-", is mapped to the negative imaginary axis by ft(w). 

+ 

+ 

z = fJ(w) =..;w (principal branch) 

~ 

++ 

We use the other value of ..jW to define a second branch h(w) of the 
inverse function ..jW. For this we use a second copy of the w-plane, as in 
the figure. On this sheet the second branch of ..jW is defined by h(w) = 
- ft (w). This branch maps the slit plane onto the left half-plane {Re z < 
O}. As w approaches a point -r on the negative axis (-00,0) from above, 
the values h(w) approach the value -i.jT on the negative imaginary axis, 
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and as w approaches -r from below, the values h(w) approach the value 
+iy'r on the positive imaginary axis. Again we think of the slit as having 
two edges, though on this sheet the top edge is mapped to the negative 
imaginary axis and the bottom edge is mapped to the positive imaginary 
axis. Further, we have 

h( -r + iO) = iy'T = h( -r - iO), h( -r - iO) = -iy'T = h( -r + iO). 

This leads us to the idea of constructing a surface to represent the inverse 
function by gluing together the edges where the functions h(w) and h(w) 
coincide. We glue the top edge of the branch cut on the sheet corresponding 
to h (w) to the bottom edge of the branch cut on the sheet corresponding 
to h(w), and similarly for the remaining two edges, to obtain a two-sheeted 
surface. Since the values of h(w) and h(w) coincide on the edges we have 
glued together, they determine a function f(w) defined on the two-sheeted 
surface, with values in the z-plane that move continuously with w. 

Since each sheet of the surface is a copy of the slit w-plane, we may think 
of the sheets as "lying over" the w-plane. Each w E C\{O} corresponds 
to exactly two points on the surface. The function f(w) on the surface 
represents the multivalued function y'w in the sense that the values of y'w 
are precisely the values assumed by f(w) at the points of the surface lying 
over w. 

The surface we have constructed is called the Riemann surface of y'w. 
The surface is essentially a sphere with two punctures corresponding to 0 
and 00. One way to see this is to note that the function f(w) maps the 
surface one-to-one onto the z-plane punctured at O. Another way to see this 
is to deform the surface by prying open each sheet at the slit, opening it to 
a hemisphere, and then joining the two hemispheres along the slit edges to 
form a sphere with two punctures corresponding to the endpoints 0 and 00 

of the slits. 

Exercises for 1.4 

1. Sketch each curve in the z-plane, and sketch its image under w = z2. 
( a) I z - 11 = 1 (c) y = 1 (e) y2 = x2 - 1, x > 0 
(b) x = 1 (d) y = x + 1 (f) y = l/x, x # 0 

2. Sketch the image of each curve in the preceding problem under the 
principal branch of w = viz, and also sketch, on the same grid but 
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o 

o 

in a different color, the image of each curve under the other branch 
of JZ. 

3. (a) Give a brief description of the function z t-+ W = z3, considered 
as a mapping from the z-plane to the w-plane. (Describe what 
happens to w as z traverses a ray emanating from the origin, and 
as z traverses a circle centered at the origin.) (b) Make branch cuts 
and define explicitly three branches of the inverse mapping. (c) 
Describe the construction of the Riemann surface of zl/3. 

4. Describe how to construct the Riemann surfaces for the following 
functions: (a) w = Zl/4, (b) w = v'z - i, (c) w = (z_1)2/5. Remark. 
To describe the Riemann surface of a multivalued function, begin 
with one sheet for each branch of the function, make branch cuts 
so that the branches are defined continuously on each sheet, and 
identify each edge of a cut on one sheet to another appropriate edge 
so that the function values match up continuously. 

5. The Exponential Function 

We extend the definition of the exponential function to all complex num­
bers z by defining 

z = x + iy E C. 

Since e iy = cos y + i sin y, this is equivalent to 

z = x+iy. 

This identity is simply the polar representation of eZ , 

(5.1) 

(5.2) argeZ = y. 

If z is real (y = 0), the definition of eZ agrees with the usual exponential 
function eX. If z is imaginary (x = 0), the definition agrees with the 
definition of ei9 given in Section 2. 
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A fundamental property of the exponential function is that it is periodic. 
The complex number,x is a period of the function J(z) if J(z +,x) = J(z) 
for all z for which J(z) and J(z + ,x) are defined. The function J(z) is 
periodic if it has a nonzero period. Since sin x and cos y are periodic 
functions with period 211", the function eZ is periodic with period 211"i: 

z E C. 

In fact, 211"ik is a period of eZ for any integer k. 
Another fundamental property of the exponential function is the addi­

tion formula 

(5.3) Z,WEC. 

To check this, let z = x + iy and W = U + iv. Then 

where we have used the addition formulae for eX and ei9 . 

From the addition formula (5.3) we have eZe-Z = eO = 1. Consequently, 
the inverse of eZ is e-z , 

ZEC. 

To understand the exponential function better, we view w = eZ as a 
mapping from the z-plane to the w-plane. If we restrict the exponential 
function to the real line JR, we obtain the usual exponential function x 1-+ 

eX, -00 < x < 00, which maps the real line JR to the positive real axis 
(0,00). The equation (5.2) shows that an arbitrary horizontal line x + iyo, 
-00 < x < 00, is mapped to the curve eXeiyO , -00 < x < 00, which is a 
ray issuing from the origin at angle Yo. If we move the horizontal line up, 
the angle subtended by the ray increases, and the image ray is rotated in 
the positive (counterclockwise) direction. AI; we move the horizontal line 
upwards from the x-axis at Yo = 0 to height Yo = 11"/2, the image rays 
sweep out the first quadrant in the w-plane. The horizontal line at height 
Yo = 11"/2 is mapped to the positive imaginary axis, the horizontal line of 
height Yo = 11" is mapped to the negative real axis, and when we reach the 
horizontal line of height Yo = 211", the image rays have swept out the full 
w-plane and returned to the positive real axis. The picture then repeats 
itself periodically. Each point in the w-plane, except w = 0, is hit infinitely 
often, by a sequence of z-values spaced at equal intervals of length 211" along 
a vertical line. 

While the images of horizontal lines are rays issuing from the origin, the 
images of vertical lines are circles centered at the origin. The equation (5.1) 
shows that the image of the vertical line Xo + iy, -00 < y < 00, is a circle 
in the w-plane of radius eXO • AI; z traverses the vertical line, the value w 
wraps infinitely often around the circle, completing one turn each time 
y = 1m z increases by 211". 
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7r. 
21 

o 

Exercises for 1.5 

horizontal lines ~ rays 

vertical lines _ circles 

1. Calculate and plot eZ for the following points z: 
(a) 0 (c) 7r(i -1)/3 (e) 7ri/m, m = 1,2,3, ... 

21 

(b) 7ri + 1 (d) 377ri (f) m(i -1), m = 1,2,3, ... 

2. Sketch each of the following figures and its image under the expo­
nential map w = eZ • Indicate the images of horizontal and vertical 
lines in your sketch. 
(a) the vertical strip 0 < Rez < 1, 
(b) the horizontal strip 57r /3 < 1m z < 87r /3, 
(c) the rectangle 0 < x < 1, 0 < y < rr/4, 
(d) the disk JzJ ~ 7r/2, 
(e) the disk JzJ ~ 7r, 
(f) the disk JzJ ~ 37r /2. 

3. Show that eZ = eZ • 

4. Show that the only periods of eZ are the integral multiples of 2rri, 
that is, if eZ+'x = eZ for all z, then>. is an integer times 27ri. 

6. The Logarithm Function 

For z -lOwe define log z to be the multivalued function 

logz 10gJzJ+iargz 

= log JzJ + i Arg z + 27rim, m = O,±1,±2, .... 

The values of log z are precisely the complex numbers w such that eW = z. 
To see this, we plug in and compute. If w = log JzJ + i Arg z + 2rrim, then 
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where we have used the identities e10g r = r for r > 0 and e211"im = l. 
On the other hand, suppose that w = u + iv is an arbitrary complex 
number such that eW = z. Then the polar representation of z is z = reiv , 

where r = Izl = eU • Thus u = loglzl, and v is a value of argz, so that 
v = Arg z + 27rm for some integer m. 

Recall that the principal value Arg z of arg z is the value () satisfying 
-7r < () ~ 7r. We define the principal value of log z to be 

(6.1) Logz = 10glzl+iArgz, 

Thus Log z is a single-valued inverse for eW , with values in the horizontal 
strip -7r < 1m w ~ 7r. Once we know the principal value of log z, we obtain 
all values by 

log z = Log z + 27rim, m = 0,±1,±2, .... 

Example. The values of 10g(1 + i) are given by 

10g(1+i) = 10gI1+il+iarg(1+i) 

= log J2 + i7r / 4 + 27rim, 

The principal value is 

m = 0,±1,±2, .... 

Log(l + i) = log J2 + i7r / 4. 

The values form a vertical two-tailed sequence of equally spaced points. 

t 
411"i • 
3m 

2m • 

Log(l + I) = log ,fi + i1l"/4 
------~~------

--7ri 

-21ri • 
-31ri 

-4m • 

Now we regard w = Log z as a map from the slit z-plane C\( -00, OJ 
to the w-plane. Since the exponential function maps horizontal lines to 
rays issuing from the origin, its inverse, the logarithm function, maps rays 
issuing from the origin to horizontal lines. In fact, formula (6.1) shows that 
the ray {Arg z = ()o} is mapped onto the horizontal line {1m w = ()o}. As z 
traverses the ray from 0 to 00, the image w traverses the entire horizontal 
line from left to right. As ()o increases between -7r and 7r, the rays sweep 
out the slit plane C\( -00, OJ, and the image lines fill out a horizontal strip 
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{-1r < Imw < 1r} in the w-plane. Similarly, the formula (6.1) shows 
that the image of a punctured circle {\z\ = r, -1r < arg z < 1r} is the 
vertical interval {Re w = log \ z \, -1r < 1m z < 1r}, where the vertical line 
{Rew = log \z\} meets the horizontal strip. 

w = log z + + + + + + + + + + + + + + + + 
..-------.... i7r 

o 

-i7r 

As with the inverse .JZ of z2, we can represent the multivalued function 
log z as a single-valued function on a Riemann surface spread over the z­
plane, with one sheet for each branch of the function. The construction 
is as follows. This time we have infinitely many branches f m (z) of the 
logarithm function, defined for z =f. 0 and given explicitly by 

fm(z) = Logz+21rim, -00 < m < 00. 

For each branch, we take a copy of the complex plane and slit it along 
the negative real axis as before, to obtain a copy Sm of the slit plane 
C\( -00,0]. We regard the function fm(z) as defined on the mth sheet Sm. 
Since the values of f m (z) at the top edge of the slit on Sm match the values 
of f TTl+! (z) at the bottom edge of the slit on STTl+ 1, we glue together these 
two edges. We do this for each m, and we obtain a surface resembling a 
spiral stairway leading infinitely far both up and down. The composite 
function f(z) defined to be fm(z) on the mth sheet is then continuously 
defined on the surface. It represents the total function log z, in the sense 
that the values of log z are precisely the values of f(z) at the points of the 
surface that correspond to z. 
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Exercises for 1.6 

1. Find and plot log z for the following complex numbers z. Specify 
the principal value. (a) 2, (b) i, (c) 1 + i, (d) (1 + iv3)/2. 

2. Sketch the image under the map w = Log z of each of the following 
figures. 
(a) the right half-plane Rez > 0, 
(b) the half-disk Izl < 1, Re z > 0, 
(c) the unit circle Izl = 1, 
(d) the slit annulus vie < Izl < e2 , z rt- (_e2 , -vie), 
(e) the horizontal line y = e, 
(f) the vertical line x = e. 

3. Define explicitly a continuous branch of log z in the complex plane 
slit along the negative imaginary axis, C\[O, -ioo). 

4. How would you make a branch cut to define a single-valued branch 
of the function log(z + i-I)? How about log(z - zo)? 

7. Power Functions and Phase Factors 

Let 0: be an arbitrary complex number. We define the power function ZO 

to be the multivalued function 

z #0. 

Thus the values of ZO are given by 

m = 0,±1,±2, .... 

The various values of ZO are obtained from the principal value eO Log z 

by multiplying by the integral powers (e21rio )m of e 271"io. If 0: is itself an 
integer, then e 271"io = 1, and the function ZO is single-valued, the usual 
power function. If 0: = lin for some integer n, then the integral powers 
e271"im/n of e271"i/n are exactly the nth roots of unity, and the values of zl/n 

are the n nth roots of z discussed earlier (Section 2). 

Example. The values of ii are given by 

e ilogi = e-Argi-271"m = e-7I"/2 e -271"m m ° ±1 ±2 , =" ''' .. 

The values form a two-tailed sequence of positive real numbers, accumu­
lating at ° and at +00. Similarly, the values of i-i are given by 
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Danger! If we multiply the values of ii by those of i-i, we obtain infinitely 
many values e2?rn, -00 < n < 00. Thus 

(ii)(i-i):f i O =l, 

and the usual algebraic rules do not apply to power functions when they 
are multivalued. 

If a is not an integer, we cannot define zQ on the entire complex plane 
in such a way that the values move continuously with z. To define the 
function continuously, we must again make a branch cut. We could make 
the cut along the negative real axis, but this time let us make the cut along 
the positive real axis, from 0 to +00. We define a continuous branch of zQ 
on the slit plane C\ [0, 00) explicitly by 

for z = rei8 , 0 < () < 271'. 

At the top edge of the slit, corresponding to () = 0, we have the usual power 
function rQ = e Q Log r. At the bottom edge of the slit, corresponding to 
() = 271', we have the function rQ e 2?riQ. If we fix r and let () increase from 0 
to 271', Z = rei8 starts at the top edge of the slit and proceeds around a 
circle, ending at the bottom edge of the slit. As z describes this circle, the 
values w = rQe i8Q move continuously, starting from rQ at the top edge of 
the slit and ending at rQ e 2?riQ at the bottom edge. Thus the values of this 
branch of zQ on the bottom edge are e 2?riQ times the values at the top edge. 
The multiplier e 2?riQ is called the phase factor of zQ at z = O. 

If we continue any other choice w = rQ e iQ(8+2?rm) of zQ around the same 
circle, the values of w move continuously from rQe 2?riQm at the top edge of 
the slit to rQ e iQ(2?r+2?rm) = rQe2?riQme2?riQ at the bottom edge. Again the 
final w-value is the phase factor e 2?riQ times the initial w-value. 

The same analysis shows that the function (z - zo)Q has a phase factor 
of e 2?riQ at z = zo, in the sense that if any branch of w = (z - zo)Q is 
continued around a full circle centered at Zo in the positive direction, the 
final w-value is e 2?riQ times the initial w-value. This can be seen by making 
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a change of variable ( = z - zoo Further, this result does not change if 
we multiply (z - zo)O: by any (single-valued) function. We state the result 
formally for emphasis. 

Phase Change Lemma. Let g(z) be a (single-valued) function that is 
defined and continuous near zoo For any continuously varying branch of 
(z- ZO)O: the function J(z) = (z- zo)O:g(z) is multiplied by the phase factor 
e21rio: when z traverses a complete circle about Zo in the positive direction. 

Example. If a is an integer, the phase factor of zO: at 0 is e21rio: = 1, in 
accord with the fact that zO: is single-valued. 

Example. The phase factor of ';z - Zo at Zo is e1ri = -1. As z traverses a 
circle about Zo, the values of J(z) = v'z - Zo return to - J(z). The phase 
factor of 1/ v' Zo - z = i /...;z=zo at Zo is also -1. 

Example. The function v'z(l- z) has two branch points, at 0 and at 1. 
At z = 0, each branch of .yr=z is single-valued, so the phase factor of 
each branch of v' z(1 - z) at z = 0 is the same as that of .,fi, which is 
-1. Similarly, the phase factor of v'z(l- z) at z = 1 is the same as 
that of .yr=z, which is -1. Now suppose we draw a branch cut from 0 
to 1 and consider the branch J(z) of v'z(l- z) that is positive on the top 
edge of the slit. As z traverses a small circle around 0, the values of J(z) 
return to - J( z) on the bottom edge of the slit, corresponding to the phase 
factor -1 at z = O. As z traverses the bottom edge of the slit and returns 
to the top edge around a small circle at z = 1, the values of - J(z) are 
again multiplied by the phase factor -1. Thus the values of J(z) return 
to the original positive value on the top edge of the slit when z traverses 
a dogbone path encircling both branch points. It follows that the branch 
J(z) is a continuous single-valued function in the slit plane C\[O, 1]. Now 
we may proceed, in analogy with .,fi and log z, to define a Riemann surface 
for the function v'z(1 - z) that captures both branches of the function. We 
require two sheets, since there are two choices of branches for the function 
v'z(l- z). On each sheet we make the same cut, to form two copies of 
C\[O,I]. On one sheet we define F(z) to be the branch J(z) of v'z(l- z) 
specified above, and on the other sheet we define F(z) to be the other 
branch - J (z) of v' z(1 - z). The sheets are then joined by identifying edges 
of the slits in such a way that F(z) extends continuously to the surface. 
In this case, the top edge of the slit [0,1] on one sheet is identified to the 
bottom edge of the slit on the other sheet, and the remaining two edges 
are identified, to form the two-sheeted Riemann surface of v'z(l- z). 

In constructing the Riemann surface of a multivalued function, the num­
ber of sheets always coincides with the number of branches of the function. 
However, the branch cuts can be made in many ways, as long as there are 
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~ ++~r=l-+ __ ~~-l -~>=-----
+ +++++ 

surface with closed path 

enough branch cuts so that each branch of the function can be defined con­
tinuously in the slit plane. For instance, the branch cuts for the function 
f(x) = JZ(l - z) could as well be made from-oo to 0 along the negative 
real axis and from + 1 to +00 along the positive real axis. The branch cuts 
could also be made along more complicated paths from 0 to 1. 

Example. Consider J z - 1/ z . We rewrite this as JZ=l JZ+T / Vi. The 
function has three finite branch points, at 0 and ±1. We must also con­
sider 00 as a branch point, since there is a phase change corresponding to 
a phase factor -1 as z traverses a very large circle centered at o. Each 
branch point has phase factor -1, so any branch of the function returns 
to its original values when z traverse a path encircling two of the branch 
points. Thus it suffices to make two cuts, say (-00, -1] and [0,1] . Each 
branch of the function is continuous on C\(( -00, -1] U [0,1]). Again top 
edges of slits on one sheet are identified to bottom edges of the others. 
The resulting surface is a torus (doughnut, or inner tube), with punctures 
corresponding to the branch points. What would happen if we were to 
make initially an additional branch cut along [-1 , 0]' in addition to the 
two branch cuts above? The values of each branch at the top edge of 
the new cut would agree with the values of the same branch on the bot­
tom edge. Consequently, we would identify the top and bottom edges of 
the slit [-1 , 0] on the same sheet, thereby effectively erasing the slits and 
arriving at the same doughnut surface. 

00000 - 1 0 1 

~+++ 

Exercises for I. 7 

1. Find all values and plot: (a) (l+i)i, (b) (_i)l+i , (c) 2- 1/ 2 , (d) (1+ 
iV3)(I-i) . 

2. Compute and plot log [(1 + i)2i]. 



28 I The Complex Plane and Elementary Functions 

3. Sketch the image of the sector {O < arg z < 7r 16} under the map 
w = za for (a) a = ~, (b) a = i, (c) a = i + 2. Use only the 
principal branch of za. 

4. Show that (zw)a = zawa, where on the right we take all possible 
products. 

5. Find iii. Show that it does not coincide with ii.i = i-I. 

6. Determine the phase factors of the function za (1- z)b at the branch 
points z = 0 and z = 1. What conditions on a and b guarantee that 
za(1 - z)b can be defined as a (continuous) single-valued function 
on C\[O, I]? 

7. Let Xl < X2 < ... < Xn be n consecutive points on the real axis. 
Describe the Riemann surface of y'(z - Xl)··· (z - xn). Show that 
for n = 1 and n = 2 the surface is topologically a sphere with certain 
punctures corresponding to the branch points and 00. What is it 
when n = 3 or n = 4? Can you say anything for general n? (Any 
compact Riemann surface is topologically a sphere with handles. 
Thus a torus is topologically a sphere with one handle. For a given 
n, how many handles are there, and where do they come from?) 

8. Show that y'z2 -liz can be defined as a (single-valued) continu­
ous function outside the unit disk, that is, for Izl > 1. Draw branch 
cuts so that the function can be defined continuously off the branch 
cuts. Describe the Riemann surface of the function. 

9. Consider the branch of the function y'z(z3 - 1)(z + 1)3 that is pos­
itive at z = 2. Draw branch cuts so that this branch of the function 
can be defined continuously off the branch cuts. Describe the Rie­
mann surface of the function. To what value at z = 2 does this 
branch return if it is continued continuously once counterclockwise 
around the circle {izi = 2}? 

10. Consider the branch of the function y'z(z3 -1)(z + 1)3(z -1) that 
is positive at z = 2. Draw branch cuts so that this branch of the 
function can be defined continuously off the branch cuts. Describe 
the Riemann surface of the function. To what value at z = 2 does 
this branch return if it is continued continuously once counterclock­
wise around the circle {Izl = 2}? 

11. Find the branch points of .vz3 -1 and describe the Riemann 
surface of the function. 
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8. Trigonometric and Hyperbolic Functions 

If we solve the equations 

ei9 = cosO + isinO, 

e-i9 = cosO - isinO 

for cosO and sinO, we obtain 

cosO = 

2i 

29 

This motivates us to extend the definition of cos z and sin z to complex 
numbers z by 

eiz + e-iz 
z E C, cosz 

2 

sinz 
eiz _ e-iz 

z EC. 
2i 

This definition agrees with the usual definition when z is real. Evidently, 
cos z is an even function, 

cos(-z) = cosz, 

while sin z is an odd function, 

sin(-z) = -sinz, 

ZEC, 

zEC. 

As functions of a complex variable, cos z and sin z are periodic, with pe­
riod 271", 

cos(z + 271") cosz, 

sin(z + 271") = sinz, 

ZEC, 

zEC. 

After some algebraic manipulation, one checks (Exercise 1) that the addi­
tion formulae for cos z and sin z remain valid, 

cos(z+w) = coszcosw-sinzsinw, 

sin(z+w) sinzcosw+coszsinw, 

z,WEC, 

z,WEC. 

If we substitute w = -z in the addition formula for cosine, we obtain the 
familiar identity 

cos2 Z + sin2 z = 1, zE C. 

We shall see, in fact, that any reasonable identity that holds for analytic 
functions of a real variable, such as cosx and sinx, also holds when the 
functions are extended to be functions of a complex variable. This will be a 
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special case of the principle of permanence of functional equations, 
proved in Chapter V. 

The hyperbolic functions cosh x = (ex +e-X)/2 and sinh x = (eX -e-X)/2 
are also extended to the complex plane in the obvious way, by 

coshz 
eZ +e-z 

ZEC, = 
2 

sinhz 
eZ - e-z 

ZEC. = 
2 

Both cosh z and sinh z are periodic, with period 21ri, 

cosh(z + 21ri) = cosh z, 

sinh(z + 21ri) = sinhz, 

z EC, 

z E C. 

Evidently, cosh z is an even function and sinh z is an odd function. There 
are addition formulae for cosh z and sinh z, derived easily from the addition 
formulae for cosz and sinz (Exercise 1). 

When viewed as functions of a complex variable, the trigonometric and 
the hyperbolic functions exhibit a close relationship. They are obtained 
from each other by rotating the domain space by 1r /2, 

cosh(iz) 

sinh(iz) 

cosz, 

i sin z, 

cos(iz) 

sin(iz) = 

coshz, 

isinhz. 

If we use these equations and the addition formula 

sin(x + iy) = sin x cos(iy) + cos x sin(iy) , 

we obtain the Cartesian representation for sin z, 

sinz = sinxcoshy+ icosxsinhy, z =x+iy E C. 

Thus 

I sinzl2 = sin2 xcosh2 Y + cos2 xsinh2 y. 

Using cos2 x + sin2 X = 1 and cosh2 y = 1 + sinh2 y, we obtain 

I sin zl2 = sin2 x + sinh2 y. 

From this formula it is clear where the zeros of sin z are located; sin z = ° 
only when sin x = ° and sinh y = 0, and this occurs only on the real axis 
y = 0, at the usual zeros 0, ±1r, ±21r, ... of sinx. Similarly, the only zeros 
of cosz are the usual zeros of cos x on the real axis (Exercise 2). 

Other trigonometric and hyperbolic functions are defined by the usual 
formulae, such as 

tanz = 
sinz , 
cosz 

sinhz 
tanhz = 

coshz' 
z EC. 

Thus tanz and tanhz are odd functions, and tanh(iz) = itanz. 
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The inverse trigonometric functions are multivalued functions, which can 
be expressed in terms of the logarithm function. Suppose w = sin- 1 z, that 
is, 

sinw 
2i 

=z. 

Then e2iw - 2izeiw - 1 = O. This is a quadratic equation in eiw , which can 
be solved by the usual quadratic formula. The solutions are given by 

eiw = iz±~. 

Taking logarithms we obtain 

sin-1 z = -ilog (iZ ±~). 
This identity is to be understood as a set identity, in the sense that w sat­
isfies sin w = z if and only if w is one of the values of -i log ( iz ± v'f=Z2). 
To obtain a genuine function, we must restrict the domain and specify the 
branch. One way to do this is to draw two branch cuts, from -00 to -1 and 
from + 1 to +00 along the real axis, and to specify the branch of JI=Z2 
that is positive on the interval (-1,1). With this branch of J1- z2, we 
obtain a continuous branch -iLog (iz + v'f=Z2) of sin- 1 z. 

Exercises for 1.8 

1. Establish the following addition formulae: 
(a) cos(z + w) = cosz cosw - sin z sin w, 
(b) sin(z+w) =sinzcosw+coszsinw, 
(c) cosh(z + w) = cosh z cosh w + sinh z sinh w, 
(d) sinh(z + w) = sinh z cosh w + cosh z sinh w, 

2. Show that I cos zl2 = cos2 X + sinh2 y, where z = x + iy. Find all 
zeros and periods of cos z. 

3. Find all zeros and periods of cosh z and sinh z. 

4. Show that 

1 (1 +iZ) 
tan- 1 z = 2i log 1- iz ' 

where both sides of the identity are to be interpreted as subsets of 
the complex plane. In other words, show that tan w = z if and only 
if 2iw is one of the values of the logarithm featured on the right. 

5. Let S denote the two slits along the imaginary axis in the complex 
plane, one running from i to +ioo, the other from -i to -ioo. Show 
that (1 + iz)/(l - iz) lies on the negative real axis (-00,0] if and 
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only if z E S. Show that the principal branch 

1 (1 + iZ) 
Tan-1z = 2i Log 1- iz 

maps the slit plane C\S one-to-one onto the vertical strip {I Re wi < 
11'/2}. 

6. Describe the Riemann surface for tan- 1 z. 

7. Set w = cos z and ( = eiz . Show that ( = w ± .Jw2 - 1. Show that 

cos-1 w = -ilog [w ± ";w2 -1] , 

where both sides of the identity are to be interpreted as subsets of 
the complex plane. 

8. Show that the vertical strip I Re( w) I < 11'/2 is mapped by the func­
tion z(w) = sinw one-to-one onto the complex z-plane with two 
slits (-00, -1 J and [+1, +(0) on the real axis. Show that the in­
verse function is the branch of sin -1 z = -i Log (iz + .J 1 - z2) 
obtained by taking the principal value of the square root. Hint. 
First show that the function 1 - Z2 on the slit plane omits the nega­
tive real axis, so that the principal value of the square root is defined 
and continuous on the slit plane, with argument in the open interval 
between -11'/2 and 11'/2. 



II 

Analytic Functions 

In this chapter we take up the complex differential calculus. After review­
ing some basic analysis in Section 1, we introduce complex derivatives and 
analytic functions in Section 2 and we show that the rules for complex differ­
entiation are the same as the usual rules for differentiation. In Section 3 we 
characterize analytic functions in terms of the Cauchy-Riemann equations. 
In Sections 4 and 5 we give several applications of the Cauchy-Riemann 
equations, to inverses of analytic functions and to harmonic functions. In 
Section 6 we discuss conformality, which is a direct consequence of complex 
differentiability. We close in Section 7 with a discussion of fractional linear 
transformations, which form an important class of analytic functions. 

1. Review of Basic Analysis 

We begin by reviewing the background material in analysis that will (even­
tually) be called upon, and we say something about the language of formal 
mathematics. For the most part, we will not phrase our arguments com­
pletely formally, though any bilingual person will be able to translate easily 
to the language of formal mathematics in such a way that our development 
becomes completely rigorous. 

Since the complex derivative is defined as a limit, we require some back­
ground material on limits and continuity. To be able to define and work 
with analytic functions, we also require some basic topological concepts, 
including open and closed sets, and domains. The confident reader may 
pass directly to the definitions of complex derivative and analytic function 
in the next section, and refer back to the material in this section only when 
needed. 

We begin with the notion of a convergent sequence. For this we have 
two definitions. 

Informal Definition. A sequence {sn} converges to s if the sequence 
eventually lies in any disk centered at s. 

33 
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The language of formal mathematics serves to quantify this statement 
and make it precise. The "small disk" is traditionally given radius £ > O. 
That "sn lies in the disk" means that ISn - sl < £. That an event "even­
tually" occurs is translated to the statement that there is N 2:: 1 such 
that the event occurs for n 2:: N. Thus the translation of the definition of 
convergent sequence to the language of formal mathematics is as follows. 

Is" -sl < e for n~4 

Formal Definition. A sequence of complex numbers { Sn} converges to S 
if for any £ > 0, there is an integer N 2:: 1 such that ISn - sl < £ for all 
n 2:: N. 

If {sn} converges to s, we write Sn -- s, or limsn = s. Some examples 
of convergent sequences that appear frequently are 

(1.1) lim ~ 0, 0 < p < 00, 
n-+oo nP 

(1.2) lim Izln = 0, Izl < 1, n-+oo 

(1.3) lim vn = 1. n-+oo 

To prove (1.1) formally, we would for a given £ > 0 take N to be an integer 
satisfying N > I/£l/p. Then for n 2:: N we have nP 2:: NP > 1/£, and 
l/nP < c. To prove (1.2) formally, we would take N to be an integer 
satisfying N > (log£)/(log Izl). To prove (1.3) formally, we resort to a 
trick. Let tn = y'n - 1. We estimate tn from the binomial expansion 

n(n - I} n(n - I} 2 
n = (1 + t }n = 1 + nt + t2 + ... + tn > t n n 2 n n - 2 n' 

This yields t~ < 2/(n -I). Thus Itnl = I y'n -11 < £ whenever 2/(n -I} < 
£2, that is, for n > 1 + 2/£2. For the formal definition we can take N to be 
any integer satisfying N > 1 + 2/£2. 

We give some definitions and state some theorems, without proofs, that 
we will be using. 

A sequence of complex numbers {Sn} is said to be bounded if there is 
some number R > 0 such that ISnl :::; R for all n. In other words, the 
sequence is bounded if it is contained in some disk. 

Theorem. A convergent sequence is bounded. Further, if {sn} and {tn} 
are sequences of complex numbers such that Sn -- S and tn -- t, then 
(a) Sn + tn -- S + t, 
(b) sntn -- st, 
(c) snltn -- sit, provided that t =1= o. 
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Thus the limit of a sum is the sum of the limits, the limit of a product 
is the product of the limits, and the limit of a quotient is the quotient of 
the limits, provided that the denominator is not O. 

Example. We can use these rules to evaluate the limit of a rational ex­
pression of the form 

lim 3n2 + 2n - 1 = 3 
n-+oo 5n2 - 4n + 8 5" . 

As a preliminary trick, we divide numerator and denominator by the lead­
ing power, and rewrite the expression as 

3 + (2/n) - l/n2 

5 - (4/n) + (8/n2 ) • 

Since l/n -+ 0 and l/n2 -+ 0, the sum and product statements show that 
the numerator converges to 3 and the denominator converges to 5. By the 
quotient statement, the quotient then converges to ~. 

The most useful criteria for convergence of sequences of real and complex 
numbers are gathered in the next several theorems. The first criterion is 
sometimes called the in-between theorem. 

Theorem. Ifrn ~ Sn ~ tn, and ifrn -+ Land tn -+ L, then Sn -+ L. 

A sequence of real numbers {sn} is said to be monotone increasing 
if sn+l ~ Sn for all n, monotone decreasing if Sn+l ~ Sn for all n, and 
monotone if it is either monotone increasing or decreasing. The following 
criterion is a version of the completeness axiom for the real numbers . 

• 1 .. 11 

bounded monotone increasing sequence 

Theorem. A bounded monotone sequence of real numbers converges. 

A sequence {Sn} of real numbers can behave rather wildly. It is still 
possible to assign an ''upper limit" to {sn}, denoted by lim sup Sn, which is 
the largest possible limit of a subsequence of {sn}. Our working definition 
is that lim sup Sn is the unique extended real number S, -00 ~ S ~ +00, 
such that if t > S, then Sn ~ t for only finitely many indices n, while if 
t < S, then Sn > t for infinitely many indices n. It is easy to see that 
any such S is unique. The existence of such an S can be deduced from the 
preceding theorem. In fact, the existence is equivalent to the completeness 
axiom of the real numbers. 



36 II Analytic Functions 

A "lower limit" of the sequence {sn}, denoted by liminf Sn, is defined 
similarly. It satisfies 

liminf Sn = -limsup( -sn). 

The sequence {Sn} converges if and only if its lim sup and lim inf are finite 
and equal. 

Example. The sequence {(-l)n}~=o = {+1,-1,+1,-1, ... } does not 
converge. Its upper and lower limits are 

limsup (_l)n = +1, liminf (_1)n = -l. 
n ..... oo n ..... oo 

For complex sequences, the following simple criterion is used very often. 

Theorem. A sequence {Sk} of complex numbers converges if and only if 
the corresponding sequences of real and imaginary parts of the Sk'S con­
verge. 

We define a sequence of complex numbers {Sn} to be a Cauchy se­
quence if the differences Sn - Sm tend to 0 as n and m tend to 00. In 
the language of formal mathematics, this means that for any c > 0, there 
exists N ~ 1 such that 1 Sn - Sm 1 < c if m, n ~ N. The following theorem 
is an equivalent form of the completeness axiom. It is important because it 
provides a means of determining whether a sequence is convergent without 
producing explicitly the limit of the sequence. 

Theorem. A sequence of complex numbers converges if and only if it is a 
Cauchy sequence. 

We say that a complex-valued function J(z) has limit L as z tends 
to Zo if the values J(z) are near L whenever z is near Zo, z -# zoo The 
formal definition is that J (z) has limit L as z tends to Zo if for any c > 0, 
there is 0 > 0 such that IJ(z) - LI < c whenever z in the domain of J(z) 
satisfies 0 < Iz - zol < o. In this case we write 

lim J(z) = L, 
Z-+Zo 

or J(z) --+ L as z --+ ZOo It is implicitly understood that there are points 
in the domain of J(z) that are arbitrarily close to Zo and different from zoo 
The definition can be rephrased in terms of convergent sequences. 

Lemma. The complex-valued function J(z) has limit Las z --+ Zo if and 
only if J(zn) --+ L for any sequence {zn} in the domain of J(z) such that 
Zn -# Zo and Zn --+ zoo 

From the theorem on limits, we obtain easily the following. 
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Theorem. If a function has a limit at zo, then the function is bounded 
near zoo Further, if J(z) --; Land g(z) --; M as z --; Zo, then as z --; Zo we 
have 
(a) J(z) + g(z) --; L + M, 
(b) J(z)g(z) --; LM, 
(c) J(z)lg(z) --; LIM, provided that M =I 0. 

We say that J(z) is continuous at Zo if J(z) --; J(zo) as z --; zoo 
A continuous function is a function that is continuous at each point 
of its domain. The preceding theorem shows that sums and products of 
continuous functions are continuous, and so are quotients, provided that the 
denominator is not zero. Further, the composition of continuous functions 
is continuous. 

Example. Any constant function is continuous. The coordinate function 
J(z) = z is continuous. Thus any polynomial function p(z) = anzn + 
... + alz + ao is continuous. Any rational function p(z)/q(z) is continuous 
wherever the denominator q(z) is not zero. 

A useful strategy for showing that J(z) is continuous at Zo is to obtain 
an estimate of the form IJ(z) - J(zo)1 ::; Clz - zol for z near zoo This 
guarantees that IJ(z) - J(zo)1 < E whenever Iz - zol < EIC, so that we can 
take 8 = EIC in the formal definition of limit. 

Example. The estimates 

I Re(z - zo)1 < Iz - zol, 

I Im(z - zo)1 < Iz - zol, 

Ilzl- Izoll < Iz - zol, 

show respectively that the functions Re(z), Im(z), and Izl are continuous. 

A subset U of the complex plane is open if whenever z E U, there is a 
disk centered at z that is contained in U. 

open set: no boundary points clo.ed et : includes boundary 

Any open disk {I z - Zo I < p} is an open set. The closed disk {I z - Zo I ::; p} 
is not an open set, since any open disk centered at a point on the boundary 
circle {Iz - zol = p} extends outside the closed disk. 

In general, any set described by strict inequalities of continuous functions 
is open. For instance, the open upper half-plane is described by the strict 
inequality Im(z) > 0, so that it is an open set. Other examples of open sets 
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described by strict inequalities are the open sector {Oo < arg z < 01}, the 
open horizontal strip {-I < Imz < +1}, the open annulus {r < Izl < s}, 
and the punctured disk {O < Izl < r}. 

A subset D of the complex plane is a domain if D is open and if any two 
points of D can be connected by a broken line segment in D. Open half­
planes, open disks, open sectors, open annuli, and open punctured disks 
are all domains. An example of an open set that is not a domain is the 
union of the open upper and lower half-planes, U = C\R It is impossible 
to connect a point in the upper half-plane to a point in the lower half-plane 
by a broken line segment that does not cross the real line. 

domain not a domain 

The most important property of domains for us is the following property, 
which actually characterizes domains (Exercise 18). 

Theorem. If h(x, y) is a continuously differentiable function on a dcr 
main D such that Vh = 0 on D, then h is constant. 

This theorem is easy to justify. Since V h = 0, the directional derivative 
of h(x, y) in any direction is zero. Consequently, h(x, y) is constant on any 
straight line segment contained in D, hence on any broken line segment. 
Since any two points of D can be joined by a broken line segment in D, 
h(x, y) is constant on D. 

A set is convex if whenever two points belong to the set, then the 
straight line segment joining the two points is contained in the set. An 
open or closed disk is convex, but a punctured disk is not convex. 

C~ 
convex not convex 

A set is star-shaped with respect to Zo if whenever a point belongs to 
the set, then the straight line segment joining zo to the point is contained 
in the set. In other words, a set is star-shaped with respect to Zo if every 
point of the set is visible from zoo Any convex set is star-shaped with 
respect to each of its points. The slit plane C\( -00,0] is star-shaped with 
respect to any point on the positive real axis. However, it is not convex, 
and it is not star-shaped with respect to any point not on the real axis. 
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@ 
star-shaped with respect to Zo but not z, not star-shaped 

A star-shaped domain is a domain that is star-shaped with respect to 
one of its points. Thus C\( -00, OJ is a star-shaped domain. Any convex 
domain is a star-shaped domain. An open annulus is not star-shaped. 

A subset E of the complex plane is closed if it contains the limit of every 
convergent sequence in E. The closed disk {Iz - zol ::; r} is a closed set, 
since if ISn - zol ::; r and Sn -+ S, then Is - zol ::; r. 

Sets of the form {J(z) ~ c} or {f(z) ::; c}, where J(z) is a continuous 
real-valued function, are closed. Thus for instance the closed upper half­
plane, consisting of points z such that Re(z) ~ 0, is a closed set. 

The boundary of a set E consists of points z such that every disk 
centered at z contains both points in E and points not in E. Thus a set is 
closed if it contains its boundary, and a set is open if it does not include 
any of its boundary points. For example, the boundary of the closed disk 
{Iz - zol ::; r} is its boundary circle {Iz - zol = r}, and the boundary of 
the open disk {Iz - zol < r} is also the boundary circle. 

A subset of the complex plane that is closed and bounded is said to 
be compact. A closed disk {Iz - zol ::; r} is compact, as is a closed 
interval [a, bJ on the real line. We will use the following important property 
of compact sets in our discussion of the maximum principle for harmonic 
and analytic functions. 

Theorem. A continuous real-valued function on a compact set attains its 
maximum. 

Exercises for II.l 

1. Establish the following: 

(a) lim _n_ = 1 
n-oo n+ 1 

(b) lim --;- = 0 
n-oo n + 1 

() 1· 2nP + 5n + 1 _ 2 
c 1m - , 

n--+oo nP + 3n + 1 
p>l 

zn 
(d)-lim -,=0, ZEC. 

n--+oo n. 

2. For which values of z is the sequence {zn}~=1 bounded? For which 
values of z does the sequence converge to O? 

3. Show that {nnzn} converges only for z = O. 

4. Show that J~oo Nk(:~ k)! = 1, k ~ O. 
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5. Show that the sequence 

1 1 1 
bn = 1 + "2 + 3" + ... + -;;; - log n, n ~ 1, 

is decreasing, while the sequence an = bn -lin is increasing. Show 
that the sequences both converge to the same limit 'Y. Show that 
~ < 'Y < ~. Remark. The limit of the sequence is called Euler's 
constant. It is not known whether Euler's constant is a rational 
number or an irrational number. 

6. For a complex number a, we define the binomial coefficient "a 
choose n" by 

(~) = 1, ( a) = a(a-1) ... (a-n+1), 
n n! 

n~1. 

Show the following. 

(a) The sequence (~) is bounded if and only if Rea ~ -1. 

(b) (~) --+ 0 if and only if Rea> -1. 

(c) If a # 0,1,2, ... , then (n: 1) / (~) --+-1. 

(d) If Rea ~ -1, a # -1, then I (n: 1) I > I (~) I for all n ~ O. 

(e) If Re a > -1 and a is not an integer, then I (n ~ 1) I < I (~) I 
for n large. 

7. Define Xo = 0, and define by induction Xn+l = x; + ~ for n ~ O. 
Show that Xn --+ ~. Hint. Show that the sequence is bounded and 
monotone, and that any limit satisfies x = x2 + ~. 

8. Show that if Sn --+ S, then ISn - sn-ll --+ O. 

9. Plot each sequence and determine its lim inf and lim sup. 
1 

(a) Sn = 1 + - + (-It (c) Sn = sin(7fnI4) 
n 

(b) Sn = (-nt (d) Sn = xn (x E lR fixed) 

10. At what points are the following functions continuous? Justify your 
answer. (a) z, (b) z/lzl, (c) z2/1zl, (d) z2/1z13. 

11. At what points does the function Arg z have a limit? Where is 
Arg z continuous? Justify your answer. 

12. Let h(z) be the restriction of the function Arg z to the lower half­
plane {Imz < O}. At what points does h(z) have a limit? What is 
the limit? 
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13. For which complex values of Q does the principal value of ZCl have 
a limit as z tends to O? Justify your answer. 

14. Let h(t) be a continuous complex-valued function on the unit inter­
val [0,1), and consider 

H(z) = r1 h(t) dt. 
Jo t - z 

Where is H(z) defined? Where is H(z) continuous? Justify your 
answer. Hint. Use the fact that if If(t) - g(t)1 < c for 0::; t ::; 1, 
then f01 If(t) - g(t)ldt < c. 

15. Which of the following sets are open subsets of C? Which are closed? 
Sketch the sets. (a) The punctured plane C\{O}, (b) the exterior 
of the open unit disk in the plane, {I z I ~ I}, (c) the exterior of the 
closed unit disk in the plane, {Izl > I}, (d) the plane with the open 
unit interval removed, C\(O,l), (e) the plane with the closed unit 
interval removed, C\[O, 1], (f) the semidisk {Izl < 1, Im(z) ~ O}, (g) 
the complex plane C. 

16. Show that the slit plane C\( -00,0) is star-shaped but not convex. 
Show that the slit plane C\[-l, 1] is not star-shaped. Show that a 
punctured disk is not star-shaped. 

17. Show that a set is convex if and only if it is star-shaped with respect 
to each of its points. 

18. Show that the following are equivalent for an open subset U of the 
complex plane. 
(a) Any two points of U can be joined by a path consisting of 

straight line segments parallel to the coordinate axes. 
(b) Any continuously differentiable function hex, y) on U such that 

'V'h = 0 is constant. 
(c) If V and Ware disjoint open subsets of U such that U = VU W, 

then either U = V or U = W. Remark. In the context of 
topological spaces, this latter property is taken as the definition 
of connectedness. 

19. Give a proof of the fundamental theorem of algebra along the fol­
lowing lines. Show that if p(z) is a nonconstant polynomial, then 
Ip(z) I attains its minimum at some point Zo E C. Assume that the 
minimum is attained at Zo = 0, and that p(z) = 1 + azm + ... , 
where m ~ 1 and a i- o. Contradict the minimality by showing 
that IP(cei9o )1 < 1 for an appropriate choice of Bo. 
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2. Analytic Functions 

If the development in this section has a familiar ring, it should. The basic 
definitions and rules for the complex derivative are exactly the same as 
those for the usual derivative in elementary calculus. The only difference is 
that multiplication and division are now performed with complex numbers 
instead of real numbers. 

A complex-valued function J(z) is differentiable at Zo if the difference 
quotients 

(2.1) 
J(z) - J(zo) 

z - Zo 

have a limit as z ----t ZOo The limit is denoted by J'(zo), or by : (zo), and 

we refer to it as the complex derivative of J(z) at ZOo Thus 

(2.2) dJ (zo) = !'(zo) = lim J(z) - J(zo) . 
dz Z->Zo z - Zo 

Example. A constant function J(z) = c has derivative !'(zo) = 0 at any 
point Z00 In this case the difference quotients (2.1) are all zero, so that the 
limit is also O. 

It is often useful to write the difference quotient (2.1) in the form 

(2.3) 
J(zo + ~z) - J(zo) 

~z 

so that z - zo is replaced by t::..z. The formula for the complex derivative 
becomes 

(2.4) J'() l' J(zo + ~z) - J(zo) zo=lm A • .o.z->o .u.Z 

Occasionally we use z instead of Zo in the expression (2.4). 

Example. The power function J(z) = zm has derivative !'(z) = mzm-l. 
In this case the binomial expansion 

yields 

J(z+~z)-J(z) = mzm-l + m(m-1)zm-2~z + ... + (~z)m-l, 
~z 2 

which has limit mzm-l as ~z ----t O. 

Example. The function J(z) = z is not differentiable at any point Z. In 
this case the difference quotient (2.3) becomes 

((z+t::..z) -z)/~z = ~z/~z. 
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If .6.z = € is real, then this difference quotient is equal to 1, whereas if 
.6.z = i€ is imaginary, then the difference quotient is equal to -1. Thus the 
difference quotients do not have a limit as .6.z -+ O. 

The various properties of the complex derivative can be developed in 
exactly the same way as the properties of the usual derivative. 

Theorem. If J(z) is differentiable at zo, then J(z) is continuous at zoo 

This follows from the sum and product rules for limits. We write 

J(z) = J(zo) + (J(Z) - J(zo)) (z - zo). 
z - Zo 

Since the difference quotient tends to !'(zo) as z -+ Zo, and z - Zo tends 
to 0 as z -+ Zo, the product on the right tends to 0, and consequently, 
J(z) -+ J(zo) as z -+ zoo 

The complex derivative satisfies the usual rules for differentiating sums, 
products, and quotients. The rules are 

(2.5) (cJ)'(z) cJ'(z) , 

(2.6) (f + g)'(z) = J'(z) + g'(z), 

(2.7) (fg)'(z) J(z)g'(z) + J'(z)g(z), 

(2.8) (f jg)'(z) = 
g(z)J'(z) - J(z)g'(z) 

g(z) -# O. 
g(z)2 

Here we are assuming that J(z) and g(z) are differentiable at z, and that 
c is any complex constant. The conclusion is that cJ(z), J(z) + g(z), 
J(z)g(z), and, provided that g(z) -# 0, also J(z)jg(z) are all differentiable 
at z and satisfy the rules (2.5) to (2.8) listed above. The proofs depend on 
the theorems for limits of sums, products, and quotients. For instance, to 
establish the product rule (2.7) we begin with the usual trick and rewrite 
the difference quotient [(f g) (z + .6.z) - (f g) (z) 1 j.6.z for the product as 

J( .6. )g(z + .6.z) - g(z) J(z + .6.z) - J(z) ( ) 
z + z .6.z + .6.z 9 z . 

We now take a limit as .6.z -+ 0 and apply the rules for limits of sums and 
products, and we obtain (2.7). 

The identities (2.5) and (2.6) express the fact that complex differentiation 
is a linear operation. Note that (2.5) is a consequence of the product 
rule (2.7) and the fact that the derivative of a constant function c is O. 

To establish the identity (2.8), it suffices to establish the simpler identity 

(2.9) (ljg)'(z) = -g'(z)jg(Z)2, g(z) -# 0, 

and then to apply the product rule. 
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Example. Any polynomial 

p(z) = anzn + an_lZn- 1 + ... + alZ + ao 

has a complex derivative, which is given by the usual formula 

p'(z) = nanzn- 1 + (n - l)an_lzn- 2 + ... + al. 

This follows from the linearity rules (2.5) and (2.6), since zm is differen­
tiable with derivative mzm-l. FUrther, any rational function p(z)jq(z) is 
differentiable at all points z except for the (finitely many) zeros of q(z). 

The chain rule is also valid for the complex derivative. We give a careful 
statement and proof. 

Theorem (Chain Rule). Suppose that g(z) is differentiable at zo, and 
suppose that J(w) is differentiable at Wo = g(Zo). Then the composition 
(f 0 g)(z) = J(g(z» is differentiable at Zo and 

(2.10) (f 0 g)'(Zo) = J'(g(zo»g'(zo)· 

A useful mnemonic device for remembering the chain rule is 

d! dJ dw 
= dz dw dz' 

where we have written w = g(z). Danger! We regard J on the right-hand 
side as a function of w, and we regard J on the left-hand side as the function 
J(g(z» of z. The mnemonic device can be justified by the proof, which 
involves multiplying and dividing by /),.w. The proof goes as follows. 

We consider two cases. For the first case, we assume that g'(zo) =I- O. 
Then g(z) =I- g(zo) for 0 < Iz - zol < c, so we are justified in writing 

(2.11) 
J(g(z» - J(g(zo» J(g(z) - J(g(zo») g(z) - g(zo) 

= 
z - Zo g(z) - g(zo) z - Zo 

Since g(z) is differentiable at zo, it is continuous at zo, that is, g(z) - g(zo) 
as z - zoo Consequently, 

J(g(z» - J(g(Zo» _ J'(g(Zo» 
g(z) - g(zo) 

as z - zoo Thus we can pass to the limit in (2.11), and we obtain (2.10). 
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For the second case, we assume that g'(zo) = O. Since J(w) is differen­
tiable at wo, the difference quotients (f(w) - J(wo)/(w - wo) are bounded 
near wo, say 

1 
J(w) - J(wo) 1 :::; C 

W-Wo 

for some constant C and 0 < Jw - woJ < c. Hence JJ(g(z)) - J(g(ZO))J :::; 
CJg(z) - g(zo)J for z near zo, and consequently, 

1 
J(g(z)) - J(g(zo)) 1 :::; clg(z) - g(zo) I. 

Z-Zo Z-Zo 

Since the right-hand side tends to 0 as z -+ Zo, we obtain (f 0 g)'(zo) = O. 
Thus both sides of (2.10) are 0, and in particular, the identity (2.10) holds. 

Example. Suppose J(w) = 1/w, and g(z) = z2 - 1. Then J(g(z)) = 

1/(z2 -1). Using f'(w) = -1/w2 and g'(z) = 2z, we obtain from the chain 
rule 

ddz Z2 ~ 1 = (- ~21 ) (2z) = (z2 ~ 1)2' Z # ±1. 
w=z2-1 

This is, of course, the same as the result we would have obtained by apply­
ing the quotient rule. More generally, the rule (2.9) follows from the chain 
rule and the formula for the derivative for 1/w. 

Now we turn to the definition of the class of functions that is the main 
subject of complex analysis. As usual, all our functions will be complex­
valued functions defined on a subset of the complex plane. 

Definition. A function J(z) is analytic on the open set U if J(z) is 
(complex) differentiable at each point of U and the complex derivative f'(z) 
is continuous on U. 

We have seen that any polynomial in z has a complex derivative at any 
point, and the complex derivative is a polynomial, hence continuous. Thus 
any polynomial in z is analytic on the entire complex plane. Rational 
functions are analytic wherever they are finite. 

More generally, the rules established for complex derivatives show that 
sums and products of analytic functions are analytic. Quotients of analytic 
functions are analytic wherever the denominator does not vanish. 

An example of a function that is not analytic is J(z) = z, which does 
not have a complex derivative at any point. 

The requirement that f' (z) be continuous is a nuisance to verify. The 
student will be happy to learn that this condition is redundant. In Chap­
ter IV we will prove Goursat's theorem, that if f'(z) exists at each point 
of an open set U, then J'(z) is automatically continuous on U. Meanwhile, 
the student who is willing to take this theorem on faith need not check the 
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continuity of J'(z), though in all cases we will treat, where J'(z) can be 
shown to exist, it will also be apparent that J'(z) is continuous. 

Exercises for 11.2 

1. Find the derivatives of the following functions. 
(a) z2 -1 (c) (z2 - I)n (e) I/(z2 + 3) (g) (az + b)/(cz + d) 
(b) zn -1 (d) 1/(1 - z) (f) z/(z3 - 5) (h) I/(cz + d)2 

2. Show that 

1- zn nzn 
1 + 2z + 3z2 + ... + nzn-l = - --

(I-z)2I-z 

3. Show from the definition that the functions x = Re z and y = 1m z 
are not complex differentiable at any point. 

4. Suppose J(z) = az2 + bzz + cz2, where a, b, and c are fixed complex 
numbers. By differentiating J (z) by hand, show that J (z) is complex 
differentiable at z if and only if bz+2cz = 0. Where is J(z) analytic? 

5. Show that if J is analytic on D, then g(z) = J(z) is analytic on the 
reflected domain D* = {z : zED}, and g'(z) = J'(z). 

6. Let h(t) be a continuous complex-valued function on the unit inter­
val [0,1], and define 

H(z) = 11 h(t) dt, 
o t- z 

z E C\[O, 1]. 

Show that H (z) is analytic and compute its derivative. Hint. Dif­
ferentiate by hand; that is, use the defining identity (2.4) of the 
complex derivative. 

3. The Cauchy-Riemann Equations 

Suppose J = u + iv is analytic on a domain D. Fix a point z ED. We will 
compute the complex derivative 

J'(z) = lim J(z + ~z) - J(z) 
.6.z-0 ~z 

in two different ways, first by letting z + ~z tend to z along the horizontal 
line through z (that is, ~z = ~x real), then by letting z + ~z tend to z 
along the vertical line through z (that is, ~z = i~y imaginary). This yields 
two expressions for J'(z), which lead to the Cauchy-Riemann equations. 
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z+iLly 

z z + Llx 

Expressing the difference quotient in terms of u and v and setting boz = 
box, we obtain 

J(z + box) - J(z) 
box 

u(x + box, y) + iv(x + box, y) - (u(x, y) + iv(x, y)) 
box 

u(x + box, y) - u(x, y) . v(x + box, y) - v(x, y) 
box + z box . 

Passing to the limit, we see that the x-derivatives of u and v exist, and 

(3.1) f'(z) = ~~ (x, y) + i ~: (x, y), z = x+iy. 

Since J'(z) is continuous, (3.1) shows that the x-derivatives of u and v are 
continuous. 

Next we set boz = iboy, and we play the same game. The difference 
quotient becomes 

J(z + iboy) - J(z) 
iboy 

u(x, y + boy) + iv(x, y + boy) - (u(x, y) + iv(x, y)) 
iboy 

v(x, y + boy) - v(x, y) . u(x, y + boy) - u(x, y) 
boy - z boy . 

Passing to the limit as before, we see that the y-derivatives of u and v are 
continuous and satisfy 

(3.2) f'(z) = ~: (x, y) - i~~ (x, y), z = x+iy. 

Now we have two expressions, (3.1) and (3.2), for j'(z). We equate their 
real and imaginary parts, and we obtain 

(3.3) 
au 
ax 

av 
ay' 

au 
ay 

These equations are called the Cauchy-Riemann equations for u and v. 
We have proved half of the following theorem. 

Theorem. Let J = u + iv be deEned on a domain D in the complex 
plane, where u and v are real-valued. Then J(z) is analytic on D if and 
only if u(x, y) and v(x, y) have continuous Erst-order partial derivatives 
that satisfy the Cauchy-Riemann equations (3.3). 
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It remains to be shown that if the partial derivatives of u and v exist, are 
continuous, and satisfy the Cauchy-Riemann equations, then J = u + iv is 
analytic. For this, we use Taylor's theorem. Fix zED. Taylor's theorem 
with remainder provides an approximation 

ou ou 
u(x + fj.x, y + fj.y) = u(x, y) + ox (x, y)fj.x + oy (x, y)fj.y + R(fj.x, fj.y), 

where R(fj.x, fj.y)/lfj.zl has limit 0 as fj.z approaches O. (The continuity of 
the first-order partial derivatives of u must be used to obtain the estimate 
for R.) Similarly, 

ov 8v 
v(x + fj.x, y + fj.y) = v(x, y) + ox (x, y)fj.x + oy (x, y)fj.y + S(fj.x, fj.y), 

where S(fj.x, fj.y)/l~zl --+ 0 as fj.z --+ o. Thus 

ou ou 
J(z + fj.z) = J(z) + ox (x, y)fj.x + oy (x, y)fj.y + R(fj.z) 

+ i ~: (x, y)fj.x + i~: (x, y)fj.y + is(fj.z). 

If we use the Cauchy-Riemann equations to replace the y-derivatives by 
x-derivatives, and we use fj.x + ifj.y = fj.z, a minor miracle occurs. The 
identity becomes 

( & .8v) . J(z + fj.z) = J(z) + ox (x, y) + z ox (x, y) fj.z + R(fj.z) + zS(fj.z). 

Thus 

J(z + fj.z) - J(z) 
fj.z 

ou( ) .ov( ) R(fj.z) +is(fj.z) 
= ax X,Y +1. ax X,Y + ~z ' 

which tends to 
ou .ov 
ox (x, y) + z ox (x, y) 

as fj.z tends to O. This shows that J'(z) exists and is given by (3.1), so 
that J'(z) is continuous, and thus J(z) is analytic. Both directions of the 
theorem are now established. 

Example. The functions u(x, y) = x and v(x, y) = y, corresponding to 
z = x + iy, satisfy the Cauchy-Riemann equations, since 

& 8v 
ox = 1 = oy' 

& 8v 
-=0=--
oy ox· 

The functions u(x, y) = x and v(x, y) = -y, corresponding to z = x - iy, 
do not satisfy the Cauchy-Riemann equations, since 

ou ov 
ox = 1, oy = -1. 
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We may use the Cauchy-Riemann equations to show that the function eZ 

is analytic and satisfies 

In this case, u(x,y) = eX cosy and v(x,y) = eXsiny. We check that the 
Cauchy-Riemann equations hold: 

au a 
eX cosy a x. av 

ox ox eX cosy ay e smy ay , 

au a 
_ex siny a x. av 

ay eX cosy = -- e smy ay ox ox 
Thus j(z) = eZ is analytic, and (3.1) yields 

'() au .av X ·x· Z 
j Z = ox + 2 ox = e cos y + 2e sm y = e . 

From the chain rule we deduce further that any complex exponential func­
tion of the form eaz , where a is a complex constant, is analytic and satisfies 

Linear combinations, such as sin z and cos z, of complex exponential func­
tions are also analytic, and the usual formulae for the derivatives hold: 

d . 
dz smz cosz, 

d 
dz cos z - sin z, 

d . 
dz smh z cosh z, 

d 
dz cosh z sinh z. 

To verify the formula for the derivative of sin z, for instance, we compute 

d d eiz - e- iz 
- sinz = -
dz dz 2i 2i 

= cosz. 

Two important consequences of the Cauchy-Riemann equations and the 
equations for f'(z) are as follows. 

Theorem. If j(z) is analytic on a domain D, and if f'(z) = 0 on D, then 
j (z) is constant. 

In this case, the equations (3.1) and (3.2) yield 

au au av av 
- -ox ay ox ay o. 
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Since D is a domain, the theorem in Section 1 shows that u and v are 
constant on D. Thus I = u + iv is constant. 

Theorem. If I(z) is analytic and real-valued on a domain D, then I(z) 
is constant. 

In this case, v = 0 on D, and the Cauchy-Riemann equations become 

au _ 0 au = o. ax -, ay 
Since D is a domain, u is constant in D. 

Exercises for 11.3 

1. Find the derivatives of the following functions. 
sinz sinhz 

(a) tanz = - (b) tanhz = -h- (c) secz = l/cosz 
cosz cos z 

2. Show that u = sin x sinh y and v = cos x cosh y satisfy the Cauchy­
Riemann equations. Do you recognize the analytic function I = 
u + iv? (Determine its complex form.) 

3. Show that if I and J are both analytic on a domain D, then I is 
constant. 

4. Show that if I is analytic on a domain D, and if III is constant, 
then I is constant. Hint. Write J = 111211. 

5. If I = u + iv is analytic, then I V"u I = I V"v I = III 
6. If 1= u + iv is analytic on D, then V"v is obtained by rotating V"u 

by 90°. In particular, V" u and V" v are orthogonal. 

7. Sketch the vector fields V" u and V" v for the following functions I = 
u + iv. (a) iz, (b) z2, (c) liz. 

8. Derive the polar form of the Cauchy-Riemann equations for u and v: 

au 1 av au av 
Or ;: 00' 00 = -r Or . 

Check that for any integer m, the functions u(rei8 ) = rm cos(mO) 
and v(rei8 ) = rm sin(mO) satisfy the Cauchy-Riemann equations. 
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4. Inverse Mappings and the Jacobian 

Let J = u + iv be analytic on a domain D. We may regard D as a domain 
in the Euclidean plane 1R? and J as a map from D to 1R? with components 
(u(x, y), v(x, y)). The Jacobian matrix of this map is 

Jf = (~ i), 
ax ay 

and the determinant of the Jacobian matrix is 

auav au8v 
detJf = -- - --. axay ayax 

If we use the Cauchy-Riemann equations to replace the y-derivatives by 
x-derivatives, we obtain 

( au)2 (av)2 1 au av 12 
detJf = ax + ax = ax +iax . 

By equation (3.2), this is equal to 1f'(zW. We have shown the following. 

Theorem. If J(z) is analytic, then its Jacobian matrix Jf (as a map 
from]R2 to ]R2) has determinant 

det Jf(z) = IJ'(z)1 2• 

Now we can invoke the inverse function theorem from multivariable cal­
culus, and this leads to the following. 

Theorem. Suppose J(z) is analytic on a domain D, Zo ED, and J'(zo) =j:. 
O. Then there is a (small) disk U c D containing Zo such that J(z) is one­
to-one on U, the image V = J(U) of U is open, and the inverse function 

J- 1 : V ----+ U 

is analytic and satisfies 

(4.1) (f-l)'(f(Z)) l/f'(z), 

8 
w =/(z) 
~ 

zEU. 

8 
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All of the assertions of this theorem are consequences of the inverse func­
tion theorem, except for the assertions concerning the analyticity of 1-1. 

To check that 1-1 is analytic, we write 9 = 1-1 on U and differentiate by 
hand. Fix W,W1 E U with W i= Wt, and set z = g(w), ZI = g(W1). Then 
z i= Zl, I(z) = w, I(zl) = Wl, and we have 

g(W)-g(W1) = Z-ZI = l/(I(Z)-I(Zl)). 
W - W1 I(z) - I(zl) z - Zl 

As W tends to Wt, Z tends to Zl, and the right-hand side tends to 1/ f'(Zl). 
Thus 9 is differentiable at Wt, and g'(W1) = 1/ f'(Zl), which is the required 
identity (4.1) at Zl. Since 1/1' (z) is continuous, (f-l)' is continuous, and 
thus 1-1 is analytic. 

If we write W = g(z), the identity (4.1) becomes 

dz 1 
= 

dw dw' 
dz 

which is the usual mnemonic device for remembering the derivative of the 
inverse function. The device is justified by the proof. Danger! Take care 
to evaluate the derivatives at the right points. 

Once we know that 1-1 is analytic, we can easily derive the formula (4.1) 
for the derivative from the chain rule. Since I- 1(f(z)) = z, the chain rule 
yields (f-1)'(f(z))f'(z) = 1, which is (4.1). 

Example. The principal logarithm function w = Log z is a continuous 
inverse for z = eW for -7r < argw < 7r. Since eW is analytic and (ew )' i= 0, 
the preceding theorem applies, with z and w interchanged. From that 
theorem we conclude that Log z is analytic. If we use the chain rule to 
differentiate 

we obtain 

Thus 

(4.2) 

1 

z = eLogz , 

d 1 
dz Logz = z 

Any other continuous branch of the logarithm differs from the principal 
branch by a constant, hence has the same derivative. 

Example. Any continuous branch of v'z is analytic, and 

(4.3) 
d 
-.,fZ = 
dz 

1 

2v'z' 
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where we use the same branch of ..;z on both sides of the identity. To see 
this, note first that no continuous branch of ..;z can be defined on a domain 
containing 0, so that z 1= 0 in (4.3). Each branch w = ..;z satisfies w2 = z. 
Since (w2 )' = 2w is not zero for w 1= 0, the continuous inverse branch ..;z 
is analytic. Differentiating w2 = z, we obtain 

2w dw = 1, dw = 1 
dz dz 2w' 

which is (4.3). 

We will give in Section VIII.4 another proof of the existence and ana­
lyticity of the inverse of an analytic function, which does not depend on 
the inverse function theorem from calculus but rather on residue theory. 
That proof will provide an explicit integral representation formula for the 
inverse function. 

Exercises for 11.4 

1. Sketch the gradient vector fields Vu and Vv for (a) u+iv = eZ, (b) 
u +iv = Logz. 

2. Let a be a complex number, a 1= 0, and let fez) be an analytic 
branch of za on C\( -00,0]. Show that f'(z) = af(z)/z. (Thus 
f'(z) = aza-l, where we pick the branch of za-l that corresponds 
to the original branch of za divided by z.) 

3. Consider the branch of fez) = JZ(l- z) on C\[O, 1] that has posi­
tive imaginary part at z = 2. What is J'(z)? Be sure to specify the 
branch of the expression for J'(z). 

4. Recall that the principal branch of the inverse tangent function was 
defined on the complex plane with two slits on the imaginary axis 
by 

'T' -IlL (1 + iZ) .Lan z = -2' og -1-'- , z - zz 
z rt (-ioo,-i] U [i,ioo) . 

Find the derivative of Tan-1z. Find the derivative of tan- 1 z for 
any analytic branch of the function defined on a domain D. 

5. Recall that cos-1(z) = -ilog[z ± v'z2 -1]. Suppose g(z) is an 
analytic branch of cos-1(z), defined on a domain D. Find g'(z). 
Do different branches of cos-1(z) have the same derivative? 

6. Suppose h(z) is an analytic branch of sin-1(z), defined on a do­
main D. Find h'(z). Do different branches of sin-1(z) have the 
same derivative? 

7. Let f (z) be a bounded analytic function, defined on a bounded 
domain D in the complex plane, and suppose that fez) is one-to-
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one. Show that the area of f(D) is given by 

Area(f(D)) = f !v1!'(zWdXdy. 

8. Sketch the image of the circle {I z - 11 :::; I} under the map w = z2. 
Compute the area of the image. 

9. Compute 

f !v1!'(zWdXdY, 

for f(z) = Z2 and D the open unit disk {Izl < I}. Interpret your 
answer in terms of areas. 

10. For smooth functions 9 and h defined on a bounded domain U, we 
define the Dirichlet form Du(g, h) by 

Jr { [89 8h 8g 8h] 
Du (g, h) = } u 8x 8x + 8y 8y dx dy. 

Show that if z = f(() is a one-to-one analytic function from the 
bounded domain V onto U, then 

Du(g, h) = Dv(g 0 f, h 0 f). 

Remark. This shows that the Dirichlet form is a "conformal invari­
ant." 

5. Harmonic Functions 

The equation 

82u 82u 
-+···+-=0 
8xI 8x;, 

is called Laplace's equation. The operator 

82 82 
Do = -+ ... +-

8xI 8x;, 

is called the Laplacian. In terms of this operator, Laplace's equation 
becomes simply Dou = o. Smooth functions u(Xl, ... ,xn ) that satisfy 
Laplace's equation are called harmonic functions. Laplace's equation 
is one of the most important partial differential equations of mathematical 
physics. Some indication of the applications will be given in Chapter III. 

We will be concerned with harmonic functions of two variables, that is, 
solutions of 
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We say that a function u(x, y) is harmonic if all its first- and second-order 
partial derivatives exist and are continuous and satisfy Laplace's equation. 
In the case of functions of two variables, there is an intimate connection 
between analytic functions and harmonic functions. 

Theorem. If f = u + iv is analytic, and the functions u and v have 
continuous second-order partial derivatives, then u and v are harmonic. 

The second hypothesis of the theorem is redundant. We will show in 
Chapter IV that an analytic function has continuous partial derivatives of 
all orders. 

The harmonicity of u and v is a simple consequence of the Cauchy­
Riemann equations, 

(5.1) 
au av 
ax ay' 

(5.2) 
au av 
ay -ax· 

Using these, we obtain 

a2u a av a av a2u 
ax2 axay ayax ay2' 

which shows that u is harmonic. The verification that v is harmonic is the 
same. 

If u is harmonic on a domain D, and v is a harmonic function such that 
u + iv is analytic, we say that v is a harmonic conjugate of u. The 
harmonic conjugate v is unique, up to adding a constant. Indeed, if Vo is 
another harmonic conjugate for u, so that u + ivo is also analytic, then the 
difference i( v - vo) is analytic, and v - Vo is a real-valued analytic function, 
hence constant on D. 

Exercise. Show that u(x, y) = xy is harmonic, and find a harmonic con­
jugate for u. 
Solution. We have 

02 02 

ax2 xy = 0 = - ay2 xy, 

so that xy is harmonic. To find a harmonic conjugate v, we solve the 
Cauchy-Riemann equations. From (5.1) we have 

au av 
ax = y = ay· 

Thus 

v(x,y) 
y2 
2 + hex), 
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where h(x) depends only on x and not on y. Equation (5.2) becomes 
x = -h'(x), which has solution h(x) = -x2/2 + C. Thus 

y2 x2 
v(x,y) = 2" - 2" +C, 

where C is a constant. The analytic function J = u + iv is given by 

z2 
J(z) = -i2" + iC. 

The method used above actually shows that any harmonic function on a 
rectangle with sides parallel to the axes has a harmonic conjugate on the 
rectangle. Indeed, let u(x, y) be harmonic on such a rectangle D, and let 
(xo, Yo) be any fixed point of D. If we integrate the first Cauchy-Riemann 
equation (5.1) along a vertical segment from Yo to y, with x fixed, we obtain 

v(x, y) = l Y ~u (x, t) dt + h(x), 
Yo uX 

where h(x) is the constant of integration with respect to y. Though h(x) 
does not depend on y, it may depend on x. The second Cauchy-Riemann 
equation (5.2) then becomes 

au alYau , 
~(x, y) = -~ ~(x, t) dt - h (x). 
uy uX Yo uX 

If we differentiate under the integral sign (as we may) and use Laplace's 
equation, we obtain 

au l Y a2u l Y a2u ~,..<x, y) = - ~ 2 (x, t) dt - h'(x) = ~ 2 (x, t) dt - h'(x) 
~ ~~ ~~ 

au au 
= ay(x,y) ay(x,yo) - h'(x). 

Thus we obtain 

h'(x) 

This has the solution 

l x au 
h(x) = - F(s,yo)ds + C, 

Xo y 

where C is a genuine constant. Thus we see that a harmonic conjugate 
v(x,y) for u(x,y) is given explicitly by 

(5.3) lYau lxau v(x,y) = F(x,t)dt - F(s,yo)ds + C. 
YOX xoY 

The formula (5.3) is also valid if D is the entire complex plane, or if Dis 
an open disk with center (xo, Yo). Note that if we specify v(xo, Yo) = 0, 
then C = 0, and the solution is unique. 
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We summarize in the following theorem. 

Theorem. Let D be an open disk, or an open rectangle with sides parallel 
to the axes, and let u(x, y) be a harmonic function on D. Then there is 
a harmonic function vex, y) on D such that u + iv is analytic on D. The 
harmonic conjugate v is unique, up to adding a constant. 

We will see in Chapter III that this theorem holds in star-shaped do­
mains. However, the theorem fails in annuli and in the punctured plane 
(Exercise 7). Roughly speaking, the theorem holds only in domains that 
have no "holes." Such domains are called "simply connected domains." 
They will be discussed in Chapter VIII. 

Exercises for 11.5 

1. Show that the following functions are harmonic, and find harmonic 
conjugates: 
(a) x2 - y2 (c) sinhxsiny (e) tan-ley/x), x> 0 
(b) xy + 3x2y - y3 (d) ex2 - y2 cos(2xy) (f) x/(x2 + y2) 

2. Show that if v is a harmonic conjugate for u, then -u is a harmonic 
conjugate for v. 

3. Define u(z) = Im(I/z2) for z f:. 0, and set u(O) = O. 
(a) Show that all partial derivatives ofu with respect to x exist at 

all points of the plane C, as do all partial derivative of u with 
respect to y. 

cPu cPu 
(b) Show that 8x2 + 8y2 = o. 
(c) Show that u is not harmonic on C. 

82u 
(d) Show that 8x8y does not exist at (0,0). 

4. Show that if h(z) is a complex-valued harmonic function (solution 
of Laplace's equation) such that zh(z) is also harmonic, then h(z) 
is analytic. 

5. Show that Laplace's equation in polar coordinates is 

82u 18u 1 82u 
8r2 + ;: 8r + r2 8()2 = O. 
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6. Show using Laplace's equation in polar coordinates that log \z\ is 
harmonic on the punctured plane C\{O}. 

7. Show that log \z\ has no conjugate harmonic function on the punc­
tured plane C\ {O}, though it does have a conjugate harmonic func­
tion on the slit plane C\( -00,0]. 

8. Show using Laplace's equation in polar coordinates that u(rei8 ) = 
Ologr is harmonic. Use the polar form of the Cauchy-Riemann 
equations (Exercise 3.8) to find a harmonic conjugate v for u. What 
is the analytic function u + iv? 

6. Conformal Mappings 

Let 'Y(t) = x(t) + iy(t), 0 S t S 1, be a smooth parameterized curve 
terminating at zo = 'Y(O). We refer to 

'Y'(O) = lim 'Y(t) - 'Y(O) = x'(O) + iy'(O) 
t-+O t 

as the tangent vector to the curve 'Y at ZOo It is the complex representation 
of the usual tangent vector. We define the angle between two curves 
at Zo to be the angle between their tangent vectors at ZOo 

Theorem. If 'Y( t), 0 s t S 1, is a smooth parameterized. curve terminating 
at Zo = 'Y(O), and J(z) is analytic at Zo, then the tangent to the curve 
J(-y(t)) terminating at J(zo) is 

(6.1) (f 0 'Y)'(O) = !'(zoh'(O). 

'}"(O) r 
Zo =,},(O) 

w =j(z) ..-----..... Wo =j(Zo) 

~ (jo'}')'(O) 
j('}'(t)~ 

The proof is a close relative of the proof of the chain rule for the compo­
sition of analytic functions (Section 2). If 'Y'(O) -# 0, then 'Y(t) -# 'Y(O) for t 
near 0, t -# 0, so we may write 

J('Y(t)) - J(-Y(O)) 
t 

J(-y(t)) - J(-Y(O» 'Y(t) - 'Y(O) 
'Y(t) - 'Y(O) t 

and pass to the limit, to obtain the formula (6.1). If 'Y'(O) = 0, then 
proceeding as in Section 2, we obtain (f o'Y)'(O) = 0, and again the formula 
holds. 



6. Conformal Mappings 59 

We may think of the tangent vector as a vector in the plane with tail 
at zoo Composing a parameterized curve with I(z) then has the effect upon 
the tangent vector of multiplying it by I'(zo) (complex multiplication) and 
moving the tail to Wo = I (zo). If the tangent vector is represented by 
z - zo, then the tangent to the image curve is represented by w - I(zo) = 

I' (Zo) (z - zo). As far as the tangent vector at Zo is concerned, the effect 
of composing with I(z) is the same as the effect of composing with the 
function I (zo) + f' (zo) (z - zo), which is the first-order Taylor approximation 
to I(z) at zoo The remainder term R(z) in the Taylor approximation 
satisfies R(z)j(z - zo) -+ 0 as z -+ Zo' so that R(z) has no effect on 
tangent vectors. 

A function is conformal if it preserves angles. More precisely, we say 
that a smooth complex-valued function g(z) is conformal at Zo if whenever 
'Yo and 'Yl are two curves terminating at Zo with nonzero tangents, then the 
curves 9 01'0 and 9 0 'Yl have nonzero tangents at g( zo) and the angle from 
(g 0 'Yo)' (zo) to (g 0 1'1)'( Zo) is the same as the angle from 1'0 (Zo) to 'Yl (zo). 
A conformal mapping of one domain D onto another V is a continuously 
differentiable function that is conformal at each point of D and that maps D 
one-to-one onto V. 

w =/(z) 
~ 

The translation I(z) = z + b and the complex multiplication g(z) = az, 
where a =f=. 0, evidently preserve angles, hence are conformal everywhere: 
They are conformal mappings of the complex plane onto itself. On the 
other hand, the function az reverses angles and orientation, so it is not 
conformaL For n > 1, the function zn multiplies angles at the origin by n, 
so it is not conformal at z = O. The following theorem shows that zn is 
conformal at any point z other than O. 

Theorem. H I(z) is analytic at Zo and 1'(Zo) =f=. 0, then I(z) is conformal 
at zoo 

Let 'Yo and 'Yl be two curves terminating at Zo with nonzero tangents. 
By the preceding theorem, the tangents to the curves 9 0 'Yo and 9 0 'Yl are 
obtained by multiplying the respective tangents to 'Yo and 'Yl by I'(zo). 
Thus the arguments of both tangents are increased by the same angle, 
namely the argument of f' (zo). Consequently, the angle between them is 
preserved. 



60 II Analytic Functions 

There is a converse to this theorem, to the effect that conformal map­
pings are analytic. Though the result is elementary, we postpone it to 
Section IV.8. (But see Exercise 9.) 

Example. The function w = z2 maps the right half-plane {Rez > O} con­
formally onto the slit plane C\ ( -00, OJ. For any fixed (}o, ° < (}o ~ 1r /2, it 
maps the sector {I arg z I < (}o} conformally onto the sector {I arg z I < 2(}o} 
of twice the aperture. 

Example. Fix (}o, ° < (}o ~ 1r. If ° < a < 1r/(}o, the function za maps 
the sector {I arg zl < (}o} conformally onto the sector {I arg zl < a(}o}. In 
particular, the function z7r/290 maps the sector {I argzl < (}o} conformally 
onto the right half-plane. 

w = z1d'2lJo 
~ 

Example. The exponential function eZ is conformal at each point z E C, 
since its derivative does not vanish at z. Its image is the punctured plane 
C\{O}. However, it is not a conformal mapping of the plane onto the 
punctured plane, since it is not one-to-one. Its restriction to the horizontal 
strip {llmzl < 1r} is a conformal mapping of the strip onto the slit plane 
C\(-oo,Oj. 

Example. The principal branch Log z of the logarithm is a conformal 
mapping of the slit plane C\( -oo,Oj onto the horizontal strip {11m wi < 1r}. 
See the figure in Section 1.6. 
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Any conformal mapping carries orthogonal curves to orthogonal curves, 
and it carries orthogonal families of curves to orthogonal families of curves. 
In the case of the exponential function eZ , the orthogonal grid consisting 
of horizontal and vertical lines is mapped to an orthogonal grid consisting 
of rays emanating from the origin and circles centered at the origin. 

Something similar happens for any nonconstant analytic function J = 
u + iv on a domain D. Fix a point Zo where !'(zo) i= 0, and consider 
the two curves {u(z) = u(zo)} and {v(z) = v(zo)}, which meet at zoo 
The function J(z) is one-to-one near zo, it maps the part of the level set 
{u(z) = u(zo)} near Zo to a vertical line segment through J(zo), and it 
maps the part of the level set {v(z) = v(zo)} near Zo to a horizontal line 
segment through J(zo). Since these line segments are orthogonal at J(zo), 
the level sets of u and v are orthogonal at Zo. Thus the two families of 
curves {u = constant} and {v = constant} are orthogonal except at points 
where !'(zo) = o. 

Example. For J(z) = z2 = x2 - y2 + 2ixy, the families of curves u = con­
stant and v = constant form two families of hyperbolas that are orthogonal 
except at the origin. 

Exercises for II.6 

1. Sketch the families of level curves of u and v for the following func­
tions J = u + iv. (a) J(z) = liz, (b) J(z) = l/z2, (c) J(z) = z6. 
Determine where J(z) is conformal and where it is not conformal. 

2. Sketch the families of level curves of u and v for J(z) = Logz = 

u + iv. Relate your sketch to a figure in Section 1.6. 

3. Sketch the families of level curves of u and v for the functions J = 
u+iv given by (a) J(z) = eZ , (b) J(z) = ea:z, where a is complex. 
Determine where J(z) is conformal and where it is not conformal. 



62 II Analytic Functions 

4. Find a conformal map of the horizontal strip {-A < 1m z < A} 
onto the right half-plane {Rew > O}. Hint. Recall the discussion of 
the exponential function, or refer to the preceding problem. 

5. Find a conformal map of the wedge {-B < arg z < B} onto the 
right half-plane {Rew > O}. Assume 0 < B < 7r. 

6. Determine where the function J (z) = z + 1 I z is conformal and where 
it is not conformal. Show that for each w, there are at most two 
values z for which J(z) = w. Show that if r > 1, J(z) maps the circle 
{Izl = r} onto an ellipse, and that J(z) maps the circle {Izl = I/r} 
onto the same ellipse. Show that J(z) is one-to-one on the exterior 
domain D = {Izl > I}. Determine the image of D under J(z). 
Sketch the images under J(z) of the circles {Izl = r} for r > 1, and 
sketch also the images of the parts of the rays {arg z = .8} lying 
in D. 

7. For the function J(z) = z + liz = u + iv, sketch the families of 
level curves of u and v. Determine the images under J( z) of the top 
half of the unit disk, the bottom half of the unit disk, the part of 
the upper half-plane outside the unit disk, and the part of the lower 
half-plane outside the unit disk. Hint. Start by locating the images 
of the curves where u = 0, where v = 0, and where v = 1. Note 
that the level curves are symmetric with respect to the real and 
imaginary axes, and they are invariant under the inversion z ~ liz 
in the unit circle. 

8. Consider J(z) = z + eiOl.lz, where 0 < 0: < 7r. Determine where 
J(z) is conformal and where it is not conformal. Sketch the images 
under J(z) of the unit circle {Izl = I} and the intervals (-00,-1] 
and [+1, +00) on the real axis. Show that w = J(z) maps {Izl > I} 
conformally onto the complement of a slit in the w-plane. Sketch 
roughly the images of the segments of rays outside the unit circle 
{argz = .8, Izl ~ I} under J(z). At what angles do they meet the 
slit, and at what angles do they approach oo? 

9. Let J = u+iv be a continuously differentiable complex-valued func­
tion on a domain D such that the Jacobian matrix of J does not 
vanish at any point of D. Show that if J maps orthogonal curves to 
orthogonal curves, then either J or 1 is analytic, with nonvanishing 
derivative. 
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7. Fractional Linear Transformations 

A fractional linear transformation is a function of the form 

(7.1) w = J(z) = az + b, 
ez+d 

where a, b, e, d are complex constants satisfying ad - be i= O. Fractional 
linear transformations are also called Mobius transformations. Since 

ad-be 
J'(z) = (ez+d)2' 

the condition ad - be i= 0 simply guarantees that J(z) is not constant. 
If we multiply each of the parameters a,b,e,d in (7.1) by the same 

nonzero constant, we obtain the same function. Thus different choices 
of the parameters may lead to the same fractional linear transformation. 

Example. A function of the form J(z) = az + b, where a i= 0, is called an 
affine transformation. These are the fractional linear transformations 
of the form (7.1) with e = O. Special cases are the translations z 1-+ Z + b 
and the dilations z 1-+ az. 

Example. The fractional linear transformation J(z) = l/z is called an 
inversion. 

It is convenient to regard a fractional linear transformation as a map 
from the extended complex plane C* = C U {oo} to itself. If J(z) is affine, 
we define J(oo) = 00. Otherwise, J(z) has the form (7.1) where e i= 0, and 
we define J( -die) = 00 and 

. . a+b/z a 
J(oo) = hm J(z) = hm d/ =-. 

z-oo z--+oo e + z e 

Thus translations and dilations map 00 to 00, while the inversion z 1-+ liz 
interchanges 0 and 00. 

The inverse of a fractional linear transformation is again a fractional 
linear transformation. To see this, we solve (7.1) for z, to obtain 

-dw+b 
z = 

cw-a 

The condition on the coefficients is satisfied, since (-d)( -a)-be = ad-be i= 
0, or alternatively, since the function z = z(w) is not constant. This shows 
that each fractional linear transformation is a one-to-one function from the 
extended complex plane onto itself. 

The composition of two fractional linear transformations is again a frac­
tionallinear transformation. To see this, suppose J(z) = (az + b)/ez + d) 
and g(z) = (az + [3)/bz + 8), and compute 

J( (z)) = a«az + [3)/bz + 8)) + b 
g e«az + [3)/bz + 8)) + d 

(aa + lry)z + a[3 + M 
(00 + d'Y)z + e[3 + d8· 
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Since the composition fog cannot be constant, the condition on the pa­
rameters is met, and fog is a fractional linear transformation. 

Note that the composition corresponds to matrix multiplication, 

(: :) (~ ~) = (::~ :g:~~). 
The condition ad - bc i- 0 on the parameters is simply the condition that 
the matrix associated with the fractional linear transformation has nonzero 
determinant, that is, that the matrix is invertible. 

The fact that matrix multiplication corresponds to composition can be 
reformulated in the language of group theory. If we assign to each 2 x 2 
invertible matrix the corresponding fractional linear transformation, we 
obtain what is called a "group homomorphism," from the group of 2 x 2 
invertible matrices with complex entries onto the group of fractional linear 
transformations with operation composition. 

A fractional linear transformation depends on four complex parameters. 
One of these can be adjusted without changing the transformation, for 
instance by multiplying all the parameters by the same nonzero constant. 
That leaves three parameters to be specified. The next theorem shows that 
there are three independent complex parameters that describe fractional 
linear transformations uniquely, namely, the images of any three prescribed 
points. 

Theorem. Given any three distinct points zo, Z1, Z2 in the extended com­
plex plane, and given any three distinct values wo, wI. W2 in the extended 
complex plane, there is a unique fractional linear transformation W = w(z) 
such that w(zo) = wo, W(Z1) = WI, and W(Z2) = W2· 

To establish the existence assertion, it suffices to show that any three 
distinct points can be mapped by a fractional linear transformation to 0, 
1, and 00. Indeed, if f maps zo, z}, Z2 respectively to 0,1,00, and 9 maps 
Wo, WI. W2 respectively to 0,1,00, then the composition g-1 0 f, of f followed 
by the inverse of g, maps Zo, Z1, Z2 to Wo, WI, W2. If now none of the points 
zo, Z1, Z2 is 00, a transformation mapping them to 0, 1, 00 is given explicitly 
by 

(7.2) f( ) Z - Zo Z1 - Z2 
W = Z = -----. 

Z - Z2 Z1 - Zo 

If one of the z/s is 00, we define fez) by sending that Zj to 00 in the above 
formula. For instance, if Zo = 00, we rewrite the right-hand side of (7.2) as 

(z/zo) - 1 Z1 - Z2 

Z-Z2 (zdzo)-l 

and take a limit as Zo -t 00, to obtain 

W = fez) = 
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This maps 00, zl> Z2 to 0, 1, 00. There are similar formulae for the cases 
Zl = 00 and Z2 = 00. 

For the uniqueness, suppose first that I(z) is a fractional linear trans­
formation that fixes 0, 1, and 00. Since 1(00) = 00, I(z) = az + b for some 
a#- o. From 1(0) = 0 we obtain b = 0, and from 1(1) = 1 we obtain a = 1. 
Thus I(z) = z is the identity transformation. 

Now suppose that g(z) and h(z) are both fractional linear transforma­
tions mapping the z/s to the respective w/s. Let k(z) map the z/s respec­
tively to 0, 1,00. Then 1 = koh- 1 ogok-1 maps 0 to 0, 1 to 1, and 00 to 00. 

Hence I(z) = z is the identity, and 9 = h 0 k- 1 010 k = h 0 k- 1 0 k = h. 
This establishes the uniqueness assertion of the theorem. 

Exercise. Find the fractional linear transformation mapping -1 to 0, 00 

to 1, and i to 00. 

Solution. We could use (7.2) and send Zl to 00. However, it is easier 
to proceed directly. Since w(i) = 00, we place z - i in the denominator, 
and since w(-l) = 0, we place z + 1 in the numerator, to obtain w(z) = 

a{z + l)/(z - i). Since w(z) -+ 1 as z -+ 00, we obtain a = 1, and hence 
w(z) = (z + l)/(z - i). 

Theorem. Every fractional linear transformation is a composition of di­
lations, translations, and inversions. 

A fractional linear transformation mapping 00 to 00 has the form w = 
az + b where a #- O. This is the composition of the translation z ~ z + b / a 
and the dilation z ~ az: 

z ~ z+b/a ~ a(z+b/a) = az+b. 

If w{oo) is finite, then w has the form (7.1) where c #- O. In this case we 
may divide each of the parameter values by c and assume that c = 1. Then 
w{z) = (az + b)/{z + d). Now we conjure up by magic the identity 

w{z) = az + b = a + b - ad. 
z+d z+d 

This expression allows us to represent w{z) as 

1 b-ad b-ad 
z ~ z+d ~ -- ~ -- ~ a+ 

z+d z+d z+d' 

and consequently, w(z) is a composition of a translation, an inversion, a 
dilation, and a translation. 

Theorem. A fractional linear transformation maps circles in the extended 
complex plane to circles. 

It suffices to establish the theorem for translations, dilations, and inver­
sions, since every fractional linear transformation is a composition of these. 
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It is clear (or it should be) that translations and dilations map circles to 
circles. Thus it suffices to check that the inversion w = 1 I z maps circles to 
circles. 

Consider first a circle that does not pass through 00. It has an equation 
of the form Iz - al2 = r2, where a is its center and r its radius. The 
image of the circle under the inversion w = 1 I z consists of points satisfying 
11 - awl2 = r21w12, that is, 

o = 11- awl2 - r21wl2 = (1- aw) (1- aw) - r21wl2 

= (lal2 - r2) Iwl2 - aw - aw + 1. 

Set w = u + iv where u and v are real. The equation assumes the form 

(la l2 - r2) (u2 + v2) + Au + Bv + 1 = 0, 

where A and B are real constants. If r = lal, the equation represents a 
straight line in the plane, which is a circle through 00. If r -I lal, this is a 
quadratic equation in u and v of the form met in Section 1.3. It has more 
than one solution, so the solutions form a circle. (To obtain the center and 
radius, complete the square.) 

Next consider a circle passing through 00, that is, a straight line. It has 
an equation of the form ex + Dy = E. A calculation similar to the one 
given above shows that the image is a circle if E -I 0 and a straight line if 
E = 0 (Exercise 6). 

Exercise. Find the equation of the fractional linear transformation map­
ping 0 to -1, i to 0, and 00 to 1. 
Solution. Since i -+ 0, we can normalize a to be 1 and write the fractional 
linear transformation in the form w = (z - i)/(ez + d). The condition 
o ~ -1 yields -ild = -1, and so d = i. Finally, the condition 00 ~ 1 
yields lie = 1, and so e = 1. Thus w = (z - i)/(z + i). 

Exercise. Determine the images of each of the following sets under the 
above fractional linear transformation: (a) the imaginary axis, (b) the right 
half-plane, (c) the real axis, (d) the upper half-plane, (e) the horizontal line 
through i. Sketch the images of horizontal lines and of vertical lines under 
the transformation. 
Solution. We will solve this exercise without referring to the explicit for­
mula for the transformation. We use two facts. First, to determine the 
image of a circle under a fractional linear transformation, it suffices to 
determine the images of three points on the circle. Since three points de­
termine a circle, the image of the circle is then the circle passing through 
the three image points. Second, fractional linear transformations map or­
thogonal circles to orthogonal circles, since they are conformal. 
(a) The three points 0, i, 00 lie on the circle corresponding to the imagi­
nary axis in the extended complex plane. The image of the imaginary axis 
is then the circle through the three image points -1,0, + 1, which is the 
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real line. 
(b) The ordered triple O,i,oo is mapped to the ordered triple -1,0,1, so 
the image w moves forward on the real line as z moves upwards on the 
imaginary axis. Since orientations are preserved, the right half-plane is 
mapped to the domain on the right of the positively traversed real line, 
which is the lower half-plane. 
(c) The real axis is mapped to a circle through w(O) = -1 and w(oo) = +1. 
Since the real and imaginary axes are orthogonal, their images are orthog~ 
nal. Thus the image of the real line is a circle through ±I that is orthogonal 
to the real line. There is only one such circle, the unit circle. Consequently, 
the image of the real line is the unit circle {iwi = I}. 
(d) Since the image of the real line is the unit circle, the image of the 
upper half-plane does not cross the unit circle, and it must coincide either 
with the inside {iwi < I} or with the exterior domain {iwi > I} together 
with 00. Since i is mapped to 0, which is inside the unit circle, the image of 
the upper half-plane is the inside, that is, it is the open unit disk {iwi < I}. 
( e) The image of the horizontal line through i is a circle passing through ° 
and 1, and it lies inside the unit disk, so it must be the circle centered at 
1 f d' 1 2 0 ra IUS 2' 

The image of any horizontal line is a circle through w(oo) = 1, and it is 
orthogonal to the real line (the image of the imaginary axis). These images 
of the horizontal lines form a pencil of circles as sketched in the figure. The 
images of vertical lines are circles through w( 00) = 1. Since the real axis is 
the image of the imaginary axis, these circles must be tangent to the real 
axis at 1. The images of the vertical lines are also sketched in the figure. 
Note that the images of the horizontal and vertical lines are orthogonal to 
each other. 

Exercises for 11.7 

1. Compute explicitly the fractional linear transformations determined 
by the following correspondences of triples: 
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(a) (1 + i, 2, 0) ~ (0,00, i-I) 
(b) (0,1, 00) ~ (1,1 + i, 2) 
(c) (00,I+i,2)~(0,1,00) 
(d) (-2, i, 2) ~ (1 - 2i, 0,1 + 2i) 
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(e) (1,2,00)~(0,1,00) 
(f) (O,oo,i)~(O,I,oo) 
(g) (0,1,00) ~ (0,00, i) 
(h) (l,i,-I)~(I,O,-I) 

2. Consider the fractional linear transformation in Exercise la above, 
which maps 1 + i to 0, 2 to 00, and 0 to i-I. Without referring to 
an explicit formula, determine the image of the circle {I z - 11 = I}, 
the image of the disk {I z - 11 < I}, and the image of the real axis. 

3. Consider the fractional linear transformation that maps 1 to i, 0 to 
1 + i, and -1 to 1. Determine the image of the unit circle {I z I = I}, 
the image of the open unit disk {Izl < I}, and the image of the 
imaginary axis. Illustrate with a sketch. 

4. Consider the fractional linear transformation that maps -1 to -i, 
1 to 2i, and i to o. Determine the image of the unit circle {Izl = I}, 
the image of the open unit disk {Izl < I}, and the image of the 
interval [-1, +1] on the real axis. Illustrate with a sketch. 

5. What is the image of the horizontal line through i under the frac­
tionallinear transformation that interchanges 0 and 1 and maps -1 
to 1 + i? Illustrate with a sketch. 

6. Show that the image of a straight line under the inversion z ~ 1 j z 
is a straight line or circle, depending on whether the line passes 
through the origin. 

7. Show that the fractional linear transformation J(z) = (az+b)j(ez+ 
d) is the identity mapping z if and only if b = e = 0 and a = d =f:. O. 

8. Show that any fractional linear transformation can be represented 
in the form J(z) = (az + b)j(ez +d), where ad - be = 1. Is this 
representation unique? 

9. Show that the fractional linear transformations that are real on 
the real axis are precisely those that can be expressed in the form 
(az + b)j(ez + d), where a, b, e, and d are real. 

10. Suppose the fractional linear transformation (az+b) j (ez+d) maps JR 
to JR, and ad - be = 1. Show that a, b, e, and d are real or they are 
all pure imaginary. 

11. Two maps J and 9 are conjugate if there is h such that 9 = h 0 

J 0 h-1 • Here the conjugating map h is assumed to be one-to-one, 
with appropriate domain and range. We can think of J and 9 as 
the "same" map, after the change of variable w = h(z). A point Zo 
is a fixed point of J if J(zo) = zoo Show the following. (a) If J 
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is conjugate to g, then 9 is conjugate to J. (b) If h is conjugate 
to 12 and 12 to fa, then h is conjugate to fa. (c) If J is conjugate 
to g, then J 0 J is conjugate to gog, and more generally, the m-fold 
composition J o· ··0 J (m times) is conjugate to go ... 0 9 (m times). 
(d) If J and 9 are conjugate, then the conjugating function h maps 
the fixed points of J to the fixed points of g. In particular, J and 9 
have the same number of fixed points. 

12. Classify the conjugacy classes of fractional linear transformations 
by establishing the following: 
(a) A fractional linear transformation that is not the identity has 

either 1 or 2 fixed points, that is, points satisfying J(zo) = zoo 
(b) If a fractional linear transformation J (z) has two fixed points, 

then it is conjugate to the dilation z t-t az with a -# 0, a -# 1, 
that is, there is a fractional linear transformation h(z) such 
that h(f(z)) = ah(z). Is a unique? Hint. Consider a fractional 
linear transformation that maps the fixed points to 0 and 00. 

(c) If a fractional linear transformation J(z) has exactly one fixed 
point, then it is conjugate to the translation ( t-t ( + 1. In other 
words, there is a fractional linear transformation h(z) such that 
h(f(h-1«())) = (+ 1, or equivalently, such that h(f(z)) = 
h(z) + 1. Hint. Consider a fractional linear transformation 
that maps the fixed point to 00. 



III 

Line Integrals and Harmonic 
Functions 

In Sections 1 and 2 we review multivariable integral calculus in order to 
prepare for complex integration in the next chapter. The salient features 
are Green's theorem and independence of path for line integrals. In Sec­
tion 3 we introduce harmonic functions, and in Sections 4 and 5 we discuss 
the mean value property and the maximum principle for harmonic func­
tions. Sections 6 and 7 include various applications to physics. The student 
may proceed directly to complex integration in the next chapter after pag­
ing through the review of multivariable calculus in Sections 1 and 2 and 
reading about harmonic conjugates in Section 3. 

1. Line Integrals and Green's Theorem 

Line integrals play an important role in complex analysis. In this section 
and the next we review line integrals in the plane, without filling in all the 
details. We begin by saying something about paths and curves. 

A path in the plane from A to B is a continuous function t I-> ,(t) on 
some parameter interval a ~ t ~ b such that ,(a) = A and ,(b) = B. The 
path is simple if ,(s) f- ,(t) when s f- t. The path is closed if it starts 
and ends at the same point, that is, ,(a) = ,(b). A simple closed path 
is a closed path, such that ,(s) f- ,(t) for a ~ s < t < b. 

A~B A~B 
simple path path (not simple) simple closed path 

If ,(t), a ~ t ~ b, is a path from A to B, and if ¢(s), Q ~ S ~ {3, is a 
strictly increasing continuous function satisfying ¢( Q) = a and ¢({3) = b, 
then the composition ,(¢(s)), Q ~ s ~ {3, is also a path from A to B. 
The composition, 0 ¢ is a "reparametrization" of ,. For our purposes we 

70 
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can usually regard 'Y and any of its reparametrizations as being the same 
path. (Technically, we should consider equivalence classes of paths.) Note 
that reparametrization preserves the order of points of a path; that is, it 
preserves orientation. 

The trace of the path 'Y is its image 'Y([a, b]), which is a subset of the 
plane. When it is clear from context, we will denote the trace of a path 
also by 'Y. It will not be until Chapter VIII that we need to be careful 
about distinguishing the path 'Y from its trace. 

If one path ends where another begins, the two paths can be concatenated 
by following one and then the other, after suitable reparametrization. 

A smooth path is a path that can be represented in the form 'Y( t) = 
(x(t), yet)), a ::; t ::; b, where the functions x(t) and yet) are smooth, that 
is, have as many derivatives as is necessary for whatever is being asserted to 
be true. A piecewise smooth path is a concatenation of smooth paths. 
By a curve we mean (usually) a smooth or piecewise smooth path. 

Let'Y be a path in the plane from A to B, and let P(x, y) and Q(x, y) be 
continuous complex-valued functions on 'Y. We consider successive points 
on the path, A = (xo, Yo), (Xl, YI), ... , B = (xn, Yn), and we form the sum 

(1.1) L P(Xj, Yj)(Xj+1 - Xj) + L Q(Xj, Yj)(Yj+1 - Yj)· 

If these sums have a limit as the distances between the successive points 
on 'Y tend to 0, we define the limit to be the line integral of Pdx + Qdy 
along 'Y, and we denote it by 

(1.2) 1 Pdx + Qdy. 

Suppose the path 'Y(t) = (x(t), y(t», a ::; t ::; b, is continuously differen­
tiable, that is, the parameter functions x(t) and yet) are continuously dif­
ferentiable. Suppose the parameter values tj satisfy x(tj ) = Xj, y(tj) = Yj, 
where a = to < h < ... < tn = b. By the mean value theorem, there are 
points tj between tj and tj+1 such that x(tj+1) -x(tj) = x'(tj)(tj+1-tj). 
If we substitute this into the first sum in (1.1), we obtain 

L P(x(tj), y(tj »x' (tj) (tj+1 - tj), 

which is a Riemann sum approximating the integral J: P(x(t), y(t»x'(t)dt. 
Similarly, the second sum in (1.1) is a Riemann sum approximating the 
integral J: Q(x(t), y(t»y'(t)dt. As the distances between the successive t/s 
tend to 0, the sums in (1.1) converge to an ordinary garden-variety Riemann 
integral, and we obtain 

(1.3) 1 Pdx + Qdy = lb P(x(t),y(t»): dt + lb Q(x(t),y(t»!~ dt. 

Thus to evaluate a line integral over a smooth curve, we simply parametrize 
the curve by t I--t (x(t),y(t)), calculate the derivatives dx/dt and dy/dt of 
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the components, and plug these into the definite integral in (1.3). To 
evaluate the line integral over a path that is only piecewise smooth, we 
parametrize each smooth subpath, calculate the corresponding integrals 
by (1.3), and add them. 

"( B = (xn, Yn) 

(xn--l' Yn--l) 

Note that the definition of the line integral over 'Y is independent of the 
parameterization of 'Y. The parameterization enters only in determining 
the ordering of the points on the curve 'Y. Thus different parameterizations 
give the same integral in (1.3). Also note that if we reverse the direction 
of 'Y, then the line integral is replaced by its negative. 

Example. To evaluate J"( xy dx, where 'Y is the quarter-circle from (1,0) 
to (0,1) on the unit circle, we parametrize 'Y by 

(x(O),y(O)) = (cosO, sinO), o 5; 0 5; IT /2, 
and we substitute into (1.3). This gives 

i xydx = 
r/2 

Jo cosOsinOd(cosO) 

sin3 0 11r/2 _ 1 
--3- 0 - -3' 

Note that the sign is correct, since xy ~ 0 in the curve 'Y, while dx < 0 on 
the curve (since x decreases on the curve). 

(0,1) (0,1) 

"(8) = (cos 9, sin 9) 

D 

(1,0) (0,0) (1,0) 

A domain D has piecewise smooth boundary if the boundary of D 
can be decomposed into a finite number of smooth curves meeting only 
at endpoints. By "smooth" we usually mean "continuously differentiable," 
though in applications the curves making up the boundary will usually be 
straight line segments or arcs of circles. We denote the boundary of D 
by aD. For purposes of integration, the orientation of aD is chosen so 
that D lies on the left of a curve in aD as we traverse the boundary curve 
in the positive direction, that is, as the parameter value increases. 
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Example. To evaluate J&D xy dx, where D is the quarter-disk in the first 
quadrant, we divide the integral into three pieces, 

i 1 1(0,0) 1(1,0) 
xydx = xydx + xydx + xydx, 

&D 'Y (1,0) (0,0) 

where 'Y is the quarter-circle in the preceding example, and the other two 
paths are straight line segments. The integral along the horizontal interval 
on the x-axis is 0, because xy = 0 there. The integral along the vertical 
interval on the y-axis is 0, because dx = 0 there. (To see this, either 
parametrize the line segment explicitly, or go back to the definition (1.1) 
and observe that each of the xi's is 0.) Using the result of the preceding 
example, we find that the value of the integral around aD is -~. 

A very useful tool for evaluating line integrals is provided by Green's 
theorem, which converts a line integral around the boundary of a domain 
to an area integral over the domain. 

Green's Theorem. Let D be a bounded domain in the plane whose 
boundary aD consists of a finite number of disjoint piecewise smooth closed 
curves. Let P and Q be continuously differentiable functions on D u aD. 
Then 

(1.4) faD Pdx + Qdy = fL (~~ - ~:)dXdY. 

D 

Example. We again evaluate J&D xy dx, where D is the quarter-disk in the 
first quadrant, this time using Green's theorem. In this case, P(x, y) = xy 
and Q(x,y) = 0, so (1.4) becomes 

laD xy dx = - f L x dx dy = - f f r cos 0 r dr dO 

_17r
/

2 
cosO dO 11 r 2dr = -(1)(~), 

as before. 

Since Green's theorem is of fundamental importance, we provide a sketch 
of the ideas behind the derivation of the formula (1.4). One basic idea is 
to cut the domain into little curvilinear triangular pieces and treat each 
piece separately. Another is to reduce the double integral over a triangle 
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to a line integral by applying the fundamental theorem of calculus in one 
variable with the other variable as a parameter. For convenience, we break 
the proof-sketch into three steps. 

The first step is to establish the formula (1.4) for the triangle T with 
vertices at (0,0), (1,0), and (0,1). We must establish the two identities 

lar Pdx = - Ii ~: dxdy, faT Qdy = Ii ~~ dxdy. 

Consider just the first identity here. We represent the double integral as 
an iterated integral and use the fundamental theorem of calculus, to obtain 

Ii ~: dxdy= 11 [1
1

-
X 0:: dY]dx= 11 P(x, 1-x) dx-1

1 
P(x,O)dx. 

The sum on the right we recognize as - JoT P dx, after we parametrize 
separately the three sides of aT. Indeed, the line integral of Pdx along the 
vertical edge of T is 0, since dx = 0 there; the line integral of Pdx along 
the bottom edge of T is J~ P(x, O)dx; and the line integral of Pdx back 

along the hypotenuse of Tis - Jo1 P(x, 1 - x)dx, where we have used the 
parameterization y = 1 - x. 

(O'l)~ 

(o.O)~(l,O) ~ 
differentiable triangle 

The second step of the proof is to establish the formula for any domain D 
that can be obtained from the triangle T by a change of variables. (See 
Exercise 7.) 

The final step in the proof, for an arbitrary domain D, involves triangu­
lating D, that is, cutting D into small triangular pieces, each of which can 
be obtained from the triangle T by a change of variables. Green's theorem 
is applied to each triangular piece, and the results are added. The sum of 
the area integrals over the triangular pieces is the area integral over D. The 
boundary integrals over the sides of the triangular pieces inside D cancel 
in pairs, since each curvilinear triangle side is traversed twice, once in each 
direction, and the opposing directions cancel. The boundary integrals over 
the curvilinear triangle sides in aD add up to the integral over aD. 

triangulation 
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Note that we will be using Green's theorem only for relatively simple do­
mains, those whose boundaries consist of straight line segments and circular 
arcs, for which Green's theorem can be established relatively easily. 

Exercises for IIL1 

1. Evaluate J'Y y2dx + x2dy along the following paths 'Y from (0,0) to 
(2,4): (a) the arc of the parabola y = x 2 ; (b) the horizontal interval 
from (0,0) to (2,0), followed by the vertical interval from (2,0) to 
(2,4); (c) the vertical interval from (0,0) to (0,4), followed by the 
horizontal interval from (0,4) to (2,4). 

2. Evaluate J'Y xy dx both directly and using Green's theorem, where 
'Y is the boundary of the square with vertices at (0,0), (1,0), (1,1), 
and (0,1). 

3. Evaluate JaD x2dy both directly and using Green's theorem, where 
D is the quarter-disk in the first quadrant bounded by the unit circle 
and the two coordinate axes. 

4. Evaluate J'Y y dx both directly and using Green's theorem, where 'Y 
is the semicircle in the upper half-plane from R to - R. 

5. Show that JaD x dy is the area of D, while JaD y dx is minus the 
area of D. 

6. Show that if P and Q are continuous complex-valued functions on 
a curve 'Y, then 

F(w) = 1 Pdx +1 Qdy 
"I z-w "I z-w 

(Z = x + iy) 

is analytic for w E C\ 'Y. Express F' (w) as a line integral over 'Y. 

7. Show that the formula in Green's theorem is invariant under coor­
dinate changes, in the sense that if the theorem holds for a bounded 
domain U with piecewise smooth boundary, and if F(x, y) is a 
smooth function that maps U one-to-one onto another such do­
main V and that maps the boundary of U one-to-one smoothly onto 
the boundary of V, then Green's theorem holds for V. Hint. First 
note the change of variable formulae for line and area integrals, given 
by 

!au (P 0 F) (~! dx + ~; dY), 

fL(ROF) detJpdxdy, 
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where F(x,y) = (~(x,y),ry(x,y)), and where JF is the Jacobian 
matrix of F. Use these formulae, with R = -8PI8ry. The summand 
J Q dry is treated similarly. 

8. Prove Green's theorem for the rectangle defined by Xo < x < Xl 

and Yo < Y < YI (a) directly, and (b) using the result for triangles. 

2. Independence of Path 

In order to draw a useful analogy with single-variable calculus, we begin 
by reviewing the fundamental theorem of calculus. Recall that F(t) is an 
antiderivative for f(t) if its derivative is f, that is, F' = f. 

Fundamental Theorem of Calculus. 
Part I. If F(t) is an antiderivative for the continuous function f(t), then 

lb f(t) dt = F(b) - F(a). 

Part II. If f(t) is a continuous function on [a, b), then the indefinite integral 

F(t) = It f(s) ds, a~t~b, 
is an antiderivative for f(t). Further, each antiderivative for f(t) differs 
from F(t) by a constant. 

If h(x, y) is a continuously differentiable complex-valued function, we 
define the differential dh of h by 

8h 8h 
dh = 8x dx + 8ydy. 

We say that a differential Pdx + Qdy is exact if Pdx + Qdy = dh for some 
function h. The function h plays the role of the antiderivative, and the 
following theorem is the analogue of Part I of the fundamental theorem of 
calculus. It provides a useful tool for evaluating line integrals. 

Theorem (Part I). If 'Y is a piecewise smooth curve from A to B, and if 
h( x, y) is continuously differentiable on 'Y, then 

(2.1) i dh = h(B) - h(A). 

To see this, let the curve be given by t I--t (x(t), y(t)), a ~ t ~ b. From 
(1.3) we have 

1 dh = 18h dx + 8h dy = lb 8h dx dt + lb 8h dy dt. 
'Y 'Y 8x 8y a 8x dt a 8y dt 
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By the chain rule and the fundamental theorem of calculus, this is 

l b d Ib a dth(x(t),y(t))dt = h(x(t),y(t)) a = h(B) - h(A). 

Example. To evaluate J-y 2xydx + (x2 + 2y) dy, where'Y is the quarter­
circle given bY'Y(B) = (cosB,sinB), 0 ::; B ::; rrj2, we could proceed as 
in the preceding section and plug the parameterizing functions into (1.3). 
However, in this case it is easier to observe that 2xy dx + (x2 + 2y) dy = dh 
for h(x, y) = x2y + y2. Consequently, 

1

(0,1) 12XYdx+(x2+2Y)dY = (X2y+y2) = 1-0 = 1. 
-y (1,0) 

Unfortunately, not every differential Pdx + Qdy is exact. We aim to give 
some conditions that can be used to determine when a differential is exact. 

Let P and Q be continuous complex-valued functions on a domain D. 
We say that the line integral J Pdx + Qdy is independent of path in D 
if for any two points A and B of D, the integrals J-y Pdx + Qdy are the 
same for any path 'Y in D from A to B. This is tantamount to requiring 
J-y Pdx + Qdy = 0 for any closed path "I in D. Indeed, if "11 and "12 are two 
paths in D from A to B, then we can form a closed path "I in D, starting and 
ending at A, by following "11 from A to B and then following "12 backwards 
from B to A. Since the reversal of direction along "12 changes the sign of 
the integral, we have J-y = J-Y1 - J-Y2' so that J-y = 0 if and only if J-Y1 = J-Y2· 

___ Z~2_=--, B 
A e::::::::::-___ Jo ___ ~ 

__ ..... _----' B 
A -===== _~ 

"(1 

Formula (2.1) shows that the integrals of exact differentials are indepen­
dent of path. The converse is easily seen to be true also. 

Lemma. Let P and Q be continuous complex-valued functions on a do­
main D. Then J Pdx + Qdy is independent of path in D if and only if 
Pdx + Qdy is exact, that is, there is a continuously differentiable function 
h(x, y) such that dh = Pdx + Qdy. Moreover, the function h is unique, up 
to adding a constant. 

Suppose that J Pdx + Qdy is independent of path in D. Fix a point A 
in D, and define a function h(x, y) on D by 

h(B) = i B 
Pdx + Qdy, BED, 

where we may take any path in D from A to B. We compute the partial 
derivatives of h(x, y) by choosing some special paths. Fix (xo, Yo) in D, 
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and fix a path 'Y from A to (xo, Yo). For x near xo, we evaluate hex, Yo) 
by following the path 'Y from A to (xo, Yo) and then the straight line path 
x(t) = t, yet) = Yo from (xo, Yo) to (x, Yo). This gives 

hex, Yo) = 1 Pdx + Qdy + l x 
pet, Yo) dt. 

7 Xo 

Since the first summand on the right is a constant, we obtain from the 
fundamental theorem of calculus that 

8h 
8x (xo, Yo) P(xo, yo). 

Similarly, we obtain 

8h 
8y (xo, Yo) = Q(xo, Yo), 

and consequently dh = Pdx + Qdy. For the uniqueness, note that if hI is 
any other function such that dhI = Pdx + Qdy, then d(h - hd = 0, that 
is, 

8 8 
8x (h - hI) = 0 = By (h - hI). 

Since D is a domain, h - hI is constant on D. 
Let P and Q be continuously differentiable complex-valued functions on 

a domain D. We say that the differential Pdx + Qdy is closed on D if 

(2.2) 
8P aQ 
ay = ax· 

This is precisely the condition that the integrand in Green's theorem is 
zero. Thus Green's theorem implies that if Pdx + Qdy is closed on D, then 
Iou Pdx + Qdy = 0 for any bounded domain U with piecewise smooth 
boundary such that U together with its boundary is contained in D. 

Lemma. Exact differentials are closed. 

Indeed, if Pdx + Qdy = dh is exact, then 

ap 

8y 
a 8h 
8y8x 

a 8h 8Q 
= axay 8x· 

Not every closed differential is exact. For certain domains, the so-called 
simply connected domains, any closed differential is exact; in fact, this 
statement characterizes simply connected domains. We content ourselves 
with the following theorem for star-shaped domains, which includes the 
simply connected domains of most interest to us. The theorem is the ana­
logueof Part II of the fundamental theorem of calculus. It gives conditions 
on a smooth differential to have an antiderivative, that is, to be exact. 
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Theorem (Part II). Let P and Q be continuously differentiable complex­
valued functions on a domain D. Suppose 
(i) D is a star-shaped domain (as a disk or rectangle), and 
(ii) the differential Pdx + Qdy is closed on D. 
Then Pdx + Qdy is exact on D. 

The proof is similar to the one given just above. Suppose that D is 
star-shaped with respect to the point A E D. We define h(B) at any point 
BEDby 

h(B) = i
B 

Pdx + Qdy, 

where the path of integration is the straight line segment from A to B. 
We claim that dh = Pdx + Qdy. To see this, fix B = (xo, yo), and let 
C = (x, Yo) lie on the horizontal line through B and close enough to B so 
that the triangle with vertices A, B, C lies within D. We apply Green's 
theorem to the triangle, to obtain 

Thus 

iC(Pdx + Qdy) 

or 

h(x, Yo) - h(xo, Yo) = lx 
P(t, Yo) dt. 

Xo 

From the fundamental theorem of calculus we obtain 

ah 
ax (xo, Yo) = P(xo, Yo). 

Similarly, 

ah 
ay (xo, Yo) = Q(xo, Yo)· 

Consequently, dh = Pdx + Qdy, and Pdx + Qdy is exact. 
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Example. Consider the differential 

-ydx + xdy 
x + iy E C\{O}. x2 +y2 

A straightforward calculation (Exercise 2) reveals that the differential is 
closed on C\ {O}. If we integrate the differential around the unit circle, 
using the parameterization x = cosO, y = sinO, we obtain 

1 -y~ + :dy = [27r dO = 27r. 
Jlzl=l X + y Jo 

Thus the integral is not independent of path, and the differential is not 
exact on C\ {O}. On the other hand, since C\( -00,0] is a star-shaped do­
main, the differential is exact on C\ ( -00, 0]. On this domain the differential 
coincides with d(Argz). 

Now suppose that Pdx + Qdy is a closed differential on a domain D. 
We fix points A, BED, and we consider paths 'Y in D from A to B. 
The integral J'Y Pdx + Qdy may depend on the path 'Y. We claim, how­
ever, that if two paths 'Yo and 'Yare "sufficiently near" to each other, 
then f Pdx + Qdy = f Pdx + Qdy. By "sufficiently near" we mean 

'Yo 'Y 
that there are successive points A = Ao, AI. A 2, ... ,An = B on 'Yo and 
A = Co, CI. C2 , .•. ,Cn = B on 'Y such that the intervals on 'Yo from Ak - 1 

to Ak and on 'Y from Ck-l to Ck are contained in the same disk ak, which 
is contained in D. To see that the integrals are the same, we let 'Yk be the 
path in D that follows 'Y from A to the point Ck , then follows a straight line 
segment in D..k from Ck to A k, then follows 'Yo from Ak to B. Thus 'Yk is 
obtained from 'Yk-l by changing only the subpath in a k from Ck-l to Ak, 
so that instead of following the straight line from Ck-l to Ak-l and then 
'Yo from Ak-l to A k, we follow 'Y from Ck-l to Ck and then the straight 
line from Ck to Ak. Since the integral of Pdx + Qdy is independent of path 
in the disk a k, this change in 'Yk-l to 'Yk does not affect the integral, 

1 Pdx+Qdy = 1 Pdx + Qdy, 
'Yk-l 'Yk 

1 '5: k '5: n. 

Since 'Yn = 'Y, we obtain after n steps 

i Pdx + Qdy = io Pdx + Qdy. 

This identity holds not only if'Y is near 'Yo but whenever 'Y can be obtained 
by deforming 'Yo continuously. We state the deformation theorem formally. 

A=AO=Co 
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Theorem. Let D be a domain, and let ')'o(t) and ')'1 (t), a::; t ::; b, be two 
paths in D from A to B. Suppose that ')'0 can be continuously deformed 
to ')'1, in the sense that for 0 ::; 8 ::; 1 there are paths ')'s(t), a::; t ::; b, from 
A to B such that ')'s(t) depends continuously on 8 and t for 0 ::; 8 ::; 1, 
a ::; t ::; b. Then 

(2.3) 1 Pdx+Qdy = 1 Pdx+Qdy 
'Yo 'Yl 

for any closed differential Pdx + Qdy on D. 

The idea of the proof is that any continuous deformation of ')'0 can be 
realized as a finite number of successive modifications by paths in D from A 
to B that are close to each other. The proof requires a compactness ar­
gument, but otherwise it is straightforward. The compactness argument 
allows us to find paths corresponding to 0 = 80 < 81 < ... < 8m = 1, 
and successive t-values a = to < t1 < ... < tn = b such that the subpaths 
')'Sj-l (t) and ')'Sj (t), tk-1 ::; t ::; tk, lie in the same disk !:::.jk in D. This 
can be done on account of the continuity of ')'s(t) in 8 and t. Then ')'Sj-l is 
"sufficiently near" to ')'Sj for each j, and the rolling wave argument above 
shows that the integrals of Pdx + Qdy over the two paths are the same, 
this for 1 ::; j ::; n, so that (2.3) holds. 

A slight variation of the argument establishes a deformation theorem for 
closed paths in D. These are paths in D that start and end at the same 
point. When we deform closed paths, we allow the starting point to move 
also. 

Theorem. Let D be a domain, and let ')'o(t) and ')'1(t), a::; t::; b, be two 
closed paths in D. Suppose that ')'0 can be continuously deformed to ')'1, in 
the sense that for 0 ::; 8 ::; 1 there are closed paths ')'s(t), a ::; t ::; b, such 
that ')'s(t) depends continuously on 8 and t for 0::; 8 ::; 1, a ::; t ::; b. Then 

1 Pdx+Qdy = 1 Pdx+Qdy 
'Yo 'Yl 

for any closed differential Pdx + Qdy on D. 

Summary. We have defined what it means for a differential Pdx + Qdy 
to be exact, to be closed, and to be independent of path. We have 
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shown that 

independent of path {:=:} exact ==} closed. 

For star-shaped domains we have shown that 

independent of path {:=:} exact ¢=} closed. 

We have also shown that if Pdx + Qdy is a closed differential, then a 
deformation in the path from A to B does not change the value of the 
integral of Pdx + Qdy along the path. 

Exercises for 111.2 

1. Determine whether each of the following line integrals is indepen­
dent of path. If it is, find a function h such that dh = Pdx + Qdy. 
If it is not, find a closed path "I around which the integral is not 
zero. (a) xdx + ydy, (b) x2dx+y5dy, (c) ydx + xdy, (d) ydx-xdy. 

2. Show that the differential 

-ydx+xdy 
(x, y) =I (0,0), 

is closed. Show that it is not independent of path on any annulus 
centered at O. 

3. Suppose that P and Q are smooth functions on the annulus {a < 
Izl < b} that satisfy oP/oy = oQ/ox. Show directly using Green's 
theorem that ~zl=r p dx + Q dy is independent of the radius r, for 
a < r < b. 

4. Let P and Q be smooth functions on D satisfying oP/oy = oQ/ox. 
Let "10 and "11 be two closed paths in D such that the straight line 
segment from "Io(t) to "I1(t) lies in D for every parameter value t. 
Then f Pdx + Qdy = f Pdx + Qdy. Use this to give another 

~o ~l 

solution to the preceding exercise. 

5. Let "Io(t) and "11 (t), 0 ~ t ~ 1, be paths in the slit annulus {a < Izl < 
b} \ ( -b, -a) from A to B. Write down explicitly a family of paths 
"Is ( t) from A to B in the slit annulus that deforms "10 continuously 
to "11. Suggestion. Deform separately the modulus and the principal 
value of the argument. 

6. Show that any closed path "I(t), 0 ~ t ~ 1, in the annulus {a < 
Izl < b} can be deformed continuously to the circular path a(t) = 
"I(0)e27rimt, 0 ~ t ~ 1, for some integer m. Hint. Reduce to the 
case where b(t)1 == 1"1(0)1 is constant. Then start by finding a 
subdivision 0 = to < t1 < ... < tn = 1 such that arg"l(t) has a 
continuous determination on each interval tj-1 ~ t ~ tj. 
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7. Show that if 0 and 00 lie in different connected components of the 
complement C*\D of D in the extended complex plane, then there 
is a closed path 'Y in D such that J-y dfJ 1= O. Hint. The hypothesis 
means that there are 8 > 0 and a bounded subset E of C\D such 
that 0 E E, and every point of E has distance at least 58 from every 
point of C\D not in E. Lay down a grid of squares in the plane 
with side length 8, and let F be the union of the closed squares in 
the grid that meet E or that border on a square meeting E. Show 
that aF is a finite union of closed paths in D, and that JaF dfJ = 27r. 

3. Harmonic Conjugates 

The basis for application of Green's theorem to harmonic functions is the 
following important observation. 

Lemma. If u( x, y) is harmonic, then the differential 

(3.1) 
au au 

--dx + -dy 
ay ax 

is closed. 

Indeed, for this differential the condition (2.1) for P = -aujay and Q = 
aujax becomes -a2ujay2 = a2ujax2, which is equivalent to Laplace's 
equation. 

Now suppose that u( x, y) is harmonic on a star-shaped domain D. If we 
apply the theorem in Section 2 to the differential given in (3.1), we obtain 
a smooth function v(x, y) such that 

au au 
(3.2) dv = - ay dx + ax dy. 

The equation (3.2) is equivalent to 

av au av 
ay 

au 

which are the Cauchy-Riemann equations. Thus u + iv is analytic, and we 
have established the following theorem. 

Theorem. Any harmonic function u(x, y) on a star-shaped domain D (as 
a disk or rectangle) has a harmonic conjugate function v(x, y) on D. 

By (3.2), the harmonic conjugate v(x, y) is given explicitly up to an 
additive constant by 

(3.3) 
[E au au 

v(B) = JA - aydx + ax dy , 
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where A is fixed, and the integral is independent of path in D. If D is a 
disk, and we take the path from A to B to be a vertical interval followed by 
a horizontal interval, we obtain the formula (5.3) derived in Section 11.5. 

Example. To find a harmonic conjugate v(z) for u = log Izl on the star­
shaped domain C\( -00,0], we express u in the form 

1 
u(x, y) = 2log(x2 + y2), 

and we compute 

du = x dx + 2 Y 2 dy. 
x 2 +y2 x +y 

Equation (3.2) becomes 

dv = 

This leads to the identity 

Y dx+ x dy 2 2 2 2 . 
X +y x +y 

l z -y x 
Argz = 2 2dx + 2 2dy , 

1 X +y x +y 
z ~ (-00,0], 

since the principal branch Arg z is the unique harmonic conjugate of log Izl 
on C\ ( -00, 0], normalized to vanish at z = 1. 

Exercises for 111.3 

1. For each of the following harmonic functions u, find du, -find dv, and 
find v, the conjugate harmonic function of u. 
(a) u(x,y) = x - y (c) u(x,y) = sinhxcosy 

(b) u(x,y) = x 3 - 3xy2 (d) u(x,y) = 2 Y 2 
X +y 

2. Show that a complex-valued function h(z) on a star-shaped do­
main D is harmonic if and only if h(z) = J(z) + g(z), where J(z) 
and g(z) are analytic on D. 

3. Let D = {a < Izl < b}\( -b, -a), an annulus slit along the negative 
real axis. Show that any harmonic function on D has a harmonic 
conjugate on D. Suggestion. Fix c between a and b, and define v(z) 
explicitly as a line integral along the path consisting of the straight 
line from c to Izl followed by the circular arc from Izl to z. Or map 
the slit annulus to a rectangle by w = Log z. 

4. Let u(z) be harmonic on the annulus {a < Izl < b}. Show that there 
is a constant C such that u(z) - Clog Izl has a harmonic conjugate 
on the annulus. Show that C is given by 

C = ;7r 121< ~; (rei9) dO, 
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where r is any fixed radius, a < r < b. 

5. The flux of a function u across a curve 'Y is defined to be 

1 ~: ds = 1 Vu·nds, 

where n is the unit normal vector to 'Y and ds is arc length. Show 
that if a harmonic function u on a domain D has a conjugate har­
monic function v on D, then the integral giving the flux is indepen­
dent of path in D. Further, the flux across a path 'Y in D from A 
to B is v(B) - v(A). 

4. The Mean Value Property 

Let h(z) be a continuous real-valued function on a domain D. Let Zo ED, 
and suppose D contains the disk {Iz - zol < pl. We define the average 
value of h(z) on the circle {Iz - zol = r} to be 

12~ dB 
A(r) = 0 h (zo + rei9 ) 27r' 0< r < p. 

Since h(z) is continuous, the average value A(r) varies continuously with 
the radius r. Since the values of h(z) are all near h(zo) when z is near ZQ, 

the averages A(r) are also near h(zo) when r is small, and consequently 
A(r) tends to h(zo) as r decreases to O. This can be seen with complete 
rigor from the estimates 

IA(r) - h(zo)1 = 112~ [h (zo + rei9) - h(zo)] ~: I 

12~ ·9 dB 
< Ih (zo + ret) - h(zo)I-, 

o 27r 

where we have used the fact that dB /27r is a probability measure, that is, 
it is positive and its integral is 1. The continuity of h(z) at Zo guarantees 
that the integrand in the right-hand side tends to 0 uniformly in B, so that 
the integral tends to 0 as r tends to o. 

Theorem. If u(z) is a harmonic function on a domain D, and if the disk 
{Iz - zol < p} is contained in D, then 

12~ dB 
(4.1) u(zo) = 0 u(zo+rei9)27r' 0< r < p. 

In other words, the average value of a harmonic function on the boundary 
circle of any disk contained in D is its value at the center of the disk. To 
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see this, we begin with the identity 

i au au 
o = --dx + axdy, 

Iz-zol=r ay 

which follows immediately from Green's theorem and the harmonicity of 
u(z). (See the Lemma in Section 3.) We parametrize the circle by x(B) = 
Xo + r cos Band y( B) = Yo + r sin B, and we obtain 

(4.2) 0 = r 121r [~:COSB + ~:SinB]dB = r 121r ~; (zo+rei9) dB. 

Since u(z) is smooth, we can interchange the order of integration and dif­
ferentiation. We obtain after dividing by 27rr that 

Thus 

a r21r ·9 dB 
o = ar Jo u (zo + ret) 27r' 

r21r dB 
Jo u (zo + rei9 ) 27r 

0< r < p. 

is constant for 0 < r < p. Since u(z) is continuous at Zo, the average value 
tends to u(Zo) as r -+ 0, and the constant is u(zo). This establishes (4.1). 

We say that a continuous function h(z) on a domain D has the mean 
value property if for each point Zo E D, h(zo) is the average of its values 
over any small circle centered at zo0 In the language of formal mathematics, 
this means that for any Zo ED, there is e > 0 such that 

121r dB 
h(zo) = h (zo + rei9 ) -, 

o 27r 
0< r < e. 

Our theorem above has a simple restatement: Harmonic functions have 
the mean value property. We will show in Chapter X that the converse 
is true, that any continuous function on D with the mean value property 
is harmonic. This is rather remarkable, since the hypothesis requires only 
continuity but no differentiability of the function. 

Exercises for 111.4 

1. Let J(z) be a continuous function on a domain D. Show that if 
J(z) has the mean value property with respect to circles, as defined 
above, then J(z) has the mean value property with respect to disks, 
that is, if Zo E D and Do is a disk centered at Zo with area A and 

contained in D, then J(zo) = ~J La J(z) dxdy. 

2. Derive (4.2) from the polar form of the Cauchy-Riemann equations 
(Exercise II.3.8). 
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3. A function f(t) on an interval I = (a, b) has the mean value prop­
erty if 

f(s;t) = f(s);f(t), s,t E I. 

Show that any affine function f(t) = At + B has the mean value 
property. Show that any continuous function on I with the mean 
value property is affine. 

4. Formulate the mean value property for a function on a domain in ]R3, 

and show that any harmonic function has the mean value property. 
Hint. For A E ]R3 and r > 0, let Br be the ball of radius r centered 
at A, with volume element dr, and let 8Br be its boundary sphere, 
with area element dcr and unit outward normal vector n. Apply the 
Gauss divergence theorem 

to F = V'u. 

5. The Maximum Principle 

The strict maximum principle asserts that if a real-valued harmonic func­
tion attains its maximum on a domain D, then it is constant. 

Strict Maximum Principle (Real Version). Let u(z) be a real-valued 
harmonic function on a domain D such that u( z) :S M for all zED. If 
u(zo) = M for some Zo E D, then u(z) = M for all zED. 

The idea of the proof is to use the mean value property to show that the 
set of points for which u( z) = M is open. Indeed, suppose u( Zl) = M, and 
express the mean value equality (4.1) in the form 

(5.1) 12~ °0 de 
0= [U(Zl) - u (Zl + ret )] -, 

o 27r 
0< r < p. 

Since the integrand is nonnegative (?: 0) and continuous, the integral (5.1) 
can be zero only if the integrand is zero. Thus U(ZI + reiO ) = U(Zl) = M 
for 0 :S e :S 27r and 0 < r < p, and the set {u( z) = M} contains a disk 
centered at each of its points, hence is open. Now, the set {u(z) < M} is 
also open, since u(z) is continuous. Since D is a domain, one of these two 
sets is empty and the other coincides with all of D. (See Section ILL) In 
other words, either u(z) < M for all ZED, or u(z) = M for all zED, 
and this proves the theorem. 

Recall that a complex-valued function is harmonic if its real and imag­
inary parts are harmonic, that is, if the function satisfies Laplace's equa-
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tion. Thus any analytic function is harmonic. There is a strict maximum 
principle also for complex-valued harmonic functions. It asserts that if 
a complex-valued harmonic function attains its maximum modulus on a 
domain D, then it is constant. 

Strict Maximum Principle (Complex Version). Let h be a bounded 
complex-valued harmonic function on a domain D. If Ih(z)1 :::; M for all 
zED, and Ih(zo)1 = M for some Zo ED, then h(z) is constant on D. 

This can be derived easily from the real version of the strict maximum 
principle. We replace h(z) by .>..h(z) for an appropriate unimodular con­
stant .>.., and we can assume that h(zo) = M. Let u(z) = Reh(z). Then 
u(z) is a harmonic function on D that attains its maximum at zo0 By the 
strict maximum principle for real-valued harmonic functions, u(z) = M for 
all zED. Since Ih(z)1 S M and Reh(z) = M, we must have Imh(z) = 0 
for zED. Hence h(z) is constant on D. 

AI; a corollary of the strict maximum principle we also obtain the follow­
ing version of the maximum principle. In words, it asserts that a complex­
valued harmonic function on a bounded domain attains its maximum mod­
ulus on the boundary. 

Maximum Principle. Let h(z) be a complex-valued harmonic function 
on a bounded domain D such that h(z) extends continuously to the bound­
ary aD of D. If Ih(z)1 :::; M for all z E aD, then Ih(z)1 S M for all zED. 

The proof of the maximum principle hinges on the fact that a continuous 
function on a compact set attains its maximum modulus at some point of 
the set. (See Section 11.1.) In this case the compact set is the union 
of the domain and its boundary, which is a closed bounded set. If the 
harmonic function attains its maximum modulus at some point of D, then 
it is constant. Thus in all cases it attains its maximum modulus on the 
boundary of D. 

The maximum principle is useful, for instance, for demonstrating con­
vergence of a sequence of harmonic functions. To show that a sequence 
of harmonic functions converges in a disk or rectangle, it suffices to ob­
tain good estimates on the boundary of the disk or rectangle, since the 
boundary estimates automatically persist in the interior. 

Exercises for III.5 

1. Let D be a bounded domain, and let u be a real-valued harmonic 
function on D that extends continuously to the boundary aD. Show 
that if a :::; u :::; b on aD, then a :::; u :::; bon D. 
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2. Fix n ;::: 1, r > 0, and A = pei'P. What is the maximum modulus 
of zn + A over the disk {Izl ~ r}? Where does zn + A attain its 
maximum modulus over the disk? 

3. Use the maximum principle to prove the fundamental theorem of 
algebra, that any polynomial p(z) of degree n ;::: 1 has a zero, by 
applying the maximum principle to I/p(z) on a disk of large radius. 

4. Let J (z) be an analytic function on a domain D that has no zeros 
on D. (a) Show that if IJ(z)1 attains its minimum on D, then J(z) 
is constant. (b) Show that if D is bounded, and if J(z) extends con­
tinuously to the boundary aD of D, then IJ(z)1 attains its minimum 
onaD. 

5. Let J(z) be a bounded analytic function on the right half-plane. 
Suppose that J(z) extends continuously to the imaginary axis and 
satisfies IJ(iy)1 ~ M for all points iy on the imaginary axis. Show 
that IJ(z)1 ~ M for all z in the right half-plane. Hint. For c > 0 
small, consider (z + 1) -E J (z) on a large semidisk. 

6. Let J(z) be a bounded analytic function on the right half-plane. 
Suppose that lim sup IJ(z)1 ~ M as z approaches any point of the 
imaginary axis. Show that I J (z) I ~ M for all z in the half-plane. 
Remark. This is a technical improvement on the preceding exercise 
for students who can deal with a lim sup (see Section V.I). 

7. Let J(z) be a bounded analytic function on the open unit disk ]])). 
Suppose there are a finite number of points on the boundary such 
that J(z) extends continuously to the arcs of a]])) separating the 
points and satisfies IJ(ei8 )1 ~ M there. Show that IJ(z)1 ~ M 
on]])). Hint. In the case that there is only one exceptional point 
z = 1, consider the function (1 - z)e J(z). 

8. Let J(z) be a bounded analytic function on a horizontal strip in 
the complex plane. Suppose that J(z) extends continuously to the 
boundary lines of the strip and satisfies IJ(z)1 ~ M there. Show 
that IJ(z)1 ~ M for all z in the strip. Hint. Find a conformal map 
of the strip onto]])) and apply Exercise 7. 

9. Let D be an unbounded domain, D =I- C, and let u(z) be a harmonic 
function on D that extends continuously to the boundary aD. Sup­
pose that u(z) is bounded below on D, and that u(z) ;::: 0 on aD. 
Show that u(z) ;::: 0 on D. Hint. Suppose 0 E aD, and consider 
functions of the form u(z) + plog Izl on D n {Izl > c}. 

10. Let D be a bounded domain, and let Zo E aD. Let u(z) be a 
harmonic function on D that extends continuously to each boundary 
point of D except possibly ZOo Suppose that u(z) is bounded below 
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on D, and that u(z) ~ 0 for all z E aD, z =I- zoo Show that u(z) ~ 0 
onD. 

11. Let E be a bounded set of integer lattice points in the complex 
plane. A point m + ni of E is an interior point of E if its four 
immediate neighbors m ± 1 + ni, m + ni ± i belong to E. Otherwise, 
m + ni is a boundary point of E. A function on E is harmonic 
if its value at any interior point of E is the average of its values at 
the four immediate neighbors. Show that a harmonic function on a 
bounded set of lattice points attains its maximum modulus on the 
boundary of the set. 

6. Applications to Fluid Dynamics 

We consider a fluid flow in a domain D in the plane. We think of the 
fluid as a collection of particles that move in the plane as time evolves. 
We associate with the particle at the point z its velocity vector V(z). The 
direction ofV(z) is the direction the particle is moving, and the magnitude 
IV(z)1 is its speed. We make the following assumptions on the flow. 

1. The flow is independent of time, that is, the velocity vector field 
V (z) does not change with time. 

2. There are no sources or sinks in D; that is, no fluid is created or 
destroyed in D. 

3. The flow is incompressible; that is, the density of the fluid is the 
same at each point of D, and it does not change with time. 

4. The flow is ''irrotational"; that is, there is no circulation of fluid 
around small circles centered in D. 

We will return shortly to explain this fourth condition. First we define 
"flux" across a curve and "circulation" around a closed curve. 

Let 7 be a curve in the plane. We denote the unit tangent vector to 7 
by t and the unit normal vector to 7 by n. If 7 is parameterized by arc 
length s, 7(S) = (x(s),y(s)), then the unit tangent and normal vectors are 
given respectively by 

The normal component of V to the curve 7 is then V . n. If the flow is 
parallel to '1, then V . n = 0, and no fluid crosses 7. The maximum flow 
per unit length is obtained when 7 is orthogonal to V. 

We define the flux of the fluid flow across 7 to be the integral of the 
normal component of V with respect to arc length, 

flux across 7 = i V· nds. 
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Except for a constant involving units and the density, the flux across 'Y can 
be regarded as the amount of fluid crossing 'Y. If we express Y = (P, Q) 
in terms of its components P and Q, we obtain an expression for the flux 
across 'Y as a line integral: 

(6.1) i Y·nds = i P~~dS - Q~:dS = i Pdy - Qdx. 

If 'Y is a closed curve, we define the circulation of the fluid flow 
around 'Y to be the integral of the tangential component of Y with respect 
to arc length: 

circulation around 'Y = i Y . t ds. 

This can also be expressed in terms of the components P and Q of Y as a 
line integral, 

(6.2) i Y·tds = i P~:dS + Q~~dS = i Pdx + Qdy. 

Let 'Ye = Zo + cei8 be a small circle around a fixed point Zo ED. From 
(6.2) and Green's theorem, the amount of fluid circulating around 'Ye is 
given by 

1 Y.tds = jrr (aQ _ ap)dXdY. 
hE J1z-zo1<e ax 8y 

The irrotationality of the fluid flow (the fourth condition above) means 
simply that this integral is zero for all small c > O. This occurs if and only 
if the integrand is zero, that is, 

(6.3) 
ap 
8y 

aQ 
ax· 

Thus the irrotationality of the flow on D means that (6.3) holds on D. 
The mathematical formulation of the second and third conditions is that 

the net flow of fluid across the boundary of any small circle 'Ye centered at 
a point Zo of D is zero. Using Green's theorem again, we obtain 

0= 1 Y·nds = 1 Pdy - Qdx = jrr (~P + ~~)dxdY. h. "IE J1z-zo1<e x VIJ 
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We conclude as before that 

aP aQ 
(6.4) + - = 0. 

ax ay 

Thus the second and third conditions on the flow can be reinterpreted to 
assert that (6.4) holds on D. 

The conditions (6.3) and (6.4) can be expressed directly in terms of the 
velocity V(z), as 

'V x V = 0, 'V. V = 0. 

This is the form of the equations that is usually most recognizable to phys­
ical scientists. It generalizes to three dimensions. 

Now, the condition (6.3) is just that the differential Pdx+ Qdy be closed. 
On any disk in D, we can then find a smooth function ¢ such that d¢ = 
Pdx + Qdy, that is, 

P = a¢ 
ax' 

Q = a¢ 
ay· 

In terms of the vector field V, this is the same as 'V ¢ = V. The function ¢ is 
called the potential function of V. It is unique, up to adding a constant. 
In terms of ¢, the condition (6.4) is that 

a2¢ a2¢ 
ax2 + 8y2 = 0, 

that is, that the potential function ¢ is harmonic. On any disk in D, ¢ 
then has a conjugate harmonic function 1/J, so that J(z) = ¢(z) + i1/J(z) 
is analytic. The function J(z) is called the complex velocity potential 
of the flow. It is also unique up to adding a constant. Note that while ¢ 
and 1/J may be defined on any disk in D, neither ¢ nor 1/J need be defined 
on all of D. 

The velocity vector field V(z) is expressed in terms of the complex ve­
locity potential J(z) = ¢(z) + i1/J(z), in complex notation, by 

V(z) = a¢ + i a¢ = a¢ _ i a1/J = J'(z). 
ax ay ax ax 

Thus the speed of the fluid particles is given by IV(z)1 = 1f'(z)l. 
k!. we saw in Section 11.6, the level curves of ¢ and of 1/1 are orthogonal 

to each other. Since the level curves of ¢ are also orthogonal to 'V ¢ = V, 
the level curves of 1/1 are tangent to V. Thus the fluid particles flow along 
the level curves of 1/1. 

We define the streamlines of the fluid flow to be the level curves of 1/J, 
that is, the curves {1/1 = c}, for c constant. The streamlines of the flow 
represent the paths of the fluid particles. The function 1/1(z) is called the 
stream function of the fluid flow. 

The stream function 1/J can be used to calculate the flux of the fluid flow 
across a curve 'Y. Indeed, the flux across 'Y is given with the help of the 
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Cauchy-Riemann equations by 

V(z) = z = (x, -y) = vI/> 
I/>(x, y) = (x2 -1)/2 

1/l(z) =xy 

!(z) =112 

1 V . n ds = 1 8¢ dy - 8¢ dx = 1 8'1j; dy + 8'1j; dx = 1 d'lj;. 
'Y 'Y 8x 8y 'Y 8y 8x 'Y 
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Thus the flux of the flow across a curve 'Y is equal to the increase of the 
stream function 'Ij;(z) along 'Y. 

V=(2,1),¢>(Z)=2x+Y 

- 1 
V = - iiI" I/>(z) = log Izl 

r 

Example. The simplest flow in the plane is a constant flow V = (a,j3), 
where a and j3 are constants. The velocity potential ¢ satisfying 'V ¢ = V 
is given, up to an additive constant, by ¢(x, y) = ax + j3y. The stream 
function '¢ is the harmonic conjugate of ¢, given up to an additive constant 
by 'Ij;(x, y) = ay - j3x. The complex velocity potential of the flow is J(z) = 
(a - ij3)z. 

Example. Consider the vector field on the punctured plane C\{O} defined 
by 

1 
V = -Ur , 

r 

where U r is the unit vector in the radial direction. We can express V(z) 
as 'V¢(z) for ¢(z) = log 14 Since log Izl is harmonic, V(z) is the velocity 
vector field of a fluid flow. The stream function of the flow is 'Ij;(z) = argz, 
which is defined only locally, and the complex velocity potential is J(z) = 
log z, also defined only locally. The flux of the flow across a circle centered 
at the origin is calculated directly using n = U r and ds = r dO by 

1 V . n ds = J ~ U r . U r r dO = f21r dO = 27r. 
lIzl=r r Jo 
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This coincides with the increase of the stream function arg z around the 
circle. The origin is a source for the fluid flow. The speed of the fluid 
particles is given by IV(z)1 = 1f'(z)1 = 1/1z1 = 1/r. The fluid particles 
emanate from the origin and follow along rays at continually diminishing 
speeds. 

In addition to the four conditions above, there is one further important 
condition to be placed on a fluid flow velocity V(z), which is a boundary 
condition. 

5. If no fluid is injected or extracted through a boundary curve, then 
the velocity vector field V (z) is parallel to the boundary along that 
curve. 

Thus the boundary curve should be a streamline of the flow, and the stream 
function 1j;(z) should be constant on the curve. 

source 310 

Example. We consider a fluid flow in the upper half-plane with a source 
or sink at o. The fluid is injected or extracted from the upper half-plane 
at a constant rate at the origin. The stream function 1j;(z) should be 
a harmonic function in the upper half-plane that is constant on each of 
the boundary intervals (-00,0) and (0,+00). Such a function is given 
by 1j;(z) = Cargz, where C is a constant. The corresponding complex 
velocity potential function is f (z) = Clog z, and the velocity vector field is 
V(z) = f'(z) = liz = z/lzI2. The flux of the fluid flow entering or exiting 
at the origin is the increase of 1j;(z) along a small semicircle in the upper 
half-plane centered at 0, which is rrC. This determines the constant C. If 
C> 0, we have a source at 0, and if C < 0, we have a sink at 0. 

One way to gain insight into a fluid flow is to map D conformally onto a 
domain for which the corresponding flow is simpler to understand. Flows 
are preserved by conformal maps, in the following sense. If h : D --+ U is 
a one-to-one analytic function (conformal map) from D onto a domain U, 
and if fo(w) = 4>o(w) + i1j;o(w) is a complex velocity potential for a flow 
on U, then the composition f(z) = fo(h(z» is analytic, hence the complex 
velocity potential for a flow on D. 

One of the simplest flows to understand is the constant horizontal flow 
on the upper half-plane ]HI = {1m z > O}, for which no fluid enters or leaves 
across the bounding real line JR. A complex velocity potential for the flow is 
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fo(z) = z. The streamlines of the flow are horizontal lines in lHI, for which 
Im(z) is constant. The boundary lR. of lHI is a streamline, corresponding to 
Im(z) = o. 

Suppose now 'Y is a curve in the plane extending to infinity in both 
directions, and suppose D is the domain lying on one side of 'Y. Suppose 
we wish to find a fluid flow in D such that no fluid enters or exits through 'Y. 
According to the boundary condition, 'Y should be a streamline of the flow. 
The problem can be solved by finding a conformal map h : D --+ lHI that 
maps 00 to 00. In this case the complex velocity potential f(z) = fo(h(z)) is 
simply h(z) itself, and the vector velocity for the fluid flow is V(z) = h'(z). 
The stream function is 1jJ(z) = Im(h(z)), and this is zero on 'Y. Thus 'Y 
is a streamline, and the boundary condition is satisfied. Note that any 
real multiple Ch(z) is also a complex velocity potential for a fluid flow 
that satisfies the boundary conditions and has the same streamlines. It 
corresponds to multiplying the velocity vector field by C. 

~"'" w =g(z) 
/ ~~ X ~ - 'l ~ -- - - - -- - - - - -- - - - - -

Example. Consider a fluid flow at a corner, represented by a sector D = 
{o < arg z < a}, where 0 < a S 211". We assume that no fluid passes 
through the boundary, so that the boundary of the sector should be a 
streamline. We map the sector conformally onto the upper half-plane by a 
power function 

h(z) = z7r/Q = r7r/Q[cos(1I"B/a) + i sin(1I"B/a)]. 

We take h(z) to be the complex velocity potential. Then the stream func­
tion is the imaginary part of h(z), which is zero on the boundary of the 
sector. The streamlines are given in polar coordinates by 

0< B < a, 

where c is a positive constant. The velocity vector for this flow is given by 
V(z) = h'(z), and the speed of the flow is 

IV(z)1 = Ih'(z)1 = ~lzl(7r/Q)-l. 
a 

If 0 < a < 11", the fluid particles traveling near the boundary slow down as 
they approach the corner, while if 11" < a S 211", the fluid particles traveling 
near the boundary speed up as they make the turn around the corner. 

The successful analysis of a two-dimensional flow in D using the tech­
niques of complex analysis often depends upon being able to find a con­
formal map of D onto an appropriate canonical domain, such as the upper 
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I V(z) I -+ 00 at corner IV(z) I -+ 0 at corner 

half-plane, where the solution is apparent. In Chapter XI we will focus on 
enlarging our stockpile of conformal maps. 

Finally, note that the flows that can be modeled as two-dimensional flows 
form a rather narrow class of flows. The flow of air around an airplane wing 
profile can be analyzed using techniques of conformal mapping, but the flow 
of air around an entire airplane is a three-dimensional problem to which 
the techniques of complex analysis do not apply. 

Exercises for III.6 

1. Consider the fluid flow with constant velocity V = (2,1). Find the 
velocity potential ¢(z), the stream function 1/J(z), and the complex 
velocity potential J(z) of the flow. Sketch the streamlines of the 
flow. Determine the flux of the flow across the interval [0,1] on the 
real axis and across the interval [0, i] on the imaginary axis. 

2. Fix real numbers a and (3, and consider the vector field given in 
polar coordinates by 

V(r,O) 
a (3 

= -Ur + -uo, 
r r 

where U r and Uo are the unit vectors in the r and 0 directions, 
respectively. (a) Show that V(r, 0) is the velocity vector field of a 
fluid flow, and find the velocity potential ¢(z) of the flow. (b) Find 
the stream function 1/J(z) and the complex velocity potential J(z) 
of the flow. (c) Determine the flux of the flow emanating from the 
origin. When is 0 a source and when is 0 a sink? (d) Sketch the 
streamlines of the flow in the case a = -1 and (3 = 1. 

3. Consider the fluid flow with velocity V = V¢, where ¢(r,O) = 
(cos 0) / r. Show that the streamlines of the flow are circles and 
sketch them. Determine the flux of the flow emanating from the 
origin. 

4. Consider the fluid flow with velocity V = V ¢, where 

Iz -11 ¢(z) = log z + 1 . 
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Show that the streamlines of the flow are arcs of circles and sketch 
them. Determine the flux of the flow emanating from each of the 
singularities at ±l. 

5. Consider the fluid flow in the horizontal strip {O < 1m z < 1f} with 
a sink at 0 and equal sources at ±oo. Find the stream function 1jJ(z) 
and the velocity vector field V (z) of the flow. Sketch the streamlines 
of the flow. Hint. Map the strip to a half-plane by ( = eZ and solve 
a Dirichlet problem with constant boundary values on the three 
intervals in the boundary separating sinks and sources. 

6. For a fluid flow with velocity potential ¢(z), we define the conju­
gate flow to be the flow whose velocity potential is the conjugate 
harmonic function 1jJ(z) of ¢(z). What is the stream function of 
the conjugate flow? What is the complex velocity potential of the 
conjugate flow? 

7. Find the stream function and the complex velocity potential of the 
conjugate flow associated with the fluid flow with velocity vector 
U r / r. Sketch the streamlines of the conjugate flow. Do the particles 
near the origin travel faster or slower than particles on the unit 
circle? 

8. Find the stream function of the conjugate flow of 

V(r,O) 
1 
-( -Ur + UII). 
r 

Sketch the streamlines of both the flow and the conjugate flow on 
the same axes. (See Exercise 2d.) 

7. Other Applications to Physics 

There are two other physical phenomena that are completely analogous to 
fluid dynamics. They are steady-state heat flow and electrostatics. To draw 
the analogy, we address each topic area briefly, beginning with steady-state 
heat flow. 

The normalized heat equation is Ut = Llu, where Ut denotes the deriv­
ative of U with respect to time. The steady-state (or time-independent) 
equation for the heat is obtained by setting Ut = O. The heat equation 
reduces to Laplace's equation Llu = 0, and thus the steady-state heat dis­
tribution is a harmonic function. In connection with steady-state heat 
distribution, it is natural to consider boundary-value problems of the fol­
lowing types. 
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Dirichlet Problem. Given a prescribed function v on the boundary of D, 
interpreted as the distribution of heat on the boundary, find a harmonic 
function u on D such that u = v on the boundary of D. 

Neumann Problem. Given a prescribed function v on the boundary 
of D, interpreted as the rate of flow of heat through the boundary, find 
a harmonic function u on D whose normal derivative au/an = Vu· n 
coincides with v on the boundary of D. 

Under reasonable conditions on D and v, the Dirichlet problem has a 
unique solution u. For a steady-state solution of the Neumann problem, 
there can be no net flow of heat through the boundary, JeW v ds = o. 
Subject to this condition, the Neumann problem also has a unique solution. 

The vector field Q = V u is called the field of flow of thermal energy. 
It satisfies 

VxQ 

V·Q = 

V x V'u = 0, 

Au = O. 

The equation V x Q = 0 means that the field Q is irrotational. The 
equation V . Q = 0 means that there are no heat sources or sinks within D. 
The heat flux across an arbitrary curve 'Y is given by 

i Q·nds, 

where n is the unit normal to 'Y and ds is arc length. 

Exercise. Find the steady-state heat distribution in a laminar plate rep­
resented by the unit disk {x2 + y2. < I} when the boundary is held at a 
constant temperature + 1 on the edge of the top half {y > 0, x2 + y2 == I} 
of the disk, and at -Ion the edge of the bottom half {y < 0, x 2 + y2 = I} 
of the disk. 
Solution. We recall that the argument function Arg w has a similar behav­
ior in the upper half-plane JH[, in that it is constant on each of the intervals 
(-00,0) and (0, +(0) of the boundary of lHl. We map the upper half-plane 
to the unit disk by a fractional linear transformation so that the interval 
(-00,0) corresponds to the lower semicircular edge of the disk and (0, +(0) 
to the upper semicircular edge. The transformation is given explicitly by 

w-i 
Z=--­

w+i' 
1-z 

w=i--. 
l+z 

Since Logw(z) is analytic on the disk, its imaginary part Argw(z) is har­
monic, and it attains the values 0 on the top edge of the disk and 7f on the 
bottom edge. Thus the solution is given by 

2 2 
u(z) = 1 - - Argw(z) = -[Arg(l + z) - Arg(l- z)]. 

7f 7f 
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This solution can be expressed as u(z) = (27r)(<p + 7/J), where <p and 7/J are 
the angles represented in the figure. 

-ll""--"'-'----L.....>j 

Now we turn to electrostatics. Here it is usual to start with the electric 
force field E on D, defined so that E(A) is the force exerted on a unit 
charge if it were placed at the point A. The work done on a unit charge 
in moving it along a path 'Y in D is then given by the integral J-y E . t ds, 
where t is the unit tangent to the curve, and ds is arc length. The field E is 
assumed to be irrotational: "V x E = O. This is equivalent, at least locally, 
to assuming that J-y E . t ds is independent of path. Thus E = "V</> for some 
function </>, which is called the electric field potential. The work done 
on a unit charge in moving it along a path 'Y from A to B is then given by 

work done = 1 E· t ds = </>(B) - </>(A). 

If there are no sources or sinks in D, then "V. E = 0, and this is equivalent to 
Laplace's equation I).</> = O. Thus the electric field potential </> is harmonic 
in D. 

Example. By a "line charge" we mean a uniform distribution of charge 
along a line (infinite straight wire) in three-dimensional space. We assume 
that the line is perpendicular to the (x, y)-plane. The electric field is then 
independent of the z-direction, and it is sufficient to describe it in the 
(x, y )-plane. The electric field corresponding to a line charge through the 
origin is 

1 
E = -Ur , 

r 

up to a constant multiple depending upon units, where U r is the unit vector 
in the radial direction. The potential function associated with a line charge 
at 0 is </> = log r, since "V</>= E. Note that </> is harmonic; however, </> has no 
single-valued conjugate harmonic function. The equipotentiailines for E 
are circles centered at the origin. Through each such circle {izi = r} there 
is a positive outward flux given by 

{ E.nds = { E.urds = [21r dO = 27r. 
J1z1=r J1z1=r Jo 

We say that the origin is a source for the electric field E. The origin is a 
sink for the electric field -E. 
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Exercise. Find the electric field E and the potential function 4> in a cir­
cular ring whose inner edge is grounded (4) = 0) and whose outer edge is 
conducting (4) = constant). 
Solution. The problem is invariant under rotations, so we try a potential 
solution that is invariant under rotations, say 4> = a log r + b. The constant 
values of the potential on the inner and outer circles determine the con­
stants a and b. The electric field is given by E = \14> = (a/r)un which is 
the electric field of a line charge. 

As in the case of fluid flow, problems in electrostatics and in heat flow 
that are effectively two-dimensional and can be analyzed using complex 
analysis and conjugate harmonic functions are very special. A typical 
problem in three dimensions involves a vector field F that satisfies the 
conditions 

\1 x F 0 (F is irrotational), 

\1·F = 0 (no sources or sinks in D). 

Again, the first condition is equivalent to J F . dx being independent of 
path, and we say that F is a conservative field. In this case F = \14> 
for some potential function 4>, at least locally. In terms of the potential 
function 4>, the second condition becomes D.4> = 0, and 4> is harmonic. 
Thus harmonic functions play an important role, as do the Dirichlet and 
Neumann problems. However, in three-dimensional problems the harmonic 
functions cannot be analyzed as the real parts of analytic functions, and 
conformal mapping techniques are not available. 

Exercises for 111.7 

1. Find the steady-state heat distribution u(x, y) in a laminar plate 
corresponding to the half-disk {x2 + y2 < 1, y > O}, where the 
semicircular top edge is held at temperature TI and the lower edge 
( -1, 1) is held at temperature T2 • Find and sketch the isothermal 
curves for the heat distribution. Hint. Consider the steady-state 
heat distribution for the full unit disk with the top held at tempera­
ture TI and the bottom at temperature T3, where T2 = (TI +T3)/2. 

2. Find the potential function 4>(x, y) for the electric field for a con­
ducting laminar plate corresponding to the quarter-disk {x2 + y2 < 
1, x > 0, y > O}, where the two edges on the coordinate axes are 
grounded (that is, 4> = 0 on the edges), and the semicircular edge 
is held at constant potential VI. Find and sketch the equipoten­
tial lines and the lines of force for the electric field. Hint. Use the 
conformal map ( = z2 and the solution to the preceding exercise. 

3. Find the potential function 4>(x, y) for the electric field for a conduct­
ing laminar plate corresponding to the unit disk where the boundary 
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quarter-circles in each quadrant are held at constant voltages VI, V2, 
V3, and V4. Hint. Map the disk to the upper half-plane by w = w(z) 
and consider potential functions of the form Arg(w - a). 

4. Find the steady-state heat distribution in a laminar plate corre­
sponding to the vertical half-strip {Ixl < 7r/2, y > O}, where the 
vertical sides at x = ±7r /2 are held at temperature To = 0 and the 
bottom edge (-7r /2, 7r /2) on the real axis is held at temperature 
TI = 100. Make a rough sketch of the isothermal curves and the 
lines of heat flow. Hint. Use w = sin z to map the strip to the 
upper half-plane, and make use of harmonic functions of the form 
Arg(w - a). 

5. Find the steady-state heat distribution in a laminar plate corre­
sponding to the vertical half-strip {Ixl < 7r /2, y > O}, where the side 
x = -7r /2 is held at constant temperature To, the side x = 7r /2 is 
held at constant temperature Tl, and the bottom edge (-7r /2, 7r /2) 
on the real axis is insulated; that is, no heat passes through the 
bottom edge, so the gradient Vu of the solution u(x, y) is parallel 
there to the x-axis. Hint. Try linear functions plus constants. 

6. Find the steady-state heat distribution in a laminar plate corre­
sponding to the upper half-plane {y > O}, where the interval ( -1, 1) 
is insulated, the interval (-00, -1) is held at temperature To, and 
the interval (1,00) is held at temperature TI . Make a rough sketch 
of the isothermal curves and the lines of heat flow. Hint. Use the 
solution to Exercise 5 and the conformal map from Exercise 4. 

7. The gravitational field near the surface of the earth is approximately 
constant, of the form F = ck, where k is the unit vector in the z­
direction in (x, y, z )-space and the surface of the earth is represented 
by the plane where z = 0 (the flat earth theory). Show that F is 
conservative, and find a potential function </> for F. 

8. Show that the inverse square force field F = u r /r2 on ~3 is con­
servative. Find the potential function </> for F, and show that </> is 
harmonic. 

9. For n ~ 3, show that the function 1/rn- 2 is harmonic on ~n\{o}. 
Find the vector field F that has this function as its potential. 



IV 

Complex Integration and 
Analyticity 

In this chapter we take up the complex integral calculus. In Section 1 we 
introduce complex line integrals, and in Section 2 we develop the complex 
integral calculus, emphasizing the analogy with the usual one-variable in­
tegral calculus. In Section 3 we lay the cornerstone of the complex integral 
calculus, which is Cauchy's theorem. The version we prove is an immedi­
ate consequence of Green's theorem. In Section 4 we derive the Cauchy 
integral formula and use it to show that analytic functions have analytic 
derivatives. Each of the final four sections features a "named" theorem. In 
Section 5 we prove Liouville's theorem. In Section 6 we give a version of 
Morera's theorem that provides a useful criterion for determining whether 
a continuous function is analytic. Sections 7 and 8, on Goursat's theorem 
and the Pompeiu formula, can be omitted at first reading. 

1. Complex Line Integrals 

For complex analysis it is convenient to define dz = dx + i dy. According 
to this notation, if h(z) is a complex-valued function on a curve "f, then 

(1.1) 1 h(z) dz = 1 h(z) dx + i 1 h(z) dy. 

Suppose "f is parameterized by t 1-+ z(t) = x(t) + iy(t), a ~ t ~ b. The 
Riemann sum approximating J-y h( z) (dx + i dy) corresponding to the sub­
division a = to < tt < ... < tn = b is given by 

L h(zj) (Xj+1 - Xj) + i L h(Zj)(Yi+l - yj), 

where z(tj) = Zj = Xj + iYj. If we express these sums in terms of the zj's, 
we obtain the Riemann sum approximation 

(1.2) 1 h(z)dz ~ Lh(Zj)(Zj+1- Zj). 

102 
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_---zn=B 

This expression justifies the notation dz. 

Example. To compute fOHi z2 dz along the straight line segment from 0 
to 1 + i, we parametrize the line segment by z(t) = t + ti, 0 :s t :s 1, so 
that x(t) = t and y(t) = t. Then dz = dx + i dy = (1 + i)dt, and we obtain 

Hi 1 1 3 r r r (1 + i) 10 z2 dz = 10 [(1 + i)t]2(1 + i)dt = (1 + i)3 10 t2dt 3 

1 + i 

t+ ti 

o 

Example. We evaluate 

1 dz 

lIzl=l ~' 

o 

cos 8 + i sin 8 = ei9 

where we integrate around the unit circle in the usual positive (counter­
clockwise) direction. The unit circle is parameterized by z(O) = ei () = 
cos 0 + i sin 0, 0 ::; 0 ::; 27r, so that dx = - sin 0 dO, dy = cos 0 dO, and 

dz = dx+idy = -sinOdO+icosOdO = i(cosO+isinO)dO. 

Thus 
dz 

idO, 
z 

and the integral becomes 

1 dz 

lIzl=l Z 

r27r 
= i 10 dO = 27ri. 

Note in this calculation that dz = iei()dO, which is what is obtained by 
applying the usual rule for differentiation of exponentials to z( 0) = ei (). 

Example. For m an integer and R > 0, we show that 

i {O, 
(z - zo)mdz = 

Iz-zol=R 27ri, 

m#-l, 

m= -1. 
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We parametrize the circle Iz - zol = R, with the usual positive orientation, 
by z(B) = zo+Rei8 , and we calculate that dz = iRei8dB. Thus the integral 
becomes 

fo27r (Rei8 )miRei8dB = iRm+1 fo27r ei(m+1)8dB. 

The integral on the right is 0 unless m = -1, in which case it is 211". This 
yields the formula. 

In complex analysis it is customary to denote the infinitesimal arc length ds 
by Idzl: 

Idzl = ds = J(dx)2 + (dy)2. 

This means that if a curve 'Y is parameterized by z(t) = x(t) + iy(t), then 

(1.3) i h(z)ldzl = i h(z) ds = lb h(z(t)) (~;) 2 + (~~) 2 dt. 

In particular, the length of'Y is 

The notation can be justified by considering the sums approximating these 
integrals. For the subdivision of the parameter interval used earlier, the 
usual sum used in multivariable calculus to approximate i7 h(x, y) ds is 

i h(x, y) ds ~ L h(xj, Yj)V(Xj+1 - Xj)2 + (Yj+1 - Yj)2. 

In complex notation this becomes 

(1.4) 

In particular, the sum approximating the length L of 'Y is given by 

(1.5) L ~ L IZj+1 - zjl· 

Example. The parameterization z(B) = zo+Rei8 of the circle Iz-zol = R 
can be used to derive the expression for the infinitesimal arc length for 



1. Complex Line Integrals 105 

the circle in terms of the central angle (). In this case, x( (}) = R cos (), so 
that dx = -Rsin(}d(}, and similarly dy = Rcos(}d(}. Thus Idzi = ds = 
J(dx)2 + (dy)2 = Rd(). The length of the circle is f0271" Idzl = 27rR, as 
usual. 

Theorem. Suppose"( is a piecewise smooth curve. If h(z) is a continuous 
function on ,,(, then 

(1.6) ! i h(z) dZ! :::; i Ih(z)lldzl· 

Further, if"{ has length L, and Ih(z)1 :::; M on ,,(, then 

(1.7) 

The estimate (1.6) is the triangle inequality for integrals. It will be 
used frequently and without reference. The estimate (1.7) is called the 
M L-estimate. It mayor may not be referred to. These estimates both 
follow from the corresponding estimates for the approximating sums. The 
triangle inequality (1.6) for integrals follows from the triangle inequality 
for the approximating Riemann sums, 

! L h(zj) (Zj+1 - Zj)! :::; L Ih(zj)ll(zj+1 - zj)l, 

in view of (1.2) and (1.4). The M L-estimate (1. 7) follows from the estimate 

I L h(Zj) (Zj+1 - Zj)! :::; M L IZj+1 - zjl, 

in view of (1.2) and (1.5). 

Example. If we apply the M L-estimate to the first example above, we 
obtain 

11Hi z2dZI :::; 2v!2, 

since Iz21 :::; 11 +i12 = 2 on the straight line segment from 0 to 1 +i, and the 
segment has length L =...;2. Since the value of the integral has modulus 
11 + i1 3 /3 = 2V2/3, in this case the ML-estimate provides only a rough 
estimate. A better estimate is obtained by noting that Idzi = V2dt on the 
line and applying (1.6): 

! [Hi ! [Hi [1 2 2V2 
Jo z2dz:::; Jo IZ211dzi = Jo (v'2t) v!2dt = -3-· 

Since equality actually holds here, this estimate cannot be improved. We 
say that the estimate is a sharp estimate. 
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Example. We apply the M L-estimate to 

1 _1_ dz = 21fi. 
Jiz-zol=R z - Zo 

In this case the integrand has constant modulus 1/ R on the circle of inte­
gration, so we take M = I/R and L = 21fR. The ML-estimate becomes 

1 _1_ dz < 21f. 
Jiz-zol=R z - Zo -

Since equality actually holds here, the M L-estimate is sharp. 

Exercises for IV.1 

1. Let 'Y be the boundary of the triangle {O < y < 1 - x, 0 < x < I}, 
with the usual counterclockwise orientation. Evaluate the following 
integrals. 

(a) 1 Rezdz (b) lImzdz (c) 1 zdz 

2. Let 'Y be the unit circle {Izl = I}, with the usual counterclockwise 
orientation. Evaluate the following integrals, for m = 0, ±1, ±2, .... 

(a) 1 zm dz (b) 1 zm dz (c) 1 zm Idzl 

3. Let 'Y be the circle {Izl = R}, with the usual counterclockwise ori­
entation. Evaluate the following integrals, for m = 0, ±1, ±2, .... 

(a) i Izml dz (b) i Izmlldzl (c) i zm dz 

4. Show that if D is a bounded domain with smooth boundary, then 

r zdz = 2iArea(D). JaD 
5. Show that 

1 ~dz ~ 21fe2 • 

Jiz-ll=l z + 1 

6. Show that 

1 Log z dz ~ 2V21f 10Rg R , 
Jizl=R Z2 

7. Show that there is a strict inequality 

i zn 21fRn+l 
---dz < --­

Izl=R zm - 1 Rm - 1 ' 
R > 1, m ~ 1, n ~ O. 
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8. Suppose the continuous function J (e ill ) on the unit circle satisfies 
IJ(eill)1 ~ M and I ~zl=l J(z)dzl = 2rrM. Show that J(z) = cZ for 
some constant c with modulus lei = M. 

9. Suppose h(z) is a continuous function on a curve ,. Show that 

H(w) = 1 h(z) dz, 
'"f z-w 

is analytic on the complement of " and find H' (w). 

2. Fundamental Theorem of Calculus for Analytic Functions 

Let J(z) be a continuous function on a domain D. A function F(z) on D is 
a (complex) primitive for J(z) if F(z) is analytic and F'(z) = J(z). The 
following theorem is the analogue of the first statement of the fundamental 
theorem of calculus. 

Theorem (Part I). If J(z) is continuous on a domain D, and if F(z) is 
a primitive for J(z), then 

LB J(z) dz = F(B) - F(A), 

where the integral can be taken over any path in D from A to B. 

This formula follows from the corresponding formula for line integrals. 
In this case, we have 

F'(z) = 
ax 
aF 1aF 

= i ay' 

so that 

F(B) - F(A) rB dF = rB aF dx + aF dy 
JA JA ax ay 

= LB F'(z)(dx+idy) = LB F'(z)dz. 

This theorem provides a powerful tool for evaluating definite integrals. 
The problem of evaluating J: J(z)dz is reduced to that of finding an ana­
lytic function F(z) whose derivative is J(z). 

Example. To integrate z2 from 1 to i, we observe that z3/3 is a primitive 
for z2, and then we proceed as we would to evaluate an ordinary garden­
variety integral, 

zdz = - = l Hi 2 z31Hi (1 + i)3 

o 3 0 3 



108 IV Complex Integration and Analyticity 

This coincides with the result that was obtained in the preceding section 
by parameterizing the straight line from 0 to 1 + i. Note, though, that the 
integral is independent of path. 

Example. The function 1/ z does not have an analytic primitive defined 
on any domain containing the unit circle. To evaluate the integral of dz / z 
around the unit circle we can still use the primitive F (z) = Log z in the 
slit plane C\( -00, OJ, by taking the integral over a path counterclockwise 
around the unit circle starting at a point -1 - Oi just below the slit and 
ending at a point -1 + Oi just above the slit. Then 

1 dz 1-1+Oi 
--; = Log z . = i7r - i( -7r) = 27ri, 

Izl=1 -1-0t 

which coincides with the result obtained earlier by parameterizing the unit 
circle. 

-I +iO 

-1-iO 

-i 

The analogue of the second statement in the fundamental theorem of 
calculus is that every analytic function on a star-shaped domain has a 
primitive, which can be defined as an indefinite complex integral. 

Theorem (Part II). Let D be a star-shaped domain, and let fez) be 
analytic on D. Then fez) has a primitive on D, and the primitive is 
unique up to adding a constant. A primitive for fez) is given explicitly by 

F(z) = r fee) de, Jzo 
zED, 

where Zo is any fixed point of D, and where the integral can be taken along 
any path in D from Zo to z. 

To see this, we write f = u + iv as usual, and we consider the differen­
tial udx - vdy. Since f is analytic, the Cauchy-Riemann equations yield 
au/ay = -av/ax, and the differential is closed. By the fundamental the­
orem of calculus for line integrals (Section III.2), the differential is exact 
on D, that is, there is a continuously differentiable function U on D such 
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that dU = u dx - v dy. In other words, U satisfies 

oU oU 
ox = u, - = -v. 

oy 

These equations show that U is in fact twice continuously differentiable. 
Another application of the Cauchy-Riemann equations yields 

02U + o2U = ou _ ov = 0 
ox2 oy2 ox oy . 

Hence U is harmonic. Since D is star-shaped, there is a conjugate harmonic 
function V for U on D, so that G = U + iV is analytic on D. Then 

, oU .oV oU .oU . 
G = - + z- = - - z- = u + zv = f, 

ox ox ox oy 

and G(z) is a primitive for fez). If Go(z) is another primitive for fez), 
then G - Go has derivative zero, and G - Go is constant on D. If we apply 
Part I above to the primitive F(z) = G(z) - G(zo) for fez), we obtain the 
formula in Part II. 

Note in particular that integrals of analytic functions in star-shaped do­
mains are independent of path. This is not true for arbitrary domains. The 
identity 

1 dz = 27ri =F 0 
lIzl=l z 

shows that the differential dz j z does not have a primitive on the punctured 
plane C\{O}. 

Exercises for IV.2 

1. Evaluate the following integrals, for a path 'Y that travels from -7ri 
to 7ri in the right half-plane, and also for a path 'Y from -7ri to 7ri 
in the left half-plane. 

(a) i z4dz (b) i eZdz (c) I,,/coszdz (d) I,,/sinhzdz 

2. Using an appropriate primitive, evaluate I"/ Ijzdz for a path 'Y that 
travels from -7ri to 7ri in the right half-plane, and also for a path 'Y 
from -7ri to 7ri in the left half-plane. For each path give a precise 
definition of the primitive used to evaluate the integral. 

3. Show that if m =F -1, then zm has a primitive on C\{O}. 

4. Let D = C\ ( -00, 1], and consider the branch of J z2 - 1 on D that 
is positive on the interval (1,00). (a) Show that z + J z2 -1 omits 
the negative real axis, that is, the range of the function on D does 
not include any values in the interval (-00,0] on the real axis. (b) 
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Show that Log(z + v'Z2 -1) is a primitive for Ijvz2 -Ion D. (c) 
Evaluate 

1 dz 

'Y vz2 -1 ' 

where'Y is the path from -2i to +2i in D counterclockwise around 
the circle Izl = 2. (d) Evaluate the integral above in the case 'Y is 
the entire circle Izl = 2, oriented counterclockwise. (Note that the 
primitive is discontinuous at z = -2.) 

5. Show that an analytic function J(z) has a primitive in D if and only 
if I'Y J(z)dz = 0 for every closed path 'Y in D. 

3. Cauchy's Theorem 

We begin with a smooth complex-valued function J(z) = u + iv, and we 
express 

J(z)dz = (u+iv)(dx+idy) = (u+iv)dx+ (-v +iu)dy. 

The condition that J(z)dz be a closed differential is 

:y(U+iV) = !(-V+iU). 

Taking the real and imaginary parts, we see that this is equivalent to 

av au 
ay = ax' 

which are the Cauchy-Riemann equations for u and v. Thus we obtain the 
following theorem, which is the original form of Morera's theorem. 

Theorem. A continuously differentiable function J (z) on D is analytic if 
and only if the differential J(z)dz is closed. 

From Green's theorem (Section IILl.I) we obtain immediately the fol­
lowing far-reaching theorem. 

Theorem (Cauchy's Theorem). Let D be a bounded domain with 
piecewise smooth boundary. If J (z) is an analytic function on D that 
extends smoothly to aD, then 

[ J(z)dz = o. laD 
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Example. If we apply Cauchy's theorem to a function J(z) analytic on 
the annulus D = {r < JzJ < R}, we obtain 

o = [ J(z)dz = 1 J(z)dz - 1 J(z)dz. 
laD lIzl=R lIzl=r 

Note the change in sign, due to the fact that the inside boundary circle is 
traversed in the negative (clockwise) direction according to its orientation 
as a boundary curve for D. Thus 

1 J(z) dz = 1 J(z) dz. 
lIzl=R lIzl=r 

This is in accord with the discussion in Section III.2, since the differential 
J(z)dz is closed, and since the outside circle of the annulus can be con­
tinuously deformed to the inside circle of the a.nnulus through a family of 
closed curves (intermediate circles). 

Exercises for IV.3 

1. By integrating e-z2 /2 around a rectangle with vertices ±R, it ± R, 
and sending R to 00, show that 

1 100 _x2/2 -itxdx -t2/2 -- e e =e, 
...ti7i -00 

00 < t < 00. 

Use the known value of the integral for t = o. Remark. This shows 
that e-x2/2 is an eigenfunction of the Fourier transform with eigen­
value 1. For more, see the next exercise. 

2. We define the Hermite polynomials Hn(x) and Hermite or­
thogonal functions 4>n (x) for n ~ 0 by 

Hn(x) = (_1)neX2 :;n (e-x2 ) , 4>n(x) = e-x2/2Hn(x). 

(a) Show that Hn(x) = 2nxn + ... is a polynomial of degree n that 
is even when n is even and odd when n is odd. 

(b) By integrating the function 

e(z-it)2/2 dn (e-z2) 
dzn 

around a rectangle with vertices ±R, it ± R and sending R 
to 00, show that 

~ [00 4>n(x)e-itxdx = (-it4>n(t), -00 < t < 00. 
v27l" Loo 
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Hint. Use the identity from Exercise 1, and also justify and use 
the identity 

(c) Show that ¢~ - x 2¢n + (2n + 1)¢n = o. 
(d) Using J ¢~¢mdx = J ¢n¢':ndx and (c), show that 

n-:/:-m. 

Remark. This shows that the ¢n's form an orthogonal sys­
tem of eigenfunctions for the (normalized) Fourier transform 
operator F with eigenvalues ±1 and ±i. Thus F extends to a 
unitary operator on square-integrable functions. Further, F4 
is the identity operator, and the inverse Fourier transform is 
given by (F-1 J)(x) = (Ff)( -x). 

3. Let J(z) = Co + CIZ + ... + Cnzn be a polynomial. 
(a) If the Ck'S are real, show that 

Hint. For the first inequality, apply Cauchy's theorem to the 
function J(z)2 separately on the top half and the bottom half 
of the unit disk. 

(b) If the Ck'S are complex, show that 

(c) Establish the following variant of Hilbert '5 inequality, that 

n n 

'"' CjCk < '"' 1 12 ~ . + k + 1 - 7r ~ Ck , 
j,k=O J k=O 

with strict inequality unless the complex numbers Co,·.· ,Cn 
are all zero. Hint. Start by evaluating J; J(x)2dx. 

4. Prove that a polynomial in z without zeros is constant (the fun­
damental theorem of algebra) using Cauchy's theorem, along the 
following lines. If P( z) is a polynomial that is not a constant, write 
P(z) = P(O) + zQ(z), divide by zP(z), and integrate around a large 
circle. This will lead to a contradiction if P(z) has no zeros. 
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5. Suppose that D is a bounded domain with piecewise smooth bound­
ary, and that J(z) is analytic on D U aD. Show that 

_ Area(D) 
sup Iz - J(z)1 2: 2 L h(aD) . zEaD engt 

Show that this estimate is sharp, and that in fact there exist D and 
J(z) for which equality holds. Hint. Consider faD[z - J(z)]dz, and 
use Exercise 4 in Section 1. 

6. Suppose J(z) is continuous in the closed disk {Izl ::::; R} and analytic 
on the open disk {Izl < R}. Show that ~zl=R J(z)dz = o. Hint. 
Approximate J(z) uniformly by Jr(z) = J(rz). 

4. The Cauchy Integral Formula 

Integral representation formulae are powerful tools for studying functions. 
One application of an integral representation is to estimate the size of the 
function being represented. Another is to obtain formulae for derivatives, 
by differentiating under the integral sign. The prototype of the integral 
representation is provided by the Cauchy integral formula, representing an 
analytic function. The integral representation will allow us to show that 
all the derivatives of an analytic function are analytic. It will also allow us 
to obtain power series expansions for analytic functions. 

Theorem (Cauchy Integral Formula). Let D be a bounded domain 
with piecewise smooth boundary. If J(z) is analytic on D, and J(z) extends 
smoothly to the boundary of D, then 

(4.1) J(z) = ~ r few) dw, 
2n JaD w - z 

zED. 

To establish the formula, fix a point ZED, let e > 0 be small, and 
consider the domain De = D\ {Iw - z I ::::; e} obtained from D by punching 
out a disk centered at z of radius c. The boundary aDe is the union of 
aD and the circle {Iw - zl = e}, oriented clockwise. Since J(w)j(w - z) is 
analytic for w E De, Cauchy's theorem yields 

r J(w) dw = O. 
JaD. w - z 

Reversing the orientation of the circle to counterclockwise produces a sign 
change, and we obtain 

r J(w) dw = r J(w) dw. 
J1w-zl=e W - z JaD w - z 
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Writing w = z + cei9 , dw = icei9 dO, and dividing by 211"i, we obtain 

127r dO 1 1 J(w) J (z + cei9 ) - = -. --dw. 
o 211" 211"z aD w - z 

By the mean value property of harmonic functions, the integral on the 
left-hand side coincides with J(z), and the formula is established. 

We remark that without the mean value property at our disposal, we 
could complete the argument by observing that the integral on the left is 
the average value of J(w) on the circle centered at z of radius c. Since 
J(w) is continuous at z, these averages tend to J(z) as c --t O. This can be 
justified with complete rigor by writing 

r27r dO 127r dO 10 J(z+cei9 ) 211" = J(z) + 0 [J(z+cei9) -J(z)] 211"' 

and showing by a direct estimate that the latter integral tends to 0 as 
c --t O. 

If we differentiate under the integral sign and use 

d,""n 1 m! -----
dzm w-z (w-z)m+l' 

we obtain integral formulae for the derivatives J(m)(z) of J(z). 

Theorem. Let D be a bounded domain with piecewise smooth boundary. 
If J (z) is an analytic function on D that extends smoothly to the boundary 
of D, then J(z) has complex derivatives of all orders on D, which are given 
by 

(4.2) J(m)(z) = m! r J(w) dw 
211"i laD (w - z)m+1 ' 

zED, m ~ O. 

The case m = 0 of (4.2) is the Cauchy integral formula (4.1). Though it 
is not really necessary, we give separately the argument for the case m = 1. 
This special case already includes all the ideas for the proof of the general 
case. 

Using (4.1) and the identity 

1 1 
--- = 

w - (z + Az) w - z (w - (z + AZ))(W - z)' 



4. The Cauchy Integral Formula 115 

we express the difference quotient approximating f' (z) as 

J(z + ~z) - J(z) = 2.. [_1 ( J(w) dw __ 1 ( J(w) dW] 
~z ~z 27ri laD w - (z + ~z) 27ri laD w - z 

= ~ ( J(w) 1 dw. 
27r~ laD (w - (z + ~z))(w - z) 

As ~z tends to 0, the integrand converges to J(w)/(w - Z)2, uniformly for 
wE aD. Hence the integrals converge, and we obtain in the limit that 

I 1 fa J(w) 
J(z) = -2. ( )2dw, 

7r~ aD w - z 
ZED, 

which is the case m = 1 of (4.2). 
The general case of (4.2) is proved by induction on m. We assume that 

J(m-2)(z) is complex differentiable and the formula holds for J(m-l)(z). 
We must show that J(m-l)(z) is complex differentiable and the formula 
holds for J(m)(z). Using the binomial expansion 

m(m -1) 
(w_z_~z)m = (w_z)m-m(w_z)m-l~z+ (w_z)m-2(~z)2+ .. 

2 

and simplifying, we obtain 

1 1 (w-z)m - (w_z_~z)m 
= 

(w - (z + ~z))m (w - z)m (w - z)m(w - Z - ~z)m 

m~z m(m - 1)(~z)2 
= - + ... 

(w - z)(w - z - ~z)m 2(w - Z)2(W - Z - ~z)m ' 

where the dots indicate terms with powers of ~z up to (~z) m. The integral 
formula for J(m-l)(z) then yields the expression 

(m-1)! ( J(w) [ m +~Z( ... )]dW 
27ri laD (w - z)(w - z - ~z)m 

for the difference quotient (J(m-l)(z + ~z) - J(m-l)(z)) / ~z. Again the 
integrand converges as ~z ---+ 0, uniformly for wE aD, and we can pass to 
the limit to conclude that J(m)(z) exists and is given by (4.2). 

Since each of the successive complex derivatives of J(z) is complex differ­
entiable, each is continuous, and thus each is analytic. The hypothesis that 
the domain has smooth boundary is irrelevant for determining analyticity, 
as we can restrict the function to an appropriate small disk. Thus we have 
proved the following. 

Corollary. If J(z) is analytic on a domain D, then J(z) is infinitely dif­
ferentiable, and the successive complex derivatives f'(z), J"(z), ... , are all 
analytic on D. 
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Example. The Cauchy integral formula for Z2 yields 

1 ~dz = 211"iZ21 = 211"i. 
lIzl=2 z - 1 z=l 

Example. The Cauchy integral formula for the derivative of z2 sin z yields 

i z2 sin z d _ 211"i ~ ( 2· ) I ( 2 
-;------:-:0-3 Z - , 2 Z smz = 1I"i 411"cos1l") = -411" i. 

Izl=211' (z - 11") 2. dz Z=1I' 

Example. Consider the integral 

1 eZ 

lIzl=2 Z2(Z - 1) dz, 

which does not have the form given in the Cauchy integral formula. By 
applying Cauchy's theorem to the domain De obtained by excising two 
small disks centered at 0 and 1 from the disk {Izl < 2}, we can express the 
integral above as the sum of two integrals, each of which can be evaluated 
by the Cauchy formula: 

1 ---;;-;_e_z----:-;-dz = 
lIzl=2 z2(z - 1) i eZ i eZ 

2 dz+ 2 dz 
Izl=e Z (z - 1) Iz-ll=e Z (z -1) 

= 211"i:z (z ~ 1) Iz=o + 211"i :: IZ=l 

-211"i - 211"i + 211"ie = 211"i(e - 2). 

These integrals can also be handled by residue theory, as we shall soon see. 

Exercises for IV.4 

1. Evaluate the following integrals, using the Cauchy integral formula: 

(a) 1 ~ dz, n ~ 0 (e) 1 e: dz, -00 < m < 00 
lIzl=2 Z - 1 lIzl=l z 

(b) 1 ~ dz, n ~ 0 (f) { Logz 2 dz 
lIzl=l Z - 2 J1z-l-il=5/4 (z - 1) 

(c) 1 sinz dz (g) 1 2 2dz 
lIzl=l z lIzl=l Z (z - 4)ez 
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(d) i cos~z dz 
Izl=l Z 
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(h) i dz 
IZ-ll=2 z(z2 - 4)e 

2. Show that a harmonic function is Coo, that is, a harmonic function 
has partial derivatives of all orders. 

3. Use the Cauchy integral formula to derive the mean value property 
of harmonic functions, that 

r2K de 
u(zo) = io u (zo + peiIJ) 21f' Zo ED, 

whenever u(z) is harmonic in a domain D and the closed disk Iz -
Zo I ::::; p is contained in D. 

4. Let D be a bounded domain with smooth boundary aD, and let 
Zo E D. Using the Cauchy integral formula, show that there is a 
constant C such that 

IJ(zo)1 ::::; C sup{IJ(z)1 ; z E aD} 

for any function J(z) analytic on DUaD. By applying this estimate 
to J(z)n, taking nth roots, and letting n ----+ 00, show that the 
estimate holds with C = 1. Remark. This provides an alternative 
proof of the maximum principle for analytic functions. 

5. Liouville's Theorem 

Suppose that J(z) is analytic on the closed disk {Iz - zol ::::; p}, that is, 
it is analytic on some domain containing the closed disk. By the Cauchy 
integral formula for J( m) (z), 

J(m)( ) = m! 1 J(z) d 
Zo 2' ()m+l Z. 1ft Iz-zol=p z - Zo 

We parametrize the boundary circle by z = Zo + peiO , dz = ipeiO de. Then 

_1 J(z) dz 
21fi (z - zo)m+l 

J (zo + peiO ) de 
pmeimO 21f' 

and we obtain 

m! 12K .. de - J (zo + pe~O) e-~mO_. 
pm 0 21f 

The obvious estimate 

I 1
m' r2K . de 

J(m) (zo) ::::; p~ io IJ (zo + pe~O) 121f 

now leads to the following version of the Cauchy estimates. 
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Theorem (Cauchy Estimates). Suppose J(z) is analytic for Iz-zol ~ p. 
If IJ(z)1 ~ M for Iz - zol = p, then 

IJ(m)(zo)1 ~ ; M, m 2:: o. 

Note that this estimate scales correctly with respect to M, in the sense 
that if we multiply J(z) by a positive constant, the estimate is multiplied 
by the same constant. It also scales correctly with respect to p, in the sense 
that if we dilate the disk by a factor c > 0, then both the mth derivative 
of the dilated function and the factor 11 pm are multiplied by 1 I cm . The 
estimate is invariant under translations. In effect it would have sufficed 
to check the estimate in the special case of analytic functions on the unit 
disk that are bounded in modulus by one on the unit circle. In this special 
case the estimate asserts that all derivatives of the function are bounded 
in modulus by one at the origin. 

As an application of the Cauchy estimates, we prove the following. 

Theorem (Liouville's Theorem). Let J(z) be an analytic function on 
the complex plane. If J(z) is bounded, then J(z) is constant. 

Indeed, suppose IJ(z)1 ~ M for all z E C. We can apply the Cauchy 
estimate to a disk centered at any zo, of any radius p, to obtain 

1!'(zo)1 ~ M. 
P 

Letting p tend to +00, we obtain !'(zo) = O. Since this is true for all Zo, 
J(z) is constant. 

We define an entire function to be a function that is analytic on the 
entire complex plane. The polynomials anzn + ... + alz + ao are entire 
functions. The transcendental functions eZ , cos z, sin z, cosh z, sinh z are 
also entire. Any linear combination of entire functions is entire, and any 
product of entire functions is entire. Examples of functions that are not 
entire are liz, logz, and ..jZ. 

In terms of entire functions, Liouville's theorem has a succinct statement: 
A bounded entire function is constant. 

As a test of the strength of Liouville's theorem, we apply it to give 
yet another proof (one of hundreds of proofs) of the fundamental theorem 
of algebra, that every polynomial in z of degree n 2:: 1 has a zero. (See 
Section 1.1.) The proof is by contradiction. Suppose p( z) = zn +an-l zn-l + 
... + ao is a polynomial with no complex root. Then 1Ip(z) is an entire 
function. Since 

p(z) 
= 1 + + ... + ao 

zn 
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tends to 1 as z ~ 00, p(z) ~ 00 and l/p(z) ~ 0 as z ~ 00. Consequently, 
l/p(z) is bounded. By Liouville's theorem, l/p(z) is constant. Since the 
constant cannot be 0, we have a contradiction. Our supposition is false, 
and p( z) must have a zero. 

Exercises for IV.5 

1. Show that if u is a harmonic function on C that is bounded above, 
then u is constant. Hint. Express u as the real part of an analytic 
function, and exponentiate. 

2. Show that if J(z) is an entire function, and there is a nonempty disk 
such that J(z) does not attain any values in the disk, then J(z) is 
constant. 

3. A function J(z) on the complex plane is doubly periodic if there 
are two periods Wo and WI of J (z) that do not lie on the same 
line through the origin (that is, Wo and WI are linearly independent 
over the reals, and J(z + wo) = J(z + WI) = J(z) for all complex 
numbers z). Prove that the only entire functions that are doubly 
periodic are the constants. 

4. Suppose that J(z) is an entire function such that J(z)/ zn is bounded 
for Izl 2:: R. Show that J(z) is a polynomial of degree at most n. 
What can be said if J(z)/zn is bounded on the entire complex plane? 

5. Show that if V(z) is the velocity vector field for a fluid flow in the 
entire complex plane, and if the speed IV(z)1 is bounded, then V(z) 
is a constant flow. 

6. Morera's Theorem 

What Morera did was to observe that the differential J(z)dz is closed if 
and only if J(z) is analytic. The following more precise variant of this 
observation is often referred to as "Morera's theorem." It has a number of 
useful applications. 

Theorem (Morera's Theorem). Let J(z) be a continuous function on 
a domain D. If JaR J(z)dz = 0 for every closed rectangle R contained in D 
with sides parallel to the coordinate axes, then J(z) is analytic on D. 

The power of Morera's theorem resides in the fact that no hypothesis is 
made concerning the smoothness of J(z). Only continuity is required. 
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To prove the theorem, we can assume that D is a disk with center zoo 
Define 

F(z) = 1~ f(C) d(, zED, 

where the path of integration runs along a horizontal line and then a vertical 
line. We could as well define F(z) using the path starting from Zo along a 
vertical line followed by a horizontal line. The hypothesis guarantees that 
these two paths yield the same integral, as the difference is the integral 
of f(z)dz over the boundary of a rectangle. Now we differentiate F(z) by 
hand. We have 

rz+tl.z 
F(z + ~z) - F(z) =}z f(() d(, 

where the path of integration is the path from z to z + ~z that follows a 
horizontal line and then a vertical line, as in the figure. Here we have again 
used the fact that the integral along the boundary of a rectangle is zero, as 
indicated in the figure. To deal with the integral on the right, we use the 
trick of adding and subtracting fez) from the integrand. Since z is fixed, 
the value fez) is constant for the integration, and we obtain 

{z+tl.z (z+tl.z 
F(z + ~z) - F(z) = fez) }z d( + }z (f(() - fez)) d( 

(z+tl.z 
= f(z)~z + }z (f(() - fez)) d(. 

Now, the length of the contour from z to z + ~z is at most 21~zl. If we 
divide by ~z and use the M L-estimate on the last integral, we obtain 

IF(Z+~;-F(Z) _ f(z)j :s 2M,;, I~zl <c, 

where Me is the maximum of If(() - f(z)1 over all ( satisfying I( - zl :S c. 
Since f(() is continuous at z, Me tends to 0 as c ---t O. Consequently, F(z) is 
complex differentiable, with complex derivative F'(z) = fez). Since fez) is 
continuous, F(z) is analytic, and since fez) is the derivative of an analytic 
function, fez) is also analytic. 

There is a metatheorem to the effect that if the integmnd depends ana­
lytically on a pammeter, then the integml depends analytically on the pa­
mmeter. This sort of theorem is easy to prove using Morera's theorem and 
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switching the orders of integration. To illustrate this idea, we prove the 
following typical theorem on analyticity of integrals. 

Theorem. Suppose that h(t, z) is a continuous complex-valued function, 
defined for a -:; t -:; b and zED. If for each fixed t, h(t, z) is an analytic 
function of zED, then 

H(z) = lb h(t, z) dt, zED, 

is analytic on D. 

To see this, note first that H(z) is continuous on D. Indeed, if Zn -+ z, 
then h(t, zn) -+ h(t, z) uniformly for a -:; t -:; b, so H(zn) -+ H(z). Let R 
be a closed rectangle in D. By Cauchy's theorem, we have 

Consequently, 

{ h(t,z)dz = O. 
JaR 

l b 
{ h(t,z)dzdt = O. 

a JaR 
Parameterization of the sides of oR converts the inside integral to a sum 
of four garden-variety integrals of a continuous function, and we can inter­
change the order of integration. This yields 

o = ( lb h(t, z) dtdz = ( H(z) dz. 
JaR a JaR 

The hypotheses of Morera's theorem are met, and H(z) is analytic. 
As another typical application, we prove the following useful result. 

Theorem. Suppose that J(z) is a continuous function on a domain D that 
is analytic on D\lR, that is, on the part of D not lying on the real axis. 
Then J (z) is analytic on D. 

Let R be a closed rectangle contained in D, with sides parallel to the coor­
dinate axes. To prove the theorem, it suffices to show that JaR J(z)dz = o. 
There are three cases to consider. If the closed rectangle R does not meet 
the real axis JR, then J ( z) is analytic on R, so the integral is zero by 
Cauchy's theorem. For the second case, suppose that R has one edge that 
lies on the real axis, say the lower edge of R is an interval [a, b] on the 
real axis. For E > 0 small, let Re be the closed rectangle in the upper 
half-plane consisting of z E R such that Imz ~ E. By Cauchy's theorem, 
faRe J(z)dz = o. We claim that 

(6.1) { J(z)dz -+ { J(z)dz 
JaRe JaR 
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as r:: --+ o. Indeed the integral along the bottom edge of Re has the form 

lb J(t + ir::) dt, 

and since J(t + ir::) converges to J(t) as r:: --+ 0, uniformly for a :s t :s b, the 
integrals converge to the integral J: J(t)dt of J(z) along the bottom edge 
of R. The top edge of Re coincides with the top edge of R, and the vertical 
sides of Re differ from the vertical sides of R only by vertical intervals of 
length r::, whose contribution to the integral tends to 0 with r::. Thus (6.1) 
holds, and we conclude in this case that JaR J(z)dz = O. Finally, if the 
top edge of R is in the upper half-plane and the bottom edge of R is in 
the lower half-plane, we define R+ to be the part of R in the closed upper 
half-plane and R_ to be the part of R in the closed lower half-plane. Then 
the integrals of J(z) around 8R+ and 8R_ are both zero, by case two. 
Thus 

{ J(z)dz = { J(z)dz + ( J(z)dz = 0, 
JaR JaR+ JaR_ 

and the analyticity follows from Morera's theorem. 

Exercises for IV.6 

1. Let L be a line in the complex plane. Suppose J(z) is a continuous 
complex-valued function on a domain D that is analytic on D\L. 
Show that J(z) is analytic on D. 

2. Let h(t) be a continuous function on the interval [a, b]. Show that 
the Fourier transform 

H(z) = lb h(t)e-itzdt 

is an entire function that satisfies 

IH(z)1 :s CeA1yl , z = x + iy E C, 

for some constants A, C > o. Remark. An entire function satisfying 
such a growth restriction is called an entire function of finite 
type. 
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3. Let h(t) be a continuous function on a subinterval [a, b] of [0,00). 
Show that the Fourier transform H(z), defined as above, is bounded 
in the lower half-plane. 

4. Let 'Y be a smooth curve in the plane JR2, let D be a domain in 
the complex plane, and let P(x, y, () and Q(x, y, () be continuous 
complex-valued functions defined for (x, y) on'Y and ( E D. Suppose 
that the functions depend analytically on ( for each fixed (x, y) on 'Y. 
Show that 

G(() = i P(x, y, () dx + Q(x, y, () dy 

is analytic on D. 

7. Goursat's Theorem 

We have defined J(z) to be analytic on D if the complex derivative f'(z) 
exists at each point of D and further, f' (z) is a continuous function of z. 
Coursat's theorem asserts that the requirement that f'(z) be continuous is 
redundant. 

Theorem (Goursat's Theorem). If J(z) is a complex-valued function 
on a domain D such that 

J'(zo) = lim J(z) - J(zo) 
Z-+Zo Z - Zo 

exists at each point Zo of D, then J(z) is analytic on D. 

Coursat's theorem is as useless as it is aesthetically pleasing. In appli­
cations it has always turned out that if one can show the existence of a 
complex derivative at each point, then one can see with little more effort 
that the complex derivative is continuous. Nevertheless, the idea of the 
proof has proved to be very useful in other contexts. 

The proof is based on Morera's theorem. Let R be a closed rectangle 
in D. We subdivide R into four equal subrectangles. Since the integral 
of J(z) around oR is the sum of the integrals of J(z) around the four 
subrectangles, there is at least one of the subrectangles, call it R!, for 
which 

Now subdivide Rl into four equal subrectangles and repeat the procedure. 
This yields a nested sequence of rectangles {Rn} such that 

I r J(z)dzl ~ ~ I r J(z)dzl ~ ... ~ 4: I r J(z)dzl· 
JaRn JaRn _ 1 JaR 
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Since the R.n's are decreasing and have diameters tending to 0, the Rn's 
converge to some point ZO ED. Since f(z) is differentiable at Zo, we have 
an estimate of the form 

I f(z) - f(zo) - f'(zo) I ::; en, 
Z-Zo 

z E R.n, 

where en -+ 0 as n -+ 00. Let L be the length of 8R. Then the length of 
8Rn is L/2n. For z belonging to Rn we have the estimate 

From the ML-estimate and Cauchy's theorem, we obtain 

I loR.. f(z) dzl = I loRn [f(z) - f(zo) - f'(ZO)(Z - ZO)] dzl 

< (2enL/2n). (L/2n) = 2L2en/4n. 

Hence 

Since en -+ 0 as n -+ 00, we must have 

[ f(z)dz O. 
JaR 

By Morera's theorem, f(z) is analytic. 

I 

Exercises for IV.1 

1. Find an application for Goursat's theorem in which it is not patently 
clear by other means that the function in question is analytic. 

8. Complex Notation and Pompeiu's Formula 

Many results in complex analysis can be expressed very simply in terms of 
the first-order differential operators 

8 1[8 .8] - = - - - z-
8z 2 8x 8y , :z = ~[:x + i:yJ. 
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We may think of ~~ as an average of the derivatives of J(z) in the x and 

the iy directions, 

oj 1 [oJ oj ] 
az = "2 ax + a(iy) . 

When we derived the Cauchy-Riemann equations in Chapter II, we found 
two expressions for the derivative of an analytic function J (z ), 

oj , .aJ oj 
J'(z) = ax and J (z) = -z ay = a(iy)· 

If we take the average of these two expressions for J'(z), we obtain 

(8.1) !'(z) = ~~, 
again provided that J(z) is analytic. 

To understand the operator a/az, we write J = u + iv and compute 

oj = ~ [au _ av] + !.. [au + av]. 
az 2 ax ay 2 oy ox 

If we equate the real and imaginary parts of the right-hand side to zero, 
we obtain the Cauchy-Riemann equations for u and v. Thus the equation 

(8.2) oj = 0 
oz 

is equivalent to the Cauchy-Riemann equations for u and v. Equation (8.2) 
is referred to as the complex form of the Cauchy-Riemann equations. 
We summarize our observations. 

Theorem. Let J(z) be a continuously differentiable function on a do­
main D. Tben J(z) is analytic if and only if j(z) satisfies tbe complex 
form (8.2) of tbe Cauchy-Riemann equations. If j(z) is analytic, tben tbe 
derivative of J(z) is given by (8.1). 

We list some rules for operating with %z and %z. Since these are 
both first-order differential operators with constant coefficients, they are 
linear, 

o oj ag 
oz(aJ+bg) = aoz +boz ' 

o 
oz(aJ + bg) 

oj og 
a oz +boz ' 

and they satisfy the Leibniz rule, 

o og oj 
oz (lg) = J oz + 9 OZ ' 

o og oj 
oz(lg) = J oz + 9 oz· 

The z-derivative and the z-derivative are related to each other by 

oj 
oz 

oJ 
oz' 
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These formulae can be verified by writing J = u + iv, 1 = u - iv, and 
carrying out the calculations. 

The Taylor series expansion of a smooth function J(z) at zo, through 
only the linear terms, is given by 

aJ aJ (-) ( 2) J(z) = J(zo) + az (zo)(z - zo) + az (zo) z - Zo + 0 jz - zoj , 

where the "big oh" term is a remainder term bounded by Gjz - zoj2. The 
complex Taylor expansion can be derived from the usual Taylor expansion 
by substituting the definitions and calculating. It can also be derived by 
observing that it suffices to check the formula for the three functions 1, 
z - Zo, and z - zoo 

As an application of Taylor's formula, we derive the complex form of the 
formula for the tangent vector to a curve. Let J(z) be a smooth function, 
and let ')'(t) be a smooth curve terminating at ')'(0) = zo0 From the linear 
Taylor series approximation we have 

J(,),(t))- J(,),(O)) = ~~ (zo) (')'(t)-zo) + ~~ (zo) (')'(t) - zo) +0 (l'Y(t) - zoj2) . 

Dividing by t and taking the limit as t ---+ 0, we obtain 

(8.3) 
aJ aJ-

(f 0 ')')'(0) = az (zoh'(O) + az (zoh'(O). 

We use this formula to show that conformal maps are analytic. 

Theorem. Let J(z) be a continuously differentiable function on a do­
main D. Suppose that the gradient of J(z) does not vanish at any point 
of D, and that J(z) is conformal. Then J(z) is analytic on D, and f'(z) f:. 0 
onD. 

To prove this, fix a point Zo E D, and consider the straight line ')'(t) = 
Zo +tei9 , 0 ::; t ::; c, terminating at Zo with tangent ei9 . By (8.3), the image 
curve J 0 ')' has tangent at J (zo) given by 

(fo')')'(O) = :~(zo)ei9 + :~(zo)e-i9. 
The condition on the gradient guarantees that this is not identically zero. 
In order for J(z) to preserve angles at Zo, the difference in the arguments 
of (f 0 ')')'(0) and ')"(0) must be constant, independent of (). Hence the 
argument of 

(f 0 ')')'(0) _ aJ ( )+aJ( )-2i9 
')"(0) - az Zo az Zo e 

must be independent of (). However, this occurs only when aJ jaz = o. 
Hence J(z) is analytic on D. The gradient condition implies that f'(z) = 
aJ jaz f:. 0, and the theorem is established. Note that this theorem could 



8. Complex Notation and Pompeiu's Formula 127 

as well be proved using x and y derivatives rather than z and z derivatives. 
However, the complex notation makes the proof more transparent. 

For the case of complex line integrals, Green's theorem yields the follow­
ing formula, which can be regarded as an extension of Cauchy's theorem 
to arbitrary smooth functions. 

Theorem. If D is a bounded domain in the complex plane with piecewise 
smooth boundary, and if g(z) is a smooth function on D U 8D, then 

(8.4) 

To see this we replace dz by dx + i dy and apply Green's formula: 

IaD 9dX + IaD i9dY = Jl(i~!-~:)dXdY = 2iJl~;dxdY. 
Note that if g(z) is analytic on D, then 8gj8z = 0 on D, so the integral 
over D vanishes, and we obtain Cauchy's theorem. 

Cauchy's integral formula can also be extended to apply to arbitrary 
smooth functions. 

Theorem (Pompeiu's Formula). Suppose D is a bounded domain with 
piecewise smooth boundary. If g(z) is a smooth complex-valued function 
on D U 8D, then 

1 fa g(z) 1 fir 8g 1 (8.5) g(w) = -. --dz - - --::--dxdy, 
211"Z aD z - w 11" D 8z z - w 

WED. 

Pompeiu's formula is established by the same argument as was used 
in Section 4 to establish Cauchy's integral formula, except that now the 
correction term appears in the calculation. Let DE be the domain obtained 
from D by punching out a disk centered at w of radius c. We apply the 
complex version (8.4) of Green's theorem to the function g(z)j(z-w). For 
this, note that 

:z (:~z ~) = ~; z ~ w + 9 :z (z ~ w) = ~; z ~ w ' z E DE' 

so that by (8.4), 

(8.6) [ g(z) dz = 2iJ" [ 88~_1-dXdY. 
J aD. z - w J D. Z Z - W 

The singularity of Ij(z - w) at z = w is absolutely integrable: 

Jr[ -1_l_ldXdY = [27r [1 ~.rdrd() = 211" < 00. 
J1z-w19 z - w Jo Jo r 
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Hence the area integral in (8.6) over De tends to the (improper) area inte­
gral over D as c --+ O. The boundary integral in (8.6) has the form 

[ g(z) dz = [ g(z) dz -1 g(z) dz. 
} aD. z - w } aD z - w Iz-wl=e Z - W 

If we parametrize the circle Iz - wi = c, we obtain for the integral on the 
right 

1 g(z) 1271" . 
--dz = i g(w + cet9 ) dO. 

Iz-wl=e z - w 0 

This tends to 27rig(w) as c --+ 0, since g(z) is continuous at w. Thus if we 
let c --+ 0 in (8.6), we obtain 

[ g(z) dz-27rig(w) = 2iJ"[ 88~_I-dxdy, 
} aD z - W } D Z Z - w 

which is equivalent to (8.5). 
The formula (8.5) is also known as the Cauchy-Green formula, since it 

is proved using Green's theorem. The formula can be regarded as Cauchy's 
integral formula with a correction term added to account for the fact that 
g(z) may not be analytic. If g(z) is analytic on D, it reduces to the Cauchy 
integral formula (4.1) for g(z). 

Exercises for IV.8 

1. Show from the definition that 

8 
8z z = 0, 

8 _ 
-z 
8z 

1. 

2. Compute tz(az2 + bzz + cz2 ). Use the result to determine where 
az2 + bzz + c22 is complex-differentiable and where it is analytic. 
(See Problem 11.2.3.) 

3. Show that the Jacobian of a smooth function 1 is given by 

18112 18112 detJf = 8z - 8z 

4. Show that 

Deduce the following, for a smooth complex-valued function h. 
(a) h is harmonic if and only if 82hj8z8z = O. 
(b) h is harmonic if and only if 8hj8z is analytic. 
(c) h is harmonic if and only if 8hj8z is conjugate-analytic. 
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(d) If h is harmonic, then any mth order partial derivative of h is 
a linear combination of 8m hj8zm and 8m hj8zm . 

5. With dz = dx - i dy, show for a smooth function J(z) that 

8J 8J_ 
dJ = 8z dz + 8z dz. 

6. Show that if D is a domain with smooth boundary, and if J(z) and 
g(z) are analytic on D U 8D, then 

laD J(z)g(z) dz = 2i 11 J(z)g'(Z) dxdy. 

Compare this formula with Exercise 1.4. 

7. Show that the Taylor series expansion at Zo = 0 of a smooth function 
J(z), through the quadratic terms, is given by 

J(z) = J(O) + ~~ (O)z + ~; (O)z 

1 [82J 2 82J 2 82J -2] (3) + 2 8z2 (O)z + 2 8z8z(0)lzl + 8z2 (O)z + 0 Izl . 

8. Establish the following version of the chain rule for smooth complex-
valued functions w = w(z) and h = h(w): 

!..-(h 0 w) 8h 8w 8h 8ill 
8z 8w 8z + 8ill 8z ' 

!..-(h 0 w) 8h 8w + 8h 8ill. 
8z 8w 8z 8iiJ 8z 

9. Show with the aid of the preceding exercise that if both h(w) and 
w(z) are analytic, then (h 0 w)(z) is analytic, and (h 0 w)'(z) = 
h'(w(z))w'(z). 

10. Let g(z) be a continuously differentiable function on the complex 
plane that is zero outside of some compact set. Show that 

g(w) = - - --::--dxdy, 1 Jie 8g 1 
7r C 8z z - w 

wEe. 

Remark. If we integrate this formally by parts, we obtain 

g(w) = ! Je ( g(z) 88_ (_1_) dxdy. 
7r 1c z z - w 

Thus the "distribution derivative" of 1j(7r(z - w)) with respect to z 
is the point mass at w ("Dirac delta-function"), in the sense that it 
is equal to 0 away from w, and it is infinite at w in such a way that 
its integral (total mass) is equal to 1. 
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Power Series 

In this chapter we show that the analytic functions are exactly the functions 
that can be expanded in a convergent power series about any point. Since 
power series can be treated very much as polynomials, this provides a 
powerful tool for dealing with analytic functions. In Sections 1 and 2 we 
review infinite series and series of functions. Sections 3 through 6 contain 
the basic material on power series. In Section 7 we use power series to 
show that the zeros of an analytic function are isolated. This leads to the 
uniqueness principle for analytic functions. Section 8 contains a formal 
definition of analytic continuation, which can be omitted at first reading. 

1. Infinite Series 

In this section we review some basic material on infinite series of complex 
numbers. In the next section we provide some background material on 
sequences and series of functions. The reader may wish to skip to Section 3 
and refer to the background sections only when necessary. 

A series L::'o ak of complex numbers is said to converge to S if the 
sequence of partial sums {Sk}, defined by Sk = ao + ... + ak, converges 
to S. For notation, the sum S of the series is denoted by L:;:'=o ak, or 
simply by L:ak. 

Any statement concerning series can be reinterpreted as a statement 
about sequences, by phrasing the statement in terms of the sequence of 
partial sums of the series. For instance, we know that if Sn ~ sand tn ~ t, 
then Sn +tn ~ S +t. If we apply this statement to the partial sums of series, 
we conclude that if L: ak = A and L: bk = B, then L:(ak + bk) = A + B. 
Similarly, since Sn ~ S implies CSn ~ CS, we deduce that if L: ak = A, 
then L: cak = cA. Thus taking limits of sequences is a linear operation, 
and this implies that summing series is also a linear operation. 

If the Tk'S are positive real numbers, then the partial sums Sk = TO + 
... + Tk form a monotone increasing sequence. Since a monotone sequence 
of real numbers converges if and only if it is bounded, we see that a series of 

130 
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positive numbers converges if and only if the partial sums are bounded. If 
o ~ ak ~ Tk, and if the partial sums of L Tk are bounded, then the partial 
sums of L ak are bounded by the same bound. This observation leads to 
the following convergence test for series with positive terms. 

Theorem (Comparison Test). If 0 ~ ak ~ Tk, and if L Tk converges, 
then Lak converges, and Lak ~ LTk. 

The terms of a series can be recovered from the partial sums, by ak = 
Sk - Sk-l· Suppose the series L ak converges to S. Then Sk converges 
to S as k ---+ 00, and also Sk-l converges to S as k ---+ 00. Hence ak ---+ 0 as 
k ---+ 00. This simple necessary condition provides a useful screening test 
for convergence. 

Theorem. If L ak converges, then ak ---+ 0 as k ---+ 00. 

Example. The most important series for us will be the geometric series 
L:'o zk. The kth partial sum of the geometric series is given by 

1- zk+1 
Sk = 1 + z + z2 + ... + zk-l + zk = , z =I- 1. 

1-z 

To see this, we multiply and divide the sum by 1- z, and we note that the 
numerator telescopes: 

(1 - Z)Sk = 1 - z + z - z2 + ... + zk-l - zk + zk - Zk+l = 1 _ Zk+l 

If Izl < 1, then zk+l ---+ 0 and Sk ---+ 1/(1 - z) as k ---+ 00. Hence 

00 1 
'"'zk = -, Izl < 1. 
~ 1-z 
k=O 

On the other hand, if Izl 2:: 1, then the kth term zk does not converge to 0, 
so that the series does not converge. 

The series L ak is said to converge absolutely if L lak I converges. 
Thus for a series of positive terms, convergence and absolute convergence 
are the same. There are convergent series that are not absolutely conver­
gent. (See Exercises 4 and 5.) However, every absolutely convergent series 
is convergent. 

Theorem. If L ak converges absolutely, then I: ak converges, and 

(1.1) I~akl ~ ~Iakl. 

The proof is easy, modulo a little trick, which is to express Re ak as a 
difference Reak = (Reak + laki) - lakl· Since I Reakl ~ lakl, we have 



132 V Power Series 

o :::; Reak + lakl :::; 2lakl· Hence E(Reak + lakl) is a series of non­
negative real numbers. Since its partial sums are bounded, by 2 E lakl, 
the series converges. Now E Re ak is the difference of two convergent se­
ries, E(Reak + lakl) and E lakl, and so EReak converges. Similarly, 
Elm ak conver~s, and consequently E ak converges. For each N we have 
I E:=o akl :::; Ek=O lakl· Letting N --t 00, we obtain the estimate (1.1). 

Example. The geometric series converges absolutely when Izl < 1, and 

Izl < 1. 

This leads also to a useful estimate for the difference between the partial 
sums of the geometric series and the full sum. From 

(1.2) 

we obtain 

1 
1-z 

Exercises for V.1 

1. (Harmonic Series) Show that 

n 1 
L k 2:: logn. 
k=l 

Izl < 1. 

Deduce that the series L i does not converge. Hint. Use the esti­
mate 

1 lk+1 1 - > -dx. 
k - k X 

2. Show that if p < 1, then the series E%:ll/kP diverges. Hint. Use 
Exercise 1 and the comparison test. 

3. Show that if p > 1, then the series E%:ll/kP converges to S, where 

S-"'- < I n 1 I 1 6 kp (p -1)nP- 1 • 

H · U h . 1 lk dx mt. se t e estlmate -k < -. 
P k-l xP 
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4. Show that the series 

111 
1--+---+··· 

234 
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converges. Hint. Show that the partial sums of the series satisfy 
82 < 84 < 86 < ... < 85 < 83 < 81 . 

5. Show that the series 

11111111 
1+"3-"2+5+7-4+9+ 11 -"6+'" 

converges to 38/2, where 8 is the sum of the series in Exercise 4. 
(It turns out that 8 = log 2.) Hint. Organize the terms in the series 
in Exercise 4 in groups of four, and relate it to the groups of three 
in the above series. 

1. . 1 
6. Show that L k log k dIverges whIle L k(log k )2 converges. 

7. Show that the series L ak converges if and only if LZ:~ ak tends 
to 0 as m, n -t 00. Remark. This is the Cauchy criterion for 
series. 

2. Sequences and Series of Functions 

Let {Ii} be a sequence of complex-valued functions defined on some set E. 
We say that the sequence {fj} converges pointwise on E if for each point 
x E E the sequence of complex numbers {fj(x)} converges. The limit f(x) 
of {Ii (x)} is then a complex-valued function on E. 

Example. The sequence of functions Ii(x) = xJ , 0 :::; x :::; 1, converges 
pointwise on the unit interval to the function f(x) defined on the unit 
interval by f(x) = 0 for 0 :::; x < 1 and f(l) = 1. Note that the pointwise 
limit of a sequence of continuous functions need not be continuous. 
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Example. We define a sequence of "tent functions" 9j on the unit interval 
by 9j(X) = j 2x for 0 ::; x ::; Ifj, 9j(X) = 2j - px for I/j ::; x ::; 2/j, and 
9j(X) = 0 for 2/j ::; x ::; 1. The height of the jth tent is j, and the width 
of the base is 2/ j, so that the area under the tent is J~ 9j(X) dx = 1. On 
the other hand, the sequence of functions 9j(X) converges pointwise to 0 
on the unit interval, and the integral of the pointwise limit is O. 

To guarantee that the limit of the integrals of a sequence of functions 
is the integral of the limit, we must require that the functions converge 
in some stronger sense than pointwise. Toward this goal we introduce the 
notion of uniform convergence. We say that the sequence {fJ} of functions 
on E converges uniformly to f on E if IfJ(x) - f(x)1 ::; Cj for all x E E, 
where Cj --+ 0 as j --+ 00. We may regard Cj as a worst-case estimator for 
the difference fJ(x) - f(x), and usually we take Cj to be the supremum 
(maximum) of IfJ(x) - f(x)1 over x E E, 

Cj = sup IfJ(x) - f(x)l· 
xEE 

Note that if {fJ} converges uniformly to f on E, then it converges pointwise 
to f on E. 

E:-tube about graph of y = f(x). If(x) - .fj(x) I < E: 

In the two examples above, the sequences do not converge uniformly. In 
the first example the worst-case estimator is Cj = maxo~x9 x j = 1, which 
does not converge to O. In the example of the sequence of tent functions, 
the worst-case estimator is worse. It is the height of the tent, which is 
Cj = j --+ +00. 

It turns out that with uniform instead of pointwise convergence, the two 
theorems we desire are valid: (1) a uniform limit of continuous functions 
is continuous, and (2) an integral of a uniform limit is the limit of the 
integrals. We state the theorems more precisely. 

Theorem. Let {fJ} be a sequence of complex-valued functions defined on 
a subset E of the complex plane. If each fJ is continuous on E, and if {fJ} 
converges uniformly to f on E, then f is continuous on E. 



2. Sequences and Series of Functions 135 

Theorem. Let "( be a piecewise smooth curve in the complex plane. If 
{Ii} is a sequence of continuous complex-valued functions on ,,(, and if {Ii} 
converges uniformly to Ion ,,(, then J"( Ii (z)dz converges to J"( I(z)dz. 

The first theorem above on the continuity of a uniform limit has a stan­
dard formal proof, which we omit. The second theorem above on the limit 
of the integrals is an easy consequence of the M L-estimate. Indeed, sup­
pose {Ii} converges uniformly to I on "(. Let C j be the worst-case estimator 
for Ii - I on ,,(, so that Iii - II ::; Cj on ,,(, and let L be the length of "(. 
Then the M L-estimate gives 

and this tends to 0, since the Ii's converge uniformly to I· Hence J Iidz 
tends to J I dz. 

Now we turn to series of functions. Let L 9j(X) be a series of complex­
valued functions defined on a set E. The partial sums of the series are the 
functions 

n 

Sn(x) = L9j(X) = 90(X) + 91(X) + ... + 9n(X). 
k=O 

We say that the series converges pointwise on E if the sequence of partial 
sums converges pointwise on E, and the series converges uniformly on E 
if the sequence of partial sums converges uniformly on E. The following 
criterion for uniform convergence of a series of functions is extremely useful. 
In fact, it is the only test for uniform convergence of series that we will ever 
need. 

Theorem (Weierstrass M-Test). Suppose Mk ~ 0 and LMk con­
verges. If9k(X) are complex-valued functions on a set E such that 19k(X) I ::; 
Mk for all x E E, then L9k(X) converges uniformly on E. 

The proof is straightforward. For each fixed x, the estimate for 9k(X) 
shows that the series L9k(X) is absolutely convergent, and L 19k(X)1 ::; 
LMk. By the theorem in Section 1, the series L9k(X) converges to some 
complex number 9(X), and by (1.1), 19(x)1 ::; L 19k(X)1 ::; L Mk· The same 
estimate, applied to the tail of the series, shows that 

19(X) - Sn(X)1 = I f= 9k(X)I::; f= Mk . 
k=n+l k=n+l 

If we set cn = L:'n+l Mk, then cn ---+ 0 as n ---+ 00, and the estimate 
shows that the partial sums Sn(X) converge uniformly on E to 9(X). 
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Example. For the geometric series 

00 

we have from (1.2) that 

1 
l-z' 

Izl < 1, 

1
_1 - Sn(z)1 = I zn+ll, 
l-z l-z 

V Power Series 

which tends to +00 as z -+ 1. Hence the partial sums do not converge 
uniformly for Izl < 1. However, suppose we fix a radius r < 1. Define Mk = 
rk. Then 'EMk converges, and Izkl ::; Mk for Izl ::; r. By the Weierstrass 
M-test, 'E zk converges uniformly for Izl ::; r. Thus the geometric series 
converges uniformly on each disk {Izl ::; r}, for each r < 1, but it does not 
converge uniformly on the disk {I z I < I}. 

Now we return to analytic functions. We begin by proving that a uniform 
limit of analytic functions is analytic. 

Theorem. If {fk(Z)} is a sequence of analytic functions on a domain D 
that converges uniformly to f (z) on D, then f (z) is analytic on D. 

This can be proved using the Cauchy integral formula. An easier way to 
see it is to apply Morera's theorem. Since analytic functions are continuous, 
and the limit of a uniformly convergent sequence of continuous functions 
is continuous, fez) is continuous. Let E be a closed rectangle contained 
in D. By Cauchy's theorem, feE h(z)dz = 0 for each k. From the theorem 
above we obtain in the limit that feE f(z)dz = O. By Morera's theorem, 
f(z) is analytic. 

Theorem. Suppose that h(z) is analytic for Iz - zol ::; R, and suppose 
that the sequence {h(z)} converges uniformly to fez) for Iz - zol ::; R. 
Then for each r < R and for each m ~ 1, the sequence of mth derivatives 

{fkm)(z)} converges uniformly to f(m)(z) for Iz - zol ::; r. 

To prove this, suppose Ck -+ 0 are such that Ih(z) - f(z)1 < Ck for 
Iz - zol < R. Fix 8 such that r < 8 < R. The Cauchy integral formula for 
the mth derivative of fk(Z) - fez) on the disk Iz - zol ::; 8 yields 

fkm)(z) - f(m)(z) = m!. [ h(() - !i~) de, 
21f2 J1z-zo1=s (( - z) 

Iz - zol ::; r. 

If I( - zol = 8 and Iz - zol ::; r, then I( - zl ~ 8 - r, and so 

Ih(()-f(()1 < Ck 
(( - z)m+l - (8 - r)m+1 . 
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From the M L-estimate, we obtain 

Iz-zol :::;r. 

Since Pk --70 as k --7 00, we obtain uniform convergence of the mth deriva­
tives for Iz - zol :::; r. 

We say that a sequence {fk(Z)} of analytic functions on a domain D 
converges normally to the analytic function I(z) on D if it converges 
uniformly to I (z) on each closed disk contained in D. It is easy to see 
that this occurs if and only if {!k(z)} converges to I(z) uniformly on each 
bounded subset E of D at a strictly positive distance from the boundary 
of D. (See Exercises 4 and 5.) Since any closed disk contained in D can 
be dilated to a larger disk contained in D, we can apply the preceding 
theorem, and we obtain the following. 

Theorem. Suppose that {!k(z)} is a sequence of analytic functions on 
a domain D that converges normally on D to the analytic function I(z). 

Then for each m ~ 1, the sequence ofmth derivatives {/km)(z)} converges 

normally to I(m)(z) on D. 

Exercises for V.2 

1. Show that !k(x) = xk /(k+x2k ) converges uniformly to 0 on [0,00). 
Hint. Determine the worst-case estimator Ck by calculus. 

2. Show that gk(X) = xk /(1 + xk) converges pointwise on [0,00) but 
not uniformly. What is the limit function? On which subsets of 
[0,00) does the sequence converge uniformly? 

3. Show that Ik(Z) = zk /k converges uniformly for Izl < 1. Show that 
1Hz) does not converge uniformly for Izl < 1. What can be said 
about the uniform convergence of 1Hz)? 

1 xk 
4. Show that L k2 1 + x2k converges uniformly for -00 < x < +00. 

1 xk 
5. For which real numbers x does L k 1 + x2k converge? 

1 xk 
6. Show that for each c > 0, the series L k 1 + x 2k converges uni-

formly for x ~ 1 + c. 

7. Let an be a bounded sequence of complex numbers. Show that 
for each c > 0, the series L~=l ann-z converges uniformly for 
Rez ~ 1 + c. Here we choose the principal branch of n-z . 
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Zk 
8. Show that L k2 converges uniformly for JzJ < 1. 

zk 
9. Show that L k does not converge uniformly for JzJ < 1. 

10. Show that if a sequence of functions {!k(x)} converges uniformly 
on Ej for 1 :::; j :::; n, then the sequence converges uniformly on the 
union E = El U E2 U ... U En. 

11. Suppose that E is a bounded subset of a domain DeC at a positive 
distance from the boundary of D, that is, there is 8 > 0 such that 
Jz-wJ ~ 8 for all z E E and wE C\D. Show that E can be covered 
by a finite number of closed disks contained in D. Hint. Consider 
all closed disks with centers at points (m+ni)8/1O and radius 8/10 
that meet E. 

12. Let J(z) be analytic on a domain D, and suppose JJ(z)1 :::; M for all 
zED. Show that for each 8 > 0 and m ~ 1, JJ(m)(z)J :::; m!M/8m 

for all zED whose distance from aD is at least 8. Use this to 
show that if {Jk(Z)} is a sequence of analytic functions on D that 
converges uniformly to J(z) on D, then for each m the derivatives 
Jkm)(z) converge uniformly to J(m)(z) on each subset of D at a 
positive distance from aD. 

3. Power Series 

A power series (centered at zo) is a series ofthe form E%:o ak (z - zo) k . 
By making a change of variable w = z - zo, we can always reduce to the 
case of power series centered at z = O. The main result on convergence of 
power series is the following. 

Theorem. Let E akzk be a power series. Then there is R, 0 :::; R :::; +00, 
such that E akzk converges absolutely if JzJ < R, and E akzk does not 
converge if JzJ > R. For each fixed r satisfying r < R, the series E akzk 
converges uniformly for I z J :::; r. 

-- diverges 

'-+--- don't know 

-+++-- converges 

/------- converges unifonnly 

We call R the radius of convergence of the series E akzk. The radius 
of convergence depends only on the tail of the series. If we alter a finite 
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number of coefficients of the series, the radius of convergence remains the 
same. 

For the general case of a power series L ak(z - zo)k, the domain of 
convergence is a disk Iz - zol < R. The series diverges if Iz - zol > R, and 
anything can happen when Iz - zol = R. 

For the proof of the theorem, note first that if the sequence laklrk is 
bounded for some value r = ro, then it is bounded for all r satisfying 
o ::; r < roo We define R, 0 ::; R ::; +00, to be the supremum of the r's 
such that laklrk is bounded. Thus laklrk is bounded if r < R, while if 
.r > R, then there is a sequence of terms with lak; Irk; - +00. In the 
borderline case r = R, anything can happen. The sequence laklRk might 
be bounded and it might not. 

If Izl > R, then the terms akzk do not tend to 0, so that the series does 
not converge. On the other hand, suppose r < R. Choose s such that 
r < s < R. Then the sequence laklsk is bounded, say laklsk ::; C for k ~ O. 
If Izl ::; r, then 

lavkl ::; laklrk = laklsk(~)k ::; C(~)k 
Set Mk = C( r / s)k. Since L Mk converges, the Weierstrass M -test applies, 
and the series L akzk converges uniformly for Izl ::; r, and also absolutely 
for each z. This proves the theorem. 

Example. The geometric series L zk has radius of convergence R = 1. 
The series does not converge on the boundary circle Izl = 1, since the 
terms do not tend to o. 

Example. The power series L zk /k2 converges uniformly for Izl ::; 1. This 
follows from the Weierstrass M-test, with majorants Mk = 1/k2. On the 
other hand, if r > 1, then rk /k2 - 00 as k - 00. Thus the series does not 
converge for Izl > 1, and the radius of convergence of the series is R = 1. 

Example. The series 

(3.1) 
~ (_l)k 2k 
~~z 
k=O 

becomes a geometric series if we set w = -z2/2, 

~(-1)k2k_~ k 
~ 2k Z - ~w. 
k=O k=O 

The series converges precisely when Iwl < 1, that is, when Iz21 < 2. The 
radius of convergence is thus R = J2. The series converges to 1/(1- w) = 
2/(2 - z2). 
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Example. The series E kk zk has radius of convergence R = o. It converges 
only for z = 0, since kkrk -+ +00 for all r > O. 

Example. The series E k-kzk has radius of convergence R = +00. It 
converges for all z. 

The partial sums of a power series are polynomials in z, and in particular 
they are analytic functions. From the convergence theorem of Section 2, 
we obtain the following. 

Theorem. Suppose E akzk is a power series with radius of convergence 
R> o. Then the function 

00 

J(z) = l:akzk , 
k=O 

Izl <R, 

is analytic. The derivatives of J (z) are obtained by differentiating the series 
term by term, 

00 00 

J'(z) = l:kakzk-l, J"(z) = l:k(k -1)akzk- 2 , Izl <R, 
k=l k=2 

and similarly for the higher-order derivatives. The coefficients of the series 
are given by 

(3.2) k 2: o. 

The formula for the coefficient ak is obtained by differentiating k times 
the series for J(z) and plugging in z = O. 

Example. By differentiating the representation of 1/(1- z) as a geometric 
series, we obtain a power series representation of 1/(1 - Z)2, 

Izl < 1. 

On account of the uniform convergence of power series on subdisks of 
radius strictly smaller than R, a power series can be integrated term by 
term. Thus if E akzk has radius of convergence R, then 

Izl <R. 
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Example. If we integrate the geometric series term by term, we obtain 

-Log(l- z) = l z d( 

o 1- ( 
= tt(kd( 

Jo k=O 

00 k+l 

= L::+ 1 
k=O 

Z2 Z3 Z4 
Z+"2+"3+"4+ ... , Izl < 1. 

Making the substitution w = 1 - z, we obtain a series expansion for Log w 
centered at w = 1, 

00 ( l)k+1 
Log w = L: - k (w - l)k 

k=l 

(w-l)- (w-l)2 + (w-l)3 _ (w-l)4 + ... 
2 3 4 

Iw -11 < 1. 

converges for Iw - II < I 

} diverges for Iw-II > I 

Now we turn to two formulae for determining the radius of convergence of 
a power series from its coefficients. The first of these is based on the ratio 
test. It is especially convenient for determining the radius of convergence 
of many series that arise as solutions of linear differential equations. 

Theorem. If lak/ak+11 has a. limit as k ---+ 00, either finite or +00, then 
the limit is the ra.dius of convergence R of I: akzk, 

R I· I ak I = 1m --
k-+oo ak+l 

To see this, let L = lim lak/ak+ll. If r < L, then lak/ak+11 > r eventu­
ally, say for k ~ N. Then lakl > rlak+ll for k ~ N, and 

laNlrN ~ laN+1lrN+1 ~ laN+2lrN+2 ~ .... 

Hence the sequence laklrk is bounded. From the definition of R we have 
r ::::; R, and since r < L is arbitrary, we also have L ::::; R. 

Suppose next that s > L. Then lak/ak+11 < s eventually, say for k ~ N. 
Then lakl < Slak+11 for k ~ N, and 

laNlsN ::::; laN+1IsN+1 ::::; laN+2lsN+2 ::::; 
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Hence the terms akzk do not converge to 0 for Izl ~ s, so that the series 
does not converge, and S ~ R. Since s > L is arbitrary, we also have 
L ~ R. We conclude that L = R. 

Example. For the series L kzk, the ratio test gives 

I a::l I = k ~ 1 -+ l. 

Hence the radius of convergence is R = l. 

zk 
Example. For the series L k! ' the ratio test gives 

I ~I = (k+l)! = k+l-++oo. ak+l k! 

Hence the radius of convergence is R = +00. 

The second formula is based on the root test. 

Theorem. If Vlakl has a limit as k -+ 00, either finite or +00, then the 
radius of convergence of L akzk is given by 

(3.3) R = 1 . 
lim {/Iakl 

If r > l/lim {/Iakl, then {/Iakl r > 1 eventually, so that laklrk > 1 
eventually, the terms of the series L: akzk do not converge to 0 for Izl = r, 
and r ~ R. On the other hand, ifr < l/lim {/Iakl, then Vlakl r < 1 even­
tually, so that laklrk < 1 eventually, the sequence laklrk < 1 is bounded, 
and from the definition of R we have r ::; R. It follows that (3.3) holds. 

Example. For the series L kzk, the root test gives 

R = l/lim~ = l. 

There is a more general form of the formula (3.3), called the Cauchy­
Hadamard formula, that gives the radius of convergence for any power 
series in terms of a lim sup. Recall (Section ILl) that the lim sup of a 
sequence {sn} is characterized as the number S, -00 ::; S ::; +00, with 
the property that if t > S, then only finitely many terms of the sequence 
satisfy Sn > t, while if t < S, then infinitely many terms of the sequence 
satisfy Sn > t. If the sequence Sn has a limit, then the lim sup of the 
sequence coincides with the limit. However, every sequence has a lim sup. 
The Cauchy-Hadamard formula is obtained simply by replacing the limit 
in (3.3) by a lim sup, 

(3.4) R 
1 

limsup {/Iakl . 
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The proof is identical to the proof given above, except that the character­
izing property of the lim sup is used. 

Example. We return to the series (3.1) treated earlier. This can be ex­
pressed as a power series L akzk, where ak = (-1 )k/2 /2k/2 if k is even, 
and ak = 0 if k is odd. Thus {ljakl is 1/.;2 if k is even and 0 if k is odd. 
The lim sup of this sequence is 1/.;2. By the Cauchy-Hadamard formula, 
the radius of convergence of the series is .;2, as before. 

Exercises for V.3 

1. Find the radius of convergence of the following power series: 
00 00 3k k 00 kk 

(a) L 2kzk (d) L 4k: 5k (g) L 1 + 2kkkzk 
k=O k=O k=l 
00 k 00 2kz2k 00 

(b) L 6kZk (e) L k2 + k (h) L(logk)k/2zk 
k=O k=l k=3 
00 00 2k 00 k' k 

(c) L k2zk (f) L ;kk (i) L ~: 
k=l k=l k=l 

2. Determine for which z the following series converge. 
00 00 00 

(a) L (z _1)k (c) L 2m(z - 2)m (e) L nn(z - 3t 
k=l m=O n=l 

(b) f (z - i)k (d) f (z+i)m 00 2n 
(f) L -(z - 2 - i)n 

k! m2 n2 
k=lO m=l n=3 

3. Find the radius of convergence of the following series. 
00 

(a) L z3n = Z + z3 + z9 + Z27 + z81 + ... , 
n=O 

(b) L zP = Z2 + z3 + z5 + +z7 + Zll + .... 
P prime 

4. Show that the function defined by fez) = L zn! is analytic on 

the open unit disk {Izl < I}. Show that If(roX) I -+ +00 as r -+ 1 
whenever oX is a root of unity. Remark. Thus fez) does not extend 
analytically to any larger open set than the open unit disk. 

5. What functions are represented by the following power series? 
00 
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6. Show the series L akzk, the differentiated series L kakzk-l, and 

the integrated series L k ~ 1 zk+l all have the same radius of con­
vergence. 

7. Consider the series 
00 

L (2 + (_l)k)k zk. 
k=O 

Use the Cauchy-Hadamard formula to find the radius of convergence 
of the series. What happens when the ratio test is applied? Evaluate 
explicitly the sum of the series. 

8. Write out a proof of the Cauchy-Hadamard formula (3.4). 

4. Power Series Expansion of an Analytic Function 

We have seen that power series expansions Lak(Z-zO)k are analytic inside 
the disk of convergence {Iz - zol < R}. It is an important and far-reaching 
fact that conversely, any function analytic on a disk can be expanded in a 
power series that converges on the disk. 

Theorem. Suppose that J(z) is analytic for Iz - zol < p. Then J(z) is 
represented by the power series 

00 

(4.1) J(z) = L ak(z - zo)k, Iz - zol < p, 
k=O 

where 

(4.2) k ~ 0, 

and where the power series has radius of convergence R ~ p. For any fixed 
r, 0 < r < p, we have 

(4.3) ak = _1 1 J«) d( 
27ri 1i<-zol=r « - ZO)k+1 ' 

k ~ o. 

Further, if IJ(z)1 ::; M for Iz - zol = r, then 

(4.4) k~ o. 

The proof amounts to expanding the integrand in the Cauchy integral 
formula as a geometric series and using the uniform convergence of the 
series to integrate term by term. We assume for simplicity that Zo = o. 
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Fix z such that Izl < r. For 1(1 = r we have 

1 1 1 1 00 (z)k 00 k 
( - z = (, 1 - z /( = (, L (, = L (:+1 ' 

k=O k=O 

where the series converges uniformly for 1(1 = r. Hence 

J(z) = 

where ak is given by (4.3) with Zo = O. Thus J(z) is represented by a power 
series, which converges whenever Izl < r. Since r < p is arbitrary, the 
radius of convergence of the power series satisfies R ~ p. The formula (4.2) 
for ak coincides with formula (3.2), which was obtained by differentiating 
the power series k times and substituting z = ZOo The estimates (4.4) are 
another version of the Cauchy estimates already derived in Section IV.4. 
Recall that they are obtained by applying the M L-estimate to the integral 
in (4.3). 

Example. The exponential function eZ has power series L akzk, where 

Hence 

1 dk zj 1 zj 
ak = k! dzk e z=o = k! e z=o 

1 
k! . 

00 k z2 z3 
eZ = ~ zk! = 1 + z + - + - + .... L.... 2! 3! 

k=O 

Since eZ is entire, the radius of convergence of the power series is R = +00. 
Similarly, the entire functions sin z and cos z have power series expansions 
with infinite radius of convergence, given by 

00 (_1)kz2k+1 z3 z5 

k
L (2k + I)! = z - 3! + 5! _ ... , 

=0 

sinz = 

00 (_1)k z2k z2 z4 
L (2k)! = 1 - 2! + 4! - .... 
k=O 

cosz = 

We state for emphasis two results that are immediate consequences of 
the theorem. The first is that an analytic function on a disk is completely 
determined by its value and the values of its derivatives at the center of the 
disk. This is because the power series representing J(z) is determined by 
the derivatives of J(z) at the center Zo via the formula (4.2) for the power 
series coefficients. 
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Corollary. Suppose that J(z) and g(z) are analytic for Iz - zol < r. If 
J(k)(zO) = g(k) (zo) for k ~ 0, then J(z) = g(z) for Iz - zol < r. 

The second corollary provides another method for determining the radius 
of convergence of a power series. The slogan form of the method is: The 
mdius oj convergence is the distance to the nearest singularity. The formal 
statement is as follows. 

Corollary. Suppose that J (z) is analytic at Zo, with power series expan­
sion J(z) = I: ak(z - zO)k centered at ZOo Then the radius of convergence 
of the power series is the largest number R such that J (z) extends to be 
analytic on the disk {Iz - zol < R}. 

Note that the analytic extension of J(z) to this largest disk is unique, by 
the first corollary. 

Example. The function 1/(1 +x2 ) is a beautiful function of the real vari­
able x, which is expandable as a real power series about any point on the 
real axis. Yet the power series about x = 0, given by 

1 2 4 6 -- = I-x +x -x + ... 
l+x2 

has radius of convergence only 1. The reason is that considered as a function 
1/(1 + zZ) of a complex variable z, the function has singularities at the 
points ±i. Thus the radius of convergence is necessarily R = 1, which is 
the distance from ° to the nearest singularities at ±i. This example teaches 
us that to understand real-valued functions of a real variable, we must look 
into the complex plane. 

-i 

singularities at ± i 

Example. Consider the power series expansion of the function J(z) = 
(z3 - 1)/(z2 - 1) about z = 2, J(z) = I:ak(Z - 2)k. The function J(z) 
is analytic in the entire complex plane except for apparent singularities at 
z = ±1. However, the singularity at z = +1 is illusory. If we eliminate 
the common factor of z - 1 from the numerator and the denominator, we 
obtain J(z) = (z2 + z + 1)/(z + 1), which is analytic except at z = -1. 
The apparent singularity at z = +1 is called a "removable singularity." We 
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-I 

singularity at -I, analytic at + I 

will return to these in the next chapter. Since IJ(z)1 ---+ +00 as z ---+ -1, 
the function J (z) cannot be extended analytically to z = -1, and the 
singularity at z = -1 is genuine. The largest disk centered at z = 2 to 
which J(z) extends analytically is then the disk {lz-21 < 3}. Consequently, 
the radius of convergence of the power series is R = 3. 

Example. The radius of convergence of the power series E ak(z - 5)k of 
the function (Logz)j(z - 1) about z = 5 is R = 5. While the function 
has an apparent singularity at z = 1, in fact it extends analytically to that 
point. Its power series representation about z = 1 can be obtained by 
dividing the power series representation of Log z by z - 1, 

Logz 1 1 2 1 3 
Z _ 1 = 1 - "2(z - 1) + "3(z - 1) - 4(z -1) + .... 

Since the function tends to +00 as z tends to 0 from along the positive real 
axis, the function cannot be extended analytically to z = O. Thus z = 0 is 
a genuine singularity of the function, of a type called a "branch point," and 
the radius of the largest disk centered at z = 5 to which (Log z) j (z - 1) 
extends analytically is R = 5. 

Exercises for V.4 

1. Find the radius of convergence of the power series for the following 
functions, expanded about the indicated point. 

1 
(a) z -1' about z = i, (d) Logz, about z = 1 + 2i, 

(b) _1_ about z = 0, (e) z3/2, about z = 3, 
cosz' 

() 1 b 0 (f)z-i, b c -- a out z = , a out z = 2i. 
coshz' z3_ z 

2. Show that the radius of convergence of the power series expansion 
of (z2 -1)j(z3 -1) about z = 2 is J7. 

3. Find the power series expansion of Log z about the point z = i - 2. 
Show that the radius of convergence of the series is R = .J5. Explain 
why this does not contradict the discontinuity of Logz at z = -2. 
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4. Suppose J(z) is analytic at z = 0 and satisfies J(z) = z + J(z)2. 
What is the radius of convergence of the power series expansion of 
J(z) about z = o? 

5. Deduce the identity eiz = cos z + i sin z from the power series 
expansions. 

6. Find the power series expansions of cosh z and sinh z about z = o. 
What are the radii of convergence of the series? 

7. Find the power series expansion of the principal branch Tan-1(z) 
of the inverse tangent function about z = o. What is the radius of 
convergence of the series? Hint. Find it by integrating its derivative 
(a geometric series) term by term. 

8. Expand Log(I + iz) and Log(I - iz) in power series about z = O. 
By comparing power series expansions (see the preceding exercise), 
establish the identity 

IT' -IlL (1 +iZ) .Lan z = - 00" --
2i 0 1- iz 

(See Exercise 5 in Section 1.8.) 

9. Let a be real, and consider the branch of za that is real and positive 
on (0, (0). Expand za in a power series about z = 1. What is the 
radius of convergence of the series? Write down the series explicitly. 

10. Recall that for a complex number a, the binomial coefficient "a 
choose n" is defined by 

(~) = 1, and ( a) = a(a - 1) ... (a - n + 1) , 
n n! 

Find the radius of convergence of the binomial series 

Show that the binomial series represents the principal branch of the 
function (1 +z)<>. For which a does the binomial series reduce to a 
polynomial? 

11. For fixed n 2:: 0, define the function In(z) by the power series 
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Show that In(z) is an entire function. Show that w = In(z) satisfies 
the differential equation 

w" + !w' + (1 - n2) w = o. 
Z Z2 

Remark. This is Bessel's differential equation, and In(z) is 
Bessel's function of order n. 

12. Suppose that the analytic function J(z) has power series expansion 
'Eanzn. Show that if J(z) is an even function, then an = 0 for n 
odd. Show that if J (z) is an odd function, then an = 0 for n even. 

13. Prove the following version of L'Hospital's rule. If J(z) and g(z) are 
analytic, J(zo) = g(zo) = 0, and g(z) is not identically zero, then 

lim J(z) = lim f'(z) , 
z-zo g(z) z-zo g'(z) 

in the sense that either both limits are finite and equal, or both 
limits are infinite. 

14. Let J be a continuous function on the unit circle T = {Izl = I}. 
Show that J can be approximated uniformly on T by a sequence 
of polynomials in z if and only if J has an extension F that is 
continuous on the closed disk {Izl :::; I} and analytic on the interior 
{Izl < I}. Hint. To approximate such an F, consider dilates Fr (z) = 
F(rz). 

5. Power Series Expansion at Infinity 

We say that the function J(z) is analytic at z = 00 if the function g(w) = 
J(I/w) is analytic at w = O. Thus we make a change of variable w = l/z, 
z = l/w, and we study the behavior of J(z) at z = 00 by studying the 
behavior of g( w) at w = o. 

If J(z) is analytic at 00, then g(w) = J(l/w) has a power series expansion 
centered at w = 0, 

00 

g(w) = Lbkwk = bo+blW+b2W2+b3W3+ ... , Iwl <po 
k=O 

Thus J (z) is represented by a convergent series expansion in descending 
powers of z, 

(5.1) L
OO bk b1 b2 b3 

J(z) = - = bo + - + - + - + ... , zk Z z2 z3 
k=O 

1 Izl >-. 
p 

This series converges absolutely for Izl > 1/ p, and for any r > 1/ p it 
converges uniformly for Izl 2: r. 
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_ converges uniformly 

,\~r-"-- converges 

r-r-- don't know 

diverges 

A formula for the coefficients can be obtained by multiplying the series 
by zm and integrating term by term around the circle Izl = r. We have 

[ J(z)zm dz = [ (I)kZ-k) zm dz 
J1z1=r J1z1=r 

= L: bk [ zm-k dz = 27ribm +1 . 

J1z1=r 

Thus the coefficient bk of 1/ zk is given by 

1 1 k-l bk = -2 . J(z)z dz, 
7rZ Izl=r 

k ~ o. 

This formula should not be memorized. It will be superseded by the formula 
for the coefficients of a Laurent expansion, to be derived in Chapter VI. 

Example. If n ~ 0, the function J(z) = l/zn is analytic at 00, since 
g( w) = wn is analytic at w = o. 

Example. Consider the function J(z) = 1/(z2 + 1). In this case, 

1 
g(w) = J(I/w) = (l/w)2 + 1 

Since g(w) is analytic at w = 0, J(z) is analytic at 00. The power series for 
g(w) is obtained by expanding 1/(1 + w2) in a geometric series, to obtain 

00 

g(w) = w2L:(-I)kw2k = W 2 _w4+w6 _w8 + ... , 
k=O 

Thus 

00 (_I)k+l 1 1 1 1 
J(z) = L: z2k = Z2 - z4 + z6 - z8 + ... , 

k=l 

This expansion can also be obtained by expressing 

1 1 1 

1 +Z2 Z2 1 + l/z2 

and expanding 1/(1 + l/z2) in a geometric series. 

Iwl < 1. 

Izl > 1. 
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Exercises for V.5 

1. Expand the following functions in power series about 00: 

1 z2 
(a) (b) (c) ell z2 

z2 + 1 z3 -1 
(d) zsinh(l/z) 

2. Suppose J(z) is analytic at 00, with series expansion (5.1). With 
the notation J ( 00) = bo and f' ( 00) = bl , show that 

1'( 00) = lim z[J(z) - J( 00 )]. 
z---+oo 

3. Suppose J(z) is analytic at 00, with series expansion (5.1). Let 
a ~ ° be the smallest number such that J(z) extends to be analytic 
for Izl > a. Show that the series (5.1) converges absolutely for 
Izl > a and diverges for Izl < a. 

4. Let E be a bounded subset of the complex plane C over which area 
integrals can be defined, and set 

J(w) = jr ( dxdy , 
JE w-z 

wE C\E, 

where z = x + iy. Show that J(w) is analytic at 00, and find 
a formula for the coefficients of the power series of J(w) at 00 in 
descending powers of w. Hint. Use a geometric series expansion. 

5. Determine explicitly the function J(w) defined in Exercise 4, in the 
case that E = {Iwl ::; 1} is the unit disk. Hint. There are two 
formulae for J(w), one valid for Iwl ~ 1 and the other for Iwl ::; l. 
Be sure they agree for I w I = 1. 

6. Manipulation of Power Series 

Power series are easy to work with. For all practical purposes, power series 
can be treated like polynomials. We have already seen that power series 
can be differentiated term by term and that they can be integrated term by 
term. Power series can also be added and multiplied, just like polynomials. 

Suppose, for instance, that J(z) and g(z) are analytic at 0, with power 
series representations 

00 00 

J(z) = Lakzk , g(z) = L bkzk. 
k=O k=O 

Then the power series of the sum J(z) + g(z) is obtained by simply adding 
coefficients, 

00 

J(z) + g(z) 
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If C is a complex constant, the power series of cf(z) is obtained by multi­
plying coefficients by c, 

00 

cf(z) = LcakZk. 
k=O 

The formula for the coefficients of the power series of the product f(z)g(z) 
is more complicated, though it is the same as for products of polynomials. 
If 

00 

f(z)g(z) = LCkZk, 
k=O 

then the coefficients Ck are given by 

(6.1) k ~ o. 

This can be justified as follows. The partial sums fn(z) = L;=o ajzj and 
gn (z) = L~=o akzk are sequences of polynomials that converge uniformly 
to f(z) and g(z), respectively, in some disk centered at 0 as n --+ 00. Conse­
quently, fn(z)gn(z) converges uniformly to f(z)g(z) on the disk. It follows 
(Section 2) that the derivatives of fn(z)gn(z) converge to the corresponding 
derivatives of f(z)g(z), and by formula (4.2), the coefficient of zk in the 
polynomial fn(z)gn(z) converges to the power series coefficient of zk for 
f(z)g(z). Now the coefficients of fn(z)gn(z) are obtained by multiplying 
the polynomials and gathering terms, 

where here the notation O(zm) is used for terms involving powers zk for 
k ~ m. (This is consistent with our earlier use of the "big-oh" notation. 
See Exercise VI.2.6.) For k ::; n the coefficient of zk in this polynomial is 
exactly Ck given by (6.1). Passing to the limit as n --+ 00, we find that 
f(z)g(z) also has power series coefficient of zk equal to Ck. 

The power series of a quotient f (z) / g( z) can also be effectively computed. 
It suffices to compute the power series of l/g(z). For this, we assume that 
g(z) is analytic at z = 0, and we suppose for simplicity that g(O) = 1. The 
power series expansion of g( z) then has the form 

00 

g(z) = 1+ LbkZk = 1+b1z+b2z2 + .... 
k=l 
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If z is near 0, the sum L~=l bkZk is small, and we can expand Ilg(z) in a 
geometric series 

1 1 

g(z) 1 + L~l bkZk 

1 - (f bkZk) + (f bkZk) 2 _ (f bkZk) 3 + .... 
k=l k=l k=l 

The terms involving zm occur only in the first m + 1 summands. We 
can compute the coefficients of the power series expansion of Ilg(z) by 
collecting the coefficients of zm in each of the first m + 1 summands and 
discarding the remaining summands. The procedure is justified by the 
uniform convergence of the geometric series for z near o. 

Example. To find the coefficients of zm for m ~ 5 in the power series 
expansion of tan z = sin z I cos z about z = 0, we calculate as follows, again 
using the notation O(zm) for terms involving powers zk for k 2: m: 

1 1 

cosz 1- (z2/2!) + (z4/4!) + O(z6) 

so that 

(z - ~: + ~: + O(z7)) (1 + ~z2 + :4 z4 + O(Z6)) 
sinz 

cosz 

= z + ~z3 + ~z5 + O(Z7). 
3 15 

The end result can be checked by differentiating tan z five times. Note 
that tan z is an odd function, so that only odd terms appear in the" power 
series. 

Exercises for V.6 

1. Calculate the terms through order seven of the power series expan­
sion about z = 0 of the function II cosz. 

2. Calculate the terms through order five of the power series expansion 
about z = 0 of the function z I sin z. 

3. Show that 

l+z 
12 1 3 3 4 11 5 1 + -z - -z + -z - -z + .... 
2 3 8 30 
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Show that the general term of the power series is given by 

What is the radius of convergence of the series? 

4. Define the Bernoulli numbers Bn by 

Z Z2 Z4 Z6 
"2 cot(z/2) = 1 - Bl 2! - B2 4! - B3 6! - .... 

Explain why there are no odd terms in this series. What is the 
radius of convergence of the series? Find the first three Bernoulli 
numbers. 

5. Define the Euler numbers En by 

1 ~ En n 
coshz = ~ -;Jz . 

n=O 
What is the radius of convergence of the series? Show that En = 0 
for n odd. Find the first four nonzero Euler numbers. 

6. Show that the coefficients of a power series "depend continuously" 
on the function they represent, in the following sense. If {fm(z)} 
is a sequence of analytic functions that converges uniformly to J(z) 
for Izl < p, and 

00 00 

Jm(z) = L ak,mzk, J(z) = Lakzk, 
k=O k=O 

then for each k 2: 0, we have ak,m --+ ak as m --+ 00. 

7. The Zeros of an Analytic Function 

Let J(z) be analytic at Zo, and suppose that J(zo) = 0 but J(z) is not 
identically zero. We say that J(z) has a zero of order Nat Zo if J(zo) = 
!,(zo) = ... = J(N-l)(zO) = 0, while J(N)(zo) -=I- O. In view of the for­
mula (4.2) for the power series coefficients, this occurs if and only if the 
power series expansion of J (z) has the form 

J(z) = aN(z - zo)N + aN+l(z - zo)N+l + ... , 
where aN -=I- o. We can factor out the term (z - zO)N from the power series 
and write 

(7.1) J(z) = (z - zo)Nh(z), 

where h(z) is analytic at Zo and h(zo) = aN -=I- O. Conversely, if there is 
a factorization (7.1) where h(z) is analytic at Zo and h(zo) -=I- 0, then the 
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leading term in the power series for J(z) is h(zo)(z - zO)N, and J(z) has a 
zero of order N at zo. 

A zero of order one is called a simple zero, and a zero of order two is 
called a double zero. 

Example. The zeros of sinz are at the points mr, -00 < n < +00, and 
the derivative cos z of sin z is ±1 at each of these points. Hence all zeros 
of sin z are simple zeros. 

Example. The monomial (z - zo)n has a zero of order n at Zo and no other 
zeros. 

Example. From the power series expansion 

sinz = -(z - 11") + ..!..(z - 11")3 - ..!..(z - 11")5 + ... 
3! 5! ' 

we see that the function sin z + z - 11" has a triple zero at z = 11". The 

function sinz +1, defined to be 0 at z = 11", is entire and has a double zero 
Z-1I" 

at z = 11", since the leading term of its power series expansion is (z _11")2 /3!. 

A useful rule for determining orders of zeros is that the order of a zero 
of a product J(z)g(z) is the sum of the orders of the corresponding zeros 
of the factors J(z) and g(z). Indeed, if J(z) = an(z - ZO)n + ... has a zero 
of order n at Zo and g(z) = bm(z - zo)m + ... has a zero of order m at Zo, 
then J(z)g(z) = anbm(z - zo)n+m + ... has a zero of order m + nat z. 

If J(z) is analytic at 00 and J(oo) = 0, we define the order of the zero of 
J(z) at z = 00 in the usual way, by making the change of variable w = l/z. 
We say that J(z) has a zero at z = 00 of order N if g(w) = J(I/w) has 
a zero at w = 0 of order N. In this case, g(w) = bNwN + bN+lWN+l + ... , 
where bN f o. Thus J(z) has the series representation 

bN bN+l 
J(z) = zN + zN+l + ... , Izl > R, 

where bN f o. 

Example. The function 1/(I+z2) has a double zero at 00. Its power series 
expansion, derived in Section 5, is 1/ Z2 -1/ z4 + ... , which has leading term 
l/z2. 

Example. The rational monomiall/(z - zo)n has a zero of order nat 00. 

We say that a point Zo E E is an isolated point of the set E if there 
is p > 0 such that Iz - zol 2:: p for all points z E E other than zo0 In 
other words, Zo is an isolated point of E if Zo is at a positive distance from 
E\ {zo}. If E is a set such that each point of E is an isolated point of E, 
we say that the "points of E are isolated." 
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Example. If E = [-1,0] U {lin n 2:: I}, then each of the points lin is 
an isolated point of E, while no point of the interval [-1, 0] is an isolated 
point of E. 

-1 o 
nonisolated points 

1 
2 

isolated points 

Theorem. If D is a domain, and J(z) is an analytic function on D that 
is not identically zero, then the zeros of J(z) are isolated. 

The proof of this theorem breaks into two parts, an observation about 
the local behavior of an analytic function near a zero, and a connected­
ness argument that depends on D being a domain. We begin with the 
connectedness argument, which is deceptively subtle. 

Let U be the set of all zED such that J(m)(z) = 0 for all m 2:: o. 
If Zo E U, then the power series expansion J(z) = 2:ak(Z - zO)k has 
ak = J(k)(zo)lk! = 0 for all k 2:: O. Hence J(z) = 0 for z belonging to a 
disk centered at Zo. The points of this disk all belong to U. This shows 
that U is an open set. On the other hand, if Zo E D\U, then J(k)(zo) f 0 
for some k. Therefore, J(k)(z) f 0 for z in some disk centered at Zo, and 
this disk is contained in D\U, so D\U is also open. Since D is connected, 
either U = D or U is empty. If U = D, then J(z) = 0 for all zED, 
contrary to our hypothesis. Hence U is empty. Thus we conclude from the 
connectedness argument that each zero of J(z) has finite order. 

The closing argument is easier. If Zo is a zero of J ( z ), say of order N, we 
can factor J(z) = (z-zo)Nh(z), where h(z) is analytic at Zo and h(zo) f O. 
Then for p > 0 sufficiently small, we have h(z) f 0 for Iz - zol < p, and 
consequently IJ(z)1 f 0 for 0 < Iz - zol < p. Thus Zo has distance at least 
p from any other zero of J(z), and the zeros of J(z) are isolated. 

By applying the preceding theorem to J(z)-g(z), we obtain immediately 
the following important result, which is also referred to as the identity 
principle. 

Theorem (Uniqueness Principle). If J(z) and g(z) are analytic on a 
domain D, and ifJ(z) = g(z) for z belonging to a set that has a nonisolated 
point, then J(z) = g(z) for all zED. 

Example. Once we know that sin z and cos z are entire functions that 
satisfy sin2 x + cos2 X = 1 for all real numbers x, then necessarily sin2 z + 
cos2 Z = 1 for all complex numbers z. This follows from the uniqueness 
principle, applied to J(z) = sin2 z + cos2 z and g(z) = 1. 



Exercises 157 

The uniqueness principle has a natural extension to functions of two 
complex variables, which is sometimes referred to as the principle of per­
manence of functional equations. 

Theorem. Let D be a domain, and let E be a subset of D that has a 
nonisolated point. Let F(z, w) be a function defined for z, wED such that 
F( z, w) is analytic in z for each fixed wED and analytic in w for each 
fixed zED. If F(z,w) = 0 whenever z and w both belong to E, then 
F(z,w) = 0 for all z,w E D. 

This follows from two applications of the uniqueness principle, one for 
each variable. First fix Zo E E. Then F(Zo, w) is analytic for wED and 
vanishes for wEE. By the uniqueness principle, F(zo, w) = 0 for all 
wED. Now fix wED. We have shown that F(zo,w) = 0 for all Zo E E. 
By the uniqueness principle, F(z,w) = 0 for all zED. 

Example. As a typical application, we derive the addition formula for 
the exponential function, assuming that es+t = e8 et for sand t real. The 
function F(z, w) = eZ+w - eZew is an entire function of each variable for 
fixed values of the other variable, and it vanishes when both the variables 
are real. By the permanence principle, it then vanishes for all values of z 
and w. Thus eZ+w = eZew • 

Exercises for V. 7 

1. Find the zeros and orders of zeros of the following functions. 

(a)z2+1 (d)cosz-1 (g)eZ-1 
z2 -1 
1 1 

(b) ; + z5 

(c) z2 sinz 

cosz - 1 
(e) ---

z 
cosz -1 

(f) -",....--
z2 

(h) sinh2 z + cosh2 Z 

(i) Logz 
z 

(principal value) 

2. Determine which of the functions in the preceding exercise are an­
alytic at 00, and determine the orders of any zeros at 00. 

3. Show that the zeros of sin z and tan z are all simple. 

4. Show that cos( z + w) = cos z cos w - sin z sin w, assuming the 
corresponding identity for z and w real. 

5. Show that 

z, w E C, Re z > 0, 

where we take the principal branch of the square root. Compare the 
result to Exercise IV.3.1. Hint. Show that the integral is analytic 
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in z and w, and evaluate it for z = x > 0 and w real by making 
a change of variable and using the known value .;:;r for z = 1 and 
w=O. 

6. Suppose J(z) is analytic on a domain D and Zo ED. Show that if 
J(m)(zo) = 0 for m ~ 1, then J(z) is constant on D. 

7. Show that if u(x, y) is a harmonic function on a domain D such that 
all the partial derivatives of u(x, y) vanish at the same point of D, 
then u(x, y) is constant on D. 

8. With the convention that the function that is identically zero has a 
zero of infinite order at each point, show that if J(z) and g(z) have 
zeros of order n and m respectively at zo, then J(z) + g(z) has a 
zero of order k ~ min(n, m). Show that strict inequality can occur 
here, but that equality holds whenever m =f. n. 

9. Show that if the analytic function J(z) has a zero of order N at zo, 
then J(z) = g(z)N for some function g(z) analytic near Zo and 
satisfying g' (zo) =f. O. 

10. Show that if J(z) is a continuous function on a domain D such that 
J(Z)N is analytic on D for some integer N, then J(z) is analytic 
onD. 

11. Show that if J (z) is a nonconstant analytic function on a domain D, 
then the image under J(z) of any open set is open. Remark. This 
is the open mapping theorem for analytic functions. The proof 
is easy when J'(z) =f. 0, since the Jacobian of J(z) coincides with 
IJ'(zW. Use Exercise 9 to deal with the points where f'(z) is zero. 

12. Show that the open mapping theorem for analytic functions implies 
the maximum principle for analytic functions. 

13. Let In(z) be a sequence of analytic functions on a domain D such 
that In(D) C D, and suppose that In(z) converges normally to J(z) 
on D. Show that either J(D) c D, or else J(D) consists of a single 
point in aD. 

14. A set E is discrete if every point of E is isolated. Show that a closed 
discrete subset of a domain D either is finite or can be arranged in 
a sequence {Zk} that accumulates only on {oo} u aD. 

8. Analytic Continuation 

In Chapter I we analyzed the branches of the functions .;z and log z by 
following the values of the functions along curves in the complex plane. By 
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this method we saw that these functions cannot be extended continuously to 
C\{O}. We constructed Riemann surfaces to which the functions do extend 
continuously, by defining branches of the functions on separate sheets and 
pasting these sheets together. 

In this section we develop more formally the idea of tracking an analytic 
function along a path. The power series expansion of an analytic function 
about a point contains complete information about the function near the 
point. Rather than track only the values of the analytic function, we will 
track the power series expansions of the function about points of the path 
as we move along the path. We begin by observing that the radius of 
convergence of a power series depends continuously on the center of the 
expansion. 

Lemma. Suppose D is a disk, f(z) is analytic on D, and R(Zl) is the 
radius of convergence of the power series expansion of f(z) about a point 
Zl ED. Then 

(8.1) 

We use the characterization of R(Zl) as the radius of the largest disk 
centered at Zl to which f(z) extends analytically. Thus f(z) does not 
extend analytically to any disk containing {Iz - zll :::; R(zd}, and conse­
quently R(Z2) :::; R(Zl) + IZ2 - zll· Interchanging Zl and Z2, we obtain also 
R(Zl) :::; R(Z2) + IZ2 - zll. These two inequalities yield (8.1). 

Now we start with a power series L an(z-zo)n that represents a function 
f(z) near zo0 We are interested in the behavior of f(z) only near Zo, and 
we say that the power series represents the "germ" of f(z) at Z00 Let I'(t), 
a:::; t :::; b, be a path starting at Zo = I'(a). We say that f(z) is analytically 
continuable along I' if for each t there is a convergent power series 

00 

(8.2) ft(z) = L an(t)(z - I'(t)t, Iz - I'(t) I < r(t), 
n=O 

such that fa(z) is the power series representing f(z) at Zo, and such that 
when s is near t, then fs(z) = ft(z) for z in the intersection of the disks 
of convergence. By the uniqueness principle, the series ft (z) determines 
uniquely each of the series fs(z) for s near t. It follows that the series 
fb(Z) is uniquely determined by fa(z). (Otherwise, we could define to to 
be the infimum of the parameter values t such that ft(z) is not uniquely 
determined by fa(z), and we would soon have a contradiction to the local 
uniqueness assertion at to.) We refer to fb(Z) as the analytic continua­
tion of f(z) along 1', where we regard fb(Z) either as a power series or as 
an analytic function defined near I'(b). Since the coefficients an(t) in (8.2) 
are given by an(s) = fim)(!,(s))/m! for s near t, the coefficients depend 
continuously on the parameter t. The preceding lemma shows that the 
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radius of convergence of the power series (8.2) also depends continuously 
on the parameter t. We summarize and give some examples. 

Theorem. Suppose J(z) can be continued analytically along the path ,(t), 
a ~ t ~ b. Then the analytic continuation is unique. Further, for each 
n ~ 0 the coefficient an(t) of the series (8.2) depends continuously on t, 
and the radius of convergence of the series (8.2) depends continuously on t. 

Example. Suppose J(z) is analytic in a domain D. Then J(z) has an 
analytic continuation along any path in D. Simply define Jt (z) to be the 
power series expansion of J(z) about 'Y(t). 

Example. Suppose J(z) is the principal branch of .jZ, with series expan­
sion 

J(z) = 1 + ~(z - 1) - ~(z - 1)2 + ... 

about z = 1. Let 'Y(t) = eit , 0 ~ t ~ 27r, be the closed path around the 
unit circle starting at 'Y(O) = 1. Then J(z) has an analytic continuation 
along 'Y, and the power series Jt(z) in (8.2) is given explicitly by 

e -it/2 e-3it/2 
"t/2 "t "t 2 Jt(Z) = et + -2-(z - et ) - -8-(z - et ) + .... 

Thus the analytic continuation of J (z) around the circle is 

( ) 1 1 2 
127< Z = -1 - 2(z - 1) + g(z - 1) + ... , 

which is just the other branch of .jZ. 

Now suppose J(z) is analytic at zo, and suppose that 'Y(t), a ~ t ~ b, 
is a path from Zo = 'Y(a) to Zl = 'Y(b) along which J(z) has an analytic 
continuation Jt(z). The radius of convergence R(t) of the power series (8.2) 
varies continuously with t. Hence there is 8 > 0 such that R(t) ~ 8 for all 
t, a ~ t ~ b. 

Lemma. Let J, 'Y, and 8 be as above. If a(t), a ~ t ~ b, is another path 
from Zo to Zl such that la(t) - 'Y(t)1 < 8 for a ~ t ~ b, then there is an 
analytic continuation gt(z) of Jt(z) along a, and the terminal series gb(Z) 
centered at a(b) = Zl coincides with Jb(Z). 
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We can define 9t(z) to be the power series expansion of Jt(z) about (J(t). 
This is possible, since (J(t) lies within the disk of convergence of ft(z). In 
fact, (J(s) lies inside the disk of convergence of ft(z) for s near t, and since 
Js(z) = ft(z) for s near t, we see that 9s(z) = 9t(z) for s near t, and so 9t(Z) 
does represent an analytic continuation. By its definition, 9b(Z) coincides 
with Jb(Z) at Zl = (J(b) = I(b). 

Just as in Section III. 2, we can deduce from this "local" deformation 
result a global deformation theorem. 

Theorem (Monodromy Theorem). Let J(z) be analytic at zoo Let 
'O(t) and 11(t), a $ t $ b, be two paths from Zo to Zl along which J(z) 
can be continued analytically. Suppose 'O(t) can be deformed continuously 
to 11 (t) by paths IS(t), 0 $ s $ 1, from Zo to Zl such that J(z) can be 
continued analytically along each path IS' Then the analytic continuations 
of J(z) along 10 and along 11 coincide at Zl· 

By a continuous deformation, we mean that the function (s, t) r-> IS(t) is 
continuous for 0 $ s $ 1 and a $ t $ b. If Js,t(z) denotes the analytic con­
tinuation of J(z) along IS, the power series Js,t(z) and Jsl,dz) determine 
the same function near IS(t) for s' near sand t' near t. Thus the radius 
of convergence Rs,t of Js,t varies continuously with s and t, and there is 
8 > 0 such that Rs,t ~ 8 for all sand t. We can choose, then, parameter 
values 0 = So < Sl < ... < Sn = 1 such that I'Sj (t) - ISj_l (t)1 < 8 for 
a $ t $ b. By the preceding lemma, the analytic continuation along ISj-l 

leads to the same power series at Zl as that along ISj' If we apply this 
now successively to 10 = Iso, lS" IS2' ... , we conclude after n steps that 
analytic continuation along 10 leads to the same power series as analytic 
continuation along 11. This proves the monodromy theorem. 

Exercise. Suppose that the principal branch w = J(z) of the algebraic 
function (z4 _1)1/3 is continued analytically from z = 2 around the figure­
eight path indicated below. What is the analytic continuation of the func­
tion at the end of the path? 
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2 

Solution. We deform the figure-eight path to a path for which it is pos­
sible to follow the analytic continuation more easily. By the monodromy 
theorem, the analytic continuation is the same if we follow a path along 
the real axis except for indentations at ±1, as in the figure. For the various 
segments of this path, we track the behavior of w as follows: 

path from +2 to +1 ..... argw = 0, 
semicircle around +1 ..... phase change of ei7r /3, 
path from +1 to -1 ..... argw = ei7r/ 3 , 

circle around -1 ..... phase change of e-27ri/ 3 , 

path from -1 to +1 ..... argw = e-i7r/ 3 , 

semicircle around +1 ..... phase change of ei7r /3, 
path from +1 to +2 ..... argw = o. 

Thus at the end of the path we return to the same branch w = f (z) that 
we started with. This can be checked by factoring z4 - 1 and tracking 
separately each factor. 

Exercises for V.8 

1. Suppose that the principal branch of ..j z2 - 1 is continued analyt­
ically from z = 2 around the figure-eight path indicated above. 
What is the analytic continuation of the function at the end of the 
path? Answer the same question for the functions (z3 - 1)1/3 and 
(z6 _ 1)1/3. 

2. Show that f(z) = Logz = (z -1) - ~(z -I? + ... has an analytic 
continuation around the unit circle 'Y(t) = eit , 0 :::; t :::; 27r. Deter­
mine explicitly the power series ft for each t. How is h7r related 
to fo? 

3. Show that each branch of viz can be continued analytically along 
any path 'Y in C\{O}, and show that the radius of convergence of the 
power series ft(z) representing the continuation is b(t)l. Show that 
viz cannot be continued analytically along any path containing O. 
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4. Let J(z) be analytic on a domain D, fix Zo E D, and let J(z) = 

L an(z - zo)n be the expansion of J(z) about zo0 Let 

l z 00 

F(z) = J(() d( = L an 1 (z - zot+1 

Zo n=on+ 

be the indefinite integral of J(z) for z near Z00 Show that F(z) can 
be continued analytically along any path in D starting at Z00 What 
happens in the case D = C\{O}, Zo = 1, and J(z) = liz? What 
happens in the case that D is star-shaped? 

5. Show that the function defined by 

J(z) = Lz2n = z+z2+ Z4+ z8+ ... 

is analytic on the open unit disk {I z I < I}, and that it cannot be 
extended analytically to any larger open set. Hint. Observe that 
J(z) = z + J(Z2), and that J(r) -t +00 as r -t 1. 

6. Suppose J(z) = Lanzn, where an = 0 except for n in a sequence 
nk that satisfies nk+1/nk ~ 1 + 8 for some 8 > O. Suppose further 
that the series has radius of convergence R = 1. Show that J(z) 
does not extend analytically to any point of the unit circle. Remark. 
Such a sequence with large gaps between successive nonzero terms 
is called a lacunary sequence. This result is the Hadamard gap 
theorem. There is a slick proof. If J(z) extends analytically across 
z = 1, consider g(w) = J(wm (l + w)/2), where m is a large integer. 
Show that the power series for g(w) has radius of convergence r > 1, 
and that this implies that the power series of J(z) converges for 
Iz -11 < c. 

7. Suppose J(z) = L anzn, where the series has radius of convergence 
R < 00. Show that there is an angle a such that J(z) does not have 
an analytic continuation along the path 'Y(t) = teia , 0 :::; t :::; R. 
Determine the radius of convergence of the power series expansion 
of J(z) about teia . 

8. Let J(z) be analytic at Zo, and let 'Y(t), a :::; t :::; b, be a path such 
that 'Y(a) = zo° If J(z) cannot be continued analytically along "I, 
show that there is a parameter value tl such that there is an analytic 
continuation ft(z) for a :::; t < tl, and the radius of convergence of 
the power series ft (z) tends to 0 as t -t h. 

9. Let P(z, w) be a polynomial in z and w, of degree n in w. Suppose 
that J(z) is analytic at Zo and satisfies P(z, J(z)) = O. Show that 
if Jt(z) is any analytic continuation of J(z) along any path starting 
at Zo, then P(z, ft(z)) = 0 for all t. Remark. An analytic function 
J(z) that satisfies a polynomial equation P(z, J(z)) = 0 is called an 
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algebraic function. For instance, the branches of vrz are algebraic 
functions, since they satisfy z - wn = o. 

10. Let D be the punctured disk {o <Izl < c:}, suppose J(z) is an­
alytic at Zo E D, and eWO = ZOo Show that J(z) has an analytic 
continuation along any path in D starting at Zo if and only if there 
is an analytic function g( w) in the half-plane {Re w < log c:} such 
that J(eW ) = g(w) for w near woo Remark. If J(z) does not extend 
analytically to D but has an analytic continuation along any path 
in D, we say that J(z) has a branch point at z = O. For the proof, 
use the fact that any path in D starting at Zo is the composition of 
a unique path in the half-plane starting at Wo and the exponential 
function eW • 



VI 

Laurent Series and Isolated 
Singularities 

In Section 1 we derive the Laurent decomposition of a function that is ana­
lytic on an annulus, and in Section 2 we use the Laurent decomposition on 
a punctured disk to study isolated singularities of analytic functions. We 
classify these as removable singularities, essential singularities, or poles, 
and we characterize each type of singularity. In Section 3 we define iso­
lated singularities at 00, and in Section 4 we derive the partial fractions 
decomposition of a rational function. In Sections 5 and 6 we use the Lau­
rent decomposition to study periodic functions and we relate Laurent series 
to Fourier series. Sections 5 and 6 can be omitted at first reading. 

1. The Laurent Decomposition 

The Laurent decomposition splits a function analytic in an annulus as the 
sum of a function analytic inside the annulus and a function analytic outside 
the annulus. 

Theorem (Laurent Decomposition). Suppose 0::::; p < u::::; +00, and 
suppose J(z) is analytic [or p < Iz-zol < u. Then J(z) can be decomposed 
as a sum 

(1.1) J(z) = Jo(z) + h(z), 

where Jo(z) is analytic [or Iz-zol < u, and JI(z) is analytic [or Iz-zol > p 
and at 00. I[we normalize the decomposition so that h(oo) = 0, then the 
decomposition is unique. 

If J(z) is already analytic for Iz - zol < u, the Laurent decomposition 
becomes the trivial decomposition J(z) = Jo(z), with h(z) = o. If J(z) is 
already analytic for Iz - zol > p and vanishes at 00, the Laurent decompo­
sition is the trivial decomposition J(z) = h(z), with Jo(z) = O. 

165 
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The uniqueness of the decomposition follows from Liouville's theorem 
by the following argument. Suppose that f(z) = 90(Z) + 91(Z) is another 
decomposition with the properties of the theorem. Then 

(1.2) 90(Z) - fo(z) = h(z) - 91(Z), p < Iz - zol < u. 

Define h(z) to be equal to 90(z) - fo(z) in the disk {Iz - zol < u}, and 
equal to h (z) - 91 (z) in the exterior domain {Iz - Zo I > p}. These domains 
overlap in the annulus {p < Iz - zol < u}, and the identity (1.2) shows that 
the two definitions agree in the overlap. Thus h(z) is defined for all z E C. 
Evidently, h(z) is an entire function, and h(z) tends to 0 as z -+ 00. By 
Liouville's theorem, h(z) is identically zero. Consequently 90(Z) = fo(z) 
and 91(Z) = h(z), and there is at most one such decomposition. 

To find such a decomposition, we apply the Cauchy integral represen­
tation theorem on an annulus, as follows. Choose r and s such that 
p < r < s < u. The Cauchy integral formula for an annulus yields 

f(z) = ~ 1 f(() d( _ ~ 1 f(() d(, 
27rZ JJ(-zol=s ( - z 27rZ JJ(-zol=r ( - z 

which is valid for r < Iz - Zol < s. The function 

fo(z) = ~ 1 f(() d(, 
27rZ JJ(-zol=s ( - z 

Iz - zol < s, 

is analytic for Iz - zol < s, and the function 

h(z) = - ~ 1 f(() d(, 
27rZ JJ(-zol=r ( - z 

Iz - Zol > r, 

is analytic for Iz - Zol > r and tends to 0 as z -+ 00. Thus we obtain 
the decomposition f(z) = fo(z) + h(z) for r < Iz - zol < s. Technically, 
this decomposition depends on r and s. However, the uniqueness assertion 
already established shows that the decomposition is independent of r and s, 
so that fo(z) and h(z) are defined for p < Iz - zol < u and have the 
properties of the theorem. 
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Example. The function f{z) = I/{z -I){z - 2) has three Laurent decom­
positions centered at O. One represents the function in the punctured disk 
{O < Izl < I}, one in the annulus {I < Izl < 2}, and one in the exterior 
domain {2 < Izl < oo}. Since the function is already analytic in the disk 
{Izl < I}, the decomposition in the punctured disk is given by fo{z) = f{z) 
and h{z) = O. Since the function is analytic at 00 and vanishes there, its 
Laurent decomposition with respect to the exterior domain {2 < Izl < oo} 
is given by f{z) = h{z) and fo{z) = O. The only nontrivial Laurent de­
composition is with respect to the annulus {I < Izl < 2}. To see what it 
is, we consider the partial fractions decomposition 

1 1 1 
(z -I){z - 2) z-2 z-I 

The summand fo{z) = I/{z - 2) is analytic for Izl < 2, and the summand 
h{z) = -I/{z -1) is analytic for Izl > 1 and it vanishes at 00. Thus this 
partial fractions decomposition coincides with the Laurent decomposition 
with respect to the annulus. 

~---:7 three domains of convergence 

Example. The function 1/ sin z has a Laurent decomposition with respect 
to each annulus {ntr < Izl < {n + l}rr}, for n = 0,1,2, .... We will see how 
to obtain the Laurent decompositions in the next section. 

Suppose now f{z) = fo{z) + h{z) is the Laurent decomposition for a 
function analytic for p < Iz - zol < (1. We can express fo{z) as a power 
series in z - Zo, 

00 

fo{z) L ak{z - zo)k, Iz - zol < (1, 

k=O 

where the series converges absolutely, and for any s < (1 it converges uni­
formly for Iz - Zol ::; s. Further, we can also express h{z) as a series of 
negative powers of z - Zo, with zero constant term, since h{z) tends to 0 
at 00, 

-1 

h{z) L ak{z - zo)k, Iz - zol > p. 
k=-oo 
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This series converges absolutely, and for any r > p it converges uniformly 
for Iz - Zol 2: r. If we add the two series, we obtain a two-tailed expansion 
for J(z), 

00 

(1.3) J(z) = L ak(z - zo)k, p < Iz - Zol < 0', 

k=-oo 

that converges absolutely, and that converges uniformly for r ~ Iz-zol ~ s. 
The series (1.3) is called the Laurent series expansion of J(z) with 
respect to the annulus p < Iz - zol < 0'. 

To obtain a formula for the coefficients in the expansion, we divide J(z) 
by (z - Zo)n+1 in (1.3) and integrate around the circle {Iz - zol = r}. 
Since the series converges uniformly on the circle, we can interchange the 
summation and integration. The result is 

i 1 f 1 00 
( _ )n+1 J(z) dz = (_ )n+l L ak(z - zo)k dz 

Iz-zol=r z Zo z Zo k=-oo 

= f ak i (z - Zo)k-n-l dz. 
k=-oo Iz-zol=r 

The integral of (z - zo)m is 27ri if m = -1, otherwise zero, so all the terms 
in the series disappear except one, and the series reduces to 27rian . Thus 

(1.4) 1 i J(z) an = -. +ldz, 
2n Iz-zol=r (z - zo)n 

-00 < n < 00. 

Note that this formula for an coincides with the usual formula for the power 
series coefficients in the case that J(z) is analytic for Iz - zol < 0'. In the 
case that J(z) is analytic at 00 the formula for an agrees with the formula 
given in Section V.5. 

We summarize our results in the following theorem. 

Theorem (Laurent Series Expansion). Suppose 0 ~ p < 0' ~ 00, and 
suppose J(z) is analytic for p < Iz - zol < 0'. Then J(z) has a Laurent 
expansion (1.3) that converges absolutely at each point of the annulus, 
and that converges uniformly on each subannulus r ~ Iz - zol ~ s, where 
p < r < s < 0'. The coefficients are uniquely determined by J(z), and they 
are given by (1.4) for any fixed r, p < r < 0'. 

Example. To expand the function J(z) = l/(z - l)(z - 2) in a Laurent 
series centered at z = 0 and converging in the annulus {I < Izl < 2}, we 



1. The Laurent Decomposition 

expand each of the partial fractions in a geometric series, 

1 
z-2 

1 
z-1 

_~ 1 = _~ (1 + ~ + z2 + ... ), 
2 1 - z/2 2 2 4 

1 1 1 1 1 
z 1 - 1/ z ~ + z2 + z3 + .... 

This leads to the Laurent series representation 

00 

J(z) = L akzk, 1 < Izl < 2, 
k=-oo 

where ak = -1 if k < 0, and ak = -1/2k+1 if k 2: o. 
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Example. The function J(z) = 1/(z - 1)(z - 2) can also be expanded 
in a Laurent series centered at z = 1, convergent in the punctured disk 
{o < Iz -11 < I}. Again we rely upon a geometric series, 

1 
z-2 

to obtain 

1 

(z -1)(z - 2) 

1 
Iz -11 < 1, 

1- (z -1) 

1 23 -- -1- (z -1) - (z -1) - (z -1) _ ... 
z-1 

00 

-L(z-l)k, 0< Iz -11 < 1. 
k=-l 

The tail of the series (1.3) with the positive powers of Z-Zo converges on 
the largest open disk centered at Zo to which Jo(z) extends to be analytic, 
while the tail of the series with the negative powers of z - Zo converges on 
the largest exterior domain of the form {Iz - zol > r} to which JI(z) ex­
tends analytically. Thus the largest open domain on which the full Laurent 
series (1.3) converges is the largest open annular set centered at zo con­
taining the annulus {p < Iz - zol < u} to which J(z) extends analytically. 
This annular set might extend to Zo or to 00, to be a punctured disk or a 
full disk, or a punctured complex plane or the full complex plane. 

Exercise. Consider the Laurent series for J (z) = (z2 - 71"2) / sin z that is 
centered at 0 and that converges for Izl = 1. What is the largest open set 
on which the series converges? 
Solution. Since sinz has a simple zero at 71", the function (sinz)/(z - 71") 
extends to be analytic and nonzero at z = 71". Hence (z2 _71"2) / sin z extends 
to be analytic at z = 71". Similarly, it extends to be analytic at z = -71". 
(We say that the singularities at z = ±71" are "removable.") The function 
tends to 00 at z = 0 and at z = ±271". Thus the largest annular domain 
containing the circle {Izl = I} to which the function extends analytically 
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is the punctured disk {O < I z I < 211"}. This is then the largest open set on 
which the series converges. 

Exercises for VI.I 

1. Find all possible Laurent expansions centered at 0 of the following 
functions: 

1 
(a) z2 -z 

(b) z - 1 
z+l 

1 
(c) (z2 -1)(z2 - 4) 

2. For each of the functions in Exercise 1, find the Laurent expansion 
centered at z = -1 that converges at z = !. Determine the largest 
open set 011 which each series converges. 

3. Recall the power series for the Bessel function In(z), n :2: 0, given in 
Exercise V.4.ll, and define Ln(z) = (-l)nJn(z). For fixed wEe, 
establish the Laurent series expansion 

00 

exp [~(z - liz)] = L In(w)zn, 0< Izl < 00. 

n=-oo 

From the coefficient formula (1.4), deduce that 

z E C. 

Remark. This Laurent expansion is called the SchlOmilch for­
mula. 

4. Suppose that J(z) = Jo(z) + h(z) is the Laurent decomposition of 
an analytic function J(z) on the annulus {A < Izl < B}. Show that 
if J(z) is an even function, then Jo(z) and h(z) are even functions, 
and the Laurent series expansion of J(z) has only even powers of z. 
Show that if J(z) is an odd function, then Jo(z) and h(z) are odd 
functions, and the Laurent series expansion of J(z) has only odd 
powers of z. 

5. Suppose J(z) is analytic on the punctured plane D = C\{O}. Show 
that there is a constant c such that J(z) - cl z has a primitive in D. 
Give a formula for c in terms of an integral of J(z). 

6. Fix an annulus D = {a < Izl < b}, and let J(z) be a continuous 
function on its boundary aD. Show that J(z) can be approximated 
uniformly on aD by polynomials in z and liz if and only if J(z) 
has a continuous extension to the closed annulus D U aD that is 
analytic on D. 
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7. Show that a harmonic function u on an annulus {A < Izl < B} has 
a unique expansion 

00 

u(reiO ) = L anrn cos(nO) + L bnrn sin(nO) + c logr, 
n=-oo n,eO 

which is uniformly convergent on each circle in the annulus. Show 
that for each r, A < r < B, the coefficients an, bn, and c satisfy 

n:F 0, 

1171: . ;: -71: u (re~O) sin(nO)dO, n:F 0, 

ao + clogr = 1 171: - u (re iO ) dO. 
27l' -71: 

Hint. Use a decomposition of the form u = ReJ + clog Izl, where 
J is analytic on the annulus. (See Exercise III.3.4.) 

2. Isolated Singularities of an Analytic Function 

A point Zo is an isolated singularity of J(z) if J(z) is analytic in some 
punctured disk {O < I z - Zo I < r} centered at Zo. For example, the function 
1/ z has an isolated singularity at z ~ 0, while 1/ sin z has isolated singu­
larities at each of the points z = 0, ±7l', ±27l', . . .. The functions Vi and 
log z do not have isolated singularities at z = 0; they cannot be defined 
even continuously on any punctured disk centered at O. 

o 8 
isolated not isolated 

Suppose that J(z) has an isolated singularity at zo0 Then J(z) has a 
Laurent series expansion 

00 

(2.1) J(z) = L ak(z - zo)k, 0< Iz - zol < r. 
k=-oo 

We classify the isolated singularity at Zo as one of three types according 
to whether no negative powers of z - Zo appear in the expansion, or at 
least one but only finitely many negative powers appear, or infinitely many 
negative powers appear. These are three mutually exclusive cases that 
cover all possibilities. We discuss each of these cases in turn, and we prove 
one theorem for each case. 



172 VI Laurent Series and Isolated Singularities 

The isolated singularity of J(z) at Zo is defined to be a removable 
singularity if ak = 0 for all k < O. In this case the Laurent series (2.1) 
becomes a power series 

00 

J(z) = L ak(z - zo)k, 0< Iz - zol < r. 
k=O 

If we define J(zo) = ao, the function J(z) becomes analytic on the entire 
disk {Iz - zol < r}. 

Example. The function (sinz)jz has an isolated singularity at z = 0, 
where it is not defined. From the power series expansion of sin z we obtain 
the Laurent series expansion 

sinz 
z 

Z2 z4 

1 - 3! + 5! 

valid for all z. We may extend (sinz)jz to be an entire function by defining 
(sinz)jz to be 1 at z = O. 

If J(z) has a removable singularity at Zo, then J(z) is bounded near zo0 
There is a converse statement, which provides a useful criterion for deter­
mining whether a singularity is removable. 

Theorem (Riemann's Theorem on Removable Singularities). Let 
Zo be an isolated singularity of J(z). If J(z) is bounded near zo, then J(z) 
has a removable singularity at Zo. 

To see this, we expand J(z) in a Laurent series (2.1) and use the for­
mula (1.4) for the coefficients given in the preceding section. Suppose 
IJ(z)1 ~ M for z near Zo, and let r > 0 be small. Using the ML-estimate 
to estimate the integral in (1.4), we obtain 

1 M M 
lanl ~ -2 -+1 (27rr) = -. 7r rn rn 

If n < 0, the right-hand side tends to 0 as r ~ O. We conclude that an = 0 
for n < 0, and consequently the singularity at Zo is removable. 

The isolated singularity of J(z) at Zo is defined to be a pole if there is 
N > 0 such that a_N #- 0 but ak = 0 for all k < -N. The integer N is 
the order of the pole. In this case the Laurent series (2.1) becomes 

00 

J( ) " ( )k a-N a_1 () z = ~ ak Z-Zo = + .. ·+--+aO+a1 Z-Zo + .... 
k=-N (z - ZO)N Z - Zo 

The sum of the negative powers, 

-1 

P(z) = L ak(z - zO)k = 
k=-N 

a_N a-1 + ... + 
(z - zo)N z - zo 
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is called the principal part of J(z) at the pole zoo The principal part P(z) 
coincides with the summand !1(z) in the Laurent decomposition J(z) = 
Jo(z) + !1(z) given in the preceding section. The bad behavior of J(z) at Zo 
is incorporated into P(z), in the sense that J(z) - P(z) is analytic at zoo 

A pole of order one is called a simple pole, and a pole of order two is 
called a double pole. Thus liz has a simple pole at z = 0, and I/(z - i)2 
has a double pole at z = i. 

Theorem. Let Zo be an isolated singularity of J(z). Then Zo is a pole of 
J(z) of order N if and only if J(z) = g(z)/(z - zo)N, where g(z) is analytic 
at Zo and g(zo) -I- 0. 

The proof is straightforward. Suppose that J(z) has a pole of order N 
at zo, and that J(z) has the above Laurent series. Then the power series 
a-N+a-N+l(z-zo)+a-N+2(z-zo)2+ ... converges to a function g(z) that 
is analytic at Zo and satisfies J(z) = g(z)/(z - zO)N, and further, g(zo) = 
a-N -I- 0. Conversely, if g(z) is analytic at Zo and satisfies g(zo) -I- 0, then 
J(z) = g(z)/(z-zo)N has Laurent series with leading term g(zo)/(z-zo)N, 
so that J(z) has a pole of order N at ZOo 

Theorem. Let Zo be an isolated singularity of J (z). Then Zo is a pole of 
J(z) of order N if and only if I/J(z) is analytic at Zo and has a zero of 
order N. 

Again the proof is easy. Suppose J(z) has a pole of order N at ZOo Let 
g(z) = (z - zO)N J(z) be as above. Since g(zo) i= 0, the function h(z) = 
II g(z) is analytic at Zo and satisfies h(zo) -I- 0. Thus II J(z) = (z-zO)N h(z) 
has a zero of order N at ZOo This argument is also reversible. If II J(z) 
has a zero of order N at Zo, then II J(z) = (z - zO)N h(z) for some analytic 
function h(z) satisfying h(zo) -I- 0, and then g(z) = I/h(z) is analytic and 
nonzero at Zo, so J(z) = g(z)/(z - zO)N has a pole of order N at Z00 

Example. The function II sin z has poles at each of the zeros of sin Z. 

Since the zeros of sin z are simple, they are simple poles for II sin Z. 

Exercise. Consider the Laurent series expansion for 1 I sin z that converges 
on the circle {Izl = 4}. Find the coefficients ao, a_I, a-2, and a-3 of 1, 
liz, l/z2, and l/z3, respectively. Determine the largest open set on which 
the series converges. 
Solution. The only zeros of sin z are at the integral multiples of 7r. These 
are then the' only singularities of II sin z, and they are all simple poles. 
The largest open annular set containing the circle and to which II sin z 
extends analytically is then the annulus {7r < Izl < 27r}. This annulus is 
then the largest open set on which the Laurent series converges. From the 



174 VI Laurent Series and Isolated Singularities 

expansion sinz = z + O(Z3) near z = 0, we see that 

1 1 I . - + anaytIc 
sinz z 

near z = 0, and 1/ sin z - 1/ z is analytic at z = O. Similarly, from the 
expansion sinz = -(z -1l") + O((z - 1l")3) at z = 1l", we see that 

1 1 . 
= - -- + analytIc 

sinz Z-1l" 

near z = 1l", and l/sinz + 1/(z -1l") is analytic at z = 1l". By the same 
token, 1/ sin z + 1/ (z + 1l") is analytic at z = -1l". We conclude that if 

1 1 1 
h(z) = - - -- - --, 

z z+1l" Z-1l" 

then fo(z) = 1/ sinz- h(z) is analytic for Izl < 21l". Thus 1/ sinz = fo(z)+ 
h (z) is the Laurent decomposition of 1/ sin z. To obtain the negative 
powers of the Laurent expansion, we expand h (z) in a series of descending 
powers of z, using the geometric series expansion. This is done most easily 
by combining summands, 

1 2z 1 2 00 1l"2k 1 00 21l"2k 
h(z) = -; - Z2-1l"2 = -; - -;L z2k = --; -L z2k+I· 

k=O k=I 

Note that all the even powers of z disappear, as they must, since 1/ sin z is 
an odd function. We read off the coefficients a_I = -1 and a-3 = _21l"2. 

We say that a function fez) is meromorphic on a domain D if fez) 
is analytic on D except possibly at isolated singularities, each of which is 
a pole. Sums and products of meromorphic functions are meromorphic. 
Quotients of meromorphic functions are meromorphic, provided that the 
denominator is not identically zero. Note also that if there are infinitely 
many poles of fez) in D, then we can arrange them in a sequence that 
accumulates only at the boundary of D. Otherwise, there would be a point 
of accumulation in D of the poles of fez), and this point would not be an 
isolated singularity of fez). 

Example. The function 1/ sin z is meromorphic on the entire complex 
plane. As another example, let R(z) be any rational function. We can 
express R( z) as a quotient of polynomials in the form 

R(z) = c (z - (I)m1 ••• (z - (k)m k , 

(z - Zt}nl ... (z - Zl)n! 

where the (j's and zj's are all distinct. Evidently, R(z) has a zero of order 
mj at each (j and a pole of order nj at each Zj. Thus R(z) is meromorphic 
on the entire complex plane. 

We add one more useful characterization of poles. 
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Theorem. Let Zo be an isolated singularity of J (z). Then Zo is a pole if 
and only if IJ(z)l- 00 as z - zoo 

One direction of the theorem is trivial. If J(z) has a pole of order N 
at zo, then g(z) = (z - zO)N J(z) is analytic and nonzero at Zo, so that 

IJ(z)1 = Iz - zOI-Nlg(z)1 - 00 

as z - ZOo For the converse, we use Riema,nn's theorem on removable 
singularities. Suppose IJ(z)1 - 00 as z - Z00 Then J(z) f 0 for z near Zo, 
so that h(z) = 1/ J(z) is analytic in some punctured neighborhood of ZOo 
Further, h(z) - 0 as z - Z00 By Riemann's theorem, h(z) extends to be 
analytic at Zo, and moreover, h(zo) = O. If N is the order of the zero of 
h(z) at Zo, then J(z) = l/h(z) has a pole of order N at Z00 

The isolated singularity of J(z) at Zo is defined to be an essential sin­
gularity if ak f 0 for infinitely many k < O. Thus an isolated singularity 
that is neither removable nor a pole is declared to be essential. 

Example. The Laurent expansion of e l / z at z = 0 is given by 

el/z = 1 + ~ + ~ ~ + ~ ~ + ... , 
z 2! z2 3! z3 

zfO. 

Since infinitely many negative powers of z appear in the expansion, the 
isolated singularity at z = 0 is essential. That the singularity is essential 
can also be seen from the behavior of el/z as z _ O. Since el / x - +00 
as x > 0 tends to 0, the singularity is not removable. And since el/(iy) 

has unit modulus, the modulus of el/ z does not tend to +00 as z tends 
to 0 along the imaginary axis, and the singularity is not a pole. The only 
remaining possibility is that the singularity is essential. 

At an essential singularity, the values of J(z) cluster towards the entire 
complex plane. That is the content of the following theorem. 

Theorem (Casorati-Weierstrass Theorem). Suppose Zo is an essen­
tial isolated singularity of J(z). Then for evezy complex number wo, there 
is-a sequence Zn - Zo such that J(Zn) - W00 

We argue the contrapositive. Suppose that there is some complex num­
ber Wo that is not a limit of values of J (z) as above. Then there is 
some small c > 0 such that IJ(z) - wol > c for all z near Z00 Hence 
h(z) = 1/(f(z) -wo) is bounded near Z00 By Riemann's theorem, h(z) has 
a removable singularity at Z00 Hence h(z) = (z - zo)N g(z) for some N 2: 0 
and some analytic function g(z) satisfying g(zo) f O. Thus J(z) - Wo = 
l/h(z) = (z-zo)-N(I/g(z)), where l/g(z) is analytic at Z00 If N = 0, J(z) 
extends to be analytic at Zo, while if N > 0, J(z) has a pole of order N 
at ZOo This establishes the theorem. 
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Later we will prove Picard's theorem, that if J{z) is an analytic func­
tion with an essential isolated singularity at zo, then for all complex num­
bers Wo with possibly one exception, there is a sequence Zn -+ Zo such that 
J{zn) = woo The function J{z) = el / z , which omits the value w = 0, shows 
that we must allow for the exceptional point. 

Exercises for VI.2 

1. Find the isolated singularities of the following functions, and de­
termine whether they are removable, essential, or poles. Determine 
the order of any pole, and find the principal part at each pole. 

(a) Z/{Z2 _1)2 (d) tanz = sinz (g) Log (1- !) 
cosz z 

(b)~ 
z2 -1 

2. (1) Logz 
(e) z sm ~ (h) (z _ 1)3 

(f) cos z (i) el /(z2+1) 
z2 -1f2/4 

e2z -1 
(c) --

z 

2. Find the radius of convergence of the power series for the following 
functions, expanded about the indicated point. 

z-l z 
(a) ~1' about z = 3 + i, (c) -.-, about z = 1fi, z - smz 

cosz z2 
(b) 2 2/4' about z = 0, (d) -.-3-' about z = 1fi. Z-1f smz 

3. Consider the function J{z) = tanz in the annulus {3 < Izl < 4}. 
Let J{z) = Jo{z) + JI{z) be the Laurent decomposition of J{z), so 
that Jo{z) is analytic for Izl < 4, and JI{z} is analytic for Izl > 3 
and vanishes at 00. (a) Obtain an explicit expression for JI{z). 
(b) Write down the series expansion for JI (z), and determine the 
largest domain on which it converges. (c) Obtain the coefficients 
ao, aI, and a2 of the power series expansion of Jo{z). {d} What is 
the radius of convergence of the power series expansion for Jo{z)? 

4. Suppose J{z) is meromorphic on the disk {Izl < s}, with only a finite 
number of poles in the disk. Show that the Laurent decomposition 
of J{z) with respect to the annulus {s - c < Izl < s} has the form 
J{z) = Jo{z) + JI{z), where JI{z) is the sum of the principal parts 
of J{z} at its poles. 

5. By estimating the coefficients of the Laurent series, prove that if Zo 
is an isolated singularity of J, and if (z-zo)J{z) -+ ° as z -+ Zo, then 
Zo is removable. Give a second proof based on Morera's theorem. 

6. Show that if J{z) is continuous on a domain D, and if J{z)8 is 
analytic on D, then J{z) is analytic on D. 



Exercises 177 

7. Show that if Zo is an isolated singularity of J(z), and if (z-zo)N J(z) 
is bounded near zo, then Zo is either removable or a pole of order at 
most N. 

8. A meromorphic function J at Zo is said to have order N at Zo if 
J(z) = (z - zO)N g(z) for some analytic function 9 at Zo such that 
g(zo) -# O. The order of the function 0 is defined to be +00. Show 
that 
(a) order(fg, zo) = order(f, zo) + order(g, zo), 
(b) order(l/J,zo) = -order(f,zo), 
(c) order(f + g,zo) 2:: min{order(f,zo),order(g,zo)}. 

Show that strict inequality can occur in (c), but that equality holds 
in (c) whenever J and 9 have different orders at ZOo 

9. Recall that "J(z) = O(h(z)) as z -+ zo" means that there is a 
constant C such that IJ(z)1 ~ Clh(z)1 for z near Z00 Show that 
if zo is an isolated singularity of an analytic function J(z), and if 
J(z) = O((z_zo)m) as z -+ Zo, then the Laurent coefficients of J(z) 
are 0 for k < m, that is, the Laurent series of J(z) has the form 

J(z) = am(z - zo)m + am+l(z - zo)m+! + .... 

Remark. This shows that the use of the notation O(zm) in Sec­
tion V.6 is consistent. 

10. Show that if J(z) and g(z) are analytic functions that both have the 
same order N 2:: 0 at Zo, then 

11. Suppose J(z) = L akzk is analytic for Izl < R, and suppose that 
J(z) extends to be meromorphic for Izl < R + e, with only one 
pole Zo on the circle Izl = R. Show that akiak+! -+ Zo as k -+ 00. 

12. Show that if Zo is an isolated singularity of J(z) that is not remov­
able, then Zo is an essential singularity for ef(z). 

13. Let S be a sequence converging to a point Zo E <C, and let J(z) be 
analytic on some disk centered at Zo except possibly at the points 
of S and at Z00 Show that either J(z) extends to be meromorphic on 
some neIghborhood of Zo, or else for any complex number L there 
is a sequence {Wj} such that Wj -+ ZO and J(Wj) -+ L. 

14. Suppose u (reiD) is harmonic on the punctured disk {O < r < I}, 
with Laurent series as in Exercise 7 of Section 1. Suppose Q > 0 
is such that rQu(reiD ) -+ 0 as r -+ O. Show that an = 0 = bn for 
n~ -Q. 
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15. Suppose u(z) is harmonic on the punctured disk {O < Izl < pl. 
Show that if 

u(z) --t 0 
log(l/lzl) 

as z --t 0, then u(z) extends to be harmonic at O. What can you say 
if you know only that lu(z)1 :::; Clog(l/lzl) for some fixed constant C 
and 0 < Izl < p? 

3. Isolated Singularity at Infinity 

We say that J(z) has an isolated singularity at 00 if J(z) is analytic 
outside some bounded set, that is, if there is R > 0 such that J(z) is 
analytic for Izl > R. Thus J(z) has an isolated singularity at 00 if and 
only if g(w) = J(l/w) has an isolated singularity at w = O. We classify 
the isolated singularity of J(z) at 00 according to the isolated singularity 
of g(w) at w = O. Suppose that J(z) has a Laurent series expansion 

00 

J(z) = L bk Zk , Izl >R. 
k=-oo 

The singularity of J(z) at 00 is removable if bk = 0 for all k > 0, in which 
case J(z) is analytic at 00. The singularity of J(z) at 00 is essential if 
bk I- 0 for infinitely many k > O. For fixed N ~ 1, J(z) has a pole of 
order N at 00 if bN I- 0 while bk = 0 for k > N. 

Suppose J(z) has a pole of order N at 00. The Laurent series expansion 
of J (z) becomes 

( ) N N 1 b_1 
J Z = bNz +bN-lZ - +···+b1z+bo+-+···, 

z Izi >R, 

where bN I- O. We define the principal part of J(z) at 00 to be the 
polynomial 

The inclusion of the constant bo in the principal part is a matter of conve­
nience. It guarantees that J(z) - P(z) is not only analytic at 00 but also 
vanishes there. 

Example. Any polynomial of degree N ~ 1 has a pole of order N at 00. 

The principal part of the polynomial coincides with the polynomial itself. 

Example. The function eZ = 1+z+z2 /2!+··· has an essential singularity 
at 00. 
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Exercises for VI.3 

1. Consider the functions in Exercise 1 of Section 2 above. Determine 
which have isolated singularities at 00, and classify them. 

2. Suppose that J(z) is an entire function that is not a polynomial. 
What kind of singularity can J (z) have at oo? 

3. Show that if J(z) is a nonconstant entire function, then ef(z) has 
an essential singularity at z = 00. 

4. Show that each branch of the following functions is meromorphic 
at 00, and obtain the series expansion for each branch at 00. 

(a) (z2 _1)5/2 (b) {!(z3 -1) (C)VZ2 - ~ 

4. Partial Fractions Decomposition 

Proceeding in analogy with our earlier definition, we say that a function 
J(z) is meromorphic on a domain D in the extended complex plane C* if 
J(z) is analytic on D except possibly at isolated singularities, each of which 
is a pole. Again, sums and products of meromorphic functions are mero­
morphic. Quotients of meromorphic functions are meromorphic, provided 
that the denominator is not identically zero. 

Any rational function is meromorphic on the extended complex plane C* , 
including at 00. We aim to establish the converse. 

Theorem. A meromorphic function on the extended complex plane C* is 
rational. 

To see this, note first that a meromorphic function J (z) on the extended 
complex plane can have only a finite number of poles. Otherwise, they 
would accumulate at a point that would not be an isolated singularity of 
J(z). If J(z) is analytic at 00, we define Poo(z) to be the constant function 
J(oo). Otherwise, J(z) has a pole at 00 and we define Poo(z) to be the 
principal part of J(z) at 00. In any event, Poo(z) is a polynomial, and 
J(z) - Poo(z) --+ 0 as z --+ 00. Let Zl, ... ,Zm be the poles of J(z) in the 
finite complex plane C, and let Pk(Z) be the principal part of J(z) at Zk. 
It has the form 

a1 a2 an 
Pk(Z) = -- + + ... + , 

z - Zk (z - Zk)2 (z - Zk)n 

and in particular, Pk (z) is analytic at 00 and vanishes there. Consider the 
function 

m 

g(z) J(z) - Poo(z) - L Pj(z). 
j=1 
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Since fez) - Pk(z) is analytic at Zk, and each Pj(z) is analytic at Zk for 
j i- k, g(z) is analytic at each Zk. Hence g(z) is an entire function, and 
further, g(z) ~ 0 as z ~ 00. By Liouville's theorem, g(z) is identically 
zero. Thus 

(4.1) 
m 

fez) = Poo(z) + LPj(z), 
j=l 

which shows in particular that fez) is a rational function. 
The decomposition (4.1) is called the partial fractions decomposition 

of the rational function fez). As a byproduct of the proof we obtain the 
following. 

Theorem. Every rational function has a partial fractions decomposition, 
expressing it as the Sun! of a polynomial in z and its principal parts at each 
of its poles in the finite complex plane. 

Suppose that p(z) and q(z) are polynomials. If the degree of q(z) is 
strictly less than the degree of p(z), then p(z)jq(z) ~ 0 as z ~ 00. Thus 
fez) = p(z)jq(z) is analytic at 00 and vanishes there, and the principal part 
Poo(z) is zero. Formula (4.1) expresses fez) as the sum of the principal 
parts at each of its finite poles. 

Example. The function 1j(z2 - 1) is analytic at 00 and vanishes there, 
and it has poles at ±l. The partial fractions decomposition is 

1 1 1 1 1 
Z2 - 1 = "2 z - 1 - "2 z + 1 ' 

and these summands are the principal parts at +1 and -1, respectively. 

For arbitrary polynomials p(z) and q(z), we can use the division algo­
rithm to find the principal part Poo(z) of p(z)jq(z) at 00. The division 
algorithm is a procedure that produces in a finite number of steps polyno­
mials Poo(z) and r(z) that satisfy 

(4.2) p(z) = Poo(z)q(z) + r(z), deg r(z) < deg q(z). 

It proceeds as follows. We assume that q(z) is a monic polynomial of degree 
m, so that q(z) = zm + .... We start with a polynomial p(z) of degree 
n ~ m, say p( z) = eozn + .. '. For the first step we kill the top coefficient of 
p(z) by defining Pl{Z) = p{z) -eozn-mq(z). Thus Pl(Z) has degree nl < n, 
say Pl(Z) = Clzn1q(Z) + .... Then we repeat the first step and define 
P2{z) = Pl(Z) - Clzn1-mq{z), which has degree n2 < nl. We proceed in 
this fashion until we reach a polynomialpk{z) = Pk_l(Z)-Ck_lZnk-l-mq(z) 
such that the degree of Pk(Z) is less than m. This occurs after at most 
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n - m + 1 steps, and then we have 

p(z) = Cozn-mq(z) + Pl(Z) = Cozn-mq(z) + Clzn1-mq(z) + ]J2(z) = ... 

= Cozn-mq(z) + Clzn1-mq(z) + ... + Ck_lZnk-l-mq(z) + Pk(Z). 

We set r(z) = Pk(Z), and we let Poo(z) be the sum of the terms multiplying 
q(z), and we obtain the decomposition (4.2). 

Now the function p(z)jq(z) - Poo(z) = r(z)jq(z) is analytic at 00 and 
tends to 0 there. Thus the polynomial Poo(z) coincides with the principal 
part of p(z)jq(z) at 00. Our recipe for obtaining the partial fractions 
decomposition of an arbitrary rational function p(z)jq(z) is then first to 
obtain the polynomials Poo(z) and r(z) that satisfy (4.2) from the division 
algorithm, and then to find the principal parts of r(z)jq(z) at each of the 
zeros of q(z). 

Example. To obtain the partial fractions decomposition of z3 j(z2 + 1), 
first express z3 in the form given by the division algorithm (4.2), which 
is 

Z3 = z(z2 + 1) - z, 

corresponding to Poo(z) = z and r(z) = -z. Thus 

z3 z 
--=z---Z2 + 1 z2 + 1· 

Then observe that the poles at ±i are simple poles, so that 

z a: {3 
z2 + 1 = z - i + z + i 

for some constants a: and {3. We put this expression over a common de­
nominator and solve for a: and {3. This leads to the partial fractions de­
composition 

Z3 1 1 
= z -

z2 + 1 2 z - i 

Exercises for VI.4 

1 1 

2z+i 

1. Find the partial fractions decompositions of the following functions. 
1 1 z-l 

(a) z2-z (c) (z+1)(z2+2z+2) (e) z+l 

(b) z2 + 1 (d) 1 (f) z2 - 4z + 3 
z(Z2 - 1) (z2 + 1)2 z2 - Z - 6 

2. Use the division algorithm to obtain the partial fractions decompo­
sition of the following functions. 
( a) z3 + 1 (b) z9 + 1 

Z2 + 1 z6-1 

Z6 
(c) (z2 + l)(z _ 1)2 
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3. Let V be the complex vector space of functions that are analytic on 
the extended complex plane except possibly at the points 0 and i, 
where they have poles of order at most two. What is the dimension 
of V? Write down explicitly a vector space basis for V. 

5. Periodic Functions 

A complex number w is a period of a function J(z) if J(z + w) = J(z) 
wherever defined. The function J(z) is periodic if it has a period w -I o. 

The exponential function eZ is periodic with periods 0, ±27ri, ±47ri, ... . 
The exponential function eiz is periodic with periods 0, ±27r, ±47r, ... . 
Sums of exponential functions with the same periods are periodic. Thus 
cosz = (eiz + e-iZ )/2 and sinz = (eiz - e-iZ )/2i are periodic. One of our 
goals in this section is to show that any periodic analytic function in a 
half-plane or strip can be represented as a sum of exponential functions. 

If w -lOis a period of J(z), the function g(z) = J(wz) satisfies g(z+ 1) = 
J(wz + w) = J(wz) = g(z), so g(z) has period 1. Thus we can always 
make a change of variable to arrange that one of the periods of a given 
periodic function is w = 1. We focus on functions that are analytic on a 
horizontal strip and that are periodic with period 1, that is, that satisfy 
J(z + 1) = J(z). This includes the exponentials e27rikz for k an integer, and 
any linear combination of these exponentials. 

Theorem. If J(z) is analytic on the horizontal strip {a < Im(z) < .8}, and 
J(z) is periodic with period 1, then J(z) can be expanded in an absolutely 
convergent series of exponentials 

00 

J(z) = L ake27rikz, a < Im(z) < .8. 
k=-oo 

The series converges uniformly on any smaller strip {ao $ Im(z) $ .80}, 
where a < ao < .80 < .8. 

i/3 

iet 
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To see this, we make an exponential change of variable 

i argw 
z = -21l"loglwl+~, 

and we set g(w) = J(z) with z as above. Since J(z) is periodic with 
period 1, the value g(w) does not depend on the choice of the argument ofw. 
Thus g( w) is well-defined, and g( w) is analytic for e-27r{j < Iwl < e-27rQ . 
We expand g( w) as a Laurent series L: akwk in this annulus, and this yields 
the exponential series for J (z ). 

Theorem. Suppose J(z) is analytic on the half-plane {Im(z) > a}, and 
J(z) is periodic with period 1. If J(z) is bounded as Im(z) -+ +00, then 
J(z) can be expanded in an absolutely convergent series of exponentials 

00 

J(z) = Lake27rikZ, 
k=O 

Im(z) > a. 

The series converges uniformly on any smaller half-plane {Im(z) ~ ao}, 
where ao > a. 

In this case the change of variable w = e27riz converts J (z) to an analytic 
function g(w) on the punctured disk 0 < Iwl < e-27rQ . The hypothesis on 
J(z) implies that g(w) is bounded as w -+ O. By Riemann's theorem on 
removable singularities, g( w) extends to be analytic at O. Hence g( w) has 
a power series expansion 

00 

g(w) = Lakwk, 
k=O 

and this yields the exponential series for J(z). 

Example. The meromorphic function 1/ sin(21l"z) is analytic in the upper 
half-plane and has period 1. From 

I sin(21l"z)12 = sin2(21l"x) + sinh2(21l"Y), z = x + iy, 

we see that 1/ sin(21l"z) -+ 0 as y = Im(z) -+ +00. By the preceding 
theorem, 1/ sin(21l"z) can be expanded in a series of exponentials e27rikz 
that converges absolutely in the upper half-plane. The expansion can be 
obtained directly from a geometric series, 

= . = _ 2i e27riz + e67riz + e107riz + . .. . 1 - 2ie27riz [ ] 
sin(21l"z) 1 - e47rtz 

Now we change our point of view. We fix a function J(z), say J(z) 
is a meromorphic function on the complex plane, and we study the set 
of periods of J(z). If J(z) is constant, then every complex number is a 
period of J (z), and there is not much to say. So we assume that J (z) is 
nonconstant. 
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If WI and W2 are periods of J (z), then so are mwi + nw2 for all integers m 
and n. (The periods form an "additive subgroup" of the complex numbers.) 

Let Zo be any point at which J(z) is analytic. Since the zeros of a 
nonconstant analytic function are isolated, J(zo + () - J(zo) i:- 0 On some 
punctured disk {O < 1(1 < pl. Since J(zo +w) - J(zo) = 0 for any period W 

of J (z), there can be nO periods of J (z) in the punctured disk. Thus any 
nonzero period W of J(z) satisfies Iwi ~ p. 

If wand W2 are two different periods of J(z), then WI - W2 is a nOnzero 
period, so IWI - w21 ~ p. Since any bounded subset of the complex plane 
can be covered by a finite number of disks of radius p/2, and each of these 
contains at most one period, we conclude that any bounded subset of the 
complex plane contains only finitely many periods. (The periods form a 
"discrete subgroup" of the complex numbers.) 

Let L be a straight line through 0 that contains a nOnzero period, and 
let WI be a nOnzero period on L that is closest to O. Then there cannot 
be a period between two consecutive integral multiples kWI and (k + 1 )WI 

of WI, or by subtracting we would obtain a period On L closer to 0 than WI. 

Thus the periods On L are precisely the integral multiples of WI. 

It may occur that all the periods of J(z) lie On the same straight line 
through O. Otherwise, from among the periods not On the line L, choose 
a period W2 that is closest to the line segment [0, WI]. We claim that all 
periods of J(z) have the form mwi + nw2 for integers m and n. We argue 
as follows. 

Let P be the closed parallelogram with vertices 0, WI, W2, and WI + W2. 

Thus P consists of precisely the complex numbers of the form SWI + tW2 

where 0 ~ S, t ~ 1. Every complex number can be expressed in the form 
mwi + nw2 + z, where m, n are integers and z E P. Geometrically, this 
means that the parallelogralns P + mWI + nw2 fill out the complex plane. 
We cut P into two triangles, the triangle with vertices 0, WI, w2, which we 
denote by T, and the triangle WI +W2 - T with vertices WI, W2, and WI +W2. 

The only periods in T are the vertices, since any other point of T either 
lies On L closer to 0 than WI or lies off L closer to [O,WI] than W2. It follows 
then that the only periods in P are the four vertices, since if W is a period 
in P, then either W or WI +W2 - W is a period belonging to T, hence a vertex 
of T. Since any period can be expressed in the form mwi + nw2 + w, where 
m, n are integers and W is a period in P, in fact every period is an integral 
combination of WI and W2, as asserted. 

We summarize our results as follows. 
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Theorem. Suppose that fez) is a nonconstant meromorphic function on 
the complex plane that is periodic. Either there is a period WI for f (z) 
such that the periods of fez) are the integral multiples mWll -00 < m < 
00, or there are two periods WI and W2 for fez) that do not lie on the 
same line through the origin such that the periods of f (z) are the integral 
combinations mwi + nw2, -00 < m, n < 00. 

In the case that the periods of f (z ) all lie on the same straight line 
through the origin, we say that fez) is simply periodic. Otherwise, we 
say that fez) is doubly periodic. The entire functions eZ and sinz are 
simply periodic. It is possible to construct (as in Exercise 7) meromorphic 
functions on the complex plane that are doubly periodic. However, the 
only entire functions that are doubly periodic are the trivial ones. 

Theorem. An entire function that is doubly periodic is constant. 

Indeed, if the entire function fez) is doubly periodic, and if If(z)1 ~ M 
on the parallelogram P constructed above, then by periodicity If(z)1 ~ M 
on each translate mWI + nw2 + P of P. Since these translates fill out the 
complex plane, fez) is a bounded entire function. By Liouville's theorem, 
fez) is constant. 

Exercises for VI.5 

1. Show that if fez) and g(z) have period w, then so do fez) + g(z) 
and f(z)g(z). 

2. Expand 1/ cos(27rz) in a series of powers of e21riz that converges in 
the upper half-plane. Determine where the series converges abso­
lutely and where it converges uniformly. 

3. Expand tan z in a series of powers of exponentials eikz , -00 < k < 
00, that converges in the upper half-plane. Also find an expansion of 
tan z as an exponential series that converges in the lower half-plane. 

4. Let fez) be an analytic function in the upper half-plane that is 
periodic, with real period 27r A > O. Suppose that there are A, C > 0 
such that If(x + iy)1 ~ CeAy for y > O. Show that 

fez) = "'" a einz/).. ~ n , 
n~-A)" 

where the series converges uniformly in each half-plane {y ~ e}, for 
fixed e > O. 

5. Suppose that ±1 are periods of a nonzero doubly periodic function 
fez), and suppose that there are no periods W of fez) satisfying 
o < Iwi < 1. How many periods of fez) lie on the unit circle? 
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Describe the possibilities, and sketch the set of periods for each 
possibility. 

6. We say that WI and W2 generate the periods of a doubly periodic 
function if the periods of the function are precisely the complex 
numbers of the form mwl + nw2 where m and n are integers. Show 
that if WI and W2 generate the periods of a doubly periodic function 
f(z), and if Al and A2 are complex numbers, then Al and A2 generate 
the periods of f (z) if and only if there is a 2 x 2 matrix A with integer 
entries and with determinant ±1 such that A(WbW2) = (A1,A2). 

7. Let WI and W2 be two complex numbers that do not lie on the same 
line through o. Let k ~ 3. Show that the series 

00 1 

I: (z - (mw1 + nw2))k 
m,n=-oo 

converges uniformly on any bounded subset of the complex plane 
to a doubly periodic meromorphic function f(z), whose periods are 
generated by WI and W2. Stmtegy. Show that the number of periods 
in any annulus {N :::; Izl :::; N + I} is bounded by CN for some 
constant C. 

6. Fourier Series 

A complex Fourier series is a two-tailed series of the form 
00 

(6.1) L Ckeik(J = ···+c_2e-2i(J+c_1e-i(J+Co+clei(J+c2e2i(J+ .... 
k=-oo 

Laurent expansions are intimately related to Fourier series. If the Laurent 
series 

00 

f(z) = L akzk 
k=-oo 

converges uniformly on the circle {Izl = r}, then 
00 

f(rei(J) = I: akrkeik(J 
k=-oo 

is the Fourier series expansion of f(rei(J), regarded as a function of (). The 
Fourier coefficients of the expansion are the coefficients Ck = akrk. 

Suppose the series (6.1) converges uniformly to a function f (ei(J) , 

00 

f(ei(J) = L cjeij(J. 
j=-oo 



6. Fourier Series 187 

We can capture the coefficients of the series by multiplying by the exponen­
tial function e-ik8 and integrating with respect to the probability measure 
d() /21r. The orthogonality relations for the exponential functions, 

(6.2) j 7r ij8 -ik8 d() { 1, 
e e - = 

-7r 21r 0, 

j =k, 

j '" k, 
then yield 

j 7r ( "8) "k8 d() ~ j7r" "8 "k8 d() 
fret e-t - = ~ Cj e t3 e-t - = Ck. -7r 21r" -7r 21r 3=-00 

This leads us to define the Fourier coefficients of any piecewise contin­
uous function (or any integrable function) f (ei8 ) to be 

(6.3) Ck = j7r f (ei8 ) e-ik8 d() , -00 < k < 00, 
-7r 21r 

and we associate to f (ei8 ) the Fourier series 

00 

(6.4) f (ei8 ) '" L Ckeik8 , 

k=-oo 

where the Ck'S are defined by (6.3). We call L Ckeik8 the Fourier series 
of f (e~8). However, we face now two big problems. Does the Fourier series 
of f (et8 ) converge? And if so, to what? 

Example. Define f (ei8 ) to be -1 for -1r < () < 0, and +1 for 0 < () < 1r. 

The Fourier coefficient Co is the average value of f (ei8 ), which is O. If 
k '" 0, then 

10 -ik8 de + 17r -ik8 de - e - e-
-7r 21r 0 21r 

e-ik8 10 _ e-ik8 17r 
21rik -7r 21rik 0 

1 [ k k] -. 1-(-1) -(-1) +1 
21rlk 

~k [1- (_I)k]. 
1rl 

This is 0 if k is even and 2/1rik if k is odd. Thus the complex Fourier series 
of f (ei8 ) is 

f (ei8 ) '" ~ L !:.eik8 = ... + (-~) e-3i8 + (-~) e-i8 
1rl k odd k 31rZ 1rl 

+ (~) ei8 + (~) e 3i8 + .... 
1rl 31rl 

If we combine the terms for ±k, we obtain sine functions, and the series 
becomes 

(6.5) f (ei8 ) '" i (Sin () + ~ sin 3() + ~ sin 5() + ... ) . 
1r 3 5 
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The terms of the series are all zero at 0 = 0 and at 0 = ±1r. We will soon 
see that the series converges to f (eiO ) for 0 < 181 < 1r. 

Theorem. If f (eiO ) is piecewise continuous (or more generally, square­
integrable), with Fourier series f (eiO) rv L CkeikO , then for m, n ~ 0 we 
have 

This is established by writing 

multiplying out the product on the right, and integrating both sides from 
-1r to 1r. The integrals featuring the products of exponentials for j # k 
drop out, on account of the orthogonality relations (6.2). What remains 
on the right after we integrate is 

11< If (eiO ) 12 dO - L Ck 11< f (eiO) e-ikO dO 
-1< 21r -1< 21r 

_ "c.j1< f (eiO)eijO dO + "lcoI2. 
~ J 21r ~ J -1< 

In view of formula (6.3), we recognize the second and third integrals ap­
pearing here as Ck and Cj respectively. Thus the sum is equal to 

1
1< 2 dO 

-1< If (eiO ) I 21r - Llckl2- Llcjl2+ Llcjl2. 

If we cancel the two sums over j and move L ICkl2 to the other side, we 
obtain (6.6). 

The identity (6.6) shows that the partial sums of the series L ICkl2 are 
bounded. Consequently, the series L ICkl2 converges, and from (6.6) we 
obtain the following estimate. 
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Theorem (Bessel's Inequality). If f (ei9) is piecewise continuous (or 
more generally, square-integrable), with Fourier series f (ei9 ) f'V L Ckeik9, 
then 

(6.7) 

From Bessel's inequality it follows in particular that Ck ~ 0 as k ~ ±oo. 
With this observation in hand, we are now ready to state and prove our 
main theorem on pointwise convergence of Fourier series. 

Theorem. Suppose f (ei9) is piecewise continuous (or square integrable), 
with Fourier series f (ei9) f'V LCkeik9. If f (ei9) is differentiable at 00 , 

then the Fourier series of f (ei9 ) converges to f(ei9o ) at 0 = 00, 

00 n 

f(ei9o ) = I>keik9o = lim L ckeik90. 
m,n--+oo 

-00 k=-m 

Though Fourier series had been studied intensively for well over a cen­
tury, this ingenious proof was discovered only relatively recently, by P. 
Chernoff in 1980. 

We consider first the special case in which 00 = 0 and ei90 = 1. Define 
9 (ei9 ) = [f (ei9) -. f(l)] / (ei9 - 1). The differentiability of f ~ei9) at 0 = 
o implies that 9 (et9 ) has a limit as 0 -+ O. Consequently, 9 et9 ) is also 
piecewise continuous. Denote the Fourier coefficients of 9 (ei9 by bk, so 
that 9 (ei9 ) f'V L bkeik9. Bessel's inequality for 9 (ei9) shows that bk ~ 0 
as k -+ ±oo. Now we compute the Ck'S in terms of the bk's. Since f (ei9 ) = 
9 (ei9 ) (ei9 -1) + f(l), we have 

Ck = 111" 9 (ei9 ) (ei9 _ 1)e-ik9 dO + f(l) 111" e-ik9 dO. 
-11" 211" -11" 211" 

When we express these integrals as Fourier coefficients of 9 (ei9) , we obtain 
Ck = bk-l - bk if k =1= 0, and Co = b_ 1 - bo + f(l). Hence the series L Ck 
telescopes, and we obtain 

n n 

L Ck = f(l) + L (bk-l - bk) = f(l) + b_m- 1 - bn , 

k=-m k=-m 

which tends to f(l) as m, n ~ +00. This proves the theorem when 00 = O. 
The case when 00 is arbitrary is reduced to the above special case by 

a change of variable. Consider the function h (ei9 ) = f (ei(9+90 )) f'V 

L akeik9 , which is piecewise continuous and which is differentiable at 0 = O. 
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The Fourier coefficient ak of h (ei9 ) is 

ak = 111" f (ei (9+9o)) e-ik9 dO = 111" f (eik<P) e-ik<p eik90 dcp = Ckeik90 
. -11" 21l" -11" 21l" 

Thus the Fourier series of f (ei9 ) evaluated at 0 = 00 is L ckeik90 = L ak, 

which is the same as the Fourier series of h (ei9 ) evaluated at 0 = O. We 
have shown that the latter converges to h(l) = f(e i9o ). This completes the 
proof. 

Example. Consider the series in (6.5). By the convergence theorem, the 
series converges to + 1 for 0 < 0 < 1l" and to -1 for -1l" < 0 < O. The 
convergence theorem does not give any information about the points 0 = 0 
and 0 = ±1l", where the function is discontinuous. However, we see directly 
that the series converges to 0 at these points. 

We aim now to establish a result on uniform convergence of Fourier series. 
We begin by showing that the Fourier series of a smooth function can be 
differentiated term by term. 

Theorem. Suppose f (ei9 ) is a continuously differentiable function of 0, 
with Fourier series f (ei9 ) '" E Ckeik9 . Then the Fourier series of the 
derivative of f (ei9 ) is obtained by differentiating term by term, 

:of (ei9 ) '" L ikckeik9. 

To check this, we simply write down the expression for the kth Fourier 
coefficient of the derivative and we integrate by parts. The Fourier coeffi­
cient of the derivative is 

111" e -ik9 !!:... f (ei9) dO = e -ik9 f (ei9 ) 111" + ik 111" f ( ei9) e -ik9 dO = ikck . 
-11" dO 21l" -11" -11" 21l" 

If we combine this theorem with Bessel's in~uality, we can show that 
the Fourier coefficients of an n-times continuously differentiable function 
tend to zero at least as rapidly as the nth power of 11k. The smoother the 
function, the more rapidly its Fourier coefficients decay. 

Corollary. If f (ei9 ) is an n-times continuously differentiable function 
of 0, with Fourier series f(e i9 ) '" ECkeik9, then E:'_ook2nlckI2 < 00. 

Further, knCk --+ 0 as k --+ ±oo. 

To see this, observe that the nth derivative of f (ei8) has Fourier series 
E(ik)nCkeik8 and apply Bessel's inequality. The second statement of the 
corollary follows immediately from the convergence of the series, since the 
terms of the series then tend to O. 
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In particular, if f (eiB ) is a twice continuously differentiable function of (), 
then k2Ck --+ 0 as k --+ ±oo. Hence the series L ICkl converges, by com­
parison with L 1/k2. By the Weierstrass M-test, the series LCkeikB then 
converges uniformly in (). By the pointwise convergence theorem proved 
above, the sum of the series is f (eiB). We have proved the following. 

Theorem. Suppose f (eiB ) is a twice continuously differentiable function 
of (). Then the Fourier series of f (eiB) converges to f (eiB ) uniformly in (). 

Example. Define g((}) = (}4 - 27l"2(}2, -7l" ~ () ~ 7l". We check that 
g(-7l") = g(7l"), g'(-7l") = g'(7l"), and g"(-7l") = g"(7l"). Consequently, if we 
set f (eiB) = g( (}), we obtain a twice continuously differentiable function 
of e iB• By the theorem, the Fourier series of f (eiB) converges uniformly 
in (). The explicit calculation of the Fourier series is left to the exercises 
(Exercise 4). 

Example. The Fourier series in (6.5) does not converge uniformly, since 
the sum is not continuous. 

Exercises for VI.6 

1. Consider the continuous function f(e iB ) = I(}I, -7l" ~ () ~ 7l". Find 
the complex Fourier series of f (eiB ) and show that it can be ex­
pressed as a cosine series. Sketch the graphs of the first three par­
tial sums of the cosine series. Discuss the convergence of the series. 
Does it converge uniformly? Partial answer. The cosine series is 

I(}I = - - - cos(} + - cos3(} + - cos5(} +... . 7l" 4( 1 1 ) 
2 7l" 32 52 

2. Let f(eiB ) = (), -7l" < () ~ 7l" (the principal value of the argument). 
Find the complex Fourier series of f (eiB ) and the sine series of 
f (eiB). Show that the complex Fourier series diverges at () = ±7l", 
while the sine series converges at ±7l". Differentiate the complex 
Fourier series term by term and determine where the differentiated 
series converges. 

3. Consider the continuous function f (eiB ) = (}2, -7l" ~ () ~ 7l". Find the 
complex Fourier series of f (eiB) and show that it can be expressed 
as a cosine series. Discuss the convergence of the series. Does it 
converge uniformly? By substituting () = 0, show that 

1 1 1 
1--+---+··· 22 32 42 . 

4. Consider the continuous function f(eiB ) = (}4 - 27l"2(}2, -7l" ~ () ~ 7l". 
Find the complex Fourier series of f (eiB) and show that it can be 
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expressed as a cosine series. Relate the Fourier series to the series 
of the function in Exercise 3. 

5. Show that if L Ck converges absolutely, then L Ckeik9 converges 
absolutely for each 0, and the series converges uniformly for -71" ~ 
o ~ 71". 

6. Show that any function J (ei9) on the unit circle with absolutely 

convergent Fourier series has the form J (ei9) = 9 (ei9 ) + h (ei9 ), 
where g(z) and h(z) are continuous functions on the unit circle that 
extend continuously to be analytic on the open unit disk. 

7. If J (ei9) rv L Ckeik9, and the series converges uniformly to J (ei9 ), 

then 

Remark. This is called Parseval's identity. Formula (6.6) shows 
that Parseval's identity holds for a function J (e i9 ) if and only if 
the partial sums of the Fourier series of J (ei9) converge to J (ei9 ) 

in the sense of "mean-square" or "L2-approximation." 

8. By applying Parseval's identity to the piecewise constant function 
with series (6.5), show that 

8 
1 1 1 

1+-+-+-+··· 32 52 72 . 

Use this identity and some algebraic manipulation to show that 

71"2 1 1 1 
- = 1+-+-+-+··· 6 22 32 42 . 

9. By applying Parseval's identity to the function of Exercise 1, show 
that 

71"4 1 1 1 
96 = 1 + 34 + 54 + 74 + .... 

Use this identity and some algebraic manipulation to show that 

71"4 1 1 1 
90 = 1 + 24 + 34 + 44 + .... 

10. If J(z) is analytic in some annulus containing the unit circle Izl = 1, 
with Laurent expansion L akzk, then 
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11. Let f (ei9) be a continuous function on the unit circle, with Fourier 
series E Ckeik9. Show that f (ei9) extends to be analytic on some 
annulus containing the unit circle if and only if there exist r < 1 
and C > 0 such that ICkl :<::; Cr lkl for -00 < k < 00. 

12. Using the convergence theorem for Fourier series, prove that every 
continuous function on the unit circle in the complex plane can be 
approximated uniformly there by trigonometric polynomials, that 
is, by finite linear combinations of exponentials eik9 , -00 < k < 00. 

Strategy. First approximate f (ei9 ) by a smooth function. 

13. Let D be a domain bounded by a smooth boundary curve of length 
27r. We parametrize the boundary of D by arc length s, so the 
boundary is given by a smooth periodic function 'Y(s), 0 :<::; s :<::; 27r. 
Let E Ckeiks be the Fourier series of 'Y(s). (a) Show that E k21ckl2 = 
1. Hint. Apply Parseval's identity to 1" (s) and use h' (s) I = 1 for a 
curve parameterized by arc length. (b) Show that the area of D is 
7r E klckl2. Hint. Use Exercise IV.1.4. (c) Show that the area of D 
is :<::; 7r, with equality if and only if D is a disk. Remark. This proves 
the isoperimetric theorem: Among all smooth closed curves of a 
given length, the curve that surrounds the largest area is a circle. 

14. Show that 

J~ 
n 2 n 

= J~ f (ei9) - k~m Ckeik9 ~! + k~m Ibk - ckl2, 

for any choice of complex numbers bk, -m :<::; k :<::; n. Remark. This 
shows that the best mean-square approximant to f (ei9 ) by expo­
nential sums E~m bkeik9 , for fixed m and n, is the corresponding 
partial sum of the Fourier series. 

15. Show that a continuously differentiable function on the unit circle 
has an absolutely convergent Fourier series. Strategy. Write the 
Fourier coefficients Ck of f (ei9) as akbk, where ak = l/ik and bk is 
the Fourier coefficient of the derivative. Use Bessel's inequality and 
the Cauchy-Schwarz inequality IE Ctk,Bkl :<::; viE ICtkI2v1E l,BkI2. 

16. Let f (ei9) be a continuous function on the unit circle. Suppose 
that f (ei9 ) is piecewise continuously differentiable, in the sense 
that it has a continuous derivative except at a finite number of 
points, at each of which the derivative has limits from the left and 
from the right. Show that the Fourier series of f (ei9 ) is absolutely 
convergent. Strategy. Cancel the discontinuities of the derivative 
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using translates of the function in Exercise 3, whose Fourier series 
is absolutely convergent. 

17. Let f (ei9 ) be piecewise continuously differentiable, in the sense that 
it is continuously differentiable except at a finite number of points, 
at each of which both the function and its derivative have limits from 
the left and from the right. Show that the Fourier series of f (ei , 

converges at each point, to f (ei9 ) if the function is continuous at ei , 

and otherwise to the average of the limits of f (ei9 ) from the left and 
from the right. Strategy. Show that f (ei9 ) = II (ei9 ) + L bj h j (ei9 ) , 

where II (ei9 ) satisfies the hypotheses of Exercise 15, and each 
h j (ei9 ) is obtained from the function of Exercise 2 by a change 
of variable () f-+ () - () j. 



VII 

The Residue Calculus 

Section 1 is devoted. to the residue theorem and to techniques for evaluating 
residues. In the remaining sections we apply the residue theorem to eval­
uate various real integrals. This material provides a good training ground 
for the techniques of complex integration. The student who is anxious to 
move on can skip the final several sections of the chapter at first reading. 

1. The Residue Theorem 

Suppose Zo is an isolated. singularity of J(z) and that J(z) has Laurent 
series 

(Xl 

J(z) = L an(z - Zo)n, 0< Iz - zol < p. 
n=-(Xl 

We define the residue of J(z) at Zo to be the coefficient a_I of 1/(z - zo) 
in this Laurent expansion, 

(1.1) Res [J(z), zo] = a-I = -21 . 1 J(z) dz, 
7n lIz-zol=r 

where r is any fixed radius satisfying 0 < r < p. 

Example. The definition yields immediately 

Res [~, 0] = 1, Res [(Z -\0)2 , Zo ] o. 

Example. The partial fractions decomposition 

z2 ~ 1 = ;i [z ~ i - z ~ i] = ;i z ~ i + [analytic at i] 
yields 

Res L2 ~ 1 ' i] = ;i· 
195 
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The following residue theorem provides an important tool for evaluating 
complex line integrals. It extends Cauchy's theorem by allowing for a finite 
number of singularities inside the contour of integration. When there are 
no singularities present, the residue theorem reduces to Cauchy'S theorem. 

Theorem (Residue Theorem). Let D be a bounded domain in the com­
plex plane with piecewise smooth boundary. Suppose that J (z) is analytic 
on D u aD, except for a finite number of isolated singularities Z11 ••• ,Zm 

in D. Then 

(1.2) 

o .~ 
To see this, let De be the domain obtained from D by punching out small 

disks Uj centered at Zj of radius c. The formula (1.1) for the residue at Zj 
yields 

r J(z)dz = 21l"iRes[J(z),zjl. 
lauj 

(This can be regarded as a special case of the residue theorem, for the 
domain Uj and a function with a singularity at Zj.) By Cauchy's theorem, 

o = r J(z)dz = r J(z)dz - f r J(z)dz. 
laD. laD j=l lauj 

If we combine these two identities, we obtain (1.2). 
We give four useful rules for calculating residues. 

Rule 1. If J(z) has a simple pole at zo, then 

Res [J(z), Zo 1 = lim (z - zo)J(z). 
Z--+Zo 

In this case the Laurent series of J(z) is 

J(z) = ~ + [analytic at zol , 
z - Zo 

from which the rule follows immediately. Note that once we obtain an 
expression for (z - zo)J(z) as an analytic function, the limit is evaluated 
by simply plugging z = Zo into the expression. 
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Example. From Rule 1 we have 

Res [_I_,i] = lim z-i = lim 1 1 I 1 
z2 + 1 z-+i z2 + 1 z--i Z + i = z + i z=i = 2i· 

This method of obtaining the residue is faster than finding first the partial 
fractions decomposition. Rule 4 below is faSter yet. 

Rule 2. If J(z) has a double pole at zo, then 

Res [J(z), zo] = lim ddz [(z - ZO)2 J(z)]. 
z-+zo 

In this case the Laurent expansion is 

J(z) = ( a-2 )2 + 
Z -zO + ao + 

Thus 

(z - zO)2 J(z) = a_2 + a_l(z - zo) + ao(z - zO)2 + .... 

If we differentiate and then plug in z = Zo, we obtain Rule 2. Note that 
Rule 2 can be regarded as the formula for the coefficient of z - Zo in the 
power series expansion of the analytic function (z - zO)2 J(z). 

Example. The function Ij(z2 + 1)2 has double poles at ±i. The residue 
at i is given by 

[ 1 .] . d 1 -2 I 1 
Res (z2 + 1)2' t = ~~ dz (z + i)2 = (z + i)3 z=i = 4i· 

Rule 3. If J(z) and g(z) are analytic at Zo, and if g(z) has a simple zero 
at Zo, then 

[ J(z) ] J(zo) 
Res g(z) ,Zo = g'(zo)· 

In this case J(z)jg(z) has at most a simple pole at zo0 If we use Rule 1 
and the definition of the derivative, we obtain for the residue 

lim (z - zo/(z) = lim J(z) 
Z-+Zo g(z) Z-+Zo (g(z) - g(zo))j(z - zo) 

J(zo) 
= g'(zo) . 

Example. The partial fractions decomposition of the function z3 j(Z2 + 1) 
was found in Section VI.4 to be 

Z3 1 1 
-- = z-
z2 + 1 2 z - i 

1 1 

2z+i 
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From this we read off the residues at ±i to be both - ~. The residues can 
also be obtained directly using Rule 3. The residue at i is given by 

[ z3 ] z31 i3 1 
Res z2 + 1 ' i = 2z z=i = 2i = -"2. 

The following special case of Rule 3 is particularly useful. 

Rule 4. If g(z) is analytic and has a simple zero at zo, then 

Res [g!z)' zo] = gl(~O)" 

Example. If we apply Rule 4 to 1/(z2 + 1), we obtain the residue even 
faster than before, 

Exercises for VII.! 

1. Evaluate the following residues. 

(a) Res [Z2 ~ 4' 2i] (d) Res [s~2z , 0] (g) Res [LO: z ' 1] 

(b) Res [Z2 ~ 4 ' - 2i] (e) Res [c:s2 z , 0] (h) Res [:: ' 0] 

(c) Res [z5~1' 1] (f) Res [cot z , 0] (i) Res [zn + 1 , e21rki/n] 
zn -1 

2. Calculate the residue at each isolated singularity in the complex 
plane of the following functions. 

(a) e1/ z (b) tan z 
z 

(c) (z2 + 1)2 (d) Z2 ~ z 

3. Evaluate the following integrals, using the residue theorem. 

(a) 1 Sin2 Z dz 
1Izl=1 Z 

t eZ 
(b) -2-dz 

Izl=2 z -1 

(c) -dz t z 

Izl=2 cos Z 

t z4 
(d) -. -dz 

Izl=1 sm Z 

(e) 1 ~dz 
1Iz-ll=1 z - 1 

(f) 1 tan z dz 
1IZ-l/21=3/2 Z 

4. Suppose P(z) and Q(z) are polynomials such that the zeros of Q(z) 
are simple zeros at the points ZI, ... ,Zm, and degP(z) < degQ(z). 
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Show that the partial fractions decomposition of P(z)/Q(z) is given 
by 

P(z) _ ~ P(Zj) _1_ 
Q(z) - ~ Q'(z,) z - Z·· 

3=1 3 3 

5. Let J(z) be a meromorphic function on the complex plane that is 
doubly periodic, and suppose that none of the poles of J (z) lie on the 
boundary of the period parallelogram P constructed in Section VI.5. 
By integrating J (z) around the boundary of P, show that the sum 
of the residues at the poles of J(z) in P is zero. Conclude that there 
is no doubly periodic meromorphic function with only one pole, a 
simple pole, in the period parallelogram. 

6. Consider the integral 

fa e1l"i(z-1/2)2 

2 . dz, 
8DR 1- e- 'nz 

where DR is the parallelogram with vertices ±(~) ± (1 + i)R. (a) 
Use the residue theorem to show that the integral is (1 + i)/V'2. 
(b) By parameterizing the sides of the parallelogram, show that the 
integral tends to 

(1 + i) 1: e-211"t
2 dt 

as R -+ 00. (c) Use (a) and (b) to show that 

100 e-s2 ds = v'7f. 
-00 

2. Integrals Featuring Rational FUnctions 

The prototype for evaluation of an integral by means of contour integration 
is the derivation of the formula 

(2.1) 100 dx 

-00 1 +x2 = 7r. 

This integral can, of course, be evaluated using the usual integration for­
mula featuring the inverse tangent function. To evaluate it using contour 
integration, we proceed as follows. 

Let DR be the half-disk in the upper half-plane bounded by the interval 
[-R, R] on the real axis and the semicircular contour r R of radius R in the 
upper half-plane. The function 1/(1 + Z2) has one pole in DR, a simple 
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-R o R 

senicircular contour 

pole at i with residue 1/2i. The residue theorem yields 

{ ~ - 211"i Res [~, i] 
i8DR 1+z2 - l+z 

. 1 
2""·· - = ",. ... 2i ". 

Now, 

j R dx 
--+ 

-R 1 +x2 
1 dz 

--2· 
rR 1 + z 

On r R we have 

while the length of r R is 11" R. By the M L-estimate we have 

I { ~I < _1 .1I"R 1 
irR 1 + Z2 - R2 -1 R' 

which tends to 0 as R ---+ 00. Hence 

which is (2.1). 

lim {R ~ = 11", 
R-+oo LR 1 + x 2 

The same technique can be used to evaluate integrals of the form 

(2.2) 
roo P{x) dx 

Loo Q{x) , 

where P{z) and Q{z) are polynomials, and Q{z) has no zeros on the real 
axis. For convergence of the integral, we require that 

(2.3) degQ(z) ;::: degP(z) + 2. 

The integral is evaluated by integrating P(z)/Q(z) around the boundary 
of a half-disk in the upper half-plane, as above, and letting the radius tend 
to 00. This yields the formula 

(2.4) roo P{x) ." [ P(z) ] Loo Q(x) dx = 211"z L." Res Q(z) , Zj , 

summed over the poles Zj of P(z)/Q(z) in the upper half-plane. 



2. Integrals Featuring Rational Functions 201 

The same contour can be used to evaluate the integrals of rational func­
tions times trigonometric functions. The typical integral has the form 

100 P(x) 
-00 Q(x) cos(ax) dx, 

where the polynomials P(z) and Q(z) have real coefficients and satisfy 
(2.3). To use the semicircular contour, we cannot use the function cos(az), 
because it behaves too badly in the upper half-plane. (As we have seen, 
the cosine function is essentially a hyperbolic cosine on the imaginary axis, 
which grows exponentially fast.) To obtain a tractable integral, we resort 
to a trick. The trick is to substitute eiz for the cosine function in the 
contour integral, and to recover the cosine integral at the end by taking 
real parts. Since lei(x+iy ) I = e-Y , the exponential function e iz is bounded 
by 1 in the upper half-plane, 

Im(z) ~ O. 

Example. We show by contour integration that 

(2.5) 100 cos( ax) dx -a = 7re , 
-00 1 +x2 

a>O. 

Again we let DR be the half-disk in the upper half-plane bounded by the 
interval r - R, R] on the real axis and the semicircular contour r R of radius R 
in the upper half-plane. This time we integrate the function eiaz /(1 + z2) 
over the boundary of DR. The function has only one pole in the upper 
half-plane, a simple pole at i, with residue calculated by Rule 3 to be 

Res [ l
eiaz 

2 ' i] = e
iaz I = + z 2z z=i 2i 

Thus 

Since leiazl :::; 1 in the upper half-plane, the ML-estimate yields 

----dz < ----·7rR ~ -. 11 eiaz I 1 1 
rR 1 + z2 - R2 - 1 R 

Again we have 

i eiaz jR eiax 
---- dz = ---- dx + 

aDR 1 + z2 -R 1 + x 2 
1 eiaz 

----dz 
rR 1 + z2 . 

Passing to the limit as R ~ 00, we obtain 

100 eiax 
---- dx = 7re -a, 

-00 1 + x2 
a> o. 
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Now we take the real parts of the integral, and we obtain (2.5). Note that 
if we take the imaginary part of the integral, we obtain 

100 sin(ax) dx = 0 
-00 1 + x 2 ' 

which is no surprise, since the integrand is an odd function. 

Exercises for VII.2 

1. Show using residue theory that 

100 dx 

-00 x 2 + a2 

11" 

a 
a> O. 

Remark. Check the result by evaluating the integral directly, using 
the arctangent function. 

2. Show using residue theory that 

100 dx 11" 

-00 (x2 + a2)2 2a3 ' 

Remark. Check the result by differentiating the formula in the pre­
ceding exercise with respect to the parameter. 

3. Show using residue theory that 

f oo x2 dx 

-00 (x2 + 1)2 2 

Remark. Check the result by combining the preceding two exercises. 

100 dx 11" 
4. Using residue theory, show that ~ = /02 . 

-00 x + V L. 

100 x2 
5. Using residue theory, show that ~1 dx 

o x + 

100 x 
6. Show that -00 (x2 + 2x + 2)(x2 + 4) dx 

7. Show that 

100 cos (ax) dx 
-00 x4 + 1 

8. Show that 

100 cos x 11" 

(1 2)2 dx = e 
-00 +x 

a> O. 
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9. Show that 

10. Show that 

100 sin2 x 
--dx = 

-00 x2 + 1 

100 cos( ax) dx 

-00 x2 + b2 

203 

-00 < a < 00, b > O. 

For which complex values of the parameters a and b does the in­
tegral exist? Where does the integral depend analytically on the 
parameters? 

100 cos x 
11. Evaluate (2 2)( 2 b2 ) dx. Indicate the range of the pa-

-00 x +a x + 
rameters a and b. 

12. Let Q(z) be a polynomial of degree m with no zeros on the real line, 
and let J(z) be a function that is analytic in the upper half-plane 
and across the real line. Suppose there is b < m - 1 such that 
IJ(z)1 ::; Izlb for z in the upper half-plane, Izl > 1. Show that 

100 J(x) . '" [ J(z) ] 
-00 Q(x) dx = 2n L...J Res Q(z)' Zj , 

summed over the zeros Zj of Q(z) in the upper half-plane. 

3. Integrals of Trigonometric Functions 

We have seen how complex contour integrals along a curve can be converted 
to garden-variety integrals by parameterizing the curve. Some definite 
integrals can be evaluated through the reverse process, by converting them 
to complex contour integrals and using the residue theorem. To illustrate 
this, we show how the integral 

(3.1) t rr __ d_O--:-
10 a+cosO' 

a> 1, 

can be evaluated using residue calculus. The idea is to convert this to a 
complex contour integral around the unit circle. The usual parameteriza­
tion z = ei8 gives dz = iei8 dO = iz dO, and we have 

dz 
dO = 

iz 
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The trigonometric functions are easily expressible in terms of z on the unit 
circle. For cos 0 and sin 0 on the unit circle we have 

cosO 
ei8 + e-i8 z + liz 

= 
2 2 

sinO 
ei8 _ e-i8 z -liz 

= 
2i 2i 

If we substitute the expression for cosO into the integral (3.1), we obtain 

r21r dO 1 1 dz 2 1 dz 
10 a + coso = lIzl=l a + ~(z + liz) iz = i lIzl=l z2 + 2az + 1 . 

The poles of the integrand are the two zeros of z2 + 2az + 1, which are 
-a ± .J a2 - 1. Only one of these roots is inside the unit circle, at Zo = 
-a + ..j a2 - 1. The residue at Zo is calculated by Rule 3 above to be 

Res [2 1 ,zo] = 1 I = ~ . 
z + 2az + 1 2z + 2a z=Zo 2 a2 - 1 

Thus by the residue theorem 

(3.2) r21r dO 
10 a+cosO 

2 . 1 
- . 27rl . --=== 
i 2.Ja2-1 

27r 
= 

.Ja2 -1 . 

unit circle contour 

Now consider the integral (3.1) with a replaced by a complex parame­
ter w. We claim that 

(3.3) r21r __ d_O_ 
10 w + coso .Jw2 -1' 

wE C\[-I, 1], 

where the right-hand side of the identity corresponds to the branch of 
.Jw2 - 1 that is positive on the real interval (I, +00). Indeed, the functions 
appearing on each side of the identity (3.3) are analytic for w in the slit 
plane C\[-I, 1]. The identity (3.2) shows that these two analytic functions 
coincide for w E (1, +00). By the uniqueness principle, the two analytic 
functions coincide for all w E C\[-I,I]. This establishes (3.3) also for 
complex values of the parameter w, except for w in the interval [-1,1], 
where the integral does not converge. 
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Exercises for VII.3 

1. Show using residue theory that 

1211" cosB 
---dB 

o 2 + cosB 

2. Show using residue theory that 

3. 

r211" __ d-:-B_....,. 
Jo a + bsinB 

Show using residue theory that 

21r 
a> b> O. 

111" sin2 B 
B dB = 1r[a - ~] , a> 1. 

o a+cos 

4. Show using residue theory that 

111" dB 
-11" 1 + sin2 B 

71'V2. 

5. Show using residue theory that 

111" 1 - r2 dB 
-11" 1 - 2r cos B + r2 271' 

= 1, O~r<1. 

Remark. The integrand is the Poisson kernel (Section X.I). 

6. By expanding both sides of the identity 

1 r211" __ d_B--:: 
271' Jo w + cosB 

in a power series at 00, show that 

7. Show using residue theory that 

271'w r27r -,----_d_B----,-,,-;:­
Jo (w+COSB)2 (w2 - 1)3/2 ' 

1 

k ~ O. 

wE C\[-I, 1]. 
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Specify carefully the branch of the power function. Check your 
answer by differentiating the integral of I/(w + cos B) with respect 
to the parameter w. 
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4. Integrands with Branch Points 

Integrals featuring xa and log x can sometimes be evaluated using contour 
integration. It is important to specify carefully the branch of the func­
tion za or log z used in the complex integral. We illustrate by deriving the 
identity 

(4.1) -l<a<1. 

This integral is easily seen to be 1 if a = 0, and we interpret the right-hand 
side also to be 1 at a = 0. We suppose then that a i= 0. 

We consider the branch of the function za /(1 + Z)2 defined on the slit 
plane C\[O, +00) by 

(4.2) z = re i (), ° < () < 271". 

We regard the slit [0, +00) as having a top edge and a bottom edge, and we 
extend the function by continuity to each edge of the slit, so it is defined by 
(4.2) with () = ° on the top edge, and by (4.2) with () = 271" on the bottom 
edge. The values on the bottom edge are obtained from those on the top 
edge by multiplying by the phase factor e27ria . 

-R R 

keyhole contour 

For € > ° small and R > ° large, we consider the keyhole domain D 
consisting of z in the slit plane C\[O, 00) satisfying € < Izl < R. The 
function J(z) has one pole in D, a double pole at z = -1. For the residue, 
Rule 2 gives 

Res [ (1 :az)2 ,-1] = :z zaIZ=_l za I = a-;- z=-l = _ ae7ria. 

The residue theorem yields 

(4.3) r J(z) dz = -271"iae7ria • laD 
The integral around aD breaks into the sum of four integrals, from € to R 
along the top edge of the slit, around the circular contour r R of radius R 
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in the counterclockwise direction, from R back to c along the bottom edge 
of the slit, and around the circular contour "fE of radius c in the clockwise 
direction, 

j R (1 xa )2 dx + [ J(z) dz + r t'll"iax)a2 dx + 1 J(z) dz. 
E +x 1rR 1R l+x '"I< 

For the integrals over r R and "fE' the ML-estimate gives 

Ra- 1 
rv , 

Since -1 < a < 1, both these integrals tend to 0 as R ---+ 00 and c ---+ o. 
If we reverse the direction of the integral from R to c and use (4.3), we 
obtain in the limit 

-27riae'll"ia = (1 _ e2'11"ia) [00 xa dx. 
10 (1 +x)2 

This yields the required identity, 

{'Xl xa dx = - 27riae'll"ia = 27ria = 
10 (1 + x)2 1 - e2'11"ia e ia - e-'II"ia sin(7ra) . 

This identity can be extended to complex values of the parameter a. The 
function 

g(w) = 100 
(1 :wX)2 dx 

is analytic on the strip {-1 < Re(w) < 1}, as is the function 7rwl sin(7rw). 
We have shown that these two functions coincide on the interval (-1, 1) 
where the strip meets the real axis. The uniqueness principle then shows 
that the functions coincide in the entire strip; that is, the identity (4.1) 
holds for all complex values of the parameter a satisfying -1 < Re( a) < 1. 

Exercises for VIlA 

1. By integrating around the keyhole contour, show that 

[00 x-a 7r 

10 1 + X dx = sin(7ra)' 
O<a<1. 

2. By integrating around the boundary of a pie-slice domain of aper­
ture 27r Ib, show that 

100 

1 :xb = bSin~7rlb)' b> 1. 

Remark. Check the result by changing variable and comparing with 
Exercise 1. 
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3. By integrating around the keyhole contour, show that 

roo log x dx = 7r2 cos( 7ra ) 
Jo xa(x + 1) sin2(7ra) 

O<a<1. 

Remark. Check the result by differentiating the identity in Exer­
cise 1. 

4. For fixed m ~ 2, show by integrating around the keyhole contour 
that 

roo x-a dx = 7ra(a+1)···(a+m-2) 
Jo (1 + x)m (m - 1)! sin(7ra) , 

1-m<a<1. 

Remark. The result can be obtained also by integrating the formula 
in Exercise 1 by parts. 

(log z)2 
5. By integrating a branch of (z + a)(z + b) around the keyhole con-

tour, show that 

rOO log x d = 
Jo (x + a)(x + b) x 

(loga)2 - (logb)2 
2(a - b) 

6. Using residue theory, show that 

rOO xa log x dx 
Jo (1+X)2 

7. Show that 

7r sine 7ra) - a7r2 cas ( 7ra) 

sin2(7ra) 

100 xa-l 
--dx 

o 1 +xb bsin(7ra/b) , 

a, b > 0, a =I- b. 

-1<a<1. 

0< a < b. 

Determine for which complex values of the parameter a the integral 
exists (in the sense that the integral of the absolute value is finite), 
and evaluate it. Where does the integral depend analytically on the 
parameter a? 

8. By integrating a branch of (log z) / (z3 + 1) around the boundary 
of an indented sector of aperture 27r /3, show that 

100 log x - 27r2 
--dx =--

o x3 + 1 27 ' 
{00_1_dx = 

Jo x3 + 1 

Remark. Compare the results with those of Exercise 3 (after chang­
ing variable) and Exercise 2. 
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9. By integrating around an appropriate contour and using the results 
of Exercise 8, show that 

(X) (log X)2 dx = 107r3 

Jo X 3 + 1 81y'3· 

10. By integrating a branch of (log z)j(z3 -1) around the boundary of 
an indented half-disk and using the result of Exercise 8, show that 

roo log x dx = 47r2 . 

Jo x3 -1 27 

5. Fractional Residues 

Suppose zo is an isolated singularity of J(z). For c > 0 small, we consider 
the integral 

1 J(z)dz, 
e. 

where Ce is the arc of the circle {Iz - zol = c} subtended by a sector of 
aperture a. If a = 27r, then Ce is the full circle, and the integral is equal 
to 27ri Res[J(z) , zo]. In general, there is no exact formula for the integral. 
However, if the isolated singularity of J(z) is a simple pole, then we can 
calculate the limit of the integrals as c -+ o. 

Theorem (Fractional Residue Theorem). If Zo is a simple pole of 
J(z), and Ce is an arc of the circle {Iz - zol = c} of angle a, then 

(5.1) lim ( J(z) dz = ai Res[J(z) , zo]. 
e-+O le. 

To see this, express J(z) = A/(z-zo)+g(z), where A is the residue of J(z) 
at Zo and g( z) is analytic at Zo. Parameterizing the circle by z = Zo + cei9 , 

and supposing 00 < 0 < 00 + a on the arc, we calculate 

1 Adz 190+0< -- = iA dO = aiA. 
e. z - Zo 90 

Since g(z) is bounded near Zo and the length of Ce is at most 27rc, the 
ML-estimate shows that Ie. g(z)dz tends to 0 as c -+ o. Consequently, 
Ie. J(z)dz tends to aiA as c -+ 0, which is (5.1). 
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Note that the angle a is taken to be negative if the arc of the circle is 
traversed in the negative direction, that is, in the clockwise direction. 

To illustrate how the fractional residue theorem is used, we show that 

(5.2) rOO logx dx = 71'2. 

lo x2 - 1 4 

We choose the branch of log z that is real on the positive real axis (the 
principal branch oflog z), and we integrate J ( z) = (log z) / (z2 - 1) around 
the boundary aD of a domain D that is a half-disk of radius R in the upper 
half-plane, with indentations of radii c and 8 at the singularities of J(z) 
at -1 and 0, respectively. Since the zeros of log z and Z2 - 1 at z = 1 are 
both simple, they cancel each other out, so that J(z) is analytic at z = 1 
and no indentation is required there. Since J(z) is analytic on D, Cauchy's 
theorem yields 

(5.3) ( J(z) dz laD 

indented contour 

o. 

R 

Now the integral around aD breaks into the sum of six integrals, from 8 to R 
along the positive real axis, around the semicircular contour r R of radius R 
in the counterclockwise direction, from - R to -1-c along the negative real 
axis, around a semicircular contour Ct; of radius c in the clockwise direction 
around -1, from -1 + c to -8 along the negative real axis, and finally 
around a semicircular contour 'Y8 of radius 8 in the clockwise direction 
around O. For the integrals over r Rand 'Y8, the M L-estimate gives 

11 ~dzl < 
Vlog2 R + 71'2 

'7I'R 
10gR 

rR z2 - 1 R2 -1 R 
, 

11 ~dzl < 
Vlog2 8 + 71'2 

rv 81l0g 81. 82 . 71'8 z2 -1 1-
"'16 
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If we let R -t 00 and fJ -t 0, these two contributions disappear, and (5.3) 
becomes 

(5.4) [00 logx dx + 1-1- e log Ixl + 7ri dx 
Jo x 2 - 1 -00 x 2 - 1 

+ 10 log 1:1 + 7ri dx + 1 l~g z dz = 0. 
-He X - 1 Ce z - 1 

The integral around Ce is handled by the fractional residue formula. The 
angle a is -7r, since Ce is traversed halfway around the circle in the negative 
direction. The function J(z) has a simple pole at z = -1, with residue 
computed by Rule 3 to be 

Res [ log z ,-1] = log z I = _! log ( -1) = i7r 
z2 - 1 2z z=-l 2 2 

Thus the fractional residue formula (5.1) becomes 

1. [logz d _.( )( i7r) _ 7r2 

e~ JCe z2 -1 z - t -7r -"2 - -2· 

If we take the real part of (5.4) and let c ---+ 0, we then obtain 

[00 log x dx + 10 log Ixl dx _ 7r2 = 0. 
Jo x2 - 1 -00 x2 - 1 2 

After a change in variable x f--+ -x in the second integral, this becomes (5.2). 

Exercises for VII.5 

1. Use the keyhole contour indented on the lower edge of the axis at 
x = 1 to show that 

roo log x dx _ 27r2 

Jo xa(x - 1) - 1 - cos(27ra) , 

2. Show using residue theory that 

100 sin(ax) dx = 7r(1 _ e-a ) , 

-00 x(x2 + 1) 

O<a<l. 

a> 0. 

Hint. Replace sin( az) by eiaz , and integrate around the boundary 
of a half-disk indented at z = 0. 

3. Show using residue theory that 

100 sin(ax) d = 2 
-00 X(7r2 - a2x2 ) x 7r 

4. Show using residue theory that 

[00 1 - cos x dx = 7r 
Jo x 2 2 

a> 0. 
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5. By integrating (e±2iz - 1)/ z2 over appropriate indented contours 
and using Cauchy's theorem, show that 

JOO sin2x _ 
--2-dx - 7r. 

-00 X 

6. By integrating a branch of (Iogz)/(z3 -1) around the boundary 
of an indented sector of aperture 27r /3, show that 

roo log x dx 
Jo x3 -1 

Remark. See also Exercise 4.10. 

6. Principal Values 

An integral J: f(x)dx is absolutely convergent if the (proper or im­

proper) integral J: If(x)ldx is finite. The integral is absolutely divergent 

if J: If(x)ldx = +00. There is essentially only one way to assign a value 
to an absolutely convergent integral, while there may not be an obvious 
way to assign a value to an absolutely divergent integral. This is analogous 
to the dichotomy between absolutely and conditionally convergent series. 
Every rearrangement of an absolutely convergent series converges to the 
same value, while the rearrangements of a conditionally convergent series 
can converge to just about anything. 

Example. The integral 

1+11 
-dx 

-1 x 

is absolutely divergent, since J"::II(1/lxj)dx = +00. One natural way to as­
sign a value to the integral is to take a limit as e -+ 0 of integrals over the 
two intervals [-1, -e] and [e, +1], which are obtained by excising a sym­
metric interval centered at the singularity o. The negative contributions 
for x < 0 cancel out the positive contributions for x > 0, and we obtain 
what is called the ''principal value" of the integral, 

1+11 (1-e: 11) 1 PV - dx = lim + - dx = o. 
-1 X e: ..... 0 -1 e: X 

Observe, though, that if we excise an asymmetric interval, say from -e 
to CE, and take a limit, instead of 0 we obtain 

l~ ( r-e: + 11 ) .!. dx 
e: 0 J-l ce: x 

-loge, 

which can be any value at all. 
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Suppose that f(x) is continuous for a ::; x < Xo and for Xo < x ::; b. We 
define the principal value of the integral J: f(x)dx to be 

(6.1) lb ( l xo
-

c lb ) PV f(x) dx = l~ + f(x) dx, 
a C 0 a xo+c 

provided that the limit exists. The principal value of the integral coin­
cides with the usual value of the (proper or improper) integral if f(x) is 
absolutely integrable. The same definition is used when the endpoints are 
infinite or when f(x) is not continuous at the endpoints, provided that f(x) 
is absolutely integrable over each of the intervals (a, Xo - c) and (xo + c, b). 
If f (x) has a finite number of discontinuities within (a, b), we define the 
principal value of the integral by dividing the interval (a, b) into subinter­
vals, each containing one discontinuity of f(x), and adding the principal 
values of the integrals corresponding to the subintervals. 

Xo-c xo+c 
a •• ------•• • •• --------------~.b 

Xo 

Example. We illustrate by deriving the identity 

100 1 1r 
PV --dx = --, 

-00 x3 -1 .J3 
Observe first that the integrand behaves like 1/(x - 1) near x = 1, so that 
the integral is absolutely divergent. It is absolutely convergent on each 
interval (-00,1 - c) and (1 + c, 00), and the principal value is defined by 

pvjoo ~dx = lim (jl-C + rJC
) )~dX. 

-00 x-I c-+O -00 Jl+c x-I 

We consider the function f(z) = 1/(z3 -1), which has simple poles at the 
cube roots of unity. For c > 0 small and R > 0 large, we consider the 
indented half-disk D in the upper half-plane, consisting of z in the upper 
half-plane satisfying Izl < R and Iz - 11 > c. The function f(z) has one 
pole in D, a simple pole at z = e27ri/ 3 • For the residue, Rule 4 gives 

Res [_1_ , e27ri/ 3 ] 1 I e27ri
/

3 

z3 - 1 = 3z2 z=e27<i/3 = 3 

The residue theorem yields 

(6.2) r f(z)dz = 
JaD 

e27ri/ 3 
21ri ---- = 

3 
1r. 
-2 3 . 

The integral around aD breaks into the sum of four integrals, from - R to 
1 - c, around a semicircular contour Cc centered at 1 of radius c in the 
clockwise direction, from 1 +c to R, and around the semicircular contour r R 
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of radius R in the counterclockwise direction, 

(6.3) r J(z)dz = (11-E + r + JR + r )J(Z)dZ. 
laD -R lcE. HE lrR 

The M L-estimate gives 

1 1 
< --·7rR ""' - R3 -1 R2' 

which tends to 0 as R ~ 00. We combine (6.2) and (6.3), and we pass to 
the limit as R ~ 00, to obtain 

(11-E. + Joo )_1 dx + r _1 dz 
-00 HE. x 3 - 1 lcE. Z3 - 1 

From Rule 4, the residue of J(z) at z = 1 is 

Res--1--[ 1 ] 1 I 
z3 - 1 ' - 3z2 z=l 

1 

3 

The fractional residue theorem, with angle -7r, then yields 

lim 1 _l_ dz = - !!..i. 
E. ..... O CE. z3 - 1 3 

If we pass to the limit in (6.3) as € ~ 0, we then obtain 

100 1 7r 7r 7r 

PV -00 x3 _ 1 dx - "3 i = - J3 - "3 i . 

If we add 7rij3 to both sides, we obtain our asserted identity. 

-R 

7r. 
-to 
3 

Principal value integrals are important in harmonic analysis. One of 
the most important integral operators in analysis is the singular integral 
operator called the Hilbert transform, defined by 

(Hu)(t) = PV I: :~~ ds, -00 < t < 00, 

where u( s) is an integrable function on the real line. It turns out that the 
principal value exists for "almost all" real numbers t and defines a "good" 
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operator u I--,t H u. If u( s) is extended appropriately to be harmonic in 
the upper half-plane, then (Hu)(s) is the boundary value function of its 
harmonic conjugate. 

Exercises for VII.6 

1. Integrate 1/(1 - x2 ) directly, using partial fractions, and show that 

Show that 

100 dx 
PV --2 = o. 

o I-x 

11 dx 
-1 2 = +00, o -x 

100 dx 
-- --00 

l 1 - X2 - • 

2. Obtain the principal value in Exercise 1 by taking imaginary parts 
of the identity (5.4) in the preceding section and making a change 
of variable. 

3. By integrating around the boundary of an indented half-disk in the 
upper half-plane, show that 

PV 100 
1 dx - -~ -00 < a < 00. 

-00 (x2 + 1)(x - a) - a2 + 1 ' 

4. Suppose m ~ 2 and al < a2 < ... < am. By integrating around 
the boundary of an indented half-disk in the upper half-plane, show 
that 

5. Show that 

PV [00 Xb
a

-
1
1 dx = _ ~ cot (7ra) 0 < a < b. Jo x - b b' 

Hint. For b > 1 one can integrate a branch of za-l/(zb -1) around 
a sector of aperture 27r /b, indented at z = 1 and at z = e21ri/ b• 

6. By integrating a branch of (log z) / (zb -1) around an indented sector 
of aperture 27r /b, show that for b > 1, 

[00 log X 7r2 [00 1 7r 
Jo xb-l dx = b2sin2(rr/b), PV Jo xb_ldx = -1; cot(7r/b). 

7. Suppose that P( z) and Q( z) are polynomials, deg Q( z) ~ deg P( z)+ 
2, and the zeros of Q(z) on the real axis are all simple. Show that 

100 P(x) . ~ [ P(z) ] . ~ [ P(z) ] 
PV -00 Q(x) dx = 27rZ L... Res Q(z) , Zj + n L... Res Q(z) , Xk , 
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summed over the poles Zj of P(z)/Q(z) in the open upper half-plane 
and the poles Xk of P(z)/Q(z) on the real axis. Remark. In other 
words, the principal value of the integral is 21fi times the sum of the 
residues in the upper half-plane, where we count the poles on the 
real axis as being half in and half out of the upper half-plane. 

7. Jordan's Lemma 

Another class of absolutely divergent integrals is made up of integrals of 
the form 

100 P(x) . 
-00 Q(x) slllxdx, 100 P(x) 

-00 Q(x) cosxdx, 

where P(z) and Q(z) are polynomials satisfying 

degQ(z) = degP(z) + 1. 

To evaluate such an integral we would replace the sine or cosine function 
by eiz and integrate over the boundary of the usual half-disk in the upper 
half-plane. If degQ(z) ~ degP(z) + 2, then the ML-estimate shows that 
the integral over the semicircular piece f R of the boundary tends to 0 as 
R -+ 00. If degQ(z) = degP(z) + 1, the integral over fR still tends to 0, 
but this is not so obvious. It is a consequence of the following estimate. 

Lemma (Jordan's Lemma). If fR is the semicircular contour z(O) = 
ReiO , 0:::: ():::: 1f, in the upper half-plane, then 

(7.1) 

For the parameterization z«()) = ReiO we have leizl = e-RsinO and Idzl = 

R dO, so the estimate (7.1) becomes 

(7.2) 17r e-RsinOd() < ~. 

In order to establish (7.2), note that sin 0 is concave down on the interval 
o :::: 0 :::: 1f /2, so the graph of sin () lies above the straight line connecting 
its endpoints, 

sinO ~ 20/1f, 0:::: 0 :::: 1f/2. 

Thus 

r/2 r/2 
2 Jo e-RsinOdO:::: 2 Jo e-2RO/7r dO 

1f -t 1f -t 1f lR 100 
Roe dt < Roe dt = R· 
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Example. As an application of Jordan's lemma, we show that 

(7.3) 1· smx dx _ 71" l R . 

1m -- --. 
R ..... oo 0 x 2 

Note that (sinz)jz is analytic at z = 0, so that (sinx)jx is absolutely 
integrable over any finite interval. It is not difficult to see (Exercise 1) that 

1· lR I sinxl dx 
lffi -- = +00. 

R ..... oo 0 X 

Thus the integral over [0, 00) is absolutely divergent. Since the integrand 
is an even function, (7.3) is equivalent to 

(7.4) j R • 
1· smx dx 
lffi -- = 71". 

R ..... oo -R X 

We may think of the limit (7.4) as a principal value at infinity, 

j R . joo . 
lim smx dx = PV smx dx. 

R-+oo -R X -00 X 

To evaluate the limit, we consider the function J(z) = eiz j z, which has only 
one pole, a simple pole at z = 1 with residue 1. Let D be the indented half­
disk consisting of points z in the upper half-plane satisfying e < Izl < R. 
The integral around aD breaks into the sum of four integrals, from -R 
to -e, around a semicircular contour Ce centered at 0 of radius e in the 
clockwise direction, from e to R, and around the semicircular contour r R 

of radius R in the counterclockwise direction. Since J(z) is analytic on D, 
we may apply Cauchy's theorem, to obtain 

(7.5) 0 = { J(z)dz = (j-e + { + lR + { )J(Z)dZ. 
laD -R leE e lrR 

The integral over Ce is handled by the fractional residue formula, with 
angle -71", 

lim 1 eiz dz = -7I"i Res [eiZ ,0] = -7I"i. 
e-+O e E z z 

Passing to the limit in (7.5) as e --+ 0, we obtain 

jR eix 
o = PV - dx - 7ri + 

-R x 
1 eiz 

-dz. 
rR z 
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Taking the imaginary part of this identity, we obtain 

j R sinx 1 eiz 
--dx + 1m -dz = 7r. 

-R X rR z 

Now the integral over fR is handled by Jordan's lemma, 

\lR e:z 
dZ\ ~ ~ lR leizlldzl < ~. 

Since this tends to 0 as R ~ 00, in the limit we obtain (7.4). 

Exercises for VII.1 

1. Show that 

100 I sinxl d -- x = +00. 
o x 

Hint: Show that the area under the mth arch of I sin xl/x is '" l/m. 

2. Show that 

lim x smx dx jR 3· 

R-+oo -R (x2 + 1)2 

7r 
2e 

3. Evaluate the limits 

lim jR xsin(ax) dx, 
R ..... oo -R x2 + 1 

-00 < a < +00. 

Show that they do not depend continuously on the parameter a. 

4. By integrating za-leiz around the boundary of a domain in the first 
quadrant bounded by the real and imaginary axes and a quarter­
circle, show that 

lim rRxa-lcosxdx = f(a) cos(7ra/2) , 
R-oo 10 
lim r R xa- 1 sinxdx = f(a) sin(7ra/2), 

R ..... oo 10 
where f(a) is the gamma function defined by 

r(a) = 100 ta-1e-tdt. 

0< a < 1, 

0< a < 1, 

Remark: The formula for the sine integral holds also for -1 < a < O. 
To see this, integrate by parts. 

5. Show that 

lim rR sin(x2) dx = lim r R cos(x2) dx = 
R-oo 10 R-oo 10 
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. 2 
by integrating eU around the boundary of the pie-slice domain de-
termined by 0 < argz < tr/4 and Izl < R. Remark. These improper 
integrals are called the Fresnel integrals. The identities can also 
be deduced from the preceding exercise by changing variable. 

8. Exterior Domains 

An exterior domain is a domain D in the complex plane that includes all 
large z, that is, D includes all z such that Izl ~ R for some R. The residue 
theorem is valid also for exterior domains, though the residue formula must 
take into account the point at 00. 

Theorem. Let D be an exterior domain with piecewise smooth boundary. 
Suppose that J(z) is analytic on D u aD, except for a finite number of 
isolated singularities Zl, ... ,Zm in D, and let a-I be the coefficient of 1/ z 
in the Laurent expansion J(z) = L akzk that converges for Izl > R. Then 

(8.1) {J(z)dz = -2tria_1 + 2trifRes[J(z),Zj]. 
laD j=l 

-R R 

Here the boundary aD is oriented as usual, so that D lies on its left as 
aD is traversed in the positive direction. The formula is proved by applying 
the usual residue theorem to the bounded domain DR consisting of zED 
such that Izl < R. This yields 

( J(z) dz + ( J(z) dz = ( J(z) dz = 2tri f Res [J(z) , Zj]. 
laD llzl=R laDR j=l 

If we substitute the Laurent series expansion for J (z) into the integral over 
the circle {Izl = R} and integrate term by term, we obtain 2tria_1 for the 
integral. This is simply the integral formula for the Laurent coefficient a-I. 

In any event, we move this summand to the right-hand side, picking up a 
minus sign, and we obtain (8.1). 
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Example. We show using contour integration that 

r 1 r==;=:l=~ dx = 7r. 
Jo JX(l- x) 

Consider the function l/Jz(l- z), which has two analytic branches on 
the slit plane C\[O, 1]. The branches are analytic at 00, and the Laurent 
expansions are obtained in terms of a binomial series: 

i ( 1) -1/2 
±- 1 --

z z 
1 

JZ(l - z) 

i [ (-1/2)(-3/2) 2 ] ±- 1+(-1/2)(-1/z)+ (-l/z) + ... 
z 2! 

±i [~ + _1_ + ~ + ... ] , 
Z 2z2 8z3 

Izl > 1. 

Let f ( z) be the branch of the function that is positive on the top edge of the 
slit [0,1]. Since the phase factor of fez) is -1 at each of the branch points ° 
and 1, fez) is negative on the bottom edge of the slit. By following the 
argument of 1/JI=Z" around a small semicircle from the top edge of [0, 1] 
to the interval (1, +00), which increases by 7r /2, we see that the values 
f(x) are positive imaginary for x > 1. Consequently, our branch fez) 
corresponds to the + sign in the Laurent expansion, and the residue at 00 
is given by 

Res [f(z), 00] = -a-1 = -i. 

We integrate fez) around the dogbone contour flO (or dumbbell con­
tour), traversing the top edge of the slit from c to 1-c, a circle Ie centered 
at 1 of radius c, the bottom edge of the slit from 1 - c to c, and a circle Ce 

centered at 0 of radius c. If we apply the residue formula (8.1) to the 
exterior domain lying outside the dogbone contour, we obtain 

(8.2) r f(z)dz = 27ri Res [f(z), 00] = 27ri(-i) = 27r. 
Jr. 

The integrals over the circles Ie and Ce are bounded by the ML-estimate 

1 L. f(Z)dzl 

11. fez) dzl 

< 

< 

2 
-·27rc 
..fi 

vic, 

2 
-·27rc 
..fi 

vic. 

Since the values of fez) on the bottom edge of the slit are minus those on 
the top edge, while the direction is reversed, the integral along the bottom 
edge is equal to the integral along the top edge. Thus we obtain 

r f(z)dz -+ 2 r1 1 dx 
Jr. Jo Jx(l - x) 
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as e ~ O. If we combine this with (8.2), we obtain the desired identity. 

dogbone contour 

Note that it was not necessary to determine the choice of sign in the 
Laurent expansion of J (z). If we had carried along the ± sign, we would 
have arrived at a value for the integral of ±7r. Since the integrand is 
positive, the value +7r must be the correct choice. Working backwards, 
we see that our choice of the + sign in the Laurent expansion of J(z) was 
correct. 

Suppose now that J(z) is analytic for Izl 2:: R, with Laurent expansion 

Izl 2:: R. 
n=-oo 

We define the residue of J(z) at 00 to be 

(8.3) Res [J(z), 00] = -a-I' 

If DR is the exterior domain {Izl > R}, this definition is equivalent to 

r J(z) dz = 27ri Res[J(z) , 00]. 
JaDR 

The orientation of the circle {Izl = R} with respect to DR is clockwise, 
and this accounts for the minus sign. With this definition of residue at 00, 
formula (8.1) becomes 

(8.4) faD f(z) dz = 27ri Res [f(z), 00] + 27ri t. Res [J(z), Zj]. 

Thus the residue theorem for exterior domains is the same as for bounded 
domains, except that we must take the residue at 00 into account. 
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Note that the function J(z) can be analytic at 00 and still have a nonzero 
residue at 00. For instance, the function liz is analytic at 00, while 

Res [~, 00] = -1. 

There is a mathematical explanation for this state of affairs. The expla­
nation is that in order to have a coordinate-free definition of residues, the 
residue should not be associated with the function J(z) but with the dif­
ferential J(z)dz. Even though J(z) may be analytic at 00, the differential 
J(z)dz need not be analytic at 00, as can be seen by making the usual 
change of variable w = 1 I z. (See Exercise 13.) 

Exercises for VII.S 

1. Evaluate the residue at 00 of the following functions. 

z (c) z3+1 (e) zn e1/ z , (a) ~2 -1 n =O,±l, ... 
z2 -1 

(b) (Z2:1)2 
(d) z9+1 

z6 -1 
(f) JZ - a 

z-b 

Note. There are two possibilities for (f), one for each branch of the 
square root. 

2. Show by integrating around the dogbane contour that 

11 x4 35~ 

o JX(l-x) dx = 128· 

3. Fix an integer n, positive or negative. Determine for which complex 
values of the parameter a the integral 

11 xn 

o xa(l - x)1-a dx 

converges, and evaluate it. 

4. Show that 

11 ~11 - x2 dx ( ) 
-1 1 + x2 = ~ ..j2 - 1 . 

5. Show that the sum of the residues of a rational function on the 
extended complex plane is equal to zero. 

6. Find the residue of zl(z2 + 1) at each pole in the extended complex 
plane, and check that the sum of the residues is zero. 

7. Find the sum of the residues of (3z4 + 2z + 1)/(8z5 + 5z2 + 2) at 
its poles in the (finite) complex plane. 
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8. Fix n ~ 1 and k ~ O. Find the residue of zk /(zn - 1) at 00 

by expanding 1/(zn - 1) in a Laurent series. Find the residue of 
zk /(zn - 1) at each finite pole, and verify that the sum of all the 
residues is zero. 

9. Show that if f(z) is analytic at 00, then 

Res[f(z), oo] = - lim z(f(z) - f(oo)). 
Z-+OO 

10. Let D be an exterior domain. Suppose that f(z) is analytic on 
D u aD and at 00. Show that 

~ r f(() d( = f(z) - f(oo), zED. 
27l"Z laD (- z 

11. If f(x) is not integrable at 00, we define the principal value 

PV[OOoof(X)dX = lim pvjR f(x)dx. 
R-+oo -R 

Show that 

{ 

i7l", 

= 0, 

-i7l", 

Ima > 0, 

Ima = 0, 

Ima < O. 

12. Suppose that P(z) and Q(z) are polynomials such that the degree 
of Q(z) is strictly greater than the degree of P(z). Suppose that 
the zeros Xl, ... ,Xm of Q(z) on the real axis are all simple, and set 
Xo = 00. Show that 

1(Xl P(x) . '" [ P(z) ] . '" [ P(z) ] 
PV -(Xl Q(x) dx = 27l"Z L Res Q(z) , Zj + 7l"Z L Res Q(z) , Xk , 

summed over the poles Zj of P(z)/Q(z) in the open upper half-plane 
and summed over the Xk'S including 00. Hint. Use the preceding 
exercise. See also Exercise 6.7. 

13. Show that the analytic differential f(z)dz transforms under the 
change of variable w = l/z to -f(l/w)dw/w2 • Show that the 
residue of f(z) at z = 00 coincides with that of - f(1/w)/w2 at 
w=O. 



VIII 

The Logarithmic Integral 

In this chapter we discuss the argument principle and develop several of 
its consequences. In Section 1 we derive the argument principle from the 
residue theorem, and we use the argument principle to locate the zeros of 
analytic functions. Sections 2 through 5 can be viewed as a study of how 
the zeros of an analytic function depend on various types of parameters. 
Sections 6 and 7 are devoted to winding numbers of closed paths and the 
jump theorem for the Cauchy integral. The jump theorem yields an easy 
proof of the Jordan curve theorem in the smooth case, and a proof of the full 
Jordan curve theorem is laid out in the exercises. In Section 8 we introduce 
simply connected domains and we characterize these in several ways. While 
the material in this chapter is of fundamental importance for the Riemann 
mapping theorem in Chapter XI and for various further developments, the 
student can skip to Chapter IX immediately after Sections 1 and 2. 

1. The Argument Principle 

Suppose J(z) is analytic on a domain D. For a curve "{ in D such that 
J(z) =I 0 on ,,{, we refer to 

(1.1) 1 1 J'(z) 1 1 
21l"i 'Y J(z) dz = 21l"i 'Y dlog J(z) 

as the logarithmic integral of J (z) along "{. Thus the logarithmic integral 
measures the change of log J(z) along the curve "{. It can be used to count 
zeros and poles of meromorphic functions. The following theorem is one 
version of the argument principle. 

Theorem. Let D be a bounded domain with piecewise smooth boundary 
aD, and let J(z) be a meromorphic function on D that extends to be 
analytic on aD, such that J(z) =I 0 on aD. Then 

(1.2) _1 ( f'(z) dz = No - Noo , 
21l"i JaD J(z) 

224 
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where No is the number of zeros of J(z) in D and Noo is the number of 
poles of J(z) in D, counting multiplicities. 

The formula (1.2) is simply the residue theorem for f'(z)/ J(z). This 
function is analytic on D u aD except possibly at the zeros and poles of 
J(z) in D. Let Zo be a zero or pole of J(z), and let N be the order of J(z) 
at zo, that is, N is the order of the zero if Zo is a zero, and N is minus the 
order of the pole if Zo is a pole. Then 

J(z) = (z - zO)N g(z), 

where g(z) is analytic at Zo and g(zo) =I o. So 

f'(z) N(z - zO)N-lg(z) (z - zO)N g'(z) 
-- = + ...:,..----'-,~.:....,:-
J(z) (z - zo)N g(z) (z - zo)N g(z) 

= ~ + [analytic]. 
z - Zo 

Thus f'(z)/ J(z) has a simple pole at Zo, with residue N. If now we sum 
the N's over the zeros and poles, we find that the sum of the residues of 
f'(z)/ J(z) in D is No - Noo . Thus (1.2) follows from the residue theorem. 

Now we look more carefully at the logarithmic integral (1.1), which we 
express in the form 

-21 ·1 dlog J(z) = -21 .1 dlog IJ(z)1 + -21 1 darg(f(z)). 
7l"Z "I 7l"Z "I 7l" "I 

The differential dlog IJ(z)1 is exact. If we parametrize the curve "( by 
"((t) = x(t) + iy(t), a::::; t ::::; b, then 

l dlog IJ(z)1 = log IJb(b))I-log IJb(a))l, 

which depends only on the initial point "((a) and the endpoint "((b) of the 
curve. In particular, i'Y dlog IJ(z)1 = 0 if"( is a closed curve. 

The differential d arg J (z ) is closed but not exact. Its integral is com­
puted by choosing a continuous single-valued determination of argJ(,,((t)) 
for a ::::; t ::::; b. Then for this determination, 

(1.3) i darg(f(z)) = argJb(b)) - argJb(a)). 

This quantity (1.3) is referred to as the increase in the argument of 
J (z) along "(. It is defined for any (continuous) path "( in D providing there 
are no zeros or poles on the path. Since any two continuous determinations 
of arg Jb(t)) differ by a constant, the increase in the argument given by 
(1.3) is independent of the continuous determination. 

If "( is a concatenation of curve segments, the increase in the argument 
of J(z) along,,( is obtained by adding the increases along the various curve 
segments. If the direction of the curve "( is reversed, the increase in the 
argument is replaced by its negative. If "( is a closed curve, so that "((a) = 
"((b), the determinations of arg Jb(b)) and arg Jb(a)) differ by an integral 
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multiple of 271", so that the increase in the argument of J(z) around'Y is an 
integral multiple of 271". 

Example. The increase in the argument of J(z) = (z - zo)n counterclock­
wise around the circle I z - zo I = P is determined as follows. We parame­
trize the circle by 'Y(t) = zo + peit , 0 ~ t ~ 271". Then Jb(t)) = pneint , 
and a continuous determination for the argument of Jb(t)) is given by 
argJb(t)) = nt, 0 ~ t ~ 271". Thus the increase in the argument of J(z) 
around 'Y is 

1 darg(f(z)) = ntlt=27r = 271"n. 
~ t=O 

Now we return to a bounded domain D, whose boundary aD consists of a 
finite number of piecewise-smooth closed curves with the usual orientation, 
so that D lies on theleft as we traverse the curves in aD in the positive 
direction. We define the increase in the argument of J(z) around the 
boundary of D to be the sum of its increases around the closed curves 
in aD. The argument principle can be restated as follows. 

Theorem. Let D be a bounded domain with piecewise smooth bound­
aryaD, and let J(z) be a meromorphic function on D that extends to be 
analytic on aD, such that J(z) =1= 0 on aD. Then the increase in the ar­
gument of J(z) around the boundary of Dis 271" times the number of zeros 
minus the number of poles of J (z) in D, 

(1.4) f darg(f(z)) = 271"(No - Noo ). laD 

Before illustrating the theorem with an example, we note that it is easy 
to track the argument of J(z) along a segment of a curve in a domain where 
a single-valued determination of the argument function is available. In this 
situation, the increase in the argument is obtained simply by evaluating 
the branch of the argument function at the initial and terminal values of 
J(z). Suppose, for instance, that the values Jb(t)) start from the positive 
real axis at t = a, they lie in the upper half-plane for a < t < b, and they 
hit the negative real axis at t = b. Then the increase in the argument of 
J('Y(t)) for a ~ t ~ b is 71", no matter how wildly the curve might wiggle in 
the upper half-plane, since it can be evaluated by evaluating a branch of 
the argument function, in this case the principal branch, at the endpoints. 
By the same token, if the curve Jb(t)) goes from the positive real axis 
at t = a through the lower half-plane for a < t < b and terminates on 
the negative real axis, then the increase of the argument ofJb(t)) along 
the curve is -71", no matter how erratically the curve behaves in the lower 
half-plane. 
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j('Y(b» j(-y(a» 

Example. We show how to use the argument principle to find the number 
of zeros of the polynomial p( z) = z6 + 9z4 + z3 + 2z + 4 in the first quadrant 
{O < argz < 7r/2} and in the second quadrant {rr/2 < argz < 7r}. First 
note that p(x) > 0 for -00 < :z; < 00. This is clear if x 2: 0, and it follows 
from the estimates 4 + x3 + 2x > 0 for -1 ::; x ::; 0 and 9x4 + x3 + 2x > 0 
for x::; -1. Since there are no real zeros of p(z), and since the coefficients 
of p(z) are real, the zeros come in complex conjugate pairs, and there are 
three zeros in the upper half-plane. To determine the number of zeros in the 
first quadrant, we estimate the increase of argp(z) around the boundary 
of the quarter disk DR of a large radius R, consisting of the points z in 
the first quadrant satisfying Izl < R. Since the increase in the argument 
of p(z) around aDR is 27r times the number of zeros in DR, any reasonable 
approximation will yield the exact value. We break aDR into three paths. 
Along the real axis from 0 to R we have p(x) > 0, so that the argument is 
constant, and the increase is zero. Along the quarter-circle r R defined by 
Izl = Rand 0::; arg z ::; 7r /2, the term z6 dominates, and argp(z) ~ 6 arg z. 
The increase in argp(z) along rR is thus approximately 6(7r/2) = 37r. To 
determine the increase in argp(z) down the imaginary axis from iR to 0, 
we substitute z = iy and we follow the values of 

p(iy) = _y6 + 9y4 + 4 + i( _y3 + 2y) 

as y decreases from R to O. At the initial point of this segment we have 
Re p( iR) ~ - R6 and 1m p( iR) ~ - R3, so that p( iR) lies in the third 
quadrant and has argument approximately -7r. At the terminal point we 
have p(O) = 4 on the positive real axis. To see how argp(iy) behaves, we 
determine where the curve p( iy) crosses the x-axis. The curve crosses the 
real axis for parameter values y that satisfy _y3 + 2y = O. The solutions 
of this cubic are y = 0 and y = ±J2. There is only one crossing point 
corresponding to y > 0, at y = J2. The crossing point is at p (iJ2) = 32, 
which lies on the positive real axis. Thus p( iy) remains in the lower half­
plane as the parameter y decreases from y = R to Y = J2, and it hits the 
positive real axis at y = v'2. Thus we see that the increase in the argument 
of p(iy) as y decreases from R to v'2 is approximately 7r. Since p(iy) is in 
the upper half-plane for y between v'2 and 0, and since the starting and 
ending points for this segment of the curve are on the positive real axis, the 
increase in the argument of p( iy) as y decreases from v'2 to 0 is zero. Thus 
the total increase of argp(z) around aDR is approximately 37r + 7r = 47r, 
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hence it is exactly 471". By the argument principle, p(z) has two zeros in 
the first quadrant. We have seen that there are no zeros on the imaginary 
axis, so the remaining zero of p(z) in the upper half-plane lies in the second 
quadrant. 

iR w=p(z) 
~ 

R 

Exercises for VIII.1 

1. Show that z4 + 2z2 - Z + 1 has exactly one root in each quadrant. 

2. Find the number of zeros of the polynomial p( z) = z4 + z3 + 4z2 + 
3z + 2 in each quadrant. 

3. Find the number of zeros of the polynomial p( z) = z6 + 4z4 + z3 + 
2Z2 + z + 5 in the first quadrant {Hez > 0, lmz > O}. 

4. Find the number of zeros of the polynomial p( z) = z9 + 2z5 - 2z4 + 
Z + 3 in the right half-plane. 

5. For a fixed real number a, find the number of zeros of Z4 + Z3 + 
4z2 + az + 3 satisfying Hez < O. (Your answer depends on a.) 

6. For a fixed real number a, find the number of solutions of z5 + 2z3 -

z2 + z = a satisfying He z > O. 

7. For a fixed complex number A, show that if m and n are large 
integers, then the equation eZ = z + A has exactly m + n solutions 
in the horizontal strip {-271"im < 1m z < 271"in}. 

8. Show that if He A > 1, then the equation eZ = z + A has exactly one 
solution in the left half-plane. 

9. Show that if J(z) is analytic in a domain D, and if'Y is a closed 
curve in D such that the values of J(z) on 'Y lie in the slit plane 
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C\( -00, OJ, then the increase in the argument of fez) around 'Y is 
zero. 

2. Rouche's Theorem 

There is a general principle to the effect that the number of zeros of an 
analytic function on a domain does not change if we make a small change 
in the function. In other words, the number of zeros of an analytic function 
remains constant under small perturbations. One version of this principle 
is as follows. 

Theorem (Rouche's Theorem). Let D be a bounded domain with 
piecewise smooth boundary aD. Let fez) and h(z) be analytic on D U aD. 
If Ih(z)1 < If(z)1 for z E aD, then fez) and fez) + h(z) have the same 
number of zeros in D, counting multiplicities. 

The hypothesis implies that fez) =f. 0 on aD, and that fez) + h(z) =f. 0 
on aD. From fez) + h(z) = f(z)[l + h(z)j fez)], we obtain 

(2.1) arg(f(z) + h(z)) = arg(f(z)) + arg (1 + ~~:~) . 
Since Ih(z)j f(z)1 < 1, the values of 1 + h(z)j fez) lie in the right half­
plane, and the increase of arg(l + h(z)j fez)) around a closed boundary 
curve is o. From (2.1) we see that arg(f(z) + h(z)) and argf(z) have the 
same increase around aD. By the argument principle, the functions have 
the same number of zeros in D. 

Exrunple. We use Rouche's theorem to find the number of zeros of the 
polynomial p(z) = z6 + 9z4 + z3 + 2z + 4 that lie inside the unit circle. To 
apply Rouche's theorem, we seek to express p(z) in the form 

p(z) = BIG + little, 

where the function "BIG" dominates "little" on the unit circle, and where 
it is apparent how many zeros "BIG" has inside the unit circle. Our choice 
for "BIG" in this case is fez) = 9z4 , which has four zeros inside the unit 
circle, all at the origin. The function "little" is h(z) = z6+z3+2z+4, which 
satisfies Ih(z)1 < If(z)1 for Izl = 1. By Rouche's theorem, p(z) = f(z)+h(z) 
also has four zeros inside the unit circle. 

Exrunple. We wish to find all solutions of the equation eZ = 1 + 2z that 
satisfy Izl < 1. One obvious solution is z = o. To determine whether there 
are other solutions, we apply Rouche's theorem to count the number of 
zeros of eZ - 1 - 2z in the unit disk. In this case, the term f (z) = - 2z 
is the dominant term on the unit circle. We take h(z) = eZ - 1, and we 



230 VIII The Logarithmic Integral 

estimate 

I Z2 Z3 I Izl2 Izl3 
Ih(z)1 = lez - 11 = z + 2! + 3! +... :::; Izl + 2! + 3! + .... 

If Izl = 1, the right-hand side is e - 1 ~ 1.7 < 2. Thus Ih(z)1 < IJ(z)1 
for Izl = 1. Since J(z) has only one zero in the unit disk, J(z) + h(z) also 
has only one zero, and the equation has no solutions in the unit disk other 
than z = O. 

There is a simple proof of the fundamental theorem of algebra based on 
Rouche's theorem. Let 

p(z) = zm + am_lZm - 1 + ... + ao 

be a monic polynomial of degree m :;::: 1. For Izllarge, the term zm domi­
nates. We take J(z) = zm and h(z) = am_lZm - 1 + ... + ao. If R is large, 
we have Ih(z)1 < IJ(z)1 for Izl = R. Consequently, p(z) = J(z) + h(z) has 
the same number of zeros in the disk Izl < R as J(z) = zm, which is m. 

Exercises for VIII.2 

1. Show that 2z5 + 6z - 1 has one root in the interval 0 < x < 1 and 
four roots in the annulus {I < Izi < 2}. 

2. How many roots does z9 + z5 - 8z3 + 2z + 1 have between the circles 
{Izl = I} and {izi = 2}? 

3. Show that if m and n are positive integers, then the polynomial 

z2 zm 
p(z) = 1 + z + - + ... + - + 3zn 

2! m! 
has exactly n zeros in the unit disk. 

4. Fix a complex number A such that IAI < 1. For n :;::: 1, show that 
(z - 1 )neZ - A has n zeros satisfying Iz - 11 < 1 and no other zeros 
in the right half-plane. Determine the multiplicity of the zeros. 

5. For a fixed A satisfying IAI < 1, show that (z - l)neZ + A(Z + l)n 
has n zeros in the right half-plane, which are all simple if A i= O. 

6. Let p(z) = z6 + 9z4 + z3 + 2z + 4 be the polynomial treated in 
the example in this section. (a) Determine which quadrants contain 
the four zeros of p(z) that lie inside the unit circle. (b) Determine 
which quadrants contain the two zeros of p( z) that lie outside the 
unit circle. (c) Show that the two zeros of p( z) that lie outside the 
unit circle satisfy {Iz ± 3il < 1/1O}. 

7. Let J(z) and g(z) be analytic functions on the bounded domain D 
that extend continuously to aD and satisfy IJ(z) + g(z)1 < IJ(z)1 + 
Ig(z)1 on aD. Show that J(z) and g(z) have the same number of 
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zeros in D, counting multiplicity. Remark. This is a variant of 
RoucM's theorem, in which the hypotheses are symmetric in J(z) 
and g(z). RoucM's theorem is obtained by setting h(z) = - J(z) -
g( z). For the solution of the exercise, see Exercise 9 in the preceding 
section. 

8. Let D be a bounded domain, and let J(z) and h(z) be meromorphic 
functions on D that extend to be analytic on aD. Suppose that 
Ih(z)1 < IJ(z)1 on aD. Show by example that J(z) and J(z) + h(z) 
can have different numbers of zeros on D. What can be said about 
J(z) and J(z) + h(z)? Prove your assertion. 

9. Let J(z) be a continuously differentiable function on a domain D 
Suppose that for all complex constants a and b, the increase in the 
argument of J(z) + az + b around any small circle in D on which 
J(z) + az + b i= 0 is nonnegative. Show that J(z) is analytic. 

3. Hurwitz's Theorem 

The argument principle (logarithmic integral) provides a tool for studying 
the behavior of the zeros of a convergent sequence of analytic functions. 
The zeros of the functions in the sequence converge to the zeros of the limit 
function, in a sense made precise by the following theorem. 

Theorem (Hurwitz's Theorem). Suppose {!k(z)} is a sequence of an­
alytic functions on a domain D that converges normally on D to J(z), and 
suppose that J(z) has a zero of order N at zoo Then there exists p > 0 
such that for k large, !k (z) has exactly N zeros in the disk {I z - Zo I < p}, 
counting multiplicity, and these zeros converge to Zo as k -+ 00. 

For the proof, let p > 0 be sufficiently small so that the closed disk 
{Iz - zol :::; p} is contained in D and so that J(z) i= 0 for 0 < Iz - zol :::; p. 
Choose 8 > 0 such that IJ(z)1 ~ 8 on the circle Iz - zol = p. Since !k(z) 
converges uniformly to J(z) for Iz-zol :::; p, for k large we have 1!k(z)1 > 8/2 
for Iz - zol = p, and further, JHz)/ !k(z) converges uniformly to f'(z)/ J(z) 
for Iz - zol = p. Hence the integrals converge, 

_1 r J£(z) dz -t _1_ r J'(z) dz. 
21Ti J1z-zo1=p Jk(Z) 21Ti J1z-zo1=P J(z) 

Now, the expression on the left is the number Nk of zeros of Jk(Z) in the 
disk {Iz - zol < p}, while the expression on the right is the number N of 
zeros of J(z) in the disk. Since Nk -+ N, in fact Nk = N for k large, that 
is, Jk(Z) has N zeros satisfying Iz - zol < p. The same argument works for 
smaller p > 0, so the zeros of Jk(Z) must accumulate at zoo 
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An alternative proof of Hurwitz's theorem can be based on Rouche's 
theorem, applied to the "little" function!k (z ) - 1 (z) and the "big" function 
I(z). See Exercise 2. 

We say that a function is univalent on a domain D if it is analytic and 
one-to-one on D. In other words, the univalent functions on D are the 
conformal maps of D to other domains. If we apply the preceding theorem 
to univalent functions, where N = 1, we obtain the following, which is 
sometimes also referred to as Hurwitz's theorem. 

Theorem. Suppose {!k(z)} is a sequence of univalent functions on a do­
main D that converges normally on D to a function I(z). Then either I(z) 
is univalent or 1 ( z) is constant. 

Indeed, suppose the limit function I(z) is not constant. Suppose Zo 
and (0 satisfy 1 ( zo) = 1 ( (0) = Wo· Then Zo and (0 are zeros of finite order 
for J(z) - woo By the preceding theorem, there are sequences Zk -+ Zo and 
(k -+ (0 such that Jk(Zk) - Wo = 0, and !k«(k) - Wo = O. Since !k(z) is 
univalent, we have Zk = (k, and in the limit Zo = (0. Thus J(z) is univalent. 

Example. For each k ~ 1, the function Jk(Z) = z/k is univalent on the 
complex plane. The sequence {fk(Z)} converges normally to the constant 
function J(z) == o. Thus a normal limit of univalent functions need not be 
univalent, and both alternatives of the theorem occur. 

Exercises for VIII.3 

1. Let {!k(z)} be a sequence of analytic functions on D that converges 
normally to I(z), and suppose that I(z) has a zero of order N at 
Zo E D. Use Rouche's theorem to show that there exists p > 0 such 
that for k large, !k(z) has exactly N zeros counting multiplicity on 
the disk {Iz - zol < pl· 

2. Let S be the family of univalent functions I(z) defined on the open 
unit disk {Izl < 1} that satisfy 1(0) = 0 and /,(0) = 1. Show that 
S is closed under normal convergence, that is, if a sequence in S 
converges normally to J(z), then 1 E S. Remark. It is also true, 
but more difficult to prove, that S is a compact family of analytic 
functions, that is, every sequence in S has a normally convergent 
subsequence. 

4. Open Mapping and Inverse Function Theorems 

Let I(z) be a meromorphic function on a domain D. We say that I(z) 
attains the value Wo m times at Zo if I(z) - Wo has a zero of order m 
at zo0 We make the usual modifications to cover the cases Zo = 00 and 
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Wo = 00, so that f(z) attains a finite value Wo m times at Zo 00 if 
f(l/z) - Wo has a zero of order m at z = 0, and f(z) attains the value 00 

m times at Zo if Zo is a pole of f (z) of order m. 
The number of times that fez) attains a value Wo on D is obtained by 

adding the number of times it attains the value Wo at the various points 
of D. 

Example. The polynomial zm + 1 attains the value w = 1 m times at 
z = 0, and it attains the value w = 00 m times at z = 00. 

Example. A polynomial f(z) of degree m 2: 1 attains each value wE C* m 
times on C* , always counting multiplicity. In fact, for fixed finite w, f (z)-w 
is a polynomial of degree m, which has m zeros counting multiplicity. Since 
f(z) has a pole of order m at 00, it attains the value w = 00 m times at 
Z= 00. 

We can use the logarithmic integral to study the dependence on w of 
the number of times that an analytic or meromorphic function attains 
the value w. The technique is the same as that used in the preceding 
section, except that instead of a sequence of functions we treat functions 
that depend continuously on a parameter. The basic idea is as follows. 

Let f (z) be a nonconstant analytic function on a domain D. Let Zo ED, 
Wo = f(zo), and assume that f(z) - Wo has a zero of order m at zoo Since 
the zeros of f (z) -Wo are isolated, we can choose p > 0 so that f (z) -Wo =1= 0 
for 0 < Iz - zol ~ p. Let 8 > 0 satisfy If(z) - wol 2: 8 for Iz - zol = p. The 
integral 

(4.1) N( ) = _1 f f'(z) d 
w 21ri J1z-zo1=p f(z) _ w z, Iw-wol <8, 

is then defined, and it depends analytically on w. Since N (w) is the number 
of zeros of f(z) - w in the disk {Iz - zol < p}, the analytic function N(w) 
is integer-valued, hence constant. Since N(wo) = m, we obtain N(w) = m 
for Iw - wol < 8. Thus each value w satisfying Iw - wol < 8 is assumed 
exactly m times, counting multiplicity, by J(z) in the disk {Iz - zol < pl. 

As a first consequence of this analysis, we show that nonconstant analytic 
functions are "open mappings." 

Theorem (Open Mapping Theorem for Analytic Functions). If 
J(z) is analytic on a domain D, and J(z) is not constant, then J(z) maps 
open sets to open sets, that is, J(U) is open for each open subset U of D. 

Indeed, let Wo E f(U), say Wo = J(zo). If we apply the above discussion 
to fez), we obtain a disk centered at Zo of radius p and contained in U, 
such that the values of f(z) on this disk include the disk centered at Wo of 
radius 8. This implies that f{U) is open. 
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Now consider the case where J(z) - Wo has a simple zero at zoo In this 
case, N(wo) = 1, and we conclude that N(w) = 1 for Iw - wol < 8. Thus 
every value w satisfying Iw-wol < 8 is taken on exactly once by J(z) in the 
disk {I z - Zo I < p}. This allows us to define an inverse function J-1 (w) for 
Iw - wol < 8. Further, the residue theorem allows us to derive an explicit 
formula for the inverse function. 

Theorem (Inverse Function Theorem). Suppose J(z) is analytic for 
Iz - zol :S p and satisfies J(zo) = Wo, f'(zo) #- 0, and J(z) #- Wo for 
o < Iz - zol :S p. Let 8 > 0 be chosen such that IJ(z) - wol 2:: 8 fQr 
Iz - zol = p. Then for each w such that Iw - wol < 8, there is a unique z 
satisfying Iz - zol < p and J(z) = w. Writing z = J- 1 (w), we have 

(4.2) J-l(w) = ~ r (f'(() de, Iw - wol < 8. 
21ft J1<-zol=p J(() - w 

It remains only to establish (4.2). Fix w such that Iw - wol < 8, and 
set z = J- 1 (w), so that J(z) = w. The function (f'(()/(f(() - w] is an 
analytic function of ( for I( - zol :S p, except for a simple pole at ( = z 
with residue 

R [ (f'(() ] _ 1· (( - z)(f'(() _ 
es J(()-w'z - <~ J(()-w -z. 

The residue theorem yields (4.2) immediately. 
We remark that this gives an alternative proof of the existence of a locally 

defined inverse for J(z) when f'(z) t= 0, which depends on the residue 
theorem rather than on the inverse function theorem. This procedure also 
gives an explicit disk on which the inverse function is defined. The explicit 
formula (4.2) shows that the inverse function is analytic. 

Exercises for VIII.4 

1. Suppose D is a bounded domain with piecewise smooth boundary. 
Let J(z) be meromorphic and g(z) analytic on D. Suppose that 
both J(z) and g(z) extend analytically across the boundary of D, 
and that J(z) #- 0 on aD. Show that 

1 i f'(z) n ~ g(z)-J( ) dz = Lmjg(zj) , 
1ft aD z j=1 

where ZI, ... , Zn are the zeros and poles of J(z), and mj is the order 
of J(z) at Zj. 

2. Let J(z) be a meromorphic function on the complex plane that is 
doubly periodic. Suppose that the zeros and poles of J(z) are at 
the points ZI, ... , Zn and at their translates by periods of J(z), and 
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suppose no Zj is a translate by a period of another Zk. Let mj be 
the order of J(z) at Zj. Show that E mjzj is a period of J(z). Hint. 
Integrate Z J' (z) / J (z) around the boundary of the fundamental par­
allelogram P constructed in Section VI.5. 

3. Let {h(z)} be a sequence of analytic functions on a domain D that 
converges normally to J(z). Suppose that h(z) attains each value w 
at most m times (counting multiplicity) in D. Show that either J(z) 
is constant, or J(z) attains each value w at most m times in D. 

4. Let J(z) be an analytic function on the open unit disk]])) = {Izl < I}. 
Suppose there is an annulus U = {r < Izl < I} such that the 
restriction of J(z) to U is one-to-one. Show that J(z) is one-to-one 
on]])). 

5. Let J(z) = p(z)/q(z) be a rational function, where p(z) and q(z) 
are polynomials that are relatively prime (no common zeros). We 
define the degree of J (z) to be the larger of the degrees of p( z) 
and q(z). Denote the degree of J(z) by d. (a) Show that each value 
wE C, w =f. J(oo), is assumed d times by J(z) on C. (b) Show that 
J(z) attains each value wE C* d times on C* (as always, counting 
mUltiplicity). 

6. Let J(z) be a meromorphic function on the complex plane, and 
suppose there is an integer m such that J-l(w) has at most m 
points for all WECo Show that J(z) is a rational function. 

7. Let F(z, w) be a continuous function of z and w that depends an­
alyticallyon z for each fixed w, and let F1(z,w) denote the de­
rivative of F(z, w) with respect to z. Suppose F(zo, wo) = 0, and 
F1(zo,wo) =f. o. Choose p such that F(z, wo) =f. 0 for 0 < Iz-zol ~ p. 
(a) Show that there exists 8 > 0 such that if Iw - wol < 8, there is 

a unique z = g(w) satisfying Iz - zol < p and F(z,w) = o. 
(b) Show that 

( ) = _1 f (F1«,w) d( 
9 w 27ri J1C-zol=p F«,w) , 

Iw-wol < 8. 

(c) Suppose further that F(z,w) is analytic in w for each fixed z, 
and let F2 ( z, w) denote the derivative of F( z, w) with respect 
to w. Show that g(w) is analytic, and 

g'(W) = -F2(g(W), w)/ Fl(g(W), w). 

(d) Derive the inverse function theorem given in this section, to­
gether with the usual formula for the derivative of the inverse 
function, as a corollary of (a), (b), and (c). 
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Remark. This is the implicit function theorem for analytic 
functions. Note that a specific formula is given for the function 
g(w) defined implicitly by F(g(w),w) = O. 

8. Let D be a bounded domain, and let J(z) be a continuous function 
on D U aD that is analytic on D. Show that a(f(D)) ~ J(aD), 
that is, the boundary of the open set J (D) is contained in the image 
under J (z) of the boundary of D. 

5. Critical Points 

Let J (z) be a nonconstant analytic function on a domain D. A point Zo is 
called a critical point of J(z) if J'(zo) = O. The value J(zo) = Wo is called 
a critical value of J (z). We define the order of the critical point Zo to be 
the order of zero of J'(z) at zoo Since the critical points are the zeros of the 
nonconstant analytic function J'(z), critical points are isolated. Our aim is 
to understand the behavior of an analytic function near a critical point, and 
to understand the behavior of the inverse function near the corresponding 
critical value. 

Example. The function J(z) = zm + c has a critical point of order m - 1 
at z = 0, with critical value c. The inverse function for J(z) is given by 
the m branches of (w - c)l/m. 

Suppose Zo is a critical point of J(z) of order m - 1 with critical value 
woo Then J(z) - Wo has a zero of order m at Zo, and we can proceed as 
before by considering the logarithmic integral (4.1). This time the constant 
value of N(w) is m. Thus for p > 0 small and for w near wo, there 
are m points Zl(W), ... , zm(w), repeated according to multiplicity, such 
that J(z} attains the value w in the disk {Iz - zol < p} precisely at the 
points Zl (w), ... , Zm (w). We wish to see how the points Zj (w) depend 
on w. To do this, we will use a simple procedure, based only on the 
existence of an analytic inverse for an analytic function at a noncritical 
point. The procedure is to make a change of variable in order to show that 
the behavior of J(z) near Zo is effectively the same as the behavior of the 
analytic function (m at the critical point ( = O. We proceed as follows. 

w=f(z) --------... 

Since J(z)-wo has order m at Zo, we can factor J(z)-wo = (z-zo)mh(z), 
where h(z) is analytic at zo, and h(zo) # O. Near Zo we define an analytic 
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branch of h(z)1/m, and then for g(z) = (z - zo)h(z)1/m we have 

J(Z) - Wo = g(z)m, J(Z) = g(z)m + Wo. 

Moreover, g(z) is analytic at Zo and has a simple zero there, so g'(zo) ¥- 0 
and g(z) is one-to-one near zo0 Thus J(z} is represented as the composition 
of three functions, the univalent function g(z), followed by the map (f---4 (m, 
followed by a translation ~ f---4 ~ + W00 Since we understand the power 
function ~ = (m and the translation W = ~ + Wo very well, and since g(z) 
is univalent near Zo, we can draw from this a clear picture of the behavior 
of J(z). For instance, the set where (m is real consists of m straight line 
segments passing through 0, dividing the (-plane near ( = 0 into 2m sectors 
of aperture 1[' / m, on which Im( (m) is alternately positive and negative. The 
set where J (z) - Wo is real is the image under g -1 (() of these line segments 
and hence consists of m "analytic" curves through Zo. They divide the 
z-plane near Zo into 2m pie-slice domains with vertex at Zo and aperture 
1[' / m, on which Im(f (z) - wo) is alternately positive and negative. 

A point W near wo, W ¥- Wo, has m distinct preimages Z1 ( w), . .. , Zm ( w). 
They are the m branches of (w - wo)1/m composed with g-1((). If we 
make a branch cut and consider the principal branch (w - wo)1/m on the 
slit disk {Iw - wol < b}\(wo - b,wo], the other branches are of the form 
e27rij/m(w - wo)1/m, and the preimages of ware given by the composition 
of g-1(() and these branches, 

1 ::; j ::; m. 

In particular, for w ¥- Wo, the preimages Zj(w) are distinct, and each Zj(w) 
depends analytically on W. The values of Zj(w) at the "top edge" of the 
slit coincide with the values of Zj+1 (w) at the "bottom edge" of the slit, 
so that Zj (w) is continued analytically to Zj+1 (w) when w follows a circle 
around Wo in the positive direction. In the same way that we constructed a 
Riemann surface for the inverse function of (m, we can construct a Riemann 
surface for the inverse function Z ( w) of w = J (z). We create m copies of 
the slit disk, and we define z(w) to be Zj(w) on the jth copy. Then we glue 
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OWo ~ 

E_~ ~_ow_o =:> 
€oo OWo ~ 

together the edges of the branch cuts so that the function z(w) becomes 
continuous on the surface. 

Now consider the function 

(Z - Zl(W))'" (z - zm(w)) 

where 

m 

am-l(w) = - LZj(w). 
j=l 

If we continue ak(w) around a circle centered at Wo, the values of the 
Zj(w)'s are permuted and we return to the same value for ak(w), Thus 
ak (w) is analytic in the punctured disk 0 < Iw - Wo I < £. Evidently, ak (w) 
is bounded as W -+ WOo By Riemann's theorem on removable singularities, 
ak(w) is analytic at W00 In fact, the value ak(wo) is just the coefficient 
of zk in the expansion of (z - zo)m in powers of Z. Thus we have found a 
polynomial equation 

(5.1) zm + am_l(W)zm-l + ... + al(w)z + ao(w) = 0, 

with analytic coefficients ao(w), ... , am-l(w), that reduces to the equa-
tion (z - zo)m = 0 at W = Wo and that has solutions given precisely by 
Zl(W)"" ,zm(w). 

We summarize our results as follows. 

Theorem. Let J(z) be analytic at Z00 Suppose Zo is a critical point of 
order m - 1 for J(z), with critical value J(zo) = W00 Let p > 0 satisfy 
J(z) -:/= Wo for 0 < Iz - zol ::; p, and let h > 0 satisfy IJ(z) - wol ~ h for 
Iz - zol = p. Then for each W such that 0 < Iw - wol < h, the equation 
J(z) = w has exactly m distinct solutions Zl(W), ... ,zm(w) in the disk 
{Iz - zol < pl. The functions Zl(W), ... ,Zm(W) can be chosen to depend 
analytically on W in the slit disk {Iw - wol < h}\(Wo - h,woj. They form 
the m branches of an analytic function Z = z( w) on an m-sheeted Riemann 
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surface over the punctured disk {O < Iw - wol < 8}. The Zj(w)'s are the 
solutions of a polynomial equation (5.1) with coefficients aj(w) that are 
analytic for Iw - wol < 8. 

We have dealt with the solutions of the equation f(z) - w = 0 near a 
solution point (zo, wo). A similar state of affairs holds for the solutions of 
an equation F(z,w) = 0, where F(z,w) depends analytically on both z 
and w in a neighborhood of a solution point (zo, wo), though in this case 
the solution set is a finite union of surfaces passing through (zo, wo). This 
is the simplest example of an analytic variety, which is defined to be the 
set of common zeros of a family of analytic functions on some domain in 
complex n-space. 

Exercises for VIII.5 

1. Find the critical points and critical values of f(z) = z + 1/ z. Sketch 
the curves where f(z) is real. Sketch the regions where 1m f(z) > 0 
and where Imf(z) < O. 

2. Suppose g(z) is analytic at z = 0, with power series g(z) = 2+iz4 + 
O(z5). Sketch and label the curves passing through z = 0 where 
Reg(z) = 2 and where Img(z) = O. 

3. Find the critical points and critical values of f (z) = Z2 + 1. Sketch 
the set of points z such that If (z ) I ::; 1, and locate the critical points 
of f(z) on the sketch. 

4. Suppose that f(z) is analytic at zo0 Show that if the set of z 
such that Ref(z) = Ref(zo) consists of just one curve passing 
through Zo, then f'(zo) =1= O. Show also that if the set of z such that 
If(z)1 = If(zo) I consists of just one curve passJng through Zo, then 
f'(zo) -I- O. 

5. How many critical points, counting multiplicity, does a polynomial 
of degree m have in the complex plane? Justify your answer. 

6. Find and plot the critical points and critical values of f(z) = z2 + 1 
and of its iterates f(f(z)) = (z2+1)2+ 1 and f(f(f(z))). Suggestion. 
Use the chain rule. 

7. Let f(z) be a polynomial of degree m. How many (finite) critical 
points does the N-fold iterate f 0··· 0 f (N times) have? Describe 
them in terms of the critical points of f(z). 

8. We define a pole Zo of f(z) to be a critical point of f(z) of order k 
if zo is a critical point of 1/ f(z) of order k. We define z = 00 to be 
a critical point of f(z) of order kif w = 0 is a critical point of 
g(w) = f(I/w) of order k. Show that with this definition, a point 
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Zo E C* is a critical point of order k for a meromorphic function J(z) 
if and only if there are open sets U containing Zo and V containing 
Wo = J(zo) such that each w E V, w =1= wo, has exactly k + 1 
preimages in U. Remark. We say that J(z) is a (k + I)-sheeted 
covering of J-l(V\{WO}) n U over V\{wo}. 

9. Show that a polynomial of degree m, regarded as a meromorphic 
function on C*, has a critical point of order m - 1 at Zo = 00. 

10. Locate the critical points and critical values in the extended complex 
plane of the polynomial J(z) = z4 - 2Z2. Determine the order of 
each critical point. Sketch the set of points z such that ImJ(z) 2: O. 

11. Show that if J is a rational function, and if g is a fractional linear 
transformation, then J and go J have the same critical points in the 
extended complex plane C*. What can be said about the critical 
values of g 0 J? What can be said about the critical points and 
critical values of Jog? 

12. Let J(z) = p(z)jq(z) be a rational function of degree d, so that p(z) 
and q(z) are relatively prime, and d is the larger of the degrees of 
p(z) and q(z). (See Exercise 4.5.) Show that J(z) has 2d-2 critical 
points, counting multiplicity, in the extended complex plane C*. 
Hint. If deg p =1= deg q, then the number of critical points of J (z) in 
the finite plane C is deg(qp' - q'p) = degp + degq - 1, while the 
order of the critical point at 00 is I deg p - deg q I - 1. 

13. Show that the set of solution points (w, z) of the equation Z2-
2(cos w)z+ 1 = 0 consists of the graphs oftwo entire functions Zl (w) 
and Z2(W) of w. Specify the entire functions, and determine where 
their graphs meet. Remark. The solution set forms a reducible 
one-dimensional analytic variety in C2 . 

14. Let ao(w), ... ,am-l(w) be analytic in a neighborhood of w = 0 
and vanish at w = O. Consider the monic polynomial in z whose 
coefficients are analytic functions in w, 

P(z, w) = zm + am_l(W)zm-l + ... + ao(w), Iwl < 0. 

Suppose that for each fixed w, 0 < Iwl < 0, there are m distinct 
solutions of P(z,w) = O. 
(a) Show that the m roots of the equation P( z, w) = 0 deter­

mine analytic functions Zl (w), . .. ,Zm (w) in the slit disk 
{Iwl < o} \( -0,0]. Hint. Use the implicit function theorem 
(Exercise 4.7). 

(b) Glue together branch cuts to form an m-sheeted (possibly dis­
connected) surface over the punctured disk {O < Iwl < o} on 
which the branches Zj (w) determine a continuous function. 
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(c) Suppose that the indices are arranged so that for some fixed k, 
1 :::; k :::; n, the continuation of Zj (w) once around w = 0 is 
zj+ 1 (w) for 1 :::; j :::; k - 1, while the continuation of Zk (w) once 
around w = 0 is Zl(W). Show that Q(z, w) = (Z-Zl(W))··· (z­
Zk(W)) determines a polynomial in Z whose coefficients are an­
alytic functions of w for Iwl < 8. Show further that the poly­
nomial Q (z, w) is an irred uci ble factor of P (z, w), and that all 
irreducible factors of P(z, w) arise from subsets of the Zj(w)'s 
in this way. 

(d) Show that if J(z) is an analytic function that has a zero of 
order m at Z = 0, and Zl (w), ... ,Zm (w) are the solutions of 
the equation w = J(z), then the polynomial P(z,w) = (z­
Zl(W))··· (z - zm(w)) is irreducible. 

15. Consider monic polynomials in Z of the form 

P(z, w) = zm + am_l(W)zm-l + ... + ao(w), 

where the functions ao(w), ... ,am-l(w) are defined and meromor­
phic in some disk centered at w = o. Let Po(z,w) and P1(z,w) be 
two such polynomials, and consider the following algorithm. Us­
ing the division algorithm, find polynomials A2 (z, w) and P2(z, w) 
such that Po(z, w) = A2 (z, w)P1(z, w) + P2 (z, w) and the degree of 
P2 (z, w) is less than the degree of P1 (z, w). Continue in this fashion, 
finding polynomials Aj+l(Z, w) and Pj+l(Z, w) such that 

Pj-1(z, w) = Aj+l(Z,W)Pj(z, w) + Pj+l(Z,W) 

and deg Pj+ 1 (z, w) < deg Pj (z, w), until eventually we reach 

Let D(z,w) be the monic polynomial in Z obtained by dividing 
PR ( Z, w) by the coefficient of the highest power of z. 
(a) Show that D(z,w) is the greatest common divisor of Po(z,w) 

and P1(z,w), in the sense that D(z,w) divides both Po(z,w) 
and P1 (z, w), and each polynomial that divides both Po (z, w) 
and P1(z,w) also divides D(z,w). 

(b) Show that there are polynomials A(z, w) and B(z, w) such that 
D = APo+BP1. 

(c) Show that if Po (z, w) and P1 (z, w) are relatively prime (that 
is, D(z, w) = 1), then there is c > 0 such that for each fixed w, 
o < Iwl < c, the polynomials Po(z,w) and P1 (z,w) have no 
common zeros. 

(d) Show that any polynomial P(z, w) as above can be factored as 
a product of irreducible polynomials, and the factorization is 
unique up to the order of the factors and multiplication of a 
factor by a meromorphic function in w. 
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(e) Show that if the coefficients of P(z, w) are analytic at w = 0, 
then the irreducible factors of P(z, w) can be chosen so that 
their coefficients are analytic at w = O. 

(f) Show that if P(z, w) is irreducible, then there is € > 0 such that 
for each fixed w, 0 < Iwl < €, the roots of P(z, w) are distinct. 

(g) Show that the results of Exercise 14(a)-(c) hold without the 
supposition that the solutions of P(z, w) = 0 are distinct. 

6. Winding Numbers 

Let 1(t), a ::; t ::; b, be a closed path in D. We define the trace of 1 
to be the image r = 1([a, b]) of 1. In this section and the next it will be 
important to distinguish between the parameterized path 1 and its trace r. 

For Zo tJ. r, we define the winding number W(-y, zo) of 1 around Zo to 
be the increase in the argument of z - Zo around 1, normalized by dividing 
by 27r. If 1 is piecewise smooth, the winding number is the integer 

(6.1) W(-Y,zo) = -21 .1 ~ = 21 1d arg(z- zo), 
7r2 ')'z-zo 7r ')' 

Zo tJ. r. 

We may think of a cameraman standing at Zo and videotaping a child 
emerging through a door, romping around, and returning to the door. The 
winding number of 1 around Zo is the number of revolutions the cameraman 
makes as the child runs around the path 1, counting counterclockwise as 
positive and clockwise as negative. 

The winding number around Zo is defined not only for piecewise smooth 
curves but also for any closed path 1. It is determined by choosing values 
h(t) of arg(-y(t) - zo) that vary continuously with t for a ::; t ::; b, and 
setting 

1 
W(-y, zo) = 27r [h(b) - h(a)]. 

If there is a single-valued determination 'l/J(z) of arg(z - zo) defined on r, 
we can take h(t) = 'l/J(-y(t)) , and then h(b) = h(a), so that the winding 
number of 1 around Zo is O. 

Example. The closed curve 1 represented by the figure loops twice around 
Z2 but only once around ZI, and so W(-y, Z2) = 2, W(-y, Zl) = 1. For Zo 
lying to the left of the curve, there is a single-valued determination of 
the argument function defined for z E r, namely the principal branch 
Arg(z - zo). Consequently W(-y, zo) = O. 

The representation of the winding number as a Cauchy integral in (6.1) 
shows that W(-y, () depends analytically on (for ( tJ. r. Since the function 
is integer-valued, it is constant on each component of the complement of r. 
Since the Cauchy integral in (6.1) tends to 0 as Zo -+ 00, the integer 
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·Zo 

W(-y, () must be 0 on the unbounded component of the complement of f. 
This can be seen also by noting that there is a single-valued determination 
of arg(z-() defined for z E f when (is near 00. We state our observations 
as a theorem. 

Theorem. Let 1'(t), a ::; t ::; b, be a closed path in the complex plane, and 
let f = 1'([a, b]) be its trace. The winding number W(-y, () is constant on 
each connected component ofC\f. Further, W(-y,() = 0 for all ( in the 
unbounded component of C\f. 

Various of the theorems involving Cauchy integrals around closed curves 
can be rephrased in terms of winding numbers. We have seen that if D 
is a star-shaped domain, and if J(z) is analytic on D, then J-y J(z) dz = 0 

. around any closed curve l' in D. This statement extends to arbitrary 
domains, provided that l' does not wind around a component of the com­
plement of D. 

Theorem. H J(z) is analytic on a domain D, then J-y J(z) dz = 0 for each 
closed path 'Y in D such that W(-y, () = 0 for all ( E C\D. 

The first step of the proof is to find a bounded domain U whose boundary 
consists of a finite number of piecewise smooth closed curves, such that U 
and its boundary are contained in D, and such that U contains the trace f 
of 1'. To do this, we choose 8 > 0 so small that every point of f has distance 
at least 48 from any point of C\D, and we divide the complex plane into a 
grid of closed squares of side length 8. (See the figure.) Let K be the union 
of all the (closed) squares in the grid that contain a point with distance less 
than 8 from f, and let U = K\OK. Then U is a domain with boundary 
au = aK consisting of the sides of squares in K that are adjacent to a 
square in the grid not in K. By following along these sides, we see that au 
is a finite union of closed curves consisting of consecutive sides of squares. 
Two boundary curves may intersect at a point where two squares in U 
are kitty-corner from each other, but these intersections can be eliminated 
by adjoining to U a smaller square with vertex in the corner. Finally, we 
adjoin to U the squares from any component of C*\U that does not meet 
C*\D. Then each component of C*\U meets C*\D. 

Green's theorem is proved (completely rigorously) for domains built in 
this way from contiguous squares, so that the Cauchy integral theorem is 



244 VIII The Logarithmic Integral 

I--t'" 

at our disposal. If z E r, we have 

J(z) = ~ r J(() de. 
21TZ Jau (- z 

If we integrate around "( and then interchange the order of integration, we 
obtain 

1 J(z) dz = ~ r [1 ~ dZ] J(() d( = - r W(,,(, ()J(() de· 
"I 2n Jau "I'" - z Jau 

The winding number W (,,(, () is constant on each connected component of 
C\r, and it is zero for ( E C\D. Since each component of C\U meets 
C\D, it is zero for ( E C\U, hence also for ( E au. Hence the integral is 
also zero. 

As an analogue of the Cauchy integral formula· we have the following. 

Theorem. Let J(z) be analytic on a domain D, and let "( be a closed path 
in D with trace r = ,,(([a, b]). IfW("(, () = 0 for all ( E C\D, then 

1 1 J(z) -2. -- dz = W(,,(, zo)J(zo), 
1TZ 'Yz-zo 

The proof is simple. We apply the preceding version of the Cauchy 
integral theorem to the analytic function g(z) = (J(z) - J(zo))/(z - zo). 
From I'Y g(z) dz = 0, we obtain 

~ 1 J(z) dz = ~ 1 J(zo) dz = W(,,(, zo)J(zo). 
21TZ "I Z - Zo 21TZ "I Z - Zo 

Winding numbers can be defined for a finite collection of closed curves, 
by simply adding the winding numbers for the various curves in the col­
lection. (See the exercises for Section 8.) Thus for instance, if D is a 
bounded domain with piecewise smooth boundary, we define the winding 
number W(aD, () of aD around ( ~ aD to be the sum of the winding 
numbers of the various component curves of aD, appropriately oriented. 
From Cauchy's theorem and the Cauchy integral representation formula, 
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we then have 

W(8D, () ~ 2~i f.v z a.:. ( ~ {~' (ED, 

(tJ. Du8D. 

Thus the winding number of 8D around points ( outside of D U 8D is 0, 
and the winding number jumps to +1 as ( crosses over 8D into D. This 
is a special case of the jump theorem for Cauchy integrals treated in the 
next section. 

Exercises for VIII.6 

1. Sketch the closed path ')'(t) = eit sin(2t), 0 ~ t ~ 271", and determine 
the winding number W b, () for each point ( not on the path. 

2. Sketch the closed path ')'(t) = e-2it cost, 0 ~ t ~ 271", and determine 
the winding number W (,)" () for each point ( not on the path. 

3. Let J(z) be analytic on an open set containing a closed path ,)" and 
suppose J(z) t=- 0 on ')'. Show that the increase in arg J(z) around ')' 
is 271"W(f 0 ,)" 0). 

4. Let D be a domain, and suppose Zo and Zl lie in the same connected 
component of C\D. (a) Show that the increase in the argument of 
J(z) = (z - zo)(z - Zl) around any closed curve in D is an even 
multiple of 271". (b) Show that (z - zo)(z - Zl) has an analytic 
square root in D. (c) Show by example that (z - zo)(z - zt) does 
not necessarily have an analytic cube root in D. 

5. Show that if ')' is a piecewise smooth closed curve in the complex 
plane, with trace r, and if Zo tJ- r, then 

1-:---1----:-- dz = 0 
I (z - zo)n ' 

6. Let')' be a closed path in a domain D such that Wb, () = 0 for 
all ( tJ. D. Suppose that J(z) is analytic on D except possibly at a 
finite number of isolated singularities Zl. ... ,Zm E D\r. Show that 

Hint. Consider the Laurent decomposition at each Zk, and use Ex­
ercise 5. 

7. Evaluate 

1 1 dz 
271"i I Z(Z2 - 1) , 
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where 'Y is the closed path indicated in the figure. Hint. Either use 
Exercise 6, or proceed directly with partial fractions. 

8. Let 'Y(t) and a(t), a ~ t ~ b, be closed paths. (a) Show that if 
( E C does not lie on the straight line segment between 'Y(t) and 
a(t), for a ~ t ~ b, then W(a,() = W(,,!,(). (b) Show that if 
la(t) - 'Y(t) I < I( - 'Y(t) I for a ~ t ~ b, then W(a, () = W(,,!, (). 

9. Let J(z) be a continuous complex-valued function on the complex 
plane such that J(z) is analytic for Izl < 1, J(z) =f 0 for Izl 2: 1, 
and J(z) ~ 1 as z ~ 00. Show that J(z) =f 0 for Izl < l. 

10. Let K be a nonempty closed bounded subset of the complex plane, 
and let J(z) be a continuous complex-valued function on the com­
plex plane that is analytic on C\K and at 00. Show that every value 
attained by J(z) on C* = C u {oo} is attained by J(z) somewhere 
on K, that is, J(C*) = J(K). 

7. The Jump Theorem for Cauchy Integrals 

Suppose 'Y is a piecewise smooth curve with trace r, and let J(z) be a 
continuous function on r. We define the Cauchy integral of J(z) along 'Y 
to be the function F(() defined off r by 

(7.1) F(() = ~ 1 J(z) dz, ( E c\r. 
27rt 'Y z - ( 

We have seen that the Cauchy integral F(() is analytic on C\r, and F(() 
vanishes at 00. 

Example. If 'Y is a closed curve parameterizing the (positively oriented) 
boundary r of a domain D, and if J (z) is analytic on D and across r, then 
the Cauchy integral F(() of J(z) around'Y is given by 

(ED, 

(E C\(DUr). 
F(() = {J((), 

0, 

This follows from Cauchy's theorem if ( E C\(Dur), and from the Cauchy 
integral formula if ( ED. 
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Example. If 'Y is a closed path, the Cauchy integral of the constant function 
J(z) == 1 around'Y is the winding number F«() = W(-y,() of'Y around (. 

Now suppose that the continuous function J(z) on r is analytic at some 
point Zo E r. We suppose that there is a small disk U centered at Zo 
such that J (z) is analytic on U u au and such that 'Y passes through 
U in a piecewise smooth subarc 'Yo traveling from Zl E au to another 
point Z2 E au, so that 'Y\'Yo does not enter U, while the trace ro of 'Yo 
divides U into two connected open domains. As we traverse 'Yo in the 
positive direction, one of these domains U + lies on the right side of 'Yo, the 
other U_ on the left side. We break the integral for F«() into two pieces 

F«() = ~ 1 J(z) dz + ~ 1 J(z) dz = Fo«() + G«(). 
27rZ 1'0 Z - ( 27rZ 1'\1'0 Z - ( 

The second integral G«() is analytic on U, while the first integral Fo«() is 
analytic on U\ro. Let 'Y+ denote the arc of au from Zl to Z2 that lies in 
the boundary of U+, and let 'Y- denote the arc of au from Zl to Z2 that 
lies in the boundary of U _, as in the next figure. We define 

1 1 J(z) F+«() = -2. -( dz + G«(), 
7rZ z-1'-

By Cauchy's theorem, 

~1 J(z) dz = _1 1 J(z) dz 
27ri 1'0 z - ( 27ri 1'- z - ( , 

(EU. 

and consequently, F«() = F+«() for (E U+. Similarly, we define 

F_«() = -21 .1 J(z~ dz + G«(), (E U, 
7rZ 1'+ Z -." 

and then from Cauchy's theorem we obtain F( () = F _ «() for ( E U _. If we 
integrate along the arc 'Y+ of au from Zl to Z2, then backwards along the 
arc 'Y- of au from Z2 to Zl, we obtain the integral around the boundary au. 
This and Cauchy's theorem yield 

F_«() - F+«() = ~ ( J(z) dz = J«(), 
27rl Jau z - ( 

We have proved the following. 

(EU. 

Theorem (Jump Theorem for Cauchy Integrals). Suppose that r is 
a smooth curve that passes through Zo, and J(z) is a continuous function 
on r that is analytic at Zo. Let U be a small disk containing Zo such that 
J (z) is analytic on U and such that r divides U into the two components U + 
and U_ as above. Then there are analytic functions F+«() and F_«() on U 
satisfying 

(E U, 
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and such that the Cauchy integral F(() of fez), defined by (7.1), satisfies 

F«() = {F+((), 
F_«(), 

Thus as ( crosses r from right to left (from U+ to U_), the values of the 
Cauchy integral F«() jump by f«(), 

(E U. 

Example. In the first example above, where "( parameterizes the bound­
ary r of a domain D and fez) is analytic on D and across r, the Cauchy 
integral of fez) jumps from 0 outside r to f«() inside r. 

Now consider the special case where fez) == 1 and"( is a closed curve. 
In this case, the Cauchy integral (7.1) is the winding number W(-y, (), and 
we are led to the following jump theorem. 

Theorem (Jump Theorem for Winding Numbers). Let"( be a closed 
path with trace r, and let zo = "(to) E r. Suppose that "(t) is continuously 
differentiable for t near to, with "('(to) #- O. Let U be a small disk centered 
at Zo that is divided into two components U ± by a segment "(0 on "( as 
above, and suppose that "(\"(0 does not enter U. Then as ( E U crosses r 
from right to left (from U+ to U_), the winding number W(-y,() jumps 
by +1, 

This does not follow immediately from the preceding jump theorem, since 
the path "(\"(0 is not necessarily smooth. However, the winding number can 
be expressed as 

1 1 dz W(-y,() = -2. -i +G«(), 
7r2I'OZ-., 

where G«() is the increase of the argument of z - ( along "(\"(0. If we 
apply the jump theorem to the Cauchy integral along "(0, and we observe 
that G«() is analytic on U and hence does not jump, we obtain the jump 
theorem for the winding number. 
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Recall (Section III.I) that a closed path r in the complex plane is sim­
ple if it is parameterized by a continuous function I(t), a :::; t :::; b, such 
that 1(8) -=f:. I(t) for a :::; 8 < t < b. We refer to a simple closed path 
also as a simple closed curve. By regarding the interval [a, b] with its 
endpoints identified as a circle, we can think of a simple closed curve as 
a continuous one-to-one image of a circle. The Jordan curve theorem as­
serts that a simple closed curve in the complex plane divides the plane into 
exactly two connected components, one bounded (the "inside") and the 
other unbounded (the "outside"). While the theorem may seem intuitively 
plausible, a glance at the figure for Exercise 6 should convince one that the 
theorem is not completely obvious. In fact, Jordan did not give a rigorous 
proof of the Jordan curve theorem, and the known proofs of the theorem 
require a fair amount of effort. 

Mobius band 

To appreciate the sort of difficulty that might arise, consider the Mobius 
band, obtained from a long thin strip of paper by flipping over one end 
and then gluing the two ends together. If one cuts the strip along the 
median line with a scissors, the resulting surface is connected. Thus the 
median line, which is a simple closed curve on the surface, does not divide 
the surface into two connected components. The median line has only one 
"side." 

The proof of the Jordan curve theorem for piecewise smooth curves is 
substantially easier than the proof for arbitrary simple closed curves. We 
give a proof based on the jump theorem for the winding number. This 
idea forms the basis for a proof in the general case, which is laid out in the 
exercises. 

Suppose 1 is a simple closed curve such that I(t) is continuously differen­
tiable on some parameter interval. Then we can find Zo on 1 and a disk U 
centered at Zo such that the smooth segment divides U into two pieces 
as above. . (This requires a nonzero tangent vector and some elementary 
analysis at the level of the implicit function theorem.) Since the winding 
number W b, () jumps as ( crosses the segment of 1 in U, it attains at 
least two values on C\r. Since it is constant on each component of C\r, 
the complement of r has at least two connected components. 

If the entire curve 1 is smooth, or even just piecewise smooth, we can 
cover r by a finite number of open disks U as above, each of which is 
divided into two pieces by I. By tracking successive components of U\r 
corresponding to consecutive U's, we see that each point in any U\r can be 
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joined by a path in the U\f's to one or the other component of any other 
U\r. It follows that each point of C\r can be joined by a path in C\r to 
one or the other side of some fixed U, and consequently C\r has at most 
two components. We have proved the following. 

Theorem (Jordan Curve Theorem for Smooth Curves). Let, be 
a piecewise smooth simple closed curve in the complex plane C, and let 
r = ,([a, b]) be its trace. Then r divides the complex plane into two 
connected components, one bounded and the other unbounded, each of 
wmch has r as its boundary. Further, W (" () = 0 if ( is in the unbounded 
component of C\r, and Wb, () = ±1 if ( is in the bounded component 
of C\r, where the choice of sign depends on the orientation of,. 

Exercises for VIII.7 

1. Let J(z) be an entire function, and suppose g(() is analytic for ( in 
the open upper and lower half-planes and across the interval (-1,1) 
on the real line. Suppose that 

11 J(x) dx = g(() 
-1 X - ( 

for ( in the upper half-plane. What is the value of the integral when 
( is in the lower half-plane? Justify your answer carefully. 

2. Show that 

11 dx (( -1) 
-1 x - ( = Log (+ 1 ' (E C\[-I, +11. 

(Note that we use the principal branch of the logarithm here.) Rec­
oncile this result with your solution to Exercise 1. 

3. Find the Cauchy integrals of the following functions around the unit 
circle r = {Izl = I} , positively oriented. (a) z, (b) ~, (c) x = Re(z), 
(d) y = Im(z) . 

4. Suppose J(z) is analytic on an annulus {p < Izl < a}, and let 
J(z) = Jo(z) + h(z) be the Laurent decomposition of J(z). (See 
Section VI.l.) Fix T between p and a, and let F(() be the Cauchy 
integral of J(z) around the circle Izl = T . Show that Jo(() = F(() 
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for 1(1 < r, and h(() = -F(() for 1(1 > r. Show further that 
Jo(() = F_(() and !I(() = -F+((). Remark. The formula J(z) = 
Jo(z) + h(z) reflects the jump theorem for the Cauchy integral of 
J(z) around circles Izl = r. 

5. Let 'Y be a piecewise smooth curve, and let F( () be the Cauchy 
integral (7.1) of a continuous function J(z) on 'Y. Show that if g(z) 
is a smooth function on the complex plane that is zero off some 
bounded set, then 

1 g(z)J(z) dz = 2i f[ ~; F(z) dx dy. 

Hint. Recall Pompeiu's formula (Section IV.8). 

6. Determine whether the point z lies inside or outside. Explain. 

7. A simple arc r in C is the image of a continuous one-to-one func­
tion 'Y(t) from a closed interval [a, b] to the complex plane. Show 
that a simple arc r in C has a connected complement, that is, C\r is 
connected. You may use the Tietze extension theorem, that a con­
tinuous real-valued function on a closed subset of the complex plane 
can be extended to a continuous real-valued function on the entire 
complex plane. Hint. Suppose Zo belongs to a bounded component 
of C\r. Find a continuous determination h(z) of log(z - zo) on r, 
extend h( z) to a continuous function on C* , and define J (z) = z - Zo 
on the component of C\r containing zo, and J(z) = eh(z) on the 
remainder of c*\r. Consider the increase in the argument of J(z) 
around circles centered at Zo. 

8. Prove the Jordan curve theorem for a simple closed curve 'Y by filling 
in the following proof outline. 
(a) Show that each component of C\r has boundary r. Hint. For 

Zo = 'Y(to) E r, apply the preceding exercise to the simple arc 
r\'Y(I) , where I is a small open parameter interval contain­
ing to. 

(b) Prove the Jordan curve theorem in the case where 'Y contains 
a straight line segment. 
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(c) Show that for any Zo = I'(to) E r, any small disk Do con­
taining zo, and any component U of C\r, there are points 
Zl = I'(t1) and Z2 = I'(t2) such that the image ofthe parameter 
segment between t1 and t2 is contained in Do and such that Zl 
and Z2 can be joined by a broken line segment in UnDo. 

(d) With notation as in (b), let a be the simple closed curve ob­
tained by replacing the segment of I' in Do between Zo and Zl by 
the broken line segment in UnDo between them, and let T be 
the simple closed curve in Do obtained by following the segment 
of I' in Do from Zo to Zl and returning to Zo along the broken 
line segment. Show that W(T, () = 0 and W(,)" () = W(a, () 
for ( E C\r, ( ~ Do. 

(e) Using (b) and (d), show that C\r has at least two components 
and that W(,)" () = ±1 for ( in each bounded component of 
C\r. 

(f) By taking U in (c) to be a bounded component of C\r, show 
that W(,)" () = 0 for ( in any other component of C\r. 

8. Simply Connected Domains 

A domain in the plane is "simply connected" if it has no "holes." Disks 
and rectangles are simply connected. More generally, star-shaped domains 
are simply connected. Annuli, punctured disks, and the punctured plane 
have "holes" and are not simply connected. Our aim in this section is to 
make more precise the notion of "simple connectedness." 

Let I'(t), a ::; t ::; b, be a closed path in a domain D. We say that 
I' is deformable to a point if there are closed paths I's(t), a ::; t ::; b, 
o ::; s ::; 1, in D such that I's(t) depends continuously on both sand t, 
1'0 = 1', and 1'1 (t) == Zl is the constant path at some point Zl ED. The 
domain D is simply connected if every closed path in D can be deformed 
to a point. 

Example. If D is a star-shaped domain with respect to zo, then any closed 
path I' in D can be continuously deformed to the point Zo by pulling the 
path to Zo along straight line segments. We set 

I's(t) = sZo + (1 - sh(t), a ::; t ::; b, 0::; s ::; 1, 

and then the closed paths I's deform 1'0 = I' to the point path 1'1 == zoo 
Thus D is simply connected. 

If a closed path can be deformed to a point, then it can be deformed to 
a point in such a way that each path in the deformation starts and ends at 
the same fixed point. That is the content of the following lemma. 
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Lemma. Let ')'(t) , 0 :S t :S 1, be a closed path in D, with Zo = ')'(0) = ')'(1). 
Suppose that')' can be deformed continuously to a point in D. Then there 
is a continuous family of closed paths ')'s, 0 :S s :S 1, such that ')'0 = ,)" ')'1 

is the constant path at zo, and each path ')'8 starts and ends at Zoo 

Suppose that')' is deformed to a point by closed paths O's, 0 :S s :S ~. 
Thus O'o(t) = ')'(t) for 0 :S t :S 1, 0'1/2(t) = Zl for 0 :S t :S 1, and O's(O) = 
O's(l) for 0 :S s :S ~. We deform,), to the point Zo by means of paths ')'s, 
o :S s :S 1, that all start and terminate at zo, in two stages. In the first 
stage we deform,), to a path ')'1/2 that follows the starting points O's(O) of 
0' s from Zo to Zl, and then reverses direction and follows them backward 
from Zl to Zoo Such a deformation ')'S is given explicitly for 0 :S s < ~ by 

o :S t :S s, 
s :S t :S 1 - s, 
l-s:St:Sl. 

For the second stage we deform ')'1/2 to the point path at Zo by running 
partway along ')'1/2, pausing, then returning, with increasing pauses. Such 
a deformation ')'8' ~ :S s :S 1, is given explicitly by 

O:S t :S 1 - s, 
1 - s :S t :S s, 
s:St:Sl. 

The definition of the function ')'s(t), regarded as a function on the square, 
is suggested in the figure. On the horizontal intervals in the bottom half, 
')'8(t) is a reparametrization of O's(t), while on each horizontal interval in 
the top half and on each vertical interval ')'s(t) is constant. 

I+-+-- constant aiO) = as(1) 

r-t-- reparametrized as 

s 

Another topological notion we require is connectedness. We have al­
ready defined what it means for an open subset of the complex plane to 
be connected, namely, that any two points can be joined by a path. In the 
context of general topological spaces this concept is defined to be "path 
connectedness." For arbitrary topological spaces there is another definition 
of connectedness, which we will use in this section. It is equivalent to path 
connectedness for open sets in the plane. 
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Let X be a subset of the extended complex plane C* = C U { 00 }. We say 
that X is connected if every continuous integer-valued function on X is 
constant. Thus X is not connected if and only if there is a subset E of X 
such that both E and X\E are nonempty, and no sequence in E has a limit 
in X\E, nor does any sequence in X\E have a limit in E. If there is such 
a set E, then the function that is 1 on E and 0 on X\E is a continuous 
integer-valued function on X that is not constant. Conversely, if there is 
a nonconstant continuous integer-valued function on X, we take E to be 
one of the level sets of the function, and we see that X is not connected. 
Note that if X is a closed subset of C* that is not connected, we can take 
E above such that 00 fI. E, and then E is a compact subset of the complex 
plane with positive distance from X\E, that is, there is {) > 0 such that 
jz - wj ~ {) for all z E E and w E X\E. 

connected not connected 

For domains in the plane many conditions can be formulated that are 
equivalent to simple connectivity. We give several that are useful for our 
purposes. 

Theorem. The following properties are equivalent, for a domain D in the 
complex plane: 

(i) D is simply connected, 
(ii) every closed differential on D is exact, 
(iii) for each Zo E C\D, there is an analytic branch oflog(z - zo) defined 

onD, 
(iv) each closed curve'Y in D has winding number Wb, zo) = 0 about 

all points ZO E C\D, 
(v) the complement of D in the extended complex plane C* is connected. 

In practice, the condition (v) is usually the easiest to check for a given 
domain D. It is usually easy to spot any set E in C\D that has positive 
distance from the rest of C\D. We think of such sets E as representing 
holes in D. 

Example. If D is an annulus {r < jzj < s}, we can take E to be the closed 
disk {jzj ~ r}. Then the rest of C\D is the exterior set {jzj ~ s}, every 
point of which has distance at least s - r from E. Consequently, C\D is 
not connected, and D is not simply connected. The set {jzj ~ r} is a hole 
in D. Similarly, if D is the punctured disk {O < jzj < I} or the punctured 
plane C\ {O}, we can take E to be the puncture {O}, and we see that D is 
not simply connected. 
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Now we turn to the proof of the theorem. The implications that are 
trivial or easy consequences of our previous discussions are (i) '* (ii) '* (iii) 
¢} (iv) and (v) '* (iv). New ideas are required to establish the implications 
(iv) '* (v) and (iv) '* (i). 
Proof that (i) ===} (ii): This follows from our discussion of deformation 
of paths in Section III.2. Let Pdx + Qdy be a closed differential on D. 
According to the discussion in Section III.2, f-y Pdx + Qdy = fa Pdx + 
Qdy for any closed paths 'Y and a in D such that 'Y can be deformed 
continuously to a. Since the integral over a one-point path is zero, the 
simple connectivity of D implies that f-y Pdx + Qdy = 0 for any closed 
path in D. Consequently, Pdx + Qdy is independent of path, hence exact. 
Proof that (ii) ===} (iii): If every closed differential on D is exact, then 
in particular for fixed Zo E C\D the differential d arg(z - zo) is exact. We 
write d arg(z - zo) = dh(z) for some smooth function h(z), normalized so 
that h(Zl) is a value of arg(zl - zo) for some fixed point Zl E D. Then h(z) 
is a continuous determination of arg(z - zo) in D, and log Iz - zol + ih(z) 
is an analytic branch of log(z - zo) in D. 
Proof that (iii) {:::=} (iv): If there is an analytic branch J(z) of log(z-zo), 
then 

W("(,zo) = -21.1dJ = 0 
7IZ -y 

for any closed path 'Y in D. Conversely, if W (,,(, zo) = 0 for any closed 
path 'Y in D, then the analytic differential dz j (z - zo) is independent of 
path, and there is an analytic function J(z) such that dJ = dzj(z - zo). 
An analytic branch of log(z - zo) is obtained by adding an appropriate 
constant to J(z). 
Proof that (v) ===} (iv): Let 'Y be a closed path in D. The winding 
number W(,,(, () is a continuous integer-valued function on C\D that is zero 
for large (. If we set it equal to 0 for ( = 00, we obtain a continuous integer­
valued function on C*\D that vanishes at 00. Since C*\D is connected, 
the function is identically zero. Hence W(,,(, () = 0 for ( E C\D. 
Proof that (iv) ===} (v): If C*\D is not connected, then there are a 
closed bounded subset E of C\D and 8 > 0 such that Iz - wi ~ 48 for 
every point z E E and every point w E F = C\(D U E). Fix a point 
Zo E E, and cover the complex plane by a grid of squares of side length 8 
so that Zo lies in the interior of one of the squares. Let K be the union 
of all the (closed) squares in the grid that contain a point of distance at 
most 8 from E. Then K is a finite union of closed squares, K is disjoint 
from F, and the boundary oK of K does not contain points of either E 
or F. Thus oK is a finite union of straight line segments contained in D. 
Further, if we denote by K j the squares from the grid in K, then 

( d arg(z - zo) = L ( d arg(z - zo) = 271, 
18K 18Kj 



256 VIII The Logarithmic Integral 

since the only summand that is not zero is the integral over the boundary of 
the square containing Zoo Now, oK is a union of a finite number of closed 
paths in D. Thus there is a closed path 'Y in D obtained by following 
consecutively sides of squares in the grid, for which J"( d arg(z - zo) #- o. 
Consequently, W("(, zo) #- o. 

r'I 

E ~ 

Proof that (iv) ==:} (i): Our proof is based on the "northeast corner" 
argument. We can deform any closed 'Y in D to a path that follows the sides 
of a grid of squares of small side length 8 > o. Thus we fix 8, and we consider 
closed paths in D that are obtained by following consecutively sides of 
squares in the grid, so that the path can be represented as a sequence of 
sides, each with a direction. We proceed by induction on the number of 
consecutive sides in the path. Thus we assume that 'Y is represented by a 
sequence of sides of the grid, and that any closed path formed by a shorter 
sequence of sides in the grid can be deformed in D to a point. We must 
show that 'Y can be deformed in D to a point. 

Suppose first that the closed path 'Y intersects itself, so that 'Y is obtained 
by traversing successively two shorter closed paths, each of which starts and 
terminates at a vertex Zo of the grid. By our induction hypothesis, each of 
the shorter paths can be deformed in D to a point. By the lemma, each of 
the paths can be deformed in D to the point Zo by means of closed paths 
that begin and end at zoo By traversing successively the paths in the two 
deformations, we can then deform the path 'Y in D to the point Zo. 

We may suppose, then, that the closed path 'Y does not intersect itself. 
In the path 'Y consider the vertices furthest to the right, for which Re(z) 
is the largest, and among these let ZNE be the highest vertex, for which 
Im(z) is the largest. Reversing the direction of the path if necessary, we 
can assume that the path follows the horizontal edge from ZNE - 8 to ZNE, 

where it makes a right turn and proceeds down to WNE = ZNE - im8, then 
makes another right turn and proceeds to WNE - 8, as in the figure. Let R 
be the open rectangle with vertices ZNE - 8, ZNE, WNE, and WNE - 8. Since 
W ("(, () = 0 for ( in the unbounded component of the complement of 'Y, we 
have W("(, () = 0 just to the right of the segment from ZNE to WNE. By the 
jump theorem for the winding number (Section 3), we have W("(,() =-1 
for ( to the left of the vertical segment, hence for all ( E R. It follows 
that R is contained in D. Further, by continuity we have W("(, () = -1 at 
all points of the left vertical side of R that are not on 'Y, so that none of 
the points of the boundary of R belong to CC\D, and oR is also contained 
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in D. Let (J' be the path obtained from 'Y by replacing the segments of 'Y 
consisting of the three edges of the rectangle R by the vertical edge of R 
from ZNE - 8 to WNE - 8. Then'Y can be deformed to (J' in D, simply by 
deforming the three sides of the rectangle to the fourth side. Since (J' is 
shorter than 'Y, (J' can be deformed in D to a point. Thus'Y can also be 
deformed in D to a point. This completes the proof of the implication and 
of the theorem. 

ZNE-O I ZNE=NEcomer 
I 
I 
I 
I R r 'Y 
I 
I 
I 
I 

wNE-O WNE 

In Chapter XI we will prove the Riemann mapping theorem, which as­

serts that every simply connected domain in the plane except the plane 
itself can be mapped conformally onto the open unit disk. What we will 
actually establish in Section XI.3 is that if D :i C and if (iii) holds, then 
there is a conformal map of D onto the open unit disk. From this it follows 
easily that a domain D satisfying (iii) is simply connected (see Exercise 7), 
and also that D has a connected complement. Thus the proof of the Rie­
mann mapping theorem will provide us with an alternative method to show 
that (iii) implies (i) and (v). The proof given above has the advantage of 
being "elementary" in nature, whereas the proof of the Riemann mapping 
theorem depends on the arguably nonelementary notion of compactness of 
families of analytic functions. 

Exercises for VIII.8 

1. Which of the following domains in C are simply connected? Justify 
your answers. (a) D = {Imz > O}\[O,i], the upper half-plane with 
a vertical slit from 0 to'i. (b) D = {Imz > 0}\[i,2i], the upper 
half-plane with a vertical slit from i to 2i. (c) D = C\[O, +00), the 
complex plane slit along the positive real axis. (d) D = C\[-l, 1], 
the complex plane with an interval deleted. 

2. Show that a domain D in the extended complex plane C* = CU { 00 } 
is simply connected if and only if its complement C*\D is connected. 
Hint. If D :i C*, move a point in the complement of D to 00. If 
D = C*, first deform a given closed path to one that does not cover 
the sphere, then deform it to a point by pulling along arcs of great 
circles. 

3. Which of the following domains in C* are simply connected? Justify 
your answers. (a) D = C* \ [-1, 1], the extended complex plane with 
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an interval deleted, (b) D = C*\ { -1,0,1}, the thrice-punctured 
sphere. 

4. Show that a domain D in the complex plane is simply connected if 
and only if any analytic function I (z) on D that does not vanish at 
any point of D has an analytic logarithm on D. Hint. If I(z) #- 0 
on D, consider the function 

l z f'(w) 
G(z) = Zo I(w) dw. 

5. Show that a domain D is simply connected if and only if any analytic 
function I (z) on D that does not vanish at any point of D has an 
analytic square root on D. Show that this occurs if and only if for 
any point Zo ~ D the function z - Zo has an analytic square root 
onD. 

6. Show that a domain D is simply connected if and only if each con­
tinuous function I (z) on D that does not vanish at any point of D 
has a continuous logarithm on D. 

7. Let E be a closed connected subset of the extended complex plane 
C*. Show that each connected component of C*\E is simply con­
nected. 

8. Show that simple connectivity is a ''topological property," that is, 
if U and V are domains, and cp is a continuous map of U onto V 
such that cp-l is also continuous, then U is simply connected if and 
only if V is simply connected. 

9. Suppose that I(z) is analytic on a domain D, and f'(z) has no zeros 
on D. Suppose also that I(D) is simply connected, and that there 
is a branch g(w) of 1-1 that is analytic at Wo = I(zo) and that can 
be continued analytically along any path in I(D) starting at woo 
Show that I(z) is one-to-one on D. 

10. We define an integral I-cycle in D to be an expression of the form 
(j = 2: kj"{j, where "{1, ... ,"{m are closed paths in D and k1' ... ,km 
are integers. We define the winding number of (j about ( to 
be W(u,() = 2:kjW("(j,(), ( E C\D. Show that if h() is a 
continuous integer-valued function on C*\D such that h(oo) = 0, 
then there is an integral I-cycle (j on D such that W ((j, () = h( () 
for all ( E C\D. 

11. An integral I-cycle u is homologous to zero in D if W(u, () = 0 
whenever (~ D. Let U be a bounded domain whose boundary con­
sists of a finite number of piecewise smooth closed curves "{1, .• , ,"{m, 

oriented positively with respect to U, such that U together with its 
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boundary is contained in D. Show that the I-cycle au = L ''tj is 
homologous to zero in D. 

12. Let D be a domain in C such that C*\D consists of m + 1 disjoint 
closed connected sets. Show that there are m piecewise smooth 
closed curves 1'1, . .. , 'I'm such that every integral I-cycle a can be 
expressed uniquely in the form a = aD + L kj 1'j, where the k/s are 
integers and aD is homologous to zero in D. Remark. The 1'/s form 
a homology basis for D. 



IX 

The Schwarz Lemma and 
Hyperbolic Geometry 

This short chapter is devoted to the Schwarz lemma, which is a simple 
consequence of the power series expansion and the maximum principle. 
The Schwarz lemma is proved in Section 1, and it is used in Section 2 
to determine the conformal self-maps of the unit disk. In Section 2 we 
formulate the Schwarz lemma to be invariant under the conformal self-maps 
of the unit disk, thereby obtaining Pick's lemma. This leads in Section 3 
to the hyperbolic metric and hyperbolic geometry of the unit disk. 

1. The Schwarz Lemma 

The Schwarz lemma is easy to prove, yet it has far-reaching consequences. 

Theorem (Schwarz Lemma). Let J(z) be analytic for Izl < 1. Suppose 
IJ(z)1 ~ 1 for alllzi < 1, and J(O) = 0. Then 

(1.1) IJ(z)1 ~ Izl, Izl < 1. 

Further, if equality holds in (1.1) at some point Zo # 0, then J(z) = AZ for 
some constant A of unit modulus. 

For the proof, we factor J(i) = zg(z), where g(z) is analytic, and we 
apply the maximum principle to g(z). Let r < 1. If Izl = r, then Ig(z)1 = 

IJ(z)l/r ~ 1/r. By the maximum principle, Ig(z)1 ~ 1/r for all z satisfying 
Izl ~ r. If we let r ---. 1, we obtain Ig(z)1 ~ 1 for all Izl < 1. This yields 
(1.1). If IJ(zo)1 = Izol for some Zo # 0, then Ig(zo) I = 1, and by the strict 
maximum principle, g(z) is constant, say g(z) = A. Then J(z) = AZ. 

An analogous estimate holds in any disk. If J (z) is analytic for I z - Zo I < 
R, IJ(z)1 ~ M, and J(zo) = 0, then 

(1.2) 
M 

IJ(z)1 ~ Ii Iz - zol, Iz - zol < R, 

260 
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with equality only when J(z) is a multiple of z - zoo This can be proved 
directly, based on the factorization J(z) = (z - zo)g(z). It can also be 
obtained from (1.1) by scaling in both the z-variable and the w-variable, 
w = J(z), and by translating the center of the disk to zo, as follows. The 
change of variable ( f--+ R( + Zo maps the unit disk {I(I < I} onto the disk 
{Iz - zol < R}. If we define h(() = J(R( + zo)/M, then h(() is analytic 
on the open unit disk and satisfies Ih(()1 ~ 1 and h(O) = O. The estimate 
Ih(()1 ~ 1(1 becomes (1.2). 

The Schwarz lemma gives an explicit estimate for the "modulus of con­
tinuity" of an analytic function. It shows that a uniformly bounded family 
of analytic functions is "equicontinuous" at each point. We will return 
in Chapter XI to treat the ideas of equicontinuity and compactness for 
families of analytic functions. 

There is an infinitesimal version of the Schwarz lemma. 

Theorem. Let J(z) be analytic for Izl < 1. If IJ(z)1 ~ 1 for Izl < 1, and 
J(O) = 0, then 

(1.3) 11'(0)1 ~ 1, 

with equality if and only if J(z) = AZ for some constant A with IAI = 1. 

The estimate (1.3) follows by taking z --t 0 in the Schwarz lemma. For 
the case of equality, we consider the factorization J(z) = zg(z) used in 
the proof of the Schwarz lemma, and we observe that g(O) = 1'(0). If 
11'(0)1 = 1, we then have Ig(O)1 = 1, and we conclude as before from the 
strict maximum principle that g(z) is constant. Hence J(z) = AZ. 

Note that the estimate (1.3) is the same as the Cauchy estimate for 
1'(0) derived in Section IV.4, without the hypothesis that J(O) = O. See 
also Exercise 7. 

Exercises for IX.! 

1. Let J(z) be analytic and satisfy IJ(z)1 ::; M for Iz - zol < R. Show 
that if J (z) has a zero of order m at zo, then 

Iz - zol < R. 

Show that equality holds at some point z =I Zo only when J(z) is a 
constant multiple of (z - zo)m. 

2. Suppose that J(z) is analytic and satisfies IJ(z)1 ~ 1 for Izl < 1. 
Show that if J(z) has a zero of order m at zo, then Izolm 2: IJ(O)I. 
Hint. Let 'l/J(z) = (z - zo)/(1 - zoz), which is a fractional linear 
transformation mapping the unit disk onto itself, and show that 
IJ(z)1 ~ 1'l/J(z)lm. 
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3. Suppose that J(z) is analytic for Izl ~ 1, and suppose that 1 < 
IJ(z)1 < M for Izl = 1, while f(O) = 1. Show that f(z) has a zero 
in the unit disk, and that any such zero Zo satisfies IZoI > 11M. 
Hint. For the second assertion, consider 'ljJ(f(z)), where 'ljJ(w) is 
a fractional linear transformation mapping 1 to 0 and the circle 
{Iwl = M} to the unit circle. Or use Exercise 2. 

4. Suppose that J(z) is analytic for Izl < 1 and satisfies f(O) = 0 and 
Ref(z) < 1. (a) Show that If(z)1 ~ 21zl/(1 -Izl). Hint. Consider 
the composition of f(z) and the fractional linear transformation 
mapping the half-plane {Re w < 1} onto the unit disk. (b) Show 
that 1f'(0)1 ~ 2. (c) For fixed Zo with 0 < Izol < 1, determine 
for which functions f(z) there is equality in (a). (d) Determine 
for which functions f(z) there is equality in (b). (e) By scaling the 
estimates in (a) and (b), obtain sharp estimates for Ig(z)1 and Ig'(O)1 
for functions g(z) analytic for Izl < R and satisfying g(O) = 0 and 
Reg(z) < C. 

5. Suppose that f(z) is analytic and satisfies IJ(z)1 ~ 1 for Izl < 1. 
Show that if If(O)1 ~ r, then If(z)1 ~ (r -lzl)/(l- rlzl) for Izl < r. 
Determine for which functions f(z) equality holds at some point Zo 
with Izol < r. 

6. Let f(z) be a conformal map of the open unit disk onto a domain D. 
Show that the distance from f(O) to the boundary of D is estimated 
by dist(f(0),8D) ~ 1f'(0)1. 

7. Suppose that f(z) = L:~o akzk is analytic for Izl < 1 and satisfies 
If(z)1 :::; M. 
(a) Show that L:~=o lakl2 :::; M2. Hint. Integrate If(zW around a 

circle of radius r. 
(b) Show using (a) that 1f'(0)1 ~ M, with equality only if f(z) 

is a constant multiple of z. Remark. It is not assumed that 
f(O) = o. 

(c) Show that IJ(k)(O)1 :::; k!M, with equality only if f(z) is a con­
stant multiple of zk. 

8. Suppose that f(z) is analytic for Izl < 1 and satisfies If(z)1 < 1, 
J(O) = 0, and If'(O)1 < 1. Let r < 1. Show that there is a constant 
c < 1 such that If(z)1 ~ clzl for Izl ~ r. Show that the nth iterate 
In(z) = J(f( ... J(z)···)) = J(fn-l(Z)) of J(z) satisfies Ifn(z)1 ~ 
cnlzl for Izl ~ r. Deduce that fn(z) converges to zero normally on 
the open unit disk JD). 
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2. Conformal Self-Maps of the Unit Disk 

We denote by l[)) the open unit disk in the complex plane, l[)) = {Izl < I}. 
A conformal self-map of the unit disk is an analytic function from l[)) 
to itself that is one-to-one and onto. The composition of two conformal 
self-maps is again a conformal self-map, and the inverse of a conformal 
self-map is a conformal self-map. The conformal self-maps form what is 
called a "group," with composition as the group operation. The group 
identity is the identity map g(z) = z. 

For fixed angle <p, the rotation z f--7 eicp z is a conformal self-map of l[)) 
that fixes the origin, and these are the only conformal self-maps that leave 0 
fixed. 

Lemma. If g(z) is a conformal self-map ofthe unit disk l[)) such that g(O) = 
0, then g( z) is a rotation, that is, g( z) = eicp z for some fixed <p, 0 ::; <p ::; 21r. 

To see this, we apply the Schwarz lemma to g(z) and to its inverse. Since 
g(O) = 0 and Ig(z)1 < 1, the Schwarz lemma applies, and Ig(z)1 ::; 14 If 
we apply the Schwarz lemma also to g-1(W), we obtain Ig-1(W)1 ::; Iwl, 
which for w = g(z) becomes Izl ::; Ig(z)l. Thus Ig(z)1 = Izl. Since g(z)jz 
has constant modulus, it is constant. Hence g(z) = AZ for a unimodular 
constant A. 

Theorem. The conformal self-maps of the open unit disk l[)) are precisely 
the fractional linear transformations of the form 

(2.1) J(z) = 
icp Z - a 

e -­
I-liz' 

where a is complex, lal < 1, and 0::; <p ::; 21r. 

Izl < 1, 

Define g(z) = (z - a)j(1 - az). Since g(z) is a fractional linear transfor­
mation, it is a conformal self-map of the extended complex plane, and it 
maps circles to circles. From 

o ::; () ::; 21r, 

we see that Ig(z)1 = 1 for z = ei9 , so that g(z) maps the unit circle to itself. 
Since g(a) = 0, g(z) must map the open unit disk to itself. Consequently, 
g(z) is a conformal self-map of the unit disk, and so is J(z) defined by (2.1). 
Let h(z) be an arbitrary conformal self-map ofl[)), and set a = h-1(0). Then 
h 0 g-1 is a conformal self-map of l[)), and (h 0 g-1)(0) = h(a) = O. By the 
lemma, (h 0 9 -1) ( W ) = eicp w for some fixed <p, 0 ::; <p ::; 21r. Writing 
w = g(z), we obtain h(z) = eicpg(z), and h(z) has the form (2.1). 
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The parameters a and eicp are uniquely determined by the conformal 
self-map J(z) of lDl. The parameter a is J- 1(0), and since 

J'(z) = eicp 1 -lal2 Izl < 1, 
(1 - az)2 ' 

the parameter cp is uniquely specified (modulo 211") as the argument of 1'(0). 
Thus there is a one-to-one correspondence between points of the parameter 
space lDl x 8lDl and conformal self-maps of the open unit disk. 

Next we take a giant step by proving a form of the Schwarz lemma that 
is invariant under conformal self-maps of the open unit disk. 

Theorem (Pick's Lemma). If J(z) is analytic and satisfies IJ(z)1 < 1 
for Izl < 1, then 

(2.2) IJ'(z)1 < 1 - IJ(zW 
- 1-lz12 ' Izi < 1. 

If J(z) is a conformal self-map oflDl, then equality holds in (2.2); otherwise, 
there is strict inequality for alllzi < 1. 

To prove (2.2), our strategy is to transport z and J(z) to 0 using con­
formal self-maps, and to apply the Schwarz lemma to the resulting com­
position. Fix Zo E lDl and set Wo = J(zo). Let g(z) and h(z) be conformal 
self-maps of lDl mapping 0 to Zo and Wo to 0, respectively, say 

g(z) = z+zo, h(w) = w-wo . 
1 +zoz 1- WOW 

Then h 0 Jog maps 0 to O. The estimate (1.3) and the chain rule yield 

(2.3) I(h 0 J 0 g)'(O) 1 = Ih'(wo)J'(zo)g'(O) 1 ~ 1, 

hence IJ'(zo)1 ~ l/Ig'(O)llh'(wo)l· Substituting g'(O) 
h'(wo) = 1/(1 -lwoI2), we obtain (2.2). 

If J(z) is a conformal self-map oflDl, then so is hoJog, so we have equality 
in (2.3), which yields equality in (2.2). Conversely, suppose that J(z) is 
an analytic function from lDl to lDl such that equality holds in (2.2) at one 
point ZOo Then the calculations above give I(h 0 J 0 g)'(O)1 = 1. According 
to Section 1, h 0 Jog is multiplication by a unimodular constant, hence a 
conformal self-map of lDl. Composing by h-1 on the left and by g-1 on the 
right, we conclude that J is a conformal self-map of lDl. 
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Exercises for IX.2 

1. A finite Blaschke product is a rational function of the form 

B(z) = eirp ( z -~ ) ... ( z -~ ) , 
1- alZ 1- anz 

where al, ... ,~n E JIJ) and 0 ::; <p ::; 27f. Show that if J(z) is continu­
ous for Izl ::; 1 and analytic for Izl < 1, and if IJ(z)1 = 1 for Izl = 1, 
then J(z) is a finite Blaschke product. 

2. Show that J(z) = (1 + 3z2)j(3 + z2) is a finite Blaschke product. 

3. Suppose J(z) is analytic for Izl < 3. If IJ(z)1 ::; 1, and J(±i) = 
J(±l) = 0, what is the maximum value of IJ(O)I? For which func­
tions is the maximum attained? 

4. For fixed zo, Zl E JIJ), find the maximum value of IJ(Zl) - J(zo)1 
among all analytic functions J(z) on the open unit disk JIJ) satisfying 
IJ(z)1 < 1. Determine for which such functions the maximum value 
is attained. Hint. Consider first the case where Zo = r > 0 and 
Zl = -r, and show that the maximum is 2r, attained only for 
J(z) = AZ, IAI = 1. 

5. Show that any conformal self-map of the upper half-plane has the 
form 

J(z) = az + b, 
ez+d 

Imz > 0, 

where a, b, e, d are real numbers satisfying ad - be = 1. When do two 
such coefficient choices for a, b, e, d determine the same conformal 
self-map of the upper half-plane? 

6. Show that the conformal maps of the upper half-plane onto the open 
unit disk are of the form 

J(z) = eirpZ - ~, 
z-a 

Ima > 0, 0::; <p ::; 27f. 

Show that a and e irp are uniquely determined by the conformal map. 

7. Show that every conformal self-map of the complex plane C has the 
form J(z) = az + b, where a -=J O. Hint. The isolated singularity of 
J(z) at 00 must be a simple pole. 

8. Show that every conformal self-map of the Riemann sphere C* is 
given by a fractional linear transformation. 

9. Show that any conformal self-map of the punctured unit disk {O < 
Izl < I} is a rotation z f-+ eirpz. 
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10. Show that any conformal self-map of the punctured complex plane 
{o < Izl < oo} is either a multiplication z f-> az, or such a multipli­
cation followed by the inversion z f-> 1/ z. 

11. Let D = C\ {aI, ... , am} be the complex plane with m punctures. 
Show that any conformal self-map of D is a fractional linear trans­
formation that permutes {al,." ,am,oo}. 

12. Determine the conformal self-maps of the following domains D: (a) 
D=C\{O,I}, (b) D=C\{-I,O,I}, (c) D=C\{-I,O,2}. 

13. Suppose f(z) is an analytic function from the open unit disk IDl to 
itself that is not the identity map z. Show that f (z) has at most one 
fixed point in IDl. Hint. Make a change of variable with a conformal 
self-map of IDl to place the fixed point at 0. 

14. Suppose fez) is an analytic function from the open unit disk IDl to 
itself that is not a conformal self-map, and denote by f n (z) the nth 
iterate of J(z). Show that if J(z) has a fixed point Zo E IDl, then 
fn(z) converges to Zo for each z E IDl. Show that for each r < 1, the 
convergence is uniform for Izl :S r. Hint. See Exercise 1.8. 

15. We say that two conformal self-maps f and 9 of IDl are conjugate if 
there is a conformal self-map h of IDl such that 9 = h 0 f 0 h- l . (See 
the exercises for Section 11.7.) Let f be a conformal self-map of IDl 
that is not the identity map z. (a) Show that either J has two fixed 
points on aIDl, counting multiplicity, or f has one fixed point in IDl. 
(b) Show that J has a fixed point in IDl if and only if f is conjugate to 
a rotation g( z) = eicp z. (c) Show that rotations by different angles 
are not conjugate. (d) Show that J has two distinct fixed points 
on aIDl if and only if J is conjugate to g(z) = (z - 8)/(1 - 8Z) for 
some 8 satisfying ° < 8 < 1. (e) Show that g's for different 8'S are 
not conjugate. (f) Show that any two conformal self-maps ofIDl with 
one fixed point on aIDl (of mUltiplicity two) are conjugate. 

3. Hyperbolic Geometry 

Suppose w = J(z) is a conformal self-map of the open unit disk IDl. From 
Pick's lemma we then have equality in (2.2), 

I~:I 
In differential form this becomes 

Idwl 
l-lwl2 

Idzl 
l-lzl2 ' 
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which means that if 'Y is any smooth curve in II)), and w = J ( z) is a conformal 
self-map of II)), then 

(3.1) ( Idwl 1 Idzl 
lIo"! 1 -lwl2 "! 1 -lzl2 . 

Thus to obtain a length function that is invariant under conformal self­
maps of II)), we are led to make the following definition. We define the 
length of 'Y in the hyperbolic metric by 

(3.2) hyperbolic length of'Y = 211 ~~~12 . 
The factor 2 is a harmless factor, which is often omitted. (It adjusts the 
metric so that its curvature is -1.) The identity (3.1) shows that J 0 'Y 
has the same hyperbolic length as 'Y for any conformal self-map J(z) of II)). 
Thus hyperbolic lengths are invariant under conformal self-maps of II)). 

We define the hyperbolic distance p(zo, Zl) from Zo to Zl to be the 
infimum (greatest lower bound) of the hyperbolic lengths of all piecewise 
smooth curves in II)) from Zo to Zl. Since conformal self-maps of JD) preserve 
the hyperbolic lengths of curves, they also preserve hyperbolic distances; 
that is, for any conformal self-map w = J(z) of II)), 

ZO, Zl E JD). 

Theorem. For any two distinct points zo, Zl in the open unit disk II)), there 
is a unique shortest curve in II)) from Zo to Zl in the hyperbolic metric, 
namely, the arc of the circle passing through Zo and Zl that is orthogonal 
to the unit circle. 

The paths of shortest hyperbolic length between points are called hy­
perbolic geodesics. The hyperbolic geodesics play the role that straight 
lines play in the Euclidean geometry of the plane. They satisfy all the ax­
ioms of Euclidean geometry except the parallel axiom (that through each 
point not on a given line there passes a unique straight line through the 
point and parallel to the given line). 

hyperbolic geodesics 

For a proof of the theorem, let w = J(z) be a conformal self-map of II)) 

such that J(zo) = o. By multiplying by a unimodular constant, we can 
arrange that J(Zl) = r > O. Since J(z) preserves hyperbolic lengths, and 
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since J ( z) maps circles orthogonal to the unit circle onto circles orthogonal 
to the unit circle, it suffices to show that the straight line segment from 0 
to r is a unique path of shortest hyperbolic length from 0 to r. For this, 
let ')'(t) = x(t) + iy(t), ° :s t :s 1, be a piecewise smooth path in Jl)) from 0 
to r. Then a(t) = Re(')'(t)) = x(t) defines a path in Jl)) from 0 to r along 
the real axis, and 

1 Idzl rl Idx(t) I rl Idx(t)1 1 Idzl 
Q 1 - Izl2 = Jo 1 - X(t)2 :s Jo 1 -1')'(t)12 :s 'Y 1 - Izl2 . 

If y(t) =f. 0 for some t, then b(t)1 > Ix(t)l, and the first inequality above is 
strict. In this case, the path a(t) on the real axis is strictly shorter than 
the path ')'(t). Further, if a(t) is decreasing on some interval, we could 
reduce the integral by deleting a parameter interval over which a(t) starts 
and ends at the same value. We conclude that the integral is a minimum 
exactly when ')'(t) is real and nondecreasing, in which case the path is the 
straight line segment from 0 to r. 

We turn now to an important reinterpretation of Pick's lemma. 

Theorem. Every analytic function w = J (z) from the open unit disk Jl)) 

to itself is a contraction mapping with respect to the hyperbolic metric p, 

(3.3) 

Further, there is strict inequality for all points zo, ZI E Jl)), Zo =f. Zb unless 
J(z) is a conformal self-map of Jl)), in which case there is equality for all 
zo, Zl E Jl)). 

To see this, let')' be the geodesic from Zo to Zl. Then J 0')' is a curve from 
J(zo) to J(Zl). Pick's lemma and the definition of the hyperbolic metric 
yield 

p(f(zo), J(ZI)) < 2 r Idwl = 21 1f'(z)"dz , 
Jfo'Y 1 -lwl2 'Y 1 -IJ(z)12 

1 Idzl 
< 2 'Y 1 _ Izl2 = p(zo, ZI). 

If J(z) is not a conformal self-map of Jl)), there is strict inequality in Pick's 
lemma, and we obtain strict inequality in this estimate, hence in (3.3). 

The hyperbolic distance from 0 to z can be computed explicitly. It is 

rlzl dt rlzl [1 1] (1 + IZI) 
p(O,z) = 2 Jo 1-t2 = Jo 1-t +l+t dt = log 1-lzl . 

This shows that the hyperbolic distance from 0 to z tends to +00 when z 
tends to the boundary of the unit disk. 

A geodesic triangle is an area bounded by three hyperbolic geodesics. 
Since the hyperbolic geodesics and the angles between them are preserved 



3. Hyperbolic Geometry 269 

hyperbolic triangles 

by conformal self-maps of][J), we can map any geodesic triangle to a triangle 
with vertex at ° and with the same angles between sides. For a geodesic 
triangle with vertex at 0, two of the sides are radial segments, and the third 
is an arc of a circle lying inside the Euclidean triangle with the two radii 
as sides. From this representation we see that the sum of the angles of any 
geodesic triangle is strictly less than 7r, which is the sum of the angles of 
the corresponding Euclidean triangle. 

In connection with complex analysis, we have now been in contact with 
three spaces with strikingly different geometries. The first space is the 
complex plane C with the usual Euclidean metric Idzl. In the Euclidean 
plane, the geodesics are straight lines, and the sum of the angles of a 
geodesic triangle is exactly equal to 7r. The second space is the open unit 
disk II} with the hyperbolic metric 2Idzl/(1-lzI2). For the hyperbolic disk, 
the geodesics are arcs of circles orthogonal to the unit circle, and the sum 
of angles of a geodesic triangle is strictly less than 7r. 

The third space is the extended complex plane C* = C U { oo} with the 
spherical metric, which can be introduced in a manner completely analo­
gous to the hyperbolic metric. Recall (Section I.3) that the chordal metric 
induced on C by the Euclidean metric of the sphere via the stereographic 
projection is given explicitly by 

chordal distance from z to w 
21z -wi 

y'1 + Iz12y'1 + Iwl2 

The infinitesimal form of this metric is 21 dz 1 1(1 + 1 z 12). If I' is a path in C* , 
its length in the spherical metric is 

. . 1 Idzl J b'(t)1 
sphencallength of I' = 2 "( 1 + Izl2 = 2 1 + 1I'(t)12 dt. 

This is the length of the corresponding path on the unit sphere in ]R3. 

The distance from Zl to Z2 in the spherical metric is defined to be 
the infimum of the spherical lengths of the paths joining Z l to Z2. Since 
the chordal metric is invariant under rotations of the sphere, so is the 
spherical metric, and consequently, the lengths of paths and the distances 
between points in the spherical metric are invariant under rotations. It is 
not difficult to show that the geodesics in the spherical metric correspond 
to great circles on the sphere, and the sum of the angles of a geodesic 
triangle is strictly greater than 7r. 
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Each of these three spaces is homogeneous, in the sense that any pre­
scribed point can be transported to any other by an "isometry." Thus for 
each of these spaces, any scalar quantity that is invariant under isometries 
is constant. It turns out that a notion of "scalar curvature" can be associ­
ated to each of the spaces (see the exercises), and the curvature is invariant 
under isometries, so that in each case the curvature is constant. The Eu­
clidean plane has constant zero curvature, the sphere has constant positive 
curvature, and the hyperbolic disk has constant negative curvature. The 
curvature can be related to the area and the sum of angles of geodesic tri­
angles (Gauss-Bonnet formula). We summarize these properties in tabular 
form. 

Geometry Euclidean Spherical Hyperbolic 

Infinitesimal length Idzl 21dzl 21dzl 
1 + Izl2 l-lzl2 

Oriented isometries ei'Pz + b rotations conformal self-maps 

Curvature 0 +1 -1 
Geodesics lines great circles circles .1 unit circle 

Angles of triangle =7r >7r <7r 

Disk circumference 27rp 
7rp3 

27rp - 3 + O(l) 
7rp3 

27rp + 3 + O(p5) 

~ ~ ~ 
Euclidean disk spherical disk hyperbolic disk 

Exercises for IX.3 

1. Show by direct computation that Iw'(z)1 = (1 -lwI2)j(1 -lzI2) for 
any conformal self-map w = J(z) oLI!)). 

2. A hyperbolic disk centered at Zo E ]J)) of radius p > 0 consists 
of all z E ]J)) such that p(z, zo) < p. (a) Show that the hyperbolic 
disk centered at 0 of radius p is a Euclidean disk of radius r = 
(eP - 1) j (eP + 1). (b) Show that any hyperbolic disk is a Euclidean 
disk. 

3. Denote by c(z, p) and r(z, p) the Euclidean center and Euclidean 
radius of the hyperbolic disk centered at z of hyperbolic radius p. 
(a) For fixed p, show that r(z, p)j(I-lzl) tends to a constant A > 0 
as Izl ~ 1. (b) For fixed p, show that Iz-c(z,p)ljr(z,p) tends to a 
constant B, 0 < B < 1, as Izl ~ 1. 



Exercises 271 

4. Show that the circumference of a hyperbolic disk of radius p is 
211" sinh p. Hint. Show first that the hyperbolic circumference of 
a Euclidean disk of radius r centered at 0 is 411"r/(1 - r2). 

5. We define the hyperbolic area of a subset E of JI) to be 

4Jr r dx dy 
JE (1-lzI2)2 . 

Show that the hyperbolic area is invariant under conformal self­
maps of III Show that the hyperbolic area of a hyperbolic disk of 
radius p is given by 

6. Establish the following, for the spherical metric. (a) The circumfer­
ence of a spherical disk of radius p is 211" sin p, 0 < p < 11". (b) The 
area of a spherical disk of radius p is given by 

(c) The geodesics in the spherical metric correspond to great circles 
on the sphere. Hint. It suffices to show that the shortest curve 
from 0 to c in the spherical metric is the straight line segment joining 
them. 

7. Show that an isometry of the hyperbolic disk JI) is either a conformal 
self-map of JI) or the composition of a conformal self-map and the 
reflection z 1-+ Z. 

8. Let fez) = (az+b)/(ez+d), where ad-be = 1. Show that fez) is an 

isometry in the spherical metric if and only if the matrix (~ ! ) 
is unitary. 

9. Show that the function f (z) = z2 is strictly contracting with respect 
to the hyperbolic metric on any sub disk {izi :::; r}, 0 < r < 1, and 
that any branch of the square root function is strictly expanding, 
by establishing the following. (a) For fixed r, 0 < r < 1, show that 

2 2 2r 
p(z ,( ) :::; 1 +r2P(z,(), Izl, 1(1 sr. 

When does equality hold? (b) Show that the constant 2r/(1 + r2) 
in (a) is sharp. (c) For fixed s, 0 < s < 1, show that 

P ( ±Jz, ±J() ~ ~~ p(z, (), IzI,I(1 s s. 
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10. Show that 

d(z,w) = lIZ-=-:zl' Izl,lwl < 1, 

satisfies the triangle inequality, that is, d(z,w) :::; d(z,() + d((,w) 
for all z, (, w E II}. Remark. This can be regarded as the analogue 
of the chordal metric for the sphere (defined in Section 1.3). Except 
for the constant factor 2, the hyperbolic metric is the infinitesimal 
version of the metric function d(z, w). 

11. Show that the metric function d(z, w) defined in the preceding ex­
ercise satisfies 

d(f(z), J(w)) :::; d(z, w), Izl,lwl < 1, 

for any analytic function J(z) from II} to II}. Show that equality 
obtains whenever J(z) is a conformal self-map of II}, and otherwise 
there is strict inequality for all z #- w. 

12. A conformal map g( z) of a domain D onto the open unit disk II} 

induces the metric PD on D defined by 

2Ig'(z)1 
dpD(Z) = 1 _lg(z)l2ldz l, ZED. 

Show that PD is independent of the conformal map g( z) of D onto II}. 
Remark. The metric PD is called the hyperbolic metric of the 
simply connected domain D. 

13. Show that the hyperbolic metric of the upper half-plane 1HI is given 
by 

d () _ Idzl 
PlHIZ- , 

y 
z = x + iy, y > O. 

What are the geodesics in the hyperbolic metric? Illustrate with a 
sketch. 

14. Show that the horizontal strip S = {-11"/2 < Imz < 11"/2} has 
hyperbolic metric 

dps(z) = Idzl , 
cosy 

z = x + iy, -11"/2 < y < 11"/2. 

Sketch the hyperbolic geodesics that are orthogonal to the vertical 
interval {iy: -11"/2 < y < 11"/2}. 

15. The curvature of the metric a(z)ldzl is defined to be 

1 ( fj2 82 ) ~(z) = - a(z)2 8x2 + 8y2 loga(z). 
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Find the curvature of each of the spherical, the hyperbolic, and the 
Euclidean metrics. 

16. (Wolff-Denjoy Theorem.) Let J(z) be an analytic function from lI)) 

to lI)). Let In(z) denote the nth iterate of J(z), and let Kr denote 
the closed disk {Izl :::; r}. 
(a) Show that if J(z) is not a conformal self-map of lI)), then for 

any r < 1 there is a constant c < 1 such that p(J(z), J(w)) :::; 
cp(z, w) for z, w E K r . 

(b) Show that if the image J(lI))) is contained in Kr for some r < 1, 
then the iterates In(z) converge uniformly on lI)) to a fixed point 
for J(z). 

(c) Show that if J(z) is not a conformal self-map ofll)), and if there 
is r < 1 such that the iterates of some point Zo E lI)) visit Kr 
infinitely often, then the iterates In(z) converge normally on lI)) 
to a fixed point of J(z). Hint. First find the fixed point. 

(d) Show that if the iterates of some point Zo E lI)) tend to the unit 
circle em, then there is a point ( E all)) (the Wolff-Denjoy 
point) such that the iterates J n (z) converge normally on lI)) 

to (. Hint. Suppose Zo = o. Define ge(Z) = (1- e)J(z), let Ze 
be the fixed point of ge(Z), and let De be the hyperbolic disk 
centered at Ze with 0 on its boundary. Show that the limit D 
of the De's is a Euclidean disk that is invariant under J (z) and 
whose boundary meets all)) in exactly one point. 
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Harmonic Functions and the 
Reflection Principle 

In Section 1 we introduce the Poisson kernel function and we develop the 
Poisson integral representation for harmonic functions on the open unit 
disk. The Poisson kernel is the analogue for harmonic functions of the 
Cauchy kernel for analytic functions, and the Poisson integral formula 
solves the Dirichlet problem for the unit disk. In Section 2 we use this 
solution to characterize harmonic functions by the mean value property. 
This characterization is the analogue of Morera's theorem characterizing 
analytic functions. In Section 3 we apply the characterization of harmonic 
functions to establish the Schwarz reflection principle for harmonic func­
tions. The reflection principle plays a key role in the study of boundary 
behavior of conformal maps. 

1. The Poisson Integral Formula 

We wish to extend a given continuous complex-valued function h (ei8 ) on 
the unit circle continuously to the closed unit disk {I z I :<:; I} so as to be 
harmonic on the interior of the disk. Any such extension is unique, since the 
difference of two such extensions is zero on the boundary, hence zero on the 
entire disk, by the maximum principle. Our strategy is to derive a formula 
for the extension in the case that h (e i8 ) is a trigonometric polynomial, and 
then to show that the formula provides an extension even when h (ei8 ) is 
only continuous. 

We start with the trigonometric monomial eik8 . A harmonic extension 
is given explicitly by rlkl eik8 . If k 2': 0 this extension is r k eik8 = zk, 

which is analytic. If k < 0 this extension is r- k eik8 = z( -k), which is 
conjugate-analytic hence harmonic. Proceeding by linearity, we see that 
the trigonometric polynomial h (e i8 ) = L~=-N akeik8 has the (unique) 

274 



1. The Poisson Integral Formula 275 

harmonic extension 

N 

ii (rei8 ) = L akrlkleik8. 
k=-N 

We capture the coefficient am by multiplying h (ei8 ) by e-im8 and integrat­
ing. The orthogonality relations for complex exponentials (Section VI.6) 
yield 

Substituting this expression into the formula for h (rei8 ), we obtain 

In order to simplify this expression, we introduce the Poisson kernel 
function defined by 

00 

(1.1) Pr(8) = L rlkl eik8. 
k=-oo 

For each fixed p < 1, this series converges uniformly for r ~ p and -11" ~ 
() ~ 11", by the Weierstrass M-test, since then Ir lkleik81 ~ elkl .. In terms of 
the Poisson kernel, the formula for the harmonic extension h (ret8 ) becomes 

(1.2a) 

If we make a change of variable 'P 1-+ () - 'P and use the 211"-periodicity of 
Pr ((}), we obtain an alternative form of (1.2a), 

(1.2b) h(rei8 ) = i: h (e i (8-'P») Pr('P)~~' 

Now we look at the Poisson kernel function Pr ((}) more closely. Setting 
z = rei8 and setting j = -k when k < 0 in (1.1), we obtain 

00 00 

Pr ((}) = 1 + Lzk + Lzj. 
k=l j=l 

Summing these two geometric series, we obtain 

(1.3) 
z Z 

Pr ((}) = 1+-+-, 
1-z 1-z 
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Putting this over the common denominator 

11 - zl2 = (1 - z)(1 - z) = 1 + r2 - 2rcosO, 

we obtain 

(1.4) 
1 + r2 - 2r cos e ' 

z = rei9 E ID>. 

Since the Poisson kernel is 211"-periodic, we focus on its behavior on the 
period interval -11" ::::: 0 ::::: 11". From the Poisson integral representation 
formula (1.2b) for the constant function h == 1, we have 

(1.5) 111" de 
Pr (O)-2 = 1. 

-11" 11" 

Three other properties of the Poisson kernel, which follow immediately 
from the formula (1.4), are 

(1.6) 

(1.7) 

Pr(e) > 0, -11" ::::: 0 ::::: 11", 

Pr(-e) = Pr(O), -7r:::::e:::::1I", 

(1.8) Pr(e) is increasing for -7r ::::: 0 ::::: 0 and decreasing for 0 ::::: 0 ::::: 11". 

Since Pr (<5) --+ 0 as r --+ 1 for each fixed <5 > 0, we obtain from (1.8) the 
following key property of the Poisson kernel: 

(1.9) for fixed <5 > 0, max{ Pr(O) : <5 ::::: 101 ::::: 7r} --+ 0 as r --+ 1. 

These five properties, (1.5) through (1.9), are fundamental for understand­
ing the Poisson kernel. Properties (1.5) and (1.6) together show that each 
Pre e)dO /211" is a "probability measure," that is, a positive "mass distribu­
tion" with unit total mass. Properties (1.5), (1.6), and (1.9) show that the 
family of functions Pr(O) form an "approximate identity," in the sense that 
the mass of the probability measure Pre O)dO /211" concentrates at the point 
o = 0 as r --+ 1. Identity (1.7) reflects the symmetry of the Poisson kernel. 

______ ~~~~~--___ r=O 

a 

r=l13 
r=2I3 

Another important property of the Poisson kernel function is that Pr (0) 
is a harmonic function of z = rei9 for z E ID>. In fact, (1.3) yields an explicit 
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representation of the Poisson kernel function as the real part of an analytic 
function, 

Pr(e) = 1+2 Re(_z_) = Re(l+Z), 
1-z 1-z 

z = reiO E j[J). 

The Poisson integral formula (1.2a) becomes 

Thus 

(1.10) h(z) = jTr h (ei'P) Re (e''P + z) d'P , 
-Tr e''P - z 211" 

z E j[J). 

If we substitute for h (eiO ) a real-valued trigonometric polynomial u (eiO ) 
in this formula, we may take real parts after integrating, and we obtain 

(1.11 ) jTr . ei'P + z d'P 
u(z) = Re u(e''P) -.-- -, 

-Tr e''P - z 211" 
z E j[J). 

The integral depends analytically on the parameter z. Thus (1.11) ex­
presses the Poisson integral u(z) as the real part of an explicit analytic 
function. 

Now we change our point of view. Instead of focusing on trigonometric 
polynomials, we consider an arbitrary continuous complex-valued function 
h (eiO ) on the unit circle. We define the Poisson integral h( z) of h (eiO ) 
to be the function on the open unit disk j[J) given by 

(1.12) h(z) = jTr h(ei'P)Pr(e-'P)d'P, 
-Tr 211" 

z = reiO E j[J). 

This is just (1.2a), and it can be rewritten as (1.2b). Formula (1.10) 
still holds, ·and for real-valued continuous functions u (eiO ) , formula (1.11) 
holds. 

The correspondence h ~ h is linear, that is, the Poisson integral of 
clhl + c2h2 is clhl + C2h2. Also, observe that the maximum principle 
holds, in the sense that if Ih (eiO ) I ::; M for all e, then Ih(z)1 ::; M for all 
z E j[J). This follows from (1.5) and (1.6), that is, from the fact that the 
Poisson kernel determines a probability measure. 

Theorem. Let h (ei~) be a continuous function on tbe unit circle. Tben 
tbe Poisson integral h(z) defined by (1.12) is a barmonic function on tbe 
open unit disk tbat bas boundary values h (eiO ), tbat is, h(z) tends to h(() 
as z E j[J) tends to ( E aj[J). 

The harmonicity can be checked by differentiating under the integral 
sign in (1.12). It can also be seen by decomposing h (eiO ) into its real and 
imaginary parts, h (eiO ) = u (eiO ) + iv (eiO ). Formula (1.11) shows that 
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u(z) and v(z) are harmonic, and hence h(z) = u(z) +iv(z) is harmonic for 
Izl < 1. 

Since the statement about the boundary values is important, we sketch 
two proofs. The first proof depends upon the fact that any continuous 
function on the unit circle can be approximated uniformly by trigonomet­
ric polynomials. (One way to see this is to approximate the continuous 
function by a smooth function and then to appeal to the result proved in 
Section VI.6 that the Fourier series of any smooth function on the unit 
circle converges uniformly to the function.) The second proof illustrates 
how the properties of an approximate identity are typically used. 

The first proof boils down to the fact that a uniform limit of continuous 
functions is continuous. It runs as follows. Let h (e iO ) be continuous, and 
let € > O. Let 9 (eiO ) = I:: akeikO be a trigonometric polynomial such 

that Ih(eiO ) _g(eiO)1 ::; € for all eiO E oJD). Then Ih(z) -g(z)1 ::; € for 

all z E JD). Now, 9 (reiO ) = I:: akrlkleikO attains the boundary values 
9 (e iO ) continuously on oJD). Hence the composite function equal to h (eiO ) 
on oJD) and h (reiO ) on JD) can be appr,?ximated to within € by a continuous 
function. Conse9-uently, the values h( z) cluster t~ within € of h (e~.O) as 
z E JD) tends to e~o E oJD). Since € > 0 is arbitrary, h(z) tends to h (e~O) as 
z E JD) tends to eiO E oJD). 

The second proof depends only on properties (1.5), (1.6), and (1.9) of the 
Poisson kernel. Again let € > O. Choose M > 0 such that Ih (eiO ) I ::; M. 
Since h (eiO ) is uniformly continuous, we can choose 0 > 0 so small that 
Ih (eiO ) - h (eiCP ) I < € whenever 10 - cpl < o. Using (1.5) we have 

Now we take absolute values, break the integral cleverly into pieces, and 
make the obvious estimate on each piece, to obtain 

Ih(reiO)-h(eiO)1 < (JO + r )lh(ei(O-cp))-h(eiO)lpr(cp)dCP 
_0 Jo-:;lcpl-:;7r 211" 

< JO €Pr(cp) dcp + 2M max Pr(CP) r dcp 
-0 211" o-:;lcpl-:;7r Jo-:;lcpl-:;7r 211" 

< € + 2M max Pr(CP). 
0-:; Icpl-:;7r 

By (1.9), the summand on the right tends to 0 as r --t 1. Thus again the 
~alues h(z) cluster to within € of h (eiO ) as z --t eiO , this for any € > 0, so 
h(z) --t h (eiO ) as z --t eiO . 
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Exercises for X.I 

1. Show that the Fourier coefficients of Pr(B) are Ck = rlkl, -00 < k < 
00. (Here we fix r, 0 ~ r < 1, and we regard Pr(B) as a function on 
the circle.) 

2. Let R > 0, and let h (Rei8 ) be a continuous function on the circle 
{Izl = R}. Show that the function 

h(z) - - r h (Rei<P) <P j 7r R2 2 d 

- -7r R2 + r2 - 2rRcos(B - <p) 2rr ' 
Izl <R, 

is harmonic on the disk {Izl < R} and has boundary values h (Rei8 ) 
on the boundary circle. 

3. Suppose that J(z) = u(z) + iv(z) is analytic for Izl < 1 and that 
u(z) extends to be continuous on the closed disk {Izl S I}. Show 
that 

J( ) - ( i<P) e z <p • (0) 127r i<p + d 
z - ue . -2 +w , 

o et<p - z rr Izl < 1. 

Remark. This is the Schwarz formula, expressing an analytic 
function in terms of the boundary values of its real part. 

4. Let {fn(z) = un(z) + ivn(z)} be a sequence of analytic functions on 
the open unit disk J[)) such that un(z) extends continuously to oJ[)), 

Un (ei8) converges uniformly on oJ[)) to u ( ei8 ), and Vn (0) converges. 
Show that In(z) converges normally on J[)) to an analytic function 
J(z) whose real part is u(z). Hint. Use the Schwarz formula. 

5. Let h (ei8 ) be a piecewise continuous function (or an integ~able func­
tion) on the unit circle. Show that the Poisson integral h( z) tends 
to h( () as z E J[} tends to any point ( of the unit circle at which 
h (ei8) is continuous. 

6. A function J(z), z E J[}, is said to have radial limit L at ( E aJ[} if 
J(r() --+ L as r increases to 1. Let h (e:8 ) be a piecewise continuous 
function on the unit circle. Show that h( z) has a radial limit at each 
( E aJ[}, equal to the average of the limits of h (ei8 ) at ( from each 
side. 

7. For each t > 0, define the kernel function Ct(s) on the real line by 

t 1 
Ct(s) = - -2--2' -00 < S < 00. 

rr S + t 
For h(~) a bounded piecewise continuous function on the real line, 
define a function h(s + it) on the open upper half-plane lHl by 

h(s + it) = i: Ct(s - ~)h(~) d~, s + it E lHl. 
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(a) Sketch the graph of Ct(s) for t = 1, t = 0.1, and t = 0.01. (b) 
Show that Ct(s) > 0 and f~oo Ct(s) ds = 1. (Thus Ct(s)ds is a prob­
ability measure.) (c) Show that for each 8> 0, f{lsl>o} Ct(s) ds --t 0 
as t --t O. (Thus Ct(s)ds is an approximate identIty.) (d) Show that 
h(s + it) is a bounded harmonic function in the upper half-plane. 
(e) Show that h(s + it) --t h(~o) as s + it E 1HI tends to ~o, whenever 
h(~) is continuous at ~o. Remark. The kernel function Ct(s) is the 
Poisson kernel for the upper half-plane. 

8. !-et h (eiCP ) be a continuous complex-valued function on all}, and let 
h( z) be its Poisson integral. 
(a) Show that 

am _ 
-a h(z) zm 
am _ 
azm h(z) 

I h icp e rp 111" icp d 

m. -11" (e ) (eicp _ z)m+l 271" ' 

I h icp e 3!.. 111" -icp d 

m. -11" (e ) (e-icp _ z)m+l 271" ' 

Hint. Use the identity 

ze-icp zeicp 
Pr (() - rp) = 1 + 1 -icp + 1 - icp , - ze - ze 

z E Il}, 

z E Il}. 

z = reifJ , 

and justify differentiating under the integral sign. 
(b) Show that if I h (eifJ ) I ~ M on all}, then 

--h z < m!M. - , I am - I J1I" 1 drp 
azm () - -11" le'Cp - plm+l 271" Izl:::; p, 

with similar estimates for the z-derivatives. 
(c) Show that if h (e ifJ ) = e-ifJ (eifJ - z)m+l IleifJ - zlm+l, then 

equality holds in (b) when Izl = p. 

9. Let {hn(eicp )} be a sequence of continuous functions on the unit cir­
cle all} that converges uniformly to h(eicp ). Show that for each fixed 
p < 1, the partial derivatives of hn(z) converge to the corresponding 
partial derivatives of h(z) uniformly for Izl ~ p. Remark. It suffices 
to show this for the partial derivatives am I azm and am 18zm. See 
Exercise IV.8.4. 

2. Characterization of Harmonic Functions 

Recall (Section III.4) that a continuous function h(z) on a domain D has 
the mean value property if for each Zo E D, the value h(zo) is the average 
of h(z) over any small circle centered at zoo We have seen that harmonic 
functions have the mean value property. Here we prove the converse. 
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Theorem. Let h(z) be a continuous function on a domain D. Tben h(z) 
is barmonic on D if and only if h( z) bas tbe mean value property on D. 

The proof depends on solving the Dirichlet problem for disks in D. 
Roughly speaking, the Dirichlet problem for a domain U with bound­
ary aU is to extend a given function f(() on aU to a harmonic function 
f{z) on U, so that the harmonic extension j(z) has boundary values f((). 
Typically we assume that f(() is a continuous function on aU, and we ask 
that j(z) attain the boundary values f(() continuously, in the sense that 
j(z) tends to f(() as z E U tends to ( E aU. In the preceding section we 
showed that the Poisson integral solves the Dirichlet problem for the open 
unit disk]])l. By making a change of variable z ~ az + b, we can solve the 
Dirichlet problem on any disk. An explicit solution is obtained by changing 
variable in the Poisson integral formula. (See Exercise 1.2.) 

So let U be any open disk in D whose boundary is also contained in D. 
Since the Dirichlet problem is solvable for U, there is a harmonic function 
g(z) on U that has boundary values h(z) on aU. Then h(z) - g(z) is a 
continuous function on U that has the mean value property on U, and 
h(z) - g(z) tends to 0 on aU. By the maximum principle for functions 
with the mean value property (Section IIl.4), h(z) - g(z) = 0 on U. Con­
sequently, h(z) = g(z) on U, and h(z) is harmonic on U. Since this holds 
for all U, h(z) is harmonic on D. 

The characterization of harmonic functions by the mean value property is 
the analogue for harmonic functions of Morera's theorem for analytic func­
tions. The hypothesis involves an integration, which is easier to perform 
than differentiation. The characterization can be exploited in the same 
way as the characterization of analytic functions by Morera's theorem. For 
instance, it can be used to give a simple proof that the limit of a uniformly 
convergent sequence of harmonic functions is harmonic, since it is easy to 
check that the uniform limit of functions with the mean value property has 
the mean value property. It can also be used (Exercise 1) to show that 
an integral of a function that depends harmonically on a parameter also 
depends harmonically on the parameter. 

It is rather striking that a continuous function with the mean value 
property automatically has partial derivatives of all orders. 

Exercises for X.2 

1. Let g(t,z) be a continuous function defined for a ~ t ~ band z in a 
domain D, and suppose that g(t,z) is a harmonic function of z for 
each fixed t. Show that 

G(z) = lb g(t, z)dt, ZED, 

is harmonic on D. 
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2. Assume that u(x, y) is a twice continuously differentiable function 
on a domain D. 
(a) For (xo, Yo) E D, let Ae:(xo, Yo) be the average of u(x, y) on the 
circle centered at (xo, Yo) of radius c. Show that 

1. Ae:(xo, Yo) - u(xo, Yo) _ 1 A ( ) 
1m 2 - -4£..l.U xo,Yo , e:-+O c 

where ~ is the Laplacian operator (Section 11.5). 
(b) Let Be: (xo, Yo) be the area average of u( x, y) on the disk centered 
at (xo, Yo) of radius c. Show that 

1. Be: (xo, Yo) - u(xo, Yo) 1 A ( ) 
1m 2 = -8£..l.U xo,Yo . e:-+O c 

3. For fixed p > 0, define h(z) = eip 1m Z. Show that if p is a zero of the 
Bessel function Jl(z), then J"( h(z)dz = 0 for all circles 'Y of radius 
1. Suggestion. See the Schlomilch formula (Exercise V1.1.3). 

4. Suppose that rI, r2 > 0 are such that r2/r1 is a quotient of two 
positive zeros of the Bessel function h(z). Show that there is a 
continuous function g(z) on the complex plane such that J"( g(z)dz = 
o for all circles of radius r1 and for all circles of radius r2, yet g(z) 
is not analytic. Use the preceding exercise together with the fact 
(easily derived from the differential equation in Section V.4) that 
J1(z) has zeros on the positive real axis. Remark. The condition is 
sharp. If r2/Tl is not the quotient of two positive zeros of the Bessel 
function J 1 (z), then any continuous function J(z) on the complex 
plane such that J"( J(z)dz = 0 for all circles of radius r1 and T2 is 
analytic, by a theorem of L. Zalcman. There is an analogous result 
for harmonic functions and the mean value property. According to 
a theorem of J. Delsarte, if rI, r2 > 0 are such that r2/r1 is not 
the quotient of two complex numbers for which Jo(z) = 1, then any 
continuous function on the complex plane that has the mean value 
property for circles of radius r1 and T2 is harmonic. 

3. The Schwarz Reflection Principle 

Suppose a given function is analytic on a domain that abuts on one side 
of an analytic curve. The Schwarz reflection principle asserts that under 
certain conditions, the analytic function extends analytically across the 
curve, and further, there is a formula for the extension. The formula reflects 
the function analytically to the mirror image of the domain, and the nub 
of the problem is to establish analyticity on the axis of reflection. 

At its core, the Schwarz reflection principle is a theorem about harmonic 
functions. We begin by reflecting harmonic functions across the real line. 
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First note that if u(z) is harmonic in a domain D, then u*(z) = u(z) is 
harmonic on the reHected domain D* = {z : zED}. Indeed, if u(x, y) has 
the mean value property on circles, then so does u(x, -y). Another way to 
see this is to note that the change of variables (x, y) t-+ (x, -y) does not 
change the Laplacian operator ~. 

Theorem. Let D be a domain that is symmetric with respect to the real 
axis, and let D+ = D n {1m z > O} be the part of D in the open upper 
half-plane. Let u(z) be a real-valued harmonic function on D+ such that 
u( z) --t 0 as z E D+ tends to any point of D n lR. Then u( z) extends to be 
harmonic on D, and the extension satisfies 

(3.1) u(z) = -u(z), zED. 

For the proof, note that D is the disjoint union of D+ = D n {1m z > O}, 
its reHection D- = D n {Imz < O}, and D n R. We extend u(z) to D by 
defining u(z) = -u(z) for z E D-, and setting u(z) = 0 for z E DnR. Then 
u(z) is continuous on D, u(z) is harmonic on D+ and on D-, and (3.1) 
holds. We claim that the extended function has the mean value property. 
Fix Zo E D. If Zo is in D+ or in D-, then u(z) has the mean value property 
for small disks centered at zo, since u(z) is harmonic near ZOo If Zo E DnR, 
then by (3.1) the average value of u(z) over the top half of a circle centered 
at Zo cancels the average over the bottom half of the circle, and the average 
of u(z) over the circle is 0, which coincides with u(zo). Thus u(z) has the 
mean value property on D, and u(z) is harmonic on D. 

There is a corresponding result for analytic functions. First note that 
if J(z) is analytic on a domain in the upper half-plane, then g(z) = J(z) 
is analytic on the reHected domain in the lower half-plane. This can be 
checked using the Cauchy-Riemann equations or a power series expansion. 
We can think of g(z) as the composition of an anticonformal map z t-+ Z, a 
conformal map J(z) (except where J'(z) = 0), and an anticonformal map 
W t-+ w; hence it is conformal. 
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Theorem. Let D be a domain that is symmetric with respect to the real 
axis, and let D+ = D n {1m z > O}. Let J( z) be an analytic function on D+ 
such that 1m J(z) ~ 0 as z E D+ tends to D n R Then J(z) extends to 
be analytic on D, and the extension satisfies 

(3.2) J(z) = J(z), zED. 

For the proof, write J(z) = u(z)+iv(z) in D+. By the preceding theorem, 
v(z) extends to be harmonic on D and satisfies v(z) = -v(z), zED. Fix 
a point Xo E DnJR., and let Do be a disk in D centered at Xo. Since v(z) is 
harmonic on Do, it has a harmonic conjugate on Do, and consequently J(z) 
extends to be analytic on Do. The function J(z) is also analytic on Do, 
and it coincides with J(z) on the real axis, so by the uniqueness principle it 
coincides with J(z) in Do. Hence (3.2) holds for z E Do. If we now extend 
J(z) to D- = Dn{Imz < O} by setting J(z) = J(z), z E D-, the extended 
J(z) is analytic on D- and coincides with the analytic continuation of J(z) 
across D n JR. from D+, and so is analytic on all of D. Further, it satisfies 
(3.2) for all zED. 

The above theorem is somewhat easier to prove if it is assumed that J(z) 
extends continuously from D+ to D n JR. and is real-valued there. In this 
case, formula (3.2) defines a continuous extension of J(z) to all of D, which 
is analytic on D- , and we can use Morera's theorem to show that it is also 
analytic across D n JR.. 

We define a curve 'Y to be an analytic curve if every point of 'Y has an 
open neighborhood U for which there is a conformal map ( f-4 z(() of a disk 
D centered on the real line lR onto U, such that the image of DnlR coincides 
with Un 'Y. We also refer to such a 'Y as an analytic arc. The conjugation 
( f-4 ( induces a map z f-4 z* of U onto itself, by z(()* = z(). The map is 
an ''involution" in the sense that the map followed by itself is the identity, 
z** = z. Further, z* = z if and only if z E 'Y. The map (f-4 (interchanges 
the top half and the bottom half of D\lR, which are the two components 
of D\JR., so the map z f-4 z* interchanges the two components of U\'Y. We 
refer to these two components as the neighborhoods of the sides of 'Y, 
and we refer to the map z f-4 z* as the reflection across 'Y. Since the map 
( f-4 ( is anticonformal, and the composition of an anticonformal map and 
conformal maps is anticonformal, the reflection z f-4 z* is anticonformal. 

D 

The reflection z f-4 z* is unique, in the following sense. If there is an 
open neighborhood of a point Zo E 'Ynu and an anticonformal map z f-4 z+ 
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that fixes each point of 'Y in the neighborhood, then z+ = z*. Indeed, the 
map z f--T (z+)* is the composition of two anticonformal maps, so it is 
conformal, hence analytic (Section V.8). Since it fixes points of 'Y, the 
uniqueness principle shows that it is the identity map. Thus (z+)* = z, 
and z+ = (z+)** = (z+*)* = z*. 

We can extend the involution z f--T z* to a neighborhood of the entire 
analytic arc 'Y, by covering 'Y with small coordinate sets U and using the 
uniqueness principle to see that the involutions agree on overlapping U's. 

Example. The map z(() = (( -i)/(( +i) sends the extended real line onto 
the unit circle. It induces a reflection across the unit circle, 

z* = ((-i)/((+i) = ((+i)/((-i) = liz = z/lzl2. 

From this formula we see that the reflected point z* lies on the same ray 
through the origin as z. The reflection z f--T z* maps the circle centered 
at 0 of radius r to that of radius l/r, sending rei8 to ei8 lr. 

,.---- ...... 

(-plane e-plane 

w=f(z) 
) w=w(0 

A more general version of the Schwarz reflection principle permits us to 
reflect harmonic and analytic functions across analytic curves. The idea is 
that if w = J ( z) is defined and analytic on one side of an analytic arc 'Y, 
and if the values w tend to another analytic arc a as z tends to 'Y, then J(z) 
extends analytically across 'Y, and the extension satisfies J (z*) = J (z ) * in a 
neighborhood of 'Y. (Here we use the same notation for both reflections.) It 
is a straightforward matter to justify the general version by coordinatizing 
both analytic arcs and reducing to the case of reflection across the real line. 
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Rather than state a precise theorem, we derive a version of the principle 
that will be used later. 

Let D be a domain. An analytic arc "( C aD is a free analytic bound­
ary arc of D if every point of "( is contained in a disk U such that U\ "( 
has two components, one contained in D and the other disjoint from D. 

Example. Suppose D is obtained from the open disk {Izl < 2} by excising 
a sequence of disjoint closed disks from the top half accumulating on the 
interval [-1, 1], as in the figure. Then the boundary circle of each excised 
disk is a free analytic boundary arc of D, but the analytic arc (-1, 1) is 
not a free analytic boundary arc. 

0000 
00000000 
000000000000000 

Theorem. Let D be a domain, and let "( be a free analytic boundary arc 
of D. Let J(z) be analytic on D. If IJ(z)1 ----> 1 as zED tends to ,,(, 
then J(z) extends to be analytic in a neighborhood of,,(, and the extension 
satisfies 

(3.3) J(z*) = 1/ J(z) 

in a neighborhood of ,,(, where z f-+ z* is the reflection across "(. 

For the proof, fix a point Zo E "(, and consider a conformal map ( f-+ z(() 
of a disk Do centered on lR onto an open set containing Zo so that Do n lR 
corresponds to Un "(. Then g(() = logJ(z(()) is defined and analytic on 
one side of Do n R Further, Reg(() = log IJ(z(())1 ----> 0 as ( ----> Do n R 
By the Schwarz reflection principle, g(() extends to be analytic on Do, as 
does J(z(()) = e9 (O. Consequently, J(z) extends analytically to U, and 
the extension is unique. To see that the extension satisfies (3.3), we argue 
as follows. The function h(z) = 1/ J(z*) is the composition of J(z) and 
the two anticonformal maps z f-+ z* and w f-+ l/w. Thus it is conformal 
wherever f'(z) =1= O. By the equivalence of analyticity and conformality 
(Section IV.8), h(z) is analytic wherever f'(z) =1= 0, and it is continuous, 
hence analytic also at the isolated points where J'(z) = o. Further, if 
z E ,,(, then z* = z, and IJ(z)1 = 1, so h(z) = J(z) on "(. By the uniqueness 
principle, h(z) = J(z) everywhere, and J(z) satisfies (3.3). 
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Exercises for X.3 
1. Show that the reflection in the circle {Iz - zol = R} is given by 

z* = Zo + R2(Z - zo)/lz - z012. 

2. Show that a reflection in a circle maps circles in the plane to circles. 

3. What happens to angles between curves when they are reflected in 
an analytic arc? 

4. Suppose the curve 'Y passing through 0 is the graph of a function 
y = h(x) that can be expressed as a convergent power series h(x) = 

2:%"=1 akxk , -r < x < r, where the ak's are real. (a) Show that 
z = (+ ih(() can be solved for ( = ((z) as an analytic function of 
z for Izl < c. (b) Show that 'Y is an analytic arc. (c) Show that the 
reflection through 'Y is given by z* = 2((z) - z. 

5. Determine the reflection z* of z across the parabola y = x2. Ex­
pand z* in a power series, in powers of z. Determine the radius of 
convergence of the series. Try to explain graphically why the radius 
of convergence is finite. 

6. Let J(z) be an entire function whose modulus is constant on some 
circle. Show that J(z) = c(z - zo)n for some n ~ 0 and some 
constant c, where Zo is the center of the circle. 

7. Show that if J(z) is meromorphic for Izl < 1, and IJ(z)1 -+ 1 as 
Izl -+ 1, then J(z) is a rational function. Show further that J(z) is 
the quotient of two finite Blaschke products. (For the definition of 
finite Blaschke product, see Exercise IX.2.1.) 

8. The modulus of an annulus {a < Iz - zol < b} is defined to 
be (1/2rr) log(b/a). (a) Show that any conformal map from one 
annulus centered on the origin to another such annulus extends to a 
conformal self-map of the punctured plane. (b) Show that there is a 
conformal map of one annulus onto another if and only if the annuli 
have the same moduli. (c) Show that any conformal self-map of the 
annulus {a < I z I < b} is either a rotation z 1--+ eicp z or a rotation 
followed by the inversion z 1--+ ab I z. 

9. Let 'Y be an analytic curve passing through the origin and tangent 
to the imaginary axis at O. Suppose that 'Y(t) = it + b2t2 + b3t3 + 
... , -8 < t < 8, where the bn's are real. Show that there is a 
conformal map cp(z) defined in a neighborhood of 0 such that cp(O) = 
0, cp'(O) = 1, and cp(z) maps the angle between the positive real axis 
and the segment of'Y in the upper half-plane to the angle between 
the positive real and imaginary axes if and only if 'Y coincides with 
its reflection l' in the real axis. Show that this occurs if and only if 
bn = 0 for n odd. 
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10. Let 'Y be an analytic curve passing through the origin and making 
an angle eo, ° < eo < 7f /2, with the positive real axis. Suppose 'Y is 
the image of an interval (-8,8) under h(z) = z+i(b1z + b2z2 + ... ), 
where the bj's are real. Define 

g(z) = h( h-1 (z) ), 

(a) Show that g(z) is analytic at z = 0, g'(O) =.A, and g(z) = z for 
z E 'Y. 

(b) Show that if cp(z) is analytic at z = 0, cp(O) = 0, cp'(O) = 1, 
and cp(z) maps the angle between the positive real axis and 
the segment of 'Y in the first quadrant to the angle between 
the positive real axis and the straight line segment at angle 
eo, then cp(g(z)) = Acp(Z). Remark. This equation for cp(z) is 
Schroder's equation. 

(c) Show by plugging in power series that any (normalized) solution 
cp(z) of Schroder's equation is unique, if it exists, and is given 
by cp(z) = z + C2z2 + C3z3 + ... , where 

n 2 2, 

An is a polynomial, and the an's are the power series coeffi­
cients of g(z). Remark. The problem of estimating the cn's to 
determine whether the series converges is called a "small de­
nominator problem ." As the powers An - 1 return sporadically 
near to 1, the denominators become sporadically small. 

(d) Show that if cp(z) is a solution of Schroder's equation (analytic 
at ° and satisfying cp(O) = 0, cp'(O) = 1), and if cp(x) is real 
when x is real, then cp(z) maps the angle between the positive 
real axis and 'Y to the angle between the straight line segments 
at angles ° and eo. 



XI 

Conformal Mapping 

In this chapter we will be concerned with conformal maps from domains 
onto the open unit disk. One of our goals is the celebrated Riemann map­
ping theorem: Any simply connected domain in the complex plane, except 
the entire complex plane itself, can be mapped conformally onto the open 
unit disk. We begin in Section 1 by reviewing and enlarging our reper­
toire of conformal maps onto the open unit disk, or equivalently, onto the 
upper half-plane. In Section 2 we state and discuss the Riemann map­
ping theorem. Before embarking on the proof, we give some applications 
to the conformal mapping of polygons in Section 3 and to fluid dynamics 
in Section 4. In Section 5 we develop some prerequisite material concern­
ing compactness of families of analytic functions, which is at a deeper level 
than the analysis used up to this point. The proof of the Riemann mapping 
theorem follows in Section 6. 

1. Mappings to the Unit Disk and Upper Half-Plane 

Recall that a conformal map of a domain D onto a domain V is an 
analytic function <p(z) from D to V that is one-to-one and onto. The 
composition of two conformal maps is a conformal map, and the inverse 
of a conformal map is a conformal map. In this section we seek to find 
conformal maps from various domains D onto the open unit disk 1Dl. Such 
a map <p(z) is never unique, as we can compose it with any conformal self­
map of 1Dl. However, if 'I/J(z) is any other conformal map of D onto 1Dl, then 
g = 'I/J 0 <p-1 is a conformal self-map of IDl for which go <p = 'I/J. Thus once 
one conformal map <p of D onto IDl is known, the others are precisely the 
maps of the form 'I/J = go <p, where g is a conformal self-map of 1Dl. 

We have seen in Section IX.2 that the conformal self-maps of the open 
unit disk have the form 

g(z) 
z-a 

A-­
I- az' 

289 

z E 1Dl, 
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where lal < 1 and IAI = 1. The conformal self-maps of JI)) are determined by 
three real parameters, namely, the real and imaginary parts of a, and the 
argument of the unimodular constant A. Consequently, a conformal map 
of D onto JI)) is uniquely determined by specifying three real parameters. 
Specifying the image of a fixed point of D counts as two real parame­
ters, corresponding to real and imaginary parts. Specifying the image of a 
boundary point of D counts as one real parameter. 

The fractional linear transformation w = (z - i)/(z + i) maps the open 
upper half-plane lHI onto the open unit disk JI)). The problem of finding 
a conformal map of a given domain onto JI)) is equivalent to finding one 
onto lHI. We can go back and forth between JI)) and lHI by composing with 
the above map and its inverse z = i(1 + w)/(1 - w). The complex analyst 
does not distinguish between the half-plane and the unit disk, and works 
in whichever space the calculations are simpler. 

We turn to three specific classes of domains: sectors, strips, and lunes. 
Sectors. A sector can be mapped onto a half-plane with the aid of the 

power function z!3, for an appropriate choice of {3. Any sector with vertex 
at 0 can be rotated by the map z 1-+ AZ, IAI = 1, to a sector of the form 
D = {O < arg z < a}, where a ::; 2?r. Since z!3 multiplies angles by {3, we 
set {3 = ?rIa, to obtain a map ( = z7r/o of the sector D onto the upper 
half-plane. If we follow this by the map w = (( - i) I (( + i) of 1HI onto JI)), 

we obtain a conformal map 

w = <p(z) 
z7r/O - i 

z7r/o + i ' 
zED, 

mapping the sector D onto the open unit disk. Under this map, the vertex 
of the sector at z = 0 corresponds to w = -1, and the other ''vertex'' at 
z = 00 corresponds to w = + 1. Rays emanating from the origin are mapped 
to arcs of circles from -1 to +1 in JI)), and the circular arcs {Izl = constant} 
are mapped to their orthogonal trajectories, which are arcs of circles from 
the bottom half of the unit circle to the top half. 

(-i 
w=-

(+i ---. 

o o 

z-plane (-plane w-plane 

Exercise. Find a conformal map of the sector {-?r < arg z < ?r 12} onto 
the open unit disk. 
Solution. The rotation ( = e7riz = -z maps the given sector to the 
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sector {O < arg( < 37r/2} in the (-plane. The power function ~ = (2/3 

maps this to the upper half of the ~-plane. We compose this with the map 
w = (~ - i) / (~ + i) onto the open unit disk, and we obtain 

( - Z )2/3 - i e 27ri/ 3 z2/3 - i 
w - -

- (_z)2/3 + i - e27ri/3z2/3 + i ' 

where we take the branch of z2/3 satisfying - 27r /3 < arg (z2/3) < 7r /3 on 
the sector. 

Strips. An arbitrary strip can be mapped to a horizontal strip by a 
rotation z f--> AZ. The exponential function eZ maps horizontal strips to 
sectors. Thus an appropriate power eQZ maps a horizontal strip onto a half­
plane. A further rotation maps the half-plane onto the upper half-plane, 
which can be then mapped to the unit disk. 

Exercise. Find a conformal map of the vertical strip {-I < Re Z < I} 
onto the open unit disk j[)). What are the images of vertical and horizontal 
lines in the strip under the map? 
Solution. The preliminary rotation ( = iz maps the vertical strip to the 
horizontal strip {-I < 1m z < I}. The exponential map ~ = eQ ( maps 
the horizontal strip onto the sector {-a < arg~ < a}. Thus if we take 
a = 7r /2, we map onto the right half of the ~-plane. Multiplication by i 
maps this onto the upper half-plane, and we obtain finally 

i~ - i ~ - 1 e7rC,/2 - 1 e iz/ 2 - 1 
W=--=--= = 

i~ + i ~ + 1 e 7rC,/2 + 1 e iz/ 2 + 1 . 

Under this map, z = -ioo is mapped to w = +1 and z = +ioo is mapped to 
w = -1. Vertical lines in the strip in the z-plane are rotated to horizontal 
lines in the (-plane, which are carried by the exponential map to rays 
in the ~-plane. These are carried to circles in the unit disk in the w­
plane passing through ±1. Horizontal lines in the strip are mapped to the 
orthogonal trajectories of the circles passing through ±1. These orthogonal 
trajectories are also arcs of circles, passing from the bottom half of the unit 
circle to the top half. 

Note that the solution map for this problem is not unique, and different 
maps will give different images of horizontal and vertical lines. However, 
once the images of -ioo and +ioo are known, then the vertical lines in the 
strip will be mapped to arcs of circles through these two image points, and 
horizontal lines in the strip will be mapped to the arcs of circles that are 
their orthogonal trajectories. 

Exercise. Find a conformal map of the vertical strip {-I < Re z < I} 
onto the open unit disk j[)) that maps -ioo to -1 and +ioo to i. 
Solution. The desired map is obtained by composing the map just con­
structed with a conformal self-map g(w) = A(W - a)/(l - aw) of the unit 
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disk. Since z = -ioo goes to w = + 1, we require that g( + 1) = -1, and 
since z = ioo goes to w = -1 , we require that g(-1) = i . Thus 

I-a 
A-- = -1 1 - , -a 

-1-a 
A-- = i. 

1+0, 

If we eliminate the unimodular constant A and simplify, we obtain lal 2 + 
(a - a) = 1, which is the equation of a circle centered at +1 of radius .J2. 
Thus the solution is not unique, as we can choose a to be any point on this 
circle satisfying lal < 1. For instance, we could take a = 1 - .J2, which 
yields A = -1. Choosing the point a on the circle corresponds to specifying 
the third parameter. Note that there is no solution for which additionally 
the point z = 0 is mapped to O. We would ordinarily not expect there to 
be such a map, since this would correspond to specifying a total of four 
parameters, and we have only three at our disposal. 

Lunar domains. Suppose the domain D has boundary consisting of 
two curves, each of which is an arc of a circle or a straight line segment. 
Let Zo and Zl be the endpoints of the curves. We assumezo i= Zl . Then 
there is a fractional linear transformation ( = g(z) mapping Zo to 0 and Zl 
to 00. Since fractional linear transformations map circles to circles, the 
images of the two arcs lie on circles passing through 0 and 00, and so are 
rays from 0 to 00. Consequently, ( = g(z) maps D onto a sector in the 
(-plane. This reduces the problem to mapping the sector onto IHl or ~. 

0 ....... .=..-----

Exercise. Find a conformal map of the part of the upper half-plane outside 
the unit circle onto the entire upper half-plane mapping -1 to -1, i to 0, 
and +1 to +1. 
Solution. We think of D as a lunar domain in the extended complex plane. 
One of the bounding arcs is the straight line segment from + 1 through 00 

to -1 , and the other bounding arc is the top half of the unit circle. The 
map (( z ) = (z - 1)/(z + 1) sends the two vertices -1 and +1 of the lune 
to 00 and 0, respectively, and it maps D to the first quadrant. Under this 
map, i goes to i . The first quadrant is mapped to the upper half-plane 
by ~ = (2 . Thus the composition ~ = (z - 1)2/(Z + 1)2 maps D onto the 
upper half-plane, and it sends -1 to 00, i to -1, and +1 to O. Finally, 
we compose with the fractional linear transformation that maps the upper 
half-plane to itself and sends 00 to -1, -1 to 0, and 0 to 1. This map is 
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found to be w = (1 + ~)/(1 - ~). The final solution is then 

(11) w = 1 + (z - 1)2/(z + 1)2 = (z + 1)2 + (z - 1)2 -21 (z + ~z) , 
. 1-(z-I)2/(z+I)2 (z+I)2-(z-I)2 

which has already appeared in Exercise 11.6.6. 

z- I 
( = Z+I 

;~ 
o 

Exercises for XI.1 

v 
- I o 

I+{ 
W=-

l - { -

1. Find a conformal map of the sector {I arg zl < 11" /3} onto the open 
unit disk mapping ° to -1 and 00 to + 1. Sketch the images of radial 
lines and of arcs of circles centered at 0. Is the map unique? 

2. Find a conformal map of the slit plane C\( -00,0] onto the open 
unit disk satisfying w(o) = i, w(-1 + Oi) = +1, w(-I- Oi) = -1. 
What are the images of circles centered at ° under the map? Sketch 
them. 

3. For fixed A > 0, find the conformal map w(z) of the open unit 
disk {Izl < I} onto the vertical strip {-A < Rew < A} that sat­
isfies w(O) = ° and w'(O) > 0. Sketch the curves in the disk that 
correspond to vertical and horizontal lines in the strip. 

4. Find a conformal map w(z) of the strip {Imz < Rez < Imz + 2} 
onto the upper half-plane such that w(O) = 0, w(z) -+ +1 as Rez -+ 

-00, and w(z) -+ -1 as Rez -+ +00. Sketch the images of the 
straight lines {Re z = 1m z + c} in the strip. What is the image of 
the median line {Re z = 1m z + I} of the strip? 

5. Find a conformal map w(z) of the right half-disk {Re z > 0, Izl < I} 
onto the upper half-plane that maps -i to 0, +i to 00, and ° to -1. 
What is w(I)? 

6. Let w = g(z) be the conformal map of the right half-disk {Rez > 
0, Izl < I} onto the entire unit disk that fixes the points ±i and 
+1. (a) Without computing g(z) explicitly, show that g(z) = g(z). 
Hint. Argue that h(z) = g(z) is another conformal map satisfying 
the same conditions, and appeal to uniqueness. (b) Use symmetry 
to show that g(O) = -1. (In other words, use part (a) .) (c) Find 
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g(z) as a composition of explicit conformal maps, and use this to 
check that g(O) = -l. 

7. Find the conformal map of the pie-slice domain {I argzl < Q, Izl < 
1} onto the open unit disk such that w(O) = -1, w(+l) = +1, and 
w(eiO!) = i. It is enough to express w(z) as a composition of specific 
conformal maps. 

8. For fixed b in the interval (-1,1), find all conformal maps of the 
unit disk slit along the interval [-1, b] onto the entire unit disk that 
map b to -1 and leave + 1 fixed. It is enough to express them as a 
composition of specific conformal maps. 

9. For fixed a > 0, let D be the domain obtained by slitting the upper 
half-plane along the vertical interval from z = 0 to z = ia. 
(a) Find a conformal map w(z) of D onto the entire upper half­

plane such that w(z) '" z as Izl --+ 00. Hint. Consider the 
preliminary map ( = z2. 

(b) Describe how the map can be used to model the flow of water 
over a vertical metal sheet lying in a flat river bed, perpen­
dicular to the flow of the water. Give a rough sketch of the 
streamlines of the flow. 

10. Find the conformal map w = J(z) of the exterior domain {Izl > 
l}U{oo} ontoC*\[-l,+l] such that J(oo) = 00 and the argument of 
J(z)/z tends to Q as z --+ 00, where Q is a fixed real number. Sketch 
the images of circles {Izl = r}, for r > 1, and the images of the 
intervals (-00, -1] and [1,00). What is the inverse map? (Specify 
the branch.) Hint. For Q = 0, use the map (z + 1/z)/2 treated in 
(1.1) above. For the general case, do a preliminary rotation. See 
also the exercises in Section 11.6. 

11. Show that the half-strip {-7r /2 < Re z < 7r /2, 1m z > O} is mapped 
conformally by w = sinz onto the upper half-plane. Sketch the 
images of horizontal and vertical lines. 

12. Find a conformal map of the half-strip in Exercise 11 onto the open 
unit disk that maps -7r /2 to -i, 7r /2 to i, and 0 to +1. Where does 
00 go under this map? 

2. The Riemann Mapping Theorem 

This section is devoted to a preliminary discussion of the Riemann mapping 
theorem. The proof will be postponed to the end of the chapter. The 
Riemann mapping theorem was first established in the following generality 
by W.F. Osgood in 1900. 
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Theorem (Riemann Mapping Theorem). If D is a simply connected 
domain in the complex plane, and D is not the entire complex plane, then 
there is a conformal map of D onto the open unit disk II}. 

Concerning the hypothesis, recall from Section VIII.8 that a domain is 
simply connected if every closed curve in the domain can be deformed 
to a point in the domain. Several characterizations of simply connected 
domains were given in Section VIII.8. Roughly speaking, a domain in the 
plane is simply connected if it has no "holes." Disks are simply connected, 
and annuli are not. 

We say that two domains are conformally equivalent if there is a 
conformal map of one onto the other. Thus the Riemann mapping theorem 
asserts that any simply connected domain in the complex plane C either 
coincides with C or is conformally equivalent to II}. 

We refer to a conformal map w = cp(z) of D onto II} as the Riemann 
map of D onto II}. It is unique, up to postcomposing with a conformal self­
map of II}. To specify the Riemann map uniquely we must specify three 
real parameters. One way to do this is to specify cp(zo) = 0 and cp'(zo) > 0 
for some Zo E D. 

Each of the hypotheses in the Riemann mapping theorem is necessary. 
The complex plane C cannot be mapped conformally onto any bounded 
domain, because according to Liouville's theorem the only bounded ana­
lytic functions on C are the constants. Since any closed curve in JI)) can be 
deformed to a point, any closed curve in any domain conformally equiv­
alent to JI)) can also be deformed to a point, by composing a deformation 
in JI)) with the inverse of the Riemann map. Thus any domain conformally 
equivalent to JI)) is simply connected. 

For a simply connected domain D in the Riemann sphere (the extended 
complex plane), there are three possibilities. Indeed, if the domain is not 
the entire Riemann sphere, we can move a point in the complement of the 
domain to 00 by a fractional linear transformation and reduce to the case of 
a simply connected domain in the plane, where there are two possibilities. 
The Riemann mapping theorem then yields the following. 

Corollary. A simply connected domain in the Riemann sphere is either 
the entire Riemann sphere, or it is conformally equivalent to the complex 
plane, or it is conformally equivalent to the open unit disk. 

Suppose now that D is a simply connected domain with Riemann map 
cp(z) mapping D onto JI)). We consider the behavior of cp(z) as z approaches 
the boundary of D. For each fixed € > 0, the set {I cp( z) I :S 1 - €} is a 
compact subset of D, which is at a positive distance from aD. It follows 
that Icp(z)1 -+ 1 as z -+ aD. Hence the harmonic function log Icp(z)1 tends 
to 0 as z tends to the boundary of D. The Schwarz reflection principle 
for harmonic functions (Section X.3) then implies that log Icp(z)1 extends 
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harmonically across any free analytic boundary arc of D. Consequently, 
<p(z) extends analytically across any free analytic boundary arc of D, and 
in fact we have the following. 

Theorem. Let D be a simply connected domain in C, D -# C. Then the 
Riemann map <p(z) of D onto JD) extends analytically across any free analytic 
boundary arc'Y of D, and <p(z) maps'Y one-to-one onto an arc of em. The 
extended function satisfies <p'(z) -# 0 for z E 'Y, and <p(z*) = 1/<p(z) for z in 
a neighborhood of 'Y, where z f---t z* is the reflection across 'Y. Disjoint free 
analytic boundary arcs of D are mapped by <p(z) to disjoint arcs of 8JD). 

For the formula for the analytic extension, see Section X.3. From the 
formula and the fact that I <p( z) I < 1 on one side of 'Y in D, we see that 
1<p(z)1 > 1 on the other side of 'Y. Thus near any point of'Y the locus where 
1<p(z)1 = 1 consists only of points of the one analytic curve 'Y, so no point 
of 'Y can be a critical point of <p(z). Let Zo E 'Y, and let (0 = <p(zo). If 
Uc is a small disk centered at Zo, then <p(Uc ) includes all points of JD) in 
a sufficiently small disk centered at (0. Since <p(z) is one-to-one on D, no 
other point of D is mapped by <p(z) to this disk centered at (0. Thus no 
other point of 'Y, and no point lying on any other free analytic boundary 
arc of D, is mapped to (0' It follows that <p(z) is one-to-one on 'Y, and 
further, the image of'Y is disjoint from the image of any other free analytic 
boundary arc of D. 

Exercises for XI.2 

1. Show that no two of the domains C*, C, and JD) are conformally 
equivalent. 

2. Let <p(z) be a conformal map from a domain D onto the open unit 
disk JD). For 0 < r < 1, let Dr be the set of zED such that 
1<p(z)1 < r. Find a conformal map of Dr onto JD). 

3. Let D be a domain in the complex plane whose complement C*\D in 
the extended complex plane consists of a finite number of disjoint 
closed connected sets, not all of which are points. Show that D 
can be mapped conformally onto a bounded domain whose bound­
ary consists of a finite number of points and simple closed analytic 
curves. 

3. The Schwarz-Christoffel Formula 

Suppose that D is a polygonal domain, bounded by a: finite number of 
straight line segments, and w = g(z) is a conformal map of the upper half­
plane onto D. The Schwarz-Christoffel formula is a differential equation 
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that g(z) must satisfy. Even though the differential equation cannot be 
solved in closed form except in very special cases, it provides a basis for 
computation of conformal maps onto arbitrary domains by approximating 
them by polygons and solving the associated differential equations numer­
ically. 

We begin by studying the behavior of a conformal map at a corner. It 
will be convenient to work in the upper half-plane instead of the unit disk. 

Let D be a simply connected domain that has a corner at Wo, so that the 
part of D near Wo has the form Da = {wo + reiO : 0 < r < 8, (h < {} < {)o}. 
Thus the part of aD near Wo consists of two straight line segments ter­
minating at Wo and subtending an interior angle of {}o - (}l = ITa, where 
o < a < 2. Let z = 'P( w) be the Riemann map of D onto the upper 
half-plane lIll. It maps the two sides of the corner analytically onto two 
disjoint -intervals on the extended real line. By composing with a confor­
mal self-map of JH[, we can assume that the side at angle {}o is mapped to 
a finite interval I = (ao, bo), and the side at angle {}l to a finite interval 
J = (al' bd, ordered so that bo :s: al. The image under 'P( w) of the circular 
arc {Iw - wol = E} n D is a curve 'Yc in JH[ from I to J. Since the circular 
arcs tend to Wo E aD, the curves 'Yc tend to the boundary of JH[ as E -+ 0, 
in such a way that the initial point of 'Yc increases to bo and the terminal 
point decreases to al. It follows that the curves tend to the closed interval 
[bO,al] as E -+ O. Thus the inverse function w = g(z) of 'P(w) tends to 
the vertex Wo as z E JH[ tends to the interval lbo, all. Now, the interval 
cannot have any interior points, or else g( z) - Wo would tend to zero on the 
interval, hence reflect analytically across, hence be identically zero, which 
is absurd. Thus bo = al. We conclude that 'P( w) extends continuously to 
the corner Wo, and that 'P(w) maps the two segments in aD abutting at a 
corner Wo to two contiguous intervals on the real line meeting at the image 
rp(wo) of the corner. 

d . 
ao bO=al bl 

z-plane 

z = rp(w) 

~ 

~ 

w-plane 

o 

(-plane 

Now we consider more carefully the behavior ofthe inverse map w = g(z) 
of the upper half-plane onto the domain D, mapping the point ao E ~ to the 
corner Wo, and mapping intervals on each side of ao onto two straight line 
segments in aD terminating at wo0 Let>. = ei01 , a unimodular constant. 
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The function w(() = Wo + A(O maps a semidisk {I(I < €,Im( > O} onto 
the part of D at the corner. We may express ( as a function of z, by 
AI/O((Z) = (g(z) - wO)I/o. Since Im((z) -+ 0 as Imz -+ 0, the Schwarz 
reflection principle shows that ((z) is analytic at z = ao, and further, ao 
cannot be a critical point of ((z). Thus AI/O((Z) = (z-ao)J(z) where J(z) 
is analytic at ao and J(ao) # O. Let h(z) be an analytic branch of J(z)O, 
so that A(O = (z - ao)Oh(z) and h(ao) # O. Then from g(z) = Wo + A(O 
we obtain 

g(z) = Wo + (z - ao)Oh(z), 

where h(z) is analytic at ao and h(ao) # o. If we differentiate once, we 
eliminate WOo If we differentiate again, we obtain 

g'(z) = (z - ao)o-I (ah(z) + O(z - ao)), 

g"(z) = (z - ao)o-2 (a(a - l)h(z) + O(z - ao)) , 

and this allows us to eliminate the branch point by dividing, 

g"(z) a-I . 
(3.1) -,-() = -- + analytIc, Iz - aol < €, Imz > O. 

9 z z-ao 

Thus while g(z) has a branch point at ao, the combination of derivatives 
g" (z) / g' (z) extends meromorphically to ao and has a simple pole there 
with residue a - 1. 

Something similar happens if the point 00 is mapped 'to the corner Wo 
by g(z). We parametrize the corner by ( as before, and apply the Schwarz 
reflection principle, to see that AI/o((z) = (g(z) - WO)I/o depends analyti­
cally on z at z = 00. In this case, AI/O((Z) = J(z)/z, where J(z) is analytic 
at 00 and J(oo) # o. Then g(z) = Wo + h(z)/zo, where h(z) is analytic at 
00 and h( (0) # o. A calculation similar to the one above shows that 

g"(z) a + 1 
(3.2) g'(z) = - -z- + ... , Izl > R, Imz > 0, 

is analytic at 00 and vanishes there. We have proved the following theorem 
on corners. 

Theorem. Let D be a simply connected domain with a corner at Wo E aD 
with interior angle a7f, 0 < a < 2. Suppose W = g(z) is a conformal map 
oflHI onto D. Then there are two contiguous intervals of the extended real 
line that are mapped analytically by g(z) onto the sides of the corner, and 
g(z) extends continuously to map the common endpoint ao of the intervals 
to the vertex Wo of the corner. 1£ ao is finite, then g" (z) / g' (z) extends to be 
meromorphic at ao with a simple pole and with residue a - 1. 1£ ao = 00, 

then g"(z)/g'(z) extends to be analytic at 00 and vanishes there. 

The preceding theorem also applies to a virtual corner, that is, to a point 
lying on straight line segments in aD. Such a point can be considered a 
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corner with angle 1[, If ao is finite, the residue at ao is zero, and g"(z)/g'(z) 
is analytic at ao, as it is also in the case that ao = 00. 

If D is a polygon, we can carry the analysis further. In this case, the 
preceding analysis shows that the conformal map g(z) of IHl onto D extends 
continuously to map the extended real line one-to-one onto aD. 

Theorem. Suppose g(z) is a conformal map of the upper half-plane onto 
a (bounded) polygon D. Let al < ... < am be the points oflR mapped to 
vertices of D. (It may be that 00 is also mapped to a vertex.) Suppose D 
has interior angle Q-j'Tr at the vertex Wj = g( aj), 1 :s; j :s; m. Then 

g"(z) Ql-1 Qm-1 
(3.3) --+ ... +--

g'(z) z-al z-am 

and there are constants A and B such that 

(3.4) 

(3.5) 

g'(z) 

g(z) 

A(z - al)Ol-1 ... (z - am)O",-l, 

Alz (t - ad01 - 1 ... (t - am)O",-ldt + B. 
Zo 

w = g(z) 
~ 

w3--______ --' 

The Schwarz reflection principle shows that g(z) reflects analytically 
across each interval on lR between consecutive aj's, and also across the 
intervals (-00, al) and (am, +00). The reflected function across (aj, aj+!) 
maps the lower half-plane conformally onto the polygon obtained by reflect­
ing D across the straight line passing through Wj and Wj+!' (The extensions 
obtained by reflecting across different intervals may not coincide.) Thus 
g'(z) and g"(z) extend analytically across each interval to the lower half­
plane, and since g(z) has no critical points on the intervals, the extended 
g'(z) has no zeros. Thus g"(z)/g'(z) extends analytically across each of the 
intervals to the lower half-plane. The form (3.1) of g"(z)/g'(z) at the ai's 
shows that the reflections of g" (z) / g' (z) across contiguous intervals coin­
cide. Thus g" (z) / g' (z) extends to be meromorphic on the entire complex 
plane, with a simple pole at each aj with residue Qj - 1 and with no other 
poles. The theorem on corners (which applies to virtual corners) shows 
that g"(z)/g'(z) is analytic at 00 and vanishes there. Thus g"(z)/g'(z) is 
a meromorphic function on the extended complex plane, hence rational, 
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and (3.3) is its partial fractions decomposition (Section VI.4). Integrating 
(3.3), we obtain 

logg'(z) = ~)(};j - 1) log(z - aj) + constant, 

and this yields (3.4) for some constant A. One more integration yields 
(3.5). 

Both (3.4) and (3.5) are referred to as the Schwarz-Christoffel formula. 
In order to clarify the formula, we make a series of remarks. 

1. Each of the singularities in (3.5) is integrable, since (};j > O. 
2. If the angle at Wj is 11", so that we have only an apparent vertex, then 

(};j - 1 = 0, and the corresponding factor disappears from the integral (as 
it should). 

3. We can allow an angle of 211", corresponding to the tip of a slit. In this 
case we think of the slit as two intervals, one for each side of the slit. 

4. We can allow intervals in an to overlap, and we can allow one point 
to serve as a multiple vertex, as in the figures. 

D I 

5. We can allow 00 to be a vertex, provided that we count the correspond­
ing angle as negative. For instance, suppose g(z) maps a1 to the vertex 
W1 = 00, with angle 11"(};1, where -2 < (};1 < o. The map to the (-plane is 
then ((z) = g(z)1/"1 = (z - a1)1P(z), and we obtain g(z) = (z - a1)"1h(z), 
where h(z) is analytic at a1 and h(a1) =I- o. We have (3.1) as before, and 
we obtain the same Schwarz-Christoffel formula (3.5). This time the factor 
(z - ad"1 of g'(z) is not integrable at a1, corresponding to the fact that 
g(ad = 00. 

6. We can allow 00 to be a vertex with angle zero. This corresponds to 
the "end" of an infinite strip. In this case the map to the (-plane is given 
by ((z) = e(:3g(z) for some (3, and 

1 1 
g(z) = :alog( = :alog(z-a1)+h(z), 

where h(z) is analytic at a1. A calculation reveals that (3.1) again holds. 
We are led to the same Schwarz-Christoffel formula (3.5), with (};1 = 0 for 
the vertex at 00. 

7. If ao = 00 is mapped to a vertex Wo = 00, the Schwarz-Christoffel 
formula (3.5) holds, in which there is no factor corresponding to 00. The 
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calculations are similar to those above. The result can also be obtained by 
letting the parameters in the Schwarz-Christoffel formula tend to 00. (See 
Exercises 3 and 4.) 

Example. Let D be the domain obtained by cutting a vertical slit in the 
upper half-plane from 0 to ia on the imaginary axis. (See Exercise 1.9.) Let 
w = g(z) be the Schwarz-Christoffel map of the upper half-plane onto D 
that sends 0 to ia and ±1 to the two corners at o. This determines g(z) 
uniquely, since we have specified three real parameters. In the Schwarz­
Christoffel formula, the consecutive points are a1 = -1 with angle 7r /2, 
a2 = 0 with angle 27r, and a3 = +1 with angle 7r/2. Thus (3.4) becomes 

g'(z) = A(z _1)-1/2z(z + 1)-1/2 = Az/v'z2=1. 

This can be integrated in closed form, and after matching boundary points 
to determine A and the integration constant, we obtain g(z) = avz2 - 1, 
where the branch of the square root is the one that is positive on the interval 
(1,00). 

-1 o 

w = g(z) 

~ 

o 

Example. Suppose D is a triangle, with vertices at 0, 1, and a point Wo 

in the upper half-plane, and interior angles em, (37r, and "(7r, where 
a + (3 + "( = 1. Fix a point a > 1, and let w = g(z) map the upper half­
plane conformally onto D, with g(O) = 0, g(l) = 1, and g(a) = woo Since 
we have specified three real parameters, g( z) is uniquely determined. Since 
g(O) = 0, the Schwarz-Christoffel formula becomes 

(3.6) g(z) = A l z 
t o - 1(1- t)/3- 1(a - tp- 1dt. 

The constant A is determined by the condition g(l) = 1. 

----------------o a 

~AWO 
(Jrr 

aT! 

o 1 
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Exercises for XI.3 

1. Derive the formula (3.2) for the case that g(z) maps 00 to the cor­
ner Wo of D. 

2. Let ~(w) be the Riemann map of a simply connected domain D 
onto!DJ. Suppose Wo is a corner of D with interior angle 0;1[. Set 
w(() = Wo + >,(Q, where 1>'1 = 1. (a) Use the Schwarz reflection 
principle to show that ~(w( ()) is analytic at ( = O. (b) Show 
that ~(w) has a series expansion L bj (w - wo)j I Q that converges 
uniformly for wED, Iw - wol < E. (c) Use (b) to show that ~(w) 
has a limit as wED tends to Wo. 

3. Denote by ga (z) the conformal map of JH[ onto the triangle with 
vertices 0, I, and Wo given by (3.6), so that ga(O) = 0, ga(l) = 1, 
and ga(a) = Wo. Show that ga(z) converges as a ~ +00, uniformly 
for Izl :::; R. Express the limit as an integral, and relate it to the 
Schwarz-Christoffel map. 

4. Fix 0; such that 0 < 0; < 1, and let R > o. Denote by fR(Z) the 
conformal map of JH[ onto the triangle with vertices 0, 1, and Re iQ1C 

given by (3.6), so that fR(O) = 0, fR(I) = 1, and fR(a) = ReiQ1C 

Show that fR(Z) converges as R ~ 00, uniformly for Iz - al ~ 
E. Express the limit as an integral, and relate it to the Schwarz­
Christoffel map. 

5. For fixed 0 < k < 1, show that 

r dt 
w(z) = Jo v'l=t2v'1 _ k2t2 

maps the upper half-plane conformally onto a rectangle. Sketch the 
rectangle, using the notation 

/,
llk dt 

K'-
- 1 -Jt2=1 v'1 - k2t2 . 

Show that the inverse z = z( w) of the function defined above ex­
tends to be a meromorphic function h( w) on the entire complex 
plane. Show that h( w) is an odd function, and that h( w) is doubly 
periodic with periods 4K and 2K'i. Locate the zeros and the poles 
of h( w), and indicate their orders. Remark. The integrals appearing 
above are elliptic integrals. The function h(w) is the Jacobian 
elliptic function denoted classically by sn(w). It maps the torus 
formed by identifying the opposite edges of the period rectangle 
two-to-one onto the extended complex plane. 

6. What is the Schwarz-Christoffel formula (3.4) for the conformal map 
g(z) of the upper half-plane onto the horizontal strip {O < Im( w) < 
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a} that maps 0 to -00 and 00 to +oo? By integrating, show that 
a 

g(z) = g(l) + - Logz. 
7r 

7. Use the Schwarz-Christoffel formula to find a conformal map w = 
g(z) of the upper half-plane onto the vertical half-strip {1m w > 
0, -a < Rew < a} such that g(l) = a, g(-l) = -a, and g(O) = O. 
Compare your result with that of Exercise 1.11. 

T 

-a a o 

8. Let T be a complex number such that 1m T > 0, and let Dr be the 
domain obtained from the upper half-plane by deleting the straight 
line segment from 0 to T. (a) Find an integral expression for con­
formal maps w = g(z) of the upper half-plane onto D such that 
g(O) = T and g( 00) = 00. (b) Show directly that if C > 0 and 
o < a < 1, the function g(z) = C(z - aY"(z + 1 - a)l-u maps the 
upper half-plane conformally onto the domain Dr for appropriate 
T. (c) How are the maps in (a) and (b) related? 

9. Let D be the step domain that is the union of the half-plane {1m w > 
I} and the first quadrant {Re w > 0, 1m w > O}. Find a conformal 
map w = g(z) of the upper half-plane onto D satisfying g( -1) = i, 
g(+l) = 0, and g(oo) = 00. 

J L 
o~--------------

10. For c > 0, find an integral expression for a conformal map w = g(z) 
of the upper half-plane onto the corridor with a turn described by 

D = {O < Rew < 1, Imw > O} U {O < Imw < c, Rew > O}. 

In the case c = 1, find explicitly the conformal map g(z) that satis­
fies 9(0) = 0,9(1) = +00, and 9(00) = 1 + i. 
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4. Return to Fluid Dynamics 

We return to fluid dynamics, to see how conformal mapping techniques 
can be applied to solve fluid flow problems. Following the notation of 
Section II1.6, we denote the complex velocity potential by fez) = ¢(z) + 
i'¢(z), where ¢(z) is the velocity potential, and '¢(z) is the stream function 
whose level sets are the flow lines of the fluid. The velocity vector field is 
V (z) = f' (z). The flow is tangent to the boundary along boundary curves 
on which there are no sources or sinks. Thus '¢(z) is a harmonic function 
on D that is constant on each boundary curve with no sources or sinks. 

Example. The stream function '¢(z) = Imz on the upper half-plane 1HI 
corresponds to a flow parallel to the x-axis with no sources or sinks on the 
axis. The stream function '¢(z) = Argz on lHI corresponds to a flow from a 
source at the origin. We may superimpose the flows, to obtain the stream 
function 

Imz > 0, 

which corresponds to a flow near the bank of a large river with a pipe 
discharging an effluent at one point on the riverbank. 

As in Section 111.6, our strategy for solving a flow problem on a domain D 
is to find a conformal map hew) from D to the upper half of the z-plane, 
in order to transfer the boundary problem to 1HI. The transferred problem 
involves finding a harmonic function '¢(z) on lHI that is constant on the 
intervals of the real axis corresponding to the boundary arcs of D where 
there are no sinks or sources. The composed function '¢(h(w)) is then the 
stream function for the flow in D. In the case that D is a polygon domain, 
the Schwarz-Christoffel formula gives the conformal map w = g(z) from 1HI 
onto D, and this must be solved for the inverse function z = h( w) if a 
solution in closed form is required. 

Example. Consider the flow near the bank of a large river with a small 
parallel tributary. We represent the configuration by the upper half of the 
w-plane with a horizontal slit terminating at the point ib on the positive 
imaginary axis, D = lHI\ (ib - 00, ib]. Consider the conformal map w = g( z) 
of lHI onto D such that -1 corresponds to the tip of the slit, 0 to the 
source of the tributary, and ioo to ioo. The three conditions g( -1) = ib, 
g(O) = -00, and g(ioo) = ioo determine g(z) uniquely. The function 
g( z) maps the interval (-00, -1] to the top edge of the slit, the interval 
( -1, 0) to the bottom edge reversing direction, and the interval (0, (0) to 
the real axis (-00,00). The Schwarz-Christoffel formula (3.4) becomes 
g' (z) = A(z + 1 )Z-l, corresponding to angle 27f at -1 and 0 at O. The term 
involving -00 does not enter. Thus g( z) = A( z + Log z) + B. The constants 
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A and B are determined by the boundary conditions, with final result 

b 
g(z) = - (1 + z + Logz), 

7r 
Imz > o. 

A flow function corresponding to a source in the tributary in the w-plane 
then corresponds to a flow function corresponding to a source at z = 0 in 
the z-plane. This is given by Argz = Argh(w), where h(w) is the inverse 
of the conformal map g(z). We superimpose this upon a flow in the river, 
to obtain a flow function of the form 

'IjJ(w) = clArgh(w)+C2Imh(w), 

where the constants Cl and C2 are adjusted to the magnitudes of the flows. 

- - -- - --* -
-1 o 

Exercises for XI.4 

w =g(z) - ~ ~ - z = hew) 
-----__ _ ip~ ~ 

--- / __ ~ ...-r 

----
o 

1. Let D be the domain obtained from the upper half-plane by deleting 
the part of the imaginary axis above ib. Find a conformal map w = 
g(z) of the upper half-plane onto D such that g(O) = -00, g(oo) = 

+00, and g( -1) = ib. Solve for z = h(w). With 'IjJ(w) = arg(h(w)) 
as a stream function, use the map to sketch the streamlines of the 
flow of water in a river as it passes under a vertical gate. Hint. In 
the Schwarz-Christoffel formula, remember to take the angles at 00 

to be negative. An alternative method is to use an inversion to map 
the infinite vertical slit onto a finite slit from 0 to ia. The answer is 

g(z) = ~ (viz - ~), 

L W -,J L, 
o 7r 0 1!" -1 -1 0 

2 2 

Exercise 1 Exercise 2 Exercise 3 Exercise 4 
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2. Let D be the domain obtained from the vertical half-strip {1m z > 
0, I Re z I < 7r /2} by deleting the part of the imaginary axis above ia. 
Find a conformal map w = g(z) of the upper half-plane onto D. 
Solve for z = hew). Use the map to sketch the streamlines of the 
flow of water in a channel with a hairpin turn. Hint. Use the 
inverse sine function to map the half-strip onto an upper half-plane 
(see Exercise 1.11), and refer to Exercise l. 

3. Find a conformal map w = g(z) of the upper half-plane onto the 
plane with two vertical slits from ±1 to ±1 + ioo deleted. Use the 
map to sketch roughly the flow of water near the mouth of a channel 
that empties into the middle of a large reservoir. Express the stream 
function for the flow in terms of the inverse z = h ( w) of 9 ( z ). 

4. Let D be the upper half-plane with two vertical slits from::t:l +ib to 
± 1 + ioo, and let w = g( z) be the conformal map of the upper half­
plane onto D satisfying w(O) = 0, w( -1) = -00, and w(+I) = +00. 
Show that the map is symmetric about the imaginary axis, so that 
w(ioo) = ioo. Express the map as an integral. Suppose in your 
integral formula that the point a > 1 is mapped to the end 1 + ib 
of the slit. Sketch the streamlines of the flow in the w-plane that 
corresponds to the stream function 'l/J(z) = arg(z - a) - arg(z + a) 
in the z-plane. What are its sources and sinks? 

5. Compactness of Families of FUnctions 

We have reached a turning point. Our proof of the Riemann mapping th~ 
orem requires some technical ingredients at a higher level of mathematical 
sophistication than what we have used heretofore. In this section we sum­
marize some of the ideas involved in the Arzela-Ascoli theorem, and we use 
it to prove Montel's theorem (thesis grade). Montel's theorem is one of the 
key ingredients of the proof of the Riemann mapping theorem given in the 
next section. For an expanded treatment of the background material, see 
any good introduction to mathematical analysis. 

Let E be a subset of the complex plane te, and let F be a family of 
complex-valued functions on E. We say that F is equicontinuous at a 
point Zo E E if for any € > 0, there is 8 > 0 such that if z E E satisfies 
Iz - zol < 8, then If(z) - f(zo)1 < € for all f E F. This coincides with the 
"€-8" definition of continuity at a point zo, except that the same 8 must 
serve simultaneously for all functions f in the family F. 

We say that the family F is uniformly bounded on E if there is a 
constant M > 0 such that If(z)1 ~ M for all z E E and all f E F. 

One condition guaranteeing equicontinuity of a family of functions is that 
the derivatives of the functions in the family be uniformly bounded. Sup­
pose, for instance, that F is a family of analytic functions on a domain D, 
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and suppose there is M > 0 such that If'(z)1 ~ M for all zED and all 
f E F. Integrating along the straight line segment from Zo to a nearby 
point z, we obtain 

If(z) - f(zo)1 = 11: f'(() d(1 ~ Mlz - zol, f E F, 

for z near zoo This estimate implies that the family F is equicontinuous 
at zoo 

Recall that a subset E of the complex plane C is compact if it is closed 
and bounded. We are now prepared to state one version of the Arzela­
Ascoli theorem. 

Theorem. Let E be a compact subset of C, and let F be a family of con­
tinuous complex-valued functions on E that is .uniformly bounded. Then 
the following are equivalent. 
(1) The family F is equicontinuous at each point of E. 
(2) Each sequence of functions in F has a subsequence that converges 

uniformly on E. 

In the sequel we will use only the forward implication, that (1) im­
plies (2). The proof that (1) implies (2) proceeds in outline as follows. 
Let {In} be a sequence in F. Let {Zj} be a sequence of points in E that is 
dense in E. First one uses a standard diagonalization argument to find a 
subsequence {Ink} such that fnk(Zj) converges for each j. Then one uses 
the equicontinuity of the fnk'S and the density of the z/s to show that 
{Ink} converges uniformly on E. The proof of the converse, that (2) im­
plies (1), is an easy exercise in ''proof by contradiction." For more details, 
see any good introduction to mathematical analysis. 

The proof of the Arzela-Ascoli theorem actually extends to a quite gen­
eral situation. The theorem is valid for a family of functions on any compact 
metric space, and there is a version of the theorem for arbitrary compact 
topological spaces. The theorem also holds for functions whose ranges lie in 
any compact metric space. In particular, the theorem holds for functions 
from a compact set E to the extended complex plane C* = C U {oo}, 
provided that we use the spherical metric to measure distances in the 
range space. To be more precise, we denote by a( z, w) the spherical dis­
tance from z to w, as in Section IX.3. We say that a sequence of func­
tions {In} on E converges uniformly to f in the spherical metric 
if a(fn(z), fm(z)) tends to 0 uniformly for z E E as n, m --+ 00. A family 
F is equicontinuous with respect to the spherical metric at Zo E E 
if for any c > 0 there is 8 > 0 such that if z E E satisfies Iz - zol < 8, 
then a(f(z), f(zo)) < c for all f E:F. When we combine the Arzela-Ascoli 
theorem with the diagonalization argument used above, we obtain the fol­
lowing version of the theorem, which we record for use when we return to 
this circle of ideas in Chapter XIV. 
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Theorem. Let D be a domain in the complex plane, and let F be a family 
of continuous functions from D to the extended complex plane C*. Then 
the following are equivalent. 
(1) Any sequence in F has a subsequence that converges uniformly on 

compact subsets of D in the spherical metric. 
(2) The family F is equicontinuous at each point of D, with respect to the 

spherical metric. 

For now, our applications to complex analysis will be based on the fol­
lowing preliminary version of Montel's theorem, which was obtained by P. 
Montel in his thesis. We will prove a stronger version in Chapter XII. 

Theorem. Suppose F is a family of analytic functions on a domain D 
such that F is uniformly bounded on each compact subset of D. Then 
every sequence in F has a subsequence that converges normally on D, that 
is, uniformly on each compact subset of D. 

If Zo E D, there is r > 0 such that the closed disk {Iz - zol :::; r} is 
contained in D. The family F is uniformly bounded on the disk. By 
the Cauchy estimates, the derivatives of the functions in F are uniformly 
bounded on the smaller disk {Iz-zol :::; r-€}. Hence F is equicontinuous at 
each Zo E D. To complete the proof we combine the Arzela-Ascoli theorem 
with a diagonalization argument. Let En be the set of zED such that Izl :::; 
n and the distance from z to aD is at least lin. Then En is compact, the 
En's increase to D, and any compact subset of Dis contained in some En. 
Let {In} be a sequence in F. By the Arzela-Ascoli theorem, there is a 
subsequence Ill, /12, /13,'" that converges uniformly on E 1 • This has a 
further subsequence 121, 122, 123,'" that converges uniformly on E2 , and 
so on. The diagonal sequence 111,122,133, ... is then a subsequence of the 
original sequence that converges uniformly on each En, hence uniformly on 
each compact subset of D. 

One typical application of Montel's theorem is to guarantee the existence 
of extremal functions for "compact" extremal problems. To illustrate the 
principle, we consider the extremal problem of maximizing the derivative 
at a prescribed point over a compact family of analytic functions. 

Let D be a domain, and fix a point Zo ED. Let F be the family of 
analytic functions I(z) on D such that I/(z)1 :::; 1 on D. The extremal 
problem is to maximize 1f'(zo)1 among all functions I E F. The extremal 
value for the problem is 

A = sup {1!,(zo)1 : IE F}. 

Since the functions in F are uniformly bounded on D, their derivatives are 
uniformly bounded at zo, and A is finite. A function G E F such that 
IG'(zo)1 = A is an extremal function for the problem. The existence of 
an extremal function follows almost immediately from Montel's theorem. 
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If {fn(z)} is any sequence of functions in :F such that If~(zo)1 ---7 A, then 
by Montel's theorem, the fn's have a subsequence that converges normally 
on D to an analytic function G(z). On account of the normal convergence, 
IG(z)1 ::; 1 and IG'(zo)1 = A. 

Theorem. Let D be a domain in the complex plane on which there is 
a nonconstant bounded analytic function, and let Zo ED. Then there 
is an analytic function G(z) on D such that IG(z)1 ::; 1 for zED, and 
1f'(zo)1 ::; IG'(zo)1 for any analytic function f(z) on D satisfying If(z)1 ::; 1 
on D. Further, G(zo) = 0 and G'(zo) ::j:. o. 

It remains only to establish the final statement. Let h(z) be a non­
constant bounded analytic function on D. Then h(z) - h(zo) has a zero 
of finite order, say of order N, at zoo If £0 > 0 is tiny, the function 
f(z) = e(h(z)-h(zo»/(z-zo)N-l satisfies If(z)1 ::; 1 and f'(zo) ::j:. O. Con­
sequently, A = IG'(zo)1 > O. Finally, g(z) = (G(z) - G(ZO»/(I - G(zo)z) 
is the composition of G(z) and a conformal self-map of ~, so that 9 E :F. 
From 

1 '()I I'()' IG'(zo)1 
G Zo > 9 Zo 1= I-IG(zo)12' 

we deduce that G(zo) = O. 
The extremal function G(z) is called the Ahlfors function of D. The 

Ahlfors function depends on zo0 However, it can be shown (Exercise 9) 
that the Ahlfors function corresponding to a fixed point Zo E D is unique, 
up to multiplication by a unimodular constant. The extremal value A = 
IG'(zo)1 can be regarded as the best constant for which the Schwarz lemma 
(infinitesimal version) holds with respect to Zo E D. We will show in the 
next section that when D is simply connected, the Ahlfors function maps D 
conformally onto the open unit disk. 

Exercises for XI.5 

1. Let {fn(z)} be a uniformly bounded sequence of analytic functions 
on a domain D, and let Zo E D. Suppose that for each m ;:::: 0, 
f~m)(zo) ---70 as n ---7 00. Show that fn(z) ---70 normally on D. 

2. Let {fn(z)} be a sequence of analytic functions on a domain D, and 
let Zo E D. Suppose Refn(z) ;:::: -C for all zED, and f~m)(zo) ---70 
as n ---7 00 for each m ;:::: O. Show that fn(z) ---7 0 normally on D. 
Hint. Use Problem 1, which is a special case. 

3. Let f(z) be a bounded analytic function on the horizontal strip 
{-I < 1m z < I}, such that f(x) tends to 0 as x tends to +00. 
Show that for any £0 > 0, f(x + iy) tends to 0 as x tends to +00, 
uniformly for -1 + £0 < y < 1- e. 
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4. Let f(z) be a bounded analytic function on the upper half-plane. 
(a) Show that if f(z) tends to 0 as z tends to 00 along the imaginary 
axis, then for any € > 0, f(z) tends to 0 uniformly as z tends to 00 

through the sector {€ < arg z < 7f - € }. (b) Show that if f (z) tends 
to a limit L as z = Xo + iy tends to Xo E lR along a vertical line, 
then f(z) tends uniformly to L as z tends to Xo through any cone 
of the form {€ < arg(z - xo) < 7f - €}. 

Stolz angle 

5. Let f(z) be a bounded analytic function on the open unit disk, and 
fix ei8 on the unit circle. Show that if f (rei8 ) has a limit L as r 
tends to 1, then f(z) tends to L uniformly as z tends to ei8 through 
any cone with vertex at ei8 , centered on the radius and with aperture 
strictly less than 7f. Remark. Such an approach sector is called a 
Stolz angle at ei8 . 

6. Let D be a bounded domain, and let f (z) be an analytic function 
from D into D. Denote by fn(z) the nth iterate of f(z). Suppose 
that zo is an attracting fixed point for f ( z ), that is, f (zo) = Zo 
and 1f'(zo)1 < 1. Show that fn(z) converges uniformly on compact 
subsets of D to ZOo 

7. Let D be a bounded domain, and let f(z) be an analytic function 
from D into D. Show that if Zo E D is a fixed point for f(z), then 
1f'(zo)1 ~ 1. 

8. Let {f n (z)} be a sequence of analytic functions on a domain D . 
Suppose that JJD Ifn(z)1 dx dy ~ 1 for n 2: 1. 
(a) Show that {fn(z)} has a subsequence that converges normally 

to an analytic function f(z) on D. Hint. To estimate f(z), 
use the mean value property with respect to area (see Exercise 
III.4.1) . 

(b) Show that Jf If(z)1 dx dy ~ 1. 
(c) Show that if rJD Ifn(z) - fm(z)1 dx dy -+ 0 as m, n -+ 00, then 

JJD Ifn(z) - f(z)1 dx dy -+ 0 as n -+ 00. 

9. Let D be a domain in the complex plane, and let :F be the family 
of analytic functions f(z) on D such that If(z)1 ~ 1 for zED. A 
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function g(z) is an extreme point of F if it is not the midpoint 
of a line segment in F, that is, if whenever 9 = (go + gl)/2 where 
gO,gl E F, then go = gl = g. 
(a) Show that the function 9 E F is an extreme point of F if and 

only if the only analytic function h(z) satisfying Ig(z) ± h(z)1 :::; 
1 is h = o. 

(b) Show that the function 9 E F is an extreme point of F if 
and only if the only analytic function h(z) satisfying Ig(z)1 + 
Ih(z)1 :::; 1 is h = O. Hint. First show that if la ± bl :::; 1, then 
lal + Ib21/2 :::; l. 

(c) Suppose that there is a nonconstant bounded analytic function 
on D, and fix Zo E D. Show that the Ahlfors function G(z) 
associated with Zo E D is an extreme point of F. 

(d) Show that the Ahlfors function G(z) associated with Zo E D is 
unique, up to multiplication by a unimodular constant. 

(e) Let L = L-j,k ajkLjk be a finite linear combination of linear 
functionals of the form Ljk(f) = f(k)(Zj), where the zj's are 
fixed points of D. Suppose there is a nonconstant bounded 
analytic function f on D such that L(f) i=- O. Show that the 
extremal problem of maximizing Re L(f) over all f E F has a 
unique extremal function cp(z), which is an extreme point of F. 

6. Proof of the Riemann Mapping Theorem 

Now we are ready for the proof of the Riemann mapping theorem. The 
key ingredients are Montel's theorem, Hurwitz's theorem, some elementary 
mapping properties of the square root function, and the fact that y'z is 
expanding on the open unit disk. We begin with the elementary mapping 
properties of the square root function. 

Suppose that D is simply connected and that D i=- C. Choose a E C\D. 
By the characterization of simple connectivity (Section VIII.8), there is an 
analytic branch g(z) of log(z - a) in D. Then h(z) = eg(z)/2 is an analytic 
branch of ";z - a in D, and h(z)2 = z - a i=- 0 in D. If h(Zl) = h(Z2), 
then Zl = h(zd2 + a = h(Z2)2 + a = Z2. Thus h(z) is univalent, and h(z) 
maps D conformally onto h(D). Finally, note that if Wo E h(D), then 
-Wo ~ h(D). Indeed, if Wo = h(zo) and -Wo = h(Zl) for Zo, Zl E D, then 
Zo = h(zO)2 + a = w~ + a = h(Zl)2 + a = Zl, which is impossible. We 
summarize. 

Lemma. Let D be a simply connected domain. Suppose a ~ D, and let 
h(z) be an analytic branch of";z - a in D. Then h(z) is univalent on D, 
and further, h(D) is disjoint from -h(D). 
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We remark that on the basis of the lemma we can show that any simply 
connected domain D =1= C is conformally equivalent to a sub domain of the 
unit disk, where we have hyperbolic geometry at our disposal. Indeed, if 
the disk Iw - wol ::; c is contained in h(D), then its negative is disjoint 
from h(D), so that Ih(z) + wol > c for zED, and c/(h(z) + wo) maps D 
conformally onto a domain contained in the unit disk. 

Our proof depends at least conceptually on hyperbolic geometry. Let 
p((,~) be the hyperbolic metric in l!)) (Section IX.3). The function (2, 
regarded as an analytic function from l!)) to l!)), is a contraction with respect 
to the hyperbolic metric, and it is a strict contraction on bounded subsets 
{I(I ::; 1 - c} of the hyperbolic disk, in the sense that there is c < 1, 
depending on c, such that p ((2,e) ::; cp((,~) for 1(1, I~I ::; 1 - c. Thus 
any branch of its inverse ..j( is expanding with respect to the hyperbolic 
metric, and it is strictly expanding on bounded subsets of the hyperbolic 
disk, in the sense that for any T < 1, there is C > 1 such that 

1(1, I~I ::; T. 

(For a precise value for C, see Exercise IX.3.9.) The expanding property 
of ..j( is the key to the following lemma. 

Lemma. Let D be a simply connected subdomain ofl!)) such that 0 E D. 
If D =1= l!)), then there is a conformal map t/J(() of D onto a subdomain ofl!)) 
such that t/J(O) = 0 and It/J' (0) 1 > 1. 

Let b E lD>\D, and let 9 be the conformal self-map of lD> that maps b 
to o. Then g(D) is a simply connected domain in the unit disk that does 
not contain O. Hence there is an analytic branch h({) of v'l. on g(D), and 
further, as shown above, h is univalent on g(D). Let J be a conformal 
self-map of l!)) that maps h(g(O)) to 0, and set t/J = J 0 hog. Then t/J(() 
is a conformal map of D onto a subdomain of l!)), and t/J(O) = O. Since J 
and 9 are isometries in the hyperbolic metric, and h is a strict expansion 
near g(O), t/J is a strict expansion near 0, that is, there is C > 1 such 
that p(t/J((),O) 2: Cp((,O) for 1(1 < c. Since p(t/J((),O) rv 21t/J(()1 and 
p((, 0) rv 21(1 as ( -+ 0, we obtain 

C < p(t/J(() , 0) rv It/J(OI -+ 101,1(0)1 
- p((, 0) 1(1 0/, 

and 1 t/J' (0) 1 > 1. This inequality can also be checked by expressing J and 9 
explicitly and differentiating (Exercise 1). 

Now we complete the proof of the Riemann mapping theorem by pro­
ducing the Riemann map as an extremal function for an extremal problem 
similar to the problem considered in Section 2. We assume that D is a 
simply connected domain, D =1= C. Fix Zo E D, and let :F be the family 
of univalent(!) functions J(z) on D such that IJ(z)1 < 1 for zED and 
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f(zo) = O. The family F is nonempty, since if h(z) maps D conformally 
onto a bounded domain, then the function f(z) = c:(h(z) - h(zo)) is in F 
for c: > 0 small. We consider the extremal problem of maximizing 1f'(zo)1 
over f E F. As before, set 

A = sup{If'(zo)1 : f E F} > 0, 

and let {fn(z)} be a sequence of functions in F such that If~(zo)1 -t A. 
By Montel's theorem, the fn's have a subsequence that converges normally 
on D to an analytic function 'P(z). Clearly, 1'P(z)1 :S 1, 'P(zo) = 0, and 
1'P'(zo)1 = A. The functions fn are univalent, so by Hurwitz's theorem 
(Section VIII.2), either 'P is constant or 'P is univalent. Since 'P'(zo) =I=- 0, 
'P is nonconstant, and consequently, 'P is univalent, mapping D onto a 
subdomain of JI)). We claim that 'P(D) = JI)). Otherwise, we could apply the 
preceding Lemma to the domain 'P(D) and find a conformal map ¢(() of 
'P(D) onto a sub domain of JI)) such that ¢(O) = 0 and I¢'(O)I > 1. Then 
¢ 0 'P E F would satisfy I(¢ 0 'P)'(zo) 1 = 1¢'(O)'P'(zo)1 > A, contradicting 
the definition of A. This completes the proof. 

We will sketch a different proof of the Riemann mapping theorem in 
Section XV.5, based on the solvability of the Dirichlet problem. 

Exercises for XI.6 

1. Find explicitly the functions f(() and g(() used in the proof of the 
lemma. Show by computing the derivative that IU 0 h 0 g)'(O)1 > 1. 

2. Let 'P(z) be the Riemann map of a simply connected domain D onto 
the open unit disk, normalized by 'P(zo) = 0 and 'P'(zo) > O. Show 
that if f(z) is any analytic function on D such that If(z)1 :S 1 for 
ZED, then 1f'(zo)1 :S 'P'(zo), with equality only when f(z) is a 
constant multiple of 'PCz). Remark. This shows that 'PCz) is the 
Ahlfors function of D corresponding to Zo. 

3. Let 'P(z) be the Riemann map of a simply connected domain D onto 
the open unit disk, normalized by 'P(zo) = 0 and 'P'(zo) > o. Show 
that if fez) is any analytic function on D such that If(z)1 :S 1 for 
zED, then Ref'(zo) :S 'P'(zo), with equality only when fez) = 
'P(z ). 

4. Let {Dm} be an increasing sequence of simply connected domains, 
and let 'Pm be the Riemann map of Dm onto the open unit disk JI)), 

normalized so that 'Pm (zo) = 0 and 'P~ (zo ) > 0 for some fixed 
Zo E D1 . Let D be the union of the Dm's. Show that if D is the 
entire complex plane, then the 'Pm's are eventually defined on any 
disk {Izl :S R} and converge there uniformly to o. Otherwise, D 
is simply connected and the 'Pm's are eventually defined on each 
compact subset of D and converge there uniformly to the Riemann 
map 'P of D onto JI)) satisfying 'P(zo) = 0 and 'P'(zo) > O. 
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5. Let {Dm} be a decreasing sequence of simply connected domains, 
and suppose Wo E Dm for all m. Let gm (z) be the conformal map of 
the open unit disk][)) onto Dm, normalized so that gm(O) = Wo and 
g:n(O) > o. Show that gm(z) converges normally on][)) to a function 
g(z). If the distance from Wo to the boundary of Dm tends to 0, 
then g(z) is the constant function wo, and otherwise, g(z) maps ][)) 
conformally onto some simply connected domain D. Describe D in 
terms of the Dm's. 

6. Show that the function ( 1---4 (2 is not a strict contraction of the hy­
perbolic disk, that is, show that there is no constant c < 1 such that 
p ((2, e) :::; cp((,~) for all (,~ E][)). Remark. See Exercise IX.3.9. 

7. Suppose J : ][)) -4 ][)) is an analytic function from the unit disk into 
itself with a fixed point at Zo E JI). Show that the stretching at zo 
of J(z) in the hyperbolic metric is the same as the stretching at zo 
of J (z) in the Euclidean metric, 

1· p(f(z), zo) 1· IJ(z) - zol 1m = 1m ~......:.....---:.:....:. 
z->zo p(z, zo) Z ..... Zo Iz - zol 1f'(zo)l· 



XII 

Compact Families of Meromorphic 
Functions 

In Sections 1 and 2 we treat normal families of meromorphic functions. 
These are families that are sequentially compact when regarded as functions 
with values in the extended complex plane. We give two characterizations 
of normal families, Marty's theorem in Section 1 and the Zalcman lemma in 
Section 2. From the latter characterization we deduce Montel's theorem on 
compactness of families of meromorphic functions that omit three points, 
and we also prove the Picard theorems. Sections 3 and 4 constitute an 
introduction to iteration theory and Julia sets. In Section 3 we proceed far 
enough into the theory to see how Montel's theorem enters the picture and 
to indicate the fractal nature (self-similarity) of Julia sets. In Section 4 
we relate the connectedness of Julia sets to the orbits of critical points. 
In Section 5 we introduce the Mandelbrot set, which has been called the 
"most fascinating and complicated subset of the complex plane." 

1. Marty'S Theorem 

In this section we consider the convergence of sequences of meromorphic 
functions. Our aim is to give conditions guaranteeing compactness of 
families of meromorphic functions. Since functions may now assume the 
value 00, we must modify our notion of convergence. We do this by re­
garding meromorphic functions on a domain D as functions from D to the 
extended complex plane C* = <C U {oo}, which we identify with a sphere 
via stereographic projection (Section 1.3). When we identify the extended 
complex plane with the sphere, we refer to it also as the Riemann sphere. 
We will use distances on the sphere to measure distances between function 
values. 

Let a( z, w) denote the distance from z to w in the spherical metric. 
Recall from Section IX.3 that a( z, w) is the length of the arc of the great 
circle on the Riemann sphere joining the points corresponding to z and w. 
The spherical metric is invariant under the transformations corresponding 
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to rotations of the sphere. Since the inversion Z f---t 1/ z corresponds to a 
rotation of the sphere (by 1800 around the x-axis), we have 

(1.1) a(z, w) = a(l/z,l/w), z,w E C. 

On any fixed bounded subset of the complex plane, the spherical metric is 
equivalent to the Euclidean metric, 

1 
BR Iz - wi :s; a(z, w) :s; BRlz - wi, Izl, Iwl :s; R, 

while on any fixed subset of the complex plane at a positive distance from 
the origin, the spherical distance from z to w is comparable to the Euclidean 
distance between the inverse points 1/ z and 1/ w, 

~el~-~I:s; a(z,w):S; Cel~-~I' Izl,lwl2 c. 

We say that a sequence {In(z)} of merom orphic functions on a domain D 
converges normally to J (z) on D if the sequence converges uniformly on 
compact subsets of D to J(z) in the spherical metric, that is, a(fn(z), J(z)) 
converges to zero uniformly on each compact subset of D as n --+ 00. On 
account of (1.1), we see that {fn(z)} converges normally to J(z) if and only 
if {1/ In(z)} converges normally to 1/ J(z). Here we declare 1/0 = 00 and 
1/00 = 0, and we further allow the possibility of the constant function that 
is identically equal to 00. 

Since the spherical and Euclidean metrics are equivalent on bounded 
subsets of the complex plane, the definition of normal convergence given 
above is consistent with our earlier definition of a normally convergent 
sequence of analytic functions. However, now we allow the possibility of 
the limit being 00. 

Theorem. If the sequence {f n (z)} of meromorphic functions on a do­
main D converges normally to J(z), then either J(z) is meromorphic on D 
or J(z) == 00. If a sequence {In(z)} of analytic functions on D converges 
normally to J(z), then either J(z) is analytic on D or J(z) == 00. 

For the first statement, note that every point z for which J(z) i= 00 

has a neighborhood on which the In's are eventually uniformly bounded 
and converge uniformly in the Euclidean metric. Thus J(z) is analytic on 
the set where IJ(z)1 < 00. By the same token, since 1/ In(z) converges 
normally to 1/ J(z), also 1/ J(z) is analytic wherever J(z) i= O. Either 
1/ J(z) is identically zero, in which case J(z) == 00; or else the zeros of 
1/ J(z) are isolated in D and they are poles of J(z), in which case J(z) is 
meromorphic on D. 

For the second statement, suppose that the J n 's are analytic with limit 
J(z) satisfying J(zo) = 00 at some point. Then 1/ In(z) is a meromorphic 
function with no zeros near Zo, and 1/ In(ZO) --+ O. Hurwitz's theorem 
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(Section VIII.3) shows that 1/ In(z) converges uniformly to zero on some 
disk centered at zo, and consequently, 1/ J (z) = 0 on the disk. By the 
uniqueness principle, 1/ J(z) = 0 on D, and J(z) = 00 on D. 

We define a family F of meromorphic functions on D to be a normal 
family if every sequence in F has a subsequence that converges normally 
on D. In view of the preceding theorem, a family F of analytic functions 
on D is a normal family if and only if every sequence in F has either 
a subsequence that converges uniformly on compact subsets of D to an 
analytic function or a subsequence that converges uniformly on compact 
subsets of D to 00. The thesis version of Montel's theorem (Section XI.5) 
can be formulated in terms of normal families. It asserts that any family 
of analytic functions that is uniformly bounded on each compact set is a 
normal family. 

The Arzela-Ascoli theorem (Section XI.5) provides a characterization of 
normal families of meromorphic functions. A family F of meromorphic 
functions is a normal family if and only if the family F is equicontinuous, 
regarded as functions from D, with the Euclidean metric, to the extended 
complex plane C*, with the spherical metric. In order to exploit this con­
dition, we study the spherical metric in more detail. 

Recall (Section IX.3) that the spherical metric is 2Idzl/(1 + IzI2). The 
spherical length of a curve 'Y(t), a::; t ::; b, is given by 

. 1 21dzl lb 2\'y'(t)1 dt 
sphencallength of'Y = 1 12 = 1 ()12 · '")'1+z a 1+'Y t 

If now w = J (z) is a meromorphic function, then the spherical length of 
the image curve J 0 'Y is given by 

spherical length of J 0 'Y = 11 ~~)t;jI2 Idzl· 

This leads us to define the spherical derivative of J(z) to be 

J~(z) = 21f'(z)1 
1 + IJ(z)1 2 . 

The spherical length of J 0 'Y is then simply 

spherical length of J 0'Y = i J~(z) Idzl· 

By taking 'Y to be a short straight line segment from z to z + Az, we see 
that J~(z) measures the expansion of J(z), regarded as a map from the 
complex plane with the usual Euclidean metric to the extended complex 
plane with the spherical metric. 

Since the spherical metric is invariant under the inversion z J---> 1/ z, by 
(1.1), the spherical derivative is also invariant under the inversion, 

(1.2) (1/ J)~ = J~. 
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This identity can also be checked by direct calculation (Exercise 1). In 
dealing with the spherical metric on the range of I(z), (1.2) allows us 
to replace I(z) near its poles by g(z) = 1/I(z), thereby reducing to the 
situation where I (z) is analytic. This observation is the key to the following 
lemma and to Marty's theorem. 

Lemma. If !k(z) -+ I(z) normally on D, then I!(z) -+ I#(z) uniformly 
on compact subsets of D. 

Indeed, if I is analytic at Zo, then Ik -+ I' uniformly in some neighbor­
hood of Zo, so I! -+ I! uniformly in some neighborhood of zoo If I is not 
analytic at zo, then 1/1 is analytic at Zo and 1/lk -+ 1/1 normally. Again 
I: = (1/lk)# converges uniformly to IU = (1/ f)U in some neighborhood 
of zoo 

Theorem (Marty's Theorem). A family F of meromorphic functions 
is normal on a domain D if and only if the spherical derivatives {fU (z) : 
I E F} are uniformly bounded on each compact subset of D. 

Suppose the spherical derivatives are uniformly bounded near ZO ED, 
say IU(z) ::; C for Iz - zol < r and I E:F. If IZI - zol < r, and 'Y is the 
straight line segment from Zo to Zll then the spherical distance from I(zo) 
to I(Zl) is estimated by 

Since this estimate is independent of the function I E F, regarded as func­
tions from the Euclidean to the spherical metric the family F is equicon­
tinuous at zoo The Arzela-Ascoli theorem then implies that F is normal. 
On the other hand, if the spherical derivatives of the functions in F are 
not uniformly bounded on compact sets, there are !k E F such that the 
maximum of I! over some compact set tends to +00. By the lemma, {/d 
cannot have a normally convergent subsequence, so F is not normal. 

The definition of a normal family of meromorphic functions on a do­
main D can be extended to include domains D that contain 00. We say 
that a family F of meromorphic functions on a domain D in the extended 
complex plane is a normal family of meromorphic functions on D if F 
is a normal family on D\{ oo}, and if further the functions g(w) = 1(I/w), 
l/w E D, form a normal family of meromorphic functions in some disk 
containing w = o. Thus the notion of a normal family is "local." Marty's 
theorem remains valid for domains containing 00. 
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Exercises for XII.1 

1. Verify the identity (1/ f)~(z) = f~(z) by direct calculation. 

2. Show that (g 0 f)~(z) = g~(f(z))If'(z)l. Interpret the identity in 
terms of stretching with respect to Euclidean and spherical metrics. 

3. Show that the functions fe(z) = z/(z + c), 0 < c ::; 1, form a 
normal family of meromorphic functions on C*\{O}. Show that the 
functions ge(w) = fe(1/w) form a normal family of meromorphic 
functions on C. Find lim f1 (z) and lim gH w) as c -t O. 

4. Show that the functions z3/(z+c), 0 < c ::; 1, form a normal family 
of merom orphic functions on C*\{O}, but they do notform a normal 
family of meromorphic functions on C. 

5. Fix M > 1, and let {fn(z)} be a sequence of meromorphic functions 
on a domain D. Show that fn(z) converges normally to f(z) if and 
only if fn(z) converges uniformly to f(z) on compact subsets of the 
open set {If(z)1 < M}, and 1/ fn(z) converges uniformly to 1/ f(z) 
on compact subsets of the open set {If(z)1 > I/M}. 

6. Let E be a compact connected subset of the complex plane that 
contains more than one point. Show that the family of meromorphic 
functions on a domain D that omits E (that is, with range in C*\E) 
is a normal family of meromorphic functions. 

7. Let g(z) be a nonconstant analytic function on a domain U, let 
V = g(U), and let F be a family of meromorphic functions on V. 
Show that the family F is normal on V if and only if the family of 
compositions {f 0 9 : f E F} is normal on U. 

8. Let {fn(z)} be a sequence of rational functions that converges nor­
mally to f(z) on the extended complex plane IC*. Show that fn(z) 
has the same degree as f(z) for n large. (See Exercise VIII.4.5 for 
the definition of the degree of a rational function.) 

9. Let F be a family of meromorphic functions on a domain D. Sup­
pose there is an increasing function 'ljJ(t), t;::: 0, such that 1f'(z)1 ::; 
'ljJ(lf(z)l) for all zED and f E F. Show that F is normal on D. Re­
mark. This is Royden's theorem. For the proof, assume that 'ljJ(t) 
is smooth and increasing, and 'ljJ ( t) ;::: 1 + t2 . Consider the metric in 
which the distance from z to w is the infimum of f 1/'ljJ(I(I) Id(1 over 
all smooth paths from z to w. Show that this metric is equivalent 
to the spherical metric. 

10. Show that the family of analytic functions on a domain satisfying 
If'(z)1 ::; e1f(z)1 is normal. 
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2. Theorems of Montel and Picard 

As an application of Marty's theorem, we give a proof of Montel's the­
orem characterizing normal families of meromorphic functions. Another 
proof of Montel's theorem will be outlined at the end of Chapter XVI, 
based on a modular function that arises as a covering map. We begin with 
the following lemma. Since the converse is trivial, it actually provides a 
characterization of normal families. 

Theorem (Zalcman's Lemma). Suppose:F is a family of merom orphic 
functions on a domain D that is not normal. Then there are points Zn E D 
converging to a point of D, numbers Pn > 0 converging to 0, and functions 
fn E :F such that the scaled functions gn«() = fn(zn + Pn() converge nor­
mally to a nonconstant meromorphic function g( () on C satisfying g~ (0) = 1 
and g~«() :S 1 for ( E C. 

The proof is tricky. By Marty's theorem, there are sequences {wn } in a 
compact subset of D and fn E :F such that f~(wn) ---+ +00. We can assume 
that Wn ---+ 0 ED, and we assume for convenience that the closed unit disk 
{ I Z I :S I} is contained in D. Define 

Rn = maxf~(z)(l-lzl). 
Izl9 

Since Wn ---+ 0 and f~(wn) ---+ 00, we have Rn ---+ 00. Suppose f~(z)(l-lzl) 
attains its maximum at the point Zn, 

then Pn ---+ O. The disk centered at Zn of radius l-Iznl = PnRn is contained 
in the unit disk and hence in D. We parametrize it with a parameter (, by 

Define the scaled function gn «() by 

Since Rn ---+ 00, these functions are eventually defined on any compact 
set. From the chain rule (J 0 h)~(') = f~(h«(»lh'(')1 (Exercise 1.2) with 
h«() = Zn + Pn(, we obtain 
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Now fix R > O. If n is so large that Rn > R, then gn«() is defined on the 
disk {I(I < R}, and since J~(zn + Pn()(l -Izn + Pn(1) ::; Rn we have 

g~«() Rn 
< Pn 1 - IZn + Pn(1 

< PnRn 
- 1 - IZnl - PnR 

1 1(1 <R. 
1- R/Rn ' 

By Marty's theorem, the gn's for n large form a normal family on the 
disk {izi < R}. Passing to a subsequence, we can then assume that {gn} 
converges normally on C to a meromorphic function g«(). Since for each 
fixed R, 1/(1- R/ Rn) ~ 1, the estimate on g~«() shows that gU«() ::; 1 for 
all (E C. Since g~(O) = PnJ~(Zn) = 1, gU(O) = 1. 

-1 . 
o 

Suppose that J(z) is meromorphic for 0 < Iz - zol < T. A value Wo E C* 
is an omitted value of J(z) at Zo if there is 8 > 0 such that J(z) i- Wo for 
0< Iz - zol < 8. Thus Wo is not an omitted value of J(z) at Zo if and only 
if there is a sequence, Zn --+ ZO, Zn i- zo, such that J(zn) = Woo An omitted 
value of J(z) at 00 is defined similarly. 

Example. The function e1/ z omits the two values 0 and 00 at Zo = O. The 
function eZ omits the two values 0 and 00 at 00. 

Theorem (Montel's Theorem). A family F of meromorphic functions 
on a domain D that omits three values is normal. 

Since normality is a local property, we can assume that the domain D 
is the open unit disk {Izl < I}. By composing the functions in F with 
a fractional linear transformation, we can assume that the omitted values 
are 0,1, and 00. Since the functions in F are then analytic and nonzero on 
the unit disk, they have analytic roots of all orders. Let Fk be the family 
of all 2kth roots of functions in F. Evidently Fk is normal if and only if F 
is normal. The functions in Fk omit the values 0, 00, and all 2kth roots of 
unity. 

We will argue by contradiction. Suppose F is not normal. Then Fk is not 
normal. Let Gk«() be the entire function from the Zalcman lemma, so that 
G!«() ::; 1, G!(O) = 1, and Gk is a limit of restrictions of functions in Fk, 
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appropriately scaled. Since the functions in Fk omit the 2kth roots of unity, 
so do their scaled restrictions, and from Hurwitz's theorem (Section VIII. 3) , 
so does any nonconstant normal limit. Thus Gk omits the 2kth roots of 
unity. Now, Marty's theorem shows that {Gk } is a normal family. Let G 
be any normal limit of a subsequence ofthe Gk'S. Then GU(O) = 1, so that 
G is nonconstant, and by Hurwitz's theorem again, G omits all 2kth roots 
of unity, this for all k 2': 1. Since G is an open mapping, G omits the unit 
circle. Thus either IGI < 1 or IGI > 1. Applying Liouville's theorem to G 
in the first case and to I/G in the second, we conclude that G is constant. 
This contradiction establishes the theorem. 

The following theorem is a substantial generalization of the Casorati­
Weierstrass theorem. 

Theorem (Picard's Big Theorem). Suppose J(z) is meromorphic on 
a punctured neighborhood {O < Iz - zol < o} of zoo If J(z) omits three 
values at zo, then J(z) extends to be meromorphic at zoo 

For the proof, we may assume that Zo = 0 and that J (z) omits the val­
ues 0 and 00 on the punctured disk. Then J (z) is analytic on. the punctured 
disk. Let {en} be a sequence that decreases to 0, and define 

0< Izl < o. 
Then {gn} omits three values, including 0 and 00. By Montel's theorem, 
{gn} is a normal family. Passing to a subsequence, we can assume that 
gn(z) converges normally to g(z) for 0 < Izl < o. Assume first that g(z) is 
not identically 00. Then g(z) is analytic for 0 < Izi < o. Fix p, 0 < p < 0, 
and choose M such that Ig(z)1 < M for Izl = p. Then for large n we have 
Ign(z)1 < M for Izl = p, and consequently, IJ(z)1 < M for Izl = enp. By 
the maximum principle, IJ(z)1 < M for enP ::; Izl ::; p, this for all large n. 
These annuli increase to a punctured neighborhood of 0 on which IJ(z)1 < 
M. By Riemann's theorem on removable singularities, J(z) extends to be 
analytic at 0, and the theorem is proved in this case. If, on the other hand, 
g(z) = 00, then we apply the above argument to 1/ J(z). The argument 
shows that 1/ J(z) extends analytically to 0, so in this case J(z) extends 
meromorphically to have a pole at o. 

Theorem (Picard's Little Theorem). A nonconstant entire function 
assumes every value in the complex plane with at most one exception. 

In other words, an entire function that omits two (finite) values is con­
stant. To see this, we regard 00 as an isolated singularity of the function. 
The function omits two finite values and the value 00 at the isolated singu­
larity at 00. By Picard's big theorem, 00 is a removable singularity or pole. 
Thus the function is a polynomial, and since any nonconstant polynomial 
assumes all finite values, the function is constant. 
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Example. The entire function eZ omits the value o. The entire function 
sin z does not omit any (finite) value. 

Example. The entire function zez does not omit any (finite) value. How­
ever, it does omit the value 0 at 00. 

Exercises for XII.2 

1. Show that e1/ z + e- 1/ z omits only the value 00 at z = O. 

2. Show that the meromorphic function e1/ z + 1/(1 - e1/ z ) on C\{O} 
does not omit any value at z = O. 

3. Show that for a> 0 and 0 < (3 < 1, there are constants C(a,(3) > 0 
with the following property. If F is a family of analytic functions on 
the open unit disk that omits the values 0 and 1, and if IJ(O)I < a 
for all J E F, then IJ(z)1 ::; C(a,(3) for all J E F and Izl ::; (3. 
Remark. This is Schottky's theorem. 

4. Let J(z) be analytic on the punctured disk {O < Izl < 1}, and define 
In(z) = J(z/n), n ~ 1. Show that {fn(z)} is a normal family on the 
punctured disk if and only if the singularity of J(z) at 0 is removable 
or a pole. 

5. Let Eo, Ell E2 be three disjoint compact subsets of the Riemann 
sphere, and let F be a family of meromorphic functions on a do­
main D such that each J E F omits at least one point of each of 
the three sets. Show that F is a normal family. 

6. Let 9 be the family of univalent analytic functions on a fixed domain 
D. (a) Show that 9 is not normal. (b) Show that the family of 
functions in 9 that omit 0 is normal. (c) Show that the family of 
derivatives of functions in 9 is normal. (d) Show that for fixed Zo E 

D and M > 0 the family of functions J E 9 satisfying IJ'(zo)1 ::; M 
is normal. 

7. Let S denote the family of univalent functions J(z) on the open 
unit disk 1Ol, normalized by J(O) = 0 and IJ'(O)I = 1. (a) Show 
that there exists K, > 0 such that the image of the open unit disk IOl 
under any J E S includes the open disk centered at 0 of radius K,. 

(b) Show that the function J(z) = z/(1 - z)2 belongs to Sand 
maps IOl onto the complex plane slit along the negative real axis 
from -~ to -00. Conclude that K, ::; ~. Remark. The theorem in 
(a) was first proved by P. Koebe. L. Bieberbach showed that the 
estimate holds with K, = ~, and this estimate is sharp. The theorem 
is known as Koebe's one-quarter theorem, and the function in 
(b) is referred to as the Bieberbach function. 
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8. Show that there is a constant (3 > 0 with the following property. 
If f(z) is an analytic function on the open unit disk II} such that 
f(O) = 0 and 1'(0) = 1, there is a subdisk DelI} such that f(z) 
is one-to-one on D and f(D) contains a disk of radius (3. Remark. 
This is Bloch's theorem, and the optimal (largest) constant (3 is 
Bloch's constant. 

9. Give a proof of Royden's theorem (Exercise 1.9) based on the Zalc­
man lemma. 

10. A family F of meromorphic functions on a domain D is normal at 
Zo ED if F is normal on some open disk centered at Zoo Show that 
F is normal at Zo if and only if whenever {zn} is a sequence in D 
that converges to Zo and Pn ~ 0, then every sequence in F has a 
subsequence {fn(z)} for which the corresponding scaled functions 
gn(() = fn(zn + Pn() converge normally to a constant (possibly 00). 

11. Let F be a family of meromorphic functions on a domain D that 
is not normal at Zo E D, and suppose that fn E F, Zn ~ zo, 
and Pn ~ 0 are such that the scaled functions gn(() = fn(zn + Pn() 
converge normally to a nonconstant meromorphic function g((). Let 
(0 E C, Wo = g((o). (a) Show that there is a sequence ~n ~ Zo such 
that fn(~n) = Woo (b) Show that if (0 is not a critical point of 
g((), then f~(~n) ~ 00. (c) Show that if'lj;(w) is a meromorphic 
function defined near Wo such that 'lj;(wo) = zo, then there is a 
sequence 'TJn ~ Zo such that 'TJn is a fixed point of'lj; 0 fn, that is, 
'lj;(fn('T/n)) = 'T/n· (d) Show that if (0 is not a critical point of g(), 
and if Wo is not a critical point of 'lj;(w) , then ('lj; 0 fn)~('TJn) ~ 00. 

3. Julia Sets 

One of the early applications of Montel's theorem was to complex dynam­
ics, the study of the behavior of the iterates of an analytic or meromorphic 
function. Julia and Fatou used Montel's theorem as a key tool for studying 
the iterates of a rational function. One of their main ideas was to un­
derstand the dynamical behavior of the iterates by splitting the extended 
complex plane C* into two invariant subsets, on one of which (the Fatou 
set) the iterates are well behaved, and on the other of which (the Julia set) 
their behavior is chaotic. We will derive some basic facts about Fatou and 
Julia sets in this section and the next. 

Let U be a domain in the extended complex plane C*, and let f(z) be 
an analytic map from U to U. In other words, f (z) is an analytic function 
on U (meromorphic if 00 E U) whose range is contained in U. For the 
remainder of this chapter it will be convenient to denote the nth iterate 
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f(f(··· (f(z))···)) (n times) of fez) by r(z). Danger! This should not 
be confused with the nth power f(z)n of fez). 

Example. If fez) = z + 1, then r(z) = z + n. 

Example. If fez) = .xz, then r(z) = .xnz. 

Example. If fez} = zd, then r(z) = zd". 

Example. If fez) is a polynomial of degree d, then r(z) is a polynomial 
of degree~. 

In general it is not possible to express the iterates of fez) in a simple 
form. An important method for obtaining effective information on the 
behavior of iterates is to make a "change of variable" in order to express 
the function in a more tractable form, such as one of the forms above, with 
respect to the new variable. Such a change of variable is called an analytic 
conjugation. It is defined formally as follows. 

Let f (z) be an analytic map from U into U, and g( () an analytic map of V 
into V. We say that fez) and gee) are conjugate if there is a conformal 
map ( = cp(z) of U onto V such that 

cp(f(z)) = g(cp(z)) , z E U. 

Thus cp 0 f = go cpo We express this by saying that the following diagram 
commutes: 

v~v. 

We can regard fez) and gee) as the same analytic function, expressed in 
different coordinate systems. If cp conjugates fez) to gee), then cp also 
conjugates each iterate of fez) to the corresponding iterate of gee), 

zEU,n~l. 

Further, the inverse of cp(z) conjugates gee) to fez), cp-l 0 g = f 0 cp-l. 

Example. Every polynomial P(z) = Azd+ ... of degree d ~ 2 is conjugate 
to a monic polynomial. Indeed, if we take ( = cp(z) = cz and Q = cp 0 P 0 
cp-l, we obtain 

Q«() = cp(P(z)) = cP(z) = cAzd + ... 
= c1- d A(d + lower order. 

We take c such that c1- d A = 1, and we have conjugated P(z) to a monic 
polynomial Q( () of degree d. 
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Example. Consider P(z) = Z2 - 2. Let z = 'Ij;«() = (+ 1/( be the 
conformal map from {I(I > I} to the slit z-plane C\[-2, 2]. We compute 
that 

P( 'Ij;( ()) = (( + ~ ) 2 _ 2 = (2 + ;2 = 'Ij;{ (2) . 

Thus cp = 'Ij;-l conjugates P(z) on C\[-2, 2] to the map (r-+ (2 on the 
exterior of the closed unit disk. 

From the conjugation identity cp(f(z)) = g(cp(z» we see that J(zo) = Zo 
if and only if g(cp(zo» = cp(zo), that is, Zo is a fixed point of f(z) if and only 
if cp(zo) is a fixed point of g( (). Differentiation of the conjugation identity 
yields cp'(f(z))!'(z) = g'(cp(z))cp'(z), from which it follows that J'(zo) = 0 
if and only if g'(cp(zo)) = o. We say that fixed points and critical points 
are "conjugation invariants." 

Example. Any fractional linear transformation J(z) with exactly two fixed 
points can be conjugated to the multiplication g( () = A( for some complex 
number A i=- o. Indeed, let cp(z) be a fractional linear transformation that 
maps the fixed points Zo and Zl of J(z) to 0 and 00, respectively. Then 
( = cp(z) conjugates J to the fractional linear transformation 9 = cp 0 

J 0 cp-l. Since g( () now has fixed points at 0 and 00, g( () must have 
the form A(. A similar argument shows that if J (z) is a fractional linear 
transformation with only one fixed point, then J(z) can be conjugated to 
the translation g«() = ( + 1. In this case we take cp(z) to be the fractional 
linear transformation that maps the fixed point of J(z) to 00, some other 
specified point Zo to 0, and J(zo) to 1. (See Exercise 1L7.12.) 

Now let f(z) be a rational function, regarded as an analytic map fromC* 
to C*. The Fatou set of J(z), denoted by F = F(f), consists of all points 
Zo E C* that have an open neighborhood W such that the restrictions of 
the iterates of J(z) to W form a normal family of analytic functions on 
W. In this case, the Fatou set of J contains along with z all points in the 
open set W, so the Fatou set is open. The Julia set of J (z), denoted by 
:1 = :1(f), is the complement of the Fatou set, :1 = C*\F. Thus:1 is a 
closed subset of C* . 

Example. For P(z) = z2 we have pn(z) = z2R
• Thus the iterates {pn(z)} 

converge normally to 00 on {Izl > I} and they converge normally to 0 
on {Izl < I}. If W is any disk containing a point Zo with Izol = 1, then 
the iterates pn(z) converge to both 0 and 00 on nonempty open subsets 
of W, so the iterates do not form a normal family on W. Thus the Julia 
set of P(z} coincides with the unit circle, and the Fatou set of P(z) is the 
complement of the unit circle. 

Theorem. The Fatou set and the Julia set of a rational function f(z) are 
invariant, that is, f(F) C;;; F and f(:1) C;;; :1. 
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Since F and :J are complementary sets, the theorem amounts to the 
assertion that f(F) ~ F and f-1(F) ~ F, that is, that F is completely 
invariant. Thus we must show that Zo E F if and only if f(zo) E:F. One 
direction is trivial. That f(zo) E F implies Zo E F follows from the ob­
servation that if a subsequence of iterates {r k - 1(z)} converges normally 
on a disk V containing f(zo), then the compositions {r k (z)} converge 
normally on the open set f-1(V) containing zoo The less obvious direc­
tion, that Zo E F implies f(zo) E F, follows from the observation that if 
a subsequence of iterates {fnd 1 (z)} converges normally on a disk U con­
taining zo, then {r k (z)} converges normally on f (U), which is an open 
set containing f(zo). (See Exercise 1.7.) 

For simplicity we focus now on a monic polynomial P(z) of degree d 2 2. 
The main feature of P( z) that we will exploit is its attracting fixed point at 
z = 00. Since P(z) '" zd as z ...... 00, there is R > 0 such that IP(z)1 > 21z1 
for Izl 2 R. The iterates pn(z) then converge uniformly to 00 on the 
exterior domain UR = {Izl > R}. In particular, UR C :F. 

The basin of attraction of 00, denoted by A( (0), is defined to be the 
set of all z such that pn (z) ...... 00. This occurs if and only if pn (z) E U R 
for large n. We denote by P-n(UR) the set of z such that pn(z) E UR. 
This is the inverse image of U R under pn (z), so it is open. Since A( (0) is 
the union of the open sets p-n(UR), A(oo) is also open. Since pk(z) tends 
to 00 as k ...... 00 uniformly on p-n(UR), each p-n(UR) is contained in F, 
and A(oo) ~ :F. 

Theorem. Let P(z) be a polynomial of degree d 22. The basin of attrac­
tion A( (0) of 00 is an open connected subset ofC* containing 00. The Julia 
set:J of P(z) coincides with the boundary of A(oo), and it is a nonempty 
compact subset of C. Each bounded component of C\:J is simply con­
nected. 

The proof is straightforward. First note that A( (0) is completely in­
variant, that is, P(A(oo)) ~ A(oo) and P-1(A(00)) ~ A(oo). Thus 
P(8A(00)) is disjoint from A(oo), and P(8A(00)) ~ 8A(00). Then also 
pn(8A(00)) ~ 8A(00) for all n 2 1. In particular, the iterates pn(z) are 
uniformly bounded on 8A(00). By the maximum principle, the iterates 
pn(z) are uniformly bounded on the bounded components of the comple­
ment C\8A(00) of 8A(00). Thus no bounded component of C\8A(oo) is 
iterated to 00, and A( (0) consists of just one connected component, the 
unbounded component of C\8A(00). By Montel's theorem, the iterates 
pn(z) form a normal family on each bounded component of the open set 
C\8A(oo) , so that all these components belong to the Fatou set F, and 
the Julia set:J is contained in 8A(00). If Zo E 8A(00), and U is any open 
disk containing zo, then {pn(z)} converges normally to 00 on Un A(oo), 
while the sequence is bounded at zoo Thus no subsequence of {pn(z)} can 
converge normally on U, and so Zo E:J. Thus:J = 8A(00). Since the 
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polynomial P(z) has degree d 2: 2, it has at least one fixed point ZO E <C. 
Evidently, Zo tj. A(oo), so A(oo) =I- C*, and J = aA(oo) is not empty. 
Finally, since A( 00) is connected, also A( 00) u aA( 00) is connected, and 
each bounded component of the Fatou set is simply connected. (See Sec­
tion VIIL8.) This completes the proof. 

Example. For P(z) = z2, the basin of attraction of 00 is the exterior of 
the unit circle, A(oo) = {Izl > I}. The other component of the Fatou set 
is the open unit disk, which is the basin of attraction of the fixed point O. 

Example. Let P(z) = z2 - 2. We have seen that pn(z) -+ 00 for all 
z E C\[-2, 2]. On the other hand, if -2 ::; x ::; 2, then -2 ::; P(x) ::; 2, so 
the interval [-2,2] is invariant under P(z) and disjoint from A(oo). Thus 
A(oo) = C*\[-2,2], and the Julia set is J = [-2,2]. In this case, the 
Fatou set coincides with A(oo). 

These examples of "smooth" Julia sets are the exception rather than the 
rule. It turns out that the only values of c for which the Julia set of z2 + c 
lies on a smooth curve are the values c = 0 and c = -2 treated above. 
Several filled-in Julia sets for other values of the parameter c are depicted 
below. It can be shown that the Julia set of z2 -0.6 (next page) is a simple 
closed Jordan curve that is nowhere differentiable. This is true of all values 
of c in the "principal cardioid of the Mandelbrot set," except c = O. We 
will show in the next section that the Julia set of z2 + 0.251 (see below) is 
totally disconnected, that is, it contains no continuum . 

. , 

'. 

j . : .• : .. .. : ." 
"or 

, 

Cauliflower set (c=i) Totally disconnected (c= 0.251) 

The theorem above forms the basis for a method for producing computer 
images of Julia sets, called the boundary scanning method. Fix R large, 
fix N large, and fix a grid of points in the z-plane. For each point z in the 
grid, we compute the iterates pk(z) until we reach an integer n = n(z) such 
that IPn(z)1 > R, or until we reach k = N, in which case we set n(z) = N. 
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Quasicircle (c= -t) Douady's rabbit (c>=-O.122+0. 745i) 

If we color blue those points z for which n( z) < N and we color green those 
points for which n(z) = N, we obtain a picture of the filled-in Julia set, 
which is the union of :r and the bounded components of the Fatou set. 
The integer n(z) measures the escape rate of z to 00. The escape rates 
can be captured visually by using different colors or shadings for different 
ranges of n(z). An image of the Julia set can be obtained by recoloring red 
all those grid points for which n(z) = N but that have a close neighbor 
satisfying n(z) < N. 

Theorem. Let P(z) be a polynomial of degree d;:::: 2. If Zo belongs to the 
Julia set :r of P(z) and if U is any open neighborhood of zo, then there 
exists N 2: 1 such that 

(3.1) 

Further, the inverse iterates U~l P-k(Zl) of any point Zl E :r are dense 
in .:T. 

The proof of this theorem depends in an essential way on the general 
version of Montel's theorem. By our hypothesis, the restrictions of the 
sequence of iterates {pn (z)} to U do not form a normal family. By Montel's 
theorem, there is at most one value that is omitted by the sequence {pn (z)} 
on U. If {pn (z)} does not omit any value, then 

00 

(3.2) U pn(U);2:r. 
n=l 

Since :r is compact, and each set pn(U) is open, a finite number of these 
open sets already cover :r, and we obtain (3.1). 

Suppose, on the other hand, there is an omitted value, call it wo, so that 
Upn(U) = C\{wo}. Then there is no Zo i- Wo such that P(zo) = wo, or 
else we would have Zo E pm(u) for some m, and Wo E pm+l(U). Since 
the only solution of P(z) = Wo is wo, P(z) - Wo is a constant multiple of 
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(z - wO)d, and since P(z) is assumed to be monic, P(z) = wo + (z - wo)d. 
Now, the iterates pn(z) tend uniformly to wo on any compact subset of 
{Iz - wol < I}. This can be seen directly, or by making the change of 
variable ( = z - wo, which conjugates P(z) to (d. In any event, wo belongs 
to the Fatou set of P(z), and we still obtain (3.2). Since.:1 is compact, we 
then obtain (3.1) again. This proves the first statement of the theorem. 

For the second statement, let U be an open nonempty subset of .:1. Then 
Zl E pk(U) for some k 2': 1, and consequently, one of the points in P-k(Zl) 
belongs to U. This completes the proof. 

This theorem provides another method for producing computer images 
of Julia sets, called the inverse iteration method. One selects a starting 
point Zl E .:1, and one calculates the inverse iterates P-k(zd by solving 
the polynomial equations pk(z) = Zl for 1 ::; k::; N. For this method to be 
effective, the degree of P(z) should be small (as d = 2). For a starting point 
in .:1, one can look among the fixed points of J (z ). A rational function of 
degree d 2': 2 always has a fixed point in the Julia set (see Exercises 16 
and 23). 

The preceding theorem provides the basis for referring to Julia sets as 
''fractal sets," in the sense that shapes in the Julia set reappear infinitely 
often at different scales near any point of the Julia set. The idea is as 
follows. Let Zo E .:1 be such that the forward orbit of Zo does not contain 
any of the critical points of P(z), and let Zl be any point of.:1. By the 
theorem, we can find images pn(zo) arbitrarily close to Zl. If U is a small 
enough disk centered at Zo, then pn(z) maps U conformally onto an open 
set containing pn(zo). Since.:1 is completely invariant, pn(z) maps .:1 n U 
onto .:1 n pn (U). Hence.:r n pn (U) has the same "shape" as .:1 n U though 
at a different scale. 

Exercises for XII.3 

1. Show that the Julia set .:1 and the Fatou set F of a rational function 
J(z) satisfy J(.:1) = .J and J(F) = F. 

2. Show that the rational function J(z) = z2/(z2 + 1) is conjugate to 
the quadratic polynomial P( z) = Z2 + 2. 

3. For )., J.L =1= 0, the two maps J(z) = )'z and g(z) = J.LZ of C* are 
conjugate if and only if ). = J.L or ). = 1/ J.L. Hint. A conjugation 
maps fixed points to fixed points. 

4. Let Zo be a fixed point of J(z). Define the multiplier of the fixed 
point Zo to be ). = J'(zo). Show that the multiplier at a fixed point 
is a conjugation invariant, that is, if ( = cp(z) conjugates J(z) to 
g((), then the multiplier of g(() at the fixed point cp(zo) is equal to 
the multiplier of J(z) at zoo 
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5. A fixed point Zo of J(z) is a repelling fixed point if 1f'(zo)1 > 1. 
Show that the Julia set of a rational function J(z) contains all its 
repelling fixed points. 

6. Show that the Julia set of a fractional linear transformation is either 
empty or consists of one fixed point. 

7. A fixed point Zo of J(z) is an attracting fixed point if 1f'(zo)1 < 1. 
The basin of attraction of zo, denoted by A(zo), is the set of z 
whose iterates r(z) converge to Zo as n ---> 00. Show that if J(z) is 
a rational function, then A(zo) is an open subset of C* containing 
Zo whose boundary coincides with the Julia set. 

8. Show that if J(z) is a rational function of degree d, then the mth 
iterate Jm (z) is a rational function of degree dm. 

9. Show that the Julia set of a rational function J(z) coincides with 
the Julia set of its mth iterate Jm(z). 

10. A point Zo is a periodic point of J(z) if it is a fixed point of Jm(z) 
for some m ~ 1. For such a zo, set Zl = J(zo), Z2 = J(Zl), ... , 
Zm-l = J(Zm-2). Show that each Zj is a fixed point of Jm(z) with 
the same multiplier A = f'(zo)··· f'(zm-d. Remark. Assuming 
that the Zj'S are distinct, we define the multiplier of the cycle 
{zo, Zl, ... ,Zm-l} to be the multiplier of Jm(z) at any ofthe points 
of the cycle. The cycle is an attracting cycle if its multiplier A 
satisfies IAI < 1, and it is a repelling cycle if IAI > 1. The integer m 
is the period of the periodic point, or the length of the cycle. 

11. Find all repelling cycles of the polynomial J(z) = z2. 

12. Show that all repelling cycles of a rational function are contained in 
its Julia set. 

13. Find all attracting cycles of length two of the quadratic polynomial 
z2 + c. Show that the values of the complex parameter c for which 
there is an attracting cycle of length two form an open disk. 

14. Let J(z) be a rational function. We define the basin of attraction 
of an attracting cycleof J(z) to consist of the points z E C* 
whose iterates In(z) accumulate on the cycle as n ---> 00. Show that 
the basin of attraction of an attracting cycle is an open subset of C* 
whose boundary coincides with the Julia set. Show that different 
points of an attracting cycle lie in different components of the basin 
of attraction. 

15. We define the multiplicity of a fixed point Zo of J(z) to be the 
order of the zero of J(z) - z at z = zoo Show that a fixed point has 
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multiplicity m ~ 2 if and only if its multiplier is 1. Show that the 
multiplicity of a fixed point is a conjugation invariant. 

16. Show that a fixed point of a rational function fez) of multiplicity 
m ~ 2 belongs to the Julia set. 

17. Show that a rational function of degree d has d + 1 fixed points, 
counting multiplicity. 

18. Define the analytic index of a fixed point Zo f 00 of fez) to be the 
residue of 1/(z - fez)) at zoo (a) Show that if Zo is a fixed point of 
fez) with multiplier>. f 1, then the analytic index of fez) at Zo is 
1/(1 - >.). (b) Show that if fez) has a fixed point of multiplicity m 
at ZO, then for any small e > 0, fe(z) = fez) - e has m fixed points 
near zo, each of multiplicity one, for which the sum of the analytic 
indices of fe(z) tends to the analytic index of fez) at zo as e -+ O. 
(c) Show that the analytic index of a fixed point is a conjugation 
invariant. 

19. Find the fixed points and their analytic indices for the rational func­
tion fez) = (3z2+1)/(z2+3). Determine the Julia set and the Fatou 
set of fez). 

20. Suppose that fez) = z_zm+1+Az2m+1+0(z2m+2) for some integer 
m ~ 1. Show that the analytic index of fez) at the fixed point z = 0 
is A. 

21. Suppose that g(z) = z - zm+l + O(zm+2) for some integer m ~ 1. 
Show that g(z) can be conjugated near 0 to fez) = z - Zm+l + 
AZ2m+l +O(z2m+2), where A is the analytic index of fez) at z = O. 
Hint. 'Thy conjugating by cp(z) = z(1 + azk ). 

22. If 00 is a fixed point for fez), we define the analytic index at 00 of 
fez) to be the analytic index of 1/ f(I/() at ( = O. (Danger! This 
is not the residue of z - fez) at z = 00.) Show that the sum of the 
analytic indices of a rational function f (z) at its fixed points in C* 
is +1. 

23. Show that if fez) is a rational function of degree d ~ 2, and if all 
the fixed points of fez) have multiplicity one, then fez) has at least 
one repelling fixed point. Hint. Use Exercise 18a, and sum the real 
parts of the analytic indices at the d + 1 fixed points. 

24. Let fez) be a rational function of degree d ~ 2. (a) Show that .1 
is nonempty. (b) Show that either :F is empty or :F is dense in C*. 
(c) Show that .1 has no isolated points. 
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25. Let I(z) be a rational function of degree d ~ 2. Show that the 
repelling periodic points of I (z) are dense in the Julia set of I (z ). 
Remark. This theorem was proved independently by Fatou and 
Julia. It can be regarded as the first substantial theorem in rational 
iteration theory. For the proof, fill in the details of the following 
argument. Using the fact that .:T is a compact set with no isolated 
points, show that the points Zo E .:T that are not in the forward orbit 
of a critical point are dense in .:T. For such a point zo, refer to the 
entire function g(() from Exercise 2.11. Show that there is a point 
(0 E C such that (0 is not a critical point of g(() and Wo = g((o) 
satisfies 1m (wo) = Zo for some m. Show that the points 'fin from 
Exercise 2.11 are repelling periodic points of I(z) that converge 
to zoo 

4. Connectedness of Julia Sets 

The critical points and their forward orbits playa special role in complex 
dynamics. In this section we prove two results on connectedness of Julia 
sets, in which the critical points play the crucial role. While we focus on 
polynomials, the main ideas of the proofs are flexible and can be adapted 
to other situations (see the exercises). 

We consider a monic polynomial P(z) = zd +" (zd-l) of degree d ~ 2. 
Let R > 0 be large, so that the circle ro = {Izl = R} is contained in the 
basinofattractionA(oo) of 00, and IP(z)1 > Rfor Izl ~ R. We may assume 
that r l = p-l(ro) is "almost" a circle of radius RI/d, which is mapped 
d-to-one by P(z) onto roo Let Uo be the "annular" domain between ro 
and r l , and define rk = p-k(ro) and Uk = p-k(UO). Then each Uk is an 
open set with boundary fk U fk+1, and P(z} maps Uk d-to-one onto Uk-I 
(counting multiplicity at critical points). 

If z E A(oo), then either Izl > R, or there is a first integer k ~ 0 
such that I pk+1 (z) I > R. In the latter case, pk (z) belongs to Uo U r 0, and 
z E UkUfk. Thus A(oo) is the disjoint union of the exterior disk {Izl > R}, 
the open sets Uk, and the curves fk separating Uk and Uk-I' The effect 
of P is to map each rk to rk-I and each Uk to Uk-I' 
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Since there are only finitely many critical points, we can arrange by 
adjusting R that no critical point of P(z) lies on a curve fk. Then P(z) 
is conformal at each point of fk and maps fk d-to-one onto fk-l. The 
composition pk(z) is then conformal at each point of fk and maps fk dk_ 
to-one onto the circle fo. Thus each fk is a finite union of disjoint simple 
closed analytic curves. The fk's accumulate on oA(oo) as k -+ 00, and 
since .J = oA(oo), we have 

.J = lim fk = lim Uk. 
k->oo k->oo 

Let Wk = P-k({lzl < R}). The boundary of Wk is fk' and W k is 
obtained from the disk {Izl < R} by removing Uo U fl U ... U Uk-l U fk· 
Since the complement of Wk is connected, each component of Wk is simply 
connected. In view of the Riemann mapping theorem, we can think of Wk 
as the union of a finite number of "analytic disks" with analytic boundaries, 
one domain for each closed curve in fk. Since C\Wk C A(oo), Wk contains 
all the bounded components of the Fatou set F together with the Julia 
set .J. Note also that P-l(Wk) = WkH C Wk. Now the stage is set, and 
we state and prove our two theorems. 

Theorem. Let P(z) be a polynomial of degree d ~ 2. The Julia set .J of 
P(z) is connected if and only if the iterates of each critical point of P(z) 
are bounded. 

Suppose first that the iterates of critical points are all bounded, so that 
no critical point of P(z) is in A(oo). Then at each point w = P(z) E A(oo) 
we can define d analytic branches of the inverse function p- l (w), and 
these branches can be continued analytically along any curve in A( 00). 
Similarly, there are dk analytic branches of the inverse p-k (w) of the kth 
iterate pk(z), and p-k(w) can be continued analytically along any path 
in A(oo). We deform fo to fl through a family of circular closed disjoint 
curves f t in Uo, 0 :::; t :::; 1. (In fact, since Uo is conformally equivalent 
to an annulus, we can arrange for the ft's to be simple closed analytic 
curves.) Suppose fk consists of just one closed curve. Then as w traverses 
the closed curve fo dk times, an analytic branch of p-k(w) traverses fk 
once and returns to its initial point. We deform the curve f 0 through the 
ft's to fl' and we follow a branch of p-k(w) dk times around each ft. 
Since there are no critical points in A(oo), the branch of p-k(w) moves 
continuously with the curve f t and cannot return to the initial value until 
w completes dk full loops around ft. Hence each P-k(ft ) consists of a 
single closed curve, and in particular, fkH = P-k(f l ) consists of a single 
closed curve. By induction on k we see, then, that each f n consists of 
one closed curve, and in particular, each f n is connected. Since a limit of 
compact connected sets is connected (Exercise 7), and since .J is the limit 
of the connected sets f n, .J is connected. 
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To prove the converse, suppose next that there is a critical point in 
A(oo). Let k be the first integer such that there is a critical point in Uk, 
and for simplicity assume that there is only one critical point q in Uk' The 
argument in the preceding paragraph shows that each f j consists of just 
one curve for j ::; k. As before, we consider the circular curves f t and their 
inverse images P-k(ft ). Let r be the smallest parameter value such that 
q E P-k(fr ). We can assume that f t is a circle for t near r. Fix e > 0 
small. The argument in the preceding paragraph shows that P-k(f r-e) 
consists of just one curve, which is the boundary of a bounded simply 
connected domain V containing q. Consider the inverse image P-k(fr ), 
which includes the critical point of q. If the critical point has order m, then 
the part of p-k (f r) near q consists of 2m + 2 analytic arcs that terminate 
at q and divide a disk centered at q into 2m + 2 sector-like domains, as 
in the figure. In the sectors we alternately have pk (z) outside f r and 
inside f r . The curve P-k(fr_e) = av enters and then exits every other 
sector, as in the figure. The curves in P-k(f r+e) enter and then exit each 
of the remaining sectors. We can think of Vasa disk, via the Riemann 
mapping theorem. Line segments drawn from q to the nearest point in av 
in each of the m+1 sectors where av approaches q then divide V into m+1 
components. Since each of these components contains an arc of P-k(fr+e), 
we see that p-k(fr+e) consists of at least m + 1 analytic curves. Hence 
Wk+1 has at least m + 1 components. Since each of these components 
contains curves in f j for all j > k + 1, each of these components also 
contains points of 3, and the Julia set is not connected. 

critical point of order m = 2 

We say that a compact subset K of C is totally disconnected if for 
every Zo E K and e > 0 there is a subset E of K such that Zo E E, the 
diameter of E is less than €, and E is at a positive distance from K\E. Thus 
K = Eu (K\E) is a decomposition of K into two disjoint compact subsets, 
one of which contains Zo and has small diameter. At the opposite end of 
the spectrum from the preceding theorem, we now have the following. 

Theorem. Let P(z) be a polynomial of degree d ~ 2. If all the critical 
points of P(z) are iterated to 00, then the Julia set 3 of P(z) is totally 
disconnected, and the Fatou set :F of P( z) coincides with the basin of 
attraction A( (0) of 00. 
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In this case we choose N so large that none of the critical points of P(z) 
are in W N. Then since each component of W N is simply connected, all d 
branches of p-l (w) can be defined analytically on each component of W N . 

Each branch has image in W N and maps points of .1 to points of .1. Fix 
Zo E .1. Let V be a component of WN that contains pk(zO) for infinitely 
many k's. For such a k, let 9k(W) be the branch of p-k(w) on V satisfying 
9k (pk(zO)) = zo0 The family {9k(W)} is uniformly bounded on V, hence a 
normal family of analytic functions on the open set V. Moreover, 9k(W) E 

WN+k n A(oo), so 9k(W) -7.1 for all w E WN n A(oo). Consequently, any 
limit 9(w) of the 9k(W)'S as k -7 00 maps WN n A(oo) into.1. Since.1 
has no interior points, 9( w) is constant, and the constant value of 9( w) 
must be Zo. Thus there is a subsequence k j for which 9k j (w) is defined and 
converges to Zo uniformly on compact subsets of V. If we shrink V slightly, 
we obtain a compact subset Eo of V such that pkj (zo) E Eo, oEo c A( 00), 
and the 9kj 's converge uniformly on Eo to Z00 Set E j = 9kj (Eo). Then E j is 
compact, Zo = 9kj (pk j (zo)) E E j , and the diameter of E j tends to O. Since 
oEo c A(oo), also oEj C A(oo). Thus E j n.1 has positive distance from 
.1\Ej , and the conditions in the definition of total disconnectedness are 
fulfilled at Z00 Since Zo E .1 is arbitrary, the Julia set is totally disconnected. 

Exercises for XII.4 

1. For each of the quadratic polynomials P(z) = z2 and P(z) = z2+2, 
sketch roughly the curves r k for 0 :::; k :::; 3. Take ro to be the circle 
{Izl = 9}. 

2. Let P(z) be a polynomial of degree d 2:: 2 whose Julia set is con­
nected. Let G(z) be the Riemann map of A(oo) onto the exterior of 
the unit circle {lei > I} such that G(oo) = 00. Show that (= G(z) 
conjugates the polynomial P(z) on A( 00) to the map (d on the exte­
rior {I (I > I} of the unit circle. Hint. Apply the Schwarz reflection 
principle to f = GoP 0 G-1 . 
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3. Let fez) be a rational function with an attracting fixed point at zoo 
Let U be the connected component of the basin of attraction of Zo 
(see Exercise 3.7) containing zoo Suppose there is no critical point 
of fez) in U except for possibly zoo (a) Show that U is simply 
connected. Hint. Conjugate Zo to 00 by a fractional linear trans­
formation and assume Zo = 00. Then modify the proof in the text. 
(b) Show that if fez) has degree d ~ 2, then U is conformally equiv­
alent to the open unit disk, and fez) has a critical point at zoo (c) 
Show that if Zo is a critical point of fez) of order m ~ 1, and if G(z) 
is the Riemann map of U onto the unit disk]jJ) such that G(zo) = 0, 
then (= G(z) conjugates fez) on U to the map (m+l on]jJ). 

4. Let f (z) be a rationalfunction of degree d ~ 2, and suppose {zo, f (zo), 
... ,r-1(zo)} is an attracting cycle for fez). Show that fez) has a 
critical point in one of the connected components of the basin of at­
traction of the cycle that contains a point of the cycle. Hint. Apply 
the preceding exercise to r(z). For definitions, see Exercises 3.10 
and 3.14. 

5. Show that a rational function of degree d ~ 2 has at most 2d - 2 at­
tracting cycles. Hint. Count critical points and apply the preceding 
exercise. 

6. Show that a polynomial P(z) of degree d ~ 2 has at most d - 1 
attracting cycles in the (finite) complex plane. 

7. Let {En} be a sequence of compact subsets of C that converges to 
a compact set E. Thus E consists of those points z for which there 
are Zn E En satisfying Zn -+ z. Show that if each En is connected, 
then E is connected. 

8. Show that a compact subset K of C is totally disconnected if and 
only if for each Zo E K and c > 0, there is a simple closed curve 'Y 
in C\K of diameter less than c such that 'Y separates Zo from 00, 

that is, Zo lies in the bounded component of C\'Y. 

9. Show that a compact subset K of C is totally disconnected if and 
only if K does not contain a continuum. Strategy. For fixed Zo E K, 
let E(zo) be the intersection of all closed subsets E of K such that 
Zo E E and K\E is closed. Show that E(zo) is either a continuum 
or the singleton {zo}. The set E(zo) is the "connected component 
of Zo in K." 

10. Let Zo be a fixed point of a polynomial P(z). Show that either {zo} 
is a connected component of the Julia set .:1, or else the connected 
component of Zo in the filled-in Julia set K = C\A(oo) contains a 
critical point of P(z). 
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5. The Mandelbrot Set 

We now turn our attention to some special polynomials, the quadratic 
polynomials 

z E C, 

where e E C is a complex parameter. Let :Jc denote the Julia set of Pc(z). 
The only critical point of Pc(z) is the origin z = O. We consider the 
iterates Pc(O) = c, P;(O) = e2 + c, P~(c) = (e2 + C)2 + e, .... There 
are two cases that can occur, corresponding to the two theorems in the 
preceding section. If the iterates P:(O) are bounded, then the Julia set :Jc 
is connected. Otherwise, the iterates P:(O) tend to 00, and then :Jc is 
totally disconnected. 

We define the Mandelbrot set M to be the set of parameter values e 
such that the iterates P:(O) are bounded. Thus e E M if and only if :Jc 
is connected. Note that the Mandelbrot set is a subset of parameter space 
(e-space) and not of dynamic space (z-space). 

Theorem. A complex number e belongs to the Mandelbrot set M if and 
only if I~(O)I :::; 2 for all n ;::: 1. The Mandelbrot set is a compact subset 
of the closed disk {lei:::; 2}. Further, C\M is connected. 

Suppose that lei> 2. If Izl = lei, then Iz2+cl ;::: lel2-1c1 = (lel-l)lzI. By 
the maximum principle, applied to Z/(Z2 + c) on the exterior of the circle, 
this estimate IPc(z) I ;::: (lei - l)lzl persists for all z satisfying Izl ;::: lei­
By iterating, starting with Pc(O) = c, we obtain successively IP;(O) I ;::: 
(lel-l)lel, IP~(O)I ;::: (lel-l)2Iel, and eventually IP:(O)I ;::: (lel-l)k-1Iel· 
Thus P:(O) ---+ 00, so C ¢ M. It follows that M is a subset of the closed 
disk {lei:::; 2}. 

Suppose next that lei:::; 2 and that c ¢ M. Let n ;::: 1 be the first integer 
such that IP~(O)I > 2. Then 1P~+1(0)1 = IP~(O)2 + cl ;::: IP~(OW - lei> 
(I~(O)I - l)IP~(O)I· We estimate P~+2(O) in the same way, and so on, 
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and we obtain 1P~+k(O)1 > (I~(O)I - l)kIP~(O)I, which tends to +00 as 
k -+ 00. This proves the first statement in the theorem. 

For fixed n, the set of e E C such that IP~(O)I :::; 2 is a closed set. Thus 
the description of M as the set of e E C such that I~(O)I ~ 2 for all n 
shows that M is closed, and it is bounded; hence M is compact. Let U be 
any bounded domain with boundary contained in M. Then IP~(O)I :::; 2 for 
all e E au. Since Pe(O) is a polynomial in e, we infer from the maximum 
principle that IP~(O)I ~ 2 for all e E U. Hence U c M. It follows 
that C\M has no bounded components, and so C\M consists of a single 
unbounded component. The theorem is proved. 

The constant 2 in the theorem is sharp. For e = -2, the origin is iterated 
in two steps to the repelling fixed point Zo = 2, 0 -+ -2 -+ +2 -+ +2 -+ 

.... In particular, the iterates P~2(O) are bounded, so -2 E M. It is 
straightforward to show (Exercise 3) that M meets the real axis in the 
closed interval [-2, a] . 

The theorem suggests an algorithm for obtaining computer pictures of 
M. We fix a large integer N, and we lay a grid of points on the disk 
{lei ~ 2}. For each point e in the grid we compute the iterates P:(O) 
of O. If we reach k < N for which Ip:(O)1 > 4, we color the grid point 
sky blue; otherwise, we stop when we reach k = N and we color the grid 
point black. The Mandelbrot set is approximated by the black grid points. 
By using different shades of blue to depict different escape rates, we obtain 
more attractive pictures. For an assortment of close-up pictures of various 
parts of the Mandelbrot set and a discussion of algorithms for obtaining 
the pictures, see the award-winning book of Peitgen and Richter [PRJ. 

We describe now some results on the Mandelbrot set without giving 
proofs. Several of the proofs are laid out as exercises, while some are 
beyond our scope. We focus on the set W of those parameter values e 
such that Pc (z) has an attracting cycle (other than 00). Recall from the 
exercises for Sections 3 and 4 the definitions of attracting fixed points, 
attracting cycles, and their basins of attraction. 

Suppose Pe(z) has an attracting cycle, other than the fixed point at 00. 

The basin of attraction of the cycle is contained in the Fatou set :Fe and is 
disjoint from A(oo). Hence Je cannot be totally disconnected, and e EM. 
Thus We M. It is straightforward to check that W is an open subset of 
the complex plane (Exercise 8). This depends on the observation that an 
attracting periodic point of period n is a zero of P~(z)-z, and by Hurwitz's 
theorem the zeros of this polynomial vary continuously with the parame­
ter e. With somewhat more effort it can be proved that aw ~ aM, so that 
W is a union of connected components of the interior of M (Exercise 10). 
These components are called the hyperbolic components of the interior 
of M. Each hyperbolic component corresponds to a single attracting cycle 
{zo(e), zl(e), ... ,Zn-l(C)} of length n, where each n-periodic point zj(e) is 
an analytic function of e in the hyperbolic component. 
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It turns out (see [CG]) that if U is a hyperbolic component of the in­
terior of M, and if A(e) is the multiplier of the attracting cycle of Pc(z), 
then e t---+ A(e) maps U conformally onto the open unit disk in the complex 
plane. In particular, each of the hyperbolic components contains exactly 
one parameter value Co such that Pco(z) has a cycle with multiplier 0, 
that is, a "superattracting cycle." We refer to Co as the center of the 
hyperbolic component. The centers of the hyperbolic components cor­
responding to superattracting cycles of length n can be calculated by solv­
ing ~(O) = 0, which is a polynomial equation in e, and discarding the 
solutions of P~(O) = 0 for m < n. 

Example. The e's for which Pc(z) has an attracting fixed point form a 
cardioid, called the principal cardioid. It is a hyperbolic component of 
the interior of M, with center at e = 0 corresponding to the superattracting 
fixed point z = 0 for Po(z) = z2. (See Exercise 4.) 

Example. To find the superattracting 2-cycles, we solve P;(O) = c2 + 
e = o. The solution e = 0 corresponds to the superattracting fixed point 
z = 0 for Po(z) = z2. The other solution e = -1 corresponds to the 
superattracting 2-cycle {O, -I} for P- 1(z) = z2 - 1. The corresponding 
hyperbolic component of the interior of M is the disk {Ie + 11 < i}. (See 
Exercise 3.13.) 

It was known for some time that the Mandelbrot set M is connected, 
that is, C*\M is simply connected. Some intense interest has been focused 
on the following two questions. Does the conformal map from the open 
unit disk to C*\M extend continuously to the boundary of the disk? Are 
all components of the interior of M hyperbolic? The answers remain a 
mystery. For more on the Mandelbrot set, see [CG]. 

Exercises for XII.5 

1. Show that if I~(O)I > 2, then Ip~(O)1 is strictly increasing for 
k~n. 

2. Show that if lei ~ 2, then the Julia set Jc is a subset of the closed 
disk {Izl ~ 2}. 

3. Show that M n lR = [-2, iJ. Hint. If -2 ~ e ~ i, let r = 
(1 + J[=4C) /2, the larger root of x2+e = x. Show that Pc([e, r]) ~ 
[e,r]. 

4. Show that Pc(z) has an attracting fixed point with multiplier A, 
IAI < 1, if and only if e = A/2 - A2/4. Show that these values e form 
a cardioid with cusp at e = i. Sketch the cardioid. Show that the 
map e t---+ A(e) is the Riemann map of the cardioid onto the open 
unit disk. 
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5. Find the values C for which there are superattracting cycles of length 
3 and of length 4. Locate the values of C on the picture of the 
Mandelbrot set. 

6. Show that any quadratic polynomial P(z) = AZ2 + Bz + C, Ai 0, 
is conjugate to the polynomial Pe(z) for a unique value of c. 

7. Show that any quadratic polynomial P(z) = AZ2 + Bz + C is con­
jugate to the polynomial Q),(z) = AZ + z2 for some complex num­
ber A. Show that Q),(z) is conjugate to QJ.L(z) if and only if A = JL 
or A = 2 - JL. 

8. Show that the set of parameter values C such that Pe(z) has an 
attracting cycle is an open subset of the complex plane that is con­
tained in M. 

9. Use the result of Exercise 4.4 to show that if Pe(z) has an attracting 
cycle of length n, then p:n(o) converges to a point zo(c) of the 
cycle as k -t 00. Show further that p:n+j (0) converges to the point 
Zj(c) = Pe(ZO(c)) of the cycle as k -t 00, and that the points Zj(c) 
depend analytically on c, 0 ::; j < n - 1. 

10. Suppose PeQ (z) has an attracting cycle of length n. Let V be the 
connected component of the interior of M containing Co. Show that 
Pe(z) has an attracting cycle of length n for each c E V. Hint. Use 
the fact that P:(O) is uniformly bounded for c E V, hence a normal 
family. Use the preceding exercise, and show that any limit of a 
subsequence is an attracting periodic point. 
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Approximation Theorems 

In this chapter we prove two fundamental theorems, one "additive" and 
the other "multiplicative," on prescribing zeros, and poles of meromorphic 
functions. The first is the Mittag-Leffler theorem, which asserts that we 
can prescribe the poles and principal parts of a meromorphic function. The 
second is the Weierstrass product theorem, which asserts that we can pre­
scribe the zeros and poles, including orders, of a meromorphic function. 
The theorems are closely related. Both theorems are proved by the same 
type of approximation procedure, which depends on Runge's theorem on 
approximation by rational functions. We prove Runge's theorem in Sec­
tion 1, followed by the Mittag-Leffler theorem in Section 2. In Section 3 
we introduce infinite products, which can always be converted to infinite 
series by taking logarithms. We prove the Weierstrass product theorem in 
Section 4. 

1. Runge's Theorem 

Suppose J(z) is a complex-valued function on a compact subset K of the 
complex plane. When can J(z) be approximated uniformly on K by ra­
tional functions? When can J(z) be approximated uniformly on K by 
polynomials (in z)? Any uniform limit of rational functions with poles 
off K must be continuous on K, and further, since a uniform limit of ana­
lytic functions is analytic, it must be analytic on the interior of K. These 
are necessary conditions for approximation. The first nontrivial sufficient 
condition for approximation is given by the following theorem. 

Theorem (Runge's Theorem). Let K be a compact subset of the com­
plex plane. If J(z) is analytic on an open set containing K, then J(z) can 
be approximated uniformly on K by rational functions with poles olI K. 

For the proof, let D be an open set with piecewise smooth boundary such 
that KeD and such that J(z) is analytic on D u aD. By the Cauchy 
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integral formula, 

J(z) = ~ r J(() de, 
21ft laD (- z 

zED. 

We chop aD up into a union of short curves 'Yj such that each 'Yj is contained 
in a disk {Iz - cj l < rj} that is at a positive distance from K. Then 
J(z) = L fJ(z), where 

fJ(z) = ~j J(()d(' 
21ft 'Yj ( - z 

z ~ 'Yj. 

The function fJ(z) is analytic off 'Yj (Morera's theorem) and vanishes at 00. 

Each Jj (z) has a Laurent expansion in descending powers of z - Cj that 
converges uniformly for I z - Cj I > r j, hence uniformly on K. Thus Jj (z) is 
uniformly approximable on K by polynomials in l/(z - Cj). Adding these 
approximants, we see that J(z) is uniformly approximable on K by rational 
functions with poles off K. 

Cc< K 

There is some flexibility with respect to the location of the poles of the 
approximating rational functions. 

Lemma. Let K be a compact subset of the complex plane, let U be a con­
nected open subset of the extended complex plane C* disjoint from K, and 
let Zo E U. Every rational function with poles in U can be approximated 
uniformly on K by rational functions with poles at zoo 

Here we consider a polynomial in z to be a rational function with pole 
at 00. The lemma is established by a "translation of poles" argument. We 
define the set V to consist of those points ( E U such that l/(z - () is 
approximable uniformly on K by rational functions with pole at zoo Thus 
if ( E V , then each power l/(z _()k is also uniformly approximable on K 
by rational functions with pole at zoo Since Zo E V, the set V is nonempty. 
Since U is connected, to show that V = U, it suffices to show that V is 
open and closed in U. The "closed" assertion is easy. If ( E U is a limit of 
a sequence (j E V, then 1/ (z - (j) converges uniformly on K to 1/ (z - (), 
so by the definition of V , also ( E V. The crux of the proof then is to 
show that V is open, and this reduces to showing that if (0 E V, and if ( is 
near (0, then l/(z - () is uniformly approximable on K by polynomials in 
l/(z - (0)' We begin with the special case (0 = 00. We must show that if 
( is near 00 (that is, 1(1 is large), then l/(z - () is uniformly approximable 
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on K by polynomials in z. For this, we expand l/(z - () in a geometric 
series, 

1 

z-( 

If Izl s C for all z E K, and if 1(1 > 2C, then the kth term of the series 
is dominated by 1/2k. By the Weierstrass M-test, the series converges 
uniformly on K, and consequently, ( E V whenever 1(1 > 2C. If (0 is finite, 
the proof is essentially the same, with a change of variable z ~ 1/ (z - (0) to 
place (0 at 00. We choose £ > 0 less that the distance from (0 to K, so that 
Iz - (01 ~ £ for z E K. If!( - (01 < £/2, then 1(( - (O)k /(z - (o)kl < 1/2k 
for z E K, so the geometric series 

1 1 1 1 00 (( - (o)k 
Z - ( = z - (0 1- (( - (o)/(z - (0) = z - (0 L (z - (o)k 

k=O 

is uniformly convergent for z E K, by the Weierstrass M-test. Thus all ( 
satisfying I( - (01 < £/2 belong to V, and V is an open set. This proves 
the lemma. 

By approximating with rational functions and then using the lemma to 
translate the poles, we obtain immediately the following sharper version of 
Runge's theorem. 

Theorem. Let K be a compact subset of the complex plane, and suppose 
that J(z) is analytic on an open set containing K. Let S be a subset of 
C*\K such that each connected component ofC*\K contains a point of S. 
Then J(z) can be approximated uniformly on K by rational functions with 
poles in S. 

In particular, if K is a compact subset of the complex plane, and if the 
complement of K is connected, then each function analytic in a neigh­
borhood of K can be approximated uniformly on K by polynomials in z. 
There is a considerably more difficult theorem on polynomial approxima­
tion, Mergelyan's theorem, which asserts that any function that is con­
tinuous on K and analytic on the interior of K can be approximated uni­
formly on K by polynomials in z. The analogous statement for rational 
approximation is false. 

Example. There is a compact set K with empty interior, and a continuous 
function J(z) on K, such that J(z) cannot be approximated uniformly on K 
by rational functions. We outline the construction of such an example, 
known as a Swiss cheese set. Let S be a sequence that is dense in the 
open unit disk][)). Select disks Dk = {Iz -ckl < rk} by induction, such that 
the center Ck of Dk is the first point in the sequence S that is not contained 
in any of the closed disks Ej = {Iz - cjl s rj} for j < k, and then choose 
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rk so small that Ek is disjoint from the sets E j for j < k. We also assume 
that L:rk converges and L:rk < 1. Define K = {Izl :::; 1}\ U~I Dj , a 
compact set with no interior points. If J(z) is a continuous function on K 
such that IJ(z)1 :::; M, then I IaDk J(z)dzl :::; 27rMrk, so that the series 
L: IaDk J(z)dz converges absolutely. Further, L: IaDk J(z)dz = Ia]J} J(z)dz 
if J(z) is a rational function with poles off K, hence whenever J(z) is any 
uniform limit on K of rational functions. However, by Green's theorem, 
or by a direct calculation, IaDk z dz = 27rrki and Ia]J} Z dz = 27ri. Since 
L: IaDk z dz # I8]J} Z dz, the function z cannot be approximated uniformly 
on K by rational functions. 

Swiss cheese set 

There are many applications of Runge's theorem to construct functions 
that do one thing or another. We select one such theorem at random, in 
order to give an idea of how Runge's theorem can be applied. First we 
need a definition. 

Let J(z) be a function on the open unit disk J]}), and let ( E 8J]}). We define 
the radial cluster set of J(z) at (to consist of all complex numbers W for 
which there is a sequence of radii rj increasing to 1 such that J(rj() -+ w. 

Theorem. There is an analytic function J(z) on the open unit disk J]}) 

whose radial cluster set at any ( E 8J]}) coincides with the entire complex 
plane. 

The proof construction goes as follows. Let {Sk} be a sequence of positive 
numbers that increases to 1, let Ck be a sequence of positive numbers that 
decreases to 0, and consider the circular arcs rk = {SkeilJ : Ck :::; () :::; 27r}. 
Let S be a sequence of complex numbers that is dense in the complex 
plane, and let {wklk=1 be an enumeration of S with repetitions, so that 
each number in S appears infinitely often in the sequence. Thus for any 
complex number wand for any ( E 8J]}), there is a subsequence kj of integers 
such that Skj( E rkj and Wkj -+ W. Our strategy is to use Runge's theorem 
to approximate the function with constant value Wk on rk by an analytic 
function J(z). This is done by an induction argument, as follows. Let 
h(z) be the constant function WI. Having chosen Jm-I(Z), observe that 
r m U {I z I :::; Sm-I} is a compact subset of the complex plane with connected 
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complement, so by Runge's theorem there is an analytic polynomial fm(z) 
such that Ifm(z) - fm-I(Z)I < 112m for Izi ~ Sm-I. while Ifm(z) - wml < 
112m for Z E r m' For n ~ m, Ifn(z) - fn-I(Z)I < 1/2n for Izi ~ Sm-I' 

Consequently, :E Ifn(z) - fn-I(Z)I converges uniformly for Izi ~ Sm-I. by 
the Weierstrass M-test. Hence 

00 

f(z) = limfn(z) = h(z) + I)fn(z) - fn-I(Z)] 

is analytic on IDl. From f(z) 
estimate If(z) - wml by 

n=2 

00 1 00 1 
Ifm(z) - wml + L Ifn(z) - fn-I(Z)I < 2m + L 2n 

n=m+1 n=m+1 

1 
2m - I ' 

for z E r m' Thus {f(Skj()} has the same limit as {WkJ as j ---+ 00, which 
is w, and consequently, each complex number W is in the radial cluster set 
of f(z) at (. 

Exercises for XIII.1 

1. Show that any analytic function f(z) on a domain D can be ap­
proximated normally on D by a sequence of rational functions that 
are analytic on D. 

2. Show that there is a sequence of polynomials {Pn(z)} such that 
Pn(z) ---+ 1 if Rez > 0, Pn(z) ---+ 0 if Rez = 0, and Pn(z) ---+ -1 if 
Rez < O. 

3. Let {Zj} be a sequence of distinct points in a domain D that accumu­
lates on aD, and let {Wj} be a sequence of complex numbers. Show 
that there is an analytic function f(z) on D such that f(zj) = Wj 
for all j. Remark. The sequence {Zj} is called an interpolating 
sequence for analytic functions on D. 

4. Let {Zk} be a sequence of distinct points in a domain D that ac­
cumulates on aD. Let {mk} be a sequence of positive integers, 
and for each k, let akO, ... , akmk be complex numbers. Show that 
there is an analytic function f(z) on D such that f(j)(Zk) = akj for 
o ~ j ~ mk and for all k. 

5. Let D be a domain in C. Show that there is an analytic function 
f(z) on D such that the cluster set of f(z) at any point ( E aD 
includes the entire complex plane, that is, for any ( E aD and any 
complex number w, there is a sequence {Zj} in D satisfying Zj ---+ ( 

and f(zj) ---+ w. Hint. Use Exercise 3. 

6. Let {zd be a sequence of distinct points in a domain D that ac­
cumulates at aD, and let E be a nonempty closed subset of the 
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extended complex plane C*. Show that there is an analytic func­
tion J(z) on D such that E is the set of cluster values of J(z) along 
the sequence {Zk}. 

7. Show that there exist three analytic functions h (z), 12 (z), 13 (z) on 
the open unit disk JIll such that the mapping z f---t (h (z), h(z), h(z)) 
embeds JIll as a closed submanifold of C3, that is, such that 1 h (z) 1 + 
Ih(z)1 + Ih(z)1 -4 +00 as z -4 8JIll, and for each z E JIll there is 
j such that J;(z) # O. Hint. Take h(z) = 1/(z - 1). For j ~ 1, 
let E j be the set of z satisfying 1 - Ifj ::; Izl ::; 1 - 1/(j + 1) and 
Cj ::; e ::; 211", construct h(z) to be approximately jon Ej for j odd, 
and construct h(z) to be approximately jon Ej for j even. 

8. Show that for any domain D in C, there exist three analytic func­
tions on D for which the mapping z f---t (h(z),h(z),h(z)) em­
beds D as a closed submanifold of C3 . (See the preceding exercise.) 

9. Suppose points Cj E JIll and radii rj > 0 are such that I:>j < 1 and 
such that the disks Dj = {Iz - Cj 1 < rj} are disjoint sub disks of JIll. 
Set K = {Izl ::; 1}\ U Dj , which is a compact set. By considering 
!rzl=l (z - J(z)) dz - L !rz-cjl=rj (z - J(z)) dz, show that 

suplz-J(z)1 ~ 1-:Lr j 
zEK 

for any rational function J (z) with poles off K. 

10. Let D be a bounded domain whose boundary r consists of a finite 
number of disjoint circles, and let E = D u r. Show that a function 
J (z) on E can be approximated uniformly on E by rational functions 
with poles off E if and only if J(z) is continuous on E and analytic 
on D. What functions on E can be uniformly approximated on E 
by polynomials in z? 

11. Let K be a compact subset of the extended complex plane C*, and 
let S be a subset of C*\K. Let J be the union of K and the 
components ofC*\K that do not contain points of S. (a) Show that 
J is compact and that 8J C 8K. (b) Show that if ( E J\K, then 
the function J(z) = 1/(z - () is not uniformly approximable on K 
by rational functions with poles in S. (c) Show that a function J(z) 
analytic in a neighborhood of K is uniformly approximable on K 
by rational functions with poles in S if and only if J(z) extends to 
be analytic in a neighborhood of J. (Polynomials are regarded as 
rational functions with poles at 00.) 

12. Let D be a bounded domain with smooth boundary r, and let K be 
a compact subset of D. Let J(z) be a continuous function on D u r 
that is analytic in D. Show that the Riemann sums L [J ((j) / ((j -
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Z))«(j - (j-I) for the Cauchy integral fr J«()/«( - z) d( converge 
uniformly on K to J (z) as the lengths of the arcs of r between 
successive points (j of the partition tend to zero. 

2. The Mittag-LefHer Theorem 

Recall that if J(z) is a meromorphic function with pole at zo, and the 
Laurent expansion of J(z) at Zo is given by E~-m ak(z - zo)k, then the 
principal part P( z) of f( z) at Zo is the sum of the terms with the neg­
ative powers, P(z) = EZ:::::~ ak(z - zo)k. Thus P(z) is a polynomial in 
1/(z-zo), and J(z)-P(z) is analytic at zoo The Mittag-Leffler theorem as­
serts that we can prescribe the poles and principal parts of a meromorphic 
function. 

Theorem (Mittag-Lemer Theorem). Let D be a domain in the com­
plex plane. Let {Zk} be a sequence of distinct points in D with no accu­
mulation point in D, and let Pk (z) be a polynomial in 11 (z - Zk). Then 
there is a meromorphic function J(z) on D whose poles are the points Zk, 
such that J(z) - Pk(Z) is analytic at Zk. 

Let Km be the set of zED such that Izl ~ m and the distance from z 
to aD is at least 11m. Then Km is a compact subset of D, Km C KmH, 
and each component of C*\Km contains a point of C*\D. Let fm(z) be 
the sum of the functions Pk(Z) for which Zk E KmH \Km. There are only 
finitely many such functions Pk(z). By Runge's theorem, there is a rational 
function 9m(Z) with poles in C*\D such that IJm(Z)-9m(z)1 ~ 112m for z E 
Km. Then J(z) = L:[fm(z) - 9m(Z)] converges uniformly on each compact 
subset of D, by the Weierstrass M-test. Since E:=N+I[Jm(Z) - 9m(Z)] 
is analytic on Kn for N > n, and E~=I[Jm(Z) - 9m(Z)] has poles at the 
points Zk that are in K n , with the prescribed principal parts, J(z) has the 
prescribed poles and principal parts in D. 

In the case that D is the entire complex plane C, we can take Km to be 
the closed disk {Izl ~ m}. Then Jm(z) is the sum of the functions Pk(Z) 
for which m < IZkl ~ m + 1, and we can take 9m(Z) to be a partial sum of 
the power series expansion of Jm(z) about z = o. 

Exercise. Find a meromorphic function on the complex plane whose poles 
are simple poles at the positive integers with residues all equal to l. 
Solution. This corresponds to the principal part Pk(Z) = 1/(z - k) at 
Zk = k. Our first guess is to try J(z) = E 1/(z - k), but the sum does not 
converge. The constant term in the power series expansion of 1 I (z - k) 
about z = 0 is -11k, so our second guess is to set 9k(Z) = -11k and try 
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This series does converge, uniformly on bounded sets, by comparison with 
the series E Ijk2. Indeed, if Izl ~ R and k > 2R, then Iz - kl > kj2, so 
the kth summand is bounded by 2 j k2 . 

The technique of subtracting off terms of a power series expansion to 
guarantee convergence can be used to construct doubly periodic functions 
with double poles. Let WI and W2 be two complex numbers that do not 
lie on the same line through the origin. We sketch the construction of the 
Weierstrass P-function P(z) associated with WI and W2. This is a dou­
bly periodic meromorphic function on the complex plane, with periods WI 
and W2, such that the poles of P(z) are double poles at the lattice points 
mwi +nw2, -00 < m,n < 00, and the principal part ofP(z) at mwi +nw2 
is Ij(z - mwi - nw2)2. Again our first guess for constructing such a func­
tion might be to sum these principal parts over all integers m and n, but 
the sum does not converge. If we subtract the constant term of the power 
series expansion at z = 0, as in the preceding example, we are led to a 
series that does converge, 

1 [1 1] P z = -+ -( ) z2 L) (z - mwi - nw2)2 (mwi + nW2)2 . 
(m,n #(0,0) 

To prove that the series converges normally, we require an estimate for the 
number N(k) of lattice points mwi + nw2 in a fixed annulus {k < Izl ~ 
k + I}. We claim that N(k) :::; ck for some constant c. To see this, choose 
8 > 0 such that the distance between any two lattice points is at least 28. 
We consider the N(k) disks of radius 8 centered at lattice points in the 
annulus. Since none of the disks overlap, they cover an area of -rr82 N(k). 
We may assume that 8 < 1, and then these disks are all contained in the 
enlarged annulus {k - 1 < Izl < k + 2}, which has area 6-rrk + 3-rr. From 
-rr82 N(k) ~ 6-rrk + 3-rr we obtain the asserted estimate N(k) :::; ck. If now 
Izl ~ R, and if k > 2R, then each summand with pole in the kth annulus 
is estimated easily by C j k3 , where the constant C depends on R but not 
on k. Since EN(k)Cjk3 converges, the Weierstrass M-test shows that 
the series defining P(z) converges uniformly for Izl ~ R. Hence the series 
converges normally on C to a meromorphic function. Further, the series 
converges absolutely at each z, so that we may arrange the terms of the 
series in any order. For each fixed n the series 
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converges to a periodic function of Z of period WI' Adding the appropriate 
constants and summing over n, we obtain P(z + WI) = P(z). Similarly, 
P(z + W2) = P(z), and hence P(z) is doubly periodic. 

Let J(z) be a meromorphic function on the complex plane, with poles 
at points Zk. A partial fractions decomposition for J(z) is a normally 
converging series expansion J(z) = L Pk(z), where Pk(Z) is a rational func­
tion whose only (finite) pole is at Zk. Thus Pk(Z) is the sum of the principal 
part of J(z) at Zk and a polynomial. A partial fractions decomposition of 
J(z) is never unique, as we can add any polynomial to one summand and 
subtract it from another. 

Example. We show that 7r2/ sin2(7rz) has the partial fractions decompo­
sition 

(2.1) 
00 1 

2: (z - k)2' 
k=-oo 

Set J(z) = L l/(z - k)2. If Izl ~ R, and if Ik\ > 2R, then \z - k\ > Ikl/2, 
and l/\z - k\2 < R/k2. By the Weierstrass M-test, the series converges 
uniformly for Izl ~ R. Thus J(z) is a meromorphic function on the complex 
plane. The functions J(z) and 7r2/ sin2(7rz) have the same poles and princi­
pal parts, so that J(z) - 7r2/ sin2(7rz) is entire. Evidently, J(z + 1) = J(z), 
so that J(z) -7r2 / sin2(7rz) is periodic with period 1. We may focus on the 
period strip consisting of z = x + iy for which 0 ~ x ~ 1. In this strip we 
have 

1 
Ikl ~ 2, \yl ~ 1. (k - 1)2 ' 

By the Weierstrass M-test, the series for J(z) converges uniformly and 
J(z) is bounded for \yl ~ 1 and 0 ~ x ~ 1. Since each summand tends 
to 0 as \yl -+ 00, the uniform convergence implies that J(x + iy) -+ 0 as 
Iy\ -+ 00, 0 ~ x ~ 1. The identity I sin z\2 = \ sin x\2 + I sinh y\2 shows 
that also 7r2/ sin2(7rz) is bounded for \yl ~ 1 and tends to 0 as \y\ -+ 00. 

Thus J(z) - 7r2/ sin2(7rz) is bounded for Iyl ~ 1, hence bounded on the 
vertical strip {O ~ x ~ I}, hence by periodicity bounded on the entire 
complex plane. By Liouville's theorem it is constant. Since both J(z) and 
7r2/ sin2(7rz) tend to 0 as Iy\ -+ 00, the constant is zero, and J(z) coincides 
with 7r2/ sin2(7rz). 

Example. From the partial fractions decomposition of 7r2/ sin2(7rz) we can 
obtain a partial fractions decomposition of 7rcot(7rz) by integrating (2.1) 
term by term. This is justified on account of the normal convergence of 
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the series. Since 

t d( 
io ((_k)2 

_(_1 +~), 
z-k k 

t ( 7r2 
_ ~) d( - -7rcot(7rz) +~, io sin2 (7r() (2 - Z 

we obtain from (2.1) the partial fractions decomposition 

7r cot (7r z) = ~ + L (Z ~ k + ~) . 
k#O 

k =f: 0, 

If we combine the terms for ±k, the constants cancel, and we obtain 

1 00 (1 1) 7rcot(7rz) = - + L --k + --k 
Z k=l Z - Z + 

1 00 1 
- + 2z '" 2 k2 · Z L...J z -

k=l 

Exercises for XIII.2 

351 

1. Use the partial fractions decomposition of 7r2 I sin2 (7rz) to establish 
the formula 

2. Establish the partial fractions decomposition 

00 1 
7rtan(7rz) = -2z L 1 2· 

n=O z2 - (n + 2) 
Hint. Use tanw = cotw - 2cot(2w). 

3. Show that 

1 00 (_l)n 
- + 2z '" 2 2· Z L...J z - n 

n=l sin(7rz) 

4. Show that 

7r = f (-1)n(2n-11. 
COS(7rZ) n=l Z2.- (n - ~) 

5. Let {Zk} be a sequence of distinct points such that IZkl ----? 00 and 
E IZkl-m - 1 < 00. Show that zm E 1/zr(z-zk) converges normally 
to a meromorphic function with principal part 1/(z - Zk) at Zk. (If 
Zk = 0, we replace the corresponding summand by liz.) 

6. Construct a meromorphic function on the complex plane whose 
poles are simple poles at the Gaussian integers m+ni with residue 1. 
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7. Construct a meromorphic function on the complex plane whose 
poles are simple poles at the points logn, n ~ 1, with principal 
parts l/(z -logn). 

8. Construct a meromorphic function on the open unit disk]]} whose 
poles are simple poles at the points (1 - 2-n)e211"ik/n, 1 ::; k ::; n, 
n ~ 1, with residue 1. 

9. Show that L~oo 1/(z3 - n3) converges normally to a meromorphic 
function. Locate the poles and find the corresponding principal 
parts of the function. Express the function in terms of trigonometric 
functions (specifically, the cotangent function). 

10. Show that the lattice points mWI + nW2, -00 < m, n < 00, can be 
arranged in a sequence {zd~o such that IZkl ~ cy'k. 

11. Let {zd be a sequence of distinct points such that IZkl > cy'k. 
Show that 

converges normally on C and absolutely at each z E C. 

12. Let J(z) be a doubly periodic meromorphic function on C with 
periods WI and W2, and let P(z) be the Weierstrass P-function as­
sociated with the periods WI and W2. (a) Show that if the only 
poles of J(z) are double poles at the lattice points mWl + nW2, 
-00 < m, n < 00, then there are constants a and b such that 
J(z) = aP(z) + b. (b) Show that if the only poles of J(z) are 
triple poles at the lattice points mWl + nW2, -00 < m, n < 00, then 
there are constants a, b, c such that J(z) = aP(z) + bP'(z) + c. (c) 
Show that p'(z)2 = 4P(z)3 +aP(z)2 +bP(z) +c for some constants 
a,b,c. 

13. Let D be a domain in C, and let Ek = {Iz - zkl ::; rd, k ~ 1, be 
disjoint closed disks in D that accumulate only on the boundary 
of D. Suppose Qk(Z) is analytic for Iz - zkl > rk. Show that there 
is an analytic function J(z) on D\ U~l Ek such that for each k, 
J(z) - Qk(Z) extends analytically to Ek. 

3. Infinite Products 

An infinite product is an expression of the form I1~1 Pj, where the 
Pj'S are complex numbers. We say that the infinite product converges if 
Pj -+ 1 and LLogpj converges, where we sum only over terms for which 
Pj -I o. If the infinite product converges, we define its value to be 0 if one 
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of the Pj'S is 0; otherwise, we define it to be 

Thus any question we might ask about infinite products can be translated 
to a question about infinite series by taking logarithms. 

To help clarify the definition of convergent infinite product, we make 
several simple observations. First, if Ilpj converges, then at most finitely 
many of the Pi's can be O. This is because Pj - 1. Second, if Ilpj 
converges, then 

m 

lim II Pj = lim PIP2··· Pm· 
m--+oo m--+oo 

j=l 

This is because exp(Log Pj) = Pj. Third, we can always factor out a finite 
number of terms from a convergent infinite product, 

00 00 

IIpj = PIP2··· PN II Pj· 
j=l j=N+l 

Finally, if an infinite product converges, and none of the factors is 0, then 
the product cannot be o. 

Example. Consider 

00 ((_l)k+l) (1) ( 1) ( 1) 11 1 + k = (1 + 1) 1 - 2 1 + "3 1 -"4 .... 

Since (1 + 1/(2k - 1))(1 - 1/(2k)) = 1, the product of the first m terms is 
equal to 1 if m is even, and it is equal to the last factor 1 + l/m if m is 
odd. Thus the product converges to 1. 

It is often convenient to write Pj = 1 + aj and to express the product as 
Il(l + aj). If the product converges, then aj - 0, and only finitely many 
of the ai's are equal to -1. For most purposes we can ignore the terms for 
which 1 + aj = 0 and work with the "tail" Il~N(l + aj) of the infinite 
product, for which aj is near O. 

If 0 < t ::; 1, we have the estimate t/2 ::; log(l +t) ::; t. From this estimate 
it follows that if tj 2': 0, then L, tj converges if and only if L, Log(l + tj) 
converges. This leads immediately to the following test for convergence of 
infinite products. 

Theorem. IEtj 2': 0, then Il (1 +tj) converges if and only iEL, tj converges. 
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Example. The infinite product 

11 (1 + k1Q ) = (1 + 1) ( 1 + 2: ) ( 1 + 3: ) ... 

converges for a > 1 and diverges for a :::; 1. 

The infinite product TI(I+aj) is said to converge absolutely if aj -+ 0 
and E Log(1 + aj) converges absolutely, where we sum over the terms for 
which aj =1= -1. If TI (1 + aj) converges absolutely, then E Log(1 + aj) 
converges, and TI(1 + aj) converges. 

Since Log(1 + w) is analytic at w = 0 and has power series expansion 
Log(1 + w) = w + O(w2 ), we see that I Log(1 + aj)1 is comparable to lajl 
when aj is near o. Consequently, E I Log(1 + aj)1 converges if and only 
if E laj I converges. This together with the preceding theorem yield the 
following. 

Theorem. The infinite product TI (1 + aj) converges absolutely if and 
only if E aj converges absolutely. This occurs if and only if TI (1 + laj I) 
converges. 

Example. We have seen that II (1 + (_I)k+1 /k) converges. However, it 
does not converge absolutely, on account of the divergence of the harmonic 
series, E l/k = 00. 

Example. Consider the infinite product TI(1 +i/k). Since Log(1 +i/k) = 
i/k+O(I/k2 ), the series E Log(1 +i/k) does not converge, by comparison 
with the harmonic series. Consequently, n(1 + ilk) does not converge. 
However, since 0 < Log 11 + i/kl = ! log(1 + l/k2 ) < l/k2 , the infinite 
product n 11 +i/kl does converge. Thus absolute convergence of an infinite 
product is not equivalent to the convergence of the product of the absolute 
values of the factors. 

Now we turn to infinite products of functions. The Weierstrass M-test 
for a sum of functions is converted easily to the following test for an infinite 
product of functions. 

Theorem. Suppose that gk(X) = 1 + hk(X), k ~ 1, are functions on a 
set E. Suppose that there are constants Mk > 0 such that E Mk < 00, 

and Ihk(X)1 :::; Mk for x E E. Then n~=l gk(X) converges to TI%"=l gk(X) 
uniformly on E as m -+ 00. 

Choose a constant C such that Ilog(1 + w)1 :::; Clwl for Iwl :::; !, and 
choose N such that Mk :::; ! for k ~ N. The condition Ihk(x)1 :::; Mk :::; ! 
implies that I Log(1 + hk(X))1 :::; CMk. By the Weierstrass M-test, the 
series E~N Log(1 + hk(x)) converges uniformly on E. If we exponenti­
ate we obtain uniform convergence of the partial products TI~=N gk(X) to 
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n%:N 9k(X) as m -+ 00. Since each 9k(X) is bounded, when we multiply 
by the first N -1 factors we obtain uniform convergence of n;;=l 9k(X) to 
n%:19k(X) as m -+ 00. 

If G(z) = 91(Z)··· 9m(Z) is a finite product of analytic functions, then 
by taking logarithms and differentiating, we obtain 

(3.1) 
G'(z) 9~ (z) 9:n (z) 
G(z) = 91(Z) + ... + 9m(Z)" 

This procedure is called logarithmic differentiation. The logarithmic 
differentiation formula also holds for uniformly convergent infinite products 
of analytic functions. It is proved by applying the formula above to finite 
subproducts and passing to the limit. 

Theorem. Let 9k(Z), k ~ 1, be analytic functions on a domain D such 
that n;;=l 9k(Z) converges normally on D to G(z) = TI%:l 9k(Z). Then 

(3.2) G'(z) _ f 9k(z) 
G(z) - k=l 9k(Z) , 

ZED, 

where the sum converges normally on D. 

Note that the function G'(z)/G(z) has poles at the zeros of G(z). How­
ever, the hypothesis implies that 9k(Z) -+ 1 uniformly on any compact 
subset of D, so the summands 9k(z)/9k(Z) are analytic on the compact 
subset for k large. Since the uniform convergence of a series is not affected 
by the first terms of the series, the poles do not affect the uniform conver­
gence. Since normal convergence of a sequence of analytic functions implies 
uniform convergence of the derivatives of the functions in the sequence, we 
may apply (3.1) to the partial product Gm(z) = 91(Z)··· 9m(Z) and pass 
to the limit, to obtain (3.2). 

Example. Consider the infinite product J (z) = z n%:l (1 - z2 / k2). By 
the Weierstrass M-test, the series L Iz12/k2 converges uniformly on any 
bounded set. Thus the infinite product converges uniformly on any bounded 
set, and J(z) is an entire function. Since the zeros of J(z) are simple zeros 
at the integers, we suspect that J(z) is related to sin(7rz). To check this 
out, we differentiate logarithmically, to obtain 

J'(z) 1 00 1 1 00 [1 1] 
J(z) = ~ + 2z L Z2 _ k2 = ~ + 2z L z - k + z + k . 

k=l k=l 

This expression we recognize from Section 2 as the partial fractions decom­
position of 7rcot(7rz) = 7rcos(7rz)/ sin(7rz). We integrate, and we see that 
logJ(z) is logsin(7rz) up to adding a constant. Hence J(z) = Csin(7rz). 
Since J(z)/z -+ 1 as z -+ 0, we have C = 1/7r. Thus we obtain an infinite 
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product expansion for the sine function, 

Exercises for XIII.3 

1. Evaluate the following. 

2. Define ak = - ~ if k is odd, and ak = ~ + ~ + k~ if k is even. 

Show that Il(1 + ak) converges, while Eak and Ea~ diverge. 

3. Show that if tj 2: 0, then Il(1 + tj) ~ exp(Etj). 

4. Show that if 0 < tj < 1, then Il(1 - tj) converges if and only if 
E tj converges. 

5. Show that the infinite product Il(1 + aj) converges if and only 
if there is N 2: 1 such that limm~oo n~:N(1 + aj) exists and is 
nonzero. 

6. Show that Il(l + aj) converges if and only if Il;=m(1 + aj) ~ 1 as 
m, n ~ 00. Hint. Take logarithms and invoke the Cauchy criterion 
for series. 

7. Show that if Il(l + ak) converges, then Il11 + akl converges. 

8. Suppose ak ~ o. Show that the series E ak converges absolutely 
if and only if both the series E Arg(1 + ak) and E Log 11 + akl 
converge absolutely. 

00 ( I ) 7r -7r 

9. Show that!! 1 + n2 = e ;; . 

00 1 
10. Show that II (1 + z2n) = 1- Z for Izi < 1. 

n=O 

11. Show that if Pk(Z) is a polynomial of degree k such that Pk(O) = I 
andpk(z) has no zeros in the disk {izi ~ k3 }, then IlPk(Z) converges 
normally. 
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12. Establish one of the following formulae, and deduce from it the other 
using logarithmic differentiation: 

eZ _ 1 = zez / 2 IIoo (1 + ----==-) 
47r2k2 ' 

k=l 

1 1 1 00 1 
eZ - 1 = -; - 2 + 2z L z2 + 47r2 k2 . 

k=l 

13. Use the infinite product expansion for sin{7rz) to show that the 
Wallis product 

IIoo (2k)2 . 2·2·4·4·6·6 (2n)·{2n) 
(2k-l){2k+l) = J.:.~ 1.3.3.5.5.7"·{2n-l).{2n+l) 

k=l 

converges to 7r /2. Use this to show that 

[n!j2 22n 
lim -- -- ..;:ff. 

n--->oo (2n )! .Jii 

II ( Z) sin{7rz) 
14. Show that if t > 0, then 1 + k converges to 7rZ e 

-mS;k9m 
as m ~ 00. 

15. Show that - II _n_ _n__ converges to a meromorphic func-1 00 (+I)Z 
Z n=l Z +n n 

tion r(z) whose poles are simple poles at 0 and the negative integers. 
Show that 

r(z) = lim (m - I)! m Z 
• 

m--->oo z{z + 1) ... (z + m - 1) 

Show that r{z + 1) = zr{z). Show that r{n + 1) = n! for positive 
integers n. Remark. The function r{z) is called the gamma func­
tion. It was first introduced by Euler, who defined it to be the limit 
above. We will give an equivalent definition in the next chapter. 

16. Let Ctk be a sequence of complex numbers, with possible repeti­
tions, such that ICtkl < 1 and ICtkl ~ 1, and consider the infinite 
Blaschke product defined by 

B{z) - II Ctk Ctk- Z 
- ICtkl 1- CtkZ' 

where the factors corresponding to Ctk = 0 are z. 
(a) Suppose that 2:{1 -ICtkl) < 00. Let E be the set of accumu­

lation points on the unit circle 81Dl of the Ctk'S. Show that the 
infinite product converges normally on C*\E to a meromorphic 



358 XIII Approximation Theorems 

function B(z), with the following properties: IB(z)1 < 1 for 
z E JI)), IB(z)1 = 1 for z E aJl))\E, and B(z) has zeros precisely 
at the points ak. 

(b) Show that if E(l - lakl) = +00, then the partial products 
converge uniformly on compact subsets of JI)) to o. 

(c) Suppose that J(z) is a bounded analytic function on JI)) that is 
not identically zero. Show that J(z) has a factorization J(z) = 
B(z)g(z), where B(z) is a (finite or infinite) Blaschke product, 
and g(z) is a bounded analytic function on JI)) with no zeros. In 
particular, the zeros al, a2, . .. of J(z), repeated according to 
multiplicity, satisfy E(l - lakl) < +00. 

4. The Weierstrass Product Theorem 

The Weierstrass product theorem is a companion theorem to the Mittag­
Leffler theorem. The Mittag-Leffler theorem asserts that we can prescribe 
the poles and principal parts of a meromorphic function. The Weierstrass 
product theorem asserts that we can prescribe the zeros and poles of a 
meromorphic function together with their orders. 

Recall that the order of a meromorphic function J(z) at a point Zo is the 
order of the zero if J(zo) = 0, and it is minus the order of the pole if J(z) 
has a pole at zoo If Zo is neither a pole nor a zero of J(z), the order of J(z) 
at Zo is defined to be O. 

Theorem (Weierstrass Product Theorem). Let D be a domain in 
the complex plane. Let {Zk} be a sequence of distinct points of D with no 
accumulation point in D, and let {nk} be a sequence of integers (positive 
or negative). Then there is a meromorphic function J(z) on D whose only 
zeros and poles are at the points Zk, such that the order of J(z) at Zk is nk. 

The proof runs parallel to the proof of the Mittag-Leffler theorem. Let 
Km be the set of zED such that Izl ~ m and the distance from z to aD is 
at least 11m. Then Km is a compact subset of D, Km C Km+b and each 
component of C*\Km contains a point of C*\D. Suppose Zk E Km+l \Km. 
We connect Zk to a point Wk E C*\D by a simple curve 'Yk in C*\Km. If 
Wk #- 00 we define Jk(Z) to be an analytic branch of log((z - zk)/(z - Wk)) 
in the simply connected domain C*\'Yk. If Wk = 00, we take Jk(Z) to be an 
analytic branch of log(l - zl Zk). By Runge's theorem, there is a rational 
function gdz) with only pole at Wk such that l!k(z) - gk(z)1 ~ 2-k Ink 
on Km. We consider the product 
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where we replace the factor in parentheses by 1 - Z/Zk if Wk = 00 and 
Zk # 0 and by Znk if both Wk = 00 and Zk = O. Now nk(fk(z) - gk(Z)) is 
not defined on "(k. However, its exponential 

exp[nk(!k(z) _ gk(Z))] = (z - Zk )nk e-nk9k(Z) 
Z-Wk 

is meromorphic on D and has order nk at Zk and no other poles or zeros. 
By the Weierstrass M-test, E~=N nk(!k(z) - gk(Z)) converges uniformly 
on Km, where N is chosen sufficiently large to exclude terms with Zk E Km. 
Hence the infinite product defining J(z) converges normally on D to a 
meromorphic function. Clearly, J(z) has the desired zeros and poles. 

In the case that D = C is the entire complex plane, the points Wk are 
all 00. Suppose Zk # 0 for k ~ 1, and let no be the order (possibly zero) of 
J(z) at Z = O. The product expansion then has the form 

J(z) = zno IT (1- : )nk e-nk9k (Z), 
k=l k 

where gk(Z) is an approximation to Log(l-z/Zk) for Izi < IZkl. We can take 
gk(Z) to be a partial sum for the power series expansion of Log(l- Z/Zk) 
at Z = O. Since 

(2 (3 (m m+l 
Log(l- () = -( - 2 - 3 - ... - ~ + 0 (( ), 

we can take 

( Z z2 z3 Zmk ) 
gk(Z) = - Zk + 2Z2 + 3z3 + ... + mkzmk , 

k k k 
where mk is chosen large enough to guarantee convergence of the product. 

Exercise. Find an entire function with simple zeros at the negative integers 
and no other zeros. 
Solution. In this case the product 

fr(l+~) 
k=l 

does not converge. However, from the estimate 

:'k I IzI2 < Ck:2' Izi ~ R, k ~ 2R, 

we see that 
00 

(4.1) II (1 + i) e- z / k 

k=l 

converges normally on the entire complex plane to an entire function with 
the prescribed zeros. 
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Exercises for XIII.4 

1. Let G(z) be the entire function defined by the infinite product (4.1). 
Show that 7rzG(z)G( -z) = sin{7rz). 

2. Construct an entire function that has simple zeros at the points n2 , 

n :2: 0, and no other zeros. 

3. Construct an entire function that has simple zeros on the real axis 
at the points ±nl/4, n :2: 0, and no other zeros. 

4. Construct an entire function that has simple zeros on the positive 
real axis at the points ...j1i, n :2: 1, and double zeros on the imaginary 
axis at the points ±i...j1i, n :2: 1, and no other zeros. 

5. Construct an entire function that has simple zeros at the Gaussian 
integers m + ni, -00 < m, n < 00, and no other zeros. 

6. Find all entire functions J(z) that satisfy the functional equation 
J{2z) = (1 - 2z)J(z). Express the answer in terms of an infinite 
product. 

7. Show that 

I (2 (3 (N I 1 I(IN+! 
Log(I-()+(+-2 +-3 +···+-N < --­

N 1- 1(1' 
for 1(1 < 1. 

8. Let {zd be a sequence of distinct nonzero points such that IZkl --+ 

00, Let N :2: 0, and let {mk} be a sequence of positive integers such 
that L:mklzkl-N-1 < 00. Show that 

rrCXl (1- ~)mk exp{mk [~+ ~ + ... +~]} 
Zk Zk 2z~ N zkN 

k=l 

converges normally to an entire function with zeros of order mk 
at Zk and no other zeros. Hint. See the estimate in the preceding 
exercise. 

9. Show that any meromorphic function J(z) on a domain D is the 
quotient J(z) = g(z)jh(z) of two analytic functions g(z) and h(z) 
onD. 

10. Let J(z) be a meromorphic function on a simply connected do­
main D. Show that the meromorphic functions with the same zeros 
and poles of the same orders as J(z) are precisely the functions of 
the form J(z)eh(z), where h(z) is analytic on D. 

11. Give a brief solution of Exercise 1.5 on interpolating sequences based 
on the Mittag-Leffler theorem and the Weierstrass product theorem. 



XIV 

Some Special Functions 

Our aim in this chapter is to illustrate the power of complex analysis by 
proving a deep theorem in number theory, the prime number theorem, 
which does not appear at first glance to be related to complex analysis. 
Along the way we introduce various functions that play an important role 
in complex analysis. In Section 1 we introduce the gamma function r(z), 
which provides a meromorphic extension of the factorial function. We de­
rive the asymptotic properties of the gamma function in Section 2 by view­
ing it as a Laplace transform. This yields Stirling's asymptotic formula 
for n!. In Section 3 we study the zeta function, which is a meromorphic 
function whose zeros are related to the asymptotic distribution of prime 
numbers. In Section 4 we study Dirichlet series associated with various 
number-theoretic functions, thereby giving a strong hint of the fecund re­
lationship between complex analysis and number theory. The proof of the 
prime number theorem is given in Section 5. 

1. The Gamma Function 

The gamma function r(z) is a meromorphic function that arises frequently 
in complex analysis. It extends the factorial function from the positive 
integers to the entire complex plane. It is defined in the right half-plane by 

(1.1) f(z) = 100 e-ttZ-1dt, Rez > o. 

The integral defining f(z) is absolutely convergent, and 

If(x + iy)1 ::; f(x) = 100 e-ttX-1dt, x> O. 

Since the integrand depends analytically on the parameter z, the function 
f(z) is analytic on the right half-plane. 

To derive a functional equation for r( z), we integrate by parts, 

f(z+l) = 100 
e-ttZdt = -100 tZd(e-t ) = - [tZe-tJ: +z 100 e-ttZ-1dt. 

361 
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The term tZe-t vanishes at 0 and at 00 (technically, we integrate from 0 
to R and take a limit as R ~ 00), and the identity becomes 

(1.2) f(z + 1) = zr(z) , Rez > o. 

To evaluate r(z) at the positive integers, we begin with f(l) = Jooo e-tdt = 
1, and we use the functional equation to obtain successively r(2) = 1, 
f(3) = 2·1, r(4) = 3·2·1, and by induction 

(1.3) f(n + 1) = n!, 

We declare that O! = f(l) = 1, and then (1.3) also holds for n = o. 
The functional equation (1.2) allows us to extend f(z) to the left half­

plane, as follows. We apply the functional equation m times to obtain 
f(z + m) = (z + m - 1) ... (z + l)zf(z), which we rewrite as 

f(z) = f(z+m) . 
(z+m-l)···(z+l)z 

The right-hand side is defined and meromorphic for Re z > -m, with sim­
ple poles at z = 0, -1, ... , -m+ 1. By the uniqueness principle, the mero .. 
morphic extension is unique and it satisfies the functional equation (1.2). 
Passing to the limit as m ~ +00, we obtain the following. 

Theorem. The function f(z) extends to be meromorphic on the entire 
complex plane, where it satisfies the functional equation r(z + 1) = zf(z). 
Its poles are simple poles at z = 0, -1, -2,···. 

Now we will express f(z) in terms of an infinite product. Define 

Re z > 0, n 2: 1. 

Since (1 - tjn)n ::; e-t and (1 - tjn)n ~ e-t for t 2: 0, we have 

lim f n(z) = r(z). 
n ..... oo 

(The easiest way to justify passing to the limit is to appeal to Lebesgue's 
dominated convergence theorem.) The substitution s = tjn yields 

(1.4) f n(z) = nZ 11 sZ-1(1 - stds, Re z > 0, n 2: 1. 

Thus 
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If we integrate by parts in (1.4), we obtain 

nZ+1 r1 SZ(I-st-1ds = (_n_)Z ~fn-l(Z+I). 
z 10 n -1 z 

We repeat this step n - 1 times and use the formula for f1(z), and we 
obtain 

f n(z) 
nZn' 

--:--~--:--. ---:-f 1 (z + n - 1) 
z(z + 1) ... (z + n - 2) z(z + 1) ... (z + n) . 

We rewrite this as 

fn~Z) = ~zZ(I+Z)(I+~) ... (I+~). 
We compare this with the infinite product with zeros at the negative inte­
gers, 

00 

G(z) = II (1 + I) e-z/k , 

k=l 

which was discussed in Section XIII.4. The exponential convergence factors 
guarantee that the product converges normally on the entire complex plane. 
In order to express Ijf(z) in terms of G(z), we write 

1 n Z 
-- = ze'Ynz II (1 + -) e-z/k, 
fn(z) k=l k 

where 

1 1 
In = 1 + - + ... + - - 100" n. 2 n 0 

We have seen (Section V.l) that the sequence {Tn} decreases to Euler's 
constant I = 0.5772... as n --+ 00. Thus when we pass to the limit we 
obtain the following. 

Theorem. Let I denote Euler's constant. Then 

1 00 z 
- = ze'Yz II (1 + -) e-z/k , 
r(z) k=l k 

(1.5) z E C. 

Initially, the identity is established only in the right half-plane. However, 
both sides are meromorphic, so the identity persists for all z E C, by the 
uniqueness principle. 
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If we take logarithms in (1.5) and differentiate, we obtain 

r' (z) 1 00 z j k 2 1 f 1 1 
- r(z) = ; + l' - L 1 + zjk = ; + l' - z k z + k' 

k=l k=l 

Another differentiation leads to the expression 

d r'(z) 00 1 

dzr(z) =L(z+k)2' 
k=O 

(1.6) 

which we will return to in the next section. 
There is another formula we require for later use, which follows from the 

infinite product expansion derived for sin(7rz) in Section XIII.3.3. In terms 
of the function G(z), it can be expressed (Exercise XIII.4.1) as sin(7rz) = 
7rzG(z)G( -z). Combining this with (1.5) we obtain 

1 2 zsin(7rz) 
r(z)r(-z) = -z G(z)G(-z) = 7r 

Since r(l - z) = -zr( -z), this yields 

(1.7) r(z)r(l - z) = 
sin( 7rz) , 

z E C. 

Exercises for XIV. 1 

1. Show that r(z) has no zeros. 

2. Show that for m ~ 0, the residue of r(z) at z = -m is (-l)mjm!. 

3. Show that r(!) = ..,fir. Use this to show that 

r (n +~) = 1·3·5··· (2n - 1) J7T = 
2 2n 

1_2n r(2n) C 
2 r(n) y7r. 

4. Use the Wallis product (Exercise XIII.3.13) to show that 

lim 22n- 1y'n r(n)2 = J7T. 
n->oo r(2n) 

5. Prove Legendre's duplication formula, 

r(2z) = 2~1 r(z)r (z +~) . 
Hint. Show first that r(2z)jr(z)r (z +~) has the form AeBz by 
separating the product for r(2z) into even and odd terms; then 
evaluate A and B. 

6. Show that 

. r(n+~) 
hm 1. 

n->oo y'nr(n) 
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7. Show that 

( tp-1(1- t)q-1dt = r(p)r(q) , 
10 r(p+ q) 

p,q > o. 

Remark. This integral is called the beta function, denoted by 
B(p, q). To establish the identity, begin by expressing r(p)r(q) as a 
double integral and converting to polar coordinates. The r-integral 
yields r(p + q) and the B-integralleads to the integral above, with 
t = cos2 B. 

2. Laplace Transforms 

Our aim in this section is to derive an asymptotic approximation to Laplace 
transforms of functions that do not grow too fast. This leads to an asymp­
totic approximation to r(z), thence to Stirling's formula giving an asymp­
totic approximation to n! . 

Let h(s), s ~ 0, be a continuous or piecewise continuous function on the 
positive real axis. The Laplace transform of h( s) is the function 

(2.1) (Ch)(z) = 100 e-SZh(s) ds, 

provided that the integral converges. We will always assume that h( s) has 
at most exponential growth, that is, there are constants B, G such that 

Ih(s)1 ~ GeBs o ~ s < 00. 

Then the integral in (2.1) converges absolutely and defines an analytic 
function in the half-plane {Re z > B}. The estimate 

100 G 
I(Ch)(x + iy)1 ~ G e-XSeBSds = -B' 

o x-
x>B, 

shows that (Ch)(z) is bounded on the half-plane {Rez > B + c} for any 
c> 0, and (Ch)(z) - 0 as Rez - 00. 

Example. Suppose h(s) = sk for some integer k ~ O. Since ske-es - 0 as 
s - 00 (polynomials grow more slowly than exponentials), there is for any 
c> 0 an estimate of the form Ih(s)1 ~ Geees. Hence the Laplace transform 
(Csk)(z) converges absolutely for all z satisfying Rez > O. We compute 
that 

x> O. 

The integral on the right is r(k+1) = k!, so (Csk)(z) coincides with k!jZk+l 
when z = x> o. By the uniqueness principle it coincides with k!jzk+l on 
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the right half-plane, 

(2.2) 
k! 

Zk+l' 
Rez > 0, k ~ o. 

Lemma. Suppose that Ih(s)1 ::; GsN eBs for some integer N > 0 and 
constants B, G. Then 

(2.3) I (£h)(x + iy)1 as x - 00. 

This follows from the obvious estimates 

100 N! ( 1 ) 1(£h)(x+iy)1 < G e-(x-B)ssN ds = G N = 0 X N+1 . 
- 0 (x - B) +1 

Theorem. Suppose that Ih(s)1 ::; GeBs for s ~ o. Fix N ~ 1. If h(s) has 
the Taylor polynomial approximation 

b2 2 bN- 1 N-l ( N) (2.4) h(s) = bo+b1s+ 2!s + ... + (N_l)!s +0 s 

as s - 0+, then 

(2.5) (£h)(z) = -+-+-+···+--+0 --bo b1 b2 bN-l (1) 
Z z2 z3 zN X N+1 

asx=Rez-oo. 

To see this, we let R( s) be the remainder term in the Taylor approxima­
tion, so that 

h(s) = bo + b1s + ... + (!N-=-~)! sN-l + R(s), s ~ O. 

Since IR(s)1 ::; GosN for s > 0 near 0, there is G1 > 0 such that 

IR(s)1 ::; G1SN e(B+1)s, 0::; s < 00. 

Since the Laplace transform operates linearly, 

(£h)(z) = bo(£1)(z)+b1(£s)(z)+···+ (:-=-~)! (£sN-l) (z)+(£R)(z). 

The result now follows from (2.2) and (2.3). 
We wish to use the asymptotic approximation theorem to obtain asymp­

totic approximations to r(z). We begin by expressing the derivative of 
r'(z)jr(z) as a Laplace transform. From (£s)(z) = Ijz2 we obtain 

1 100 100 -:----:-:~2 = (£s)(z + k) = e-s(z+k)sds = e-SZ(e-S)ksds. 
(z+k) 0 0 
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Summing over k from 0 to N, and recognizing the geometric series, we 
obtain 

N 1 100 N 100 1 _ e-s(N+l) 
L = e-SZ L(e-S)ksds = e-SZ sds. 
k=o(z+k)2 0 k=O 0 1-e-s 

The exponentials e-s(N+l) decrease to 0, and passage to the limit in the 
right-hand side is justified. In view of (1.6), we obtain in the limit as 
N -t 00 that 

!:... r'(z) = roo e-sz s ds, 
dz r(z) Jo 1 - e-S 

Rez > O. 

The integral on the right is the Laplace transform of the function 

s 
g( s) = 1 _ e-S . 

This function g(s) is a meromorphic function of the complex variable s, 
with poles at s = 27rni for n = ±1, ±2, .... The function is analytic at 
s = 0, since 1 - e- S has a simple zero there. The power series expansion 
of g(s) about s = 0 is readily calculated to be 

1 1 2 g(4) (0) 4 
g(s) = 1+ 2s+12 s +-4-!-s + ... , lsi < 27r. 

Since g(s)/s -t 1 as s -t +00, an estimate of the form 0 :::; g(s) :::; Ces , 

s ~ 0, holds for some constant C > O. The theorem then yields the 
asymptotic approximation 

!:... r'(z) _ ! + _1 + _1 + 0 (~) 
dz r(z) - Z 2Z2 6z3 x 5 ' 

x=Rez-too. 

To obtain an asymptotic approximation to r(z), we must integrate twice. 
Except for a constant of integration, the antiderivative for any error term 
O(l/xN ), N ~ 2, is dominated by 

100 dt 

x+iy It + iylN 
l oe: dt 1 ( 1 ) 

:::; x t N = (N - 1)xN - 1 = 0 xN- 1 ' 
N~2. 

Hence 

r'(z) 1 1 ( 1 ) 
r(z) = Log z + a - 2z - 12z2 + 0 x4 ' 

where a is a constant of integration. If we integrate again, we obtain 

1 1 ( 1 ) logr(z) = z Logz-z+az- 2 Logz+.B+ 12z +0 x3 ' 

where .B is another constant of integration. If we substitute the asymptotic 
expansions for logr(z + 1) and logr(z) into the relation logr(z + 1) = 
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logz + logr(z), we obtain a = O. To evaluate fl, we compare r(2n) 
with r(n), which can be done with the elementary relation in Exercise 1.3, 

r(n)r ( n + ~) = 21- 2nr(2n)J1f. 

If we take logarithms, substitute the approximations, and do some book­
keeping, we obtain fl = log J21r. We have proved the following. 

Theorem. The gamma function r( z) satisfies 

(2.6) logr(z) = (z-~) Logz-z+logvf2;:+ l~Z +0 (:3) 
as x = Rez --+ 00. 

The asymptotic approximation to r(z) is obtained by exponentiating, 

r(z) = zZe-Zf#(1+1~Z+0(:2))' x= Rez--+oo. 

Substituting n! = nr(n), we obtain Stirling's formula, 

It is natural to consider the asymptotic behavior of Laplace transforms 
in the right half-plane as x = Re z --+ 00. However, for some classes of 
functions it is more appropriate to consider asymptotic behavior in a sector 
as Izl --+ 00 rather than in a half-plane. Let J(z) be defined and analytic 
in a sector S = {-Oo < arg z < 01}' We say that 2::;0 aj / zj is an 
asymptotic series for J(z) in the sector S if for each N 2: 0, 

N 

J(z) - L :~ = 0 (z;+l ) 
3=0 

as z --+ 00 in the sector. If 2:: aj / zj is an asymptotic series for J (z), then 

ak = lim zk [J(z) _ ao _ a1 _ ... _ ak=l] . 
z-->oo Z zk 1 

Hence the coefficients in the asymptotic series of J(z) are uniquely deter­
mined. We refer to 2::aj/Zj as the asymptotic expansion of J(z) in the 
sector. 

If J(z) is analytic at 00, then its Laurent series is an asymptotic series for 
J(z) in any sector. However, asymptotic series generally do not converge. 
(See the Exercises.) Further, it can happen that different functions have 
the same asymptotic expansion. For example, since zne-z --+ 0 as z --+ 00 
in any sector {I argzl < (7r/2) - e}, the function e-z has an asymptotic 
series in the sector that is identically zero. 
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The asymptotic approximation theorem shows that if h( s) has at most 
exponential growth, and if h( s) is infinitely differentiable at s = 0, then the 
Laplace transform (£h)(z) has the asymptotic expansion 2:: h(k) (O)/Zk+l 
in any sector Be = {I argzl < (7r/2) - e}. In any such sector there is an 
estimate of the form celzl :::; Rez :::; Izl; consequently, Izi - 00 if and 
only if x = Re z - 00. In general, the series need not be an asymptotic 
expansion for (£h)(z) in the entire right half-plane, regarded as a sector. 
However, in the case of the function logr(z), it is. In fact, it can be shown 
that the series (2.6) is an asymptotic series for Log r(z) in any sector 
{I argzl < 7r - e}, for any e > o. 

Exercises for XIV.2 

1. Show that if Re'x > -1, then the Laplace transform of SA converges 
absolutely in the right half-plane, and 

( r A)( ) = r(,X + 1) 
L,S Z ZA+l' Rez > O. 

2. Show that if g(s) = eash(s), then (£g)(z) = (£h)(z - a). 

3. Suppose h(s) = 0 for s < o. Show that if a> 0 and g(s) = h(s - a), 
then (£g)(z) = e-az(£h)(z). 

4. Show that if h( s) is differentiable, then the Laplace transform of its 
derivative h'(s) is (£h')(z) = z(£h)(z) - h(O). 

5. Compute (;f J27rn and (;f J27rn (1 + l~n) for n = 2, 3, 

and 4, and compare the results with n! . 

6. Define the Bernoulli numbers Bl. B 2 , B3, ... by 

z Z Bl 2 B2 4 B3 6 1 - - cot - = -z + -z + -z + .... 
2 2 2! 4! 6! 

(a) Show that Bl = 1/6 and B2 = 1/30. (b) Show that 

8 1 Bl 2 B2 4 B3 6 
1 + -8 + -s - -8 + -6! s 

1- e-S 2 2! 4! 

(c) Show that logf(z) has asymptotic series 

rn-- Bl 1 B2 1 B3 1 
logr(z) '" (z-1/2)logz-z+logV27r+2~- 3.4z3 + 5.6z5 _ .•.• 

(d) Show that as z - 00 through the sector 1 argzl :::; 7r/2 - e, 

f(z) = zZe-z ft. (1 + l~Z + 28~z2 - 51~!~z3 + 0 (1:14) ) . 
How many terms can be specified here using only Bl and B2? 
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7. Express the function 

F(x) = 100 ex
-

t dt 
x t ' 

x> 0, 

as a Laplace transform, and show that it extends analytically to the 
right half-plane. Obtain the asymptotic expansion of the function, 
and show that the asymptotic expansion diverges at every point. 

8. Let h(s), s 2:: 0, be a continuous function such that Ih(s)1 ::; GeBs 

for some constants B, G > o. Suppose that h( s) extends to be 
analytic in a neighborhood of the origin, and suppose that the power 
senes expansion h(s) = L~o h(k)(O)sk /k! has only a finite radius 
of convergence. Show that the asymptotic series L~o h(k) (O)/Zk+l 
of the Laplace transform (Ch)(z) diverges at every point z. 

9. Show that if J(z) is analytic at 00, then its power series expansion 
in descending powers of z is an asymptotic series for J (z) in any 
sector. 

10. Show that if J(z) and g(z) have asymptotic expansions in a sector, 
then so does their product J(z)g(z). 

11. Show that if J (z) has an asymptotic series L~2 ak / zk in a sector S, 
beginning with the l/z2 term, then any antiderivative F(z) of J(z) 
has an asymptotic series in S obtained by integrating term by term. 

12. Show that if J(z) has an asymptotic series 'E'F:=oak/zk in a sec­
tor S = {Oo < argz < Ol}, then J'(z) has the asymptotic series 
E(-jaj)/zj+1, obtained by differentiating term by term, in any 
smaller sector SE = {Oo + c: < arg z < 01 - c: }. 

3. The Zeta Function 

The zeta function was first introduced by Euler. He derived an infinite 
product representation for the zeta function that connected it to prime 
numbers. A century later Riemann discovered a close relationship between 
the zeta function and the asymptotic distribution of prime numbers. Ex­
cept for certain ''trivial'' zeros on the negative axis, the zeros of the zeta 
function are easily seen to lie in the "critical" strip {O ::; Re s ::; I}. Rie­
mann related the zeros of the zeta function to the asymptotic distribution 
of prime numbers by an "explicit formula," and he conjectured that the 
zeros in the critical strip all lie on the line {Re s = !}. At the beginning of 
the new millennium the most famous unsolved problem in complex anal­
ysis, if not in all of mathematics, is to determine whether the Riemann 
hypothesis holds. We will show in the next section that the zeta function 
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has no zeros on the boundary lines of the critical strip, and this will lead 
to the prime number theorem. 

In this context it is traditional to denote the complex variable by s = 

0" + it. With this notation, the zeta function is defined by 

00 1 
((s) = L nS ' 

n=l 

0" = Res> 1. 

The series converges absolutely for 0" > 1, and it converges uniformly for 
0" ~ 1 +c for any c > 0, by comparison with the numerical series ~ n-(He). 

The function ((0") is a decreasing function of 0" for 1 < 0" < 00, and ((0") -+ 1 
as 0" -+ +00. Since the harmonic series :E l/n diverges, ((0") -+ +00 as 
0" -+ 1+. Note also that 1((0" + it)1 ~ ((0") for all t. We have already met 
the series for ((2), 

00 1 rr2 
((2) = L2" = -. 

n 6 
n=l 

For the remainder of this chapter, we will always use P to denote a prime 
number, P = 2,3,5, 7, 11, .. '. The following infinite product representation 
of the zeta function signals a connection between (( s) and prime numbers. 

Theorem. If Re s > 1, then 

(ts) = II (1- ;s) , 
p 

(3.1) 

where the product is taken over all prime numbers p. 

The series :E l/pO'+it converges absolutely for 0" > 1, and it converges 
uniformly in any half-plane {O" ~ l+c}. Hence the product (3.1) converges. 
Consider the geometric series 

1 -s -28 = l+p +p + ... 
1- p-s ' Res> 1. 

If we multiply together the m series corresponding to primes PI,··· ,Pm, 
we obtain 

1 00 

(1 - PI S) ..• (1 - p:;;"s) 
" (pkl pkm)-S 
~ I'" m • 

kl, ... ,km=O 

Since every integer n ~ 1 has a unique representation as a product of 
powers of distinct primes, a summand l/ns appears at most once in this 
sum, so the sum is a subsum of the series :E n -S. As we incorporate more 
primes into the product, we eventually capture all terms n -s, and in the 
limit we have 

1 II 1- p- s 
p 

00 

= Ln-s 

n=l 

((s). 
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Next we wish to extend ((8) to be a meromorphic function on the entire 
complex plane. To do this, we represent ((8) as a contour integral. We 
make a branch cut along the positive real axis and consider the function 

(_Z)S-l = e(s-l) Log(-z) , z E 1C\[0,00), 

which depends analytically on both z and the complex parameter 8. Let 
'Y be the contour indicated below, following the top edge of the branch 
cut from +00 to E, detouring along a circle of radius E around z = 0, and 
returning from E to +00 along the bottom edge of the branch cut. We 
consider the function 

(3.2) ¢(8) = ~ 1 (_Z)S-I dz. 
27r~ , eZ - 1 

The integral converges, and it represents an entire function of 8. To evaluate 
it, we first assume that Re 8 > 1, and we express 

1 1E e(s-l)(logx-i7r) 1 1 (_z)s-I 
¢(8) = - dx + - dz 

27ri 00 eX - 1 27ri Izl=E eZ - 1 

1 100 e(s-l)(log x+i7r) 
+-. dx. 

27r~ E eX - 1 

Since eZ - 1 has a simple zero at z = 0, the integrand is bounded on the 
circle Izl = E by CERes- 2 , and the second integral is bounded by CERes-I. 

Under our assumption that Re 8> 1, this integral tends to ° with E. Passing 
to the limit. we obtain 

1 100 s-l ¢(8) = -. (ei7r(S-I) _ e-i7r (S-I») _X __ dx . 
27rZ 0 eX - 1 

The term in parentheses is 2i sin ( 7r (8 - 1)) = - 2i sin ( 7r 8 ). Hence 

(3.3) ¢(s) = _ sin(7r8) roo x s - 1 dx. 
7r Jo eX - 1 

We treat this integral by expanding l/(eX - 1) = e-x /(1- e-X ) in a geo­
metric series, 

(3.4) 100 s-l 100 
( 00 ) _X __ dx = L e-nx xs-Idx. 

o eX -1 0 
n=l 

The partial sums of the geometric series form an increasing sequence of 
functions that converges uniformly on each interval [E, 00). From this it 
is straightforward to justify interchanging the summation and integration. 
Since 
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(3.4) becomes 

rOO XS-lldX = f(8)((8), 
10 eX -

373 

Re8> 1. 

Substituting this into (3.3) and using f(8)r(1- 8) = 1f/ sin(1f8) from (1.7), 
we obtain 

¢(8) = - sin(1f8)f(8)((8) = -f(((8) ). 
1f 1-8 

We have established this identity for Re 8 > 1. However, ¢( 8) is an entire 
function, so we can use this identity to extend ((8) to be a meromorphic 
function in the entire complex plane. The extended function then satisfies 
the following. 

Theorem. For the branch of (_Z)s-l and the contour 'Y described above, 
we have 

(3.5) ((8) = -r(1 - 8)¢(8) = - r(1 ~ 8) 1 (_Z)S-l dz. 
21fZ 'Y eZ - 1 

Since ¢( 8) is an entire function, and the poles of r( 1-8) are simple poles 
at 8 = 1,2,3, ... , ((8) is analytic except for possibly a simple pole at 8 = 1. 
Now, f(8) has a simple pole at 8 = 0 with residue 1, so r(1- 8) rv 1/(1- 8) 
as 8 --+ 1. Since 

¢(1) = 2~i l ezd~ 1 = Res [ez ~ 1,0] = 1, 

we see that ((8) rv 1/(8 - 1) as 8 --+ 1. Thus ((8) has a simple pole with 
residue 1 at 8 = 1. We collect these observations. 

Theorem. The zeta function ((8) is a meromorphic function on the com­
plex plane with only one pole, a simple pole at 8 = 1 with residue 1. 

Next we derive a functional equation for the zeta function. 

Theorem. The function ((8) satisfies the functional equation 

(3.6) 

For the proof, we modify the contour 'Y used to define ¢(8). Fix 8 to 
be real and negative. Let 'Yn be the contour indicated in the figure below, 
obtained from 'Y by replacing the segment starting at n on the top edge of 
the slit and going around 0 and back along the bottom edge of the slit to n 
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27r(n + l)i 

27l"ni 

In 

n n 

by straight line segments running counterclockwise around the boundary 
of the rectangle Rn with vertices at ±n ± (2n + 1)1fi. Define 

1 1 (_Z)S-l 
¢n (s) = -2 . Z 1 dz. 

1fZ e-,n 
Since I eZ -11 > ~ on the edges of the rectangle, the integrand is bounded on 
the edges by 2ns - 1 . By the M L-estimate, the integrals over these edges are 
bounded by ens. Since s < 0, this tends to 0 as n -+ 00, and consequently, 
¢n(s) -+ 0 as n -+ 00. Now, the difference f - f is the integral around ,n 1 
the closed contour consisting of the boundary of t e rectangle Rn with a 
detour along an elongated indentation that does not cross over the branch 
cut. The contour encloses only the poles of the integrand at the points 
±21fki, 0 < k ::; n. Each pole is a simple pole, with residue 

(_Z~S-l I = (21fy-1 Ikl s - 1e(s-1) Log(±i). 

e z=±27rki 

If we combine the residues for ±k and sum, we obtain from the residue 
theorem 

n 

(21f)s-1 (e(S-1)i7r/2 + e-(S-1)i7r/2) L ks - 1 . 

k=l 

We substitute 

e(s-1)i7r/2 + e-(s-1)i7r/2 = 2 cos ((s -1)i) 2 sin (~S) 

and let n -+ 00. Since ¢n(s) -+ 0, we obtain in the limit 

-¢(s) = 2s 1fs - 1 sin (~S) ((1 - s). 

If we combine this with (3.5), we obtain the functional equation (3.6), at 
least for s < O. Since both sides of the identity (3.6) are meromorphic, 
(3.6) holds for all s, by the uniqueness principle. 
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The functional equation of the zeta function yields information on its 
zeros. On account of the product representation (3.1), the zeta function 
has no zeros in the half-plane {Res> I}. Since l/r(z) has a product 
representation expressing it as an entire function, r(z) has no zeros. The 
functional equation then shows that the only zeros of ((s) in the left half­
plane {Res < O} are the zeros of sin(7l"s/2), which are simple zeros at 
s = -2, -4, -6, .... As mentioned above, these zeros are called the 
trivial zeros of the zeta function. The nontrivial zeros of the zeta function 
lie in the strip {O :S Re s :S I}, which is called the critical strip. Many 
outstanding mathematicians have worked on the Riemann hypothesis, 
that the nontrivial zeros of the zeta function lie on the line {Re s = n. 
It is known that ((s) has infinitely many zeros in the critical strip. Their 
asymptotic distribution is known, and it is known that at least a third of 
them lie on the critical line {Re s = U. Further, the first zillion or so zeros 
are known to lie on the critical line. Meanwhile, whether the Riemann 
hypothesis is true remains a famous unresolved problem. 

Exercises for XIV.3 

1. Show that if a is a zero of the zeta function in the critical strip, then 
so are a, 1 - a, and 1 - a. 

2. Show that the function ~(s) = !s(l-s)7l"-s/2r(s/2)((s) is an entire 
function that satisfies ~(1 - s) = ~(s). Show that ~(s) is real when 
s is real and also when Res = !. Where are the zeros of ~(s)? 

3. By comparing ((0") with It x-Udx, show directly from the defini­
tion of ((s) that (0" - 1)((0") --t 1 as 0" --t 1+. 

4. Show that (1- 21- S )((s) is an entire function, which is represented 
by the series 

1 1 1 
= 1--+---+··· 

28 38 48 
Res> 1. 

Remark. We will see in the next section that the series converges 
and represents the function for Re s > O. 

5. By comparing the partial fractions decomposition 

7l"cot(7l"z) = -+ L --+-1 (1 1) 
z z-n n 

n#O 

with the series defining the Bernoulli numbers, and differentiating, 
derive the power series expansion 

1 00 22k+L,,.2k+2B 
'""' ,""," k+l 2k 
L...J (z - n)2 = L...J (2k)!(k + 1) z , 
n#O k=O 

Izl < 1. 
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Use this to show that 

22m-lrr2m Bm 
((2m) = (2m)! m;:::1. 

4. Dirichlet Series 

A Dirichlet series is a series of the form 

(4.1) 

which we will often abbreviate to L ann-s. The prototypical Dirichlet 
series is the series L n-s representing the zeta function. Dirichlet series 
are important in number theory. They were used by Dirichlet to study the 
distribution of prime numbers in arithmetic progressions. 

The modulus lann-(o+it) I = lanln-O" of the nth term of the series de­
pends only on the real part a of s = a + it. The modulus decreases as a 
increases. Thus if the series (4.1) converges absolutely for s = So, then it 
converges absolutely for all s satisfying Res ;::: Reso. By the Weierstrass 
M-test, it also converges uniformly in the half-plane {Res;::: Reso}, by 
comparison with the numerical series L Ian In - Re So. Proceeding in analogy 
with the definition of radius of convergence of a power series, we define a a 

to be the infimum of a for which L lanln-O" converges, and we have the 
following. 

Theorem. For each Dirichlet series (4.1), there is a unique extended real 
number aa, -00 ::; aa ::; +00, such that the series converges absolutely if 
Res> aa, and the series does not converge absolutely if Res < aa. For 
anyao > aa, the series converges uniformly on the half-plane {Re s ;::: ao}. 
The sum f(s) = Lann-s is analytic for Res> (la' 

The extended real number a a is called the abscissa of absolute con­
vergence of the series (4.1). 

Example. The series L n-S for ((s) has abscissa of absolute convergence 
a a = 1. It does not converge at s = 1. 

Suppose the function f(s) is represented by a Dirichlet series, say f(s) = 
Lann-s for Res > (la' Since the series converges uniformly in some 
half-plane, and each of the terms ann- s -+ 0 as (l -+ 00 for n ;::: 2, we have 

00 

2: an 
-+ 0 as (l = Res-+oo. 

n S 
n=2 
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Consequently, I(s) - al as 0' - 00. Similarly, we can capture the other 
coefficients of the series from I(s). We write 

(4.2) 

To estimate the series on the right, choose 0'0 large so that L laklk-O"o = 
M < 00. Then 

Since nO" /(n + 1)0"-0"0 _ 0 as 0' - 00, the series on the right-hand side 
of (4.2) tends to 0 as 0' - 00, and the left-hand side of (4.2) tends to an 
as 0' - 00. Thus starting with al, we can determine in succession the 
coefficients an from 1 ( s ). In particular, the coefficients an are determined 
uniquely by the function 1 (s), and we have proved the first statement of 
the following theorem. 

Theorem. If an analytic function 1 (s) can be represented by a Dirichlet 
series in some half-plane {Res> O'o}, then that Dirichlet series is unique. 
If I(s) = L ann- s and g(s) = L bnn-s are represented by Dirichlet series 
in a half-plane, then so are their sum I(s)+g(s) and their product I(s)g(s). 
Further, the Dirichlet series of the product I(s)g(s) is LCnn-s , where 

Cn = L adbn/d. 
din 

Here the notation "din" means "d divides n." The theorem follows by 
multiplying the series for I(s) and g(s) term by term and regrouping the 
terms, which we can do for absolutely convergent series. 

The relation between convergence and absolute convergence of Dirichlet 
series is more delicate than the corresponding relationship for power series. 
It may occur that a Dirichlet series converges not only for 0' > O'a, but also 
for 0' > O'a -1. 

Example. The Dirichlet series L( -1)n n-s has O'a = 1. However, it con­
verges whenever s = 0' is real and positive, by the alternating series test. 
The following theorem shows that it converges at every point of the right 
half-plane {Res> a}. 

Theorem. If the Dirichlet series L ann- s converges at a point s = so, 
then it converges for all s such that Re s > Re so. Further, it converges 
uniformly in any sector {I arg(s - so)1 :s (7r/2) - c} with vertex So and 
aperture strictly less than 7r. 
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This is proved using Abel's formula for summation by parts. Let 2: ak 

be a series, with partial sums 
n 

An L ak· 
k=l 

The formula for summation by parts is analogous to the formula for inte­
gration by parts, 

n n-l 

(4.3) L akbk = Anbn - Am-Ibm + L Ak(bk - bk+l). 
k=m k=m 

This can be checked by substituting ak = Ak - A k- 1 and adjusting the 
indices. 

Before applying the formula, we make two preliminary reductions in 
order to simplify the proof. First, observe that 2: ann-s converges at 
s = Sl if and only if 2:(an n-So )n-S converges at S = Sl - so. Thus by 
replacing 2: ann-s by 2: bnn-s, where bn = ann-so, we can assume that 
So = 0 and that 2: an converges. The second reduction is to replace al by 
al - 2: an, so that we can assume that 2: an = o. We must show that for 
any C > 0, the series 2: ann-s converges uniformly for lsi ~ Ca, where 
S = a + it and a > o. We do this by invoking the summation by parts 
formula, which in this case becomes 

(4.4) ~ ak _ An _ Am - 1 ~ A (~_ 1 ) 
~ ks - nS m S + ~ k ks (k + 1)8 . 
k=m k=m 

Let Cm be the maximum of IAkl for k ~ m -1. Then Cm ~ 0 as m ~ 00. 
From (4.4) we obtain 

n ak I ( 1 1 n-l 11 1 I) 
(4.5) ~ k8 ~ Cm na + ma + ~ k8 - (k+l)8 . 

The first two summands are each bounded by 1, and 

I :8 - (k ~ 1)8 I = lsi lk+1 
r-s-1dr ~ Ca lk+l r-a-1dr. 

If we substitute these estimates in (4.5) and sum, we obtain 

~ ~: ~ Cm (2 + Ca J: r-a-1dr) ~ cm(2 + C). 

Since this tends to 0 as m, n ~ 00, the series converges uniformly in the 
sector, and consequently it converges pointwise in the open half-plane. This 
completes the proof of the theorem. 

The preceding theorem allows us to define the abscissa of convergence 
of a Dirichlet series 2: an n-8 to be the extended real number ac , -00 ~ 
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a c ~ +00, such that the series converges ifRe8 > ac and does not converge 
if Re 8 < ac . Clearly, ac ~ aa. It is easy to see (Exercise 3) that aa ~ ac+ 1, 
and further, this estimate is sharp. 

Example. Consider the series representation from Exercise 3.4, 

1 1 1 
(4.6) (1- 21- s ) ((8) = 1- - + - - - +... Re8> 1. 

2s 3s 4S 

The abscissa of absolute convergence of the series on the right is a a = 1. By 
the alternating series test, the series converges for any positive real number 
8> O. Consequently, the abscissa of convergence is ac = 0, and the series 
converges in the right half-plane to an analytic function. By the uniqueness 
principle, the identity (4.6) then holds in the entire right half-plane. 

Exercises for XIV.4 

1. Show using (4.6) that ((a) < 0 for 0 < a < 1. Conclude that the 
only zeros of the zeta function on the real line are the trivial zeros 
at the points 8 = -2, -4, -6, .... 

2. Show that if the Dirichlet series 1(8) = L:ann-s converges in some 
half-plane, and if the an's are not all zero, then there is a half-plane 
{Re8> ao} on which 1(8) has no zeros. 

3. Show that if the terms ann-s are bounded for 8 = 80, then the 
Dirichlet series L: ann- s converges absolutely for Re 8 > 1 + Re 80. 
Deduce that aa ~ ac + 1. 

4. A coefficient sequence {an} is multiplicative if a1 = 1 and amn = 
aman whenever m and n are relatively prime. It is strongly mul­
tiplicative if al = 1 and amn = aman for all m and n. Show that 
if {an} is multiplicative, then 

00 

L :: = II (1 + app-s + a p2p-2S + ... ) , 
n=l p 

Re8>aa, 

while if {an} is strongly multiplicative, then 

Re8>aa· 

5. The Mobius /-l-function is defined on positive integers n by /-l(1) = 

1, /-l(n) = (-It if n is a product of r distinct primes, and /-l(n) = 
o otherwise. (a) Show that /-l is multiplicative but not strongly 
multiplicative. (b) Show that 

1 ~ /-l(n) 
((8) = L.- --;;:;; , Re 8 > 1. 

n=l 
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(c) Show directly, or from the uniqueness of Dirichlet series, that 

(d) Show that if f(s) = Lann-s where {an} is strongly multiplica­
tive, then 1/f(s) = LanJ..l(n)n-s . 

6. The Dirichlet convolution of the sequences {an}~l and {bn}~=l 
is the sequence {cn}~=l defined by 

Show that if the Dirichlet series L ann- s and L bnn-s converge 
in some half-plane to f(s) and g(s) respectively, then the Dirichlet 
series LCnn-s converges in some half-plane to f(s)g(s). 

7. Let ",(n) be Euler's totient function, defined to be the number 
of positive integers not exceeding n that are relatively prime to n. 
Show that 

((s - 1) _ f ",(n) 
((s) - n=l nS ' 

Res> 2. 

Hint. Use the fact that Ldln ",(d) = n. 

8. If CT a (n) denotes the sum of the ath powers of the divisors of n, then 

((s)((s - a) = ~ CTa(n), 
L..J nS 
n=l 

Res> 1, Res> a + 1. 

9. Let d(n) denote the number of divisors of n. Establish the following 
formulae: 

Hint. Use Exercise 4. 

10. Show that 

('(s) _ f A(n) 
((s) - - -;;:S' 

n=2 
Res> 1, 

whereA(n) = logpifn is a power ofaprime numberp, andA(n) = 0 
otherwise. 
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11. Define an = 1 and bn = ±1 if n == ±1 mod 6; otherwise, set an = 
bn = O. Define two "Dirichlet L-series" by 

1 1 1 
1+-+-+-+ .. · 

58 78 lIB 
1 1 1 

1--+---+ .. · . 
58 78 lIB 

(a) Show that {an} and {bn } are strongly multiplicative. (See Ex­
ercise 4.) 

(b) Show that L1(8) has aa = ac = 1, and that L1(8) ---. +00 as 
8---.1+. 

(c) Show that L-1(8) has aa = 1 and ac = O. 
(d) Show that logL1(8) -logL_1(8) can be expressed as 

p=-l mod 6 p=-l mod 6 

and deduce from (b) that there are infinitely many primes con­
gruent to -1 modulo 6. 

(e) Show that logL1(8) + logL_1(8) can be expressed as 

-2 L log(l - p-8) -
p=l mod 6 p=-l mod 6 

and deduce that there are infinitely many primes congruent to 
1 modulo 6. 
Remark. Dirichlet showed using this technique that if 1 ~ k < 
m, and if k is relatively prime to m, then the arithmetic pro­
gression {k, k+m, k+2m, ... } contains infinitely many primes. 
Further, for fixed m the primes are distributed asymptotically 
evenly among such arithmetic progressions. 

12. Suppose that the partial sums of the Dirichlet series L an n-8 are 
bounded at 8 = 80. Show that the series converges for Re 8 > Re 80. 

13. Suppose an 2: 0 for all n, and the abscissa of absolute convergence aa 
for the Dirichlet series f(8) = Lann-8 is finite. Show that f(8) 
cannot be extended analytically to any neighborhood of aa. 

14. Denote by ac and aa the abscissas of convergence and of absolute 
convergence, respectively, for the Dirichlet series L an n-8 • Show 
that 

. log lanl 
aa - 1 ~ hmsup 1 ~ ac · 

n-->oo ogn 

15. Denote by ac the abscissa of convergence of the Dirichlet series 
Lan n -8. (a) Show that if L an converges, and Rn = an + an+! + 
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... , then 

. log IRnI 
(1c = hmsup 1 . 

n-oo ogn 

(b) Show that ifL:an does not converge, and An = al +a2+· ·+an , 

then 

1. log IAnl 
lmsup I . 
n-oo ogn 

5. The Prime Number Theorem 

We say that two functions f(x) and g(x) are asymptotic as x ---7 00, 

written f rv g, if f(x)lg(x) ---7 1 as x ---7 00. Let 7r(x) be the number of 
prime numbers p such that p ~ x. Thus 7r(2) = 1, 7r(6) = 3, 7r(1O) = 4, 
and so on. The prime number theorem gives the asymptotic behavior of 
7r{x) as x ---7 00. 

Theorem (Prime Number Theorem). Thenumber7r{x) ofprimenum­
bers not exceeding x satisfies 7r{x) rv xllogx as x ---7 00. 

This formula for the asymptotic distribution of primes was surmised by 
several outstanding mathematicians, including Gauss. Tables of factoriza­
tions of the first several hundred thousand positive integers were already 
published before 1700. Gauss (or, more accurately, his assistant) calcu­
lated all primes up to about 3,000,000, and Gauss used the results to aid 
his researches into number theory. 

After much effort by many mathematicians, the prime number theorem 
was proved in 1896 independently by Hadamard and de la Vallee Poussin. 
Their proofs were very difficult. Subsequently, several new proofs of the 
prime number theorem have been given, and the various proofs have been 
gradually simplified. We will follow D. Zagier's exposition of a proof due to 
D.J. Newman (1972). As with most proofs of the prime number theorem, 
the proof is divided into two parts. The first is to show that the zeta 
function has no zeros on the line {Res = I}. The second is to establish 
a "Tauberian theorem" relating the zeta function and the distribution of 
primes. 

An important role in the proof is played by the function iP{s) defined by 
the Dirichlet series 

(5.1) iP(s) = L logp, 
p r Res> 1, 

where as usual we use p for prime numbers. The series converges absolutely, 
and iP(s) is analytic for Res> 1. If we differentiate logarithmically the 
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product formula (3.1) for the zeta function, we obtain 

(5.2) _ ('(8) = "logp = <1>(8) +" logp 
((8) L.,.. ps - 1 L.,.. pS(ps - 1)" 

p 

The series on the right converges to an analytic function for Re 8 > ~ . 
Since ('(8)/((8) is meromorphic on the entire complex plane, (5.2) shows 
that <1>(8) extends to be meromorphic for {Re8 > n, with simple poles at 
the poles and zeros of the zeta function. Thus <1>(8) has a simple pole at 
8 = 1 with residue 1, and <1>(8) has a simple pole at 8 = 80 with residue 
-m if ((8) has a zero at 8 = 80 of order m. 

Theorem. The meromorphic function <1>(8) has no poles on the vertical 
line {Re 8 = I} except at 8 = 1. The zeta function ((8) has no zeros on the 
line {Re8 = I}. 

The proof is by magic. Fix t > 0, and suppose that ((8) has order q at 
1 + it and order q' at 1 + 2it, where q, q' ?: O. Then it has orders q and q' 
at 1 - it, and 1 - 2it, respectively. Consider 

o ~ (pit/2 + p-it/2) 4 = p2it + 4pit + 6 + 4p-it + p-2it. 

Multiplying by c(logp)/p1+c: and summing over the primes, we obtain 

o < c[<1>(1 + c + 2it) + 4 <1>(1 + c + it) + 6<1>(1 + c) 

+ 4<1>(1 + c - it) + <1>(1 + c - 2it)]. 

Since the residues of <1>(8) at the points 1, l±it, 1±2it are respectively 1, -q, 
-q', we have c<I>(l+c) -+ 1, c<1>(l+c±it) -+ -q, and c<I>(1+c±2it) -+ -q' 
as c -+ O. In the limit we then obtain 

o ::; -q' - 4q + 6 - 4q - q' ~ 6 - 8q - 2q'. 

Since q and q' are nonnegative integers, this can occur only when q = O. 
Thus 1 + it is not a zero of ((8) nor a pole of <1> (8). It follows that <1>(8) has 
no poles on the line 1 + ilR. except 8 = 1, and ((8) has no zeros on the line. 

None of the proofs of the prime number theorem treats the function 7r(x) 
directly. They treat the function 

(5.3) ~(X) = Llogp. 
p$;x 

The function ~(x) is an increasing, piecewise continuous function of x. 
Since there are at most 7r(x) summands in (5.3), 

(5.4) o ~ ~(x) ::; 7r(x) log x, X?: 1. 
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For fixed c: > 0, we have 

t?(x) > 2)logp: x l - e < p:::; x} > (1 - c:)(logx)(7r(x) _7r(x l - e )) 

> (1 - c:)(logx)(7r(x) - xl-e). 

Combining this with (5.4), we obtain 

t?(x) :::; 7r(x)logx :::; _l_t?(x) + logx. 
x x 1-c: x xe 

Since (logx)/xe -+ 0 as x -+ 00, we see from this that t?(x)/x -+ 1 if and 
only if 7r(x)(logx)/x -+ 1. We have proved the following. 

Lemma. The prime number theorem holds if and only ift?(x) 'V x. 

It is clear that t?(x) :::; xlogx. We need the following stronger estimate 
for the growth of t?(x), which goes back to Chebyshev. 

Lemma. t?(x):::; Cx for some constant C and x ~ o. 

To see this, we consider the binomial coefficient 

( 2n) = (2n)! 22n 

( ')2 < . n n. 

Each prime number p between nand 2n divides the binomial coefficient. 
Consequently, their product does, and their product is bounded by 22n , so 

~)logp: n < p < 2n} :::; 2nlog2. 

Applying this estimate to n = 2k and summing, we obtain 

m 

k=l 

< 2(1 + 22 + ... + 2m- I ) log 2 < 2m+1log 2. 

Given x, we choose m such that 2m- 1 < x:::; 2m , and then t?(x) :::; t?(2m) :::; 
2m+1log 2:::; (410g2)x. 

Next we connect q>(s) and t?(t) via the Laplace transform. This requires 
a logarithmic change of variable, to convert the multiplication on (0,00) 
to addition on (-00,00). We consider the function t I---> t?(et ), which is a 
piecewise continuous function of t. 

Lemma. The Laplace transform (£t?(et))(s) of the function t?(et ) con­
verges absolutely for Re s > 1, and 

Res> 1. 
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Since -a( et ) :S Get, the Laplace transform of -a( et ) converges absolutely 
for Res> 1. Let Pn denote the nth prime. Then -a(et ) is constant for 
logPn < t < logPn+l, so 

l iogpn+l e-st liOgpn+1 1 
e-st-a(et)dt = -a(Pn)- = --a(Pn) (p;;S - P;;~l) . 

iogPn -s iogPn S 

We sum over the primes and use-a(Pn) - -a(Pn-l) = logPn to obtain 

100 1 1 
e-st-a(et)dt = - L -a(Pn) (p;;S - P;;~l) = - L(-a(Pn) - -a(Pn_l»P;;S 

o s s 

= ~ '" logPn = ~q>(s), Res> 1. 
s~ p~ s 

Instead of dealing with the Laplace transform of -a(et ), it will be conve­
nient to treat the Laplace transform of the function 

(5.5) 

The effect of multiplying by e-t is to translate the variable s of the Laplace 
transform by 1, and the effect of subtracting 1 is to kill the pole of q>(s) at 
s = 1. 

Lemma. The function h(t) defined by (5.5) is a bounded piecewise con­
tinuous function on [0,(0), whose Laplace transform converges absolutely 
in the right half-plane and satisfies 

(5.6) (£h)(s) = q>(s + 1) _ ~, 
s + 1 s 

Res> 0. 

The Laplace transform (£h)(s) extends analytically across the imaginary 
axis. 

The link between the analyticity of q>(s) and the asymptotic behavior 
of h(t) is contained in the following "Tauberian theorem." 

Theorem. Let h(t), t ~ 0, be a bounded piecewise continuous function 
whose Laplace transform (£h) (z) extends analytically across the imaginary 
axis. Then 

T 

lim r h(t) dt = lim (£h)(c). 
T--+oo Jo .0--+0+ 

Note that the Laplace transform (£h)(z) is defined only for Rez > 0, 
where the defining integral converges absolutely. Let g(z) denote the an­
alytic continuation of (£h) (z) across the imaginary axis. The theorem 
asserts that the Laplace transform exists, possibly as an improper integral, 
at z = 0, and is equal to g(O). 



386 XIV Some Special Functions 

For the proof, let € > 0 be small. For fixed T > 0, define 

gT(Z) = loT e-zth(t) dt, Z E C. 

Then gT(Z) is an entire function. We will show that Ig(O) - gT(O)1 < € for 
large T. 

I 
I 

I 

- R I 

I 
\ 
\ 
~ , , 

,R 

- 6 R 

Suppose Ih(t)1 ::; M for 0 ::; t < 00. Choose R > 0 so large that 
M / R < € / 4, and then choose 8 > 0 very small, so that g( z) is defined and 
analytic in and across the boundary of the domain D/j consisting of z such 
that Izl < Rand Rez > -8. From Cauchy'S theorem we have 

(5.7) g(O) - gT(O) = ~ r (g(z) - gT(z))ezT (1 + RZ:) dz. 
27ft J8D~ z 

We break aD/j into pieces. Let 1+ be the semicircle {Izl = R, Re z > O}, 
let n/j be the vertical interval along aD/j where Re z = -8, and let (J/j be 
the two short arcs of the circle {Iz \ = R} connecting (t/j to ±iR, all oriented 
according to the orientation of aD/j. For z = x + iy E 1+ we have 

Ig(z) - gT(Z)\ = l1roo h(t)e-ztdtl ::; M 1roo e-xtdt = Me;XT 

Since also 11 + z2/R2
1 = 2\xl/R for Izl = R, we obtain from the ML­

estimate that the right-hand side of (5.7), integrated over 1+, is bounded 
by 

1
1 1 zT ( z2 ) dz I 27fi 1'+ (g(z) - gT(z))e 1 + R2 ~ 

1 M e-xT 2x 1 M € < - . exT. - . - . 7f R = <-
- 211" X R R R 4 

For the integral of g(z) - gT(Z) over the remainder of aD/j, we treat the 
functions separately. Let 1- be the semicircle {Izl = R, Rez < O}. Since 
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9T(Z) is entire, 

1 1 zT ( z2 ) dz 1 1 zT ( z2) dz -. 9T(z)e 1 +"""2 - = 2"". "'_ 9T(z)e 1 + R2 -z' 
27r~ Ot6U/36 R z " • , 

and we estimate the left-hand side just as for the first integral. If z = 
x + iy E '1-, then 

19T(Z)1 

so 

1 1 zT ( z2 ) dz M c -. 9T(z)e 1+- - :::; - < -. 
27r~ "Y- R2 Z R 4 

Now lezTI :::; 1 on 130 and the length of 130 tends to 0 with 8, so we can 
choose 8 > 0 so small that for any T > 0, 

1
1 r zT ( z2) dz I c 

27ri 1/3/(z)e 1 + R2 ~ < 4 

Finally, lezTI = e-OT on 0:0, so for T large the integral over 0:0 is also 
bounded by cf4. Adding the four estimates, we obtain 19(0) - 9T(0) 1 < c 
for T large, as required. 

If we apply the Tauberian theorem to the function h(t) defined by (5.5), 
we conclude that 

exists. After a change of variable x = et , we find that 

(5.8) lim rR (1?(X) _ 1) dx 
R-+oo 11 X X 

exists. We complete the proof of the prime number theorem by showing 
that this implies 1?(x) rv x. 

Lemma. If 1?(x) is an increasing function of x such that the limit (5.8) 
exists, then 1?(x) rv x. 
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Suppose that 'l?(x) > (1 + t:)x for some t: > 0 and for arbitrarily large 
values of x. For any such x we have 

l(1+E
)X ('l?~t) _ 1) ~t ~ l(1+E

)X ('l?~X) _ 1) ~t 
l (1+E)X [ X] dt 

> (1 + t:)- - 1 -
x t t 

c > O. 

Thus 

lR ('l?~t) _ 1) ~t 
increases by c over infinitely many disjoint intervals of the form (x, (1 +t:)x), 
so the integral cannot have a limit as R -+ 00. A similar calculation shows 
that we cannot have 'l?(x) < (1 - t:)x for arbitrarily large values of x. 
Consequently, 'l?(x)/x -+ 1 as x -+ 00. 

Exercises for XIV.5 

1. Why is the binomial coefficient "m choose k" less than 2m ? 

2. Show that 11 + z2/R2
1 = 21 Rezl/R for Izl = R. 

3. Compute 7r(x) for x = 10 and x = 100, and compare the result with 
x/logx. 

4. Show that 7r(x) rv J;(1/logt)dt. Remark. This asymptoticformula 
(with equivalent notation) was found scribbled on the back page of 
a table of logarithms that Gauss was given at age fourteen. 

5. Show that if Pn is the nth prime, then Pn rv n log n as n -+ 00. 

6. Show that L l/p = +00, where the sum is over the primes, by 
filling in the details of the following elementary argument. If the 
sum converges, choose N such that the tail 8 = Lk>N I/Pk satisfies 
8 < 1. Show that 8 + 8 2 + 8 3 + . .. dominates the sum of 1/ n over 
positive integers not divisible by PI, P2, . .. ,p N; hence it dominates 
L:=II/(1 + mpIP2" . PN), which diverges. 

7. Exactly where in the proof of the prime number theorem is the 
Chebyshev estimate 'l?(x) ~ ex absolutely required? Can you mod­
ify the proof so that it is not required? 

8. Let h(t), 0 ~ t < 00, be a piecewise continuous function such that 

H(T) = loT e-zoth(t)dt, T ~ 0, 
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is bounded. Show that (£h)(z) = fooo e-zth(t) dt exists as an im­
proper integral for all z satisfying Rez > Rezo. Hint. Show that 

lT e-zth(t) dt = e-(z-zo)T H(T) + (z - zo) lT e-(z-zo)t H(t) dt. 



xv 
The Dirichlet Problem 

In Chapter X we used the Poisson kernel to solve the Dirichlet problem 
for the unit disk. In this chapter we study the Dirichlet problem for more 
general domains in the plane. The basic method, due to O. Perron, is to 
look for the solution of the Dirichlet problem as the upper envelope of a 
family of subsolutions. In Section 2 we introduce subharmonic functions, 
which play the role of the subsolutions. In Section 3 we derive Harnack's 
inequality, which provides a compactness criterion for families of harmonic 
functions. Perron's procedure for solving the Dirichlet problem is developed 
in Section 4. We apply the method to sketch another proof of the Riemann 
mapping theorem in Section 5. In Sections 6 and 7 we introduce Green's 
function. 

1. Green's Formulae 

In this section we will establish three fundamental formulae for dealing 
with harmonic and subharmonic functions. All are consequences of Green's 
theorem. We assume that the boundary curves and functions we treat are 
smooth enough so that Green's theorem is valid. 

Let 'Y be a smooth curve in the plane. As before, we denote by n the unit 
normal vector to the curve. If 'Y is parameterized by arc length, 'Y( s) = 
(x(s), y(s)), then n = (dylds, -dxlds). We denote the derivative of a 
smooth function v(x,y) in the normal direction by avian. Thus 

av = V'v. n = av dy _ av dx, av ds av dy _ av dx. 
an ax ds ay ds an ax ay 

t=(dx,dY) 
ds ds 

~(dY,_dx) 
ds ds 

390 
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Let D be a bounded domain with piecewise smooth boundary, and let u 
and v be smooth functions on D U oD. We consider integrals of the form 

[ u ov ds = [ -u ov dx + u ov dy. 
laD on laD oy ox 

By Green's theorem, this is equal to 

Jr[(ouov 02V OUOV ~V) 1 ox ox +uox2 + oy oy +uoy2 dx dy. 
D 

Rewriting this in terms of the gradient and Laplacian operators, we obtain 
Green's first formula, 

(1.1) laD u ~~ ds = 1L "Vu· "Vvdx dy + 1L u/).vdx dy. 

If we interchange u and v and subtract, the gradient terms cancel, and we 
obtain Green's second formula, 

(1.2) laD (u~~ -V~~)dS == 1L(u/).V-V/).U)dXdY. 

We will be particularly interested in this identity when one or both of u 
and v are harmonic. Then the corresponding Laplacian term is zero, and 
the formula simplifies. In the very special case that u is harmonic and v == 1, 
the formula reduces to faD ou/onds = 0, which was used in Chapter III. 

Suppose v(z) is harmonic in a punctured neighborhood of a point (. 
We say that v(z) has a logarithmic pole at ( if v(z) - log(1/lz - (I) 
is harmonic at (. The following theorem provides a version of Green's 
second formula for functions with a logarithmic pole, which is analogous to 
Pompeiu's formula (Section IV.S) for the operator a/oz. It is sometimes 
referred to as Green's third formula. 

Theorem. Let D be a bounded domain with piecewise smooth boundary, 
and let u be a smooth function on D U oD. Let ( E D, and let v(z) be a 
harmonic function on D\ {(} such that v extends smoothly to oD and such 
that v(z) -log 1/lz - (I is harmonic at (. Then 

(1.3) u(() = _2.. Jr [ v/).udx dy - 2.. [ (u av _ v ou) ds. 
21T lD 21T laD on on 

Note that by Green's second formula, the right-hand side of (1.3) is zero 
if we replace v(z) by a function that is harmonic on all of D. Thus we can 
add to v(z) any harmonic function without affecting the right-hand side. 
We add the harmonic function -v(z) + log(1/lz - (I) to v(z), and we see 
that it suffices to establish (1.3) when v(z) is replaced by log(1/lz - (I). 

So suppose v(z) = log(1/lz - (I). We follow the idea of the proof of 
Pompeiu's theorem. (The picture is the same as the picture for the proof of 
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Cauchy's integral formula in Section IV.4.) We excise a small disk centered 
at ( from D and set De = D\{lz - (I ~ e}, and we apply Green's second 
formula to De. Taking into account ~v = 0 on De, we obtain 

[ (u av _ v au) ds _ [ (u av _ v au) ds = _ jr [ v ~u dx dy. 
JeJD On On J1z1=e On On JDE 

Here we have reversed the orientation of the circle {Iz - (I = e} to the usual 
counterclockwise orientation, so now for z = (+rei9 we have a/an = alar. 
The logarithmic singularity at ( is absolutely integrable, 

II log Iz ~ (I dx dy = 127r 11 (lOg ~) rdr dB < 00. 

Iz-<I<1 

Consequently, the area integral over De tends to the area integral over D 
as e - O. To establish (1.3), it remains to show that 

(1.4) - [ (u av _ v au) ds _ 27ru(). 
A~-<I=e On an 

If I(Vu)(z)1 ~ M for z near (, then 

[ v au ds < (log~) M· 27re, 
J1z-<I=e an - '" 

av all 
which tends to 0 with e. Since!l = ~ log - = -- and ds = rdB, the 

un ur r r 
other summand in (1.4) is 

- u-ds = 1 av 

Iz-<I=e an 

Since the averages of u(z) around small circles centered at ( tend to u(), 
we see that this tends to 27ru() as e - o. This establishes (1.4) and with 
it the formula (1.3). 

Exercises for XV. 1 

1. Show that v(z) has a logarithmic pole at ( if and only if v(z) = 
log IJ(z)1 for some function J(z) that is meromorphic near ( and 
has a simple pole at (. 

2. Let D be a bounded domain with smooth boundary, and let u(z) 
be a smooth function on D u aD such that u(z) = 0 for Z E aD. 
Show that lID u(z)(~u)(z) dx dy ~ 0, with strict inequality unless 
u(z) = 0 for all zED. 

3. Let D be a bounded domain with smooth boundary, and let A be a 
real number. Suppose there is a nonzero smooth function u(z) on 
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D U aD such that .6.u = AU on D and u = 0 on aD. Show that 
A < o. 

4. Let D be a bounded domain with smooth boundary, and let u(z) 
and v(z) be smooth functions on DUaD such that u(z) is harmonic 
on D and v(z) = 0 on aD. Show that IID Vu . Vv dx dy = O. 

5. Let D be a bounded domain with smooth boundary, and let u(z) 
and v(z) be smooth functions on DUaD such that u(z) is harmonic 
on D and v(z) = u(z) on aD. Show that 

Remark. The quadratic form II IVvl2dx dy is called the Dirichlet 
integral. The identity shows that the solution to the Dirichlet 
problem minimizes the Dirichlet integral. This is an instance of 
Dirichlet '8 principle. 

6. Let D be a bounded domain with smooth boundary, and let h be a 
continuous function on aD. The Neumann problem is to find a 
harmonic function u on D such that au/an = h on aD. Show that 
the Neumann problem is not solvable unless IaD h ds = o. 

7. Let h (ei9 ) be a smooth (say twice continuously differentiable) real­
valued function on the unit circle, with Fourier series h (ei9 ) = 

L:~oo bn ein9 • Show that the Neumann problem is solvable on the 
unit disk with boundary function h (e i9 ) if and only if bo = o. Ex­
press the solution explicitly as a Fourier series, and comment on the 
uniqueness of the solution. 

8. Let h (ei9 ) be a smooth real-valued function on the boundary of the 
annulus {p < Izl < O"}. Show that the Neumann Rroblem is solv­
able with boundary function h(z) if and only if p I~7r h (pei9 ) dO = 

0" Io27r h (O"ei9 ) dO. Express the solution explicitly as a Fourier series. 
(See Problem VI.1.6.) 

9. Let u(z) be a smooth function on the complex plane that is zero 
outside of some compact set. Show that 

u(() = - 2~ J[ (.6.u)(z) log Iz ~ (I dx dy, 

Remark. If we integrate this formally by parts twice, we obtain 
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1 1 
Thus the "distribution" Laplacian of - - log -I -1'-1 with respect 

271" z -." 
to z is the point mass at ( (the "Dirac delta-function"), in the sense 
that it is equal to 0 away from (, and it is infinite at ( in such a 
way that its integral (total mass) is equal to 1. 

2. Subharmonic Functions 

Let D be a domain, and let u(z) be a continuous function from D to the 
extended real line [-00,00). We say that u(z) is subharmonic iffor each 
Zo E D, there is c > 0 such that u(z) satisfies the mean value inequality 

(2.1) 
f27r dB 

u(zo) ::; io u (zo + reiO ) 271"' 0< r < c. 

If u(zo) = -00, this inequality is automatically satisfied. Note also that c 
may depend on zo0 This definition of subharmonicity is the same as the 
definition of the mean value property (Section IIl.4), except that" =" is 
replaced by "::;" and the function u(z) is allowed to assume the value -00. 

Example. Any harmonic function is subharmonic. If u(z) is harmonic, 
then equality holds in (2.1) for all r such that the closed disk {Iz-zol ::; r} 
is contained in D. 

Example. If J(z) is analytic, then log IJ(z)1 is subharmonic. More gener­
ally, if u(z) is harmonic, or even just subharmonic, on the open set where 
u(z) > -00, then u(z) is subharmonic. 

Example. If J(z) is analytic, then IJ(z)1 is subharmonic. In this case 
the integral representation J(zo) = J~7r J (zo + reiO ) dB/271" and an obvious 
estimate yield (2.1) for IJ(z)l. 

Subharmonicity is analogous in many respects to convexity of functions of 
one real variable. A smooth function X(t) is convex if and only if X"(t) ~ O. 
(See Exercise 9.) There is a corresponding characterization of subharmonic 
functions in which the operator d2 / dt2 is replaced by the Laplacian ~. 

Theorem. A smooth real-valued function u(z) is subharmonic on D if and 
only if ~u ~ 0 on D. 

This follows from Green's third formula (1.3), applied to the functions 
u(z) and v(z) = log(p/lz - zol) on a disk {Iz - zol ::; p}, which we assume 
is contained in D. In this case, formula (1.3) becomes 

1 J1 ( p) 127r dB u(zo) = - - (~u)(z) log 1 1 dx dy+ u (zo + peiO ) -. 
271" Iz-zol~p z - Zo 0 271" 
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This shows that the mean value inequality holds for all Zo E D and all 
sufficiently small p > 0 if and only if Au 2 o. 

We list several simple consequences of the definition of subharmonicity. 

Lemma. Ifu(z) and v(z) are subharmonic, then 

(i) u(z) + v(z) is subharmonic, 
(ii) cu(z) is subharmonic for any constant c 20, 

(iii) w(z) = max(u(z), v(z)) is subharmonic. 

To check (iii), for instance, let Zo E D, and suppose the mean value 
estimate (2.1) holds for u(zo) and v(zo). Then since u(z) :S w(z) and 
v(z) :S w(z), both u(zo) and v(zo) are bounded by Jo27r w(zo + re i ())d()/21f. 
Hence so is their maximum w(zo). 

Both the maximum principle and the strict maximum principle hold for 
subharmonic functions. The proofs are virtually the same as those for 
harmonic functions. 

Theorem (Strict Maximum Principle). Let u(z) be a subharmonic 
function on a domain D. Ifu(z) attains its maximum at some point of D, 
then u(z) is constant. 

To prove the strict maximum principle, one shows first that the set where 
u(z) attains its maximum M is open. The proof of this given in Section 
111.5 carries over directly. It requires only the mean value inequality (2.1) 
in place of the mean value equality. The rest of the proof is easy. Since 
u( z) is continuous, the set {u(z) < M} is also open. Since D is connected, 
the set {u(z) = M} must then be either empty or all of D. 

Theorem (Maximum Principle). Let D be a bounded domain, and let 
u(z) be a subharmonic function on D. Iflimsupu(z) :S 0 as z ----+ aD, then 
u(z) :S 0 for all zED. 

This follows from the strict maximum principle. We can argue as fol­
lows. The "lim sup" condition implies that the subharmonic function 
w(z) = max(u(z), O) tends to 0 as z tends to aD. If we define w(z) to be 0 
on aD, then w(z) is continuous on the compact set DUaD, so it attains its 
maximum at some point zoo If w(zo) > 0, then Zo ED. By the strict max­
imum principle, w(z) == w(zo) is constant, contradicting w(z) = 0 on aD. 
It follows that the maximum of w(z) is 0, and consequently, u(z) :S 0 on D. 

The following corollary to the maximum principle is obtained by apply­
ing the maximum principle to the function u(z) - v(z). It justifies the 
nomenclature "subharmonic." 
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Theorem. Let D be a bounded domain, and let u( z) be a subbarmonic 
function on D. Let v(z) be a continuous finite real-valued function on 
D u aD tbat is barmonic on D. Iflimsupz_Cu(z) ~ v() for all (E aD, 
tben u(z) ~ v(z) for all zED. 

We conclude with a technique for constructing subharmonic functions 
that will playa key role in Perron's procedure for solving the Dirichlet 
problem. 

Lemma. Letu(z) besubbarmonicon a domain D. Let Do = {Iz-zol < p} 
be a disk sucb tbat Do u aDo is contained in D and sucb tbat u(z) -I -00 
on aDo. Define tbe function'v(z) on D to be equal to u(z) on D\Do and 
to be tbe barmonic extension of Ul8Do on Do. Tben v(z) is subbarmonic 
on D, and u(z) ~ v(z) on D. 

The proof is a simple application of the maximum principle. The function 
v(z) on Do is the Poisson integral of the restriction of u to aDo, as in 
Section X.I. It is harmonic on Do and attains the boundary values u(z) 
continuously on aDo. By the maximum principle, u(z) ~ v(z) on Do. 
Consequently, v(z) is continuous and satisfies u(z) ~ v(z) on D. Evidently, 
v(z) satisfies the mean value inequality at any point of D\Do, because u(z) 
does and u(z) = v(z) there. On Do, v(z) has the mean value property, since 
it is harmonic there. Thus v(z) is subharmonic on D. 

Exercises for XV.2 

1. Show that u(z) is harmonic if and only if both u(z) and -u(z) are 
subharmonic. 

2. Suppose u(z) is subharmonic on a domain D. Show that the mean 
value inequality (2.1) holds for all r such that the disk {Iz-zol ~ r} 
is contained in D. 

3. Let u(z) be a continuous function from D to [-00,00). Suppose 
un(z) is an increasing sequence of subharmonic functions on D such 
that un(z) -+ u(z) for zED. Show that u(z) is subharmonic. Hint. 
The difficulty is that the c in (2.1), in the definition of subharmonic­
ity, is allowed to depend on n. To circumvent this difficulty, use the 
result of Exercise 2. 

4. Let u(z) be a continuous function from D to [-00,00). Suppose 
un(z) is a decreasing sequence of subharmonic functions on D such 
that un(z) -+ u(z) for zED. Show that u(z) is subharmonic. 

5. Let u(x, y) be a real-valued function on D with continuous first­
and second-order partial derivatives. (a) For each Zo ED, show 



Exercises 397 

that there is a quadratic polynomial P( z) such that 

u(z) = Re(P(z)) + (aul(zo) Iz - ZOl2 + R(z), 

where R(z) = o(lz - zOI2), that is, R(z)/lz - zOl2 --+ 0 as z --+ ZOo 
(b) Use (a) to show that if (au)(zo) > 0, then u(z) satisfies the mean 
value inequality at zoo (c) Use (a) and (b) to show that u(x,y) is 
subharmonic on D if and only if (au)(z) ~ 0 on D. Hint. If au ~ 0, 
show first that u + elzl2 is subharmonic for any c > o. 

6. Show that if u(x, y) is harmonic and p > 0, then lV'ulP is subhar­
monic. Hint. Use Exercise 5c. 

7. Let h(z) be a smooth real-valued function on a neighborhood of the 
closure of a bounded domain D. Show that h(z) can be expressed as 
the difference of two smooth subharmonic functions. Hint. Consider 
u(z) = h(z) + Clz12. 

8. Let E be a subset of 8D for which there is a subharmonic function 
v(z) on D such that v(z) < 0 for zED, and v(z) tends to -00 as 
zED tends to any point of E. Show that if u(z) is a subharmonic 
function on D that is bounded above, and if limsupu(z) ::; 0 as 
zED tends to any point of 8D that is not in E, then u(z) ::; 0 
in D. 

9. A real-valued function X(t) on an interval I ~ R is convex if X(sto+ 
(1- s)td ::; SX(to) + (1- S)x(tl) whenever to, tl E I and 0 ::; s ::; 1. 
(a) Show that a convex function on an open interval is continuous. 
(b) Show that a smooth function X( t) is convex if and only if X" (t) ~ 
O. (c) Show that if X(t) is convex, and if Sl, •.. ,Sn ;::: 0 satisfy 
LSj = 1, then 

(d) Suppose wet) is a continuous function on an interval J such that 
w(t) ;::: 0 and JJ w(t)dt = 1. Show that if X(t) is a convex function 
on I, and if h( t) is any continuous function from J to I, then 

x (1 h(t)W(t)dt) :s 1 x(h(t))w(t)dt. 

Remark. This is Jensen's inequality. The relevant property of 
w(t) is that w(t)dt is a probability measure. To prove Jensen's 
inequality, approximate the integral by sums and use (c). 
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10. Show that if u(z) is a subharmonic function on a domain D with 
values in an interval I, and if X(t) is an increasing convex function 
on I, then X(u(z)) is subharmonic. Hint. Use Jensen's inequality. 

11. Show that if J(z) is analytic and p > 0, then IJ(z)IP is subharmonic. 
Hint. Use the convexity of ept and Exercise 10, or use Exercise 6. 

3. Compactness of Families of Harmonic Functions 

The Arzela-Ascoli theorem asserts that a uniformly bounded family of 
equicontinuous functions is compact. For a family of analytic functions, 
the Cauchy integral representation formula shows that uniform bounded­
ness already implies equicontinuity. Hence a uniformly bounded family of 
analytic functions is compact. We can draw the same conclusion for a uni­
formly bounded family of harmonic functions using the Poisson integral 
representation formula. The Poisson integral formula for the unit disk is 

where 

(3.2) 
1 + r2 - 2rcos()' 

o ::; r < 1, 0::; () ::; 27r. 

The Poisson kernel is an infinitely differentiable function of x and y. We 
can differentiate (3.1) under the integral sign with respect to x and y, and 
when we do, we obtain integral representations of the derivatives of u(x, y) 
in terms of the function u (e ill ) and the derivatives of the Poisson kernel, 

a 12
11". a drp -u(z) = u (et'P) -Pr (() - rp)-, ax 0 ax 27r 

z = x + iy = reill E ][}, 

with similar formulae for the other derivatives. These integral formulae 
allow us to estimate the derivatives of u(x, y) in terms of the maximum 
of M of lu (e ill ) I on the unit circle, 

z = x + iy = reill E ][}, 

and similarly for the other derivatives. Since each derivative of the Poisson 
kernel is uniformly bounded on each proper subdisk of the unit disk, we 
obtain uniform bounds for each derivative of u( z) in terms of the maximum 
of lu(z)1 on the unit circle. (See also Section X.I, Exercises 8 and 9.) 

The same procedure works if we replace the Poisson integral representa­
tion for the unit disk by the Poisson integral representation for an arbitrary 
closed disk. We obtain thus the following. 
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Lemma. If F is a family of harmonic functions on a domain D that is 
uniformly bounded on each closed disk in D, then the partial derivatives of 
the functions in F of any fixed order are uniformly bounded on each closed 
disk in D. 

In particular, the gradients of the functions in F are uniformly bounded 
on any closed disk in D, so the functions in F are equicontinuous. (See 
Section XI.2.) From the Arzela-Ascoli theorem and a diagonalization argu­
ment, we obtain the following analogue for harmonic functions of Montel's 
theorem. 

Theorem. Let F be a family of harmonic functions on a domain D that 
is uniformly bounded on each compact subset of D. Then every sequence 
in F has a subsequence that converges uniformly on each compact subset 
ofD. 

Families of positive harmonic functions are also compact, provided that 
we allow +00 as a possible limit for a sequence of positive harmonic func­
tions. This follows again from the Poisson integral representation. This 
time it is the positivity of the Poisson kernel that is crucial. 

Theorem (Harnack's Inequality). Ifu(z) is a positive harmonic func­
tion on the open unit disk]J)), then 

(3.3) 1 - r () (i8) 1 + r u(O), 1 + r U 0 :::; u re :::; 1 _ r 

The proof depends on the estimate 

l-r 

l+r 
1 - r2 p, ((}) < 1 - r2 

1 + r2 + 2r:::; r 1 + r2 - 2r 
l+r 
l-r 

We can always approximate u(z) by a dilate u(pz), p < 1, and assume that 
u(z) extends harmonically across the unit circle. Then u(z) is represented 
by the Poisson integral formula (3.1). Substituting the estimates for Pr ((}) 

into (3.1) and using the positivity of u(z), we obtain 

~ ~ ~ 1021' U (ei(8-~)) ~: < 1021' u (ei(8-~)) Pr(~) ~: 

< 1 + r 121' (i(8-~)) d~ -- u e -. 
1 - r 0 211" 

Since the average value of u (ei(iJ-~)) is u(O), this becomes (3.3). 
The estimate (3.3) is sharp. It becomes an equality for the function 

u(z) = Re((l + z)/(l - z» at z = ±r. 
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If we scale and translate Harnack's inequality to an arbitrary disk, of 
radius R > 0 and center Zo, we obtain 

R-r R+r 
-R u(zo) ~ u(z) ~ -R u(zo), 

+r -r 
(3.4) Iz - zol ~ r, r < R, 

for all positive harmonic functions u(z) on the disk Iz - zol < R. The 
estimate (3.4) is also referred to as Harnack's inequality. It allows us 
to draw some striking conclusions. From the left-hand inequality it follows 
that if {un (z)} is a sequence of positive harmonic functions on the disk 
{Iz - zol < R} such that un(zo) -> +00, then un(z) -> +00 uniformly 
on any subdisk {Iz - zol ~ p}, p < R. From the right-hand inequality it 
follows that if {un (zo)} is bounded, then Un (z) is uniformly bounded on 
any subdisk {Iz - zol ~ p}, p < R. If we combine these observations with 
a connectedness argument, we obtain the following. 

Lemma. Suppose {un (z)} is a sequence of positive harmonic functions on 
a domain D. If there is Zo ED such that Un (zo) -> +00, then un(z) -> +00 
uniformly on each compact subset of D. If there is Zo E D such that 
{un(zo)} is bounded, then {un(z)} is uniformly bounded on each compact 
subset of D. 

To see this, let U be the set of zED such that un(z) -> +00. The 
remarks preceding the lemma show that both U and D\U are open. Since 
D is a domain, either U = D or U is empty. In the case U = D, we can 
cover any compact set by a finite number of disks on which un(z) -> +00 
uniformly, and we see that Un (z) -> +00 uniformly on compact subsets 
of D. If U is empty, we cover any compact set by a finite number of disks, 
and we see that {un{z)} is uniformly bounded on each compact subset 
of D. 

If we combine the preceding lemma and the compactness theorem for 
families of harmonic functions, we obtain immediately the following com­
pactness theorem for families of positive harmonic functions. 

Theorem. Let :F be a family of positive harmonic functions on a do­
main D. Every sequence in :F has a subsequence that either converges 
uniformly on compact subsets of D to a harmonic function or converges 
uniformly on compact subsets of D to +00. 

The compactness theorem for positive harmonic functions can be applied 
to monotone sequences of harmonic functions. 

Theorem. Let {un{z)} be an increasing sequence of harmonic functions 
on a domain D. Then {un{z)} converges uniformly on compact subsets 
of D, either to a harmonic function or to +00. 
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To see this, consider the functions Vn (z) = Un (z) - Ul (z). For each fixed z 
the sequence {vn (z)} is increasing, hence convergent either to a finite value 
or to +00. The preceding theorem shows that {vn (z)} has a subsequence 
that converges uniformly on compact subsets of D, either to a harmonic 
function or to +00. It follows that {un(z)} also converges uniformly on 
compact subsets of D. 

Exercises for XV.3 

1. Let {un(z)} be a sequence of positive harmonic functions on a do­
main D. Show that either L Un (z) converges to a harmonic function 
uniformly on each compact subset of D, or the partial sums of the 
series converge uniformly to +00 on each compact subset of D. 

2. Let u(z) be a positive harmonic function on the horizontal strip 
{-1 < Imz < 1}. Show that if u(n) --t +00 as n --t +00, then 
u(x + iy) --t +00 as x --t +00 for all y, -1 < y < 1. 

3. Let u( z) be a positive harmonic function on the horizontal strip 
{-1 < Imz < 1}. Show that if u(n) --t 0 as n --t +00, then 
u(x + iy) --t 0 as x --t +00 for all y, -1 < y < 1. 

4. Let K be a compact subset of a domain D. Show that there are 
constants c > 0 and C > 1 such that c ~ u(z)ju(w) ~ C for all 
positive harmonic functions u on D and all points z, wE K. 

5. Let D be a bounded domain. For z, wED, define d(z, w) to be 
the infimum of log C, taken over all constants C > 1 such that 
(ljC) ~ u(z)ju(w) ~ C for all positive harmonic functions u on D. 
(a) Show that d(z, w) ~ d(z,()+d«(, w) for all z, (,w E D. (b) Show 
that d(zn, zo) --t 0 if and only if IZn - zol --t o. (c) Find d(z, w) in 
the case that D = j[)) is the open unit disk. 

6. Prove the compactness theorem for families of positive harmonic 
functions by applying Montel's theorem to functions of the form 
f = e-(u+iv), where v is a (locally defined) harmonic conjugate for 
the positive harmonic function u. 

7. Let u(z) be a harmonic function on a domain D. Show that if 
lu(z)1 ~ M for zED, then 1(V'u)(z)1 ~ 2Mj dist(z, aD). Hint. Use 
"scaling." Check the estimate for the unit disk and z = 0 from the 
Poisson integral representation, and transfer the estimate to a disk 
centered at z of appropriate radius. The gradient scales according 
to one over the radius of the disk. 
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4. The Perron Method 

Let D be a bounded domain. Recall that the Dirichlet problem for a 
given continuous function h(z) on the boundary of D is to find a harmonic 
function u(z) on D that has boundary values h(z). Any such function u(z) 
is unique. However, the Dirichlet problem need not be solvable. 

Example. Let D = l!)\{0} be the punctured unit disk, and let h(z) be the 
continuous function on aD defined by h(z) = 0 for Izl = 1, while h(O) = 1. 
If u(z) is a harmonic function on D such that limsupu(z) :::; h(() for 
( E aD, then for any c > 0, u(z) :::; c log(I/lzl) for Izl = 1 and also for z 
near O. By the maximum principle, the estimate holds on all of D. Letting 
c ~ 0, we obtain u(z) :::; 0 on D. Consequently, u(z) cannot assume the 
boundary value 1 at z = o. 

Let h(() be a continuous real-valued function on aD. We define the 
Perron family of subsolutions corresponding to h((), denoted by Fh, 
to be the family of all subharmonic functions u(z) on D such that 

limsup u(z) :::; h((), (E aD. 
D3z .... ' 

We define the Perron solution to the Dirichlet problem corresponding to 
the boundary function h(() to be the upper envelope h(z) of the family Fh, 

h(z) = sup{u(z): u E Fh}, zED. 

In the case that there is a harmonic function u( z) on D that attains the 
boundary values h«() continuously on aD, then happily u(z2 coincides with 
the Perron solution. Indeed, since u E Fh, we have u(z) :::; h(z) on D. The 
reverse inequality follows from the maximum principle. If v E Fh, then by 
the maximum principle, v(z) :::; u(z) on D, and consequently, h(z) :::; u(z) 
onD. 

Several elementary properties of the Perron solution are listed in the next 
lemma. 

Lemma. Let D be a bounded domain, and let h( () be a continuous real­
valued function on aD. 

(i) If a:::; h(() :::; f3 on aD, then a :::; h(z) :::; f3 on D. 
~ ~ 

(ii) If hl (() :::; h2(() on aD, then hl(z) :::; h2(Z) on D. 
(iii) ah(z) = ah(z) for all a > o. 

~ ~ ...---...--
(iv) hl(z) + h2(Z) :::; (hI + h2)(z), zED . 

...---...--
(v) (h + v)(z) = h(z)+v(z) on D wheneverv(z) is continuous on DUaD 

and harmonic on D. 

In (i), the constant function a belongs to Fh, so a :::; h. The estimate 
h :::; f3 follows from the maximum principle, as above. Properties (ii), (iii), 
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and (v) follow virtually immediately from the definitions. For (ii) note that 
Fhl <;;; Fh2' for (iii) that Fah = aFh, and for (v) that Fh+v = Fh + v. To 
prove (iv), suppose UI E Fhl an~ E Fh2. Then UI + U2 E F h1 +h2 , and 

consequently, UI(Z) + U2(Z) ::; (hI + h2)(Z). If we take the supremum over 
UI E Fhl and U2 E Fh2' we obtain (iv). 

Theorem. Tbe Perron solution h( z) defined above is barmonic on D. 

For the proof, let Do be a fixed disk such that Do u aDo c D, and let 
{Zj }~I be a sequence of points in Do that is dense in Do. Let {Ujk(Z )}k=1 
be a sequence of functions in Fh such that Ujk(Zj) ---+ h(zj) for j 2: l. 
Define vm(z) = max{Ujk(Z) : 1 ::; j, k ::; m}. Then Vm E Fh, {vm(z)} 
is an increasing sequence, and vm(Zj) ---+ h(zj) for all j. Define wm(z) so 
that wm(z) = vm(z) for Z E D\Do, and wm(z) is the harmonic extension 
of Vm l8Do on Do. Then Wm E Fh , {wm(z)} is an increasing sequence, and 
wm(Zj) ---+ h(zj) for all j. Further, the functions wm(z) are all harmonic 
on Do. By Harnack's theorem, the sequence {wm(z)} converges uniformly 
on compact subsets of Do to a harmonic function w(z), which evidently 
satisfies w(Zj) = h(zj) for allj. Now let Zo be any other point of Do. We go 
through this procedure for the sequence {Zj }~o obtained by adjoining Zo to 
the original sequence, and we obtain a harmonic function wo(z) on Do such 
that wo(Zj) = h(zj) for all j 2: O. Since w(z) = wo(z) on a dense subset 
of Do, in fact w(z) = wo(z) for all Z E Do, and in particular w(zo) = 
wo(zo) = h(zo). Since Zo is arbitrary, w(z) = h(z) for all Z E Do, and h(z) 
is harmonic on Do, hence on D. 

Now we address the problem of whether h(z) has boundary values h(() 
on aD. We say that a point (0 E aD is a regular boundary point of D 
if 

lim h(z) = h((o) 
D3z ..... (o 

for aQy continuous function h(() on aD. 

Example. The origin (0 = 0 is not a regular boundary point of the punc­
tured unit disk D = Jl))\{O}. We will see shortly that each boundary point 
on the unit circle is regular. 

Suppose that (0 E aD is a regular boundary point. We solve the Dirichlet 
problem for the function h(() = I( -(01, ( E aD. Since the function Iz-(ol 
belongs to Fh, the Perron solution h(z) satisfies h(z) 2: Iz - (01· Since (0 is 
regular, h(z) ---+ 0 as Z ---+ (0. Thus the function w(z) = -h(z) is harmonic 
on D, w(z) ::; -Iz - (01 on D, and w(z) ---+ 0 as Z ---+ (0' The function 
w(z) "peaks" at (0, in the sense that w(z) has a limit at (0 that is strictly 
greater than limsupw(z) as Z tends to any other boundary point of D. 
This motivates the following definition. 
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A subharmonic barrier at (0 E aD is a subharmonic function w(z) 
defined on D n {Iz - (01 < 8} for some 8 > 0, such that 

(i) w(z) < 0 for zED, Iz - (01 < 8, 
(ii) w(z) -t 0 as zED tends to (0, 
(iii) limsupw(z) < 0 as zED tends to (for any ( E aD, 0 < 1(-(01 < 8. 

While only defined on the part of D near (0, the subharmonic barrier 
can be adjusted so that it is defined on all of D and satisfies (iii) at any 
( E aD\{(o}. The conditions (i) and (iii) guarantee that if e > 0 is 
sufficiently small, then w(z) :5 -2e for all zED that satisfy Iz - (01 = 8/2. 
If we set u(z) = max(w(z), -e) for z E Dn{lz-(ol < 8/2}, and u(z) = -e 
for other points of D, then u(z) is a subharmonic barrier at (0 that is now 
defined on all of D. 

Example. In the case D = lD> is the open unit disk, the function w(z) = 

Re ((oz) - 1 is a subharmonic barrier at the boundary point (0 E alD>. In 
this case, the barrier is harmonic. 

A 
graph of subhannonic barrier at (0 

Example. Suppose there is a straight line segment I in C\D that has one 
endpoint at (0 E aD. We map the complement C*\I of the segment onto 
the open unit disk lD> by a conformal map <p(z) such that <p((o) = 1. Then 
w(z) = Re<p(z) - 1 is a subharmonic barrier at (0. 

Example. If D is bounded by a finite number of smooth boundary curves, 
then every point of aD has a subharmonic barrier. In this case, each 
(0 E aD is the endpoint of a line segment contained in C\D, in the direction 
of the outer normal to D at (0. 

We showed above that if (0 is a regular boundary point of D, then there 
is a subharmonic barrier at (0. The following theorem shows that the 
existence of subharmonic barriers characterizes regular boundary points. 

Theorem. Let D be a bounded domain, and let (0 E aD. If there is a 
subharmonic barrier at (0, then (0 is a regular boundary point of D. 

To prove this, let h(() be a continuous real-valued function on aD. We 
assume for convenience that h((o) = 0 and that Ih(()1 :5 1 for ( E aD. Let 
e> 0, and choose 8 > 0 such that Ih(()1 < e for ( E aD, I( - (01 :5 8. Let 
w(z) be a subharmonic barrier at (0. We can assume that the subharmonic 
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barrier w(z) is defined on all of D. Choose p > 0 such that w(z) ~ -p for 
Izl ~ 8. Then u(z) = (w(z)/p) - e is subharmonic on D, u(z) ~ -e on D, 
and limsupz ..... (u(z) ~ -1 for any point (E aD satisfying 1(1 ~ 8. Thus 

limsupz ..... ( u(z) ~ h(() for all ( E aD, and u E :h. Hence u(z) ~ h(z). 
Since u(z) --t -10 as z --t (0, we obtain h(~ -210 for ( near (0. The same 

argument, applied to -h((), shows that (-h)(z) ~ -210 for ( near (0. By 

part (iv) of the lemma, h(z) + f-h)(z) ~ O. Hence h(z) ~ -f-=h)(z) ~ 210 
for ( near (0. It follows that Ih(z)1 ~ 210 for ( near (0. Since this is true 
for any 10 > 0, h(z) --t 0 as z --t (0. 

Since there is a subharmonic barrier at each smooth boundary point, we 
obtain the following corollary. 

Corollary. Let D be a bounded domain whose boundary aD consists of 
a finite· number of piecewise smooth closed curves. If h( () is a continuous 
function on aD, then h(z) is a harmonic function on D that tends to h(() 
as zED tends to each boundary point ( of aD. 

Exercises for XV.4 

1. Let D be the annulus {a < Izl < b}. Find h(z) for the function h(() 
defined by h( () = a for 1(1 = a and h( () = (3 for 1(1 = b. 

2. Let D = lJ)\{0} be the punctured unit disk, and let h(() be a con­
tinuous function on aD. Show that h(z) is the Poisson integral of 
the restriction of h( () to the unit circle alJ), irrespective of the value 
h(O). 

3. Let D be a bounded domain, and let h(() be continuous on aD. 
Let Zo ED, and for 10 > 0, set De = D n {Iz - zol > c}. Define he 
on aDe so that he = h on aD, and he(() = 0 for I( - zol = c. Show 
that he(z) converges to h(z) as e --t 0, uniformly on any subset of D 
at a positive distance from zoo 

4. Let D be a bounded domain, and let h(z) be a continuous function 
on aD. Let {Dm} be a sequence of smoothly bounded domains 
that increase to D. Let u(z) be a continuous extension of h(z) to 
D U aD, and let um(z) be the harmonic extension of ul8Dm to Dm. 
(a) Show that U m converges uniformly on compact subsets of D to 
a harmonic function Wh on D. Hint. If u(z) is smooth, represent 
u(z) as the difference of two subharmonic functions, as in Exercise 
2.6. (b) Show that Wh depends only on h, and not on the particular 
extension u of h to D nor on the sequence {Dm}. (c) Show that W 
is linear, that is, W(ahl +bh2) = aW(h1 ) +bW(h2). (d) Show that 
h ~ Wh, where h is the Perron solution to the Dirichlet problem. 
Remark. The harmonic function Wh is the Wiener solution to 
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the Dirichlet problem with boundary function h. It can be shown 
that the Wiener solution coincides with the Perron solution. 

5. The Riemann Mapping Theorem Revisited 

The Riemann mapping theory can be proved by solving a Dirichlet prob­
lem. This was Riemann's original strategy, though he could not solve the 
Dirichlet problem in the full generality of simply connected domains. We 
will sketch a proof along the lines envisioned by Riemann. 

We say that a subset E of the extended complex plane C* is a contin­
uum if it is compact and connected and has more than one point. If E is a 
continuum, then C*\E is simply connected. Conversely, if E is a compact 
set such that C*\E is simply connected, and if E has more than one point, 
then E is a continuum. (See Section VIII.8.) The following criterion allows 
us to solve the Dirichlet problem for a simply connected domain. 

Lemma. Let D be a domain, and let (0 E aD. If (0 lies on a continuum 
in C\D, then (0 is a regular boundary point oE D. 

ProoJsketch. Let E be the continuum in C\D containing (0, and let (1 be 
any other point of E. Since C*\E is simply connected, log«z-(0)/(z-(1)) 
has an analytic branch on C\E; call it J(z). The set Do = {lz-(01/lz-(11 < 
l/e} is a disk containing (0, and Re J(z) < -1 for zED n Do. Define 
h(z) = Re(l/ J(z)) for zED n Do. Then h(z) < o. Since Re J(z) -+ -00 

as z -+ (0, h(z) -+ 0 as z -+ (0, and h(z) is "almost" a barrier at (0. 
The difficulty is that h(z) might tend to 0 at other boundary points of 
D n Do. The proof is completed by following the procedure in the proof of 
Bouligand's lemma (pp. 8-9 of Tsuji's book; see the references), in which 
a genuine barrier at (0 is constructed from h(z). 

Corollary. Let D be a bounded domain. IfC*\D consists oEfinitely many 
continua, then every point oE aD is a regular boundary point. 

Now we can prove the Riemann mapping theorem. Suppose D is a 
simply connected domain and that C*\D has at least two points. As in 
Section XI.3, we can use the logarithm function (or the square root func­
tion) and a fractional linear transformation to map D conformally onto 
a bounded domain. Indeed, let (0, (1 E aD, and let J(z) be an analytic 
branch of log«z - (o)/(z - (I)) in D. If Wo = J(zo) for some Zo E D, then 
the image J(D) covers a disk Do centered at woo Consequently, J(z) can­
not assume any of the values in Do +27ri on D, so that l/(f(z) - Wo - 27ri) 
maps Dconformally onto a bounded domain. 

So we assume that D is bounded, and we also assume for convenience 
that 0 E D. We solve the Dirichlet problem for the function log 1(1 on aD, 
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and we obtain a harmonic function u(z) on D such that u(z) tends to log 1(1 
as zED tends to any point ( E aD. Since D is simply connected, the 
function u(z) has a harmonic conjugate v(z) in D. Define 

cp(z) = ze-(u(z)+iv(z)), zED. 

Then cp(z) is analytic on D, and Icp(z)1 ----t 1 as z ----t aD. By the maximum 
principle, Icp(z)1 < 1 for zED. Further, cp(z) has only one zero in D, a 
simple zero at z = O. Fix w such that Iwl < 1. We apply the argument 
principle to the domain {lcp(z)1 < 1 - e}, where Iwl < 1 - e, and we see 
that cp(z) - w has exactly one zero on D. Hence cp(z) maps D conformally 
onto the open unit disk. 

If we analyze this proof and compare it to the proof given in Chap­
ter XI, we see that both proofs depend on the idea of compactness of 
families of functions, but in other respects they are quite different. In this 
proof, Harnack's theorem on equicontinuity of uniformly bounded families 
of harmonic functions replaces the thesis grade version of Montel's theo­
rem. These two compactness theorems are essentially equivalent. The use 
of regular boundary points and criteria for regularity replace the use of the 
hyperbolically expanding property of the square root function, and these 
techniques are quite different. 

Exercises for XV.5 

1. Let D be a bounded domain such that aD consists of two disjoint 
continua Eo and E l . Let u(z) be the harmonic function on D with 
boundary values u(z) = 0 on Eo and u(z) = Ion E l , and let v(z) be 
a (locally defined) conjugate harmonic function of u(z). Show that 
there is a constant a > 0 such that cp(z) = e<>(u(z)+iv(z)) is a single­
valued analytic function on D, and w = cp(z) maps D conformally 
onto the annulus {I < Iwl < e<>}. 

2. Suppose D is a doubly connected domain in the extended complex 
plane C*, that is, C*\D consists of two disjoint connected sets. Show 
that D can be mapped conformally onto exactly one of (a) the punc­
tured complex plane C\{O}, (b) the punctured unit disk lIJ)\{O}, or 
(c) an annulus {I < Izl < R}. You may use the result of Exercise 1. 

6. Green's Function for Domains with Analytic Boundary 

We say that the domain D has analytic boundary if the boundary of D 
consists of a finite number of disjoint simple closed analytic boundary 
curves. We will focus in this section on bounded domains with analytic 
boundary. In this case, every point of aD is a regular boundary point, and 
we can solve the Dirichlet problem for any continuous boundary function. 
Further, any harmonic function on D that is constant on a boundary curve 
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extends harmonically across the boundary curve, by the Schwarz reflection 
principle. 

So let D be a bounded domain with analytic boundary. Fix. ( E D, and 
let h(z) = log Iz - (I for z E aD. Then h(z) is a continuous function on 
aD, and the Perron solution h(z) is a harmonic function on D that assumes 
the boundary values log Iz - (I continuously on aD. We define Green's 
function for D with pole at (to be the function g(z) on D\{C} given by 

It satisfies 

(6.1) 

(6.2) 

(6.3) 

g(z) = h(z) + log Cz ~ (I) . 

g(z) is harmonic on D\{C}, 
1 

g(z) - log Iz _ (I is harmonic at (, 

g( z) ~ 0 as z tends to the boundary of D. 

Occasionally, it will be convenient to denote Green's function by g(z, (), 
to emphasize the dependence on (. If h(z) is another function with the 
properties (6.1), (6.2), and (6.3), then h(z) - g(z) is a harmonic function 
on D that tends to zero on the boundary of D. By the maximum principle, 
h(z) - g(z) = 0 on D, and h(z) = g(z). Thus Green's function with pole 
at ( is uniquely determined by the properties (6.1), (6.2), and (6.3). 

Example. Green's function for the unit disk Jl) with pole at z = 0 is 
g(z) = 10g(1/lzl). 

Example. Suppose D is a simply connected domain, D #- C, and let ( E D. 
Let cp(z) be the Riemann map of D onto the open unit disk Jl) satisfying 
cp(() = 0, and set g(z) = -log Icp(z)l. Since Icp(z)1 ~ 1 as z ~ aD, 
g(z) ~ 0 as z ~ aD. Since cp(z)/(z - () is analytic and nonzero at z = (, 

we see by taking logarithms that g(z) + log Iz - (I is harmonic at z = (, 
and so g(z) has a logarithmic pole at z = (. Thus g(z) satisfies (6.1), (6.2), 
and (6.3) above, and g(z) is Green's function for D with pole at (. 

Lemma. Let D be a bounded domain with analytic boundary, and let 
g(z) be Green's function for D with pole at ( E D. Then g(z) > 0 on D, 
g(z) = 0 on aD, and g(z) reflects harmonically across aD so that g(z) < 0 
on the side of aD outside of D. Further, the directional derivative of g(z) 
in the direction of the exterior normal satisfies ag/an < 0 on aD. 

The positivity follows from the maximum principle. Since g(z) ~ +00 
as z ~ (, we can choose e > 0 so small that g(z) > 0 for Iz - (I ~ e. 
The maximum principle, applied to the domain D\{lz - (I ~ e}, shows 
that g(z) 2:: 0 for all zED. The strict maximum principle guarantees 
that g(z) does not assume a minimum value 0 at any point of D, so that 
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9 > 0 on D. By the Schwarz reflection principle (Section X.2), 9 reflects 
harmonically across the analytic boundary curves in aD and 9 < 0 on the 
side of aD outside D. Thus agjan ~ 0 on aD. Let Zo E aD, and let J(z) 
be an analytic function defined on a disk centered at Zo whose real part is 
g(z). Then IJ'(zo)1 = IVg(zo)l. Since the set {ReJ(z) = ReJ(zo)} consists 
of only one analytic arc passing through zo, J'(zo) =I- 0, and consequently, 
(Vg)(zo) =I- O. Since 9 = 0 on aD, (Vg)(zo) is a nonzero multiple of the 
normal vector at zoo Thus agjan =I- 0, and we conclude that there is strict 
inequality ag j an < 0 on aD. The lemma is proved. 

Again let D be a bounded domain with analytic boundary, and let g(z) be 
Green's function for D with pole at ( E D. Let u(z) be any harmonic func­
tion on D that extends continuously to aD. Green's third formula (1.3), 
applied to u(z) and to Green's function g(z) with pole at (, becomes 

(6.4) 1 fa ag u«() = --2 u-a ds. 
7r aD n 

We have established Green's formulae only for functions that are smooth 
across the boundary, but in the case of an analytic boundary it is easy to 
argue (Exercise 8) that the formula holds whenever u is only continuous 
up to the boundary. 

We define harmonic measure on aD for ( E D to be the differential 

(6.5) 

Since agjan < 0 on aD, harmonic measure is positive, in the sense that 
JaD v(z)dJ.Ldz) 2: 0 whenever v 2: 0 on aD. If we apply (6.4) to the function 
u(z) = 1, we obtain 

We say that dJ..L< is a probability measure on aD in the sense that it is 
positive and has unit total mass. In terms of harmonic measure, (6.4) 
reads as follows. 

Theorem. Let D be a bounded domain with analytic boundary, and let 
g(z) be Green's function with pole at ( E D. Define harmonic measure 
dJ.Ldz) by (6.5). Then 

u«() = f u(z) dJ..Ldz), 
JaD 

(ED, 

for every harmonic function u(z) on D that extends continuously to aD. 
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Example. In the case of the unit disk, Green's function with pole at 0 is 
10g(1/lzl). and 

~g(z) = ~ 10g!1 = -1, an ar r r=! 
ds = dB. 

Hence harmonic measure on a][)l for 0 E ][)l is the normalized arc length 
measure 

dB 
dJ-lo = -271" 

It is straightforward to check (Exercise 2) that the harmonic measure for 
an arbitrary point ( E ][)l is given by the Poisson kernel. 

We say that Zo is a critical point of Green's function if ('\7 g)(zo) = o. 
The value g(zo) is called a critical value of g(z). If g(z) is the real part 
of the analytic function J(z) near zo, then 1J'(zo)1 = l'\7g(zo)l, so that Zo 
is a critical point of g(z) if and only if Zo is a zero of J'(z). We define the 
order of the critical point Zo of g( z) to be the order of zero of J' (z) at 
z = zoo According to our earlier definition, this is the order of the critical 
point Zo of J(z). (See Section VIII.5.) Further, if Zo is a critical point 
of g(z) of order m, then the set {g(z) > g(zo)} consists of m + 1 sector­
shaped domains with vertex zo, each of aperture 7I"/(m + 1). This makes 
it clear that no point of aD can be a critical point of g(z), because near 
each Zo E aD the set {g(z) > O} consists of just a half-disk, which can be 
regarded as a sector of aperture 71", so that m = o. 

g(Z(» = c 
order =2 

Theorem. Let D be a bounded domain with analytic boundary consisting 
of N closed curves. Let g(z) be Green's function for D with pole at ( E D. 
Then g(z) has N - 1 critical points in D, counting multiplicities. 

The critical points of g(z) are isolated, since they are the zeros of an 
analytic function. There are only finitely many critical points of g(z) in D, 
and there are no critical points of g(z) on aD. 

For 0 ~. r < 00, let Dr be the set of zED such that g(z) > r and let 
r r = a Dr be its boundary. For r large, r r is a circular curve surrounding (, 
and Dr is approximately a disk centered at (. As r decreases, from +00 to 
0, the domains Dr increase until at r = 0 we reach Do = D and ro = aD. 
Each Dr is a domain. Indeed, Green's function is constant on the boundary 
of each component of Dr, and Green's function cannot be constant on the 
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boundary of any component of Dr on which g( z) is harmonic, so there can 
be only one component of Dr, the component containing the pole (. 

Except at a critical point, each curve in r r is locally the level set of 
the real part of an analytic function with nonvanishing derivative, hence 
an analytic curve. Since the curves in r r cannot approach the boundary 
of D, each curve in r r is either a simple closed analytic curve, or it is an 
analytic curve that begins and terminates at (possibly different) critical 
points. Thus if r is not a critical value of g(z), then rr consists of a finite 
number of simple closed analytic curves. 

Denote by Ur the complement of Dr U r r in the extended complex plane. 
Each component of Ur is a simply connected domain bounded by a curve 
in r r, and there are as many components of Ur as there are analytic curves 
in r r. We will count the number of components of Ur and see how this 
number changes as r decreases from +00 to o. The analytic curves in r r 
move continuously with r when r is not a critical value of g(z), so the num­
ber of components of Ur remains constant as r decreases between critical 
values. We focus on what happens to a component of Ur when r crosses 
over a critical value. 

Let Zo be a critical point of g(z) of order m, with critical value g(zo) = c, 
and let E: > 0 be small. Let V be the component of Uc+c: containing zo, so 
that av is one of the curves in rc+c:. Then {g(z) > c} consists of m + 1 
sector-like domains near Zo with vertices at zoo The curve av approaches Zo 
through each of these sectors and then retreats, as in the figure. In each 
sector we connect Zo to the nearest point of av by a straight line segment. 
We can think of Vasa disk, via the Riemann mapping theorem, and then 
it is apparent that the m + 1 segments divide V into m + 1 components, as 
in the figure. Each of these m + 1 components contains one of the m + 1 
sector-like domains with vertex at Zo where g(z) < c. We conclude that 
there are exactly m + 1 components of {g(z) < c} that have Zo in their 
boundary. Thus as r decreases from c + E: to c - E:, the critical point Zo of 
order m accounts for an increase in the number of components of Ur by m. 
The same is true for all critical points, even though some might correspond 
to the same critical value. Since Ur has one component when r is large, it 
eventually consists of 1 + L components when r is small, where L is the 
total number of critical points counting multiplicity. Thus 1 + L = N, and 
the theorem is proved. 

The idea of using the sublevel sets of a function such as g(z) to describe 
the topology of D is the starting point for "Morse theory." One way to 
visualize the procedure is to place the graph of g(z) in a water reservoir 
and gradually to drain the water. The curves r r become the shoreline and 
Dr an island. As the level of water recedes, the islands Dr evolve to D and 
the shoreline to aD. Dramatic changes occur only when r passes through 
a critical value. The figure on the right depicts the level sets of Green's 
function of an annulus. Note that there is one critical point of order one, 
which corresponds to a saddle point of the graph of g(z). 
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Exercises for XV.6 

1. Show that for the unit disk JIll, Green's function is given by 

g(z, () = -log ---- , I z - ( I 
1- (z 

z,( E JIll . 

2. Show by computing the normal derivative of Green's function that 
harmonic measure for the unit disk JIll is given by the Poisson kernel, 

3. Suppose that g(z) is Green's function for D with pole atC and 
suppose that cp(z) is a conformal map of a domain W onto D such 
that cp({) = (. Show that h(w) = g(cp(w)) is Green's function for W 
with pole at {. 

4. Suppose that D is a simply connected domain, mapped by cp(z) 
conformally onto the open unit disk. Show that Green's function 
for D is given by 

g(z,() 
cp(z) - cp(() 

= -log --==-'-'-
1 - cp(()cp(z) 

z , ( E D. 

5. Let D be a bounded domain with analytic boundary, and let g(z , () 
be Green's function for D with pole at (. Show that if u(z) is a 
smooth function on D U & D, then 

u(() = r u(z) dJ.ld z ) - 2- jr r g(z, ()(~u)(z) dx dy, laD 211" lD (E D. 

6. Let D be a bounded domain with analytic boundary, let g(z) be 
Green's function for D with pole at ( , and let v(z) be the (locally 
defined) harmonic conjugate function of g(z) . Fix r 2: o. Show that 
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if we orient the curves of the level set {g( z) = r} as boundary curves 
of the domain {g( z) > r}, then v( z) is strictly decreasing along each 
curve in the level set. Show further that the total increase of v(z) 
along the curves in the level set {g( z) = r} is -271". 

7. Let D be a bounded domain with analytic boundary, let g(z) be 
Green's function for D with pole at (, and let v(z) be the (locally 
defined) harmonic conjugate function of g(z). Fix one of the bound­
ary curves 'Y of aD. Show that there is a> 0 such that w = ea(gHv) 

is single-valued in a neighborhood of'Y and maps an open set on the 
side of'Y in D conformally onto an annulus {I < Iwl < 1 + 8}. 

8. Establish formula (6.4) in the case that u(z) is only continuous on 
aD by applying the smooth case to the domain {g(z) > c} and 
letting c --+ o. 

9. A point (xo, Yo) is a critical point of order m for a smooth function 
u(x, y) if all partial derivatives of u(x, y) with respect to x and y of 
order k ~ m vanish at (xo, Yo), while at least one partial derivative 
of order m + 1 does not vanish there. In the case that u(x, y) is 
the real part of the analytic function f (z ), show that (xo, Yo) is a 
critical point of u(x, y) of order m if and only if Zo = Xo + iyo is a 
critical point of f (z) of order m. 

7. Green's Function for General Domains 

Green's function plays a useful role for domains without smooth boundaries 
and for unbounded domains. In this section we discuss briefly Green's 
function for general domains. 

Let D be an arbitrary domain, and fix (; ED. Let {Dn} be an increasing 
sequence of bounded domains with analytic boundaries such that ( E Dl 
and UDn = D. Let gn(z) = gn(z, () be Green's function for Dn with 
pole at (. Since Dn C Dn+1 and 9n(Z) ~ gn+1(z) on aDn, the maximum 
principle shows that gn(z) ~ gn+l(z) on Dn. Thus {9n(Z)} is an increasing 
sequence, and 9n(Z) + log Iz-(I is harmonic on Dn. According to Harnack's 
theorem, there are two cases that can occur. Either gn (z) tends to +00 
uniformly on compact subsets of D, in which case we say that "Green's 
function for D does not exist." Or 9n(Z) converges uniformly on compact 
subsets of D\{(}, in which case we define the limit g(z) = g(z, () to be 
Green's function of D with pole at (. 

Lemma. Green's function g(z, () with pole at ( satisfies the following: 

(7.1) g(z, () is a positive harmonic function on D\{(}; 

(7.2) g(z, () -log Iz ~ (I is harmonic at (, 
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(7.3) if h(z) is a positive harmonic function on D\{O that has a loga­
rithmic pole at (, then h(z) ~ g(z, (). 

Properties (7.1), (7.2), and (7.3) characterize Green's function uniquely. 

Properties (7.1) and (7.2) follow from the corresponding properties of 
gn(z), since gn(z) + log Iz - (I converges to g(z) + log Iz - (I uniformly on 
a neighborhood of (. Property (7.3) follows from the maximum principle. 
Indeed, h(z) + log Iz - (I dominates gn(z) + log Iz- (Ion aDn hence on Dn, 
and in the limit we obtain h(z) ~ g(z) on D. If go(z) is any other function 
with the properties (7.1), (7.2), and (7.3), then (7.3) applies to each of g(z) 
and go(z), so g(z) ~ go(z) ~ g(z), and equality holds. 

The uniqueness assertion shows that the definition of g(z) is independent 
of the sequence of domains {Dn} increasing to D. Further, this definition 
of g(z) coincides with the definition given in the preceding section where 
D is a bounded domain with analytic boundary. In this case we can take 
Dn = D for all n. 

Example. Let D = C be the complex plane, and let ( = o. We take 
Dn = {Izl < n}, which has Green's function gn(z) = logn -log 14 Since 
gn(z) tends to +00 as n --t 00, Green's function does not exist for C. 

Lemma. If D is a bounded domain, and ( ED, then Green's function 
g(z, () for D with pole at ( exists. Further, 

- 1 
g(z, () = h(z) + log Iz _ (I' zED, 

where h(z) is the Perron solution of the Dirichlet problem with boundary 
function h(z) = log Iz - (I, z E aD. 

This follows from two applications ofthe maximum principle. Let {Dn} 
and gn(Z, () be as above. Define Un by un(z) = gn(z, () for z E Dn, and 
un(z) = 0 for z E D\Dn. Then un(z) + log Iz - (I is subharmonic on D, 
and it coincides with log Iz - (Ion aD. Hence un(z) + log Iz - (I E :h, 
and un(z) + log Iz - (I ::; h(z). Passing to the limit on D, we obtain 
g(z, () + log Iz - (I ::; h(z). 

For the reverse inequality, let c > 0, and let U E Fh. Then u(z) - c ::; 
log Iz - (I for n large. From the maximum principle for the harmonic 
function gn(z, () + log Iz - (Ion Dn, we have u(z) -c ::; gn(z, () + log Iz- (I 
on Dn. Passing to the limit, first as n --t 00 then as c --t 0, we obtain 
u(z) ::; g(z, () + log Iz - (Ion D. Taking the supremum over such u, we 
obtain h(z) ::; g(z, () + log Iz - (Ion D. Consequently, equality holds, and 
the lemma is established. 

Example. Let D = li)\{0} be the punctured unit disk, and let ( E D. We 
have seen that for any continuous function h(z) on aD, the Perron solu-
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tion h( z) to the Dirichlet problem is the Poisson integral of h (ei8), which 
coincides with the solution to the Dirichlet problem on ~ with boundary 
function hlcm. The preceding theorem then shows that Green's function 
for ~\{O} coincides with Green's function for~. The isolated point {O} 
of aD is a removable singularity for Green's function. 

Now we consider the dependence of g(z, () on the parameter (. We show 
that the existence of Green's function for a domain D does not depend on 
the pole (. One way to see this is as follows. Let (0 E D, and let Dn increase 
to D as before, with (0 E D1. Choose r > 0 such that {Iz - (0 1 ~ r} C D1· 

Then 

Un(z, () = gn(z, () + log Iz - (1- gn(z, (0) -log Iz - (01 

is harmonic on Dn. Further, since Green's function is zero on aDn, un(z, () 
is bounded in modulus by a constant Con aDn , independent of n, provided 
that I( - (01 < r/2. By the maximum principle, 

-C ~ gn(z, () + log Iz - (1- gn(z, (0) -log Iz - (01 ~ C 

for all zED and for 1 ( - (0 1 < r / 2. This estimate shows that if gn (z, (0) ---7 

+00 as n ---7 00, then gn(z, () ---7 +00 as n ---7 00 for I( - (01 < r /2, while if 
gn(Z, (0) is bounded, then gn(z, () is bounded for I( - (01 < r/2. Thus the 
sets of ( for which gn(z, () ---7 +00 and for which gn(z, () is bounded form 
a decomposition of D into two disjoint open subsets. Since D is connected, 
one of these subsets is empty and the other is all of D. Thus the existence 
of Green's function does not depend on the pole (. 

In Section XVI.3 we will treat Green's function in the setting of Riemann 
surfaces, and we will show that the existence of Green's function does not 
depend on the pole. In Section XVI.4 we will show that Green's function 
is symmetric, that is, it satisfies g(z,() = g((,z). In particular, g(z,() 
depends harmonically on the parameter (. 

Exercises for XV. 7 

1. Suppose that ( E Do C D, and suppose that Green's function g(z) 
for D with pole at (exists. Show that Green's function go(z) for Do 
with pole at ( exists and satisfies go(z) ~ g(z). 

2. Let D be a domain for which Green's function g(z) with pole at ( 
exists. Show that for each r > 0, the set of zED satisfying g( z) > r 
is a domain, which has Green's function g(z) - r with pole at (. 

3. Let D be a domain for which Green's function g(z) with pole at ( 
exists. Suppose that cp(z) is a conformal map of a domain W onto D 
such that cp(~) = (. Show that h(w) = g(cp(w)) is Green's function 
for W with pole at ~. 
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4. Show that Green's function for the upper half-plane 1Hl is 

IZ-(I g(z, () = log z _ ( , z, ( E 1Hl. 

5. Show that Green's function for the horizontal strip {11m zl < 7r /2} 
is 

g(z,() 
7r 7r -- < lmz 1m/" < -. 2 '~2 

6. Let g(z, () be Green's function for the strip {11m zl < 7r /2}. (See 
the preceding exercise.) Show that for ( fixed and (3 > 0, the series 

00 

L g(z + (3n, () 
n=-oo 

converges uniformly on compact subsets of the strip to a function 
h(z) harmonic on the strip except for logarithmic poles at ( + (3n, 
-00 < n < 00. Show that h(z) is periodic with period (3. Show that 
h(7ri(logw)/2a) is Green's function for the annulus {e-O < Iwl < 
eO} with pole at e-2oi(/7r, for a = 7r2 /(3. 

7. Show that Green's function of D with pole at (is the upper envelope 
of the family of functions u(z) on D such that u(z) + log Iz - (I is 
subharmonic on D, and u(z) = 0 off a compact subset of D. 

8. Suppose that Green's function g(z) for D exists and that the level 
set {g(z) = r} does not contain a critical point of g(z). Show that 
each connected component of the level set is either a simple closed 
analytic curve in D or an analytic arc, each end of which terminates 
at an irregular boundary point of D. 

9. Let D be a domain, let (0 E aD, and suppose there is a subharmonic 
barrier at (0. Show that Green's function g(z) for D exists, and 
g(z) ---+ 0 as z ---+ (0. Remark. In particular, if Green's function 
for D does not exist, then C\D does not contain a continuum, so 
C\D is totally disconnected (see Section XII.4). 

10. Show that every domain D in C is the increasing union of bounded 
domains Dm with analytic boundaries. 

11. Let D be an exterior domain, that is, a domain containing the ex­
terior of a disk. If there is a harmonic function g(z) on D such that 
g(z) ---+ 0 as z ---+ aD, and g(z) -log Izl is bounded as z ---+ 00, we 
say that g(z) is Green's function for D with pole at 00. (a) 
Show that Green's function with pole at 00 is unique (if it exists). 
(b) Show that g(z) > 0 for zED. (c) Show that g(z) -log Izl has a 
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limit as z -+ 00. Remark. The limit is called Robin's constant of 
D. (d) Show that if D is simply connected, then Robin's constant is 
-log/<p'(oo)/, where <p(z) is the Riemann map of D onto the open 
unit disk satisfying <p(oo) = 0, and <p'(oo) = limz --+oo z<p(z). 

12. Show that the extended complex plane C* has no Green's function 
with pole at 00, in the sense that there is no harmonic function on 
the complex plane such that g(z) -log /z/ is bounded as z -+ 00. 



XVI 

Riemann Surfaces 

Our goal in this chapter is to prove the uniformization theorem for Riemann 
surfaces and to indicate its usefulness as a tool in complex analysis. We be­
gin in Sections 1 and 2 by defining Riemann surfaces, providing examples, 
and showing how various local notions as analytic' function, meromorphic 
function, and harmonic function carryover to Riemann surfaces. In Sec­
tions 3 and 4 we define Green's function for Riemann surfaces and show 
that Green's function is symmetric. In Section 5 we show that every Rie­
mann surface has bipolar Green's functions. We prove the uniformization 
theorem in Section 6. The proof depends on Green's function when it exists 
and on bipolar Green's function otherwise. In Section 7 we define covering 
spaces and covering maps, and we state several results that indicate the 
power of the uniformization theorem. 

1. Abstract Riemann Surfaces 

Roughly speaking, a Riemann surface is a space that is locally the same as 
the complex plane. A nearsighted person standing on the surface could not 
distinguish it from the complex plane. We will use the following definition. 

A Riemann surface is a set R with a collection of subsets {UoJ and 
complex-valued functions za(P), P E Ua, such that 

(1.1) each Za (p) is a one-to-one function from U a onto a domain Za (U a) 
in the complex plane; 

(1.2) each composition z(3 0 z;;l is analytic wherever it is defined, that is, 
from za(Ua n U(3) to z(3(Ua n U(3); 

(1.3) R is connected, that is, for any two points P and q in R, there is a 
finite collection of indices al, ... ,am such that P E U all q E U am' 

and Uaj n UaH1 is nonempty for 1 ~ j < m; 
(1.4) R is a "Hausdorff space," that is, if Po and Pl are distinct points of R, 

and if Po E Ua and Pl E U(3, then there are (small) disks Do and Dl 
centered at za(PO) and z(3(pd, respectively, such that z;;l(Do) and 
z{il (Dd are disjoint subsets of R. 

418 
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We refer to U 0 as a coordinate patch and to Zo (p) as the coordinate 
map on Uo. mapping Uo onto zo(Uo). The composition z{3 0 Z;;1 cor­
responds to a change of variable. If Do is a disk in zo(Uo), we refer to 
Wo = z;;I(Do) as a coordinate disk in R. The coordinate function Zo 
maps Wo one-to-one onto Do. 

Example. Each domain D in the complex plane can be regarded as a 
Riemann surface. We require only one coordinate patch U1 = D, with 
coordinate map the identity function ZI(() = (. 

Example. The simplest nontrivial Riemann surface is the extended com­
plex plane C* = C U {oo}. This can be coordinatized by two coordinate 
patches Uo = C and U1 = C*\{O}, with coordinate maps zo(() = ( and 
ZI(() = 1/(. In this case, zo(Uo n U1) = C\{O}, and the change of coordi­
nate variable is given by 

(E C\{O}, 

which is analytic. 

Example. Let WI and W2 be two complex numbers that do not lie on 
the same line through the origin, and let L be the lattice they generate, 
consisting of all linear combinations mwl +nw2 where m and n are integers. 
We denote by T = elL the torus determined by L. Points of T can be 
regarded as congruence classes ( + L, where ( E C. Choose e > 0 so small 
that all nonzero lattice points satisfy Imwl + nw21 > e. For each complex 
number A E e, let U>. be the subset of T defined by 

U>. = {(+L:I(-AI<e}. 

The coordinate map z>. : U>. --+ C is defined by z>.(( +L) = (for I( -AI < e. 
It maps U>. onto the disk {Iz - AI < e}. The condition on e guarantees 
that the coordinate map z>. is one-to-one. A change of coordinate Zo 0 Z):"1 

is the identity, wherever defined, hence analytic. 

Example. Consider the Riemann surface R of w = Vz as constructed 
in Section IA. It is obtained from two copies 8 1, 82 of the slit z-plane 
C\( -00,0] by identifying edges appropriately. We can make R into an 
abstract Riemann surface with four coordinate patches Ul, U2 , U3 , U4 , 

where U1 is 8 1 (without the edges) and ZI is the natural map of 81 onto 
C\( -00,0]; similarly for U2 and Z2; U3 consists of the top half of 81, the 
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bottom half of 82 , and the slit along which they are joined, and Z3 is the 
natural map of U3 onto C\[O, +00); and similarly for U4. In this case, the 
change of variable corresponding to two coordinate maps is the identity 
function wherever defined, hence analytic. 

Example. The Riemann surface R of w = logz, as constructed in Sec­
tion I.5, can be made into an abstract Riemann surface in the same way. 
In this case, R is obtained from an infinite sequence of copies of the slit 
plane C\( -00,0] by identifying edges of slits appropriately. This time we 
use infinitely many coordinate patches, one for each sheet and one to cover 
each line where two sheets are attached. 

Topological notions and notions of convergence and continuity are carried 
over to a Riemann surface R by referring them to the complex plane via 
the coordinate maps. We define a subset W of R to be open if for all Q the 
image za(W n UoJ is an open subset of the complex plane. Since a change 
of variable z{3 0 Z~l maps open sets to open sets, a subset of a coordinate 
patch U a is open in R if and only if its image under the single coordinate 
map Za is open. 

We say that a sequence {Pn} of points of R converges to pER if for any 
coordinate patch Ua containing p, the Pn's eventually belong to Ua , and 
za(Pn) converges to za(P). The "Hausdorff' condition (1.4) asserts simply 
that the limit of a convergent sequence is unique. It is possible to construct 
pathological spaces that satisfy the other three axioms (1.1)-(1.3) but for 
which limits of sequences are not unique. 

A subset K of R is compact if K is contained in a finite union of coor­
dinate patches, and every sequence in K has a subsequence that converges 
to a point in K. This occurs if and only if K can be expressed as a finite 
union K = KI U ... U K m , where each K j is a compact subset of a single 
coordinate patch. 

A complex-valued function f(p) defined on R is continuous at q if 
foz~1 is continuous at za(q) for any coordinate patch Ua containing q. This 
occurs if and only if f(Pn) --t f(q) whenever Pn converges to q. Similarly, a 
function 9 from a subset E of]Rn to R is continuous if for any coordinate 
patch UOt! the composition Za 0 9 is continuous on g-I(Ua ). 

A path in R from Po to PI is a continuous function I'(t), 0 :::; t :::; 1, 
from the unit interval [0,1] into R such that 1'(0) = Po and 1'(1) = Pl. The 
path is smooth if the compositions Za 0 I' are smooth wherever defined. 
Piecewise smooth paths and analytic curves are defined similarly. 

An open subset D of a Riemann surface is connected if any two points 
of D can be joined by a path in D. The connectivity hypothesis (1.3) in 
the definition of Riemann surface is equivalent to requiring that the surface 
be connected. Indeed, since each za(Ua) is a domain, any two points of Ua 
can be joined by a path, and by concatenating a finite number of paths we 
can join any two points of R. 
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Example. A connected open subset of a Riemann surface can be regarded 
as a Riemann surface, by restricting the coordinate maps to the subset. 
We refer to the connected open subset as a subsurface of the Riemann 
surface, or as a domain on the surface. 

In addition to properties involving convergence and continuity, any "lo­
cal" property that is invariant under an analytic change of variable can be 
carried over to a Riemann sudace by means of the coordinate maps. We 
list several such properties. 

A complex-valued function J(P) defined in an open subset V of R is 
analytic if J 0 z;;I is analytic on Za (V n U 0,) for each coordinate patch U a' 

A function J : V -t C* is meromorphic if J 0 z;; 1 is meromorphic on 
each za(V n Ua). The function J(P) is analytic at Po E R (respectively 
meromorphic at Po E R) if it is analytic (respectively meromorphic) in 
some coordinate disk containing Po. 

The order of a zero of an analytic function at a point is invariant under 
an analytic change of variable. Thus we can talk about the zeros and their 
orders of an analytic function on a Riemann sudace. Similarly, the orders 
of poles of meromorphic functions on a Riemann sudace are well-defined. 

Example. For a domain in the complex plane, regarded as a Riemann 
surface, the definitions of analytic and meromorphic functions reduce to 
the usual definitions. 

Example. Since the coordinate map for C*\{O} is ZI(() = 1/(, the ana­
lytic functions on a domain R on the Riemann sphere C* are the functions 
J(() that are analytic on R n C, such that g(() = J(I/() is analytic at 
( = O. Thus the definition of a function being analytic at 00 when we re­
gard R as an abstract Riemann sudace is the same as the definition given 
in Section V.5 for analyticity at 00. Similarly, the definition of a func­
tion being meromorphic at 00 when we regard R as an abstract Riemann 
surface is the same as the definition of being meromorphic at 00 given in 
Section VI.3. 

Example. We saw in Section 1.4 that the function .jZ can be defined 
continuously on its Riemann sudace R, by defining it to be the principal 
branch on one sheet and the negative of the principal branch on the second 
sheet. Thus defined, the function .jZ is actually analytic on R. On each 
of the coordinate patches Ut, U2 , U3, U4, the function corresponds to an 
analytic branch of .jZ on a slit plane, with respect to the local coordinate 
map. 

Example. Each doubly periodic meromorphic function J(z) on the com­
plex plane with periods WI, W2 determines a meromorphic function g(p) 
on the torus T = C/L by g(z + L) = J(z). Every meromorphic function 
on the torus arises in this manner from a doubly periodic function on the 
complex plane. 
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We have defined analyticity for complex-valued functions on a Riemann 
surface. We can also define a notion of analyticity for a function from one 
Riemann surface to another. 

Let Rand S be two Riemann surfaces. A function J : R -+ S is analytic 
at pER if for any coordinate patch U Q in R containing p with coordinate 
map ZQ, and any coordinate patch V,a in S containing J(p) with coordinate 
map w,a, the composition w,a 0 J 0 Z~1 is analytic at zQ(p). We refer to J 
also as an analytic map from R to S. 

f 
~ 

Example. The analytic functions from a Riemann surface R to the Rie­
mann sphere C* are the meromorphic functions on R, together with the 
constant function 00 on R (Exercise 4). 

Technically, our definition of Riemann surface depends not only on the 
set R but the specific coordinate patches {UQ } and coordinate maps ZQ. 

We will regard two Riemann surfaces as being the "same" if the underlying 
sets are the same and the identity map between them is analytic and has 
an analytic inverse. This occurs if and only if they have the same analytic 
functions, and in this case we can use as a coordinate map any one-to-one 
analytic function from an open subset U of R onto a domain in the complex 
plane. This allows us to focus on coordinate disks when convenient. 

We say that two Riemann surfaces Rand S are conformally equivalent 
if there is an analytic map J : R -+ S that is one-to-one and onto. In this 
case, the inverse map J- 1 : S -+ R is also analytic. 

Example. The Riemann surface of Jz is conformally equivalent to the 
punctured complex plane C\{O}. The analytic map giving the equivalence 
is the continuous extension of the function J(z) = Jz to the Riemann 
surface. 

Let S be a Riemann surface. A subsurface R of S with boundary oR is a 
finite bordered subsurface if R u oR is a compact subset of S, and oR 
consists of a finite number of disjoint simple closed analytic curves in S. 
Thus for each Po E oR there is a coordinate disk U in S with coordinate 
map z(p) that maps U n R onto a semidisk in the upper half-plane and 
maps Un oR onto an interval on the real axis. The analytic structure on 
R U oRis actually independent of the ambient surface S, and is determined 
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by the coordinate disks for points of R and coordinate semi disks for points 
of 8R. We refer to R U 8R as a finite bordered Riemann surface. 

Example. Let 8 be a compact Riemann surface, and let D1, ... ,D N be 
N disjoint closed coordinate disks in 8 . If we punch out the closed disks, 
we obtain a finite bordered Riemann surface R = 8\ U Dj with border 8R 
consisting of the N analytic boundary curves 8Dj , 1 ~ j ~ N . It turns out 
(Exercise 2.5) that every finite bordered Riemann surface can be obtained 
in this way, from a compact surface by excising a finite number of coordinate 
disks. 

Exercises for XVI.1 

1. Define the Riemann surface R of log z in terms of explicit coordinate 
patches. Define explicitly the function on R determined by log z. 
Show that it is a one-to-one analytic map of R onto the complex 
plane C. 

2. What is the smallest number of coordinate patches necessary to 
make a torus into a Riemann surface? 

3. Show (a) that the residue of a meromorphic function f(p) at a pole 
Po E R depends on the choice of the coordinate at Po, and (b) if the 
pole is not simple, a coordinate can be chosen with respect to which 
f(p) has residue zero at Po. 

4. Show that the analytic maps from a Riemann surface R to the 
Riemann sphere C* are the meromorphic functions on R and the 
constant function 00. 

5. Let w =f=. 0, and let Zw be the integral multiples of w. Let R be the 
set of congruence classes z + Zw, z E C. Show that R is a Riemann 
surface that is conformally equivalent to the punctured plane C\ {O}. 

6. Consider the Riemann surface R of viz as described in the example 
in this section. Let 8 = R U {O, oo}. Define a coordinate disk Vo 
containing 0 to be the point 0 together with the set of z E 8 1 U 8 2 

such that Izl < 1, and define the coordinate map 7ro : Vo --+ JI}) 

by 7ro(z) = viz, 7ro(O) = O. Similarly, define a coordinate disk V1 

containing 00 to be the point 00 together with the set of z E 8 1 U 8 2 
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such that Izl > 1, with coordinate map 71"1: V1 -+ JI)l, 7I"1(Z) = Ij..jZ, 
71"1 (00) = O. Show that S is a Riemann surface. Show that the 
function ..jZ on R extends to a one-to-one analytic map of S onto 
the Riemann sphere C*. 

7. Suppose that f : R -+ S is a nonconstant analytic map. (a) Show 
that f(R) is an open subset of S. (b) Show that if R is compact, 
then f(R) = S. (c) Use (b) to prove the fundamental theorem of 
algebra, that every nonconstant polynomial P(z) has a zero. 

8. Show that if U and V are disjoint open subsets of a Riemann sur­
face R such that R = U u V, then either U = R or V = R. Use this 
to show that the uniqueness principle for meromorphic functions 
holds on a Riemann surface R, that is, if f(p) and g(p) are two 
meromorphic functions on R such that f(P) = g(p) for p in some 
nonempty open subset of R, then f(p) = g(p) for all pER. 

9. Let f(() be analytic at ( = (0, and let !e.o be its power series 
expansion at (0. Let R be the set of all pairs ((, fd, where ( E C, 
!e. is a power series expansion centered at ( with a positive radius of 
convergence, and !e. is the analytic continuation of !e.o along some 
path from (0 to (. Define a coordinate patch containing ((, fd 
to consist of all pairs (e, f~) such that Ie - (I < c: and f~ is the 
power series expansion of fdz) about z = e. Define the coordinate 
map on this coordinate patch by 7I"(e, h) = e. (a) Show that R is a 
Riemann surface. (b) Show that the projection function 7I"(e, h) = e 
is analytic on R. (c) Show that F(e, fe) = f~(e) is analytic on R and 
that in terms of the above coordinate map at (0 it coincides with 
f(() in a coordinate disk centered at (0. (d) Show that if P((, w) is 
a polynomial in ( and w such that P((, f((» = 0 for I( - (01 < c:, 
then p(e, f~(e» = 0 for all (e, f~) E R. 

10. Let Xl < X2 < ... < Xn be n consecutive points on the real 
axis. Let (0 be distinct from the x/s, and let f(() be a branch 
of J(( - Xl) ... (( - Xn) defined at (0. Describe the Riemann sur­
face R of f (() constructed in the preceding exercise, and show that it 
is the same as the Riemann surface described in Exercise 1.7.7. Show 
that 7I"(~,h) = ~ is a two-to-one map of R onto C\{Xl, ... ,xn}. 
Show that the surface R is equivalent to a compact surface S with 
a finite number of punctures. Remark. The Riemann surface S is a 
hyperelliptic Riemann surface. 

11. Let R be a finite bordered Riemann surface, with border 8R. Let 
R be a duplicate copy of R, and denote by p the point in R cor­
responding to pER. Let S = R u R u 8R. Define T : S -+ S by 
T(p) = P if P E 8R and by T(P) = p, T(p) = P if pER. 
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(a) Show that S can be made into a compact Riemann surface with 
R as a subsurface so that T is anticonformal, that is, J(p) is 
analytic on an open set U if and only if J (T(p)) is analytic on 
T(U). Remark. The surface S is the doubled surface of R, 
and T is the reflection in 8R. 

(b) Show that the doubled surface of the unit disk is the Riemann 
sphere C*. 

(c) What is the doubled surface of an annulus? 
(d) Show that each meromorphic function J on S has the form 

J = 9 + ih, where 9 and hare meromorphic functions on S that 
are real-valued on 8R. 

(e) Show that if J is meromorphic on R, and if 1m J (p) -t 0 as 
p -t 8R, then J extends to be meromorphic on S, and the 
extension is analytic and real-valued on 8R. 

12. Show that a hyperelliptic Riemann surface (Exercise 10) is the dou­
ble of a finite bordered subsurface. Specify the anticonformal reflec­
tion T. 

13. For T in the open upper half-plane 1HI, denote by LT the lattice Z+ZT 
generated by 1 and T, and denote the Riemann surface C I LT by TT' 
(a) Show that the Riemann surface T = CI L in the example in 

this section is conformally equivalent to the Riemann surface 
TT for some T E 1HI. Hint. Take T = ±wI/w2, where the sign is 
chosen so that 1m T > O. 

(b) Show that TT is conformally equivalent to TTl if and only if there 
is a fractional linear transformation of the form J (z) = (az + 
b)/(cz + d) where a, b, c, d are integers satisfying ad - bc = 1, 
such that J (T) = T'. Remark. The matrix with entries a, b, c, d 
is called a unimodular matrix. The unimodular matrices 
form a group, which is the special linear group SL(2, JR). 

14. Let U denote the fractional linear transformations J(z) = (az + 
b) I (cz + d) corresponding to unimodular matrices. Let U be the 
domain in the upper half-plane consisting of points z E 1HI satisfying 
Izl > 1 and -~ < Rez < ~. 
(a) Show that g(z) = -liz belongs to U, and g(z) has a fixed a 

point at i. Sketch the image of U under g(z). 
(b) Show that h(z) = 1 - liz belongs to U, and h(z) has a fixed 

point at the vertex (1 + v'3i)/2 of U. Sketch the images of U 
under h(z) and (h 0 h)(z). 

(c) Show that the images of U and its boundary curves under the 
fractional linear transformations in U fill out the upper half­
plane. Hint. Show that the images fill out an open set contain­
ing Uu8U. 
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(d) Show that if J E U, then either J (z) = z + m for some integer 
m, or J(z) maps the outside of the circle Iz + dlel = l/lel onto 
the inside of a circle centered on the real axis of the same radius 
1/14 Remark. The circle Iz + dlel = l/lel is the isometric 
circle of J(z). 

(e) Show that if Z,W E U u au satisfy W = J(z) for some J E U 
other than the identity transformation, then either w = z ± 1 
and both points lie on opposite vertical sides of U, or w = -II z 
and both points lie on the unit circle. Remark. Thus the set E 
consisting of U and the points z E au satisfying Re z :s: 0 is a 
"fundamental domain" for U, in the sense that for each w E lHI 
there is a unique z E E such that w = J(z) for some J E U. 
The images of U under the functions in U form a "tiling" of lHI. 
Remark. With composition as the operation, U is a group, 
called the modular group. If A is a unimodular matrix, 
then both ±A give rise to the same J E U, and every J E U 
arises from exactly two unimodular matrices. Thus the modu­
lar group is isomorphic to the quotient SL(2,lR)/{±I}. 

1 .~ --+1-
2 2 

-1 

u 

o 

1 .~ 
-+1-
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2. Harmonic Functions on a Riemann Surface 

In this section we adapt the Perron procedure to a Riemann surface to 
solve the Dirichlet problem. The development proceeds very much along 
the same lines as for planar domains. The success of the procedure depends 
on the fact that the compactness theorems for harmonic functions are local, 
as are the notions of subharmonic function and sub harmonic barrier. 

A real-valued function u(p) on a Riemann surface R is harmonic at 
Po E R if there is a coordinate disk containing Po such that u(p) is a 
harmonic function of the coordinate z = z(p) on the coordinate disk. This 
occurs if and only if u(p) is the real part of an analytic function on the 
coordinate disk. Thus the definition of harmonicity is independent of the 
coordinate map. 

The local arguments involving harmonic functions on parameter disks, 
together with compactness and connectedness arguments, allow us to carry 
over to Riemann surfaces the compactness theorems for families of har-
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monic functions from Section XV.3. One specific result we will use is the 
following version of Harnack's estimate. 

Lemma. For each compact subset K of a Riemann surface R, there is a 
constant C > 0 such that 

1 u(P) 
C ~ u(q) ~ C, p,qEK, 

for every positive harmonic function on R. 

If P belongs to a closed sub disk of a coordinate disk that has q as its cen­
ter, this is simply Harnack's inequality. If we replace C by C2 , we obtain 
an estimate of the same form for arbitrary points P and q in a fixed closed 
sub disk of a coordinate disk. For the general case we cover K by a con­
nected set that is a finite union of closed sub disks of coordinate disks, and 
we apply the estimate to successive points in a chain P = Po, PI, ... ,Pn = q, 
where each pair Pj,Pj+I belong to the same disk. (See Exercises XV.3.4-5.) 

Now let R be a Riemann surface, and let W be an open subset of R. 
A continuous function u : W -+ [-00, +(0) is subharmonic on W if 
each pEW belongs to a coordinate patch on which u(p) is a subharmonic 
function of the coordinate z = z(p). (We could allow subharmonic functions 
to be only "upper semicontinuous," but for our goals this leads to no gain.) 

Theorem (Strict Maximum Principle). Ifu is a subharmonic function 
on a Riemann surface R, and u attains its maximum at some point of R, 
then u is constant on R. 

The proof of the strict maximum principle for subharmonic functions 
(Section XV.2) carries over to Riemann surfaces. Let E be the set of pER 
where u attains its maximum. The local argument used in the plane shows 
that E is open, while the continuity of u implies that R\E is also open. 
The connectedness of R then implies that either E = R or E is empty. In 
the case at hand, we must have E = R, and then u is constant. 

Since continuous functions on a compact set attain their maximum, we 
obtain as an immediate consequence the following version of the maximum 
principle. 

Theorem (Maximum Principle). Let u be a subharmonic function on 
a Riemann surface R. If u(p) ~ c for P E R\K, where K is a compact 
subset of R, then u(p) ~ c for all pER. 

Now we may solve the Dirichlet problem on a Riemann surface by the 
Perron process of taking an upper envelope of subsolutions. To make this 
explicit, it is convenient to formalize the Perron procedure. 
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Let W be an open subset of the Riemann surface R. We say that a 
nonempty family F of subharmonic functions on W is a Perron family 
of subharmonic functions if the following two conditions are satisfied: 

(2.1) if u, v E F, then max(u, v) E F , where max(u, v) is the maximum 
of u and v, 

(2.2) if u E F, and Do is a coordinate disk in W such that u is finite on 
aDo, then the function v defined to be u on W\Do and the harmonic 
extension of UlaDo on Do is in F. 

The proof given in Section XV.4 carries over to show the following. 

Theorem. Let F be a Perron family of subharmonic functions on a do­
main W on a Riemann surface R, and let u be the upper envelope of the 
family F, 

u(p) = sup{v(p): v E F}. 

Then either u is harmonic on W, or u(p) = +00 for all pEW. 

The notion of a subharmonic barrier (Section XV.4) is also local. The 
proof given in Section XV.4 shows that if W u aw is compact, and there 
is a subharmonic barrier at every point of aw, then the Dirichlet problem 
is solvable for W. Since there is a subharmonic barrier at every point on a 
boundary arc of W, we obtain the following. 

Theorem. Let W be a domain on a Riemann surface such that W U aw 
is compact and aw consists of a finite number of simple closed piecewise 
smooth boundary curves. Then each continuous function h(q) on aw is 
the boundary values of a (unique) harmonic function h(p) on W. 

As an application, we show that any Riemann surface can be exhausted 
by finite bordered subsurfaces. 

Theorem. For each compact subset K of a Riemann surface R, there is a 
domain W in R such that K c W, W u aw is compact, and aw consists 
of a finite number of disjoint simple closed analytic curves. 

For the proof, we cover K by a finite number of coordinate disks, and 
then we connect these by finitely many more coordinate disks, to obtain a 
domain Uo C R such that Uo ::J K and Uo is a finite union of coordinate 
disks. It is straightforward then to construct a domain U C Uo such that 
U :J K and au consists of a finite number of smooth arcs. Let Do be a 
small coordinate disk in U, with boundary ro contained in U. We solve 
the Dirichlet problem on the domain U\(Do U ro) and obtain a harmonic 
function u with boundary values u(p) = 1 on ro and u(p) = 0 on au. 
Since the critical points of u are isolated points that can accumulate only 
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on auuro, we can choose c: > 0 small such that the level set {u = c:} does 
not contain a critical point of u, and further such that u > c: on K n U. 
Then the domain W = {p E U : u(p) > c:} u r 0 u Do has the desired 
properties. 

Exercises for XVI.2 

1. Let w = w( z) be analytic on a domain D in the complex plane. 
Show that 

Idw l2 a2 
azaz = dz awaw· 

Deduce that a smooth function h(w) is harmonic on w(D) if and 
only if h(w(z)) is harmonic on D. 

2. Let W be an open subset of a Riemann surface such that W u aw 
is compact, and let u(p) be a subharmonic function on W. Show 
that if lim sup u(p) ::; c as p -+ aw, then u(P) ::; c for all pEW. 

3. Let {un} be a sequence of positive harmonic functions on a Riemann 
surface R that converges uniformly on some coordinate disk. Show 
that the sequence converges uniformly on each compact subset of R. 

4. Let {un} be a sequence of harmonic functions on a Riemann sur­
face R that is uniformly bounded on each compact subset of R and 
that converges uniformly on some coordinate disk. Show that the 
sequence converges uniformly on each compact subset of R. 

5. Show that any finite bordered Riemann surface can be obtained from 
a compact Riemann surface by excising a finite number of closed 
coordinate disks. Hint. Assume that there is one boundary curve 
in aR. By punching out a small disk Do and solving a Dirichlet 
problem, find a positive harmonic function u on R\Do such that 
u = 0 on aR. Use u and its harmonic conjugate to map {O < u < c:} 
onto an annulus {I < Iwl < O"}. Take S = R u {Iwl ::; I}, and use 
{Iwl < O"} as a coordinate disk. 

3. Green's Function of a Surface 

To define Green's function for a Riemann surface R, we adapt the definition 
given for an arbitrary planar domain. Fix a point q E R, and let z(p) be a 
coordinate map for a coordinate disk at q satisfying z(q) = o. Let:Fq be the 
family of subharmonic functions u(P) on R\{q} such that u = 0 off some 
compact subset of R, and u(P)+log Iz(P)1 is subharmonic on the coordinate 
disk at q. Then:Fq is a Perron family of subharmonic functions on R\{q}. 
The family is nonempty, since the constant function u = 0 belongs to :Fq • 
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There are now two cases that can occur. If the upper envelope of Fq is 
finite on R\{q}, we say that Green's function for R with pole at q 
exists, and we denote it by 

g(p,q) = sup{u(p) : u E Fq}, P E R\{q}. 

Otherwise, the upper envelope of Fq is +00 at all points p E R\{q}, and 
in this case we say that Green's function does not exist. 

Theorem. Suppose Green's function g(p, q) with pole at q exists, and let 
z(p) be a coordinate map for a coordinate disk at q with z(q) = O. Then 
g(p,q) is harmonic and (strictly) positive for p E R\{q}, and g(p,q) + 
log Iz(p) I is harmonic at q. If h(p) is a positive harmonic function on R\ {q} 
such that h(p) + log Iz(p)1 is harmonic at q, then h(p) ~ g(p, q) for p E 

R\{q}. 

As the upper envelope of a Perron family, g(p, q) is harmonic, and further 
g(p,q) ~ O. Let p> 0 be small, so that the coordinate disk {lz(p)l:S p} is 
defined. The function defined to be -log Iz(p)1 + logp on this coordinate 
disk and 0 outside it belongs to Fq . Consequently, 

(3.1) g(p, q) ~ -log Iz(p)1 + logp, 0< Iz(p)1 :S p, 

and g(p, q) ----t +00 as p ----t q. Since g(p, q) cannot attain its minimum unless 
it is constant, g(p, q) > 0 on R\ {q}. Let M be the maximum of g(p, q) on 
the coordinate circle {lz(p)1 = pl. Any u E Fq satisfies u(p) < M for 
Iz(p)1 = p, and consequently, 

u(p) + log Iz(p)1 :S M + logp 

for Iz(p)1 = p. Since u(p)+log Iz(p)1 is subharmonic on the coordinate disk, 
this estimate persists for Iz(p)1 :S p. Taking the supremum over u E F q , we 
obtain 

(3.2) g(p, q) + log Iz(p)1 :S M + log p, Iz(p)1 :S p. 

Combining this with (3.1), we see that g(p, q) + log Iz(p)1 is a bounded 
harmonic function on the punctured coordinate disk {O < Iz(p)1 < pl. 
Since isolated singularities of bounded harmonic functions are removable, 
g(p, q) + log Iz(p)1 is harmonic at q. 

For the final statement of the theorem, suppose h(p) is a positive har­
monic function on R\{q} with a logarithmic pole at q. If u E Fq , then 
u - h is subharmonic on R, and u - h < 0 off a compact subset of R. By 
the maximum principle, u - h < 0 on R. Taking the upper envelope of 
such u, we obtain g(p, q) - h(p) :S O. This completes the proof. 

Our next goal is to show that if g(p, q) exists for one point q E R, then it 
exists for all q E R. The proof is based on an auxiliary harmonic function 
and a clever estimation technique that merits special attention. 
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Fix qo E R, and let z(p) be a coordinate map for a coordinate disk 
at qo with z(qo) = o. Fix r > 0 small so that the closed coordinate 
disk Br = {lz(p)1 ~ r} is defined. Let F be the family of subharmonic 
functions u on R\Br such that u ~ 1, and u = 0 off a compact subset of R. 
Since F is a Perron family, the upper envelope 

w(p) = sup{u(p): u E F}, 

is a harmonic function, which evidently satisfies 0 ~ w ~ 1. The function 
w(p) can be viewed as the Perron solution to the Dirichlet problem on R\Br 

with boundary function 1 on aBr and 0 at 00. Since there is a sub harmonic 
barrier at each point of aBr, w(p) --+ 1 as p --+ aBr. Now, there are two 
cases that can occur: Either 0 < w < 1 on R\Br, or w == 1 on R\Br. 

Lemma. If g(p, q) exists for some point q in the open coordinate disk 
Br\aBr = {lz(p)1 < r}, then 0 < w < 1 on R\Br. Conversely, if 0 < w < 1 
on R\Br, then g(p, q) exists for all q E Br \aBr. 

The first statement is the easier to prove. Suppose g(p, q) exists, and 
choose c > 0 such that g(p, q) ~ c for all p E aBr. By the maximum 
principle, u(P) ~ g(p, q)/c for all u in the Perron family F defining w. 
Consequently, w(p) ~ g(p, q)/c. Now, the infimum of g(p, q) for pER is 0; 
if it were a > 0, then g(p, q) - a would be a positive harmonic function on 
R\ {q} with a logarithmic pole at q, contradicting the minimality property 
of g(p,q) in the preceding theorem. Hence the infimum of w(P) is also 0, 
and the case 0 < w < 1 obtains. 

For the converse, suppose that 0 < w < 1 on R\Br . Choose s > r such 
that the closed coordinate disk Bs = {lz(p)1 ~ s} is defined. Choose '" < 1 
such that w(p) :::; '" for p E aBs. Choose C > 0 such that I log Iz(p) -
z(q)11 :::; C for p E aBr. Let u E r q , and let M be the maximum of u(p) for 
p E aBs. Since u(p) + log Iz(p) - z(q)1 is subharmonic on Bs and bounded 
by M + Con aBs , we have 

u(P) + log Iz(p) - z(q)1 :::; M + C, 

In particular, this holds for p E aBr , and consequently, 

u(p) ~ M +2C, pE aBr. 

Since w(P) = 1 on aBr, we have 

u(p) ~ (M + 2C)w(p) 

for p E aBro hence by the maximum principle for all p E R\Br . If we take 
the maximum over p E aBs , we then obtain 

M ~ (M +2C)",. 
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This can be solved for M to yield M ::; 2CK/(1- K). Thus we have shown 
that any U E Fq satisfies u(P) ::; 2CK/(1 - K) for p E aBs . Consequently, 
Green's function with pole at q exists. 

The lemma shows that the set of q E R for which Green's function g(p, q) 
exists is open, and the set of q E R for which g(p, q) does not exist is also 
open. Since R is connected, one of these sets coincides with R and the 
other is empty. We have proved the following. 

Theorem. If Green's function with pole at q exists for some q E R, then 
it exists for all q E R. 

Another consequence of the lemma is the following theorem, which im­
plies in particular that Green's function exists for any finite bordered Rie­
mann surface with nonempty border. 

Theorem. Suppose the Riemann surface R is an open subset of a Riemann 
surface S, and suppose there is a boundary arc for R in S. Then Green's 
function for R exists. 

In this case, there is a subharmonic barrier at each point of the arc, so 
the auxiliary function w(p) tends to 0 as pER tends to the boundary arc. 
Hence we are in the case where 0 < w < 1, and Green's function exists. 

Next we prove a theorem of T. Rad6 to the effect that any Riemann 
surface is the union of an increasing sequence (!) of compact subsets. This 
property is useful, but it is not essential, in the sense that if we could 
not derive it from the definition of a Riemann surface, we would simply 
incorporate it into the definition as property (1.5). (In fact, this property is 
incorporated into the definition of complex manifolds of higher dimension, 
and it is incorporated into the definition of differentiable manifolds of all 
dimensions. ) 

Theorem. Let R be a Riemann surface. There is an increasing sequence 
{Rn} offinite bordered subsurfaces of R such that URn = R. 

Suppose first that Green's function g(p, q) exists. Fix Po =I- q, and choose 
a sequence Un E Fq such that un(Po) -+ g(Po,q). Let Rn be a finite 
bordered subsurface of R containing Po and q such that Un = 0 off a compact 
subset of Rn. We can arrange also that Rn includes the compact set Rn- 1 U 

aRn-l. We adjoin to Rn any component of R\Rn that is compact, and 
we can assume that there are no compact components of R\Rn . Now, 
gn(p,q) is an increasing sequence, and un(Po) ::; gn(PO,q) ::; g(Po,q). By 
Harnack's theorem, gn(P, q) converges uniformly on compact subsets of 
R\{q} to a harmonic function u(p) on R\{q}. Since u(p) - g(p,q) ::; 0 on 
R\{q}, and u(po) - g(Po,q) = 0, the strict maximum principle implies that 
u(p) - g(p, q) == o. Consequently, gn(P, q) converges to g(p, q) uniformly on 
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compact subsets of URn, and in particular it converges uniformly on aRn 
for all n. 

We claim that URn = R. We argue by contradiction. Suppose there is 
a point Po E R\ URn. Let Do be a coordinate disk at Po with coordinate 
map z(p) satisfying z(Po) = O. No boundary curve of aRn lies completely 
in Do, or else it would bound a compact component of R\Rn . Hence by 
following a straight line to the nearest curve in aRn and then following this 
to aDo, we obtain a curve Tn in Do \Rn connecting Po to aDo. Let E be 
the lim sup of the Tn'S, that is, pEE if and only if there is a sequence 
Pn E Tn such that Pn ---+ p. Then E is a compact connected subset of R, 
and E is disjoint from Rk for each k, so E c R\ URn. Note that Po E E, 
and since each Tk meets aDo, also E meets aDo. Thus E has more than 
one point. By the condition given in Section XV.4, there is a subharmonic 
barrier at each point of E for the open set R\E. Hence Green's function 
gE(p, q) of the component of R\E containing q tends to 0 as P ---+ E. Since 
gn(P, q) ~ gE(p, q) for all n, we then obtain g(p, q) ---+ 0 as p ---+ E. However, 
g(p, q) > 0 for all p, so that E is empty. This contradiction establishes the 
theorem in the case that Green's function exists. 

In the case that Green's function does not exist, we excise a coordinate 
disk Do and consider the surface R\Do. Green's function does exist for 
R\Do. We apply the result already proved to R\Do, and the theorem for 
R follows easily. 

Exercises for XVI.3 

1. Show that if Green's function exists for S, and R is a subsurface 
of S, then Green's function exists for R, and gR ~ gs. 

2. Show that if f : R ---+ S is an analytic map of R to S, and if 
Green's function exists for S, then Green's function exists for R, 
and gR(p,q) :S gs(f(p),/(q)). 

3. Suppose Green's function g(p, q) exists for R. Let z(p) be a co­
ordinate map at q with z(q) = O. Show that if u(P) is a positive 
harmonic function on R\{q} such that u(P) + log Iz(P)1 is bounded 
below near q, then u(p) ~ g(p, q). 

4. Suppose Green's function g(p, q) exists for R. Let z(p) be a coordi­
nate map at q with z(q) = O. Show that if u(p) is a subharmonic 
function on R\ {q} such that u(p) = 0 off some compact subset of R, 
and u(p) + log Iz(p)1 is bounded above near q, then u(p) ~ g(p, q). 

5. Let R be a Riemann surface for which Green's function does not 
exist. Let K be a compact subset of R. Show that if u(P) is a 
subharmonic function on R\K such that u(P) is bounded above 
and limsupu(p) :S 0 as p ---+ oK, then u(p) :S 0 for all p E R\K. 
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Remark. If Green's function for R exists, and the function w is as 
in this section, then this statement fails for -w. 

6. Show that Green's function for R exists if and only if there is a 
nonconstant subharmonic function on R that is bounded above. 
Hint. If Green's function g(p, q) exists, consider -g(p, q). For the 
reverse implication, use the preceding exercise. 

4. Symmetry of Green's Function 

We are interested now in how Green's function g(p, q) depends on the pa­
rameter q. Our goal is to prove the following. 

Theorem. Suppose R is a Riemann surface for which Green's function 
g(p, q) exists. Then Green's function is symmetric, 

g(p, q) = g(q,p), p,qER, p#q. 

It suffices to prove the theorem in the case that R is a finite bordered 
Riemann surface. The general case can then be obtained by taking limits. 

To separate the analytic difficulties from the topological difficulties, we 
first prove the theorem in the case that D is a bounded domain in the 
complex plane with analytic boundary. In this case, the proof is reminiscent 
of the proof of Pompeiu's formula. We excise two closed disks Uo, Ul of 
small radius c > 0 centered at points (0, (1 E D. Let DE = D\(Uo U UI). 
The functions uo(z) = g(z, (0) and Ul(Z) = g(Z,(l) are harmonic on DE U 
oDE' From Green's second formula we obtain 

{ (uo aUl _ U1 auo) ds 
JaDe an an o. 

Since Uo = U1 = 0 on aD, this becomes 

{ (uo aUl _ Ul auo) ds + { (uo aUl _ Ul auo) ds = O. 
Jauo an an Jaul an an 

We may reverse the direction of the unit normal vector, and take it to 
be the usual outer normal direction to the disks Uo and U1 . With this 
switch in sign, the integral over aUo is 27l'Ul ((0) and the integral over aUl 

is -27l'UO((1), by Green's third formula (1.3). Hence Ul((O) = UO((l), and 
g((o, (d = g((l, (0)' 

If we had available the machinery of differential forms and Green's the­
orem for manifolds, we could carryover the proof for planar domains im­
mediately to a finite bordered Riemann surface. However, we can also 
proceed directly by "triangulating" R and by applying Green's formula on 
each triangle. 
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Let R be a finite bordered Riemann surface, with Green's function g(p, q), 
and fix points qo, ql E R. Our first step is to cut R into curvilinear ''tri­
angles" To, TI , ... ,Tn such that each Tj is contained in some coordinate 
patch, say with coordinate map Zj(p), and aTj consists of three smooth 
arcs joining the three "vertices" of Tj . Thus if j i- k, then either Tj is dis­
joint from Tk, or they share only a common vertex, or they share a common 
side consisting of a smooth arc that has opposite orientations with respect 
to the two triangles. We can carry out this triangulation procedure for any 
planar domain with piecewise smooth boundary, and since R is covered by 
a finite number of coordinate patches, we can triangulate R by focusing on 
the coordinate patches one by one. We assume that qo lies inside To and ql 
inside TI . 

Define uo(p) = g(p, qo) and UI(P) = g(p, qr). From Green's third formula 
for j = 0,1, and from Green's second formula for j 2': 2, we obtain 

where the integral over &Tj is taken with respect to the coordinate map 
Zj(p). Suppose, is a common side of two triangles. Let vo(p) and VI(P) 
be conjugate harmonic functions for Uo(P) and UI(P), defined on,. Then 
we can express the normal derivatives of the Uj'S in terms of the tangential 
derivatives of the v/s by the Cauchy-Riemann equations, and obtain 

1 (uo aUl - Ul auG) ds = - J (uo aVl - UI avo) ds 
"f an an as as 

i UIdvO - UOdVl. 

Now, the right-hand integral is independent of the coordinate map, and it 
changes sign if we reverse the direction of ,. Thus if we add up all the 
integrals in (4.1), the integrals over the common sides of adjacent triangles 
cancel, and we are left with the integrals over the sides of triangles on aR. 
Since both UI and U2 are zero on aR, the integrals over these sides vanish, 
and we obtain 
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Thus uo(qd = Ul(qO), and the symmetry is established. 

Example. Green's function g(z,() = logl(z - ()/(1- (z)1 for the open 
unit disk ][)) is symmetric in z and (. 

Exercises for XVI.4 

1. Let R be a finite bordered Riemann surface with border 8R, and 
fix q E R. Let h(p) be the (locally defined) conjugate harmonic 
function for Green's function g(p, q) for R. Show that if u(p) is a 
harmonic function on R that is smooth up to 8R, then 

u(q) = ~ r u(p) dh(p). 
21f JaR 

Show further that h(p) is strictly increasing on 8R, and the total 
increase of h(p) around the curves in 8R is 21f. Remark. The inte­
gral can be defined by breaking 8R into arcs contained in coordinate 
disks. It does not depend on the coordinate maps, but it does de­
pend on the orientation of the curves in 8R, which must be oriented 
positively with respect to R. 

5. Bipolar Green's Function 

Not every Riemann surface has a Green's function. However, every surface 
does have a bipolar Green's function. In this section we will prove the 
existence of bipolar Green's function, and in the next we will use it to 
prove the celebrated uniformization theorem. 

Let ql, q2 be distinct points of the Riemann surface R, and let D.l and 
D.2 be disjoint coordinate disks containing ql and q2, respectively, with 
coordinate maps Zl(P) and Z2(P) satisfying zl(qd = 0 and Z2(q2) = o. 
We define bipolar Green's function with poles at ql and q2 to be any 
harmonic function G (p, ql, q2) on R\ {ql, q2} such that 

(5.1) G(P,ql,q2) + log IZl(P)1 is harmonic at ql, 
(5.2) G(p, ql, q2) -log IZ2(p)1 is harmonic at q2, 
(5.3) G(p, ql, q2) is bounded on R\(D.l U D.2)' 

Thus G(p, ql, q2) has a logarithmic pole at ql, and -G(p, ql, q2) has a 
logarithmic pole at q2. Note that G (p, ql, q2) is not uniquely determined. 
It is unique up to adding a bounded harmonic function. 

Example. Bipolar Green's function for the Riemann sphere C* with poles 
at ql = 0 and q2 = 00 is given by G(z, 0,00) = -log Izl. In this case, 
G(z, 0, 00) is uniquely determined up to adding a constant, since a bounded 
harmonic function on C* is constant. 
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Example. If Green's function g(p, q) exists for the Riemann surface R, 
then 

is a bipolar Green's function for R. 

Theorem. For each pair of distinct points qI, q2 on a Riemann surface, 
there is a bipolar Green's function G (p, ql, q2). 

The technical part of the proof is contained in the following lemma. 

Lemma. Let S be a finite bordered Riemann surface, and let ql, q2 be 
distinct points of S. Let BI = {lZI (p) I :S a} and B2 = {IZ2(p)1 :S a} be 
disjoint closed coordinate disks, where Zl(ql) = 0, Z2(q2) = o. There is a 
constant C > 0 such that 

P E R\(BI U B2), 

for all Riemann surfaces R containing S U oS for which Green's function 
gR(p, q) exists. 

It suffices to establish the lemma for finite bordered Riemann surfaces R 
containing S U oS. Let p > 0 satisfy p < a. For j = 1,2, let Aj be the 
closed coordinate disk {lzj(p)1 :S p}, and let Mj = Mj(R) be the maximum 
of gR(p, qj) on oAj. For p E oBj we have 

gR(p,qj) + log IZj(p) I :S max{gR(q,qj): q E oBj} + log a, 

and 9R(p, qj) + log IZj(p)1 is harmonic on Bj . By the maximum principle, 
the estimate persists for all p E B j . Taking the supremum over p E oAj , 

we obtain 

Mj+logp:S max{9R(q,qj):qEOBj }+loga. 

Thus there is Pj E oBj such that Mj + log p :S gR(Pj, qj) + log a, or 

Mj - 9R(Pj,qj) :S log(a/p). 

Now, Mj - gR(p,qj) is a positive harmonic function on S\(AI U A2). If 
we apply the Harnack estimate from Section 2 to the Riemann surface 
S\(AI U A2) and the compact subset OBI U oB2, we obtain a constant Co, 
independent of R, such that Mj - 9R(p, qj) :S Co for P E OBI U oB2. Thus 

(5.4) Mj - Co :S gR(p, qj) :S Mj , P E OBI U oB2· 

Since 9R(p, ql) is harmonic for P E B2 and satisfies (5.4) on OB2, it must 
satisfy (5.4) for all P E B2 . In particular, 

MI - Co :S gR(q2, qt) :S MI· 
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Similarly, 

M2 - Co ~ gR(ql, q2) ~ M2· 

Since gR(q2, ql) = gR(ql, q2), these estimates imply that IMI - M21 ~ Co. 
From (5.4) we then obtain 

Since Green's function vanishes on 8R, this estimate persists on R\(BI U 

B2)' by the maximum principle. This establishes the lemma, with C = 2Co. 
Now we complete the proof by appealing to compactness results for uni­

formly bounded families of harmonic functions. Conceptually, the easiest 
way to proceed is to use Rad6's theorem and exhaust R by a sequence 
of finite bordered Riemann surfaces with Green's functions gn(P, q). The 
differences Gn(p, q}, q2) = gn(P, ql) - gn(P, q2) are then uniformly bounded 
for P outside of coordinate disks containing ql and q2. We pass to a con­
vergent subsequence, and the limit is bipolar Green's function G(p, q}, q2). 

There is a useful trick that allows us to bypass Rad6's theorem. It is 
to approximate R by surfaces R\BE, where BE is a closed coordinate disk 
{lzo(P)1 ~ c} centered at some arbitrary point Po E R. Green's func­
tion gE(P,q) exists for R\BE, and we can form bipolar Green's function 
gE(P, ql) - gE(P, q2). The lemma and compactness results allow us to pass 
to a normal limit through some sequence Cj --+ 0, to obtain a bipolar 
Green's function G(p, ql, q2) for R\{po}. Since G(p, q}, q2) is bounded near 
the isolated singularity Po, it extends harmonically to Po and is a bipolar 
Green's function for R. 

Exercises for XVI.5 

1. Determine all bipolar Green's functions for the complex plane C. 

2. Determine all bipolar Green's functions for the Riemann sphere C*. 

3. Write out the details for the proof that bypasses Rad6's theorem. 
Hint. See Exercise 2.3. 

6. The U niformization Theorem 

A Riemann surface R is simply connected if any closed path in R can be 
deformed continuously to a point. This occurs if and only if any two paths 
in R from Po to PI can be deformed to each other through a continuous 
family of paths from Po to Pl. If R is simply connected, and if S is a 
Riemann surface conformally equivalent to R, then S is simply connected. 
Our aim in this section is to prove the following fundamental theorem of 
Koebe and Poincare. 
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Theorem (Uniformization Theorem for Riemann Surfaces). Each 
simply connected Riemann surface is conformally equivalent to either the 
open unit disk]j)), the complex plane C, or the Riemann sphere C* . 

One of the main ingredients of the proof is the idea of analytic continua­
tion along a path and the monodromy theorem. Since analytic continuation 
along paths is a local notion, it can be extended to paths on Riemann sur­
faces. The proof of the monodromy theorem (Section V.B) is local, and so 
the monodromy theorem holds on Riemann surfaces. 

Our strategy is to split the proof into two cases. First we show that 
if Green's function for R exists, it can be used to map R conformally to 
the open unit disk. Then if Green's function for R does not exist, we use 
bipolar Green's function to map R to the sphere or the punctured plane. 

So suppose R is a simply connected Riemann surface for which Green's 
function exists. Fix a point qo E R. Since g(p, qo) has a logarithmic 
pole at qo, there is an analytic function 'P defined near qo with a simple 
zero at qo such that 1'P(p) I = e-g(p,qo). The function 'P can be continued 
analytically along any path in R from qo to any other point p, by continuing 
the harmonic conjugate function of g(p, qo) along the path and taking an 
exponential. Since R is simply connected, the monodromy theorem asserts 
that the analytic continuation does not depend on the path from qo to p, 
and consequently, it defines an analytic function 'P on R such that 

I'P(P) I = e-g(p,qo) , pER. 

In particular, I'P(P) I < 1 for pER, and 'P has only one zero, a simple zero 
at qo. Fix ql E R, and define 

'I/J(p) = 'P(p) - 'P(ql) , 
1 - 'P(qI)'P(P) 

pER. 

Then'I/J is analytic on R, I'I/J(P) I < 1 for pER, and 'I/J(ql) = O. If u E :Fq1 , 

then u(p) + log I'I/J(P) I is subharmonic on R, including at qb since 'I/J(qI) = 0, 
and u(P) + log I'I/J(P) I < 0 off a compact subset of R. By the maximum 
principle, u(P) + log I'I/J(P) I < 0 on R. Taking the supremum over u E :Fqp 

we obtain 

(6.1) pER. 

Since 'I/J(qo) = -'P(ql), we obtain using the symmetry of Green's function 
that 

g(qO, ql) + log I'I/J(qo) I = g(qo, ql) - g(ql' qo) = o. 
By the strict maximum principle, equality holds in (6.1). Thus log I'I/J(p) I = 
-g(P,ql) for all pER, and consequently, 'I/J has no zeros on R\{qI}. It 
follows that 'P assumes the value 'P(ql) only at p = ql· Since ql is arbitrary, 
'P is one-to-one. Thus'P maps R conformally onto a domain 'P(R) in the 
unit disk, and further 'P( R) is simply connected. By the Riemann mapping 
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theorem, cp(R) is conformally equivalent to the open unit disk, and then so 
is R. 

For the remaining case of the proof, we require the following lemma. (For 
a more general statement, see the exercises for Section 3.) 

Lemma. If there is a nonconstant bounded analytic function on a Rie­
mann surface R, then Green's function for R exists. 

In this case, for a prescribed point q E R we can find a nonconstant 
analytic function f on R such that f(q) = 0 and If(p)1 < 1 for pER. If 
u E Fq , then u(P}+log If(P) I is subharmonic on R, and u(P)+log If(P}1 < 0 
off a compact subset of R. By the maximum principle, u(P) + log If(P)1 < 0 
on R. This provides an upper bound -log If(P) I for the functions in F q , 

and consequently, Green's function with pole at q exists. 
Now suppose that Green's function for R does not exist. Let G(p, ql, q2) 

be a bipolar Green's function for R. Since R is simply connected, we can 
then find by analytic continuation a meromorphic function cp on R such 
that 

pER. 

In particular, cp has only one zero on R, a simple zero at qI, and only one 
pole on R, a simple pole at q2. Further, there are coordinate disks Bl at ql 
and B2 at q2 such that 

1 
C ~ Icp(p) I ~ c, 

We claim that cp is one-to-one. To see this, let qo be any point of R distinct 
from ql and q2, select a bipolar Green's function G(p, qo, q2), and let CPo be 
a meromorphic function such that 

Icpo(P) I = e-G (P,qQ,q2) , 

Consider the quotient 

t/J(P) = 
cp(p) - cp(qo) 

CPo(p) 

pER. 

pER. 

The poles at q2 cancel, so t/J is a bounded analytic function on R. Since 
Green's function does not exist, the lemma shows that t/J is constant. Since 
the poles at q2 are both simple, the quotient t/J is not zero at q2, and 
consequently, t/J(P) == c =1= o. It follows that cp assumes the value cp(qo) 
at only one point, at p = qo, and consequently, cp is one-to-one. Now, cp 
maps R conformally onto a simply connected domain cp(R) on the Riemann 
sphere C*. If C*\cp(R) has more than one point, then by the Riemann 
mapping theorem cp(R) can be mapped conformally onto the unit disk, 
and consequently, Green's functions for cp(R) and hence for R exist. We 
conclude that C*\cp(R) has at most one point. Thus either cp(R) = C*, or 
else cp(R) is the punctured sphere, which is conformally equivalent to C. 
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Exercises for XVI.6 

1. Show that the symmetry of Green's function used in the proof can 
be derived directly by obtaining an inequality from (6.1) and then 
interchanging the roles of qo and ql. 

2. Consider the fundamental domain U for the modular group U de­
fined in Exercise 1.14. 
(a) Show that with appropriate identification of points of aU the 

fundamental domain can be made into a Riemann surface. 
(b) Show that the Riemann surface is conformally equivalent to the 

complex plane. 
(c) Show that there is an analytic function J(7) on the upper half­

plane lHl such that J(7) = J(7') if and only if there is fEU 
such that f (7) = 7'. This occurs if and only if the Riemann 
surface Tr (defined in Exercises 1.13) is conformally equivalent 
to Trl. 

(d) Show that J (7) has critical points at (J3 i ± 1) /2 of order 2 
and at i of order 1. 

7. Covering Surfaces 

We have seen how a torus is obtained from the complex plane by identifying 
points that are congruent modulo a lattice L. In this section we indicate 
how any Riemann surface can be obtained from a simply connected Rie­
mann surface in roughly the same manner, by identifying congruent points. 
The main new ideas are "covering maps" and "covering transformations." 

Let Rand S be two Riemann surfaces. An analytic map 7r : S --t R is 
a covering map if each pER belongs to an open subset U of R whose 
inverse image 7r-l(U) = UVa is a union of disjoint open subsets Va of S, 
each of which is mapped one-to-one by 7r onto U. If U is a coordinate disk 
in R with coordinate map z(p), then each Va is a coordinate disk in S with 
coordinate map (z 07r)(q). 

c ::::> 
c ::::> Vo 

c ::::> 
c ::::> 

t71" 

C ::::>u 

Example. Let S be the Riemann surface of Vi, constructed from two 
copies of the slit plane C\( -00,0] by identifying edges appropriately. The 
natural map 7r of S onto the punctured plane C\{O} is a covering map. 
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If Do is a disk in C\(-oo,Oj, then 7r- 1(Do) consists of two disjoint disks, 
one on each sheet. If Do is a disk in C\{O} overlapping the negative axis 
(-00,0), then 7r- 1(Do) still consists of two disjoint coordinate disks, one 
in each of the coordinate patches U3 and U4 described in Section 1. 

Example. There is a natural projection 7r of the Riemann surface of log z 
onto the punctured complex plane C\ {O}. In this case, 7r is a covering 
map, and each 7r-1 (Do) consists of infinitely many coordinate disks on the 
surface, one for each sheet used in constructing the surface. 

Example. Let T be the torus determined by the lattice L generated by WI 

and W2. The natural projection 7r(z) = z+L, z E C, is then a covering map 
of C onto T. If Dc is a small open disk in C, then Dc + L is a coordinate 
disk in the torus, and 7r- 1(Dc+L) consists of all translates Dc+mwl +nw2, 
where m and n are integers. Each of these translates is an open disk that 
is mapped one-to-one onto the coordinate disk in T. 

Suppose 7r : S ~ R is a covering map. A covering transformation 
is a one-to-one analytic map cp of S onto S such that 7r( cp(p» = 7r(p) for 
all pES. The composition of two covering transformations is a covering 
transformation and the inverse of a covering transformation is a covering 
transformation. A covering transformation cp permutes the points of each 
set 7r-1({q}), q E R. Further, if U is a coordinate disk on R such that 
7r-l(U) = UVa is a disjoint union of coordinate disks on S as above, then 
cp permutes the Va's, and cp maps each Va one-to-one onto some V,B by 
cp = 7ri31 07ra on Va, where 7ra is the restriction of 7r to Va. In particular, 
if cp(p) = p for Some point p E Va, then cp = 7r;;1 07ra is the identity map 
on the entire coordinate disk Va. Since S is connected, the uniqueness 
principle holds for analytic maps of S (see the exercises in Section 1), and 
consequently, cp is the identity map of S. We state this result formally. 

Theorem. Let 7r : S ~ R be a covering map, and let cp : S ~ S be 
a covering transformation. Then either cp is the identity transformation 
cp(p) == p, or cp has no fixed points. 

Example. Consider the covering map 7r : C ~ T of the complex plane 
onto the torus determined by the lattice L generated by WI and W2. Any 
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translation of the form 

Z EC, 

is a covering transformation. Let 'P be an arbitrary covering transformation. 
Since 'P(O) E 11"-1 ( {O}) = L, there are integers rp, and n such that 'P(O) = 
mwl + nW2. Then the covering transformation 'IjJ-l 0'P satisfies ('IjJ-l 0 
'P)(O) = o. By the theorem, 'IjJ-l 0'P is the identity, and consequently, 
'P = 'IjJ. Thus the covering transformations are precisely the translations by 
the lattice points in L. 

Example. Let 'P : C* --7 C* be a covering transformation for some covering 
map. Then 'P is a fractional linear transformation, so 'P has a fixed point. 
From the theorem we conclude that 'P is the identity. 

It turns out that every Riemann surface can be obtained from a simply 
connected surface by identifying points. We state the relevant theorem 
without proof, though the proof will be outlined in the exercises. 

Theorem. For each Riemann surface R, there is a covering map 11" : S --7 R 
of a simply connected Riemann surface S onto R. If Po E R and qo, ql E 

11"-1 ( {po} ), there is a unique covering transformation 'P of S such that 
'P(qo) = q1· 

The surface S is called the universal covering surface of R. The 
surface R can be regarded as a quotient surface of S, obtained by identifying 
two points qo and q1 of S if there is a covering transformation 'P : S --7 S 
such that 'P(qo) = ql. 

According to the uniformization theorem, there are only three possibil­
ities for the universal covering surface: the open unit disk IDl, the complex 
plane <C, and the Riemann sphere <C*. Most surfaces have the unit disk as 
their universal covering surface. 

Theorem. The only Riemann surface having the Riemann sphere C* as its 
universal covering surface is the sphere itself The only Riemann surfaces 
having the complex plane <C as universal covering surface are the complex 
plane itself, the punctured complex plane C\{O}, and tori. All other Rie­
mann surfaces have the open unit disk as universal covering surface. 

The first statement is a consequence of the fact that the only covering 
transformation 'P : C* --7 C* is the identity. For the second statement, one 
shows that the only analytic functions 'P : C --7 C that can be covering 
transformations are translations. 

Example. Consider the domain consisting of the points z in the upper 
half-plane lHI such that 0 < Re z < 1 and I z - ~ I > ~. The domain D is a 
geodesic triangle with respect to the hyperbolic metric of lHI, with vertices 
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at 0, 1, and ioo. We reflect D in the circular boundary arc I z - ~ I = ~, and 
we obtain a geodesic triangle with vertices at 0, ~, and 1, and with sides 
the semicircles determined by I z - ~ I = ~, I z - i I = i, and I z - ~ I = i· 
We continue reflecting in the semicircular sides. The reflected images of D 
are disjoint geodesic triangles that, together with their sides, fill out the 
semistrip {O < Re z < 1, 1m z > O}. If we reflect D also in its vertical sides, 
and continue reflecting, we fill out the entire upper half-plane with the 
various reflections of D and its sides. The result is a "tiling" of the upper 
half-plane by geodesic triangles. Consider the Riemann map 1r of D onto 
the upper half-plane, normalized by 1r(0) = 0, 1r(1) = 1, and 1r(ioo) = ioo. 
By the Schwarz reflection principle, the map 1r reflects across the circle 
I z - ~ I = ~ and maps the reflected geodesic triangle onto the lower half­
plane, so that the semicircle where Iz - i I = i is mapped to (-00,0) 
and Iz - ~ I = i to (1, +00). We continue reflecting, and we obtain an 
analytic function 1r on the upper half-plane that maps each reflection of D 
onto either the upper or the lower half-plane, and that maps a common 
side between two such reflections to one of the three intervals (-00,0), 
(0,1), and (1, +00). If Do is an open disk disjoint from the real axis, 
then 1r- 1(Do) is a disjoint union of domains, one in "every other" of the 
reflected images of D, each mapped one-to-one onto Do. Something similar 
happens for disks in C\{O, I} meeting JR. Thus 1r is a covering map of the 
upper half-plane onto the twice-punctured plane C\ {O, I}. It represents 
the upper half-plane as the universal covering surface of C\ {O, I}. The 
composition of two successive reflections is a conformal self-map of the 
upper half-plane, hence a fractional linear transformation. Each of these 
is a covering transformation, and in fact, all covering transformations are 
fractional linear transformations that are compositions of an even number 
of reflections. 

o 2 

Exercises for XVI. 7 

1. Show that for m 2': 1, the map 1r(z) = zm is a covering map of 
C\ {O} onto itself. 

2. Show that 1r(z) = eZ is a covering map of C onto C\{O}. 

3. Let 1r : S ---7 R be a covering map. Show that if <p : S ---7 S is 
analytic and satisfies 1r 0 <p = 1r, then <p is onto. 
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4. Show that if {CPn} is a sequence of covering transformations that 
converges normally to cP, then CPn = cP for large n. Remark. The 
covering transformations form a "discrete group." 

5. Consider the covering map 11" : JH[ ---+ C\ {O, I} discussed above. Let V 
be the domain consisting of z E JH[ satisfying IRe z I < 1, I z - ! I > !, 
and Iz +!I > !. 
(a) Show that the images of V U av under the covering transforma­

tions fill out JH[. Sketch how the twice-punctured plane C\{O, I} 
can be obtained from V by identifying points of av. 

(b) Identify the covering transformations corresponding to reflec­
tion in the imaginary axis followed by reflection in one of the 
semicircles in avo Ans. w = z/(1 ± 2z). 

(c) Show that each covering transformation is a finite composition 
of the four covering transformations w = z ± 2 and w = z / (1 ± 
2z). 

(d) Show that the covering transformations form a subgroup of the 
modular group of index 6. Strategy. Show that the funda­
mental domain V is filled out by six congruent copies of the 
fundamental domain U for the modular group. (See Exercise 
1.14.) 

(e) Show that a unimodular matrix corresponds to a covering trans­
formation for 11" if and only if the matrix is congruent to the 
identity matrix modulo 2. Remark. The covering transfor­
mations form the principal congruence subgroup of the 
modular group of level 2. 

6. Let 11" : S ---+ R be a covering map, let qo E S, and let Po = 1I"(qo) E R. 
(a) Show that if ')'(t) , 0 ~ t ~ 1, is a path in R from ')'(0) = Po to 
1'(1) = p, then there is a unique path O"(t), 0 ~ t ~ 1, in S starting 
at 0"(0) = qo, such that l' = 11"00". Remark. We say that (J' is the lift 
of l' from R to S starting at qo. (b) Let 1'0 and 1'1 be two paths in 
R from Po to PI, and suppose there is a continuous deformation 1'8' 
o ~ s ~ 1, of 1'0 to 1'1 with endpoints fixed. Let O"s be the lift of 1's 

to S starting at qo. Show that the paths (J's all terminate at the same 
point of S, and that O"s, 0 ~ s ~ 1, is a continuous deformation of (J'o 

to (J'1. 

7. Let')' be the closed path in C\ {O, I} starting at ! and looping once 
around the circle Izl = l counterclockwise. Let a be the closed 
path in C\ {O, I} starting at ! and looping once around the circle 
Iz - 11 = ~ counterclockwise. Let a1' denote the path a followed 
by 1', and similarly for 1'a. Sketch the lifts of each of the four paths 
a, 1', a1', ')'a to paths in JH[ starting at the lift ~ + ~i of~. Use the 
result to show that a1' cannot be continuously deformed to ')'a. 
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8. Let 7r : S --+ R be a covering map, let qo E S, and let Po = 7r(qo) E R. 
Show that if I : ][)l --+ R is an analytic map such that 1(0) = Po, 
then there is a unique analytic map 9 : ][)l --+ S such that g(O) = qo 
and I = 7r 0 g. Remark. We say that 9 is a lift of I. 

9. Use the covering map 7r : IHI --+ C\ {O, I} and the preceding exercise 
to prove that if :F is a family of analytic functions on the open unit 
disk ][)l that omits the points 0 and 1, then :F is a normal family 
(Montel's theorem). Strategy. Let {In} be a sequence in :F, and 
assume that it has no subsequence that converges normally to 0, 1, 
or 00. Find Zn E ][)l with IZnl S r < 1 such that the I(zn)'s have lifts 
(n, 7r((n) = I(zn), that belong to a compact subset of IHI. Consider 
the lifts gn : ][)l --+ IHI of In that satisfy gn(zn) = (n. 

10. Let R be a Riemann surface, and fix a point Po E R. Let S be the 
set of pairs (p, [1']), where pER and bl is a homotopy class of paths 
in R from Po to p. If pER, U a. is a coordinate disk at p, and l' is 
a path in R from Po to p, define Va.,)' to be the pairs (q, [<7]) E S 
such that q E Ua. and <7 is the path in R that follows l' from Po 
to p and then any path in Ua. from p to q. Define 7r : S --+ R to 
be the coordinate projection 7r(q, b]) = q. (a) Show that S can be 
made into a Riemann surface in which the sets Va.,)' are coordinate 
disks and 7r is analytic. (b) Show that 7r is a covering map of S 
onto R. (c) Show that S is simply connected. Remark. Thus S is 
the universal covering surface of R. 



Hints and Solutions for Selected 
Exercises 

Chapter I: The Complex Plane and Elementary Functions 

Section 1.1 
1. (a) circle, (b) annulus, (c) disk, (d) [-1,1], (e) half-plane, (f) horizontal 
strip, (g) vertical strip, (h) lC\lR, (i) half-plane, (j) empty set. 
2. (a) Substitute z = x + iy, w = u + iv, and use the definitions. 
3. Set z = x + iy, a = a+ i{3, then Re(o'z) = ax + {3y, and the equation 
becomes (x - a)2 + (y - (3)2 = p2. 
4. Apply triangle inequality to z = Rez + iImz, to obtain Izl ::; I Rezl + 
IImzl. Equality holds only when z is real or pure imaginary. 
6. If Izl = 1, then Iz - al = Iz - allzl = Izz - azl = 11 - azl = 11 - o'zl· 
8. Write p(z) = anzn + ... + ao and h(z) = bn_1zn- 1 + ... + boo Equate 
coefficients in the polynomial identity p(z) = (z-zo)h(z)+p(zo), and solve 
for the bj's in terms of the aj's. 
11. If n is even, h(z) = zn-2 + zn-4 + ... + 1, r(z) = 1. If n is odd, 
h(z) = zn-2 + z,,-4 + ... + z, r(z) = Z. 

Section 1.2 
1. (a) e i7r / 4 = (1 + i)/V2, e 57ri / 4 = -(1 + i)/V2, (c) e±i7r/4 = (1 ± i)/V2, 
e±37ri/4 = (-1 ± i)/V2, (e) 2, 2e±27ri/3 = -1 ± iV3, (g) 16. 
3. For 0 < b < 1, an ellipse x 2 /(I+b)2+y2 /(I-b)2 = 1, traversed in positive 
direction with increasing B. For b = 1, an interval [-2,2]. For 1 < b < +00, 
an ellipse traversed in negative direction. For b = pei<p, express equation as 
ei <p/2 (e i (8-<p/2) + pe- i (8-t,?/2)) to see that curve is rotate of ellipse or interval 
by cp/2. 
4. n = 4,8, 12, .... 
5. (b) Apply (a) to z = ei8 and to z = e-i8 , add the identities, and use the 
definitions of sine and cosine. 
6. (a) Apply the fundamental theorem of algebra. (b) Expand the product 
in (a) and find the coefficient of zn-1. (c) Evaluate the identity in (a) at O. 
(d) Apply 5(a) to z = w}. 
7. Izn + 11;::: Iznl- 1 = Rn - 1, so 1/lz" + 11 ::; 1/(Rn -1). Now multiply 
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by Izml = Rm. 
8. cos 40 = cos4 0-6 cos2 0 sin2 0+sin4 0, sin 40 = 4 cos3 0 sin 0-4 cos 0 sin3 0 

Section 1.3 
2. If P = (X, Y, Z) corresponds to z = (X + iY)/(I - Z), then -P cor­
responds to -(X + iY)/(I + Z) = _(X2 + y2)/[(I + Z)(X - iY)] = 
-(1 - Z2)/[(I + Z)(X - iY)] = -(1 - Z)/(X - iY) = -I/z. 
4. Show that if z corresponds to (X, Y, Z), then 1/ z corresponds to its ro­
tate (X, -Y, -Z). 
6. (a) Follows from the fact that the usual euclidean distance in 1R3 is a 
metric. (b) Start with d(zl, Z2)2 = (Xl - X 2)2 + (Yl - y2)2 + (Zl - Z2)2, 
expand, substitute, and do the algebra. (c) d(z, (0) = 2/JI + Iz12. 
Section 1.4 
4. (a) Use four sheets, can make branch cuts along real axis from -00 to o. 
(b) Use two sheets, can make branch cuts along horizontal line from i - 00 

to i. (c) Use five sheets, can make branch cuts along real axis from -00 

to 1. 

Section 1.5 
3. Check from definitions that eZ = eX (cos y - i sin y) = eZ • 

4. Substitute z = 0, obtain eA = 1, >.. = 27r'ffii. 
Section 1.6 
3. f(rei8 ) = logr + iO, -7r/2 < 0 < 37r/2. 
4. Any straight line cut from Zo to 00, in any direction, will do. 

Section 1.7 
1. (a) e27rne-7r/4eilogV2, -00 < n < 00, (b) _ie27rne7r/2, -00 < n < 00, 

(c) ±I/v'2, (d) e27rnelog2+7r/3ei(-log2+7r/3), -00 < n < 00, 
2. -7r /2 + i log 2 + 47rm + 27rin, -00 < m, n < 00, 
5. ii has values e27rne-7r/2, -00 < n < 00, so that (ii)i has values 
e i (27rn-7r /2+27rki), which coincides with -ie27rm , -00 < m < 00. 
6. Phase factors e 27ria at 0 and e27rib at 1. Require e27riae27rib = 1, or a+b = 

an integer, to have a continuous single-valued determination of za(I- z)b. 
7. Use two sheets with slits [Xl, X2], [X3, X4], .... If n is odd, also need slit 
[xn' +00). Identify top edge of slit on one sheet with bottom edge of slit 
on other sheet. Topologically the surface is a sphere with one handle for 
each slit after the first one, and punctures corresponding to 00. If n = 3 or 
n = 4, surface is a torus. 
8. The function is zY'-I---I/7""z""""3. If Izl > 1, can use the principal value of 
the square root to define a branch of the function. There are branch points 
at z = 0 and z3 = 1, that is, at 0,1, ±e27ri/ 3 . Make two branch cuts by 
connecting any two pairs of points by curves; for instance, connect 0 to 1 
by a straight line, and the other cube roots of unity by a straight line or 
arc of unit circle. The resulting two-sheeted surface with identification of 
cuts and with points at infinity is a torus. 
9. Function is (z+I)JZJ(I -I/z3)(1 + I/z). If Izl > 1, the second square 
root can be defined to be single-valued. The values then return to the neg-
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ative of their initial values when z traverses the circle, because Vz does. 
10. Values return to their initial values. 
11. Use three sheets. Make two cuts, from 1 to ±e21fi/3 , on each sheet. In 
this case the cuts share a common endpoint. 

Section 1.8 
2. Use cos(x+iy) = cos x cos(iy) -sinx sin(iy) = cos x cosh y-i sin x sinh y, 
take the modulus squared, and use cosh2 y = 1 + sinh2 y. The identity for 
I cos zl2 shows that the only zeros of cos z are the zeros of cos x on the real 
axis, that is, 7r/2 + m7r, m = 0, ±1, ±2,···. 'Translation by any period A 
of cos z sends zeros to zeros. Thus any period is an integral multiple of 7r, 
and since odd integral multiples are not periods, the only periods of cos z 
are 27rn, -00 < n < 00. 
3. Since coshz = cos(iz), the zeros of coshz are at i7r/2 + im7r, m = 
0, ±1, ±2,"', and the periods of coshz are 27rmi, m = 0, ±1, ±2,···. The 
function sinh z = -i sin( iz) is treated similarly. 
4. If z = tan w, then iz = (eiw - e-iw)/(eiw +e-iw ) = (e2iw _1)/(e2iW + 1). 
Solve for e2iw and take logarithms. 
6. Use one copy of the doubly slit plane S for each integer n, and define 
fn(z) = Tan- 1z+n7r on the nth sheet. Attach the nth sheet to the (n+1)th 
sheet along one of the cuts, so that fn(z) and fn+1(Z) have the same values 
at the junction. 

Chapter II: Analytic Functions 

Section 11.1 
1. (a) 1, (b) 0, (c) 2, (d) O. 
2. Bounded for Izl S; 1, ~ 0 for Izl < 1. 
4. For fixed k, (1 - l/N)(l - 2/N)· .. (1 - (k - l)/N) ~ 1 as N ~ 00. 
5. Use bn - bn - 1 = (l/n) - J::-1 (l/t)dt < O. 
9. (a) limsup = 2, liminf = 0, (b) limsup = +00, liminf = -00, (c) 
limsup = 1, liminf = -1, (d) limsup = +00 if Ixl > 1, 1 if Ixl = 1, 0 if 
Ixl < 1; liminf = -00 if -00 < x < -1, -1 if x = -1, 0 if Ixl < 1, 1 if 
x = 1, +00 if x > 1. 
10. (a) continuous on C, (b) continuous for z -!- 0, (c) continuous for z -!- 0, 
(d) continuous on rc. 
11. No limit at points of (-00,0]' continuous on C\( -00,0]. 
12. No limit at 0, has limit at all other points of closed lower half-plane, 
limit = -7r at points of (-00,0). 
13. ~ 0 if Re 0; > 0, ~ 1 if 0; = 0, otherwise no limit at O. 
15. (a) open, (b) closed, (c) open, (d) neither, (e) open, (f) neither, (g) 
both open and closed. 

Section 11.2 
1. (a) 2z, (e) -2z/(z2 + 3)2, (g) (ad - bc)/(cz + d)2. 
2. Differentiate 1 + z + Z2 + ... + zn = (1 - zn+l )/(1 - z). 
4. Use (f(z + ~z) - f(z))/ ~z f::j 2az + bE + (bz + 2cZ)~z/ ~z. 
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5. Use (g(z + ~z) - g(z))/ ~z = (f(z + ~z) - J(z))/ ~z. 
6. Use twice the theorem that if gn(t) converges uniformly to g(t) for 
o ~ t ~ 1, then fOl gn(t)dt has limit fOl g(t)dt, once to show that H(z) 
is differentiable, and again to show that the derivative is continuous. 

Section 11.3 
1. (a) 1/ cos2 z, (b) 1/ cosh2 z, (c) tanzsecz. 
2. i cos z. 
5. Use J' = (au)/(ax) - i(au)/(ay) = (av)/(ay) + i(av)/(ax). 
8. Since V'v is the rotate of V'u by 71"/2, the directional derivative of v in 
the O-direction is equal to the directional derivative of u in the r-direction. 
This is the first polar Cauchy-Riemann equation. The second follows from 
the same argument. 

Section 11.4 
2. Write J(z) = ceaLogz and differentiate. 
3. J'(z) = (1 - 2z)/(2J(z)). 
4. Derivative = 1/(1 + z2). Any two branches of tan- 1 z differ by a con­
stant, so derivatives are same. 
5. Derivative = ±I/v'I - Z2. Derivatives of branches of cos-1 z are not 
always the same. 
7. This is the change of variable formula for a double integral, since the 
Jacobian is 1f'(z)12. 
8. 671". 
9. Use the area formula separately on the top half and the bottom half of 
the unit disk, where the function is one-to-one. Integral = 271". 

Section 11.5 
1. (a) 2xy+C, (c) -coshxcosy+C, (e) -(I/2)log(x2 +y2) +C. 
4. Use {)2 (zh) / {)x2 = z{)2 h / {)x2 + 2{)h / {)x and similar identity for y-deriva­
tives, add, equate to 0, set h = u + iv, and take real and imaginary parts, 
to obtain Cauchy-Riemann equations for u and v. 
7. Arg z is a harmonic conjugate on C\( -00,0]. Any other harmonic con­
jugate has form Argz + C, which does not extend continuously to C\{O}. 
8. -(i/2)(logz)2. 

Section 11.6 
1. To aid sketching, express z in polar coordinates. 
4. w = e7rz /(2A). 

5. w = z7r/(2B). 
6. Not defined at z = 0, not conformal at z = ±1. If J(z) = A, then 
z = (A ± VA2 - 4)/2. If z = pew, then w = u + iv = pcosO + ipsinO + 
(cos O)/p-i(sin O)/p, and u2/(p+I/p)2+ v2/(p-I/p)2 = 1. Since J(D) = 
J(j[J)), and J is at most two-to-one, J is one-to-one on D. Since J maps aj[J) 
onto [-2,2], and J maps onto C, the image of Dis C\[-2,2]. 
8. Not defined at z = 0, not conformal at z = ±eia/2 • The expression 
J(z) = eia/2(e-ia/2z + I/e-ia/ 2z) shows that J(z) is a composition of the 
rotation by -a/2, the function of Exercises 6 and 7, and a rotation by a/2. 
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Thus J maps {Izl > 1} one-to-one onto the complement rotate of [-2,2] 
bya/2. 
9. Suppose J(O) = 0 and U x i= 0 at O. The tangents in the orthogonal 
directions (1, t) and (-t, 1) are mapped to the tangents in the directions 
(ux,vx) + t(uy,Vy) and -t(ux,vx) + (uy,Vy). The orthogonality of these 
directions for all t yields uxuy + VxVy = 0 and u~ + v~ - u~ - v; = O. These 
equations and some algebra lead to U x = ±vy and u y = =fVx . 

Section II.7 
1. (a) w = 2i(z-(1+i))/(z-2), (c) w = (i-1)/(z-2), (f) w = z/(z-i), 
(h) w = i(z - i)/(z + i). 
2. Circle --+ straight line through 0 and i - 1, disk --+ half-plane on lower­
left of line, real axis --+ straight line through i - 1 orthogonal to image of 
circle, that is, with slope = 1. 
4. Unit circle --+ imaginary axis, unit disk --+ right half-plane, [-1, 1] --+ 

arc of circle Iw - i/21 = 3/2 in right half-plane from -i to 2i. 
8. If w/(az + (3)/(,,(z + 8), divide each coefficient by the square root of 
a8 - (3"1 to obtain representation with ad - be = 1. Representation is not 
unique, as can multiply all coefficients by -1. 
9. If J(z) maps the three real numbers XI, X2, X3 to 0, 1, 00, then J(z) is 
represented explicitly as A(Z-Xl)/(Z-X2), where A is real. Any represen­
tation with ad - be = 1 is obtained from this by multiplying each coefficient 
by the same (real) constant. 

Chapter III: Line Integrals and Harmonic FUnctions 

Section IIL1 
1. (a) 72/5, (b) 16, (c) 32. 
3. 2/3. 
4. -7rR2 /2. 
6. Differentiate by hand, use uniform convergence of l/[(z - w)(z - (w + 
~w))] to 1/(z - W)2 for z E "I. 
Section III.2 
1. (a) h = (X2+y2)/2, (b) h = (2x3+y6)/6, (c) h = xy, (d) not independent 
of path, ~zl=l = -27r. 

2. ~ZI=T = 27r /r2 i= O. 
6. Suppose 1"I(t) I = 1 for 0 :::; t :::; 1, "1(0) = "1(1) = 1. Follow hint, write 
"I(t) = ei(lj(t), tj-l :::; t:::; tj. Note OJ(tj) - OJ+l(tj) is an integral multiple 
of 27r. Add multiples of 27r to the OJ's, obtain O(t) continuous for 0 :::; t :::; 1 
such that 0(0) = 0 and "I(t) = ei(l(t). Note 0(1) = 27rm for some integer m. 
Deform by ls(t) = ei [(l-s)e(t)+27rsm]. 

Section IIL3 
1. (a) du = dx - dy, dv = dx + dy, v = X + y, (b) v = 3x2y - y3, (c) 
v = coshxsiny, (d) v = x/(x2 + y2). 
4. u has a harmonic conjugate Vl on the annulus slit along (-b, -a), and 
also a harmonic conjugate V2 on the annulus slit along (a, b). Since Vl - V2 
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is constant above the slit (-b, -a), and also constant below the slit, VI 

jumps by a constant across the slit. Arg z also jumps by a constant across 
the slit. By appropriate choice of C, VI - C Arg z is continuous across the 
slit (-b, -a), and u - Clog Izl has a harmonic conjugate VI - C Arg z on 
the annulus. For the identity, use the polar form of the Cauchy-Riemann 
equations to convert the r-derivative of u to a O-derivative of v. 

Section 111.4 
1. Express dxdy in polar coordinates centered at Zo and integrate first with 
respect to O. 

Section I1L5 
1. Note that if u attains its maximum or minimum on D, it is constant. 
2. Izn + >'1 :::; rn + p, with equality at rei<p/ne27rik/n. 

6. Set 9 = (z + 1)-c f. Then Igl :::; III. Take R large so that Ig(z)1 :::; M 
for Izl 2: R. The lim sup condition implies that there is 8 > 0 such that 
Ig(z)1 :::; M +e for Izl < R, 0 < Rez:::; 8. Apply the maximum principle to 
the domain {Izl < R,Rez > 8}, to obtain Ig(z)1 :::; M +e. Then let e ---t O. 
9. Let e > O. Take 8 > 0 such that u(z) 2: -e for zED, 0 < Izl < 8. Let 
p > O. Take R > 0 so large that u(z) + plog Izl > 0 for Izl > R. By the 
maximum principle, u(z) + plog Izl 2: -e + plog8 for zED, 8 < Izl < R, 
hence for all zED such that Izl > 8. Let p ---t 0, then let e ---t 0, to obtain 
u 2: 0 on D. 

Section I1L6 
1. ¢ = 2x + y, 'Ij; = 2y - x, I(z) = (2 - i)z. Streamlines are straight lines 
with slope 1/2. Flux across [0,1] is -1, across [O,i] is 2. 
2. (a) ¢ = a log r + (30, which is defined only locally, or on a slit plane. (b) 
'Ij; = aO - (3 log r, I(z) = (a - i(3) log z. (c) Flux is 27l'a, the increase of 'Ij; 
around circle centered at O. Origin is source if a > 0, sink if a < O. 
5. 'Ij;(z) = A[2arg(eZ - 1) - 7l' -1], where A > O. 
6. Stream function of conjugate flow is -¢, complex velocity potential is 
-i(¢ + i'lj;). 
7. Stream function of conjugate flow is - arg z, complex velocity potential 
is -i log z, speed is 1/lzl, particles travel faster near O. 

Section 111.7 
1. (TI - T2)(2/7l')[Arg(1 + z) - Arg(1 - z)] + T2 
2. ¢ = VI (2/7l')[Arg(1 + z2) - Arg(l- z2)] 
4. ¢ = 50[Arg(sinz + 1) - Arg(sinz - 1)] 
5. u = (2/7l')(TI - To)x + (To - Td/2 
7. ¢(x, y, z) = cz 
8. ¢ = -1/r 
9. F = (2 - n)ur/rn - 1 
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Chapter IV: Complex Integration and Analyticity 

Section IV.l 
1. (a) i/2, (b) -1/2, (c) O. 
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2. (a) 27ri for m = -1, otherwise 0, (b) 27ri for m = 1, otherwise 0, (c) 27r 
for m = 0, otherwise O. 
3. (a) 0, (b) 27rRm+1, (c) 27riR2 for m = 1, otherwise O. 
4. Substitute z = x - iy, dz = dx + idy, and apply Green's theorem. 
6. ILogzl = ((logR)2 + (}2)1/2 :::; V2logR for R > e7r . Apply the ML­
estimate, with M = V2(logR)/R2, L = 27rR. 

Section IV.2 
1. The integrals are all independent of path and can be evaluated by finding 
a primitive. (a) 27r5i/5, (b) 0, (c) i(e7r - e-7r ), (d) O. 
2. In the right half-plane, use Logz as a primitive. Integral = Log(i7r)­
Log(-i7r) = i7r/2 - i(-7r/2) = 7ri. In the left half-plane, use logr + iO, 
0<0 < 27r, as a primitive. Integral = i7r/2 - i(37r/2) = -7ri. 
3. A primitive is zm+l/(m + 1), m f= -1. 

SeCtion IV.3 
1. Apply Cauchy's theorem and pass to limit. Integrals over vertical sides 
of rectangles ---7 0 as R ---7 00, by the M L-estimate. J!!R ---7 J2ir, and the 

integral over other horizontal side ---7 et2 /2 J;:;'oo e-x2/2e-ixtdx. 

3. (a) Follow hint to estimate J~l by Jo7r IJ(ei9 )12dO and by J:7r IJ(ei9 )12dO. 

Use Jo27r IJ(ei9 )1 2dO = J:7r J(ei9 )J(ei9 )dO = 27r 2>~' (b) Write Ck = ak + 
ibk and apply estimate in (a) twice. (c) The double sum is J; J(x?dx. 

Estimate this by J~l IJ(xWdx. 

Section IV.4 
1. (a) 27ri, (b) 0, (c) 0, (d) 7ri, (e) 27ri/[(m - I)!] for m ~ 1, 0 for m :::; 0, 
(f) 27ri, (g) 7ri/2, (h) -7ri/2 + 7ri/4e2 • 

2. A harmonic function is locally the real part of an analytic function, and 
any derivative of a harmonic function can be expressed in terms of the real 
part of a some complex derivative of that analytic function. 

Section IV.5 
1. If u :::; C, and u = Re J, then ef is bounded, hence constant by Liou­
ville's theorem, and J is constant. 
2. If J does not attain values in the disk Iw - ci < c, then 1/(1 - c) is 
bounded, hence constant by Liouville's theorem, and J is constant. 
4. Apply the Cauchy estimates for J(m+l)(z) to a disk Iz - zol < R, and 
let R ---7 00, to obtain J(m+l)(zo) = O. If J(z) is a polynomial of degree 
:::; m such that J(z)/zm is bounded near 0, then J(z) = czm. 

Section IV.6 
1. Rotate and apply result in text. 
2. The analyticity of H(z) follows from the theorem in the text. If Ihl :::; M, 
take C = M(b - a) and A = max(lal, Ibl). 
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Section IV.8 
2. By the Leibniz rule and Exercise 1, the z-derivative is bz + 2cz. The 
function is complex-differentiable at z if and only if bz + 2cz = O. If 
b = c = 0, the function is entire. Otherwise this locus is either {O} or a 
straight line through 0, and there is no open set on which the function is 
analytic. 
6. Using the Leibniz rule, obtain (8/8z)(f[}) = 1(8/8z)[} + [}(8/8z)1 = 

1(8/8z)[} = Ig', then apply (8.4). 
7. Since the coefficients of the Taylor expansion depend linearly on I, and 
since any I is a linear combination of the functions 1, z, z, Z2, z2, Izl2 and an 
error term O(lzI3 ), it suffices to check the formula for these six functions. 

Chapter V: Power Series 

Section V.I 
6. Note that xlogx and x(10gx)2 are increasing for x > 1, so the terms of 
both series are decreasing. For L 1/ (k log k), there are 2n terms between 
k = 2n + 1 and k = 2n+1, each::::: 1/(2n+l(n + 1) log 2, so these terms have 
sum::::: 1/(2(n + 1) log 2). Thus the series diverges, by comparison with 
the harmonic series. The other series is treated similarly, using an upper 
estimate. These series can be also treated using the integral test. 
7. Observe that L~ ak = 8n - 8m - I , where 8n is the nth partial sum of 
the series. 

Section V.2 
1. Set tf,(x) = 0, check that Jk(x) attains its maximum Ck = 1/2Vk when 
xk = vk. Since Ck ---+ 0, !k ---+ 0 uniformly. 
2. gk(X) ---+ g(x), where g(x) = ° for 0 ~ x < 1, g(l) = 1/2, and g(x) = 1 
for x > 1. Convergence is uniform on [0,1 - cJ for any C > 0. Not uniform 
on [0,1]' because limit function is not continuous at 1. Convergence is 
uniform on [1 + c, +00) for any c > 0. 
3. For any c > 0, Ik(z) = zk-I converges uniformly for Izl ~ 1 - c. 
4. Apply the Weierstrass M-test. 
5. Converges for x =I- 1. 
6. Check that xk /(1 + x 2k ) is decreasing for x ::::: 1. Apply Weierstrass 
M-test, with Mk the value of the summand at 1 + c. 
8. Apply the Weierstrass M-test. 
9. If it converges uniformly for Izl < 1, then it also converges uniformly for 
Izi ~ 1. 

Section V.3 
1. (a) 1/2, (b) 6, (c) 1, (d) 5/3, (e) 1/V2, (f) +00, (g) 2, (h) 0, (i) e. 
2. (a) Iz -11 < 1, (b) all z, (c) Iz - 21 < 1/2, (d) Iz + il ~ 1, (e) z = 3, (f) 
Iz - 2 - il ~ 1/2. 
3. Neither series converges at z = 1, so R = 1. 
5. Differentiate the geometric series twice, obtain (a) z/(I- z)2, (b) -z + 
z/(1 - z)2 + 2Z2 /(1- z)3. 
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Section V.4 
1. (a) J2, (b) 7r/2, (c) 7r/2, (d) \1'5, (e) 3, (f) 2. 
2. Rewrite J(z) as (z + l)/(z - e21ri/3)(z+ e21ri/3). Singularities of J(z) are 
at ±e21ri/3, and distance from 2 to nearest singularity is J7. 
3. Log z extends to be analytic for Iz - (i - 2) I < \1'5, though the extension 
does not coincide with Log z in the part of the disk in the lower half-plane. 
4. Near 0 the function coincides with one of the branches of (1±v'1 - 4z)/2. 
The radius of convergence of the power series of either branch is 1/4, which 
is the distance to the singularity at 1/4. 
6. coshz = E:=oz2n/(2n)!, sinhz = E:=oz2n+l/(2n+ I)!, R = 00. 

7. Tan-1(z) = z - z3/3 + zs /5 - z7/7 + ... , converges for Izl < 1. 
10. Use J(n)(z) = 0:(0: - 1)·.· (0: - n + 1)(1 + z)a-n and the formula for 
the coefficient of zn. The series reduces to a polynomial for 0: = 0,1,2,···. 
Otherwise radius of convergence is 1, which is distance to the singularity 
at -1. Can obtain the radius of convergence also from the ratio test. 
13. Use power series. 

Section V.S 
1. (a) E~o(-I)n/z2n+2, (c) E:=ol/n!z2n, (d) E:=ol/(2n+l)!z2n. 
4. If Izl ::; M for z E E, and R > M, then 1/(w - z) = Ezn/wn+l 
converges uniformly for z E E and Iwl > R. Integrate term by term, 
obtain J(w) = E:=obn/wn+1, Iwl > R, where bn = ffEzndxdy. 
5. J(w) = 7r/w for Iwl ~ 1, J(w) = mJi for Iwl ::; 1. To find the formula 
for Iwl < 1, break the integral into two pieces corresponding to Izl > Iwl 
and to Izl < Iwl, and use geometric series. 

Section V.6 
1. 1/ cosz = 1 + (1/2)z2 + (5/24)z4 + (1/12)z6 + O(z8). 
2. z/ sin z = 1 + (1/6)z2 + (7/360)z4 + O(z6). 
3. R = 1 = distance to singularity at -1. 
4. Bl = 1/6, B2 = B4 = 1/30, B3 = 1/42, Bs = 5/66. 
5. Eo. = 1, E2 = -1, E4 = 5, E6 = -61. 
6. Ji/:)(z) ~ J(k)(z) uniformly for Izl ::; p - c, so ak.m = J;:)(O)/k! ~ 
J(k) (O)/k! = ak. . 

Section V.7 
1. (a) simple zeros at ±i, (b) simple zeros at ±e1ri/4, ±e31ri/4, (c) triple 
zero at 0, simple zeros at n7r, n = ±1, ±2,···, (d) double zeros at n7r, 
n = 0, ±1, ±2,···, (h) simple zeros at -7ri/4 + n7ri/2, n = 0, ±1, ±2,· .. , 
(i) no zeros. 
2. (a) analytic at 00, (b) analytic at 00, simple zero, (c)-(i) not analytic 
at 00. 

6. Apply argument in text to J(z) - J(zo). 
9. Write J(z) = (z - zo)Nh(z), where h(z) has a convergent power series 
and n(zo) =1= O. Take g(z) = (z - zo)e(logh(z»/N for an appropriate branch 
of the logarithm. 
10. Show that the zeros of J(z) are isolated. At a zero of J(z), write 
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f(z)N = (z - zo)mh(z) where h(zo) =I- 0, and show that N divides m. 
13. feD) cD u aD. If fez) is not constant, then feD) is open, and feD) 
cannot contain any point of aD. 

Section V.8 
1. {I z3 - 1 returns to e27ri / 3 times initial value, other functions return to 
initial values. 
2. ft(z) = it + 2::=I((-I)m-le-itm/m )(z - eit)m, h7r(z) = fo(z) + 27ri. 
9. Let h be the infimum of t > a such that the power series expansion of 
P( z, it (z)) at 'Y( t) is not identically zero, and apply the uniqueness principle 
for t < h near h. 

Chapter VI: Laurent Series and Isolated Singularities 

Section VI.l 
1. (a) Laurent expansions - 2::=-1 zn for ° < Izl < 1, and 2:~~-oo zn for 
Izl > 1. 
2. (a) 2:an(z + l)n, where an = -1 for n :S -1 and an = _1/2n+1 for 
n 2: 0. Converges for 1 < Iz + 11 < 2. 
4. If fez) = 2:anzn is even, then fez) = f(-z) = 2:an(-I)n zn. By the 
uniqueness of the expansion, an = (-l)nan, and an = ° if n is odd. 
5. Let fez) = 2:anzn. Then a_I = ~zl=rf(z)dz, and fez) - a-dz has 

the primitive 2:n#-1 (an/(n + 1))zn+l. 
Section VI.2 
1. (a) double poles at ±1, principal parts =t=(1/4)/(z ± 1)2, (c) removable 
singularity at 0, (e) essential singularity at 0, (g) analytic on C\ [0, 1], no 
isolated singularities, (h) double pole at 1, principal part 1/(z - 1)2 -
(1/2)/(z - 1). 
2. (a) 3, (b) 00, (c) 7rV2, (d) 7r. 
3. (a) tan z has two poles in the disk Izl < 4, simple poles at ±7r /2, principal 
parts -1/(z±7r/2). If h(z) = -1/(z-7r/2) -1/(z+7r/2), then fo(z) = 

fez) - h(z) is analytic for Izi < 4, and h(z) is analytic for Izl > 3 and 
---> ° as z ---> 00. By uniqueness, fez) = 10(z) + h(z) is the Laurent 
decomposition. (b) Use geometric series. Converges for Izl > 7r/2. (c) 
ao = a2 = 0, al = 1 + 8/7r2 . (d) 37r/2. 
4. Use uniqueness of the Laurent decomposition. 
7. By Riemann's theorem, g(z) = (z-zO)N fez) has a removable singularity 
at Zo, hence fez) = g(z)/(z - zO)N is meromorphic at zo0 
11. For starters, check the function fez) = 1/(z - zO)N. 
13. Suppose values of fez) do not cluster at L as z ---> z00 Then g(z) = 

1/(J(z) - L) is bounded for Iz - zol < c, z =I- Zj. Apply Riemann's theorem 
first to the z1's for j large, then to Zo, to see that g(z) extends to be analytic 
for 1 z - Zo 1 < c, and 1 (z) is meromorphic there. 

Section VI.3 
1. (a) removable singularity at 00, (c) essential singularity at 00, (e) simple 
pole at 00, (g) removable singularity at 00, (h) 00 not an isolated singularity. 
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2. Laurent expansion has infinitely many negative powers of 1/ z, so singu­
larity at 00 is essential. 
3. If ef has a removable singularity at 00, then it is bounded, hence con­
stant by Liouville's theorem, and J is constant. If ef has a pole at 00, then 
e-f is bounded, hence constant by Liouville's theorem, and J is constant. 
4. (c) Use binomial series to expand each branch of J(z) = z(l- 1/Z3)1/2 
in a Laurent series at 00. Each branch is analytic for Izl > 1 and has a 
simple pole at 00. 

Section VIA 
1. (b) -l/z+l/(z-l)+l/(z+l) (d) (-1/4)/(z-i)2 + (-i/4)/(z-i) + 
(-1/4)/(z+i)2+(i/4)/(z+i) (f) 1-3/(z+2). 
2. (a) z - [(1 + i)/2J/(z - i) + [( -1 + i)/2J/(z + i) (b) z3 - (1/3)/(z -1) + 
(w /3) / (z - w) - (w /3)/ (z + w), where w = e27ri/3 . 

3. Dimension = 5, with basis 1, l/z, 1/z2, l/(z - i), l/(z - i)2. 

Section VI.5 
2. 1/ cos(27fz) = 2e27riz /(1 + e47riz ) = 2e27riz 'E:'=o( _1)me4m7riz, converges 
absolutely for Imz > O. For any c > 0, converges uniformly for Imz 2: c. 
5. If w is a period i- 0 or ±1, then Iw ± 11 2: 1. If moreover w i- ±i, then 
Iw2 + 11 2: 1. The only possibilities for periods on unit circle are then {±1}, 
{±1 ±i} and {±1 ±e7ri/ 3 ±e27ri/ 3 } " , , . 
Section VI.6 
2. () rv 'E':=_oockeikO, Ck = i(-l)k/k for k 2: 1, Ck = -i(-l)k/k for 
k :S -1, Co = o. The terms of the differentiated series do not tend to 0, so 
the diffetentiated series diverges at each (). At () = 7f, the complex Fourier 
series for k 2: 1 becomes a multiple of the harmonic series, hence the series 
diverges at () = 7f. The corresponding sine series is () rv 'E~l bk sin(k()), 
bk = 2( _l)k+l /k. It converges to () if -7f < () < 7f and to 0 if () = ±1r. 
3. The cosine series is 'E akeik9, where ao = 7f2/3, and ak = 4( _l)k / k2 for 
k 2: 1. By Weierstrass M-test, series converges uniformly for I()I :S 7f. 
5. Since ICkeik91 = ickl, series converges absolutely for all (). By Weierstrass 
M-test, convergence is uniform in (). 

Chapter VII: The Residue Calculus 

Section VII.1 
1. (a) -i/4, (b) i/4, (e) 0, (i) 2e27rik/n In. 
2. (a) 1 at z = 0, (b) -1 at z = (7f/2) + n7f. 
3. (a) residue at z = 0 is 1, integral = 27fi, (f) z = 0 is removable, pole 
inside contour at z = 7f/2, residue = -2/7f, I = -4i. 
4. Apply Rule 3 to evaluate the residues. 
5. The integrals along opposite sides cancel. 
6. (a) pole at z = 0, residue = e7ri/4/27fi = (1- i)/2y27f. 

Section VII.2 
1. Use semicircular contour, residue at ia is 1/2ia. 
3. Use Rule 2 to find residue 1/4i at z = i. 
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5. Use Rule 3 to find residues at e7ri/ 4 and e37ri/ 4 • 

9. Use semicircular contour to show J~00[e2iX /{x2+ 1)]dx = 1I"e-2. Residue 

of e2iz /(z2 + 1) at i is e-2/1I"i. Use also -4sin2 x = (eix - e-ix )2 = e2ix + 
e-2ix - 2. 
10. Integral exists only for a real, and Reb =f. 0 or cos{iab) = O. It depends 
analytically on b for Re b =f. O. 

Section VII.3 
1. Poles of (Z2 + 1)/[z{z2 + 4z + 1)] are at 0 and -2 ± J3. Use Rule 3 
to obtain residue 0 at 1 and residue -2 + J3 at -2J3/3. Other pole is 
outside the unit circle. 
4. Poles of z/{z4 - 6z2 + 1) are at Zo = ±J3 - 2v'2, residue by Rule 3 is 
1/{4z5 -12) = -1/8v'2. 
7. Choose branch of ~ on «:::\[-1,1] that is positive for W E (1,00). 
It suffices to check the identity for w = a > 1. Poles of z/{z2 + 2az + 1)2 
are double poles at z± = -a ± .Ja2 -1. Use Rule 2 to obtain residue at 
z+ of -{z+ + L)/{Z+ - L)3 = a/4{a2 - 1)3/2. 

Section VII.4 
2. Simple pole at ei7r/b with residue _ei7r/b lb. Use z = re27ri/b, dz = 
e27ri/bdr, to parametrize one edge of the domain. Obtain (1- e27ri/b ) J; = 
-211"iei7r/b lb. 
4. Integrate z-a /{1 + z)m around the keyhole contour. Specify branch by 
z-a = r-ae-ia8 , 0 < () < 211". Determine the residue from power series 
expansion of z-a about -1. 
7. This is similar to Exercise 2. The integral depends analytically on the 
parameter a for 0 < Re a < Re b. 
9. Integrate {logz)2 /(z3 + 1) around a pie-slice domain with 0 < () < 211"/3. 
Specify branch by log z = log r + i(), 0 < () < 211"/3. Simple pole at e7ri/3, 
residue _1I"2e-27ri/3/27. Apply residue theorem, pass to limit, multiply by 
e-7ri/3, take imaginary parts, and substitute the values for the integrals 
from Exercise 8, to obtain -J3 Jooo +411"3/81 + 1211"3/81 = 211"3/27. Then 
solve for the integral. 

Section VII.5 
1. Specify branch by J{z) = r-ae-ia8(logr +i())/{z -1), z = rei8 , 0 < () < 
211". It is analytic on the keyhole domain. It extends analytically to (O, 00) 
from above, and the apparent singularity at z = 1 is removable. However, 
the extension to (O,oo) from below has a simple pole at z = 1, with residue 
211"ie-27ria obtained by using () = 211" in the definition of J{z). Use Cauchy's 
theorem, multiply by e27ria , take real parts, and pass to limit using the 
fractional residue formula with angle -11". 
3. For a = 1, integrate eiz /[z{1I"2 - z2)] around semicircular contour in­
dented at 0 and ±11". Take imaginary parts, then pass to limit using frac­
tional residue theorem. Residue at 0 is 1/11"2, at ±11" is 1/211"2. 
5. Integrate around semicircular contour indented at 0 and ±11". Take real 
parts and pass to limit, using Re(e2iX - 1) = -2 sin2 x. Residue at 0 is 2i. 
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Fractional residue theorem gives limit (-1ri)2i = 21r for the integral over 
the indentation. 

Section VII.6 
1. Iol-C: + II":-c: = (1/2) log[(2 - c)/(2 + c)] ~ 0 as c ~ O. 

3. By residue theorem, I~:'C: + ICe + Ia":c: = 1r/(i-a) = -1r(i+a)/(a2 +1). 
By the fractional residue theorem, ICe ~ -1ri/(a2 + 1). 

5. There are two fractional residues, at 1 and at e27ri/ b , each with an­
gle -1r. By Cauchy's theorem, (1 - e27ri/be27r(a-l)i/b)PV r -1riRes[l] -
1ri Res[e27ri/ b] = O. The residue at 1 is e27ri/b, at e27ri /b is e27rilbe27r(a-l)i/b lb. 
Section VII.7 
2. Integrate z3 e iz /(Z2 + 1)2 around semicircular contour of radius R in the 
upper half-plane. Residue at i is 1/4e, integral = 1ri/2e. Let R ~ 00, use 
Jordan's lemma, and take the imaginary part. 
3. The limit is 1re-a if a > 0, and -1rea if a < O. For a > 0, integrate 
zeiaz /(Z2 + 1) around semicircular contour. Residue at i is e-a /2. Pass to 
limit, use Jordan's lemma, and take the imaginary part. 

Section VII.8 
1. (a) -1, (b) 0, (c) -1, (d) 0, (e) -1/(n + I)!, (f) ±(b - a)/2. 
2. Follow calculation in text, use coefficient of 1/ z5 in binomial series, 
residue at 00 is -35i/128. 
3. Converges only if n 2: 0, for 0 < Re a < n + 1. Converges to 1r / sin( 1ra) 
if n = 0, to (-I)n[(a -1) ... (a - n)/n!]1r/ sin(1ra) if n > O. Evaluate it for 
o < a < n + 1 by integrating zn / za (1 - Z) I-a around dogbone contour. 
5. Consider I J(z)dz around a large circle. 
7. Residue at 00 is -3/8, so sum of residues in the finite plane is 3/8. 

Chapter VIII: The Logarithmic Integral 

Section VIII.1 
2. Two in second quadrant, two in third. 
5. Four zeros in open left half-plane for a < 1 and a > 3, two for 1 ~ a ~ 3. 
For a = 1 and a = 3 there are also two zeros on the imaginary axis. 
6. Two zeros in open right half-plane for a ~ 0, one zero for a = 1, and 
three zeros for a > 0, a i- l. 
8. Increase in argument of z + A - eZ around large rectangle with vertices 
±iR and - R ± iR is 21r, so there is one zero in rectangle. 
9. There is an analytic branch Log J ( z) of log J (z) on D, so the increase 
in arg J(z) around any closed path in D is zero. 

Section VIII.2 
1. On circle Izl = 1 take BIG = 6z. On circle Izl = 2 take BIG = 2z5. 

2. Six. 
3. Use Ip(z) - 3zn l < e for Izl = l. 
4. Use lezi 2: 1 for Rez > O. The zeros are simple unless A = O. 
6. (a) One in each quadrant. (b) First and fourth quadrants. (c) Compare 
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p(z) with z6 + 9z4. 
7. Neither J(z) nor g(z) has zeros on aD, so each has at most finitely 
many zeros in D. Estimate shows J(z)jg(z) rf. (-00,0] for z near aD, so 
Log(J(z)jg(z)) is continuously defined near aD. Increase in argJ(z)jg(z) 
around any closed path near aD is zero. 
8. They have the same number of zeros minus poles. 
9. If A = (oj jaz) (zo) =1= 0, consider Taylor approximation of J(z) at zo, 
show increase in argument of A(z - zo) + o(lz - zol) around Iz - zol = e is 
<0. 
Section VIII.3 
1. Take BIG = J(z), little = Jk(Z) - J(z). 

Section VIII.4 
1. Apply the residue theorem. Residue at Zj is mjg(zj). 
4. Suppose that J(z) is analytic across (11), and consider the set of z E II) 

whose image J(z) is not the image of any other point in 11). 

5. (a) Apply the argument principle to J(z) - w on a large disk. 
6. Choose Wo such that the number of points in J-1 (wo) is maximum. Then 
J(z) attains values w near Wo only near points in J-1(wo), Ij(J(z) - wo) 
is bounded at 00, and J(z) is meromorphic on C* hence rational. 
8. Let Wo E aJ(D), and take Zn ED with J(zn) --t woo Assume Zn --t Zo E 
D u aD, then J(zo) = woo Since J(D) is open, Wo rf. J(D). Thus Zo E aD, 
and Wo E J(aD). 
Section VIII.5 
1. Critical points ±1, critical values ±2. 
3. Critical point 0, critical value 1. 
5. Its derivative is a polynomial of degree m - 1, hence has m - 1 zeros 
counting multiplicity. 
7. Denote the kth iterate by Jk(Z), a polynomial of degree mk. By the 
chain rule, JJv(z) = J'(JN-l(Z))J'(JN-2(Z))··· f'(J(z))J'(z). Thus the 
critical points of IN(Z) consist of the mk(m - 1) inverse images of the 
critical points of J(z) under Jk(z) for ° ~ k < N. Total number of critical 
points is m N - 1. 
10. Critical point at 0, ±1 of order 1 and at 00 of order 3. Critical values 
are 0, -1, 00. 
13. Zl(W) = eiw , Z2(W) = e-iw , graphs meet at w = 7rm, -00 < m < 00. 

Section VIII.6 
1. W( ,,(, () = 1 for ( in the four bounded components of C\,,(, W( ,,(, () = 1 
for ( in the unbounded component. 
4. (a) If "( is a closed path in D, then W(,,(, z) is constant on any connected 
set disjoint from ,,(, so W(,,(, zo) = W(,,(, Zl) = m, and the increase in 
the argument of J(z) is 47rm. (b) The increase in the argument of .JJ(z) 
around "( is 27rm, so the analytic continuation of a branch of .J J (z) around 
any closed path in D returns to itself, and we can define an analytic branch 
of .J J (z) by analytic continuation. 
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5. For n ~ 2, (z - zo)-n has primitive (z - zo)-n+1 /(1 - n) on D. 
8. Apply the theorems in III.2 on deformation of paths. 
9. The increase in arg J(z) around the circle Izl = r is constant for 1 ::; 
r < 00, and it tends to 0 as r -+ 00, so it is identically zero. The argument 
principle, applied to J(z) on D, shows that J(z) has no zeros in D. 
10. Suppose 0 ~ J(K) and J(oo) =I- o. The increase in argJ(z) around the 
boundary of a large square S is then 0, and J(z) has only finitely many 
zeros. Cut S into a grid of very small squares Sj and add the increases of 
argJ(z) over 8Sj . 

Section VIII.7 
1. As ( crosses the curve from left to right, the Cauchy integral jumps by 
-27riJ«(), so the value of the integral on the lower half-plane is g«() -
27riJ«(). 
2. Both sides are analytic on C\[-I, 1]. They are equal for ( E (-00, -1), 
hence they coincide on C\[-I, 1]. This does not contradict Exercise 1, since 
the logarithm function is not analytic on (-1, 1). 
3. (a) F«() = 0 for 1(1 > 1, F«() = ( for 1(1 < 1. (b) F«() = -If( for 
1(1 > 1, F«() = 0 for 1(1 < 1. (c) F«() = -1/2( for 1(1 > 1, F«() = (/2 for 
1(1 < 1. (d) F«() = 1/2i( for 1(1 > 1, F«() = (/2i for 1(1 < 1. 

Section VIII.8 
1. (a) and (c) are simply connected, (b) and (d) not. 
3. (a) is simply connected, (b) is not. 
5. If D is simply connected, and if G(z) is a branch oflog J(z), then eG (z)/2 

is a branch of J J(z). If D is not simply connected, and if Zo and K are 
as in the proof that (iv) =? (v), then z - Zo cannot have an analytic square 
root g(z), or else J8K d argg(z) = 7r and not an integer times 27r. 
9. Since J(D) is simply connected, the analytic continuation of g(w) is in­
dependent of path, by the monodromy theorem. Hence there is an analytic 
function g(w) defined on J(D) such that g(f(z)) = z for z near zoo By 
the uniqueness principle, g(f(z)) = z for all zED. This implies J(z) is 
one-to-one on D. 
10. Assume h«() attains only the values 0 and 1, let E = h-1(1), and con­
sider u = 8K as in the proof that (iv) =? (v). 
11. W(u, () = (1/27ri) J8U 1/(z-() dz = 0 for ( ~ D, by Cauchy's theorem. 
12. Let E be a bounded component ofC\D. Modify 8K constructed in the 
proof that (iv) =? (v) to obtain a single closed curve "{ such that W(,,{, () = 1 
if ( E E and W( ,,{, () = 0 if ( ~ DUE. 

Chapter IX: The Schwarz Lemma and Hyperbolic Geometry 

Section IX.1 
3. Since J(z) = 1 has a solution Zl = 0, the argument principle guarantees 
that J(z) = 0 also has a solution zo, Izol < 1. If cp(w) = M(w-l)/(M2 -w), 
then Icp(f(z)) 1 < 1 for Izl = 1, and cp(f(O)) = O. By the Schwarz lemma, 
I/M = Icp(f(Zo)) 1 < Izol· 
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5. Assume J(O) = r, and apply the Schwarz lemma to'¢; 0 J, where '¢;(() = 
(( -r)/(l-r(). Equality holds at Zo only when J(z) = A(ILz+r)/(l +rILz), 
where IAI = IILI = 1, and Zo = -{l8, 0 S 8 < r. 
6. If J(O) has distance d from aD, then the inverse function J-1(w) is 
analytic for Iw - J(O)I < d, and IJ-1(w)1 < 1. Apply the Schwarz lemma 
to obtain 1(1-1)'(1(0))1 = 1/11'(0)1 s l/d. 
8. J(z)/z is analytic for Izl < 1, and IJ(z)/zl < 1 for Izl < 1, or else J(z)/z 
would be a unimodular constant, violating 11'(0)1 < 1. Take c to be the 
maximum of IJ(z)/zl for Izl sr. 
Section IX.2 
1. Let B(z) be the finite Blaschke product with same zeros as J(z). Then 
g(z) = J(z)/ B(z) is continuous for Izl S 1, analytic for Izl < 1, and satisfies 
Ig(z)1 = 1 for Izl = 1. Hence Ig(z)1 S 1 for Izl s 1. Since g(z) has no zeros, 
the maximum principle applies also to l/g(z), and Ig(z)1 ;::: 1. Hence g(z) 
is constant. 
3. Write J(z/3) = B(z)g(z), where B(z) is the Blaschke product with zeros 
at ±i/3 and ±1/3. The maximum value is IB(O)I = 1/81. 
4. Let d(zo, Zl) denote the maximum. Since the analytic functions can 
be precomposed with conformal self-maps, d(zo, zd = d(0,8), where 8 = 
Izo - zll/11- zozll is the image of Zl under conformal self-map sending Zo 
to O. Then d(O, 8) = (2/8)(1- Vf=S2), and the maximum is attained by 
the conformal self-map that satisfies g(O) = -g(8). 
9. By Riemann's theorem on removable singularities, J(z) is analytic at 
O. Since J(z) maps the punctured disk one-to-one onto itself, the value 
J(O) must belong to the boundary of the punctured disk, and it satisfies 
IJ(O)I < 1, so J(O) = O. Thus J is a conformal self-map of][J) satisfying 
J(O) = 0, and J is a rotation. 
12. For (a) there are six, for (b) there are eight, and for (c) there are two, 
the identity J(z) = z, and J(z) = -2/z. 
15. (a) The equation J(z) = z becomes z2+((A-1)/a:)z-Aa/a: = 0, whose 
solutions satisfy IZOZ11 = 1. (b) If Zo E ][J) is fixed by J, and h is conformal 
self-map sending Zo to 0, then ° is fixed by hoJoh-1 • (d) Conjugate J by 
an h that maps ±1 to the two fixed points of J. Can also replace ][J) by JH[, 

place the fixed points at 0 and 00, and show J is conjugate to w ~ Aw 
on JH[. (f) Replace][J) by JH[, place the fixed point at 00, and show that J is 
conjugate to the translation w ~ w + 1 on JH[. 

Section IX.3 
2. A hyperbolic disk centered at 0 of hyperbolic radius p is a Euclidean 
disk centered at 0 with radius r given by solving p = 10g[(1 + r)/(l - r)]. 
Since conformal self-maps are isometries in the hyperbolic metric, they 
map hyperbolic disks to hyperbolic disks of the same radius, and every 
hyperbolic disk is the image under a conformal self-map of a hyperbolic disk 
centered at o. Conformal self-maps also map Euclidean disks to Euclidean 
disks. 
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3. Let r be the Euclidean radius of hyperbolic disk of radius p centered at 
O. For 0 < 8 < 1, this disk is mapped by (z + 8)/(1 + 8Z) to the hyperbolic 
disk of radius p centered at 8. The diameter (-r, r) is mapped to the 
interval from (8 - r) / (1 - 8r) to (8 + r) / (1 + 8r). Since the Euclidean center 
is the midpoint of this interval, this yields explicit formulae for c( 8, p) and 
r(8, p), from which the limits can be evaluated explicitly. 
4. The hyperbolic circumference is 2 J')' Idzl/(l - IzI2). Set z = rei6 and 
integrate, then substitute r = (eP -l)/(eP + 1). 
7. Consider first an isometry J(z) that fixes two points, J(O) = 0 and 
J(r) = r. For z E JD)\R, consider the two hyperbolic circles centered at 0 
of radius p(O, z) and centered at r of radius p(r, z), and observe that they 
meet at only the two points z and z. 
8. w = J(z) is an isometry if and only if Idwl/(l + Iw12) = Idzl/(l + IzI2). 
Use dw/dz = l/(cz + d)2 to obtain equivalent equations lal2 + Icl2 = 1 = 
Ibl2 + Id12, ab + cd = O. 
9. (a) Let 'Y be the geodesic from z to (, and estimate p(z2,(2) by the 
hyperbolic length of J 0 'Y. (b) Take ( close to z. 
13. Use g(z) = (z - i)/(z + i) in the definition. 
14. Use g(z) = (eZ - l)/(eZ + 1) in the definition. 

Chapter X: Harmonic Functions and the Reflection Principle 

Section X.I 
3. Use (1.11). 
5. Follow the second proof of the boundary-value theorem. 
6. Same as Exercise 5, except must use the symmetry of the Poisson kernel 
to see that each side contributes equally. 
8. (a) Justify differentiating under the integral in the Poisson integral for­
mula. 

Section X.2 
1. Integrate around a circle and interchange the order of integration. 
2. Approximate u(x, y) by a Taylor polynomial of degree two. Suffices to 
check formula for 1, x, y, x2, xy, and y2. 
4. If rdr2 = pd P2, set a = pdr! = P2/r2, J(z) = eiay , and use Exercise 3. 

Section X.3 
2. Express reflection in circle as composition of two fractional linear trans­
formations and the reflection z -+ z in the real axis. 
3. If curves meet at angle e, their reflections meet at angle -e. 
4. (a) Use z'«() 1= 0 at ( = O. (b) (z) maps an interval on 'Y onto an inter­
val on R. (c) By definition, z* = (+ ih«(). Use z = (- ih((j = (- ih«(). 
5. In Exercise 4 take h«() = (2, obtain z* = -z - i + hl1 - 4iz. Binomial 
series converges for Izl < 1/4. 
6. Divide by (z - zo)n, can assume J(zo) 1= O. The reflection formula then 
shows j(z) has no zeros inside the circle. Use reflection formula again to 
see it is bounded on C, hence constant. 
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8. (a) Show first that as z tends to a fixed boundary circle of the annulus, 
the image points tend to the the same boundary circle of the image annulus. 
Then apply the reflection principle. The formula shows that the reflected 
map maps the reflected annulus onto an annulus. Continue reflecting. 
9. If bn = 0 for n odd, then 1jJ(z) = z - b2z2 + b4 z4 - b6z6 + ... maps 
the imaginary axis onto ,,{, so 1jJ-l is analytic at 0 and straightens out the 
angle. 

Chapter XI: Conformal Mapping 

Section XI.I 
1. w = (z3/2 - s) / (Z3/2 + s), for any s > O. Though map is not unique, the 
sketch is. 
2. w=-i(VZ-1)/(VZ+1). 
3. w = (2A/7ri) Log«1 + iz)/(1 - iz». 
4. w = (1 + ()/(1 - (), where ( = _e1l"(1+i)z/2. Median is mapped to top 
half of unit circle. 
5. w = -(z + i)2/(Z - i)2, w(l) = 1. 
7. w = (_i(2 + 2( _1)/«2 - 2( -1), where (= z1l"/2a. brings it to a lune. 
8. ( = (z - b)/(1 - bz), 1] = -(.j( + i)2 /(.j( - i)2, ~ = i(1] - i)/(1] + i), 
w = (~ - a)/(1 - ~), where -1 < a < 1. 
12. w = -(sinz - i)/(sinz + i), w(oo) = -1. 

Section XI.2 
2. 'Pr(z) = ZiT. 
3. Convert a connected component E of C*\D to a point or closed analytic 
curve by applying the Riemann mapping theorem to C*\E. 

Section XI.3 
3. Since 1 - t/a ---+ 1 uniformly on bounded sets as a ---+ 00, ga(z) ---+ 

foz ta.-l(1 - t)f3-1dt/ f~ ta.-l(1 - t)f3-1dt uniformly on bounded sets. This 
is the Schwarz-Christoffel formula in the case that g(oo) = woo 
6. g(z) = Aft (-ld(. 
7. w'(z) = e(z + 1)-1/2(Z - 1)-1/2 = e/yl - z2, W = esin-1 z, z = 
sin(w/e), e = 2a/7r. 
8. (a) g(z) = r+Af;(t-a)a.-1t(t-b)-adt, where 7rQ: is the angle from the 
negative real axis to [0, r]. (c) The map in (b) is a special case of the map 
in (a) in which the z-plane is scaled so that the two vertices corresponding 
to 0 are mapped to 1 - u and u, where 0 < u < 1. 
9. The Schwarz-Christoffel formula can be integrated, and 7rg(z) is the ap­
propriate branch of YZ2 -1 + log(z + yz2 -1). 
10. g'(z) = A(z+I)-1(Z-I)-lz-1/2, g(z) = (2/7r) tan-1 VZ+(I/7r) 10g«l+ 
VZ)/(1 - VZ»· 

Section XI.4 
3. g'(z) = Az-l(z - 1)(z + 1), g(z) = (i/7r)(Z2 - 2 Log z - 1) - 1. Stream 
function is Argh(w). 
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Section XI.5 
1. Use the fact that if every subsequence has a subsequence that converges 
to the same limit, then the sequence converges. In this case, any normally 
convergent subsequence has limit O. 
3. Consider the translates fn(z) = f(z + n). 
4. (a) Consider the dilates fn(z) = f(nz). 
6. Show first that fn(z) -t zo uniformly on some disk centered at Zoo See 
Exercise IX.1.S. 
7. The nth iterate fn(z) of f(z) satisfies f~(zo) = f'(zo)n. Since the fn's 
are uniformly bounded on D, the derivatives of the fn's are uniformly 
bounded on each compact subset of D. 

Section XI.6 
1. g«() = «( - b)/(l - b(), similar formula for f«(), and l(f 0 h 0 g)'(O) 1 = 
(t + 1/t)/2 for t = Jibj. 
2. Apply the Schwarz lemma to f 0 cp-l. 
5. Compose with conformal map of Dl onto JI}, can assume Dn C JI} and 
Wo = O. Then the gm's are uniformly bounded. By the Hurwitz theorem, 
any normal limit is either constant or univalent. 
7. p(f(z), zo) ~ 2If(z) - zol/(l -lzoI2) and p(z, zo) ~ 21z - ZOI/(l -lzoI2). 

Chapter XII: Compact Families of Meromorphic Functions 

Section XII.! 
6. Map CC* \E conformally onto JI}, apply thesis version of Montel's theorem. 
S. Show fn(z) eventually has same number of zeros as f(z}. 

Section XII.2 
3. Apply Montel's theorem. 
6. (b) Assume D is a disk. Consider family of square roots with appropri­
ate branches. 
7. (a) Use Exercise 6. 
S. Suppose theorem fails for fn(z) and constant l/n. Show first that 
{fn(z)} is not a normal family, then apply the Zalcman lemma. 

Chapter XIII: Approximation Theoreu£s 

Section XIII.1 
3. Exhaust D by appropriate compact sets K n, construct fn(z) and hn(z) 
by induction so that hn(zj} = 0 for 1 ~ j < n, hn(zn) = 1, and hn(z} 
is small on K n- 1• Set fn(z} = fn-l(Z) + (wn - fn-l(Zn»hn(z), f(z) = 
limfn(z). 

Section XIII.2 
9. (1r /3z2)[cot(1rz) + ). cot ().1rz) + ).2 cot().21rZ)] , where). = e21ri/ 3• 

Section XIII.3 
1. (a) 2, (b) 1/2, (c) 4. 
9. Use the product expansion of sin(1rz). 
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Section XIII.4 
3. z lEO (1 - Z2/v'ri) exp(z2 /v'ri + z4/2n). 
6. J(z) = c I1~(1 - z/2k). 
11. Take g(z) to be analytic with simple zeros at the zj's, take h(z) to 
be meromorphic with simple poles at the zj's and residue Aj/g'(Zj), set 
J(z) = g(z)h(z). 

Chapter XIV: Some Special Functions 

Section XIV. 1 
6. Combine Exercises 4 and 5. 

Section XIV.2 
6. (b) Substitute 8 = iz. 
8. Recall Cauchy-Hadamard formula for radius of convergence. 
12. Cauchy estimates show that if J(z) = O(lzla) in B, then f'(z) 
O(lzla-l) in BE;. 

Section XIV.4 
13. Suppose aa = 0, and J(8) extends analytically across 0. Express power 
series I: J{k}(1)(8 - l)k /k! as double series, substitute 8 = -8, justify 
interchanging order of summation, and sum. 

Chapter XV: The Dirichlet Problem 

Section XV. 1 
2. Use Green's first formula. 
3. Use Exercise 2. 
4. Use Green's first formula, with u and v interchanged. 
5. Apply Exercise 4 to u and w = v - u. 

Section XV.2 
5. (a) See the Taylor series expansion in Exercise IV.8.7. 

Section XV.3 
5. (c) d(z, w) coincides with the hyperbolic distance p(z, w). Use Harnack's 
estimate to determine d(O, r) , then use conformal invariance. 

Section XV.4 
1. Try a linear combination of 1 and log I zI. 
2. Use dog Izl. 

Section XV.5 
1. Compose with Riemann maps to reduce to the case where Eo = {Izl = I} 
and D is the domain between the unit circle and a simple closed analytic 
curve El in {Iz\ > I}. In this situation, show that v(z) is strictly increasing 
on Eo, and choose a so that the increase of av(z) around Eo is 271'. 

Section XV.6 
6. Use Green's third formula. 
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Section XV. 7 
10. Express D as an increasing union of bounded domains Um, each bounded 
by a finite number of piecewise smooth closed curves, let gm be Green's 
function for Um, and define Dm = {gm{z) > em}. 

Chapter XVI: Riemann Surfaces 

Section XVI. I 
2. Use two annuli as coordinate patches. 
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on a Riemann surface, 420 
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complex derivative, 42 
complex number, 1 
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continuum, 406 
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convex function, 397 
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curvature of a metric, 272 
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de Moivre's formulae, 8 
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differentiable function, 42 
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differential, 76 
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Dirichlet convolution, 380 
Dirichlet form, 54 
Dirichlet integral, 393 
Dirichlet problem, 98, 281 
Dirichlet series, 376 

abscissa of absolute conver­
gence, 376 
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discrete set, 158 
division algorithm, 5 
domain, 38 

exterior domain, 219 
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doubly periodic function, 119 

elliptic integral, 302 
entire function, 118 
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306 

with respect to the spheri-
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essential singularity, 175 
Euler numbers, 154 
Euler's constant, 40 
Euler's totient function, 380 
exact differential, 76 
extended complex plane, 11 
extremal problem, 308 

Fatou set, 326 
Fatou-J ulia theorem, 333 
filled-in Julia set, 329 
finite bordered Riemann surface, 

423 
fixed point, 68 

attracting fixed point, 331 
multiplicity, 331 
multiplier at a fixed point, 

330 
repelling fixed point, 331 

flux across a curve, 85 
of fluid flow, 90 

Fourier coefficients, 187 
Fourier series, 186 
fractional linear transformation, 

63 
free analytic boundary arc, 286 
Fresnel integrals, 219 
fundamental theorem of algebra, 

4 
fundamental theorem of calculus, 

76 
for analytic functions, 107, 

108 
for line integrals, 76, 79 

gamma function, 357, 361 
Goursat's theorem, 123 
Green's formulae, 391 
Green's function, 408 

bipolar, 436 
critical point and value, 410 
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of a Riemann surface, 430 
of general domain, 413 
symmetry, 434 
with pole at 00, 416 

Green's theorem, 73 

Hadamard gap theorem, 163 
harmonic conjugate, 55 
harmonic function, 54 

on a lattice, 90 
harmonic measure, 409 
harmonic series, 132 
Harnack's inequality, 399, 400 
Hermite orthogonal functions, 111 
Hilbert transform, 214 
Hilbert's inequality, 112 
homologous to zero, 258 
homology basis for a domain, 259 
Hurwitz's theorem, 231 
hyperbolic 

distance, 267 
geodesics, 267 
metric, 272 

identity principle, 156 
imaginary axis, 1 
imaginary part of z, 1 
implicit function theorem, 236 
increase in argument, 225, 226 
independent of path, 77 
infinite product, 352 

absolutely convergent, 354 
convergent, 352 

interpolating sequence, 346 
inverse function theorem, 234 
inverse iteration method, 330 
inversion, 63 
irrotational, 98 
irrotational flow, 91 
isolated point of a set, 155 
isolated singularity, 171 

at 00,178 
essential, 175 
removable, 172 
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isometric circle, 426 
isoperimetric theorem, 193 

Jacobian elliptic function, 302 
Jensen's inequality for convex func­

tions, 397 
Jordan curve theorem, 251 

for smooth curves, 250 
Jordan's lemma, 216 
Julia set, 326 
jump theorem for Cauchy inte­

grals, 247 
jump theorem for winding num­

bers, 248 

Koebe's one-quarter theorem, 323 

lacunary sequence, 163 
Laplace transform, 365 

asymptotic appoximation the-
orem, 366 

Laplace's equation, 54 
Laplacian operator, 54 
Laurent decomposition, 165 
Laurent series, 168 
Legendre's duplication formula, 

364 
length of curve, 104 

hyperbolic, 267 
spherical, 269 

line integral, 71 
complex, 102 

Liouville's theorem, 118 
logarithmic differentiation, 355 
logarithmic integral, 224 
logarithmic pole, 391 
lunar domain, 292 

Mandelbrot set, 338 
hyperbolic component of in­

terior, 339 
principal cardioid, 340 

Marty's theorem, 318 
maximum principle, 88 

for subharmonic functions, 
395, 427 
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mean value property, 87 
Mergelyan's theorem, 344 
meromorphic function, 174 
Mittag-Leffler theorem, 348 
M L-estimate, 105 
Mobius band, 249 
Mobius jl-function, 379 
Mobius transformation, 63 
modular group, 426 
modulus of z, 2 
modulus of an annulus, 287 
monodromy theorem, 161 
Montel's theorem, 321 
Morera's theorem, 119 
multiplicative coefficient sequence, 

379 

Neumann problem, 98, 393 
normal covergence of analytic func­

tions, 137 
normal covergence of meromor­

phic functions, 316 
normal family of meromorphic func­

tions, 317 
at a point, 324 

omitted value, 321 
open mapping theorem, 158,233 
open set, 37 

on a Riemann surface, 420 
order, 177 

of a pole, 172 
of a zero, 154 

Parseval's identity, 192 
partial fractions decomposition, 

180,350 
path, 70 
period, 20, 182 
periodic function, 20, 182 

doubly periodic, 185 
simply periodic, 185 

periodic point, 331 
Perron family, 402 
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Perron solution, 402 
phase factor, 25 
Picard's big theorem, 322 
Picard's little theorem, 322 
Pick's lemma, 264 
piecewise smooth boundary, 72 
piecewise smooth path, 71 
Poisson integral, 277 
Poisson kernel, 275 

for upper half-plane, 280 
polar representation of z, 6 
pole, 172 

simple, 173 
Pompeiu's formula, 127 
potential function, 92 
power series, 138 
prime number theorem, 382 
primitive (complex antiderivative), 

107 
principal branch of square root, 

17 
principal part, 173 

at 00,178 
principal value of an integral, 213 
principal value of log z, 22 
principle of permanence of func-

tional equations, 30, 157 
purely imaginary numbers, 1 

radial cluster set, 345 
radial limit, 279 
radius of convergence, 138 
Rad6's theorem, 432 
ratio test, 141 
real part of z, 1 
regular boundary point, 403 
removable singularity, 172 
residue, 195 

at 00, 221 
residue theorem, 196 

for exterior domains, 221 
fractional residue theorem, 

209 
Riemann hypothesis, 375 
Riemann map, 295 
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Riemann mapping theorem, 295 
Riemann sphere, 315 
Riemann surface, 418 

coordinate map, 419 
coordinate patch, 419 
finite bordered, 423 
hyperelliptic, 424 
of square root function, 18 
subsurface, 421 
uniformization theorem, 439 

Riemann's theorem on removable 
singularities, 172 

Robin's constant, 417 
root of a polynomial, 4 

nth root of z, 8 
nth roots of unity, 9 

root test, 142 
Rouche's theorem, 229 
Royden's theorem, 319 
Runge's theorem, 342 

Schlomilch formula, 170 
Schottky's theorem, 323 
Schroder's equation, 288 
Schwarz formula, 279 
Schwarz lemma, 260 
Schwarz reflection principle, 282 
Schwarz-Christoffel formula, 299 
sharp estimate, 105 
simple are, 251 
simple closed path or curve, 70, 

249 
simple path, 70, 249 
simply connected 

domain, 252 
Riemann surface, 438 

slit plane, 16 
small denominator problem, 288 
smooth path or curve, 71 
spherical derivative, 317 
spherical metric, 14, 269, 317 
star-shaped domain, 39 
stereographic projection, 11 
Stirling's formula, 368 
Stolz angle, 310 
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stream function of a flow, 92 
streamlines of a flow, 92 
strict maximum principle, 87 

for subharmonic functions, 
395,427 

subharmonic barrier, 404 
subharmonic function, 394 
Swiss cheese set, 344 

totally disconnected, 335 
trace of a path, 71, 242 
translation, 63 
triangulation, 74 
trivial zeros, 375 

uniformization theorem for Rie­
mann surfaces, 439 

uniformly convergent sequence of 
functions, 134 

with respect to the spheri­
cal metric, 307 
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unimodular matrix, 425 
uniqueness principle, 156 
univalent function, 232 
universal covering surface, 443 

Wallis product, 357 
Weierstrass M-test, 135 
Weierstrass P-function, 349 
Weierstrass product theorem, 358 
winding number, 242 
Wolff-Denjoy theorem, 273 

Zalcman's lemma, 320 
zero 

of a polynomial, 4 
of order N, 154 
of order N at 00, 155 
simple, 155 

zeta function, 371 
functional equation, 373 
trivial zeros, 375 
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