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PREFACE

The problem of representing imaginary elements in algebra

and geometry has claimed the attention of mathematicians for

centuries. Even the Greeks were dimly conscious of the

necessity of finding some solution. Starting with the proper-

ties of conjugate diameters of an ellipse, they surmised that

similar properties must hold in the case of the hyperbola, the

only difficulty involved being that of statement. With the rise

of algebra, the complex roots of real equations clamoured more

and more insistently for recognition. So long as no formula

was known for the solution of an equation of degree higher

than the second, quadratic equations with imaginary roots

might be dismissed as involving inherent contradictions ; such

a simple procedure could not be retained after the advance

of the science had led to the solution of the cubic. That arch-

rogue Cardan recognized that the classical formula which he

stole from Tartaglia would involve imaginary numbers in the

very case where the equation itself had three real roots.

The general philosophic difficulties inherent in trying to

find a real meaning for the symbol V— 1, general questions

as to whether graphical symbols should be looked upon as

representing numbers or quantities, and what might be the

ultimate distinction between a quantity and a number, do not

lie within the scope of the present work. Broadly speaking,

the bulk of the volume, with the exception of the last chapter,

is devoted to the consideration of two main problems.

(A) A system of objects called 'points' is so given that

each is determined by the values of a fixed number of real

parameters. If these parameters take on not real but com-

plex values, they fail to correspond to points in the original
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domain. What sort of real objects may then be put into

correspondence with them ?

(B) In a system of points determined by a number of com-

plex parameters, a sub-system is taken whose elements depend

in specified fashion on a fixed number of real parameters

;

what are the geometrical properties of the sub-system ?

As an example of (A) we may ask how to find a geometrical

representation of the complex points of a line, a circle, or

a plane. Question (B) leads to mathematical considerations of

a very different order. We usually assume that whatever is

true in the real domain is true in the complex one also;* the

properties of the complex portion of a curve are inferred from

those of its real trace. If we are asked for our grounds for

this erroneous belief, we are inclined to reply ' Continuity

'

or ' Analytic continuation ' or what not. But these vague

generalities do not by any means exhaust the question. There

are more things in Heaven and Earth than are dreamt of in

our philosophy of reals. What, for instance, can be said about

the totality of points in the plane such that the sum of the

squares of the absolute values of their distances from two

mutually perpendicular lines is equal to unity ? This is a very

numerous family of points indeed, depending on no less than

three real parameters, so that it is not contained completely in

any one curve, nor is any one curve contained completely

therein ; it is an absolutely different variety from any curve

or system of curves in the plane.

The material dealing with problem (A) is largely historical

in nature, and is of real importance in mathematical history.

There are also in existence a number of scattered monographs

dealing with one phase or another of problem (B). The present

work is, apparently, the first attempt that has been made to

coordinate this material and present a consistent account of

* Large works of a decidedly uncritical sort have been written to develop

this thesis. For instance, Hatton, The Imaginanj in Geometry, Cambridge

University Press, 1919.
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the whole subject. It is hoped that enough new results are

included to save it from the reproach of being merely a work

of compilation. Much more could have been written on certain

phases of the subject, but, as the late Jules Tannery said in the

preface to a work by one of his pupils, ' Un petit livre est

rassurant.'

Every student of geometry in the complex domain will find

that he is forced to refer continually to the work of two

admirable contemporary geometers, Professor Corrado Segre

of Turin, and Professor Eduard Study of Bonn. The names

of both appear incessantly throughout this book ; the author

had the rare privilege to be the pupil of each of these masters.

Geographical separation has cut him off from the one, the

inexorable logic of history has impeded his communion with

the other. But his sense of obligation has never wavered,

and he begs to offer the present work as a small token of

admiration and esteem.

Cambridge, U.S.A.

1921.
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CHAPTER I

THE REPRESENTATION OF THE BINARY DOMAIN

The first writer to make a serious attempt to give a

geometrical interpretation of the complex roots of a real

quadratic equation was John Wallis.* The learned Oxonian

approached the problem as follows, f An indicated square

root of a negative number is, on its face, an absurdity, since

the square of any number, positive or negative, is itself

positive. X But this contradiction is entirely on a par with

the more familiar one where we speak of negative numbers,

for what can be more absurd than to speak of a number that is

less than nothing? Now it is well known that this latter

difficulty or contradiction disappears entirelywhen we represent

our positive and negative numbers by points on two opposite

scales. Since, therefore, ' Quodque in rectis admitti solet

lineis : pariter in planis superficiebus (eodem ratione) admitti

debet \ § a proper study of the geometry of the plane should

solve all our difficulties. As an illustration, consider the

following example.
||

Suppose that, in one place, 30 acres of land have been

reclaimed from the sea, and that, in another, the sea has

taken 20 acres from us. What has been our gain? Evidently

10 acres, i.e. 1600 square perches, the equivalent of a square

* The best historical account of the subject-matter of the present chapter

is that of Ramorino, 'Gli elementi imaginarii nella geometria', Battaglini's

Giornale di matematica, vols, xxxv and xxxvi, 1897 and 1898. See also Beaman,
'A Chapter in the History of Mathematics Proceedings American Association

for the Advancement of Science, vol. xlvi, 1897, and Matzka, Versuch einer richtigen

Lehre von der Realitdt der vorgeblich imagindren Grdssen, Prag, 1850, pp. 137-47
;

Hankel, Vorlesungen iiber complexe Zahlen, Leipzig, 1869, p. 19.

t See his Algebra, Oxford, 1685. The present Author has seen only the
Latin edition of 1693. The detailed references which follow are to this

edition.

t Ch. 66. § p. 287. || Ibid.
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40 perches on a side. If, however, in still another place, the

sea deprives us of 20 acres more, our gain is now — 10 acres,

or — 1600 square perches. We could not properly say that

we had gained the equivalent of a square either 40 perches

or —40 perches on a side, but on whose side was

>/-1600 = 40>/ -1.

This ingenious but scarcely convincing example is followed

in succeeding chapters by others of a more serious nature.

The writer gives example after example of geometrical con-

structions suggested by quadratic equations of negative

discriminant. Perhaps the most elegant is the following ; we
use the original notation.*

Let us investigate the geometrical significance of the

equation aa + ba + ce = 0.

We shall assume that ce > 0,

for this may always be established by adding a positive

quantity to the roots. Let G be the middle point of a segment

A ol of length b. Erect a perpendicular to A a at G and lay off

the length GP = V ce. Let us then construct a right triangle

with CP as one side, and the other side PB — \b.

In the case where Jbb > ce, PB will be the hypotenuse,

and B will take either of two positions onia whose distances

from A are the roots of the quadratic equation above. When,

however, %bb < m, GP must be the hypotenuse and the points

B will not lie on the line A a. The geometrical construction

is equally real in both cases, the only distinction being that

in the first case we get a point on the line A a and in the

second we do not.

Let us push the matter a little further, using a more modern

form of notation. Let the roots of the equation in the second

case be p + qi, p~q^ Then, if we take A as origin, and Aol

as axis of reals, we represent the first given complex values by

the point whose coordinates are

* pp. 290, 291

.
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We see that for each finite value p-\-qi there is a definite

point in the upper half-plane. Conversely, suppose that we
have a point B in this half-plane. Since AC = PB, if

we overlook the size of %~PBC and let G slide along the

X axis, we see that P will trace a parabola with B as focus,

and the Y axis as directrix. On the other hand, if we

3 V>v \

A \ C

Fig. 1.

disregard the size of PB and remember that, as C slides, the

4-PBC = we see that P will trace a parabola with vertex
a

at B and a vertical axis. These two parabolas will have two

real intersections on opposite sides of the vertical line at C.

Each point B will thus appear once as a point p + qi and once

as a point p— qi.

It is clear that as a means of representing all complex

values, Wallis's method leaves something to be desired.* On
* For a critical study of Wallis's other constructions see Ennerstrom, 'Die

geometrische Darstellung imaginarer GrOssen bei Wallis,' Bibliotheca Mathe-

matics Series 3, vol. vii, 1906, pp. 263 ff.
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the other hand, there is no reason to think that such a repre-

sentation was what Wallis had primarily in mind. The
question which he asked himself was, 'What geometrical

constructions are called for by the general quadratic equation?'

He answered this interesting question with abundant insight

and skill.

A period of sixty-five years elapsed after the publication

of Wallis's Algebra before any other mathematician attacked

the problem of representing complex numbers, the next rash

man being one Heinrich Kiihn, who published Meditationes de

quantitatibus imaginariis construendis, et radicibus imagi-

nariis exhibendis, in 1753.* This writer says f 'that he was

led to consider the problem of complex quantities some fifteen

years before, when Euler had invited him to find the cube

of - 1 + </-~3 '.

Kiihn begins with what we call pure imaginary numbers.

Let us construct four squares, each with two sides along the

coordinate axes, the numerical length of each side being a.

Since positive and negative lengths are determined for each

axis, the writer makes the bizarre assumption that the areas of

these various squares are severally J

ax a, — ax( + a), (
— a) x (

— a), + ax(— a).

If, then, the area of a square be —a2
, the proper expression

for one side or root is V — a2
.

' Secundum r turn /3habet Jatitudinem priuatiuam Pr= — a,

et longitudinem positiuam PQ = +a, adeoque eius area
= Pr - PQ = — a* +a = —a2

,
eiusque latus seu radix, cum

nec per sola PQ(= +a) nec per sola Pr( — —a) exprimi
posset, sed utriusque dimensionis simul ratio habenda sit, recte

exprimetur per V(Pr • PQ) = V(—PR • PQ) - V — a • + a seu

breuitatis gratia per + V — a2
.

* Novi commentarii Academiae Petropolitanae, vol. iii, Petrograd, 1753. A few

details about Kiihn are given by Cantor, Geschichte der Mathematik, second

edition, Leipzig, 1901, vol. iii, p. 726.

t P. 170.

X This same idea appears in Wallis, loc. cit., p. 287. Did Kiihn take it

outright ?

§ Ibid., pp. 172, 173.
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' Hie satis speciose obiici potest eiusmodi rationis radices

x = + V — a2
, e. g. + V — 9 esse mere imaginarias, impossibiles

et inassignabiles propterea quod ex — a2 nullo modo radix

quadrata extrahi possit, nec enim earn esse — a nec +a cum
— a- —a item + a • + a det quadratum positiuum = + a2 atque

adeo omnia quadrata realia aut assignabilia esse positiua. At
non difficilis ad ista est responsio. Praeterquam enim quod
calculus ex datis possibilibus aut realibus profectus, et ex
axiomatibus indubiis conuenienter tractatus, nullo modo ad
impossibilia, ad non realia aut assignabilia deducere posset,

minus recte etiam supponi videtur, omnia quadrata realia esse

positiua.' *

The reasoning is simply this. A square can be so placed

that whereas one side lies along a positive length, another lies

along a negative length. The area of the square must then be

taken as negative, and as every square must have a ' radix

seu latus
1

the latter must be the indicated square root of

a negative quantity.

Kiihn next turns to the discussion of the affected quadratic.

He gives a fearfully long and involved discussion, covering no

less than twenty-three pages, the upshot of which may be

stated as follows : f

If we have given two squares, positive or negative, we may
construct a third square equal to their sum or difference.

We can likewise construct the half sum and half difference.

Suppose that we have the equation

x2 +px + q = 0,

to construct positive or negative squares x 2
,
x
2
2

, where

If, therefore, p2 > 4q the two squares are positive, and their

sides, the roots of the quadratic equation, are known. When,
however, p

2 < 4q the construction cannot be actually effected

we can find a positive square equal to %p2 and a negative one

equal to ip2— q in the sense given above, and even though x
cannot actually be found as the 'radix seu latus' of any
positive square, still it should be looked upon as known.

* pp. 176, 177. f pp. 196, 197, 198.

2874 B
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Unless this interpretation of Kuhn's work be grossly unfair,

he represents a retrogression rather than an advance, as

compared with Wallis, and certainly is far from deserving

the mead of praise which has been bestowed upon him as the

first to find a geometrical interpretation for complex numbers.*

Who then, deserves the credit for this discovery ?

Caspar Wessel was born June 8, 1745, at Josrud, Norway,

and died in 1818. By profession he was a surveyor, and

is said to have achieved some distinction in his work. He
also studied law, passing the examination in Roman law in

1778. His title to fame as a mathematician rests on a single

work, written when he had attained the substantial age of

fifty-two, and entitled Om Directionens analytiske Betegning.

This was presented to the Royal Danish Academy in 1797,

published in their Memoirs in 1799, and then allowed to sink

into restful oblivion for ninety-eight years, till discovered by

some curious antiquary, and republished in French on the hun-

dredth anniversary of its birth, f The fundamental idea of the

memoir is to develop a system of vector analysis, a system

of algebraic operations with vectors. The internal evidence

would seem to show that the representation of complex

numbers appeared of secondary importance to the writer,

although he says J

' Ce qui m'a donne l'occasion de l'ecrire c'est que je cherchais

une methode qui me permit d'eViter les operations impossibles
;

l'ayant decouverte, je l'ai employee pour me convaincre de la

generality de certaines formules connues.'

How shall we build up a calculus of vectors ? The value of

a vector shall be taken as depending on its length and direction,

so that two vectors are equal when, and only when, their

lengths are equal, and their directions identical. § The method

* Matzka, loc. cit., p. 139.

f The translation was by Thiele and Valentiner and entitled Essai sur la

representation analytique de la direction, Copenhagen, 1897. This is about the

only available source of information about Wessel, and the following page

references are thereto.

t Ibid., p. 5.

§ No writer before Mourey in 1828 seems to have clearly grasped the idea

that the equality of vectors needed to be defined.
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of adding vectors is practically imposed upon us by the nature

of the problem ; we reduce to a common origin, and add by the

parallelogram construction.

The first real difficulty appears when we attempt to define

the product of two vectors. Let us quote Wessel verbatim :
*

' Le produit de deux segments doit, sous tous les rapports,

etre forme' avec 1'un des facteurs de la meme maniere que

l'autre facteur est forme' avec 1'autre segment positif ou absolu

qu'on a pris egal a 1 , c'est a dire que

:

1° Les facteurs doivent avoir une direction telle qu'ils

puissent etre places dans le meme plan que l'unite' positive.

2° Quant a la longueur, le produit doit etre a Tun des fac-

teurs comme l'autre facteur est a l'unite.

3° En ce qui concerne la direction du produit, si Ton fait

partir de la meme origine l'unite' positive, les facteurs, et le

produit, celui-ci doit etre dans le plan de l'unite' et des

facteurs, et doit deVier de l'un des facteurs d'autant de de'gre's,

et dans le meme sens, que l'autre facteur de'vie de l'uniteV

This excellent definition calls for one or two remarks. To

begin with, it never occurred to Wessel that the product of

two vectors might be something different from a vector, which

explains the reason why he could not reach the wealth of

results afterwards attained by the followers of Grassmann

and of Hamilton. Secondly he, like others who followed him,

assumes that the operation which converts the unit vector

into a given vector must, necessarily, be defined as a rotation

through a certain angle, and an alteration of the length in

a certain ratio. He might with equally sound logic, though

far less mathematical success, have defined it in any one of

a number of other ways. He might, for instance, have said

that a certain amount had been added to or subtracted from

the length (instead of from the logarithm thereof) or that the

angle with the unit vector had been altered in a given ratio.

Wessel's choice was the right and proper one, but in no sense

the only one open to him.

After laying these foundations, Wessel is able to build up
his structure rapidly. If we denote the four unit vectors laid

off on the axes by 1, e, —1, and — e respectively, the law of

* p. 9.

B 2
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multiplication shows that e
2 = — 1, so that we may replace e

by \/— 1. The standard vector can be written u + vt and the

law of multiplication, joined with the trigonometric formulae

for the functions of the sums and differences of angles, gives

(a + be) (c + de) — (ac — bd) + (ad + be) e,

a + b e ac + bd be — ad

c~+de
=

aJ+d*
+
IF+d?

6
'

n
- n . n

(cos v + sin v e) = cos— v + sm — v e.
v 'mm

1

The expression (cos v + sinve)™ has m values, to wit

V . V V + TT . V + 7T

cos — + sin — e, cos + sin e ...m m m m
v+(m— 1)tt . v + (m— 1)tt*

cos h sin e.m m
The last development in this part of the essay is interesting

;

it must be remembered that in Wessel's time nobody bothered

about the convergence of series. Let x be a complex number f

/, v«, , nix m(mx—l) „ ml h
1 +X)m = 1 + — + \ 0 V+ ... 4- lTJ j-rXK

1 1.2 k ! (m— k) !

Let Z = a + *c = x-
X--^- X- + ...+(- D» +1

2 3 4 /<

. . ' . ??i
2 /'2 m8

Z
3
-

_ e
me ema+mb(^

Hence £ = log
e
(I +x).

The author adds :

' Je presenterai une autre fois, si l'Acade'mie me le permet,

les preuves de ces theoremes.'

The Academy was doubtless willing, but the proofs were never

presented.

* p. 15. It is astounding that a man of such mathematical knowledge

and insight should have confused tt and 2ir.

f Ibid., p. 16.
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The latter portions of Wessel's classic are not concerned

with the representation of the usual complex numbers, and do

not, therefore, concern us in the present work. It is perfectly

clear from what we have quoted that he has all of the essentials

of the usual method of representation. It is worth noting

that he represents a complex number by the vector whose

components are the real part and the coefficient of the

imaginary unit, rather than by the point with these two

as Cartesian coordinates ; i. e. he uses a vector whose

initial point is the origin, instead of using its terminal

point only.

It was perhaps fortunate for the progress of mathematical

science, if not for the fame of Wessel, that during the hundred

years when his memoir slept, other writers, independent of

him, attacked the same problem, and achieved the same

results. The first of these successors was Jean Robert Argand,

who was born in 1768 in Geneva, but who passed the better

part of his obscure life as a humble book-keeper in Paris. In

1806 he published a short memoir entitled: ' Essai sur une

maniere de repre'senter les quantite's imaginaires dans les

constructions geome'triques.' * Before publication, Argand

wisely showed his work to Legendre. The great arith-

metician gave him some advice about it, and, some time later,

mentioned the memoir in a letter to a man named Francais.

After the latter's death his brother, J. B. Francais, saw the

letter, and starting therefrom developed the subject according

to his own ideas, publishing a short note entitled :

4 Nouveaux

principes de geome'trie de position, et interpretation geome^

trique des symboles imaginaires.' f

Francais' publication came presently to the notice of Argand,

who wrote a note to the author giving an account of the

history of his own researches. He followed this by sending

a development of his ideas to the same journal, and a copy

thereof to Francais. Finally, in the same number there was

* The author has only seen the second edition, with preface and appep -

dices by Houel, Paris, 1874. We shall presently refer to this work by page
number.

t Gergonne's Annates dc Mathemaliques, vol. iv, 1813, pp. 61 ff.
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published a short note from Francais, couched in the following

terms.*

. .
.

' Je viens de recevoir a l'instant le Memoire de M. Argand
que j'ai lu avec autant d'interet que d'empressement. II ne
m'a pas e'te' difficile d'y reconnaitre le developpement des
ide'es dans la lettre de M. Legendre a feu mon frere et il n'y

a pas le moindre doute qu'on ne doive a M. Argand la premiere
idde de representor geome'triquement les quantites imaginaires.

C'est avec bien de plaisir que je lui en fais hommage, et je me
felicite de 1'avoir engage' a publier ses idees dans l'ignorance

ou. j'etais de leur publication ante'rieure.'

How many cases are there in the history of mathematics

where a question of priority has been settled with such

courtesy and good feeling 1

Argand begins by considering that negative numbers are

related to positive ones, not only through numerical ratio, but

also through a reversal of direction, f This being so, the

problem of finding a mean proportional between two quan-

tities with opposite signs requires us to find the square root

of the product of their numerical values, and a direction

which is a mean between their two directions, i.e. which is

perpendicular to them. Quantities which correspond to hori-

zontal directions are called ' prime ' quantities, those which

correspond to vertical directions are ' median ' quantities.

Instead of writing aV— 1 and — aV — 1 he writes, ^ a, 4< a.

Argand next takes up the rules for adding and multiply-

ing directed quantities. The rules for addition are obvious

enough. With regard to multiplication, he reasons much as

Wessel does. Since the product is to each factor as the other

factor is to the prime vector, the tensors of the factor vector

factors must be multiplied, and their angles added. This

leads quickly to De Moivre's theorem

cos na sin na = (cos a ^ sin a)
1
'.

Expanding on the right, we get

n (n — 1 ) „ 9 . „
cosw a — cosw L a sira + . .

.

1 * a

/ * . n(n— 1) (n— 2) . \
^cosw ~

1 asina ——— ^cosw sasm 6a+
...J-

: Ibid., p. 98. t See his memoir, eit., p. 4»
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Now let n become infinitely great, while na = x, a con-

stant.

x\ lc

=
(
C08J>

and the limit of this is unity. Similarly

sml'a .n(a — 1) ... (>i— k+ 1)

(
sin -

n n(n — l)...(ib—k+l)
A

.

x

V n

and the limit of this is xh ; hence

x2 x4
. x3 x5

cos x = 1 — — + — . . . sin x = a;— — -H
2 ! 4 ! 3 ! 5 !

This is but one of a number of similar developments which,

with certain complicated trigonometric identities, constitute

the bulk of the remainder of the essay. He closes with

a proof of the fundamental theorem of algebra, which runs

as follows *

Let Y(X) = Xn + aXn ~ l + bX"- 1 + ... +/X + 0 = O;

the author adds :

'11 faut observer que les lettres a,b,,..g ne sont point

restreintes a ne representer que des nombres primes (re'els)

comme cela a lieu a l'ordinaire.'

We next give to X the value p + pi> and develop by Taylor's

theorem
Y(p + Pi)= Y(p)+ipQ + i* P*R + ....

Then says the author:

1 Si Ton suppose i intiniment petit, les termes affected de

i
2

,
i
3

,
&c, disparaissent, et Ton a

Y(p + Pi)= Y(p)+iP Q.

He then shows that Y{p + pi) can usually be made smaller in

absolute value than Y(p), and so concludes that the function,

for some value of the argument, must reach its minimum
value 0. Of course such a proof is in no sense mathematically

* pp. 58, 59.
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valid. What is of interest is the statement that the usual

proofs deal only with the case where the coefficients are real.

We may dismiss Argand with the remark that his ideas are

essentially those of Wessel, but that his development of the

subject is less careful than that of the long-neglected Scan-

dinavian surveyor.

The year 1806, in which Argand's first memoir appeared,

gave birth likewise to another longer and more ambitious essay

on the same subject. One William Morgan presented to the

Royal Society a formidable monograph entitled : * ' Memoire

sur les quantity imaginaires
',
by the Abbe* Bue'e. It is vain

to speculate after this lapse of time as to why such a memoir

was accepted by the Society. Was the good Abbe an emigre

whom the British delighted to honour the year that they

defeated his non-emigrated countrymen at Trafalgar "? Some
such reason there must have been, as the intrinsic worth of

the memoir would never recommend it for publication, f

The fundamental idea of Buee is that in arithmetic we
consider not merely numbers, but numbers affected by certain

qualities. A number prefixed by + is an additive number,

one prefixed by — is subtractive. If the prefix be \/ — 1 the

quality is neither additive nor subtractive, but a mean between

the two

:

' Ce signe mis devant a (a signifie une ligne ou une surface)

veut dire qu'il faut donner a a une relation perpendiculaire

a celle qu'on lui donnerait si Ton avait simplement +a
ou —a.'

J

Very good so far, although the reference to a surface is not

perfectly clear. We find presently

:

* II faut distinguer la perpendicularite indiquee par ce signe

de celle qu'indiquent les signes sin et cos . . . Sin et cos sont

des signes artificiels, V — 1 est un signe naturel, puisqu'il est

une consequence des signes + et — ....

* Philosophical Transactions, 1806.

f An extensive review by Peacock will be found in the Edinburgh Review,

vol. xii, 1808. The reviewer singles out for attack the only really valuable

feature in the article, showing that he has utterly failed to grasp the impor-

tant underlying thought.

+ P. 28.



i THE BINARY DOMAIN 25

1 Quoique ]a perpendicularity soit proprement la seule quality

indiquee par le signe V — 1 on peut lui faire signifier au figure
une qualite toute differente, pourvu qu'on puisse raisonner sur

cette quality comme on raisonnerait sur la perpendicularity

nieme. Par exemple, si +s repr^sente une somme posse'de'e,

et — s la meme somme due, sV — 1 peut representer la meme
somme ni posse'de'e, ni due.*

'Si, par exemple, j'exprime un temps futur par t, et un
temps passe" par — t, t V — 1 ne peut rien signifier, puisque le

present, qui est la qualite* moyenne entre le futur et le passe*,

n'est qu'un instant indivisible et qui n'a d'autre expression

que 0.'

The author goes on to say, however, that when one uses the

term ( present ' in the sense of present week or present month,

then, if the next period be t while the last is — t, the present

one is composed of t
^ 1

and — t
^ 1

• f

'

. There is worse yet to follow. We read eighteen pages

later {

:

'Par consequent, si (— 1+ V — -|) indique une seule ligne,

Tune des quantite's qui composent (—l+V — %) indique la

longueur de cette ligne, et l'autre l'^paisseur de son point

extreme.

Finally, we find seventeen pages further still § :

IT / /7T If 7T\ /

(J~Z\)n = = e
\2

+
2
+ "' + VV

= e
(90° + 90^+ ,..+90°)V^l

The author then asks himself in despair what

(90° + 90° + ... + 90°;

may mean anyway. All of which was published in the

Philosophical Transactions of the Royal Society of London
in the year of our Lord 1806, and of the reign of His Most

Gracious Majesty George III, 47.

* p. 30. f pp. 34, 35.

X p. 50. § p. 67.
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It is a curious fact connected with the history of attempts

to give a geometrical representation of complex numbers, that

not only did different mathematicians arrive independently

at identical conclusions, but that on two occasions two inde-

pendent publications appeared in the same year. Argand

and Bue'e both wrote in 1806, two other writers published

in 1828. The first of these was a certain C. V. Mourey.*

This author writes with a notable exuberance, and dedicates

his work 'Aux amis de l'evidence,' but he is by no means

lacking in penetration and mathematical insight. At the very

outset he points out that there are different ways in which two

quantities may be said to be equal. Thus, two non-directed

segments are considered equal if their lengths be equal, but

two directed segments (chemins) are looked upon as equal

only when there is identity both of length and of direction, f

In studying vectors with different directions one looks

particularly at the angle, called by this author the * angle

directi^, which one vector makes with another. This is

indicated by a subscript equal in magnitude to the given

angle in the system where a right angle is the unit, so that if

AC and AB be equal in length but at right angles to one

another we have such an equation as

AC=AB
1

.

More generally, if AB, AD, AF, and AH be four unit vectors

laid off on the axes, we have

:

AB=1, AD=l
l

, AF — 1, = - 1, All = 1, = -l r

In general

1 2p+q = *2p ' V
Comparing the angles of vectors with different initial

points, we find J

(AD + DE) r
= ADr+DEr .

The author then develops what he calls 'directive multi-

* La VTCbis theoviB des quantites negatives et des quantites pretendues imac/inaives,

Paris, 1828. The present author has only seen the second edition, Paris

1861.

f p. 7. t p. 33.
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plication'. Such a number as is defined as an operator

which alters the length of a vector in the ratio 9 : 4 and swings
rri

it through two-thirds of a right angle, i.e. f e
8

. If, then, the

number (am
)r be defined as the same as ar

m the numbers

1 , 1 4 , 1 8 1 4 (m) have all the same wth power, namely unity,

n n n

and the author exclaims * :

' Voila les racines de l'unitd, voila les quantity prdtendues

imaginaires.f

The last serious problem which Mourey takes up is the

fundamental theorem of algebra. His proof shows a very

considerable amount of acumen. Translated into modern

notation, he starts with n points of the z plane,

and proves it possible to find such a point z that

0-%) ••• (z- zu) = w + vi,

where u + v^ is a given complex value. The proof consists

in a careful watching of the argument of each of these

complex factors, as z traces a closed circuit in the plane.

It is rather curious that Mourey nowhere lays stress upon

the fact that every vector in the plane can be expressed

linearly in terms of the vectors 1 and lr
The other writer who published in the year 1828 was

the Rev. John Warren. J The word 'quantity', as used by

Warren, is defined explicitly as meaning a vector. The essay

is written with a certain workmanlike thoroughness which

suggests the professional mathematician, and is closer in

spirit to Wessel's work than to that of any other previous

writer on the subject. Moreover, Warren sees the necessity

for discussing certain important points which had been pre-

viously neglected
;

e.g. on pp. 74 ft., he inquires just which
m •

value of (1+6) n
is represented by the usual binomial ex-

pansion, when 6 is a complex number, and n a fraction.

* p. 32. f p. 45.

+ A Treatise on the Geometrical Representation of the Square Roots of Negative

Quantities, Cambridge, 1828.
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We come at last to the year 1831. On April 15 of that

year Gauss presented to the Royal Society of Gottingen a

short essay entitled: 'Theoria residuorum biquadraticorum,

commentatio secunda.' *

The fundamental idea of Gauss may be expressed in the

following terms

:

Let a set of objects A, B, C, &e., be arranged in such a scale

that we can say that the relation or transfer from A to B is

the same as that from B to G or from C to D, &c. Each of

these relations may be expressed by the symbol + 1, and if the

inverse relations be considered, as that from B to A, we repre-

sent it by the symbol — 1. If our system of objects extend

indefinitely in either direction, then any one of our integers,

positive or negative, will express the relation of any one of

our objects, chosen as the first, to some one other object of the

series.

Suppose, next, that instead of having a single series of

objects, we have a series of series, and the relation of any

object in one series to the corresponding object in the one

or other of the next adjacent series be expressed by the

symbol i or — i. The four fundamental relations are 1, i, — 1,

and —i. We then look upon our system of objects as

arranged like the points of a plane lattice (they can always

be put into one to one correspondence with such a system

of points). The system will be carried into itself by a rotation

through 90° about any one of its points, the relation 1 will be

carried into the relation i, while this latter is carried into the

relation — 1.

' Das heisst, aber, in der Sprache der Mathematiker, + i

ist mittlere Proportionalgrosse zwischen + 1 und — 1 oder

entspricht dem Zeichen V— 1. . . . Hier ist, also, die Nachweis-

barkeit einer anschaulichen Bedeutung von V— 1 vollkommen
gerechtfertigt, um diese Grosse in das Gebiet der Gegenstande
der Arithmetik zuzulassen '. . . .

' Hatte man +1, —1, V— 1

nicht positive, negative, imaginare (oder gar unmogliche)
Einheit, sondern etwa directe, inverse, laterale Einheit genannt,

* See his Collected Works, Gottingen, 1878, vol. ii, especially pp. 174

and 178.
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so hatte von einer solchen Dunkelheit kaum die Rede sein

konnen.' *

Several remarks are in order with regard to this beautiful

little memoir. To begin with, it appeared comparatively late

in time, but the author says,f that traces of the same idea are

to be found in his memoir of 1799 dealing with algebra.

Here is an important point : Is the statement well founded 1

The memoir in question is his dissertation,! and contains on

the constructive side a proof that every real polynomial

Axn + Bxn ~ l + ...+Kx + L

is divisible into factors of the types

x— rcos$ and xx— 2r cos 4>x + rr.

The whole process is perfectly blind and meaningless without

the clue that the complex value x +yV —1 corresponds to the

point whose cartesian coordinates are (x, y) and polar coor-

dinates (r,
<f>).

We may, then, say that Gauss's claim is amply

borne out. Secondly, it is noticeable that in the memoir of

1831 he confines his attention to complex integers, but that

was because his interest for the moment was in a purely

arithmetical question, and does not at all affect the general

question. Thirdly, Gauss, in contradistinction to Wessel,

Argand, Bue'e, Mourey, and Warren, thinks of the point (x, y),

not of the vector from the origin to that point. This is surely

the way that we do at present, and since our mathematical

speech has so far solidified that it is too late to call the repre-

sentation after Wessel, it seems better to associate the name
of Gauss therewith, rather than that of Argand.

It is not to be supposed that even the publication of Gauss's

memoir of 1831 put an end to experimentation in representing

complex numbers. The standard, however, was set, and we
can refer to what has been done since in most cursory fashion.

To begin with, our modern treatment of complex numbers
has a twofold aspect, the geometrical representation in the

* pp. 177, 178. f p. 175.

X
1 Demon stratio nova theorematis omnem functionem algebricam rationa-

lem Integra unius variabilis in factores reales primi vel secundi gradus

resolvi posse', Collected Works, vol. iii, pp. 3-31.
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complex plane, and the arithmetical theory of operations with

number pairs. This latter falls outside the scope of the

present work, but we may mention in passing that it sprang

into being fully armed, not from the head of Jove, but from that

of that extraordinary genius Sir William Rowan Hamilton.*

Secondly, we notice that the Gauss representation contains

one serious gap. The Gauss plane, as originally defined, is

not a perfect continuum
;
nothing is said of the infinite region

thereof. If each finite point is to represent a finite value of

the complex variable, then, if the correspondence is to be

perfect in every respect, we must consider the infinite domain

as a single point corresponding to the value of z which satisfies

the equation - = 0. This is exactly what we do when we
z

study the geometry of the inversion group. It must be

conceded, however, that the idea of a single point at infinity

lacks intuitive force. The difficulty is overcome by the

admirable expedient of projecting the plane stereographically

upon a sphere. The correspondence of real point and complex

number is then perfect and complete. It is not absolutely

certain to whom is due the credit for this device. We are

probably safest in following Neumann, and ascribing it to

Riemann.f

'Erwahnen muss ich dabei jedoch eines Gedankens, der mir
aus Riemann's Vorlesungen durch mundliche UeberlieferuDg

zu Ohren kam, und der auf meine Darstellung von nicht

geringem Einfluss wurde. Dieser Gedanke besteht in der

Projection der auf der Horizontalebene ausgebreiteten Func-
tionswerthe nach einer Kugelflache bin.'

Another point to be noted is that a geometer familiar with

the principle of duality in the projective geometry of the plane

comes very naturally to the idea of representing a complex

number, not by a point, but by a line in the plane. The

* See his remarkable and too little known memoir, 'Theory of Conjugate

Functions, or Algebra of Couples', Transactions of the Royal Irish Academy, vol.

xvii, 1837.

t Neumann, Vorlesungen iiber Riemann's Theorie Abelscher Integrate, Leipzig.

1865, p. vi, foot-note.
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attempt to do this has already been made,* but the results are

neither simple nor attractive. The reason for this ill-success

is instructive. Let the complex number

( — u + vi

be represented by the real line

ux + vy+1 — 0.

We see that every finite value of ( gives one real line, but

that all lines through the origin will correspond to the infinite

value. The connectivity of the projective plane of points and

of the plane of lines is such as to preclude the possibility of a

one to one correspondence with the totality of values of a single

complex variable, but the usual method of assuming only a

single infinite point is preferable to having all lines through

the origin correspond to the single infinite value of the

variable. Secondly, in the Gauss plane the general analytic

transformation ^—/(zjj z'=f(z)

has the absolute differential invariant

dz
f
hz' + hz'dz dzdz + dzbz

2 Jdz'di' Vhz'hz' 2 Vdzdz Vbzbz

This represents twice the cosine of the angle of the tangents

to two curves intersecting at z
y
and its invariance proves that

every transformation of this sort is a conformal one. But the

corresponding expression in the ( plane gives the cosine of the

angle subtended at the origin by the points of contact of

the line ( with two of its envelopes and the group leaving this

angle invariant, is of altogether minor importance. Let us

point out, in conclusion, that when we come to the problem of

representing all the complex points of a real plane, we shall

encounter representations of the points of a single real line

quite different from anything which we have seen so far.

Whatever virtues such methods may possess as parts of a

larger whole, for a single line, i.e. for a single complex vari-

able, they all fall hopelessly short of the standard set by the

classic method of Wessel, Argand, and Gauss.

* Brill, < A New Method for the Graphical Representation of Complex
Quantities', Messenger of Mathematics, Series (2), vol. xvii, 1888.



CHAPTER II

THE GEOMETRY OF THE BINARY DOMAIN

§ 1. The Eeal Binary Domain.

In the present section we shall give the name real points to

any set of objects in one to one correspondence with pairs of

real homogeneous coordinate values *

which are not both zero. When we say that the coordinates are

homogeneous we mean that the point X
2 )

is identical

with the point (rX
1 ,
rX

2 ), r^o. If four points (X), (Y),

(Z), (T) be given, the expression

= (XZ, YT), (1)

shall be called a cross ratio of the four. We leave to the

reader the task of verifying the familiar theorem that four

distinct points have at most six distinct cross ratios, which

make a group of values such as

T
1

i T
1 L~ 1 L

A'
2

\XY\- \ZT\ r,

\XT\- \ZY\~ X
2

Z
i

T
2

r,

l-L L-l

The first two and the last two points in the notation above

shall be said to form pairs. Notice that when the two
members of one and only one pair are interchanged, a cross

* In the present work we shall consistently use large letters to indicate

real quantities, and small ones to indicate complex ones. We shall make
one exception only to this rule, namely, we shall use the letters u, x, v, and

w as real curvilinear parameters in differential expressions. It looks too

bizarre to write the partial derivative of a small letter with regard to a large

one. We shall use such classical notations as re
1^ where r and <p are real.



THE GEOMETRY OF THE BINARY DOMAIN 33

ratio is replaced by its reciprocal. If two points of a pair

tend to coalesce, the members of the other pair remaining

fixed, the two cross ratios associated with this pairing, approach

the value 1. If two not paired points tend to approach, the

other two remaining in place, the cross ratio will either

approach 0 or become infinite. When three points are given,

there is a unique fourth point which will make with them any-

assigned cross ratio other than unity, zero, or infinity. If we
inquire as to the possibility that two of the six associated

cross ratio values should be identical, we find that, in the real

case, this can only happen in the case of the triad of associated

values - 1 0~ J
5 2'

When this arises, we shall say that each pair is harmonic-

ally separated by the other, the relation between the two
being entirely symmetrical. The points (1, 0) and (0, 1) are

called the zero points , while (1, 1) is the unit point.

Theorem 1] The ratio of the coordinates of a point is equal

to the cross ratio where the zero pointsform one pair and the

unit point and given point form the other pair.

A transformation of the type

PX, = AnX' + A 12
X

2

'

nX A Y ' j- A Y ' \

Aij\*° 2
pA

2
= ^

21
A

1
+A 22X2

J

is called a collineation. The inverse is given by

(tX{— —A^X^ A l2X2 ,

(tX
2 — A

21
X

1
—AnX2

.

Theorem 2] The totality of collineations is a three-para-

meter group.

Theorem 3] Each cross ratio of four given points is in-

variant under every collineation.

Theorem 4] If three points be invariant under a collinea-

tion, every point is invariant, and the collineation is the

identical one.
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It is clear from this that a collineation is completely deter-

mined by the fate of three points. Let us proceed to prove

the converse, which is of no small importance

:

Theorem 5] A collineation may be found to carry any three

distinct points into any other three such points.

It is merely necessary to prove that a collineation can be

found to carry three arbitrary points (Y), (Z), and (T) into the

zero points and the unit point, as the product of this and the

inverse of the transformation which carries the other three

points into these will accomplish the desired end. The
collineation desired is expressed by the equations

|
ZY \X

1
= \ZT\ Y

X XJ + \TY\ Z
±
X

2\

\ZY\X
2
= \ZT\ Y

2
X/+\TY\Z

2
X

2\

Since cross ratios are invariant under every collineation,

we see that, in particular, harmonic separation is an invariant

relation. We shall now prove the remarkable theorem that

the invariance of this one relation is enough to insure that a

one to one transformation shall be a collineation.

Theorem 6] Every one to one transformation of the real

binary domain which leaves the relation of harmonic separa-

tion invariant, is a collineation*

Suppose that we have a transformation of this nature which

carries the zero points and unit point into three specified

points. We may follow this with a collineation which carries

them back again, and the product is a transformation of the

type described in our theorem, which leaves these three points

invariant. Let us prove that it must be the identical trans-

formation, so that the original transformation was the collinea-

tion inverse to the one employed.

It will simplify our analysis if we abandon homogeneous co-

* This theorem is due to Von Staudt. See his Geometrie der Lage, Nurem-
berg, 1847, p. 50. His proof is lacking in rigour owing to an inadequate

treatment of the question of continuity. The question was debated at some
length in the early numbers of the Mathematische Annalen, and eventually

rigorous proofs were found. That given here is due to Darboux, 4 Sur la

geometrie projective', Math. Annalen, vol. xvii, 1880.
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ordinates, and replace by X. Our transformation will be

characterized by the equations

X = F(X'),

F(0) = o, F(l) = h F(*>) = oo- (4)

(X) + (Y)
Since (X) and (7) are harmonically separated by -— 1

and oo,

F^X+Y)
^
= F(X) + F(Y)

F{X+Y) = F(X) + F{Y).

If R be a rational number

F(RX) = RF{X),

it is easily proved algebraically that the N. S. condition

that there should exist a pair of points separating harmonic-

ally both the pair (1) (X) and the pair (0) (oo) is that X>0.
Hence, if X>0 then F(X)>0.
If X>0 the N. S. condition that there should be a pair

separating harmonically both (0) (Z) and (oo) (RX) is

RX>X.
Hence, in this case F(RX)>F(X).

It appears that F(X) must increase with X so that it is a

continuous function. Hence, for all values of X and R
F(RX) = RF(X) = XF(R),

F(X) = X.

There is another form in which our collineation can be put,

which is of importance with regard to what comes later. We
have merely to eliminate p from the equations (2). We obtain

a bilinear form in the variables (X) and (X') which may be

expressed in the Clebsch-Aronhold symbolic notation *

(A
X
X

X + A,X2 )
(A^X^ + AJXJ) EE (AX) {A'X>) = 0. (5)

* The more usual form of the symbolic notation is A XA'X>. The form here
used is, however, preferable.

c 2
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The letters A are meaningless except in the form of product

Theorem 7] If a single pair of points correspond inter-

changeably in a collineation, that is true ofevery pair ofpoints,

and the transformation is involutory with a period two.

We shall usually speak of such a transformation as an in-

volution. The analytic condition is easily found to be

An +A22
=0.

Theorem 8] Two pairs of corresponding points will always

determine an involution, and there exists just one involution

which will interchange the members of any two pairs.

§ 2. The Complex Binary Domain, Collineations and

Anti-collineations.

The universe of discourse for the rest of the present chapter

is the complex binary domain. This is a system of objects

called points in one to one correspondence with pairs of

homogeneous coordinate values (xv x2) not both zero. The

point with conjugate imaginary coordinates (xv x
2)

shall be

called the conjugate point. A cross ratio of four points (x), (y),

(z), (t) will be given by the expression

The remarks in the first section about the six cross ratios

of four given points all hold good in the complex domain.

There is, however, another case where four points have less

than six different cross ratios, namely the equi-harmonic

case, where one of the six values is an imaginary cube root of

— 1. Theorem l] holds equally in the complex domain.

Definition. A system of collinear points of such a nature

that :

A. The cross ratios of any four are real.

B. There exists a point of the system making with three
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given points thereon any given real cross ratio other than zero,

one, and infinity, shall be called a chain.*

It is clear that three distinct points can belong to only one

chain. The chain which contains the points (y), (z), and (t) may

be expressed in the parametric form

|

yz \x
1
=

|

tz\y
1
X

1 + \

yt |^X2 ,

\yz\x
2
=\tz\ y2

X
x + \

yt
|

z2X2 . (7)

Theorem 9] Three distinct points will belong to one and

only one chain.

Theorem 10] The chain determined by the zero points and

the unit point is the real domain.

We shall define as a collineation any transformation of the

type ^ = «w+«w i^,^ (8)
pX% — #21^1 +^22^2

It is seen at once that theorems 2], 3], 4], and 5] apply

equally in the complex domain.

Theorem 11] A collineation carries a chain into a chain.

Theorem 12] A collineation may be found to carry any

given chain into the real domain.

Besides collineations, there is a second type of transforma-

tions which is fundamental in our work. These are called

anti-collineations,f and are given by equations of the type

px
2 — a

2iXl + #22^2 • (9)

It is evident that any anti-collineation can be factored into

the product of a collineation and the interchange of conjugate

imaginary points.

Theorem 13] An anti-collineation is completely determined

by the fate of any three points.

* First defined and studied by Von Staudt in his Beitrage zur Geometrie der

Lage, Part II, Nuremberg, 1858, pp. 137 ff.

t The name is, apparently, due to Segre. See his fundamental article,

' Un nuovo campo di ricerche geometriche ALU delta R. Accademia delle Scienze

di Torino, vol. xxv, 1889, p. 291.



38 THE GEOMETRY OF THE BINARY DOMAIN ch.

Theorem 14] An anti-collineation may be found to carry

any three points into any other three.

Theorem 15] The cross ratio of any four points is carried

by an anti-collineation into the conjugate imaginary value.

Theorem 16] An anti-collineation will carry a chain into

a chain.

Theorem 17] The product of a collineation and an anti-

collineation is an anti-collineation ; the product of two anti-

collineations is a collineation.

We are now able to prove another very fundamental

proposition

:

Theorem 18] Every continuous one to one transformation

of the binary domain which leaves harmonic separation in-

variant is either a collineation or an anti-collineation.

The method of proof is entirely analogous to that used for

6]. We may follow our transformation with a collineation

which restores the zero points and the unit point to their

original positions, and we merely need to prove that this

product transformation is either the identical transformation,

or the interchange of each point with its conjugate. Let the

transformation be characterized by the equations

x = f(x%

/(0) = 0, /(1)=1 3
/(oo) ^ oo.

We see by the reasoning used in 6] that for each rational

real point we shall have v ~. v ,A =/W-
Since the transformation is assumed to be continuous, this

identity must hold for every real point.* As before, we have

f(X)+f(Yi)=f(X+Yi),

* Segre, loc. cit., p. 288, expresses the opinion that it is likely that the

requirement of continuity may be dropped, as it may be deduced from the

invariance of harmonic separation, but confesses his inability to find a proof.

The present author is of the same opinion, and has had the same ill success.
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Since z and —z are harmonically separated by x and y,

when, and only when, Xy _ ^
and since Yi and — Yi are harmonically separated by Y
and — F, while

/(F) = Y, f(-Y)=-Y,

[f(Yi)]*= -f(Yi)[f(-Yi)]

= - [/(F)?

= (Yi)2,

f{Yi) = ± Yi,

f(X+Yi) = X + Yi.

Since f(Yi+ Y'i) =f(Yi) +f(Y'i),

if f(Yi) = Yi,

f(Y'i) = Y'i.

Hence, either f(z) = 0,

or /»•=*•

The difference between a collineation and an anti-collinea-

tion comes out in the clearest possible manner when we
represent our complex binary domain in the Gauss plane.

Employing a form of notation more familiar in the theory of

functions, 'the general collineation may be written

z' = yily an a 22-a12
a
2l 0. (10)

21 ' 22

This is a real direct circular transformation which carries a

point into a point, and a circle or line into a circle or line,

while angles are preserved both in numerical magnitude and

sign. We may pass continuously from this transformation to

the identical one. On the other hand, an anti-collineation

takes the form

z' = a nZ + a i2 a a a^ 9an =£ 0. (11)
a
21 z + a22

11 22 12 21 ^ v 1

This appears as a real indirect circular transformation,

differing from the first by the fact that angles are reversed in

algebraic sign, and we cannot pass over continuously to the
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identical transformation. We see also from 12] that a chain

of points in the complex domain will appear as a circle or line

in the Gauss plane, and, conversely, every circle or line in this

plane (by definition there is no line at infinity) will corre-

spond to a chain.*

Theorem 19] Every one to one transformation of the points

of a complex line that carries a chain into a chain is either a

collineation or an a.nti-collineation.

It will be sufficient to prove that every one to one trans-

formation of the Gauss plane that carries points into points,

and circles and lines into circles and lines, must be of type

(10) or type (11).t Let us suppose that our transformation

carries a point 0 into a point 0\

We may precede our transformation by an inversion with 0

as centre, and follow it by one with 0' as centre, thus getting

a new transformation answering the given description, that

carries points into points, lines into lines, and circles into

circles. Parallelism will be an invariant property here, hence

a parallelogram will go into a parallelogram, and a rectangle,

which is a parallelogram inscriptible in a circle, will go into

a rectangle. A square, which is a rectangle with mutually

perpendicular diagonals, will go into a square. If a square

ABGD go into a square A'B'G'D'^ we may find a transforma-

tion composed of a rigid motion, a central similitude, and,

when the corresponding vertices follow in reverse sense of

rotation, a reflection in a straight line, which will carry

A'B'G'D' back into ABGD. The net result will be a trans-

formation of our given type that leaves the corners of a square

in place. It appears that every square sharing two vertices

with the given square will also stay in place, as will each of

the four squares into which the given one may be subdivided.

* The literature of circular transformations in the plane is of course enor-

mous. For an elaborate recent discussion see the author's Treatise on the Circle

and the Sphere, Oxford, 1916, chap, vii, where many further references will be

found.

f This proof is taken from Swift, { On the Condition that a Point Trans-

formation of the Plane be a Projective Transformation', Bulletin American

Math. Soc, vol. x, 1904 ; also Darboux, loc. cit.
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In fact every point whose distances from two adjacent sides of

the square are rational in terms of the length of a side will be

invariant. If we can prove that our transformation is con-

tinuous, it will follow that every point is invariant. Now the

necessary and sufficient condition that a point should be

between two others is that every line through it should

intersect in two points every circle through the two, and this

is an invariant condition. Hence betweenness is invariant,

the transformation is continuous, and every point is fixed.

Our original transformation has in this way been factored into

others, all of which are of type (10) or (11).

The cross ratio of four complex points has a real significance

in the Gauss plane, which must now claim our attention. If

the points correspond to the complex coordinate values

z
i>

z
i>

z3> an<l 04> an(* be represented by the real points P15 P2 ,

P3 , and P4
respectively, and if we write

Z, — Z„ Z»— Za .a— 2 x - =re 10
,

Z3~ Z2

T = £p
3

vPP '> 6 = ^A*2-

It is time to take up the question of classifying collineations

and anti-collineations. For this purpose we must look for

the fixed points. (8) will carry a point into itself if p be a root

of the equation

ai\-p an _ Q

^21 ^22 P

When this equation has equal roots, there is but one fixed

point, otherwise two (except, naturally, in the case of the

identical collineation). Choosing the one fixed point as the

unit point (1, 0) we find that an = a22 ,
a21

= 0. Our trans-

formation can never be involutory, and each point is harmonic-

ally separated from the one invariant point by its mate in

the given transformation and in its inverse. This property is

characteristic of the present type of collineation, which is said

to be 'parabolic.



42 THE GEOMETRY OF THE BINARY DOMAIN ch.

When the transformation is not parabolic, if the two fixed

points be (y) and (z) it may be written in the form

M^l = fj». (12)
\xz\' \xy

I

v 7

Theorem 20] In a non-parabolic collineation, each cross

ratio formed by a pair of corresponding points with the two

fixed points is constant.

We recognize the following types of non-parabolic collinea-

tions

:

Loxodromic r2— 1 ^ 0, B — k-n^O, k integral.

Hyperbolic B — k-n = 0 „

Elliptic r2-l = 0

Involutory r2 —l = B — kTT=0 k integral.

Theorem 21] The necessary and sufficient condition that

a collineation should be involutory is that corresponding

points should be harmonically separated by the invariant

points.

We turn aside to give a very general theorem about trans-

formations.

Let A be a fixed element for a transformation T
Y
while a

second transformation T
2
carries A into B. Then B is a fixed

element in the transformation T
2
T^F- Y

. If our transforma-

tions T
x
and T

2
be commutative, T^TjTf1 is identical with Tlt

so that B is also a fixed element of the transformation Tv
Hence either A is identical with B, and so is fixed for T

2 , or

the latter changes A, one fixed element of T
ly

into B, another

fixed element.

Theorem 22] If two transformations be commutative, then

each will permute among themselves all of the fixed elements of

any kind in the other.

If two collineations be commutative, each will leave in-

variant, or interchange, the fixed points of the other; if

neither be involutory, they must have the same fixed points.
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We leave to the reader the task of showing that this necessary

condition is also sufficient.

Suppose that a collineation T is characterized by the fact

that it carries ABG into A'B'C respectively. Let / be the

involution which interchanges A and B\ B and A'. The pro-

duct is a transformation where A and B correspond to B and

A respectively, and is, hence, an involution

11 = 1, 1T=JT, JJ=1.

Hence T = IJ.

Theorem 23] Every collineation can be factored into tivo

involutions.

There is another analytic form for collineation which brings

out their invariants in satisfactory shape ; this is the complex

symbolic form, corresponding to the real form (5), namely,

(ax) (a'x') = (ax) (a'x') — 0. (13)

The relative invariants are

\aa'\—(X, (14)

which vanishes when the collineation is involutory, and the

discriminant

\aa\-\a'a'\ = Aa , (15)

which vanishes when the collineation is degenerate. The
fixed points are found from the equation

(ax) (a'x) = 0.

The condition for a parabolic collineation will be

a2 -2Aa =0.

When this condition is not satisfied, we may choose the

roots of our quadratic equation as the zero points ; the collinea-

tion takes the simple form :

px
1
= a^i xx ,

px
2
= a

22 %2 »

and the invariant cross ratio, which is characteristic of the

transformation

a + 7a2 -2A„
r
~

(16)
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Suppose that we have a second collineation

(bx") (6V) = 0,

the products are

|

a'b'
|

(ax) (bx") = 0, \ab\ (a'x) (b'x") = 0.

The first of these may be written

|
a'b'

|

•
|
ab

|
•

|
xx"

| + 1 a'b'
\

(bx) (ax")

= i |
a'b' \-\ab\*\ xx"

\
+ J |

a'b'
\

[(ax) (bx") + (bx) (ax")].

The latter part is unaltered when we interchange (x) and

(x")
y
hence the N. S. condition that the product of the two in

either order should be involutory is

|

ab
|

•

|

a'b'\ = 0. (17)

Under these circumstances, the two collineations are said to

be harmonic.

The product of one and the inverse of the other is involu-

tory if

\ab'\.\a'b\= 0. (18)

Here the two are said to be orthogonal.

There is an analytic form for our anti-collineations which

corresponds to that for collineations, namely,

(ax) (a'x') = (ax) (a'x') = 0. (19)

If there be a fixed point for the anti-collineation its coor-

dinates will satisfy the equations

(ax) (a'x) = (a'x) (ax) = 0.

When the original anti-collineation is not involutory, these

two are distinct, and the fixed points, if there be any, are

roots of the equation

|

da'
|

(ax) (a'x) — 0. (20)

We shall reach this same equation if we seek a pair of points

which are interchanged in our anti-collineation. The roots

are the points which are invariant in that collineation which

is the square of the given anti-collineation.

Theorem 24] In a non-iiivohUory anti-collineation either

one point or two points are invariant , and no points are
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interchanged, or hvo points are interchanged, and none in-

variant.

These three types are called respectively parabolic, hyper-

bolic, and elliptic anti-correlations. There remains the case of

the involutory anti-collineation or anti-involution. Here the

fixed points satisfy the equation

(ax) (ax) = 0. (21)

We shall define as the discriminant of this

|
ad

|

•
|

ad
\

= A, (22)

which cannot vanish if the anti-involution be a proper trans-

formation.

The left-hand side of the essentially real expression (21) is

bilinear in the conjugate imaginary variables (x) (x), and comes

under a general type which we shall now define.

Definition. A form which is bilinear in a set of homo-

geneous variables u
0 ,
ul9 u2 ... un ,

and their conjugates

u
0 ,
u

x ,
u

2 ... un , and which, when multiplied by a constant

non-vanishing factor is essentially real for all sets of conju-

gate imaginary values of the variables is called a Hermitian

Form* Our form (21) is certainly under this head. Con-

versely, if the bilinear form

2 a
{j
u

{
uj

be Hermitian, we must have

aji — pa>ij> P~P= l -

If p == 1 we may write at once

(an) (cm).
ie

If p = e
ld we have merely to multiply through by e~ 2 to

reduce to this form.

Returning to the binary Hermitian form (21), let us trans-

form it through the collineation

(cx) (c'x') = 0,

or the anti-collineation

(cx) (c'x') = 0.

* Hermite, 'Sur la th^orie des formes quadratiques Crelle's Journal, vol.

xlvii, 1854, pp. 345 ff.
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The result in either case may be written

|
ac

!

•
|
ac

|

(cV) (c'£'),

the discriminant is

|
ac

|

•
|
ad

|
•

I

c'c'
|

•
|
ac

\

•
\
dd

| .
|
c'l'

\

= 4 \cc 1*1 c'c'
I

•
I

c3
I

.
I

c'3
r

I I

ad
I

.
I

ad |.

It will be noted that the part of this product which depends

upon (c) is essentially positive. Hence the sign of the dis-

criminant of the binary Hermitian form is invariant for

collineations and anti-collineations. When the intrinsic sign

is positive and the coefficients of x
x
x

x
and x

2
x

2
are real, the

form is said to be definite, otherwise indefinite. Two 'points

(x) and (x') are said to be conjugate %uith regard to the

Hermitian form (21) if they correspond in the anti-involution

(19). If we take two such points as unit points of our co-

ordinate system, the Hermitian form takes the canonical

shape
jA. j Xj

X^ ^2 A 2 *

We see thus, that when the form is definite, it vanishes for

no point ; when it is indefinite, it vanishes for a simply infinite

set of points, i.e. a set depending on one real parameter. We
shall return to this form in a moment, but pause first to look

at the Hermitian form of vanishing discriminant. We write

this in non-symbolic notation

Bn X
1
X

x + 612 tfj a?2 + ^12 X2 ®1 + -^22 X2 ®2 » ^11 ^22 = ^12 ^12 *

We may assume that both Bu and B
22

are positive.

Let \= VB^ \= e^

We may choose cf> and \j/ so that

bih = &i2> Mi = 512 .

We see therefore that the form divides into two conjugate

imaginary linear factors.

Theorem 25] A binary Hermitian form of vanishing dis-

criminant is rationally factorable, and vanishes for a single

point.
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We return to the indefinite Herinitian form

"^"1 — "^"2 ^2 *^2 '

Writing x( = VA
1
x1) x2

/ = VA 2
x
2 ,

we get the canonical equation

1 1 — 2 2

'

which shows that the cross ratio of the four points

(1,1), (1,-1), <e
td

, 1), ix{x2

f

)

is real, i.e. we have a chain. Conversely, if we divide one of

our equations (7) by the other and eliminate X
x

: X2
between

that and the conjugate equation we shall have a Hermitian

form equated to zero.

Theorem 26] An indefinite binary Hermitian form will

vanish for all points of a chain.

Theorem 27] In an anti-involution, either there are no

invariant points, or all points of a chain are invariant.

Let us look for invariant chains under an anti-involution.

If the chain _

(bx) (bx) = (bx) (bx) = 0

be invariant for the anti-involution

(ax) (dxf) = (ax') (ax) = 0,

it must be identical with the chain

|
ab

|

•
|

ab
\

• (ax') (ax') = 0,

|

tib
|

(ax') =
|
da

\

(bx') + \
ab

\

(tix'),

|
ab

|

(ax!)
\

da
\

(bx') = —
\

ab
\

(ax')
\

da
\

(bx')

— — \ |
ad \

•
|
ad

\

(bx') (bx').

The transformed chain may thus be written

— 1| ad
|

•
|
ad

\

(bx') (bx') + 1 ab
|

•
|
ab

|

(dx') (dx') = 0.

The condition reduces to

Dah
=

|

ab
|

•
!
ab

|

= 0. (23)

Theorem 28] In every anti-involution there will be a system

of invariant chains depending on tivo real parameters.
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Theorem 29] The necessary and sufficient condition that a
chain should be invariant for an anti-involution is that the

anti-involution associated with the given chain should be com-

mutative with the given anti-involution.

We leave the proofs of these simple theorems to the reader.

Two chains which are related in this way are said to be

orthogonal.

Theorem 30] An anti-involution will appear in the Gauss
plane as an inversion in a circle, or the product of such an
inversion with a reflection in its centre. Orthogonal chains

will be represented by orthogonal lines or circles.

Let us extend our inquiry by looking for invariant chains

under a collineation. The general non-parabolic collineation

may be written
i9 , / /

X-^ — 7 e X^ , — ^2 •

Let the chain be

A -q X-^ X-^ -j- a^ X-^ ^12 ^2 "^22 *^2 *^2 "~ ^*

The transformed chain is

r*Anx{x{ -f re
l9
a12x^x2 + re~

l6

]

a
X2
x^x

2 +A 2l
x

2
x
2
= 0.

The original chain will be invariant if

1) An = A 22
= 0, e

rie =l.

2) a
12
= a12

= 0, r = 1.

In the first case we have a hyperbolic collineation, and the

chain passes through the fixed points, in the second case we
have an elliptic collineation and the chain is orthogonal to

every chain through the fixed points. In this case it shall be

said to be about the two points. A typical parabolic collinea-

tion may be written

X-^ := X-^ -f- b-^
2
X>
2 ,

~- *^2 *

The transformed chain is, in this case,

Anx^x^ + (Au b
12 + a

12)
x{x

2
' + (An b12 + a

12)x2
'x{

+(AAA2 + «12&12 + ^12^12 +A^xJx£ = °-
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For an invariant chain it is necessary and sufficient that

We have an infinite number of invariant chains. All pass

through the single fixed point, and no two have any other

point in common. We next take the hyperbolic anti-collinea-

tion

#2 = &n^i j ~ ^22^2 ' ^11^11 ^22^22*

The transformed chain is

^li ^n ^11 ^1 ^i + ^12 ^11 ^22 X l ^2

+ &
12

b
ix

b
22 + -^22 ^22^22 ^2 ^2 = ®"

For an invariant chain we must have

^11 = ^22 = °> ai2 = ^11^22-

There are thus two mutually orthogonal chains through the

fixed points. An elliptic anti-involution may be written

X
\
= ^12^2 '

X
2
~ ^21^1 ' ^12^12 ^21^21*

The transformed chain is

"^22^21^21^1 + ^12^12^21^1 *^2 + ^12 ^12^21^2*^1

+^ 11 &i2512a?/^2
/ = 0.

There is only one invariant chain, namely,

^21^21^1^1- ^12^12 X
2 ®2 = °«

Lastly, take the parabolic case

X
l
= X

l + ^12^12 '
X

2
= X

2 '

The transformed chain is

Anxx

f
x

x

f + (A n 612 + a
l2)
x(x

2 + (^n fr
12 + ^\2f X2

X
1

+ (Au b
12b22 ^a12 bn + dJju + A 22)x2

/
x

2

/ = 0.

There is but a single invariant chain, namely,

i{x
l
x
2
-x

2
x

l ) + |(512~&l2)
= 0.

2874 D
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The study of these invariant chains is important, as it

enables us to answer completely the question as to what

conditions are necessary and sufficient if two of our trans-

formations are to be commutative. We see from 22] that they

must have the same system of invariant points and invariant

chains ; let the reader show by taking up case after case that

these necessary conditions are also sufficient

:

Theorem 31] The necessary and sufficient condition that

two collineations should be commutative is that they should

have the same fixed points, or that one should be involutory,

interchanging the fixed points of the other.

Theorem 32] The necessary and sufficient condition that

a collineation and an anti-collineation, neither of which is

involutory, should be commutative, is that they should be

hyperbolic, elliptic, or parabolic together, with the same fixed

or interchanging points, and, in the parabolic case, that the

chain fixed in the anti-collineation should be among the fixed

chains of the collineation. If the collineation be involutory
9

the anti-collineation must be hyperbolic with the same fixed

points, or elliptic with interchanging points interchanged in

the collineation, or involutory, keeping fixed or interchanging

the fixed points of the collineation.

Theorem 33] The necessary and sufficient condition that

tvjo anti-collineations3 neither of which is involutory, should

be commutative, is that they should be elliptic, hyperbolic, or

parabolic together, with the samefixed or interchanging points,

and the same invariant chains. An anti-involution will be

commutative with any anti-collineation ivhose fixed or inter-

changing points and chains are fixed or interchanged by it*

The necessary and sufficient condition that tivo anti-involu-

tions should be commutative is that their product should be a n

involution.

* The last two theorems are incorrectly given in the authors Treatise on the

Circle and the Sphere, cit. p. 328, although the error is mentioned in the table

of errata. For a correct statement in a less geometrical form see Benedetti,

'Sulla teoria delle forme iperalgebriche ', Annali detta B. Scuola normale di

Pisa, vol. viii, 1899, pp. 60 ff.
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Given a non-parabolic collineation

this can be factored into

•AsI — ' j ^2 — 2 '

ft/j — 6
' j 00.2 — *

The first is the product of the anti-involutions

X-^ — r QSq 5
~" X-^ j *^j — ^2 • QSq ~~ *^y *£\ >

while the second is the product of

X-^ & ^ X-y
j 1^2 — £^2 '

— ^
'

^
? *^2 — *

The parabolic case can be treated as the limit of the

hyperbolic case

:

Theorem 34] A loxodromic collineation is the product of

four anti-involutions, a non-loxodromic one is the product of

tivo.

If we take an anti-collineation which is not involutory

and precede it by an anti-involution which leaves its in-

variant chain in place, the product is a collineation which

has an invariant chain, and so is not loxodromic

:

Theorem 35] A non-involutory anti-collineation can be

factored into three anti-involutions.

Before leaving our study of anti-collineations, it is worth

while to find a few of their invariants."* Given the anti-

collineation

(ax) (afxf) = (ax) (pfx') — 0.

If =
|

ad
|

•
|

a'li'
|

= 0,

the transformation is improper. The fixed points of the

squared transformation come from

|
a'

a"

|

(ax) (a'x) = 0.

* For the remainder of the present section cf. Benedetti, loc. cit., pp. 63 ff.

This writer has an insatiable appetite for finding complete systems of in-

variants of these forms and transformations. See also Peano, ' Formazioni
invariantive delle corrispondenze

',
Battaglino's Giornale di matematica,

vol. xx, 1882, pp. 81 ff.

D 2



52 THE GEOMETRY OF THE BINARY DOMAIN ch.

This will vanish identically if the given transformation be

an anti-involution. If, on the other hand,

a0
=

|
aa!

|

•
|
a'd!

\

— 0,

the original transformation had a period four. The condition

for a parabolic anti-collineation is

|

d'ti
|

•
|

bi
|
[] aa'

|

•
|
bb' 1-2

|

ab \
|
a'V |]

= 0,

where (a), (a), (6), (5), are all equivalent letters. The first

part of these is a
0
2

. To find the second part, we note that

|

a'ti
|

•
|

Vb
|

=
|
a'V \.\a%\-\aT>'\*\arb

|,

I

aft
|

•
| |

•
|

a'd
|

•
|

bi
|

=
|

a&
|

•
|
a'V

\

•
\

W
\

•
\
a'b |.

Hence, the second part is

-\ab\-\a%'
\

'\a'V 1. 1 d'l l^-o^,
and the condition for a parabolic anti-collineation is

0C0
2

In the case of an anti-involution a0
= 0 and = A is

the only invariant. Let us look for concomitants of the two

anti-involutions

(ax) (ax
r

) = (ax) (tix') — 0,

4 (bx) (bx') = (bx) (lx') = 0.

A = \ad\'\ad\, B=\bb\.\bl\
}

Doh =^ab\-\ab\.

A, B, and Dah are only symbolic products of conjugate

imaginary factors and are not, therefore, necessarily positive,

though they are necessarily real. In fact, if the Hermitian

forms be written with coefficients of x^ X-^ real, there will be

two invariant chains if

A < 0, B < 0.

We may reduce these to

ix^— ix
2
x^ — 0, (bx) (bx') = 0,

A = -2, B=l\bb\.\bb\, Dah = i(b
1
b^-b

1
b
2 ).
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The first transformation leaves the chain of reals in place.

If it contain two members of the other chain they will be

given by

b&X* + (bj>
2 +b^X^ +\\X} = 0.

For real solutions

AB—Dab
2 ^0, i<0, 5<0. (24)

Let the reader show that the angle of the circles in the

Gauss plane which represent these chains will be given by

cos 6 —

We have already seen that the condition for orthogonal

chains is

Dab = 0. (23)

Take three anti-involutions

(ax) (ax) = 0, (bx) (bx') = 0, (ex) (cx') = 0.

If they be not linearly dependent we may find an anti-

involution

(dx) (dx') = 0,

commutative with all three. We must eliminate d and d
from the equation, and from

|
ad

\

•
\
ad

\

=
\
bd

\

>
\
bd

\

=
\
cd

\

•
\
cd

\

= 0.

The result is

-= 0.

Developing by Laplace's method

|
ac

|

•
|
ah

|

(bx) (cx') — \ab\*\ac\ (cx) (cx') = 0.

The discriminant

\dd\-\ dd
|

a
x
a

x
a

x
a

2
a

2
a

x
a

2
a

2

hk bA hA t>
2
b
2

C
2
C
1

C
2
C
2

X% X% — SC^X-^ 0b-^ &2 x
x
xJ
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can be written as the symbolic product of the matrices,

namely,

a±a
x

a
2
a

x
a

2
a

2
d

2
d

2
— d

2
d

Y
— d

x
d

2

hh b2 bt M2 X

CA cA C
2
C
2

C
2
C
2

~ C
2
C
1

~ C
1
C2

A Dai Dac

Via B Die

Dcu Del c
Thus the three chains

(ax) (ax) = 0, (bx) (bx) = 0, (cx) (cx) = 0,

A < 0, B < 0, G < 0
;

will have a common point without being linearly dependent,

when and only when
Dalc = 0. (25)

§ 3. Chains.

We saw in Theorems 9] and 10] that three distinct points

will belong to only one chain. Throug-h two given points

there will pass an infinite number of chains. An arbitrary

chain through the points (y) and (z) may be expressed para-

metrically x . = XlPyi +X^, (26)

where p and a are two complex multipliers, constant for

the chain. Take the anti-involution

(ax) (ax') — 0.

This will interchange the points (y) and (z) above if

(ay) (dz) = (az) (ay) = 0.

The point (x) given here will be changed into the point x'

where

xI = Yip Vi + ^2 **i ;
x

i
7

i
p'p (yy) + x2

Y
2™ («*) = °-

Theorem 36] If an anti-involution interchange a single

pair of points of a chain, the whole chain is invariant in the
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anti-involution, and if the latter have a chain offixed 'points,

this latter is orthogonal to the given chain.*

Theorem 37] An involution leaves invariant every chain

through itsfixed points and every chain about them.

Theorem 38] Through a given point will pass just one

chain about two given points.

We see, in fact, that there is but one anti-involution that

leaves one point invariant and interchanges two others. Let

the reader next prove

:

Theorem 39] Through tivo given points will pass one chain

invariant in a given anti-involution, and only one when the

given 'points are not interchanged in the transformation.^

Theorem 40] There is just one anti-involution which inter-

changes two given points, and leaves invariant a given chain

not through either point. If there be a chain about the points

orthogonal to the given chain, it is invariant for the trans-

formation.

Theorem 41] If a chain be invariantfor an anti-involution,

the transformation of its points is projectively equivalent to an
involution in the real binary domain.

Suppose that we have two given points and a chain which

contains neither and is not about the two. There is one

chain through the given points, orthogonal to the given

chain, and one anti-involution exchanging them and leaving

the given chain invariant. This latter will leave invariant all

chains through the two points as well as the given chain.

The anti-involution associated with the chain through the two

points orthogonal to the given chain will leave invariant all

chains about the two points, and also the given chain

:

Theorem 42] Ifa chain co ntain neither oftwo given points,

and if it be not about them, it will be met by chains through

the given points in pairs of points of one involution, and by

chains ahout them in pairs of points of another.

* The remaining theorems, which are merely restatements of familiar

theorems about orthogonal circles in the Gauss plane, will be found in an
article by Young, ' The Geometry of Chains on the Complex Line Annals

of Math., Series (2), vol. xi, 1909, pp. 37 If.

t Incorrectly given. Ibid., p. 41.
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The chains about the unit points will appear in the Gauss

plane as the circles whose common centre is the origin. Two
of these will touch every circle not of the system, and every

line not through their common centre :

Theorem 43] If a chain do not pass through two given

points, and be not about them, then two chains about the

points will be tangent to it. If, furthermore, there be a chain

about the two points orthogonal to the given chain, there will

be two chains through the two points tangent to that chain.

§ 4. Hyperalgebraic forms.

Our binary complex domain is a one-parameter system,

when considered in terms of complex variables, but a two-

parameter system when considered in terms of real variables.

We may thus find therein families of points depending

analytically on a single real parameter ; the chain is the first

example. Every real analytic curve in the Gauss plane will

represent such a system, and every such system will be repre-

sented by a real curve.

Definition. A system of points in any continuum, whose

coordinates are analytic functions, not all constants, of a

single real parameter, shall be called a thread.

When we use homogeneous coordinates we shall assume that

the ratios are not all constants either. If the functions in-

volved be algebraic, we shall say that the thread is algebraic.

Such a thread will appear in the Gauss plane as the real

algebraic curve
F(X, Y) = 0,

where the coefficients are all real. Writing

we have

n
*->p\{n—p)\ ql (n— q)l

ap^Pxn-PxJxJ 1-'! = 0, a
qp
= a

pq ,
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which may be written in the symbolic form

(ax)n (axf = 0. (27)

The left-hand side of this is called a hyperalgebraic form.

The number 2n is called the order of the thread ; it has a signi-

ficance which we shall discover later. Conversely, if we start

with our equation (7) and put

x
i = X + iY, & = Z-iF,

where the coefficients are real. Suppose that we can find a

set of values satisfying this equation (27) for which

a
{ (axf-

1 (ax)n £ 0, a
{ (axf (ax)"1- 1 £ 0.

Putting X-^— X ,
~~ ^ j ~ &

)
"""" ^

'

whence .F(Z, 7) = 0, ^X^ 0
* ^p^°-

Now, if a real algebraic plane curve contain a single real

point which is not singular, it contains a single infinite set of

such points. The point (x) which satisfies the inequalities

above shall also be said to be not singular for the form

:

Theorem 44] If a single point can be found whose coor-

dinates reduce to zero a given hyperalgebraic form, and if the

point be not singular for that form, then theform equated to

zero will give the equation of a thread. Conversely, every

algebraic thread is determined by equating a hyperalgebraic

form to zero.

The difference between a singular and a non-singular point

is easily seen in the case of a binary Hermitian form. If,

when the coefficient of Xy Xy IS real the discriminant be nega-

tive, there is a thread with a singly infinite set of non-

singular points. If the discriminant be zero, there is, as we
saw in 25], only one point and this is singular.
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Let us now ask the question : What points does the chain

(26) share with the algebraic thread (27) ? Substituting

. [P (toy) X, + or (az) X2f \fi
(ay)X^a (az) XJ» = 0. (28)

Theorem 45] The number of 'points common to a chain a nd

an algebraic thread is in no case greater than the total order

of the thread, except in the case where the chain is completely

contained in the thread.

The total coefficient of X* n~ kX
2
k in the expanded equation

(28) is

hU^WX +
(fc-1)! (»-* + !)!

- P
n- 1 apn

-h+l ah
- 1 (ay)n

- 1 (az){ay^^^ + .... (29)

Let us inquire under what circumstances this will vanish

for all sets of conjugate imaginary values pp,o-a, (z) (z).

Fundamental Lemma.

If for all sets of conjugate imaginary values

X
1
X^ ... Xmi XyT^ ... X

IU ,

the analyticfunction

f (x
1
x
2

... x,mi x
x
x
2 ... xm )

is equal to zero, then this function vanishes identically for all

sets of values of the variables involved.

Let us prove this lemma by mathematical induction. If

the function
y^ ^

vanishes for all sets of conjugate imaginary values Xli x13

putting x
x
=X + iY we get $ (X, F)= 0 for all real values X, Y.

But an analytic function of X and Y which vanishes for all

real values must have vanishing partial derivatives of every

order at each real point and, hence, by Taylor's theorem,

be identically zero. If, then, our fundamental lemma be

assumed for m— 1 pairs of conjugate values, it holds for the

last also.
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Returning to our equation (27), we see that this will vanish

for all sets of conjugate imaginary values,

pp, ad-, ztz1} z
2
z
2 ,

if (ay)n ~ r (dy)n-* a/~x =0, r + s = k.

We shall have furthermore

(ay)n
~ r (dy)n

~ s af a
2

r~x afd^ = 0, r + s < k
, (30)

so that the total coefficient of X^ n~k+S X
2
h~ s will also vanish.

Hence the left side of (27) is divisible by X
2
k+1

, or every

chain through (y) will have k + \ intersections with the thread

at that point. These conditions are both necessary and suffi-

cient. The point (y) shall be said, under these circumstances,

to have the multiplicity k + 1 . If k ^ 1 it may be an isolated

point of the thread

:

Theorem 45] A point (y) ivill lucve the multiplicity k + 1 for

the thread (27) ivhen and only when

(ay)n
~ r (dy)n

~ s af a/~x
tif d2

s ~^ = 0 , r + s < k, (30)

yet these equations do not hold for all values of r + s ^k+1.

We are easily led from these equations to a form of polariza-

tion in our hyperalgebraic forms. We define as the (p,g)th

polar of (y) the expression

W (
V

(§
(«*)"'(**)" = {aynay)HaxY-i'{axr"l.

It is to be noted that only in the case where p = q is this

hyperalgebraic. Equating this to zero we get

(ay)P (dy)l (ax)n
~p (dx)n -<l = (ay) q (ay)i' (ax)n

- q dxn~p = 0;

eliminating (x) and (x) in turn we get

If there be any pairs of conjugate imaginary values which
will reduce to zero the (p, q)\h polar and its conjugate where

p ^ q, there are roots of these equations. A point where
coordinates reduce to zero the (p, q)ih. polar of a given point

shall be said to be on that polar.
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Theorem 46] There are at most (n—p)
2 + (n— q)

2 points on

the (p, q)th polar of a given point, tuhen p ^ q, unless the

point have a multiplicity of at least 2n+ l—p— q, in which

case this polar vanishes identically.

Theorem 47] If a point have a multiplicity h + 1 for a

hyperalgebraic thread, it will have at least a multiplicity

k+1 —p— q for the (p, q)th polar of an arbitrary point.

There is much more interest in those polars which are

hyperalgebraic, i.e. where p = q. If there be a single non-

singular point on such a polar3
there is a whole thread. The

(n— 1, n— l)th polar is called the chain polar. If it contain

any non-singular point, it will contain a chain of points,

called the polar chain. The chain polar of (y) will, by 25],

vanish for only one point if

(ay)"- 1 {dyf-
1 ayn~ l (dyf-

1 \aa\-\ ad\ = 0.

It is evident that the chain polar gives rise to an anti-

involution. The locus of points so situated that the anti-

involutions associated with their chain polars with regard to

the two hyperalgebraic forms

(ax)
n
(dx)

n
y

(bx)m (bx)m
,

are commutative, will be given by the equation

\ab\-\db\- (ax) 11- 1 (hxf 1
- 1 (ax) 11- 1 (bx)" 1

- 1 = 0.

Of course this equation may not be satisfied by any points

at all. It will contain any point there may be whose polar

chains are orthogonal.

Let us now suppose that (y) is a simple point of our thread

(27). In the expression (28) the coefficient of X
X
2H will

vanish automatically. That ofA^-1 A
2
will be

p
n-i p.-i

(
ay)n-i

(
dyy-i [^(^ ((^) + pa (dz) (ay)].

The equation (ay) 71' 1 (dy)n (ax) = 0

has only one root, namely (x)= (y).

Hence the coefficient of X
1
2w_1X

2
cannot vanish independently

of p and a. If

p*(ay)*(^)B-1 (^) + po{ay)^1 (a^{a^;,, = 0 (31)



it THE GEOMETRY OF THE BINARY DOMAIN 61

the coefficient of X
1
2n~ 1 X

2
will vanish. There is but one

chain of the type (26) where this is the case

:

Theorem 48] A non-singular point of an algebraic thread

tvill be connected with every other point of the line by just one

chain tangent to the thread.

The chain polar of (y) is given by the equation

(ay)71- 1 (ay)n
' 1 (ax) (ax) = 0.

If (z) be a point of this polar chain, and if we write the

condition that all points of the chain (26) be included therein,

we find (31) again :

Theorem 49] The polar chain of a non-singular point of

an algebraic thread is tangent to the thread at that point.

We may obtain still further light on the (p, q)th polar form

when we represent our binary domain on the Riemann sphere.

Let us write

SJ^Tq ifcJj 0C-^ -f~ OCc)
y

Sj^C-^— 00-^ 00-^ — ^2 '
^"^^"2 — *^2*^1

'

—— % *^2 *^i^*

-X 2 + X,2 +X2
2 +X 2 = (CXf = 0.

In plane coordinates,

- u 2 + u 2 + u 2 + u 2 = (ru)2 = 0.

Our thread (27) becomes the surface,

+ a
2
a

2)
X

0 + (a
l
a

l
-a

2
a

2
)X

1 + (a
x
a

2 + a2
a

1
)X

2

+ i(a
1
a

2-a2
a

2
)X

3]
n = AXn = 0.

The quadric polar of (Y) will be

[(a
1
d

1 + a
2
a

2)
F

0 + (a
x
a

x
— a

2
a

2)
Y

1 + (a
x
a

2 + a
2
a^) Y

2

+ i(a
1
a
2
-a

2
d1) Y3]

n~ 2
.

+ ^2^2) ^0 + K^l— ^1 + (
a2^2 + a2^l) ^2

+ i(a
1
^2-a2

a
1
)Z

3]
2 = (^Ff- 2 (^Z) 2 = 0.

The condition for apolarity with (TU) 2
is

(AY)n~2 (AT) 2 = 0.

+ ^2^2) ^0 + (
ai^l — ^2^2) ^1 + (

ai^2 + a2^l) ^2

+ £(a
l
a
2
-a

2
a

1)
F

:,]
?i
- 2

.

[ - (a^ + a
2
a

2 )

2 + (a^ - a
2
<x

2)
2

+ (a
1
a
2 + a

2a1 )

2 -(a
1
a
2
-a

2
^

1)
2
] = 0,
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and this condition is certainly satisfied, as the second factor

vanishes identically. The two quaternary quadratic forms

are, thus, apolar. Moreover, it is not hard to show that

through the total intersection of an algebraic surface and

a quadric there will pass but one surface of the same order as

the given one which possesses the property that the quadric

polar of an arbitrary point is apolar to the given quadric.

The substitution of quaternary for binary coordinates gives

just this surface through the curve on the Riemann sphere

which represents the given thread. Lastly, we notice that

the (p f
£>)th polar of (y) with regard to (27) becomes

+ a
2
a
2)
F

0 + (a^ — a
2
d

2 ) Y1

+ toi^2 + a2^i) ^2 + *
(
ai^2 ~~ Vi)YZ

~\P

[(a^ + a
2
d

2)
X

0 + (a^— a
2
d

2 )
X

Y

+ (a
l
a
2
— a

2a^X2 + i(a^a
2
— a

2
a

x )
X

3]
n~P = 0,

{AYy (AXf-v = 0,

which is the pth polar of (Y) with regard to the algebraic

surface. We thus reach the capital proposition :
*

Theorem 50] The quaternary form ivhich corresponds by

(31) to the thread (27) gives such a surface through the curve on

the Riemann sphere that represents the thread, that the quadric

polar of an arbitrary point is apolar to the sphere. At the

same time the (p,p)th polar of a point in the binary domain
%vill correspond to the intersection of the Riemann sphere with

the pth polar of the corresponding point.

It would lead us too far afield -to go further into the

invariant theory. We turn instead to the task of finding

a geometrical significance for 2 n. We reach this by a system

of successive approximations. Let us start with

(ay) (ay) (ax) (ax) = 0. (32)

The discriminant of this is

(ay) (ay) (ay) (tiy)
\
aa

|
•

|
M |. .

* This is the fundamental theorem in an admirable article by Kasner,

'The Invariant Theory of the Inversion Group Transactions American Math

.

Soc, vol. i, 1900, p. 44.
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If there be a thread of points (y) for which this expression

vanishes, then the discriminant of the chain in (x) cannot

have a constant sign, or there are an infinite number of points

(y), each of which corresponds to a chain of points. If there

be any points (y) which lie on the chains which correspond to

them, they will belong to a thread whose equation is

(ax) 2 (dxf = 0.

Conversely, this last equation gives rise, through polariza-

tion, to the relation (32).

Let us next suppose that we have set up a relation, called

an equipolarization, of the following type :

A) Each thread of order 2(n— 1) of an infinite system

corresponds to a point in a region depending analytically on

two real parameters, and, conversely, each point of this region

shall correspond to a thread of this order.

B) An infinite number of points lie on the corresponding

threads, but these points do not all lie on a thread of order

2{n— l) or less.

C) The (1, l)th polar of (z) with regard to the thread corre-

sponding to (y) is identical with the (1, l)th polar of (y) with

regard to the thread corresponding to (z).

Let us see analytically what these conditions involve.

Clearly by A) and C) the equation of the thread corre-

sponding to (y) must be bilinear in (y) and (y) say,

^=1,2, q**l, 2, i+j = n-l, i'+j'=n-l

Since this is essentially real

p,q p,q

Our form may thus be written

1 2 I 2
*
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Condition C) gives

2 VpSq (
mZ

)
(l {q) z) (l{P) %)

n- 2 (TWx)n ~ 2

Putting (z) — x,

p, q

= 2 XpXq (l {p)
y) (i {q)

y) (l^)x)n
~ 2 (iwxf-2

.

p, q

Consider the algebraic thread

2 {lWx)n-l {TWx)n-1 = o.

p, q

This is the locus of points lying on the corresponding threads

of order 2(n — 1) and the (1, l)th polar of (y) with regard

thereto is a linear combination of these two forms which we
have proved equal, and so proportional to either.

Now one of these terms gives the thread corresponding to (y).

Theorem 51] The order of an algebraic thread exceeds by

two, twice the number of successive equi-polarizations neces-

sary to construct the thread*

In order to reach another characteristic of a thread we
introduce the following transformation of our complex binary

domain. This consists in establishing a one to one corre-

spondence between the points of our domain and the chains

which include one of the zero points. We do this by writing

y2y1
x

1
x
2 + y1y2

x
2
x

1 + 2y2y2
x

2
x
2
= 0.

If we let the zero points correspond to one another, then

every other point of the domain corresponds to a definite

chain through the special zero point. Conversely, every chain

through this special zero point will correspond to a definite

point in the plane. The relation between (x) and (y) is

reciprocal. We shall call this a point reciprocation. Since

* This method of defining order was first given by the author in an article,

'Meaning of Plucker's equations for a real Algebraic Curve', Rendiconti del

Cercolo Matematico di Palermo, vol. xl, 1915.
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the product of two conjugate imaginary numbers is essen-

tially real, we see that no point can lie on the chain which

corresponds to it. Geometrically, the chain corresponding to

(y) passes through (1,0), is orthogonal to the chain connecting

(y) to the zero points, and contains the mate of (y) in the anti-

involution

Let the reader show that a polar reciprocation in the Gauss

plane with regard to a self-conjugate imaginary circle will

correspond to a point reciprocation in the binary domain.

If (y) trace a thread, the corresponding chain will envelop

a thread, and the relation between the two is reciprocal.

Definition. The maximum order for any point reciprocal of

a given thread is called its class.

A point of a thread which has the property that no other

points are in the vicinity shall be called a conjugate point.

It must be at least a double point of the thread, as we see

from the Gauss representation. If all tangent chains at double

point are tangent to one another, it shall be called a cusp.

A chain through an arbitrary point 0 shall be called a conju-

gate tangent, when the corresponding point in one, and, hence,

in any point reciprocation where 0 plays the special role, is a

conjugate point. The meaning of these terms will appear

clearly when we set up in double column the correspondence

between these objects and their representatives in the Gauss

plane :

Binary Domain. Gauss Plane.

Algebraic thread. Real algebraic curve.

Order. Order.

Point reciprocation. Polar reciprocation.

Class. Class.

Conjugate point. Real conjugate point.

Cusp. Cusp.

Conjugate tangent chain Real conjugate double

through special point. tangent.

Osculating chain through Real inflectional tangent.

special point.

2C74 E



66 THE GEOMETRY OF THE BINARY DOMAIN ch.

If, then, for the sake of simplicity of statement, we limit

ourselves to such threads that neither they nor their point

reciprocals have worse singularities than double points, we
may deduce from Klein's famous identity for real curves :*

Theorem 52] The order of a thread, plus the maximum
number of osculating chains through an arbitrary point and
twice the number of conjugate tangent chains through such a
point, is equal to the class, plus the number of cusps and twice

the number of conjugate points.

There is one more form of transformation which must be

mentioned in conclusion. One method of reaching a chain is

through an anti-involution. In the same way the thread (27)

may be reached from the involutory transformation

:

(ax)n (ax')n = 0. (33)

This shall be called a symmetry in the given thread. The

geometrical significance of this in the complex binary domain

is not particularly simple or interesting ; the case is quite

different for the corresponding transformation of the Gauss

plane. Let us write

x
1
= z — X + iY, x2

= 1 ;
x

x
= z — X — iY, x

2
= 1.

<=z' = X' +iPs x
2
'= 1; c^W = X'-iF', x.

2
'=l.

/(*,*) =0.

Since z is an analytic function of z we have a real

inversely conformal transformation of the plane that leaves

the given curve invariant, in fact all points of the curve

remain in place. Such a transformation is called Schivarzian

symmetry.f Let us prove that there exists one, and only one,

such transformation in any given real curve.

It is evident that a real conformal collineation will carry

one such symmetry into another. Our proof will consist in

showing that we can find a real direct conformal transforma-

*' Klein, ' Eine neue Relation zvvischen den Singularitaten einer alge-

braischen Curve Math. Annalen, vol. x, 1876. For a proof that there is no
other such relation see the Author, ' The Characteristic Numbers of a Real

Algebraic Plane Curve Rendiconti del Cercolo Matematico di Palermo, vol. xlii,

1917.

f Schwarz, Mathematische Abhandlungen, vol. ii, Berlin, 1890, pp. 151 ff,
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tion that will carry any real analytic curve into the axis of

reals, and that there is but one Schwarzian symmetry in that

axis. If the given curve be expressed in the form

X = /(*), F =<*>(<),

the real direct conformal transformation desired is

X + iY = f(X' + iY') + 1$ (X + iV).

The product of two symmetries leaving invariant all points

of the real axis would be a real directly conformal trans-

formation leaving all real points in place. If this be

then z
f
—~z —y(z)— y{z) — z— z,

i.e. y(?)-z = £?(*)-*.

But. by our fundamental lemma, this gives

y(z) = o.

Theorem 53] A symmetry in an algebraic thread will corre-

spond in the Gauss plane to a Schwarzian symmetry in the

corresponding real curve.

The Schwarzian symmetry is best described geometrically

in terms of the minimal lines of the Gauss plane or Riemann

sphere. If two points be the reflections of one another in a

real line, say the real axis, the minimal lines through them

intersect in pairs on that real axis. This property is, how-

ever, invariant for a real direct conformal collineation. Hence,

a Schwarzian symmetry consists essentially in interchanging

points whose minimal lines meet in pairs on the given real

curve. A direct analytic proof will come at once from the

equations above. It is this method of treating the subject

that lies at the basis of recent work in conformal geometry.*

* Cf. Kasner, 4 Conformal Geometry
',

Proceedings of the Fifth International

Cmgress of Mathematicians, Cambridge, 1913, vol. ii, p. 81, and Pfeiffer, ' Con-

formal Geometry of Analytic Arcs American Journal of Mathematics, vol. xxxvii,

1915.
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CHAPTER III

THE REPRESENTATION OF POINTS ON A CURVE

The first writer who undertook to give a real representation

of complex points on any locus other than a straight line was

the Abbe Bue*e, to whom we paid our respects in the first

chapter. He devoted but little attention to the subject, his

reasoning being substantially as follows :
*

If a plane curve have an axis of symmetry, a line running

clear of the curve, perpendicular to this axis, will meet the

curve in pairs of conjugate imaginary points. The plane of

the curve being

3 = 0,

we may represent the complex point (x, yi, 0) by the real

point (£C,0, y). Consider a complex branch of the real circle.

x2 + y
2 = a2

, 0 = 0,

will be represented by the real hyperbola

x2— z2 — a2
, y = 0

.

A far better discussion of the interpretation of complex

points of a real curve was given a few years later by a very

different grade of geometer, Jean Victor Poncelet. There is

an excellent discussion of the complex points of a real conic in

the first section of his classic, Traite des proprietes projectives

des figures.]- It is to be noted that Poncelet preceded Mourey

and Warren. His method is purely synthetic, and he gives

not a little attention to exposing his views as to the philo-

sophical significance of imaginary elements, which do not con-

cern us here. We prefer to employ a little simple analysis to

* Loc. cit., pp. 79 ff.

t First edition, Paris, 1822 ; second edition, Paris, 1865. Subsequent

references are to the latter—the first part of the work is uniform in the two.
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express his main idea. We shall confine our attention to

central conies. If we take any pair of conjugate diameters of

such a conic as axes, the equation will take the form

:

Xl 4. t - 1

If we take an interior point Q with the abscissa x the

corresponding ordinate will be

y — - *J + (d1— x2
).

a — v

If, however, Q be an exterior point, which we may assume

without restriction to lie upon the x axis, we may determine

on a line through this point parallel to the conjugate diameter

two points whose distance therefrom is

y = - V±{x2-a2
).

a

The segment determined by these points is called an ideal

chord of the conic, its extremities represent the imaginary

intersections of the line with the conic, and the totality of all

such points for all chords with this given direction will be the

curve

x2 y*_
a2 + b 2 - 5

which is called a supplementary for the given direction. Each

central conic has a singly infinite set of supplementaries, each

having double contact therewith at the extremities of the

diameter conjugate to the direction of the corresponding ideal

chords. The author is thus able to prove that two real conies

which are not tangent have two common chords, real or ideal.*

He reaches the circular points at infinity by the following

simple reasoning :f . . . Suppose that we have two ellipses

which are similar and similarly placed, If we take parallel

diameters of the two, the corresponding supplementary hyper-

bolas are also similar and similarly placed, and, so have two

common points at infinity, which represent the imaginary

* Loc. cit., p. 33. f Ibid., p. 47.
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infinite intersections of the ellipses. But any two circles are

similar, and similarly placed, ellipses. Hence any two circles

have the same infinite points.

We shall encounter the fundamental idea of the Poncelet

supplementaries again and again in the present work. We
leave it for the moment, after calling attention to the fact that

the point midway between the extremities of an ideal chord

is the same as that midway between the imaginary points

represented, and the distance of the real representing points is

the square root of minus the distance of the imaginary points.

The real points are conjugate with regard to the conic, and

are the only conjugate pair on their line whose middle point

is on the conjugate diameter.

While Poncelet was developing these sound ideas with

regard to imaginary points on curves, the subject was being

studied under less happy auspices in England. The first

writer to be mentioned in this connexion is Gregory.* Let

us explain his plan. We start with the curve

f(x,y) = 0.

Let (x) take a complex value. We represent this by a point

in the (x, z) plane by the Gauss scheme. As a second Gauss

plane, we take that through the origin perpendicular to the

line from the origin to this first point, and take the (y) axis

as axis of reals in this plane. Lastly we find the reflection of

the origin in the line connecting the two representing points in

these two Gauss planes, and that shall be the point to represent

the complex point (x, y). Analytically, if our complex point be

x = r (cos (j> + i sin y = s (cos \fr + i sin

the representing point is

X = r cos
(f>
— s sin $ sin

Y = 8 cos

Z = r sin
<f)
+ s cos $ sin

If we substitute the trigonometric values of x and y in the

equation of the curve and split into real and imaginary parts,

* 'On the existence of Branches of Curves in Several Planes', Cambridge

Mathematical Journal, vol. i, 1839.
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we have five equations from which we can eliminate r, 8, <\>,

and ^, leaving F(X,Y,Z),

and this real surface will represent the curve in question. Our

confidence in Gregory is somewhat shaken by his geometric

proof* that
ip ip— W -IT

sin(e q X)— e
q sin X

A refinement upon these clumsy developments was intro-

duced by Walton, f He represents the complex x in the Gauss

plane X, Z, and the complex y in the Y, Z Gauss plane. The

representing point is the reflection of the origin in the line

connecting the points chosen in these two Gauss planes.

Analytically the complex point

x = X
l
+iX

2 ,
y=Y

1 + iY2 ,

is represented by the real point

X=X 1} Y=YV Z=X
2 + Y2 .

The real surface corresponding to a given curve is given by

eliminations similar to those used in the other case. It is

a curious fact that these early writers, one and all, seem to

overlook the very arbitrary element involved in their various

methods of representation, and to have believed that the

scheme was imposed by the nature of the problem. Thus we
find Walton saying : J

' To talk of curves having branches out of their planes

would be a very strange mode of speaking, if it be thereby

signified that a curve can both lie entirely in one plane and be

partly out of it ; and even if such a paradox were not implied,

it could hardly be called a good expression. However, there

can be no impropriety in saying that a curve lies partly in

one plane and partly in another.'

* Loc. cit., p. 264.

t 'On the General Theory of Loci of Curvilinear Intersection', ibid.,

vol. ii, p. 85; 'On the General Interpretation of Equations between Two
Variables', ibid., p. 103 ; 'On the General Theory of Multiple Points', ibid.,

p. 155 ; 'On the Extension of possible Asymptotes to impossible Branches of

Curves ibid., p. 236 ;
* On the Doctrine of Impossibles in Algebraic Geo-

metry Cambridge and Dublin Mathematical Journal, vol. vii, 1852.

X ' On the Doctrine of Impossibles \ cit. p. 239.
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Gregory and Walton have had one lineal successor in recent

times. It is curious to see a mathematician of incomparably

higher standing reverting two score years later to their general

line of thought. This writer was Appell, who proposed* to

represent the complex point

x = X
x + iX2 , y = Y

1 + iY2 ,

by the real point

X = Xv Y=YV Z= VXj+Y*.

It can hardly be said that Appell was happily inspired in

this. The radical attached to Z is a blemish, and there is no

distinction between the points which represent two conjugate

imaginary points.

There is another writer whose ideas followed somewhat

similar lines, namely Bjerknes.f His scheme is more ambi-

tious and less simple. We start with the complex point

x=X
1 + iX2 ,

y=Y
1 + iY2)

which lies on the real curve

<t> (», y) = o.

The totality of points satisfying this equation will depend

on two real parameters, and may be represented as the totality

of points of the plane. To get varieties in the total locus which

depend on a single real parameter, we introduce a single real

equation, called the ' abscissa equation

/(*„ *,) = o.

We write also x + iy = X + iY

where X and Y are real. This involves the additional

equations X = X
x
- F2 ,

Y=Y
1 +X2 .

Eliminating y between the two equations where it appears

gives us a complex equation in the arguments x, X, and Y.

Splitting into real and imaginary parts, we have two real

* ' Sur une representation des points imaginaires en geometrie plane ',

Grunert, Archiv der Mathematik, vol. lxi, 1878.

f Ueber die geometrische Representation der Gleichungen zwischen zwei verander-

lichen reellen oder complexen Grossen, Christiania, 1859.
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equations in the arguments X, Y, Xv and X
2 .

Eliminating

X
1
and X

2
between these and the abscissa equation, we get

F(X, Y) = 0.

The geometrical meaning of the various algebraic processes

may be explained as follows. The point

X=X
1 -\\, 7 = Y,+X

t

is the point which is carried into the Gauss representative of

the given point, when the line connecting the latter with its

conjugate is carried by a real motion into the axis of reals.

We shall encounter this point frequently in the next chapter

when we come to study the representation of Laguerre. The

point (X19 X2)
is the representative according to the same

scheme of the projection of the given point upon the axis of x.

Bjerknes' problem is to study the locus traced by one of these

representing points, while the other traces a given real

abscissa curve.

As an example, let us take the circle

x2 + y
2 = 1

with the abscissa curve X
2
== 0.

We find Z 2+F 2 =i
5

so that the representing curve is the real part of the given

curve. Had we taken the abscissa equation

X
2
= JiX

j ,

we should have found

(X + iY) 2 -2x(X+iY) + l = 0,

2X
l
(X-RY) = X2-F2 +l,

X
l
(Y+RX)= XY,

72 , V2 _ Y +RX
^ ±1 - Y-RX'

It is clear that there is a very arbitrary element in this

representation. The real point (X, Y) will represent every

complex point (x, y) for which

X = Xi-F2 ,
Y=Y

1 + X,.
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Bjerknes himself is at great pains to point this out, e.g.*

y = Rix, X
2
= 0.

Here x and iy are real, so that, regardless of R, the repre-

senting curve is F = 0

Given b2x2 + a2
y
2 = a2 b2

,
X

2
= 0.

If x2 < a2
,
F

2
= 0, b2X2 + a2Y2 = a2 b2 .

If x2 > a2
,
Y

1
= 0

i
Y —0.

Such are the general outlines of the method which Bjerknes

develops in a sixty-page pamphlet. It is certainly a curious

fact that a pupil of Riemann's who had heard the master's

lectures on Abelian functions,f including, presumably, an

account of the surfaces indissolubly associated with his name,

should have cared to develop independently a representation

of so inferior a sort. The vice is ineradicable. All work
with the complex variable

x + iy,

where x and y are complex, involves the great difficulty that

the equation x + iy = af+iy'

does not, necessarily, involve

x = x\ y = y'.

For this reason we content ourselves with mentioning by

name only a successor of Bjerknes who developed the same

ideas from this analytic point of view.J

Before taking up the work of the next writer, we shall

make some further remarks about the methods of Gauss and

Poncelet. It was the fate of both of these geometers to haveo
their ideas rediscovered from time to time. The first redis-

coverer of Poncelet deserves warm praise for pointing out

the close connexion between complex points and elliptic

involutions, the fundamental idea of the Von Staudt theory

* Loc. cit., p. 8.

f Cajori, History of Mathematics, second edition, New York, 1919, p. 421.

X MacBerlin, 'Om Komplexa Koordinater inora plana Geometrien', Acta

Universitatis Lundensis, vol. ix, 1872.
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which is developed at length in the last chapter of the present

work. Let us give some geometrical developments which

lead to this connexion.

Let the real line which connects two conjugate imaginary

points be taken as the x axis in a real plane through it.

A real involution thereon will be given by the real bilinear

equation Axx, + B(x + x') + C = 0.

When B*< AC,

this involution is elliptic, and the search for its' imaginary

double points leads to the quadratic equation

Ax2 + 2Bx + C = 0,

whose roots are conjugate imaginaries. Conversely, if we
start with the conjugate imaginary points

x = P-f Qi, x — P — Ql,

they are the double points of the elliptic involution

xx'-P(x + x') + P2 + Q* = 0.

There is a perfect one to one correspondence between the

elliptic involutions of collinear points in a real plane and the

pairs of conjugate imaginary points of that plane.

The importance of this correspondence for some of our

work can scarcely be overstated. For instance, in the Gauss

representation, the conjugate imaginary points (P-f-Qi, 0),

(P— Qi 0) are represented by the real points (P, Q) and

(P, —Q). Let us pass a circle through these real points. The

point (P, 0) has the power — Q2 with regard to this circle.

If, therefore, x and x' be the abscissae of the intersections of

this circle with the x axis,

(x-P)(x'-P) + Q2 = 0,

and this reduces immediately to the equation above.

The Gauss method consists in representing a pair of con-

jugate imaginary points by the real points common to the

coaxal circles cutting the axis of reals in the elliptic involution

associated with the imaginary points. The representing points
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are the real points of the lines connecting the imaginary points

with a determined circular point at infinity and the inter-

section of the plane with the reed circle common to the con-

jugate imaginary spheres of zero radius ivhose centres are the

given imaginary points. The relation between conjugate

imaginary points and their real representatives will be un-

altered by a real motio n of the plane.

This last remark leads to Laguerre's extension of the Gauss

method, which will be studied at length in the next chapter.

For the moment we prefer to consider the involution a little

more closely. Let us ask which of the circles in this coaxal

system has the smallest radius. Evidently that one whose

centre is (P, 0), the point midway between our representing

points, and also midway between the given imaginary points.

The square of the diameter is 4Q2
, which is the negative of

the square of the distance between the given complex points.

This circle cuts the line in the closest pair of points of the

given involution. Conversely, if an elliptic involution be

given, there is just one pair which divides harmonically the

infinite point and its mate in the involution, and these are

the closest pair of the involution. If two real points be given,

they are the closest pair of that elliptic involution which

includes them as one pair, and their mid-point with the

infinite point of their line as another pair.

Each pair offinite real points will be the closest pair of an
elliptic involution and may be taken to represent the conjugate

imaginary double points of that involution ; each pair of

conjugate imaginary double points may be so represented.

When the conjugate imaginary points lie on a conic in a reed

plane, the involution is one of conjugate p>oints ivith regard to

that conic, and this is the method of Poncelet.

The writer who first presented the Poncelet method from

this point of view was Paulus. His work is clean cut and

well written.* The same, unfortunately, cannot be said about

* 4 Ordmingselement der einformigen involutorischen Gebilde ', Grunerts

Archiv, vol. xxi, 1853, and 4 Ueber uneigentliche Punkte und Tangenten

ibid., vol. xxii, 1854.
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the next rediscoverer, F. Maximilien Marie.* This fearful

and wonderful man gave a good part of his life to champion-

ing his views about complex numbers, as we may easily learn

from the 344 pages of autobiography which he appends to his

Theorie des Fonctions. He possessed the knack of quarrelling

with his contemporaries almost to the point of genius. Many
and varied were his griefs against Poinsot, Chasles, Hermite,

Briot, Cauchy, Sturm, Puiseux, Bonnet, de Tilly, and Darboux.

Cauchy had the extraordinary patience to receive Marie at his

house every Tuesday for the better part of a year,f but when
Cauchy failed to refer to Marie's work in sufficiently laudatory

terms in a report read to the Academie cles Sciences the latter

made up his mind never to cross that threshold again.J He
never forgave Chasles for including Poncelet's name, but

omitting his own, from the ' Rapport sur le progres en ge'o-

metrie and complained to the Minister of Public Instruction

against this piece of flagrant injustice. His quarrels with

Puiseux and Briot had to do with the periodicity of certain

integrals, and the limits of convergence of Taylor's series.

It is hard to take such a man seriously enough to find out

what he has to say, especially when his own views are

expressed by the pleasantly frank statement, ' J'ai toujours eu

beaucoup de peine a lire les ouvrages de mathe'matiques '.§

Nevertheless it would be a great mistake to pass him over in

silence, for his method of representation is of fundamental

importance, and he carried it much farther than any of his

predecessors.

How can we represent the complex point

x = X
x + iX2 , y = Y

1 + iY2

by a real point invariantly connected with it for all real

motions of the plane ? or, more generally, for every real affine

collineation ? Such a collineation will carry the real line

which connects conjugate imaginary points into the real line

* Theorie des fonctions de variables imaginaires, Paris, 1874-6 ; Realisation et

usage des formes imaginaires en geometrie, Paris, 1891, besides numerous earlier
1 articles '.

f Theorie des fonctions, Part III, p. 71. % Ibid., p. 77.

§ Ibid., p. 78.
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connecting the transformed points. We may find a real affine

collineation to carry any real line and real point not on it

into any other such point and line. Hence, if a point be

invariantly connected with a line, it must be on that line.

The representing point must, therefore, have the coordinates

X = X
1 + kX2> Y=Y

1 + k¥%
.

Now, says Marie,* ' II n'y aura aucun avantage a donner a

h line valeur autre que 1 '. Accordingly we so take it, and

write X = Xr+X 2 ,
F=F1+ F2

.

It is evident that we have here a simple and workable

method for representing all the finite complex points in the

plane, and we shall so consider it in greater detail in the next

chapter. But Marie's own interest lay chiefly in representing

the functions of a single complex variable, i.e. the points of a

single curve, so we have introduced him at this point.

Let us see how all this connects up with Poncelet. Let us

take one more point, namely,

X' = X
x
—X

2 , Yf — Y
1
— J

2
.

The points (x,y) and (x,y) lie on the same line as (X, Y)

and (X', F') and have the same middle point, while the square

of the distance in one case is the negative of what it is in the

other, which agrees precisely with what was said on p. 70. Or

we may return to our previous analysis. Our conic referred

to a pair of conjugate diameters is

Xl 4. t. - 1

a*
± ¥

~

If we take the conjugate imaginary complex points (the axes

are oblique)

x = Xv y = iY
2
;x = Xv y = -iY

2 ,

they will be represented by the real points

Z = Z1) Y=Y
2 , X' = Xlt Y'=-Y2<

which are seen to be conjugate with regard to the conic, and
to lie on the supplementary

X2 _ F2 _
a2 + 52 - *•

* Realisation et usage, cit. p, 5.
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Marie, instead of calling this a supplementary, uses the over-

worked word ' conjugate \ He has a general definition for

a conjugate which, although rather vague, may be expressed

in about the following terms.* Given the curve

f(x, y) = 0.

Every real finite point in the plane will represent at least

one complex point on the curve. Let us try to resolve the

curve into a series of loci, each of which is given by the

variation of a single real parameter. The real branch of

the curve, when this exists, is such a locus. Can we find

a system of points on the curve whose ordinates all become

real, after a real rotation of the axes? If the ordinate of

a complex point be real, the line connecting it with the con-

jugate point must be parallel to the y axis. The system in

question will then be such a one that the lines connecting

each point with its conjugate has a fixed direction, i.e. we
must have the pairs of intersections with a pencil of real

parallel lines. We see at once that in the case of a conic this

gives a Poncelet supplementary. Analytically

F
2
= RX

2
.

Let us note in conclusion that Marie marks a great advance

over Poncelet or Paulus in that he distinguishes between the

representation of a complex point and that of its conjugate.

The methods of representation which we have so far dis-

cussed consist one and all in representing complex points by
real ones. It is easy to see, however, that we may obtain

simple representations of complex points in the plane by
means of real lines in space. The first writer to enter on this

path seems to have been Weierstrass. f The idea which he

threw out, without apparently attaching much importance

thereto, was to represent the complex point

(X1+iXv Y^iY^O)
by the line connecting the real points

(Xv X2 ,0), (Yv F2 ,
K).

* Realisation et usage, cit. p. 5.

t See his Collected Works, vol. iv, Leipzig, 1892, p. 323.
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In this system every finite complex point is represented by

a single real line not lying in or parallel to the (x,y) plane,

and, conversely, every such line will represent a single com-

plex point. This idea was worked out independently and in

great detail by Van Uven.* Geometrically, we project our

complex point orthogonally upon the x axis, and represent in

the (x,y) plane as a Gauss plane; it is also projected orthogo-

nally on the line

x = z— k = 0,

and this point is represented in the z = k plane as a Gauss

plane. The representing line joins these two representing

points.

The first thing to be noticed here is that the correspondence

is not perfect, when infinite values are included, owing to the

special role of lines lying in or parallel to the (x, y) plane.

We shall encounter in the next chapter a considerable number
of other attempts to represent the points of the complex plane

by real lines in space, and there will always be exceptional

elements. This difficulty is inevitable. The totality of com-

plex points is carried into itself by the totality of transforma-

tions of the type

x' =f(x,y), y' = </> (x,y).

In terms of real parameters we have

X/ = F
1
(X

15
X

2 ,715 F2), XI = F
2
(X

x ,
Z,;^,^),

where the functions F
1
...F

4:
are not purely arbitrary, but are

solutions of certain partial differential equations of the first

order, analogous to the Cauchy-Riemann differential equa-

tions. On the other hand, a real line in space may be repre-

sented by six real homogeneous coordinates X19
X

2 ,
X

3 .
X

4 ,
X

5 ,

and X
6 , where

X,2 + X2

2 + X 3
2 -X

4
2 - X

5
2- X

6
2 = 0.

Putting X
6
= 1, and finding X5 from this equation, we see

that the other four X's may be subjected to any real trans-

formation provided the resulting X5
turns out real, and this

* Algebraische Strahlcongruenzen und venvandte complexe Eleven, Amsterdam,

1911.
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will not be ensured by any partial differential equations of

the first order.

A second point to consider in connexion with the Weier-

strass-Van Uven representation is that since an analytic curve,

not a set of parallel lines, makes y an analytic function of x,

the relation between the two parallel planes is directly con-

formal. The converse is true, so that every curve is repre-

sented by the lines connecting corresponding points in directly

conformally related parallel planes, and every such congruence

of lines will represent a curve which is not a line parallel to a

certain direction. If this relation between the planes be any-

thing other than a translation, corresponding points in the two

planes can only move parallel to one another when they move
in a minimal direction. Hence the focal planes through a line

of the congruence must pass through the circular points at

infinity in the (x, y) plane, and the focal surface must be two

cones with these imaginary points as vertices. The converse

is also true : every such congruence will establish a real

directly conformal relation between the parallel planes.* Van
Uven's book of 577 pages is devoted chiefly to the congruences

which represent curves of the type

y =kx~ .

Such prolixity leaves us in a state of bewilderment, f

There are two other writers who use real lines to represent

the points of a complex curve, to whom we must pay our

respects. The first of these is Henschell.J His method seems

about as complicated as one could readily wish. We start

with a complex point in the (x, y) plane, and through it draw

tangents to the circle which that plane cuts from the sphere,

• X 2 +Y 2 + Z 2 = 1.

* Given without proof by Van Uven, loc. cit., p. 16.

f Van Uven's ideas have been much better developed by Wilczynski,
' Line-geometric Representation of Functions of a Complex Variable Transac-

tions American Math. Soc, vol. xx, 1919. The centre of interest here is in the

focal surfaces of certain congruences of lines ; the representations for complex
values play a subordinate role.

X Versuch einer raumlichen Darstellung complexer ebener Gebilcle. Dissertation,

Weimar, 1892.

2674 F
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The points of contact are projected stereographically from

(0, 1, 0) upon the x axis and represented in the (x, z) plane as

a Gauss plane. The representing points are then projected

back stereographically upon the same sphere, and joined by a

real line.

The last writer whose name should be mentioned in this

connexion is Vivanti,* who represented the point

x = X
1
+iX

2 ,
y=Y

1 +iY2i z = 0

by means of the line whose equations are

X^ X +X2
Z = 1 , ^

7
1
Y+Y

2
Z = 1.

Geometrically, this amounts to the following. The complex

point is projected orthogonally on each of the axes, and the

points so reached are represented in the (x, z) and (y, z) planes

as Gauss planes. Two spheres are constructed whose dia-

meters are the segments bounded by the origin and the repre-

senting points. These spheres intersect in a circle whose

inverse in the unit sphere about the origin is the line in

question.

The thoughtful reader will have been much surprised that

no mention has been made of Riemann in the present chapter,

except for a brief reference in connexion with Bjerknes. This

is indeed no oversight. On the contrary, the chapter deals

primarily with the unsuccessful attempts of others to solve a

problem which Riemann solved completely. The subject of

Riemann surfaces is, however, so universally recognized as a

corner-stone of modern analysis, and so carefully explained in

every good text-book on the theory of functions of a complex

variable, that it would be an impertinence to take it up here.

We make an exception to this rule only to mention one short

article which has all the originality of its brilliant author.

Klein, f

Suppose that we should undertake to represent, not the

complex points of a curve, but the complex tangents thereto
;

* 1 Preliminari pello studio delle funzioni ', Rendiconti del Cercolo Matematico di

Palermo, vol. ix, 1895.

f 'Eine neue Art Riemannscher Fliichen Math. Annalen, vol. vii, 1874.
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the one problem passes over into the other by a polar reciproca-

tion. The curve being real, each real tangent might be repre-

sented by its point of contact, each complex one by its real

point. Through each real point in certain two-dimensional

regions will pass several complex tangents, conjugate imagi-

nary in pairs. We make the correspondence one to one by

replacing the plane by a Riemann surface, there being as many
sheets over each point as there are complex tangents to the

curve. The curve itself will be a curve of junction for pairs

of sheets. The same is true of an inflexional tangent, or

a conjugate tangent, i.e. a double tangent with conjugate

imaginary points of contact. An ordinary double tangent

will be represented by its points of contact.

Let us consider two examples. Take a real ellipse. From
an interior point will radiate two conjugate imaginary tan-

gents to the curve. The Riemann surface will consist of two

elliptical disks, covering the area within the curve, and joined

along the curve. A slightly more elaborate surface is called

for by the curve

The real part of the curve is an oval from x = — 1 to as = 1,

and an open branch beginning with x — 2 and running off to

the right indefinitely. This branch has two finite real inflex-

ions, and one inflexion at infinity at the end of the y axis.

There will be a small region bounded by the curve and the

finite inflexional tangents, from each of whose points six real

tangents can be drawn to the curve, and the same will be true

of the regions bounded by the curve a, finite tangent, and the

infinite tangent. Hence there will be six sheets of the

Riemann surface over the oval, four over the region outside

the oval, but not separated therefrom by an inflexional

tangent, two over the region reached where one such tangent

is crossed, and none over the three regions where six real

tangents are concurrent.

F 2



CHAPTER IV

THE REPRESENTATION OF POINTS OF A PLANE

§ 1. Representation by means of point-pairs.

We had frequent occasion to remark in the course of the

last chapter that the methods for representing the points of

a curve, or at least some of them, were perfectly adequate to

represent all the points of a complex plane. The reason for

explaining them in that chapter, instead of waiting until the

present one, was that the writers who first discovered them

were more interested in the more restricted problem. We now
return to these methods and consider them from the broader

point of view, and in comparison with other methods which

have been devised for representing all the points of a com-

plex plane.

We showed on p. 75 that the usual Gauss representation of

the complex points of a single line could be described in such

geometrical terms as to suggest an immediate extension to the

representation of all finite points of the plane, and mentioned

in that connexion the name of Laguerre. This admirable

geometer seems to have been the first writer to really appre-

hend the scope and meaning of the problem.* His ideas were

greatly developed by two others. Gaston Tarry studied the

elementary properties of the representation with great patience

and a wealth of detail.f Eduard Study reworked the whole

subject in its wider aspects, bringing to the discussion that

profundity of vision which is characteristic of all of his mathe-

* ' Sur l'emploi des imaginaires en geometrie', Collected Works, Paris, 1905,

vol. ii, pp. 88 ff.

f Tarry's papers are found under a variety of titles in the Proceedings of the

Association francaise pour VAvancement des Sciences, Toulouse, 1887, Oran, 1888,

Paris, 1889, and Marseilles, 1891.
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matical work.* Tarry's treatment is entirely synthetic and

highly painstaking. The thoughtful reader will see, however,

that he might have saved himself, and his readers, a great

amount of labour by a better grasp of the modern abstract

idea of geometry. He starts out by defining as a complex

point a pair of real points with an order of preference between

the two. Then he defines the modulus and argument of the

distance of two complex points. A certain transformation of

the real plane is defined as a complex line, and the modulus

and argument of the logarithm of the angle of two complex

lines are also defined. It is very easy to supply the analytic

work which justifies these definitions, and which Tarry omits.

Fortified thus, he goes through a good proportion of the

theorems of elementary geometry, showing that they hold

equally well in the complex domain so defined. If, however,

he had merely shown that the fundamental assumptions of

plane geometry, exclusive of those of order, hold in the com-

plex domain also, no further discussion would have been

needful.

As an introduction to the Laguerre method, let us repeat in

greater detail what we said on p. 75 about the Gauss repre-

sentation. This latter consists essentially in replacing each

complex point of the x axis by the real point of the line con-

necting it with the circular point at infinity (1, i, 0). The

conjugate imaginary point is represented in the same way.

Taking the conjugate imaginary points together, their minimal

lines intersect in two real points. If these be taken in one

order, they lie respectively on the first and second minimal

lines through the first complex point ; if taken in the reverse

order they lie on the first and second minimal lines through

the conjugate imaginary point, a minimal line being called

first when it passes through the circular point at infinity whose

coordinates are given above. When stated in this way, the x

axis drops out of sight, its only role being to connect the

conjugate imaginary points.

Definition. In the Laguerre system, each real point is

represented by itself, each finite complex one by a first and

* Ausgewahlte Gegenstande cler Geometric, Leipzig, 1911.
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second real point lying respectively on the first and second

minimal line through the given point. The same pair of real

points in the reverse order will represent the conjugate

imaginary point.

Suppose, conversely, that we have a pair of real points,

called, respectively, the first and second. The first minimal

line through the first point will meet the second minimal line

through the second point in precisely that complex point

which will be represented by the given real pair in the

present system.

The Laguerre representation is here developed on the hypo-

thesis of a line at infinit}^. We might, however, have extended

our finite plane to be a perfect analytic continuum, by adjoining

a single real infinite point, through which passed a pair of

conjugate imaginary minimal lines. This is the continuum of

the geometry of inversion, and is indistinguishable descrip-

tively from the Euclidean sphere.* As before, there is a

first and ' second minimal line through each point without

exception.

Theorem 1] The Laguerre representation is without any

exception in the finite domain, and has no except io n at all if

that domain be extended to be the perfect continuum of the

geometry of inversion. In this latter case it is equivalent to

representing each reed point of a sphere by itself, and each

complex point by the ordered pair of points of contact of the

two tangent planes to the sphere which pass through the given

point and its conjugate.

Since every circular transformation carries a minimal line

into a minimal line, we have

Theorem 2] The relation of a complex point to its Laguerre

representatives is unaltered by a real direct circular transfor-

mation of the plane.

* The literature of the subject of infinite regions is large and rather

controversial. For two good discussions see Beck, ' Ein Gegenstiick zur pro-

jektiven Geometric', Grunerts Archie der Mathematik, Series 3, vol. xviii, 1911,

and Bocher, ' Infinite Kegions of various Geometries Bulletin American Math.

Soc, vol. xx, 1914.
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It is rather curious that previous writers seem to have paid

but little attention to this peculiarity of the Laguerre repre-

sentation. Let us also underline the merit mentioned in

theorem 1], namely, that there are no exceptions.

Enough of a general nature has now been said about the

Laguerre method : it is time to come to grips with it analyti-

cally. Let the complex point be

x = X
1 + iX2 , y = Y

x + iY2
. (1)

This lies on the two lines

x' y 1

X
x +iX2

Y
1 + iY2

1

1 + i 0

x y 1

^!±Y
2

Y,±X, 11+^0
We may therefore represent it by the two real points

X = X
l
-F2> Y=Y1 + X2 ,

X'=X1+ Y2 ,
Y^Y

X
-X

2
,

x = x + x
+ .y-y^

x+x .y-&,
2 2

2 2

y+y ^-x-x
~2~ + l ~2~'

(2)

(3)

The point midway between the given point and its con-

Y
jugate is (Xlf Fj), the slope of the line connecting them is jj
and their distance is

'l

From these facts we reach

Theorem 3] In the Laguerre representation we passfrom two

conjugate imaginary points to their representatives by rotating

their segment through an angle of 90° and multiplying the

distance between them by —i.

Our next task shall be to find an expression for the distance

of two points in terms of their representatives. The line

connecting a pair of complex points meets that which connects

their conjugates in a real point (unless the four be collinear).

This point may be finite or infinite ; the two cases must be

handled separately. When the real point is finite, we may
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take it as the origin. The lines separating these conjugate

imaginary lines harmonically will form an elliptic involution

which will share one pair with the involution of mutually

orthogonal lines, and we take this pair for our axes. The two

given complex points may then be written

(X. + iX,, RX.-BiX^iX. + iX,, EX.-RiX,).

Their distance will be given by

d = Vi-m V
{
X

1
-X

1
f-{X,-X.

2f-r2i{X 1
-X

l ) iX-Xj.

When the line connecting the given points has a real

direction it is at the same pure imaginary distance as its

conjugate from a real line which we may take as the x axis.

Oar points may be written

{X
x+iXv iYj{Xx+iX„ iY

2
).

d = V(X
1
- JJ* - (x

2
-x.y- + 2i - (x

2
-x

2 ).

This is the limiting case of the other when B — 0.

In the first case the first point is represented by A and A\
the second by B and B\ where

A = ((1+R)X
1 ,

(1+R)X2) S
A'= ( (l+i?)J 13 -(i-B)X

2 ).

B = ((l +R)Xli a+R)X,), B'^id+BjX,, -(l-B)X
2 ).

Similarly in the second ca^e,

A = ((X1-YJ 3
X

2 ). A'^ftX^YJ, -X
2 ).

F=((Z
1
-F2) 3

2T=((i1+Fa)> -X
2 ).

If 2 6 be the ano-le which AB makes with A'B\ we find

in both cases the general formula

d2 = AB. A'B'[co$26 + /sin 20]. (4)

Theorem 4] If two complex [joints be represented in the

Laguerre system by the pairs A A' and BB\ the a the modulus

of the distance of the complex points is the geometric mean

behveen AB and A' B', and the argument of this complex dis-

tance is the angle behveen the lines AB and A' B'*

* This formula seems to have been incorrectly given by Laguerre, op. cit.

vol. ii, p. 97. He uses A where we use A' and vice versa.
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Theorem 5] If tivo complex 'points be represented by the real

point-pairs AA r and BB\ the line connecting them will have

a real direction if [ABf — (A'B'f. The square of their dis-

tance will be real if AB be parallel to A' B' while it is pure

imaginary when these two lines are mutually perpendicular *

Theorem 6] The totality of points of a minimal line will be

represented by pairs consisting of a single fixed point for the

first {second) member, and all points of the plane for the second

(first) member.

We find furthermore from our equations above that

AB _ l+R
A'B'~ 1-R'

This shows that the points of a general line correspond to a

conformal collineation of the plane, and, since all parts of the

Xaxis are invariant, the collineation is inversely conformal, i.e.

the sense of angles is reversed. The ratio of stretching is •

This will be equal to unity only in the case of a line of real

direction. It is the negative of the ratio of the ordinates of

corresponding real points, i.e. it is the ratio of the parts into

which a segment connecting corresponding real points is

divided by the x axis. We define this latter as the axis of the

transformation.

Theorem 7] The totality of points of a non-minimal line

w ill be represented by an inversely conformal collineation of

the plane. The segments connecting corresponding points

will be divided by the axis of the collineation into two parts,

whose ratio is equal to the ratio of stretching. This ratio is

equal to unity ivhen, and only when, the line lias a real

direction-.

Let us find the interpretation in the real domain of the

angle of two complex lines. If two lines, real or imaginary,

meet in a point P, while a minimal line meets them in R and
Rf

, then if their angle be 6, we prove by the law of cosines

:

iQ _ PR
e ~ PR

* Study, loc. cit., p. 21.
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Suppose, then, that we have two complex lines intersecting

in a point which is represented by the real points 0 and 0'.

Their intersections with a minimal line will be represented

by the pairs AO and BO. The absolute value of the squares

of the distances from the intersection of the given lines to

BO
their intersections with this minimal line will by 4] be

,

and this is the ratio of the ratios of similitude in the two

collineations associated with the given lines. As for the

argument of the complex angle, that is one-half of the 2jL BOA,
i.e. the angle of the bisectors if the angles %-B00' and 4-A00\
and these bisectors are the axes of the collineations.

Theorem 8] The angle of two intersecting lines is V — 1

multiplied by the logarithm of a complex number, whose

modulus is the square root of the ratio of the ratios of simili-

tude in the two conformal collineations representing the given

lines, while its argument is the angle of these two axes*

The fact that the relation of a complex point to its Laguerre

representative is invariant for a real direct circular transforma-

tion suggests the idea that a complex circle must be repre-

sented by a transformation which will be almost as simple

as a conformal collineation. Such is the case. Let / and J be

the circular points at infinity. The N. S. condition that four

points P
1
P

2
P^P

i
should be coneyclic or collinear is that the

cross ratios of the lines connecting them with I and J should

be equal. /(P^p^) = /(P^,P8P4).

If P
1
be represented by A^A^ &c, the points IA

X
P

X
being

collinear, j (A^A.A,) = J (A,'A,',

Since the conjugate imaginary points are also coneyclic.

I(A
l
'A./,A

3
'A i

') = JiA.A.^A.A,).

If, then, I(A
l
A

i>
A,At) = J" (A^, A 3

At\

I (A,'A,;, A,'A') = J (A/A./, A./A,').

Hence the A's and the A"s are coneyclic together, or the

transformation is a circular one.

* Tarry, Article of 1889, cit. p. 87.
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There remains the question as to whether this circular

transformation is directly or inversely conformal. If the

given circle be real or self-conjugate imaginary, the given

complex point and also its conjugate lies thereon, and the

real points are mutually inverse in this circle. Such an

inversion is inversely conformal. But we can pass from any

complex circle to a real one by a continuous change of the

coefficients, whereas we cannot pass continuously from an

inversely conformal transformation to a directly conformal

one in this way. Hence the original circular transformation

was inversely conformal. Lastly, since three complex points

will determine a circle or line, and an inversely conformal

circular transformation is determined by the fate of three

joints, so every transformation of this sort will represent a

line or circle.

Theorem 9] In the Laguerre representation the points of a

not null circle will be represented by a real inversely conformed

circular transformation of the plane, and every such trans-

formation will correspond to a line or circle. A real or self-

conjugate imaginary circle will correspond to the inversion in

itself.

A chain of points, as defined in Ch. II, is characterized by
the fact that each cross ratio of any four is real. We may
extend this concept as follows. We shall mean by a cross

ratio of four points of a unicursal curve the cross ratio of four

special adjoint curves of a pencil passing through them,

i. e. the cross ratio of the four corresponding points of a line

to which the curve is birationally equivalent. Thus, if the

curve be expressed parametrically in the form

X
-<p(t)- y -x(t)'

where the functions involved are polynomials, we mean by

the cross ratio such an expression as

Definition. A system of points on a unicursal algebraic

curve shall be said to form a chain if the cross ratios of any
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four be real, and if there be a point of the system making with

any three an assigned real cross ratio.

Suppose, in particular, we have a chain of points on a circle.

If we letter these points as before, we must have

7(P
1
P

2
,P

3
P

4 ) = I{A
X
A

2
,A

3
A,) = J^A,, A3Aj

I(A
1

fA
2
\A

3

fA A

f

) — J (A^A^A./A/).

Theorem 10] A chain of points on a line or circle will

appear in the Laguerre representation as tivo real lines or

circles ivhich correspond in an inversely conformal circular

transformation.

Enough has now been said about the Laguerre representa-

tion ; let us turn to the closely allied method which we have

already discussed, and which from now on we shall refer to

as the Marie representation. The first writer to see in this a

means of representing all the points of a plane seems to have

been Mouchot.* His treatment is entirely synthetic, but is

most easily understood if we rewrite the equations given in

the last chapter when discussing Marie

:

x ~ X
1 + iX 2i y = Y

x + iY.
2

.

X = X
X + X 2 ,

F=F1+ F2 ,
X'=X\-X

i9
Y^Y.-Y,. (5)

2 2 ' 2 2

x,= x + x ' (x-'x)
^ Y,= y+y jjy-y)

(6)

Each finite complex point will thus give a real point-pair

(A, A') and conversely. With this much analysis somewhere

in the back of his head, Mouchot starts bravely to follow the

synthetic road, somewhat after the fashion of Tarry. Unfor-

tunately his zeal exceeds his discretion when it comes to carry-

ing through his Cartesian reform, and he soon is in over his

depth. Thus, after defining a complex point as a real point-

pair, he defines a complex segment as a real segment-pair.

* La reforme Cartesienne etendue aux diverses branches de mathematiques pures,

Paris, 1876, and Les branches de la geometrie superieure, Paris, 1892. Subsequent

references are to this latter book, the only one seen by the author.
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We are then told that two segments with the same initial

point are £ homogeneous * and presently :

L'ensemble de tous les segments rectilignes, homogenes,

groupe's dans un plan autour d'un point, forme, dans le sens le

plus general du mot, une droite ayant ce point pour origine. f

One is at liberty to put pretty nearly any desired construc-

tion on these words. The most natural would seem to be that

a complex line is represented by the totality of point-pairs

with one fixed member, which is very far from being the case.

No, we must class Mouchot's work as misdirected effort; the

best judgement on it is that given by the late Jules Tannery

in his review of the second book : J

M. Mouchot, dont le nom nous est bien connu, grace a ses

belles recherches sur l'utilisation de la chaleur solaire, est de
ceux qui suivent avec perseverance leurs propres idees, et qui

se preoccupent plus du progres qu'elles font dans leur esprit

que de la fagon dont pensent les autres.'

It is indeed fortunate that abler geometers than Mouchot

have devoted their attention to the Marie representation. It

was familiar to Tarry, and incidentally used by him. More

recently, it was used as the basis of an exhaustive but disap-

pointing study by Davis. § Curiously enough, both Tarry and

Davis modified the method in such a way that instead of

using the two real points given by (5) they took one of these

points and the point midway between the two. This varia-

tion introduced an injurious asymmetry. To find the real

significance and efficacy of the Marie representation it is better

to turn to the article by Study recently quoted. Instead of

following his lead, however, let us try to grasp the details of

this representation by following as closely as possible the

various steps which we took in the case of the Laguerre

method.

Theorem 11] We pass from the Marie to the Laguerre repre-

sentation by rotating each point-pair around the middle
rpoint through an angle of 90°.

* Ibid., p. 22. t Ibid., p. 24.

X Bulletin des Sciences mathematiques, vol. xxvii, 1892, p. 237.

§ 'The Imaginary in Geometry', University of Nebraska Studies, vol. x,

No. 1, 1910.
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Let us next look at the distance formula. If the line con-

necting the complex points be, as before,

y = RiX,

d= -/\-R* V(X
1
-X

1f-(X2
-X

2f + 2i(X,-X1
)(X

2
-X

2 ),

A = ((X
1 +X3), RiX.-X,)), A'= ((X

1
-X,),-'R(X

1 +X 1)),

B' = (X, +X2 ),
R (X, -

X

2)),
B' = ((X, -

X

2 ),
—R(X

1 + X2)),

(AB)*=(l + R*) [(X, - X,f + (X2
-X

2)
2

+ 2(1-^) (X
1
-X,)(X

2
-X

2),

(A'B'f = (l+Rf [(X
x
- X,)2 + (X2

-X
2)]

2

-2(l-iJ2
) (X^X.H^-X,),

i [(ABy- (A'B'f] = 2 (X.-X,) (X
2
-X

2 ).

If, as before, the lines AB and A'B' make an angle 2 9,

GO, 20 - (i-im^i-*i) 2-(^-*
2 )

2

]cos20_ AB-A'R 3

d2 = (^L'JB') cos20 + ± [(AB) 2 -(A'B') 2
].

Theorem 12] If two complex points be represented by the

real point-pairs (AA')
f
(BB') respectively, while the lines

A B, A'B' make an angle 2 0, then the real 'part of the square of

the distance of the complex points is ABx A'B' xcos 26, while

the pure imaginary part is \ [(A B) 2— (A'B')2
].

Theorem 13] The necessary and sufficient condition that the

square of the distance of the complex points discussed in 12]

should be reed is that (AB) = (A'B') ; the square of the distance

will be pure imaginary if the line AB is perpendicular to the

line A'B'. The line connecting the complex points will have

a real direction if AB be parallel to A'B'.

We may set forth the relation between these two methods

of representing complex points in triple column as follows :

n n
• , Laguerre repre- Marie repre-

Complex points. &
,

r
, ,.

r
r r sentation. sentation.

Real square distance AB 1. A'B' AB 1 A'B'

Pure imaginary squared

distance AB
\\
A'B' (AB) = (A'R)

Connecting line, real

direction (AB) = (A'B') AB
\\
A'B'
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Let us see what sort of a transformation of the plane will

correspond to a straight line. If the line be real, it is clear

that the representing points will be thereon. If it be complex,

with a complex direction, we see from the equations above

RX' = Y, T = —RX.

This is an affine transformation, whose square is a reflection

in the origin. The Jacobian is equal to unity, so that the

transformation is directly equi-areal. Lastly,

so that corresponding points lie at the extremities of conjugate

diameters of the same ellipse whose axes have a fixed ratio,

and lie along the axes of coordinates. When the line connect-

ing the complex points has a real direction it is geometrically

evident that the transformation is merely a reflection in a

real line parallel thereto.

Theorem 14] The Marie representation of a real line is the

totality of real point-pairs thereo n. The representation of a

complex line with a finite real point is an affine collineation of

period four which is equi-areal. Corresponding points are

the extremities of conjugate diameters of the same ellipse of a

concentric system of similar and similarly placed ellipses.

The representation of a complex line with a real direction is a

reflection in a real line parallel thereto*

§ 2. Representation by means of lines.

We saw in the last chapter how the real lines of space could

be utilized to represent the complex points of the plane, and,

in fact, we indicated four methods for accomplishing this

representation. We return now to this same question, and
give other methods better suited to the study, not of an indi-

vidual curve, but of the whole plane. We begin with a plan

worked out in considerable detail by Duport.f The scheme

* Study, loc. cit., p. 22.

f 'Sur un mode particulier de representor les imaginaires ', Annates de -

VEcoh normale, Serie 2, vol. ix, 1880.
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is simplicity itself after what we have learned about the

Laguerre representation. "We take as our complex plane

z= 0,

project the first Laguerre representative on z + 1 = 0 and the

second on 0 — 1=0, and connect by a straight line. The

method is seen to bear a certain relationship to the Weier-

strass-Van Uven method discussed in the last chapter. It is a

shade less simple analytically, but more symmetrical and

superior geometrically. The formulae are as follows. We
start with the complex point

x = X
1
+ iX2 , y =Y1 + iY2) z = 0,

and represent it by the real line :

X = X
X
+Y

2
Z, Y=Y,-X

2
Z.

Theorem 15] The relation of complex point to representing

line is invariant for every rotation of space around a line of

given direction, and every translation perpendicular to that

direction. The interchange of conjugate imaginary points

will appear as a reflection in a certain plane perpendicular to

this direction.

We find at once from 5]

Theorem 16] The lines which represent two points in the

Duport system will intersect ivhen, and only when, the square

of the distance of those points is real.

Since the distance of two points is equal to that of their

orthogonal projections on any plane parallel to their line, we
have from 4]

Theorem 17] The modulus of the square of the distance of

two points is equal to the product of the distances which the

representing lines in the Duport system cut on a certain pair

of parallel planes; the argument of this square is equal to

the angle of the lines along which these two distances are

measured.

Let us seek the system of lines which represent points on

the line
y = MX.
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The representing line will join the points

((l+M)X
1 ,

(i + R)X2), -1) ((i--R)X1( -(1-R)X2,1).

It will also contain the points

(0, ^X2
,

^((1-R*)XV 0, R).

These latter lie on two fixed mutually perpendicular lines,

which are parallel to the bisectors of the angle of the given

line and its conjugate, while the product of their distances

from the given complex plane is unity.

Theorem 18] The points of a non-minimal line of im-

aginary direction are represented in the Duport system by the

lines which meet the tivo skew lines which are obtained by

lifting the bisectors of the angle of the given complex line and

its conjugate perpendicular to the given plane ttvo distances

ivhose squares are the negatives of the tangents of the halves of

the two angles formed by these complex lines. The points of a

line of real direction will be represented by the lines parallel

to a given plane and intersecting a given line. The points of

a minimal line will be represented by a bundle of concurrent

lines. The points of a real line will be represented by the

totality of real lines cutting the given one orthogonally. In
every case the representing lines will establish an inversely

conformed collinear relation between two parallel planes.

Suppose, now, that we have a general analytic curve in our

plane. If we replace an infinitesimal arc of the curve by a

piece of its tangent, and apply 18] we see that the focal points

of a line in general position are at two distances from the

given plane whose product is unity, and its focal planes meet

the latter in mutual perpendicular lines :

Theorem 19] The congruence of lines in the Duport system

which represents a curve which is not a minimal line is of

such a nature that the product of the distances of the focal

points of a line in general position from the given plane is

unity, vjhile the focal planes cut that plane in two mutually

perpendicular lines. *

2674

Duport, loc. cit., p. 322.

G
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It is a curious fact that if we seek the best interpretation in

line geometry of the fundamental metrical invariants of the

complex plane, we are led naturally to the non-Euclidean

metric, both in the complex plane and in space. The first

writer to perceive this was Klein ; it is worth while to

give the details of an elegant representation first exhibited

by him.*

Suppose that our complex plane is that of projective

geometry, with a Cayleyan system of measurement based

upon an absolute conic. Each point of the plane will corre-

spond to the two points where its polar meets that conic,

which we shall take as self-conjugate imaginary. Through

the conic we shall pass a real quadric with imaginary rulings,

which quadric shall be the absolute quadric for a three-

dimensional non-Euclidean metric of hyperbolic type. Each

point of the conic will correspond to a real point of the

quadric, namely, that on the imaginary generator of the first

system passing through the point of the conic ; the conjugate

imaginary point will correspond to the real point on the

generator of the second system through the given point. Each

point of the plane not on the conic will correspond to two

real points of the quadric, or, better, to the real line joining

them. Conversely, each real line meeting the quadric twice

in real points will determine two points of the conic and

a point off the conic where their tangents meet. The only

exception occurs in the case of a point of the conic. Each

such point shall be set in correspondence with the pencil of

tangents to the quadric at the real point of the first generator

through it.

Let us next exhibit the analytic foundation for this system.

The complex plane being

^0 = 0,

while the absolute quadric is

* ' Eine Uebertragung des Pascalschen Sechsecks auf Raumgeometrie
'

,

Math. Annalen, vol. xxii, 1883. It is curious that the article immediately-

preceding, which is by the same author, gives another representation con-

nected with the Von Staudt theory which we discuss in our last chapter.
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we may express the latter in the parimetric form

It is to be noticed that the given complex plane is in the

ultra-infinite domain with regard to a dweller within the

Absolute, and it is only for points within the Absolute that

the usual real metrical assumptions, excluding the parallel

axiom, are valid. Consequently it appears a sort of poet's

licence to speak of distances in the given plane. But we may
come right back to earth by replacing points and distances

in this ultra-infinite plane by the corresponding planes and

dihedral angles through the absolute pole of this plane, which

is a perfectly good actual point.

If, in the equations above, we treat (£) and (f) as inde-

pendent variables, then, while one remains constant, the other

traces a generator of the Absolute. The coordinates of the

intersection of a first generator, £ = constant, with the given

plane will be

py* = fi
2-&2

>

If (y) lie on the polar of (x), we have

{x
x
+ ixs)&2- 2 x

x& f2 - [x
2
- ixz] f2

2 = 0.

If (x) be given, and the roots of this equation be (y]1
r]
2 ) (dC2)>

while x* + x
2

2 + x
3
2 + r2 = 0,

fid =-(a?2-^3)j ViQ + VzCi = 2x
i> n2 C2 = x

2 + ix
5 ,

Let the representing points be (F) and (Z).

Then the Pliicker coordinates of the line joining them are

G 2
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Thus, in detail,

F
o2 = (

7iiC1 -v 2Q (V1C1-I2Q + (vid-^Ci) feC2
-^

2 Ci) 5

P23 = 2i[-r?1 C2 i7
2 C1 + ^ 2 Ci^iC2] }

Pai = -^[(^ifi-^Q (^1

C

2
— ^2 Ci) — (^1 &— *7 2 Ci) (viCi-%G]>

p
vz = [(?i G + v2Q fa C2 - v2Q + Oh d - v 2Q (vi Ci + %Ql

^01 + ^23 = -2r^,

P
02 + iP31

= — 2ra?
2 ,

^03 + ^12 = -2r^o.

These formulae exhibit in the clearest fashion how we use

a real line to represent a complex point. Let us proceed to

develop those metrical relations between lines which corre-

spond to metrical relations between points in the complex

plane.*

The equation of our Absolute quadric being

-X
0
2 +X1

2 + X 2
2 +X3

2 = 0,

if the space constant of measurement be i, we have for the

distance of (F) and (Z)

coshd =
S-17 + r*+ Y* + Y* V -Zi + Z* + Zi + £f

The polar of (P) with regard to the Absolute will be

Qoi = Qjh « -P*i> h h * = h 2, 3.

Two lines in general position will have two common perpen-

diculars,which are mutually absolute polar. One perpendicular

will thus inevitably be in the actual or finite domain. The

distances which our lines determine on their common perpen-

* Sketched without proof by Study, ' Nicht-euklidische und Liniengeo-

metrie Jahresbericht der deutschen Mathematikervereinigung, vol. xi, 1902. In
more detail in the author's Elements of Non-Euclidean Geometry, Oxford, 1908

pp. 116 ff.
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diculars shall be called the distances of the lines. That which

is on the ultra-infinite perpendicular can be interpreted in

terms of a finite angle if desirable. If we write for con-

venience

i = 1

i = 3

<t>(P,P')=2(-PoiPoi+PjkPJk%
i = l

we find, after rather a tedious reckoning, that *

f(p,p')— sinh d
x
sinh d

2
= —

cosh d
1
cosh d

2
=

V>(P,P)^(P',P')

Vcf> (P,P)V> (P',P')

If two points (x) and (x
f

) of the complex plane x0
= 0 have

the distance c2, then

cosh d = + ff
2
a?

2

'

+ #3
a?3

/

^i>(P}P)V^(P f

}
P f

)

Theorem 20] In the Klein-Study representation the real

part of the hyperbolic conone of the distance of tivo complex

points will be equal to the product of the hyperbolic cosines of
the distances of the corresponding real lines, while the pure
imaginary part ivill be equal to the product of the hyperbolic

sines of the dista nces.

The points of a line in our complex plane are the totality of

points conjugate to a given point with regard to the Absolute

conic of the plane. The polar of (x
r

) is

X-^ Xy -J- X
2 -J- Xq X-£ 0,

which involves

<t>(P1P')=f(Pl
P') = o.

* Ibid., pp. Ill, 112.
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Theorem 21] The poi nts ofa line not tangent to the absolute

conic will appear in the Klein-Study representation as the

system of actual lines cutting an actual line at right angles

;

the points of a tangent line will appear as a bundle of Loba-

chewski parallels which are concurrent on the Absolute.

There is just one other method of representing complex

points by real lines which we will touch upon in closing.

The credit, or discredit, for discovering this seems to be due

to the Author.* 'The fundamental idea is simplicity itself.

We have merely to project our given plane from an outside

point upon an imaginary plane (i.e. one which does not

contain the conjugate of a generic point) and use as repre-

senting line that which connects the projected point to its

conjugate. Analytically, let us start with the plane

x
0
= 0,

and project from the point (1, 0, 0, 0) upon the plane

x
0 + ix

x
— 0.

The point (X
1 + iY19 X, + iY2) X.

6 + iY3)
will be represented by the line

P01 = J7), P
23 = X2

F
3
-Z 3 F2 ,

-^02 = (^1^2 + ^1^ > ^31 = ^3 Xl ~ ^1 Y$
'

^03 = (^1^3 + ^1 ^3)' A 2 — ^2~ ^2 ^1

'

This method suffers in practice from the great number of

exceptional points. The real line common to the two planes

well represent all of its own complex points, all lines which

intersect this real line represent no points at all. The points

of a line will usually be represented by the lines of a

linear congruence with conjugate imaginary directrices. The

characteristic feature of the article mentioned is that it is

entirely synthetic and projective. A complex point is defined

as an elliptic involution according to the Von Staudt practice,

to be explained in the last chapter, and each complex con-

* 'A Pure Geometrical Representation of all points of the Projective

Plane', Transactions American Math. Soc, vol. i, 1900. Cf. also Juel, ' Uber

einen neuen Beweis der Kleinschen Relation "zwischen Singularitaten, &c.',

Math. Annalen, vol. lxi, 1905.
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struction called for is worked out in real terms. This

excessive purity of method makes the article rather dull

reading.

| 3. Other Representations.

It is evident that besides pairs of points and individual

lines there are other real geometrical figures which may be

used to represent the complex points of the plane. We shall

give examples of two or three such systems of representation

in this concluding section.

We begin with a very obvious procedure which is usual in

the theory of functions. Taking our complex point

x = X
1 + iX 2 ,

y=Y
1 + iY2 , (1)

we shall represent it by the real point of a four-dimensional

projective space which has the coordinates

X
0
— I, X

Y
= Xlt X

2
= X

2 ,
X

3
= Tv X± = Y

2
.

To be specific, we assume that if the right-hand side of the

first equation were replaced by 0, we should have the equation of

the hyperplane at infinity. There will be a one to one corre-

spondence between the finite real points of this $4 and the

finite points of c, our complex plane. The geometrical signi-

ficance of the correspondence may be described in the following

terms.*

Let our given plane be determined in Si by the equations

x
2
= a?4

= 0.

We connect the complex point

x0
=l, x

l
= X

1 + iX2 ,
x

2
— 0, x

3
=Y

1 + iY2) x4
= 0,

with the infinite complex line having the equations

0Cq — 0^ x
^

i/X
2
— 0j Xq ~\~ —— 0.

The connecting plane will have one real point, whose coor-

dinates are given above, and this is taken to represent the

complex point in question. The representation will not only

* Segre, ' Le rappresentazioni reali delle forme complesse Math. Annalen,

vol. xl, 1892.
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break down when the projecting plane contains a whole line of

real points, i.e. when it lies with its conjugate in a real $3 , and

this can only happen when it is at infinity.

However useful this method may be from the point of view

of the analyst, as a geometrical method for representing com-

plex points it falls behind others which we have seen. Not
only are there many exceptional elements, but we are forced

to go outside of our own S3 .

If we had followed a strictly historical order in the present

chapter, we should have come much earlier to the next

method, which was devised by Sophus Lie.* We start with

a Cartesian $3
and seek to represent all points of

2/ = 0.

To do so, we allow the complex point

x = X
x + iX2i y = 0, z = Z

1 + iZ
2

to be represented by the real point

X = X
1 , Y = X

2 , Z = Zlf

to which is attached a weight Z
2

. In this way we represent

complex non-weighted points of the plane, by real weighted

points of space. The geometrical connexion may be explained

as follows

:

The given complex point is projected orthogonally upon the

x axis, and the Gauss representative is found in the (x
s y)

plane. A perpendicular is dropped from there upon the plane,

parallel to the (x, y) plane which passes half-way between

the given complex point and its conjugate. The foot of this

perpendicular is the point sought. The points of a two-

parameter family, as a curve, will be represented by the

points of a surface on which lies a one-parameter family of

isobaric curves. The most interesting of these is the system

of points of weight 0, which Lie calls the Null Strip.f As an

example let us take a straight line, not parallel to the z axis

(B
1 + iB2)

(Z
x + iZ%) = (X

1 + iZ2)
-(A

1
+ iA

2 ).

* 'Ueberdie Darstellung des Imaginaren in der Geometrie', CreUes Journal,

vol. lxx, 1869.

f Ibid., p. 346.
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The representing surface is the plane

The isobarics are the lines where this plane meets the planes

B
2
(X-A

1
)-B

1
(Y-A

2 )
= -(B* + B*)Z.

These are the lines of steepest slope, if the (x, y) plane be

looked on as horizontal. The null strip is the line given by

B
2
(X-A

1
)-B

1
(Y-A

2)
= 0.

On the other hand, the given line has the equations

x—(B
1 + iB

2
)z — A

1 + iA
2 ,

y=0.

The given line and the null strip lie in the plane

x + iy-(B1 + iB
2
)z = A

1 + iA 2i

and this contains one of the circular points at infinity of the

(x, y) plane. Conversely, every finite real line will determine

with this circular point a complex plane which will meet the

(x
y y) plane in a complex line not parallel to the (x) axis.

We thus pass over naturally to the idea of looking upon the

Lie representation, much as Klein looked upon that associated

with his name, to wit, as a means of representing the complex

lines in the plane by the real lines in space.*

If the complex line rotate about a fixed point, the plane

connecting it with a fixed circular point will pass through

a fixed complex line, and the real representing line will meet

this complex line and its conjugate. The lines through a point

in the plane will be represented by the real lines of an elliptic

linear congruence in space.

Considered merely as a means of representing complex

elements, it is clear that Lie's method falls well below some

others. It is an interesting historical fact, however, that it

* For a discussion of the Lie method from this point of view see Smith,
' On Sophus Lie's Representation of Imagineries in Plane Geometry ', Annals

ofMathematics, Series 2, vol. iii, 1901-2. Compare with this excellent exposition

a most obscure article by Busche, 1 Ueber eine reelle Darstellung der imagi-

naren Gebilde in der Geometrie', Crelles Journal, vol. cxxii, 1900.
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was writing upon this subject that put Lie on the track of

some of his most important geometrical ideas.*

We saw in l] that the Laguerre representation is without

any exception if our complex space be that of the geometry of

inversion, but none of the methods so far given avoids ex-

ceptional elements when applied to projective space. We
shall give, in conclusion, one method which has the noteworthy

virtue of having no exception whatever for this same domain.

It is the method of Segre.f We start with the conjugate

imaginary points

(x13 x
2 ,

£c
3)

(xlt X
2) ^3)'

We write the nine equations

a/2jA.^ — X-^ X-^ , X. — X9 X^ + X^
> ^^X^o — ^3*^2 X^X<^^

V^2 X. 22 — ^2^2 9 "^31 — X^X-^ -\- X-^X^, 1/X.
j2
— X-^Xq XqX-^) (^)

V^2 XqXq) X
-yi

~= ^2 *
^/X

2~l
~~ *^2^1 X-^Xi(£*

These nine homogeneous quantities (X) will give the points

of a four-dimensional variety in S8 .
They are connected by

equations of three types

X
ij

2 +Xji
2-2X

ii
X

jj
= 0, XyXjk-XyXji^ V'iXjjXj.i,

XijXjk + XjiXjk= ^2X
jj
Xih- (8 )

Of course, these equations are not all independent ; let us

determine the order ,of the four-dimensional variety which

they determine. For this purpose we must treat (x) and (x)

as independent variables, and consider four linear equations

e, 3 = 3 t, 3 = 3 i, 3 = 3 i, j = 3

2 A
ij
Xij- 2 B

ij
Xij~ 2 2 D

ij
X

ij
=0 '

i, J = 1 i, j = 1 3 = 1 j = 1

If the first equation be omitted, and (x) be eliminated from

the last three we get a cubic in (x). Omitting the second

equation likewise, we get a second cubic in (x). These cubics

have nine intersections, of which some are to be rejected as

* Smith, loc. cit., p. 164. f Segre, Rappresentazioni, cit. p. 422.
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they correspond to setting the third and fourth equations

above proportional to one another. The statement that the

third and fourth equations in (x) are proportional leads to two

quadratic equations, one of which says that the coefficients of

®i and xk are proportional in the two equations, and the other

that the two coefficients of Xj and xk are proportional. These

quadratics in (x) have four common solutions, of which one

is extraneous as it comes from equating the coefficient of xk to

zero in both equations. Hence there are three values of (x)

which will make the last two equations in (x) proportional,

or the four equations have six common solutions. This is the

maximum number, and as we can reach it in a particular

case, it is general. The points of our plane are represented

without exception by the real points of an $4
6

'. As for the

quadratic equations above, let us write the equation

\/2A n X
12
—iX

2Y
X

3l + iX13

X
12 + iX 2l V2X22

X
23
—iXZ2

X
Z1 - ^13 ^23 + ^32 ^X

22

= 0. (9)

Then the left-hand sides of the equations (8) are the partial

derivatives of the left-hand side of this equation :

Theorem 22] In the Segre representation, each point of a

complex plane is represented, without exception, by a real

point of a variety offour dimensions and the sixth order in a

space of eight dimensions. This variety is composed of the

singular points of a hypersurface of the third order.

Suppose that we have a line and its conjugate

:

u
x
x

Y + u
2
x
2 + uz

xz
= 0, u

x
x

x + u2
x
2 + u3

^
3
= 0.

Still treating (x) and (x) as independent variables, let (x)

remain fixed, while (x) takes values linearly dependent on

two ; the same will be true of the coordinates (X^). A similar

result will hold when (x) is fixed. We have thus a surface

with two sets of rulings.

Theorem 23] A line in the projective plane will be repre-

sented by a real quadric surface with imaginary generators.
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A chain upon our line may be expressed in the form

:

x
i = XlVi +X2

Z
i> ®i = X\Vi + X2*i-

This establishes a projective relation between the two sets

of generators of the quadric.

Theorem 24] A chain will be represented in the Segre

system by the points of a conic.

If (x) remain fixed, while (as) varies freely, the point
(
X

ij)

will trace an imaginary plane. If (x) remain fixed, while (x)

varies freely, (X^) will trace the conjugate imaginary plane.

Theorem 25] Through each real point of the representing

will pass two conjugate imaginary planes of the variety.

A collineation of the complex plane will appear in S
8
as a

real collineation, permuting among themselves the planes of

each of these systems.

We shall learn in the next chapter how to interpret a

collineation that interchanges the two systems. Remembering

that, if any two planes be given, the sum of the number of

dimensions of their common variety and of the smallest space

which includes them both (non-intersection being counted as

a space of— 1 dimensions) is equal to 4, we reach :

Theorem 26] Tivo planes of the same system of St

6 have no

common point, and lie in an S
5 ; tivo of different systems have

a common point and lie in an /S'4 .

If we take two planes of the same system corresponding to

two fixed values for (x), their S5 contains oo 1 planes, obtained

by giving to (x) any value linearly descendent, on the two

given values. This variety of the #5 is of the third order,

as we see when we seek the values of (x) from the equations

M =2 Aax ij =2 B
v
x
v =2 G

v
x
v = "•

*» j h J h 3

We have thus two systems of cubic varieties, obtained by

leaving one of the sets of variables (x) and (x) perfectly free,

while the others are constrained by a linear relation.
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Theorem 27] Two S3
s
's of /S>

6
4 which belong to the same system

have a common plane; two which belong to different systems

have a common quadric.

It is worth noticing in conclusion that we may pass from

this representation to two of our previous ones in the following

manner. We pick out a quadric of #4
6

.
Through it will pass

an 1S3
3 of each system, and these lie in conjugate imaginary

S5*s. These will meet a real #4
in conjugate imaginary lines.

Each point of #4
6 will determine with the conjugate imagi-

nary S5's two conjugate imaginary #6
's, which meet the real Si

in conjugate imaginary planes through the conjugate imaginary

lines. These imaginary planes will have one real point in

common. This is described at the beginning of the present

section. Suppose, secondly, that we have a system of con-

jugate imaginary planes through two conjugate imaginary

lines I, I of a real Si . Let us take a real line r not in $4 , but

meeting it in a real point. Together they determine a real S
5

.

The conjugate imaginary planes of #4 through I and I will

determine with r conjugate imaginary four-dimensional spaces

which will meet any real S
3

of S
5
in conjugate imaginary

planes, sharing a common line. This real line may be taken

to represent the real point in $4 where the conjugate imaginary

planes through I and T meet one another. We are thus back

on what amounts essentially to the last representation in the

last section.



CHAPTER V

THE TERNARY DOMAIN : ALGEBRAIC THEORY.

§ 1. Chain Figures.

In our study of the binary domain we found that the chain

played a very central and important role. The coordinates of

the points of a chain were linearly dependent, with real mul-

tipliers, on those of two members of the system. This feature

will characterize a chain in a space of any number of dimen-

sions. In the plane we have a figure dual to the chain which

must now be defined.

Definition. A system of concurrent and coplanar lines, of

such a nature that the cross ratios of any four are always real,

while the system includes that line which makes any assigned

real cross ratio witli any three of its members, shall be called

a line chain.

It is clear that the properties of a line chain are absolutely

dual to those of the point chain developed in Ch. II, and that

the easiest way to construct a line chain is to draw lines from

the points of a point chain to some point not collinear with

them.

Definition. A system of points in any number of dimensions

whose independent coordinates are analytic functions of two

real variables and no less shall be called a congruence.

Definition. A congruence shall be called a chain con-

gruence if

a) the points be not all collinear,

b) a line connecting two points of the congruence contain

a chain thereof,

c) two chains of the congruence have always just one

common point.
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We see to begin with that all points of a chain congruence

must be in one plane, otherwise we could easily find non-

intersecting chains of the congruence. The totality of real

points of a plane will give the simplest example of a chain

congruence. More generally, if (y) (z) if) be three non-collinear

points of the system,

®i - PVi + X2
v z

i +Pz
Tt

i 5 ®i = X i ~Pyi+X<f*i + X2.T~k>

where (x) alone is variable, will constitute a part at least of

a chain congruence. Now a chain connecting an arbitrary

point (r) of the plane, with the point (x) will be

x{ = Y
1
kr

i+X1 pyi +X2
<rz

i +

and this will share a point with the chains of the congruences

obtained by putting X
x= 0, X2

= 0, X3
= 0 above when, and

only when, (r) is expressible in this general form ; hence these

equations give us the complete chain congruence.

We may draw still further conclusions from these equations.

For if (x) be any point of the plane not collinear with two of

the points (y), (z), or (t), we may put X
1
= X

2
= X

3
= 1, and

solve for p, a, and r, so that there is a chain congruence which

includes any four points, no three of which are collinear. On
the other hand, four such points could not belong to two

different chain congruences, for the same would be true of the

diagonal points of their complete quadrangle. Hence the two

congruences would determine the same chain on each side of

this quadrangle, and their chains on any line would have six

common points, and so be identical. *

Theorem 1] Four coplanar points, whereof no three are

collinear, belong to just one chain congruence.

Theorem 2] Every chain congruence is protectively equiva-

lent to the real domain of the plane.

It appears from this that the form for the chain congruence

given above is perfectly general. It can, however, be simpli-

* The first writer to discuss the chain congruence seems to have been

Segre. See his fundamental article, 'Un nuovo campo ', cit. pp. 433 ff. For

a different treatment see Young, ' Planar chains, and their Associated Pro-

jectivities', Transactions American Math. Soc, vol. xi, 1910.
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tied in the case of a particular congruence by imagining that

the constant multipliers have been swallowed by the homo-
geneous point coordinates. Thus the general chain congru-

ence may be written

x
i
= %iVi +X2 zi +Xjt ;

x
4
= Xji +X2

z
{ + Xztit (1)

If we solve the first three equations for XltX2 , and Z 3 , and

substitute in the last three, we get

I

anl*i= 2 aa A ki
x
j

h *

\a
{j
\=\yzt\ (2)

Definition. A system of coplanar non-concurrent lines of

such a nature that

:

A) A line chain of the system passes through the intersec-

tion of each two lines.

B) Two line chains of the system have always a common
line and shall be called a chain congruence of lines.

Theorem 3] Four coplanar lines, whereof no three are con-

current, belong to just one chain congruence of lines.

Theorem 4] Every chain congruence can be carried on by a

collineation into the domain of all real lines, and by a correla-

tion into that of all real points.

Theorem 5] The lines containing chains of a chain con-

gruence form a chain congruence of lines, while the vertices

of chains of lines in such a congruence form a chain con-

gruence.

We saw in 24] of the last chapter that in the Segre system

a chain is represented by a conic. What will represent a

chain congruence ? It will be sufficient to consider the real

domain. If in equation (7) of that chapter we have x = x,

three of the coordinates will vanish identically, while the

other six are proportional to constant multiples of the terms

of the general ternary quadratic form.

Theorem 6] In the Segre representation, each chain congru-

ence will correspond to a Veronese surface of the fourth order
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lying in a space of five dimensions. There are x 2 'planes

which meet such a surface in conies, and each of these will cor-

respond to a chain of the congruence. Every real quadric of

$4
6 will either contain a single real 'point of such a surface, or

meet it in a real conic. There are x 2 real quadrics which do

the latter*

Let us turn momentarily from the chain congruence to see

what happens in equations (1) if

I

yet
I

=
I
y&

I

= o.

If there exist three such real multipliers, F15 F2 , and F3 , that

we have merely a chain of points. If not, we may write

(vx) = X
x {vy) +X2

{vz) + X^vi) = 0,

(vx) = X
1
(v]/) +X2

(vz)-hX3 (vi) = 0.

Solving these, we shall find a point of the system on any

line in the plane so that we have all points of the line common
to (y), (z), and (t). There is, however, one point of the line

which has x 1 determinations. We write first

^l2/l + ^2 0l +^A _ X
_\ + + ^3*1 = ®l

m

Xiy2 +X2
Z2+X?t

2
X
2 X^Z + Xzh + Xsk X

2

If these equations in (X) be not independent, but equi-

valent,

(V\ X2
~ V2®l) \

Z
\
X,2~ Z

2
X

\)
{t

1
X
2 — t

2
X

l )

Now, by the fundamental identity of the binary invariant

theory,

(SA-SA) (M2—Mi)+ (*A-*A) (ky2 -k^i)

* Segre, Rappresentazioni reali, cit. p. 430. For an account of the surface

see Veronese, ' Le superficie omoloidi, etc.', Atti della R. Accademia dei Lincei,

series III, vol. xix, pp. 188 ff.

5674 H
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Hence, in the present case,

~ X
i = 2/i(^1^2-^^) + ^(^2-^l) + ^Cyi^2-^2^l)- (

3
)

These equations hold while i — 1, or 2. There will thus be

an infinite number of sets of real values X
l ,
X

2 ,
X

z
where

XiV2 + X2
z
2 +xA = pb/Ahh-hh)

+ *2 (k§
f

2 -*2#i) + *2 ^i^2-^2^i)l

But since
|

yzt
|

=
|

yzt
\

= 0,

^3 +^3 + ^3*3 = P [2/3 izik-hk)

+ *3 - k&i) + h (yA

It appears, then, that in equations (3) we may allow the

subscripts to take all three values, and these equations give

the coordinates of the singular point of their representation.*

Let us turn back to our chain congruence, for we are far

from having finished with it. The real domain suggests imme-

diately the symmetrical and involutory transformation between

conjugate imaginary points. We get from 2] :

Theorem 7] There is associated with every chain congruence

an involutory transformation of the plane, which is not a

collineation, but which carries joints into points and lines

into lines without exception, and leaves all points of the con-

gruence, but no other points, invariant.

Theorem 8] A line either contains a chain of a chain

congruence or a single point thereof where it meets the corre-

sponding line in the involutory transformation associated with

the congruence.

Theorem 9] The necessary and sufficient condition that

a line should contain a chain of a chain congruence is that it

* Segre, Nuovo campo, cit. p. 434, points out the existence of this point,

without finding its coordinates.
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should contain one pair, and hence an infinite number of

pairs ofcorresponding points in the associated transformation.

Theorem 10] Through each point of the plane of a chain

congruence, which is not itself a point of the congruence, will

pass just one line containing a chain of the congruence.

Through every point of the congruence will pass a chain of

such lines.

Suppose that we have two chain congruences ; will they

necessarily have any common elements? We may safely

assume that one congruence is the real domain, while the

other takes the form (2). Writing the equations

#1 ^2 ^3

we get three real conies in the (X) plane, with, usually, three

intersections, of which at least one must be real.

Theorem 11] Two chain congruences in the same plane

must have at least one common point.

We pass to the next larger linear system. Let us imagine

that (y), (z), (s), and (t) are four points, no three collinear, and

that these coordinate values are not linearly dependent in

terms of real multipliers. We write

Here is a set of points depending on three real parameters.

Let us see whether we can find a line, all of whose points are

included in the system. For such a line (u) we have

X
1
(uy) + X2

(uz) + Xj (us) +Z4 (ut) = 0,

(uy) +X2
(uz) +X3 (us) +Z4

(ut) — 0,

and these equations must be equivalent in order to have go
2

common solutions. Now, by a familiar ternary identity

(ut)
|

yzs
|

= (uy)
\

zsi
|

— (uz)
\

ysi
|
+ (us) yzi

|

.

If, thus, we write

(uv) _ (
uz

) (us) _ (ut)

(uy)
~

(uz)
=

(us)
~

[ut)

h 2
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each of these expressions is equal to

(uy) \zsi\- (uz) \ysi\ + (us)
\

yzi
\

^

(uy) \zst\ — (uz)
|

ysi
|
+ (us)

|

yzi
\

Hence

(uy) \zsi\ — (uz)
|

ysi
|
+ (us) \yzi\ — (ut)

\

yzs
|

= 0,

and (u) goes through a fixed point. Conversely, if (u) go

through this point, and if

(uy) (uz) (us)

(uy)
~~

(uz) ~ (us)
9

then each of these expressions is equal to , and all points of

(u) belong to the congruence. We may multiply (u) and (u)

by such multipliers e
ie and e~ l° that it is safe to assume

(uy) = (uy) = Uv (uz) = (uz) = U
2 ,

(us) = (us) = Uz .

\yzs\u
i = U^+U^+U^

\yzs\Ui= UA+trjiftTrti.

Hence (u) belongs to a chain congruence of lines. It goes

through the singular point above if

The conjugate equation is identically satisfied. Hence there

are go 1 lines forming a chain congruence through this point.

Theorem 12] The system of joints linearly dependent in

terms of real multipliers on four given points, of wkich no

three are collinear, is either a chain congruence or a chain of

lines.

§ 2. Linear Transformations.

Suppose that we have a continuous one to one transforma-

tion of the plane that carries points on a line into points on

a line. Can we give an analytic form for every such trans-

formation ?



V ALGEBRAIC THEORY 117

To begin with, the transformation will carry a complete

quadrilateral into a complete quadrilateral, hence harmonic

separation is invariant. It will follow, from Ch. I, theorem 19],

that the relation between a line and its transform is either

a collineation or an anti-collineation. If we follow our

transformation by a collineation which replaces the zero

points and the unit point where they were, we have a new
transformation which leaves these four points invariant. It

will likewise leave invariant the diagonal points of their

complete quadrangle, and so every real point on a side of

this quadrangle. Hence every real line will have six real

fixed points, of which at least four are distinct
;
every real

point is fixed. Suppose that there is a complex point which

is invariant. All real points and one complex point will be

invariant on the line connecting it with its conjugate. Hence

every point of that line is invariant. Lastly, if we take any

complex point of the plane, and connect it with two real

points, not on the line last drawn, nor on the line connecting

the given point with its conjugate, we have two lines each

with a real fixed point, and an imaginary fixed point on the

line recently drawn. Hence the lines are fixed and their

intersection is fixed, i.e. the transformation is the identical

one. When, on the other hand, there is no fixed complex

point, the transformation must consist in the interchange of

conjugate imaginary points, for such is the case on the real

line connecting a point with its conjugate. It appears, thus,

that our original transformation was either a collineation, or

the product of a collineation and an interchange of conjugate

imaginary points. This latter is called an anti-collineation,

and is written , ^ _ . .

,

pX{ =Z a
ij
x
j> \

aij\^ 0
' (

4
)

j

Theorem 13] Every one to one continuous transformation

of the plane which carries collinear points into collinear points

is either a collineation or an anti-collineation.*

It is worth noticing that when we limit ourselves to the

real plane, we may drop the requirement of continuity, and

* Segre, Nuovo campo, cit. p. 291.
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announce, in virtue of Ch. I. 6], that every one to one

transformation of the real plane that carries collinear points

into collinear points is a collineation.

Theorem 14] The totality of all collineations and anti-

collineations is an eight-parameter group, the collineations

forming an eight-parameter sub-group. Every transforma-

tion ofthe general group will carry a chain into a chain, and
a chain congruence into a chain congruence.

Theorem 15] An anti-collineation of the plane ivill appear

in the Segre representation as a collineation in #8 , ivhich

interchanges the two systems of planes o/£4
6.*

Among the anti-collineations the most interesting are the

involutory ones or anti-involutions. In such transformation,

every line connecting a pair of conjugate points is invariant,

and the points thereon are transformed by a binary anti-

involution, so that, since there is an invariant point, there is

an invariant chain. The lines bearing these invariant chains

will form a chain congruence of lines, and the invariant point

will form a chain congruence. We have thus the involutory

transformation associated with a chain congruence which we
have already studied in the present chapter. If, in an anti-

involution the points (1, 0, 0) and (0, 1, 0) be invariant, the

transformation may be written

x
\ — — ;rp^l + aiA>

f (1^23 — —
x
2
= — r— x2 + a23

x
3 ,

Here the points (x) and (x
r

)
may be taken arbitrarily,

neither being on the line of the invariant points, and the

coefficients found to fit.

Theorem 16] An anti-involution may be found to leave two

chosen points invariant, and to interchange any other two

points, neither of ivhich is collinear xvith the first two.

* Segre, Rappresentazioni rcali, eit. p. 425.
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If two pencils of lines be anti-projective, their common line

being self-corresponding, then we may find an anti-involution

to leave their vertices in place and interchange the inter-

sections of two pairs of corresponding lines. The anti-pro-

jective relation between the two pencils will thus be carried

over invariant. On a line which connects the intersection

of corresponding lines of the pencils to the transformed

intersection, we shall have a chain of points where correspond-

ing lines meet. The lines of two such chains will meet in an

invariant point, which belongs to both chains.

Theorem 17] // two 'pencils of lines be anti-projective, while

their common line is self-corresponding , the locus of their

points of intersection is a chain congruence.

We leave to the reader the task of proving the following

theorem, which is outside the proper subject-matter of the

present chapter

:

Theorem 18] In a space of 2 n dimension every anti-involu-

tion ivill leave invariant a variety depending linearly, with

real parameters, on 2 n+1 points. In a space of 2n+l
dimensions, an anti-involution will either leave no points

invariant, or else a variety linearly dependent in terms ofreal

parameters on 2n+2 points.*

A real collineation will leave the real domain invariant.

This raises the general question of when a collineation will

leave a chain congruence in place. If the congruence be the

real domain, the collineation must be real, but such a collinea-

tion may leave other chain congruences invariant besides the

real domain. If the characteristic equation of the collineation

have distinct roots, there are three distinct fixed points, of

which at least one is real, and the other two are real or con-

jugate imaginary. Hence, as the real domain may be taken

to represent any invariant chain, the fixed points of the col-

lineation are either points of the invariant chain, or points

interchanged in the associated anti-involution. Now look at

* Cf. Sforza, ' Contribute) alia geometria complessa
5

, Giornale di matematiche,

vol. xxx, 1892, p. 166 ff.
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the converse. If the collineation have three real fixed points,

it may be written

X-^ — A. jX ji
, — A- 2 ' *^'3 — 3 •

An arbitrary chain congruence through these points may be

X-y — OCj^STj, — (X
2
^L

2 ' ^3 = ^3^3'

and this will be found invariant for our collineation.

Suppose, secondly, that the characteristic equation has a

pair of conjugate imaginary roots. We may reduce the

collineation to

Xi = A
l
xli #

2
'= BqosQx

2 + RsinOx3 ,

x
3
'= —Rsm®x

2 + Rcoa Qx3
.

This will leave invariant every chain congruence of the form

Xy = Oi
X
XX)

x
2 =S cos 4>a

2 + S sin <J>a
3 ,

xB
'= — >S'sin4>cx

2 + >Scos<I>a3.

Theorem 19] If a collineation with three and only three

fixed points leave a chain congruence invariant, then either the

three points belong to the congruence, or one belongs thereto,

and the other two are interchanged in the associated anti-

involution. These necessary conditions for an invariant con-

gruence are also sufficient.

We might, in similar fashion, examine the types of con-

gruence invariant under the other types of collineation.* We
will not, however, follow out this idea, but rather develop

another type of linear transformation.

Suppose that we have a continuous one to one transforma-

tion that carries a point into a line, and a range of collinear

points into a pencil of concurrent lines. The product of

this and a correlation is clearly a collineation or an anti-

collineation. Hence the original transformation was either

a correlation, or a transformation which we shall define as an

anti-correlation, and express in the form :

pUi^^ayXj, \a
ij |^0.

j

* Young, Planar Chains, cit. pp. 287 ff.
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The most interesting anti-correlations are the anti-polarities.

Here, it is easy to see, we are safe to assume that

If there be any points which lie on the corresponding lines,

their coordinates will satisfy the equation

2%^% = °> aji = <%> l

a
ij l

°- (
5

)

The left side of this equation was defined on p. 45, as a

Hermitian form. The equation can be expressed most neatly

by employing the Clebsch-Aronhold symbolism, and writing

(ax) (ax) = 0, |

aa'a"
|

•
|
aa'a"

|
^ 0. (6)

If we subject our variables (x) and (x) to the collineation

j j

we find that ^ a
ij
xi®i = °>

\%i = \

bij\-\kj\-\ ai/\-

Let us turn aside for a moment and study the cases where

the discriminant vanishes. If the rank of the matrix be 2,

then the equations ^ _ _
2,aij

x
j - 0

j

have one and only one common solution. If this be the point

(0, 0, 1), the equation becomes

•^n'^i "I
- a-^x-^x^ ~f~ x^x-y -j- JLyftXt^Xi^

~=
- 0.

This will give a system of lines through the singular point

which, as we saw in Ch. I, either meet the line x
3
= 0 in

a chain or not at all. When the rank of the matrix is unity,

we may reduce to x ^ _ 0

Theorem 20] If a tertiary Hermitian form be equated to

zero, then if the rank of the matrix be two, tlie locus so defined

is either a chain oflines, or a single point ; if the rank be unity,

the locus is a line.

Conversely, we see that the line-chain

= Lu
i + Mwi
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may be written equally well

(vx) (wx) — (%vx) (vx) — 0.

Let us return to the form (5) or (6). The expressions

or their symbolic equivalents (ay) (ax), (ax) (ay) vanish to-

gether. Either equated to zero gives the polar line to (y) in

the anti-polarity. We see that if (x) be on the anti-polar

of (y), then (y) is on the anti-polar of (x). We may thus find

a self-conjugate triangle, as in the case of a conic, and, with

this as coordinate triangle, reduce the equation to the form

jA.
j
X-^ X-^ -f- .4.

2
Xc^ ~f~ 3Xq Xq — 0

.

If the three A's have the same sign, this equation can have no

solution, otherwise there will be a three-parameter system of

points whose coordinates satisfy the equation.

Theorem 21] If a ternary Hermitianform of non-vanishing

discriminant be equated to zero, either there is no rpoint whose

coordinates satisfy the equation, or there is a system depending

on three reed parameters.

Theorem 22] Sylvester's law of inertia holds for ternary

Hermitian forms*

§ 3. Hyperconics.

The locus of all points whose coordinates satisfy an equation

of the type (5) or (6), where there are any such points, shall

be called a hyperconic. We may reduce such a locus to the

canonical form -
,

- - _ 0
1 1 2 2— 3 3 — *

It will be noticed that two sides of the coordinate triangle

meet the variety in chains of points, while the third side does

not meet it at all. On the other hand, the line x
2
= x

3
meets

it in a single point. More generally, if we express the line

from (y) to (x) in the parametric form

x
i = fi2/« + &i> ®i = +

* Segre, Nuovo campo, cifc. p. 605, note. See also an article by the author,

'Geometry of Hermitian Forms', Transactions American Math. Soc.
f
vol. xxi,

1920, p. 46.
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and substitute in (6), we get

fi fi (
ay) (ay) + (i& (ay) + £2 fi (

az
)
(ay) + £2 £2M = °-

The discriminant of this binary Hermitian form is

\ I

aa'u
I

•

I

aa'u
\,

(uy) = (uz) = 0.

Since the coefficient of is real, we see from the reasoning

that led up to II. 25] that when this last expression is positive,

there are no solutions of the binary equation, and the line

fails to meet the hyperconic. When this expression is negative,

there is a chain of points of intersection. When it vanishes,

there is but a single point. Let the reader remember that

this discriminant is only a symbolic product ; it is not really

the product of two conjugate imaginary factors.

Theorem 23] A straight line will meet a hyperconic, either

in a chain of points, or in a single point, or not at all.

Theorem 24] The necessary and sufficient condition that a

line should meet a hyperconic in a single point is that it

should contain its pole in the corresponding anti-polarity.

We shall, naturally, call such a line a tangent, although it

is not the limiting position of a secant. The tangential

equations corresponding to (5) and (6) are

^A
ijui

u
j
= 0. (7)

I

aa'u
I

•

I

dd'u
|

= 0. (8)

Theorem 25] There are no curves ivhich are entirely con-

tained in a hyperconic.

It is evident, in fact, that no variety which fails to intersect

a straight line can contain a curve. This is rather surprising

when we reflect that a curve is a two-parameter system of

points, while a hyperconic is a three-parameter system. In

the next chapter we shall handle this same question in all

generality.

Let us look for a moment at the question of the intersection

of a hyperconic and a chain congruence, which we may safely

take as the real domain. The polar lines of the points of the

congruence will generate a chain congruence of lines. The
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lines containing chains of the given congruence will, by 5],

generate a chain congruence of lines, and this, by 11], will

share at least one line with the congruence of polars. Let us

take this as the line x3
= 0. Suppose, first, that this line is

a tangent to the hyperconic. We may take the point of

contact, which must be real, as (0, 1, 0). The equation of the

hyperconic will then be

"^"ll^l^l ^13^1 ^1 ^\^X^X-^ ^23 ^2 ^3 /̂23^ e) '^3 33*^3 ^3 — ^*

The real points, of which there is surely one, lie on a conic

whose discriminant is /„ \ 2

~A
ll 4

If An = 0,

the discriminant of our hyperconic vanishes, and this we ex?

elude explicitly. If a^ + a& = 0,

the real part of the hyperconic is on the locus given by

An (c* + K, + a
rd)

x
Y
x
z + A zz

x* = 0,

and so is either two chains, one chain, or a single point. On
the other hand, if our line x

2
= 0 be not tangent, we may

take its pole as (0, 0, 1) and write

A
ll
x

1
x

1 + al2xx
x

2 + Qj^x^x^ +A 22%2&2 ~^ -^-33*^2^3 ~ ^*

This may have a real thread, or no real points at all, as we see

by studying the two hyperconics

x^ x^ -f~ x2
x,^ — XqXq — 0

,

X
y
X-^ ~J~ 2 % {X-^ X2— X^X]} ~J~ X^X^ *^3"^3 = ^*

Theorem 26] A hyperconic vrill share ivith a chain con-

gruence, either a thread on a non-degenerate conic, or a pair

of chains, a single chain, a single point, or no point at all.

We may study the intersections of a hyperconic with a conic

by expressing the latter parametrically,

The results do not, however, seem to be particularly in-
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teresting.* It is better to see how our hyperconic will appear

in our various representations of the plane. To begin with,

we remark that in (5) the terms

could equally well be written

so that our equation is linear, with real coefficients, in terms

of the nine variables

x
4
x

i ,
x

i
Xj + Xj x

i , i (x
i
Xj — Xj x>\.

Remembering formulae (7) of the last chapter, we reach

Theorem 27] A hyperconic will appear in the Segre repre-

sentation as the intersection ofS^ with a real hyperplane, and

every such intersection ivill correspond to a hyperconic.

Theorem 28] Through eight points in general position there

will pass just one hyperconic.

It is interesting to see how a hyperconic will appear in the

Klein-Study representation. The hyperconic

lL A i
xi®i = 0

will give the line complex

i= 1

This is a Battaglini complex.f It is the locus of lines where

the tangent planes to the quadrics

—uQ
2 + ux

2 + u2
2 + = 0,

2A
{
(u* +V + u* + u*) -22^o2 = 0

form a harmonic set.

If, therefore, we take a hyperbolic system of measurement,

where the first of these quadrics is the Absolute, we reach the

pretty theorem

Theorem 29] - A hyperconic will appear in the Klein-Study

representation as a Battaglini complex of lines through tvhich

* Cf. Guareschi, ' Geometria di una forma quadratica e di una forma
d'Hermite Atti della R. Accademia delle Scienze di Torino, vol. xli, 1906.

t Cf. Jessop, Treatise on the Line Complex, Cambridge, 1903, p. 133.
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the pairs of tangent planes to a quartic are mutually perpen-

dicular in a hyperbolic system of measurement.

Returning to the Segre system, we shall define as apolar

two hyperconics
{ax){dx) = 0) (fc.) (fa) = 0,

where
|
abb'

|

•
|

abb'
|

= 0.

The totality of hyperconics, apolar to a given hyperconic, if

degenerate loci be properly counted, will appear in S8 as the

totality of hyperplanes through a given point. They will

be the totality of hyperconics in which can be inscribed

triangles which are self-conjugate with regard to the given

conic, or the totality with regard to which some circumscribed

triangle is self-conjugate. The two hyperconics given above

have, like two conies, four independent invariants.* We find

the covariants by the Clebsch principle for passing from binary

to ternary invariants.f Thus the envelope of lines meeting

them in two mutually orthogonal chains is, by what precedes

Ch
-
11 30

1'
|
abu

|

•
|
abu

|
= 0.

The corresponding locus is

|

otfix \
•

|

ol$x
I

= 0. (9)

By employing a familiar ternary identity, we may reduce

this t0
|
abb'

|

•
|

baa'
|

• (a'x) (b'x) = 0.

It is on the whole more interesting to consider the inter-

sections of two hyperconics than their concomitants. Consider

the pencil of bilinear forms

they have the characteristic equation J

Lau + Mbn
La22 + Mb2

La™ + Mb,

0. (10)

* Cf. Benedetti, loc. cit., p. 98.

f Cf. Grace and Young, Algebra of Invariants, Cambridge, 1903, p. 265.

% For a discussion of the elementary divisors of these forms see Loewy,
1 Ueber Schaaren reeller quadratischer und Hermitescher Formen

'
, CreUes

Journal, vol. exxii, 1900.
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The equation is real, and must have one real root.* If this

correspond to a bilinear form which vanishes for a single point

only, the hyperconics

may perhaps intersect in this one point, but they can certainly

not intersect in any other point.

Suppose, first, that our characteristic equation has three

distinct real roots. The two hyperconics have a common
self-conjugate triangle. Two sides of this triangle must cut

chains from either conic, while one side runs clear of each.

Suppose, first, that it is the same side which runs clear in each

case. We may reduce our hyperconics to the form

x^ +x^— x
3
x
3
= 0, A

1
x

1
x

l + A 2
x
2
x

2
—A zxz

x
3
= 0.

Let us suppose, to be definite, that A
x
> A 2 . Then, if

A
2 > A z , or A 3 > A 1} there is only one chain of lines linearly

dependent on the two hyperconics, and they have no common
point. But if A

Y
> A

3 > A 2y then three real chains will pass

through their intersections.

Suppose, secondly, that no side fails to meet both hyper-

conics. We may reduce them to the forms

x
^
X-^ -J- x2

x
2
— xzxz 0, A-^X^X-^ —A

2
X

2
X

2 -f- A zxz
x
z
— 0.

If A
2 < A

3
there is one chain ; if A

2 >A z
there are three.

Theorem 30] If two chains of lines have different vertices,

and neither include the joining line, then their points of inter-

section lie on a third line chain. If two chains lie on different

lines, and neither include the intersection, the lines connecting

their points will pass through the points of another chain.

Suppose, now, that our characteristic equation (10) has one

real and two imaginary roots. These latter will not yield

Hermitian forms, but two bilinear forms, which we may write

We may, by a collineation of the plane, so arrange matters

* Our discussion of the intersections of two hyperconics is based on Segre,

Nuovo campo, cit. Atti della R. Accademia delle Scienze di Torino, vol. xxvi, 1890,

pp. 40 ff.
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that the one real root of the characteristic equation shall lead

us to the point (0, 0, 1). Then the only terms in x
z
will be

x
3
x

3
. and as the conjugate imaginary bilinear forms above

have vanishing discriminants, their terms in x
x
and x0 must

be factorable, and we may write them

(olx
x
+ /3#2) (yXj + Sx

2) + hx3
x
3
= 0,

(yx
1 + bx

2 )
(&x

1 + fix2) + kxs
x
s
= 0,

It, then, we put

olx
1
+(3x

2 , yx
x + bx0 7— , 71

^
2 = I, = m, Im + k — 0,

these equations represent two anti-projective pencils of lines,

whose intersections satisfy the equations above. The vertices

are the points (/3, — a, 0) (y, —8, 0), the common line being not

self-corresponding, as it was in 17]. It is to be emphasized

that this state of affairs will arise whenever we have two

conjugate imaginary bilinear forms of vanishing discriminant.

Be it noticed also that the two lines

OtXj + fix2 = 0, yx
x + hx

2
= 0

will meet hyperconics linearly dependent on the given forms,

each in a single point. Hence these hyperconics have double

contact. Conversely, suppose that we have two hyperconics

with double contact. We may reduce them to

a
12
x

l
x

2 + dl2x2
x

Y + Ax3
x
3
= 0, b12xx

x
2 + b

12
x

2
x

x + Bx3
x
3
= 0.

The characteristic equation will have one real and two con-

jugate imaginary roots, and there is no common self-conjugate

triangle

:

Theorem 31] Iftivo hyperconics have a common self-conju-

gate triangle, they either have no common 'points, or they meet

in the intersections of two line chains with no common line

and different vertices. If they have double contact they have

no common self-conjugate triangle, but determine auto-pro-

j ective pencils, with no self-corresponding line, about the points

of contact. Conversely, fovo such pencils will give the desired

intersections. These are the only cases where the character-

istic equation has distinct roots.

^

9
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Suppose, next, that the equation has a single root, and

a double one that does not annul all the first minors. Each of

these must be real, and the latter is the limit of two approach-

ing distinct real roots. The equations of the hyperconics may
then be written

A
j
X-^ X-^ -f* A 2

X
2 ^3 ~~~~ ^ >

B^x-l + B2
x

2
x
2 + x

2
x
z + x3

x
2
— 0,

The point (0, 0, 1) is common to the two hyperconics, and is

their only common point when (A
l
—B

l )
(A

2
—B

2)>0. In the

contrary case there is a chain through this point whose inter-

sections with the chain

(A
l
B

2
-A

2
B

l
)x

2
x

2 + (A
1
-B

l
){x

2
x

z
^x

z
x

2)
= 0

lie on the two hyperconics. The two chains have a common
line.

Theorem 32] If the characteristic equation of tiuo hyper-

conics have a double root which does not annul the first minors,

then either they have a common tangent at a single common
point, or they share the intersections of two line chains with

different vertices but a common line.*

If the double root reduce the first minors to zero, there is

a line counted twice which has the same pole with regard to

each. The intersections will be given by two equations

reducible to

A
x
x

x
x

x + A 2
x

2
x

2
= 0, %#3

— 0.

Theorem 33] If the characteristic equation of two hyper-

conics have a double root ivhich reduces the first minors to

zero, either they have no common point or a common chain of

2)oints, with a common tangent at each point of the chain.
J

We must, lastly, take up the case of a triple root. When
the first minors do not vanish we have the limiting case

* Segre, in the place cited, does not consider multiple roots which do not

annul first minors.

2674 t
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of 32]. It will be sufficient here to study the intersections

of the loci

a
12
x

1
x

2 + d
12
x

2
x

1 + A 22x2
x

2 + <xYZxx
x^ + a

13xz
x

x + (^23^2^3

B
22
x

2
x

2 + B33
x
5
x
B
= 0,

Here, since B
22
and B33 must have opposite signs, the line

chain must really be there. Every line of this chain, except

the tangent, meets the hyperconic in a point, and, hence, in a

chain.

Theorem 34] If the characteristic equation of two hyper-

conics have a triple root which does not reduce the first minors

to zero, they have a common point and a common tangent, and
a chain of common points on each other line through the com-

mon point, belonging to a line chain which includes the

tangent.

There remains the case of the triple root which reduces all

first minors to zero. This is the limiting case of 33]. We may
reduce our hyperconics to

Anx1
x

l + a23x2
x
3 + a23x3

x
2 + A 33

x
3
x

3
= 0,

AuX1
X

x + &23^2 ^3 + ^23X3 ®2 -^33^3^3 = ®'

There is but one point common to the hyperconics.

Theorem 35] If the characteristic equation of two hyper-

conics have a triple root which reduces all first minors to zero,

they have a single common point, with the same tangent there,

and every point on that tangent has the same polar with regard

to both hyperconics.

A system of hyperconics linearly dependent on three shall

be called a net.* Let the equations of the three be

(ax) (ax) — (bx) (bx) — (cx) (cx) = 0.

We form the Jacobian

|
abc

|

(ax) (bx) (cx) — 0.

* Ibid., p. 52.
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This cubic is the locus ol points whose polars with regard

to the three are concurrent ; it is also the locus of points of

concurrence of such polars. The relation of such pairs of con-

jugate points will establish an involutory transformation of

the cubic into itself, which we shall call the first. There is

a second involutory transformation which we reach as follows.

Let us write the discriminant of the bilinear form

X (ax) (ax) + /ot (bx) (bx) + v (cx) (cx) — 0.

If this vanish for a set of complex values A, fx, v it will

vanish for the conjugate imaginary values. We thus obtain

a pair of points on the cubic of the sort which we encoun-

tered in studying the second case leading up to 31], i.e. double

contact. From such a pair of points the thread common to

hyperconics of the net is projected by two anti-projective

pencils. We have, thus, a second involutory transformation of

the cubic into itself. The double points of the first trans-

formation are those which are common to all hyperconics of

the net, those of the second are those whence the first set are

projected by a set of lines anti-projective with itself, i.e. by a

chain of lines. It can be shown that the relation between the

two sets of points is a reciprocal one.*

Theorem 36] If six points be given in a plane, there is

always one net of hyperconics through them and, in general,

but one such net. In this latter case the locus of points whence

these six are projected by the lines of a chain is a cubic curve

through the six points, and all others cammon to the hyper-

conics of the net. This curve is the locus of points with con-

current polars ivith regard to all hyperconics of the net, and
the locus of all such p>oints of concurrence. It is also the locus

of pairs of points whe nce the original six are anti-projectively

projected.

Suppose that we have five points in the plane, no three

collinear, and not all belonging to a chain congruence. The

hyperconics through them will be linearly dependent on

four. In the Segre representation we shall have a system of

* Ibid., p. 56.

1 2
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hyperplanes linearly dependent on four, that is to say, passing

through a linear $4 , which will meet $4
6 in a sixth point.

Hence all hyperconics of the system pass through a sixth

point. If two of the points be (0, 1, 0) and (0, 0, 1) the

system of bilinear forms will be

OL^ayXiXj + P^LbijXiXj + y^cij
x

i
x
j
+b^dij

x
i
x
j
= 0.

The coefficients with two subscripts 2 or 3 are all zero. Can
we give to oc, /3, y, and b such a set of values that the polar of

(0,1,0) is indeterminate, while for the conjugate values the

polar of (0, 0, 1) is indeterminate % If we can do so, then by

the reasoning used in 31] the points which reduce both forms

to zero, including the four remaining points common to all of

our hyperconics, will be anti-projectively projected from the

two given points. We must have

oca22 + {3b22+yc22 + hd22
= 0

a a12 + /3 b12 + y c12 + h d12
= 0

a a21 + /3 b2l + y c
2l + 8 d

2l
= 0.

Here there are but three linear equations to determine

oc, J3, y, and 6, so that the conditions can be fulfilled. We thus

reach a remarkable result.*

Theorem 37] Give n five points in a plane, no three of which

are collinear, nor do the five belong to a chain congruence.

Every hyperconic through the five points passes through a

sixth. The relation of the six is perfectly symmetrical ; each set

offour are anti-projectively projected from the other two.

An example of such a set will be given by the points

(1,0, o) (0,1,0) (o, 0,1) (i,],i) (y^y^y,)

3/2-3/ 5 3/3-3/1 3/J-3/2

I3/23/3

2/32/1

3/33/1

2/l2/2

3/l3/2

* For the first part of this see Segre, Bappresentazioni reali, cit. p. 436. The
second part comes with the aid of the simple analysis above from his Nuovo
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I
4. The Hermitian Metrics.

As the study of the projective properties of conic sections leads

us by one of the most natural roads to the classical systems of

non-Euclidean geometry, so the theoremsjust given concerning

hyperconics lead us to a system of measurement whose name

is given in the heading of this section *

We start with a Hermitian form, which we shall call the

fundamental form

x
x
x

x
4- x

2
x
2 + x.

6
x
z
= (xx). (11)

If (x) and (y) be two points, we define as their distance, d,

where
cos d =

.

V(xx) V(yy)
(12)

This system of measurement shall be called a Hermitian

d
metric of the elliptic type. If we replace d by -r and x3

by
7 /-» -1 IV

kx
3 we find

7 . d
Ic sin-,- =

^3^1

VzVi VlV2

k /r
(x>y X-^ -\- Xc^ ~\~ X3 Xs (^1 + 2/22/2) +2/3^2

The limit of this as k becomes infinite is

J
x
2x3

j

^2^3
+

x
3
x

±
X
Z
X

1 I

'

! 2/2.2/3 2/32/1 (12')

Vx
3
x
z Jv*y?>

and this we call the parabolic type of Hermitian metric. If

we write M ™
'2 _

2/;

2/3

= X

campo, cit. vol. xxvi, p. 57, note. In view of this it is curious to read in a

noteworthy article by Study, 'Kurzeste Wegeim Komplexen Gebiete Math.

Annalen, vol. lx, 1905, p. 348, ' Merkwurdiger Weise scheint dieser einfache

Satz der Aufmerksamkeit der Geometer bisher entgangen zu sein\ Few
geometers set a higher value on Segre's work than Study did.

* The first writer to treat this subject was Fubini ; see his short note,

' Sulle metriche definite da una forma hermitiana ', Atti del R. Istituto Veneto,

vol. lxiii, 1903-4, pp. 501 ff.
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we have a non-homogeneous form for our distance expressions,

nnad ^Sxa>'+yg + l yxx'+M+l
Vxx + yy + 1 V" + 2/V + 1

d'= V(x'-x)(x'-x) + (y'-y)(y'-y). (13')

In the infinitesimal domain the differentials of arc are

given by

^s
2
__dxdx + dydy + (xdy — 2/df&) —ydx) .

^ ^
.

+ l)
2

ds,2 =dxdx + dydy. (14')

Let the reader convince himself that these expressions for

distance are real, and that in the elliptic case

cos 2 d < 1

the angles of lines shall be defined by the expressions

cos 0 = —
/

S (15)

Vu 1
u

1
-]-u

2
u

2
Vv

1 v1 + v2
v
2

The distance from a point to a line shall be defined as the

distance to the foot of the perpendicular thereon. We find

. V(ux) V(ux) , ,

sin d — . =j (loj

\/(t&w) /(asa;)

v(m0) V{ux)
^
16„

a/ + u
2
u

2
Vx.

3
X3

Distances will be invariant under a group of collineations

which leave, in the elliptic case, the fundamental form in-

variant, except for a constant factor. What is the N.S. con-

dition that a collineation should do this ? Let it be written
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The form (11) will be invariant when, and only when,

k

* 3

The first of these tells us that the terms in two columns of

the matrix of the transformation are proportional to the coor-

dinates of two points which are conjugate with regard to the

form. A system of solutions of the first may always be made

to solve the second also by multiplying through by suitable

constant factors. Let us write

ait == a
{ ,

ai2
= la^mb^ ai3 = r\ djbk-ukbj |,

l(ad) + m(bd) = 0-

We thus reach the final form*

v(ad)(bb)-(ab)(bd)

+ A™) L
ajh-"k*>j]

m (17)
J (ad) (bb)-(ab) (bd)

The parabolic transformation takes a somewhat different

form,

p xx
' = cos Aeidi x

1
+ sin Aei{01 +<t>) x

2 + axx^

P x2
'= -smAeie2

x
1 + GOsAe

i^2 + <t,)x
2
-\-a

2
x3i (17')

p x3
= a3x3 .

We shall call these collineations in the elliptic case pseudo-

orthogonal. Every such transformation will surely leave one

* The first writer to give a non-explicit expression for this sort of trans-

formation was Loewy, ' Ueber bilineare Formen mit conjugirt imaginaren
Variabeln Nova Acta Leopoldina, vol. lxxi, 1898. For the elementary divisors

of the characteristic equation see the same author, 1 Ueber die Transforma-

tionen einer Hermiteschen Form in sich selbst Gottingische Nachrichten,

1900. The form here given in the case of n variables was published by
the Author, ' Geometry of Hermitian Forms Transactions American Math. Soc,

vol. xxi, 1920. The remaining theorems here given about these transforma-

tions are from the same source.
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point invariant, and as the coordinates of this point cannot

reduce the fundamental form to zero, its polar line with

regard thereto will not include it, but will also be invariant.

If we take these as a zero point and the opposite side of the

coordinate triangle, we see that the problem of determining

our pseudo-orthogonal transformation is reduced by the re-

moval of one variable. Continuing thus we reach

:

Theorem 38] Every pseudo-orthogonal collineation will leave

in place a triangle which is self-conjugate with regard to the

fundamental form.

The first set of our conditions (17) tells us that the co-

efficients of a column are proportional to the coordinates of

a point, conjugate to that given by another column. If (a),

(b), and (c) be the vertices of a triangle which is self-conjugate

with regard to the given form, then the matrix

V(ad) V{bb) V(cc)

will give a pseudo-orthogonal substitution

:

Theorem 39] A pseudo-orthogonal collineation may be

found to carry any triangle which is self-conjugate with

regard to the fundamental form into any other such triangle.*

The choice of a self-conjugate invariant triangle will depend

upon three complex parameters. On the other hand, if the

coordinate triangle remain in place, every transformation of

the form = re("x{ , (18)

where the multiplier r is the same throughout, will be pseudo-

orthogonal.

Theorem 40] The general pseudo-orthogonal collineation

depends upon three complex and three real parameters.

Are there any one-parameter sub-groups of the pseudo-

orthogonal group 1 Such a group will have the same fixed

points as one of its members, so*we may assume that the zero

* For a proof of the narrower theorem that these collineation s are transi-

tive see Autonne, 1 VHermitien,' Rendiconti del Cercolo Matematico di Palermo,

vol. 16, 1902, p 111.
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points remain in place. For a one-pararneter group of the

type (19) we must have

re
iej

=fj(re
ie
),

the function <f>(z) =
z

would have a constant modulus, and so be a constant. For a

group depending analytically on one real parameter we should

have e^fM

m =

We developed in formulae (15) and (15
r

) the expressions for*

the angle of two lines. There is another form of angle

different from this, which is peculiar to this metric. Consider

two threads through the origin

,dx ± dy

M J>y
x = t- + ..., y = tft+ ....

We have for the distance element

^s
2 _ /dxdx dydy
~ \dt dt dt di

'hxhx byby

)dt2 +... }

\bt bt bt btJ

If we seek the square of the third side of this infinitesimal

triangle we find

79 / , dx *,bx\/dx bx\

ds2 + bb2 — d2 _ dxbx + dyby + bxdx + bydy

2dsbs 2Vdxdx + dydyVbxbx + byby'

— COS
(f).
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We shall define this expression as the cosine of the angle

which the direction dy : dx makes with the direction by :bx.

Ifweput ^ = l,p>= Kr dx bx

dx8x(l +l\) + bxdx (1 + A J) . .

cos <j) = — _ .

—Jr - (20)
2 Vdxdx (1 + 11) v bxbx (1 + A A)

For what values of bx and dx will this be a maximum?
If we write it in the form

where \j/ alone is variable, we see that we obtain a maximum
when the two parts of the numerator are equal to one another,

and each is equal to the square root of their product, namely,

Vl+llx/l+ki

J 1 +AA

This, however, is the cosine of the angle of the two lines :

Theorem 41] If two lines be given through d point, the

smallest angle which a direction on one maJces with a direc-

tion on the other is equal to the angle of the tivo lines. When
these latter are mutually perpendicular, every direction on

one is orthogonal to every direction on the other.*

If our angle be taken at a general point, instead of at the

origin, we have

dxbx + dyby + bxdx + bydy + (xdy— ydx)

(xby—ybx) + (xby— ybx)(xdy—ydx)
COS <p , :

*

2 Vdxdx + dydy + (xdy— ydx) (xdy—ydx)

Vbxbx + byby+ (xby— ybx) (xby—ybx)

In the parabolic case we shall have, similarly,

,. dxbx + dybii + bxdx + bydy
cos (j> = _ (21

)

v dxdx + dydyvbxbx + byhy

There is a highly significant connexion between the Her-

mitian measurement and the Segre representation which

* Study, Kiirseste Wege, cit. p. 342. A remarkable connexion is established

between angles of direction and distances in a three-dimensional non-

Euclidean space.
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must now claim our attention. Every pseudo-orthogonal

collineation of the plane will correspond in S8
to a collineation

which leaves in place not only #4
6

, but the hyperplane

^11 + ^22 + ^33 — °>

as well as all of the hyperquadrics given in IV (7). It will

thus leave unaltered every hyperquadric of the form

(AX) (AY) = 2 (Xy + XjiTjj} + %XU Yu,

= (y%) + (*-*) ivy)-

ir (AX)(AY) 1 JL_r_ (xy)(yx)
^

2L V(AX)W(AY)*1 2AL {xx)(yy)\

If, thus, we define the Non-Euclidean distance D of (X)

and (Y) hy

„™n UX)(AY)
COS V — —== 3

V(AXf V(A Yf

sm -d — sin - D.
V2k 2 2

We are thus able to interpret our Hermitian metrics in the

plane as a classical non-Euclidean metric on $4
6

, a remarkable

result.*

It is time to look for geodesic threads in our Hermitian

metrics. We begin with one dimension, i.e. the x axis. We
have there, in the elliptic case,

7 2x'x + 2xx'+ (xx — 1) (x'x' — 1)
cos 2 a = -

(xx + 1) (x'x' + 1)

Representing this on the Riemann sphere,

v _ x + x y_i(x— x) g _xx
XX +1 XX + I XX + 1

v , x' + x'
T ,

i(x'—x') „r x'x'— 1A == — ; > 2 = j^r. J /j — _ —
XX +1 XX + 1 XX + 1

* Ibid., p. 356.
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The angle subtended at the centre is 0, when

cos 0 = 77' + ZZ'= cos 2d.

In the parabolic case

d — V (x— x') (x— x').

Theorem 42] The distance of two points of a real line in

the elliptic Hermitian metric is equal to one-half of the angle

ivhich their representing points on the Riemann sphere subtend

at the centre of that sphere ; the distance in the parabolic

metric is equal to that of the representing points in the Gauss

plane.

On a real line a geodesic thread consists in a particular

type of chain; a complex line may always be carried over

into a real one by a distance preserving collineation. Hence

we have

:

Theorem 43] A geodesic thread on a line is a chain.

Evidently it is not any arbitrary chain. We shall call such

a chain a normal one, and seek its geometric definition. The

geometric representation on the Riemann sphere of such a

chain will be a great circle by 42]. This will correspond to

an equation

x + x i(x— x) xx— 1

xr + x' i (x'— x') x'x'— 1

x" + x" i(x"-x") x"x"-l
X X XX— 1

= -2i xf
x' x'x'— 1

x" x" x"x"~ 1

(xx' + 1) (x'x" + 1) {af'x + 1) = (xx" + 1) (x'x + 1) (x"x' + 1),

which may be written in invariant form

(xy) (yz) (zx) = (yx) (zy) (xz). (22)

It is characterized by the fact that its points are, in pairs,

conjugate with regard to the fundamental form. The normal

chain through (y) and (z) may be written

oh = xi(yz)yi+x2
z
i> (23)
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or, more neatly,

Xi = X^ + X.Zi, {yz) = (zy). (24)

In the parabolic case a normal chain will be a chain con-

taining the infinite point of the line in question.

Theorem 44] In the elliptic case two points which are not

conjugate with regard to the fundamental form may be con-

nected by one and only one normal chain ; every chain which

contains two points ivhich are conjugate with regard to this

form is a normal one. In the parabolic case two finite 'points

can always be connected by just one normal chain, while every

chain that contains an infinite point is normal.

Let us next study the trigonometry of the right triangle.

We may assume that the vertices are

A = (a, 0), B = (0, b), 0 = (0, 0),

cos BG = — 1

_ i cos GA — — j

Vl + bb Vl+aa

cos AB = 1— _ ,

Vl + aa Vl+bb

cos AB = cos BG cos GA,

Vbb(l+ad) <Jbb V ad + bb + aaZbb
sin A — — _ = _ -

_
— _ j

Vaa + bb + aabb V 1 + bb Vl+aa Vl+bb

= sin BG + sin AB.

In the parabolic case

AB2 = BC2 + GA 2
, sin A = BC+AB.

Theorem 45] The elliptic Hermitian trigonometry of a right

triangle is that ofa right triangle in ordinary elliptic measure-

ment; the parabolic Hermitian trigonometry of a right tri-

angle is that of a Hvxlidean right triangle.

If, lastly, A, B, C be any three points, we project C
orthogonally into a point H of AB

AG ^ AH, BG ^ BE,

AG+BC ^ AH + BH ^ AB.
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Theorem 46] A normal chain is a geodesic thread in the

plane ; a straight line is a geodesic curve.

Let us look for two parameter systems or congruences of

points which contain a large number of geodesic threads, i.e.

of normal chains. A chain congruence contains x 2 chains;

let us show that this fact characterizes the chain congruence

and the straight line (which contains oo 3 chains).

Suppose that we have a congruence that contains go
2 chains,

yet which is not a straight line. Then each two points of the

congruence, or at least of some domain thereof, may be con-

nected by a chain of the congruence, and the congruence, or a

part of it, will be constructed by chains from a fixed point to

the points of a chain. We take (1, 0, 0) for this fixed point,

and x
1
= 0 as the line of the chain. We may then write our

congruence in the form

x
l
— (j>(R)S, x

2
= R, #3=1;

The points (R^) and (R
2S2)

may be connected by a chain,

every one of whose points will belong to the congruence. We
may thus write

cf>(R)S = LX MRJSJ +Mn [<p(R
2)S2] ;

R = LkR
1 +Ml

xR2) R = L\M
1+ MfiR2 ;

\ = L\ +Mi
x

i
1=L\ + Mji.

Then \= K and /u= /L We may take each = 1.

M= R = LR
1 + (l-L)R2 i

</> [LR1 + (l -L)R
2] S = i^iy^ + fl -L)<t>(R2)S.2 ;

4> [LR1 + (1 -L)R2] S = LcpiR^S, + (I -L)$(R
2)S2 .

Eliminating 8 we have an identity in R
1
Sv R2 S2 and L.

Putting #2 =0, R2
= 0, R

1
= 1,

<f><Z) *(D
rrr^ = — = const-

<P{L) am
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We may write $ = Te
%e

, 0 = const.

Let ST = V,

x
1
= Ve

e
,

x
2
= R, x3

— 1.

This part of the congruence is a chain congruence.

Theorem 46] The only irreducible congruences which con-

tain oo
2 chains are chain congruences.

A congruence containing oo 2 normal chains is called a

normal chain congruence.

Theorem 47] The only congruences which contain co
2 geodesic

threads are normal chain congruences. In the elliptic case,

every chain congruence ivhich contains the vertices of a tri-

angle, self-conjugate with regard to the fundamental form, is

a normal chain congruence. In the parabolic case this is

true of every chain congruence which includes a chain on the

infinite line.

In a normal chain congruence there will be a chain of

normal chains through each point.

Let us try to find the total length of a chain. Let the chain

be on the x axis, and expressed in the form

OLU
'

a y = 0, u = u;
ftu+y

V OLOL yy du t v

ds = _ ; (25
V [(XOL + (3(3\ U2 + (fly + yp)u + yy

ds—
{$y-y($?

4tOL(Xyy

For a normal chain, (3 = (3 = 0, and the length is it.

We saw in theorem 30] that if two chains lie on different

lines, and neither include the point common to their two lines,

then a Kne connecting a point of the one with a point of the

other will always contain a point of a third chain, and the

relation of the three chains is symmetrical. What will happen
when the two given chains are normal ones ? What is the
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analytic equation for the system of all lines meeting the

normal chain

x
i = tyi + x*Zi> (y~z) = i

zy) ;

(ux) = (ux)= 0.

(uz) (uy) — (uy) (uz) — 0.

An +A 22 + A 33 = (yz) - (zy) = 0.

We have a Hermitian form in line coordinates to which the

fundamental form is apolar. If the fundamental form be

apolar to two such Hermitian forms, it will be to any

Hermitian form which is a linear combination of them ; hence

if two of our three chains be normal, the third is also :

Theorem 48] If tivo normal chains lie on different lines,

neither including the point common to these lines, then every

line containing a point of each chain will contain one of a

third normal chain.

We may go a step further in this direction. Let us take

a triangle which is self-conjugate with regard to the funda-

mental Hermitian form as our triangle of reference. There

will be on each side of this triangle just one normal chain

with regard to which the two vertices are conjugate. Let

two of these chains be given by the equations

1 The line connecting the points (y) and (z) will meet the

third side in (x) where

Hence this third chain is normal, and the vertices are

conjugate with regard to it. For the distance of the first

two points we have
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It appears thus, that the line is divided into three equal

parts by the three points. Moreover, since

(xy) (yz) (zx) = (xy) (yz) (zx),

these three points lie in a normal chain. Let us find the

angle between the direction of this and one of the given

chains. If we write

X-t Xn
x = -±, 2/ = —

>

£C3 X,

then, along the normal chain from (0,y2 ,y3)
to (zv 0, z.

d )
we

may put y&

At the point u = 0 we shall have

dx = dx, dy = — .

Along the normal chain on the line x
1
= 0 we have

Vi = °> 2/2^2 + 2/3^3 = °-

8a>=0, ^by+^hy = 0.

3/3 2/3

dxbx + bxdx + dyby + bydy = 0.

It appears then from (21) that cos $ = 0.

Theorem 49] If a triangle be self-conjugate with regard to

the fundamental form in Hermitian metrics of the elliptic

type, then there will be on each side one normal chain with

regard to which the two vertices are conjugate. A line meet-

ing two of these normal chains will necessarily meet the third.

The three points so found are equally spaced and determine

a normal chain whose direction makes a right angle with that

of each of the original normal chains*

It is time to go back to the Hermitian trigonometry and

the metrical properties of certain simple figures.f We saw

* Study, Kurzeste Wege, eit. p. 352.

t The remainder of our work on Hermitian metrics will be found in an
article by the author, ' Hermitian Metrics Annals of Mathematics, vol. xxv,
1920.
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in theorem 45] that the Hermitian trigonometry of a right

triangle is the ordinary elliptic or euclidean trigonometry.

Let us pass to the general triangle. Parallel to the concept of

normal point chain, we have that of a normal line chain.

The lines of such a chain are mutually perpendicular in pairs,

and every line chain that contains a perpendicular pair is

normal. It is only when three concurrent lines belong to

a normal chain that the angle formed by one pair is equal to

the sum of the angles of the other two. When will a normal

chain of lines meet a transversal in a normal point chain ?

If the transversal be the x axis, and the vertex of the line

chain be the point (0, c), a typical line of the chain may be

""""
*.(M-M!*H-*

The conditions that the line-chain and point-chain be both

normal are rl j
m

j

p \bd* ac M
— P

lab
+

cc J

>[s-M«V'].
from which we conclude

p — p, ab = ab.

Theorem 50] A normal line chain will meet a transversal,

not through its vertex, in a normal point chain, when, and
only when, the line chain contains the perpendicular on the

transversal from that vertex. In the parabolic case the trans-

versal is supposed to be a finite li ne, and the vertex is finite.

Theorem 51] A normal point chain will determine a

normal line-chain about a point not collinear with it when,

and only when, the given chain includes the foot of the per-

pendicular on its line from the given point. In the parabolic

case both point and line are supposed to be finite.

We see from our formula (18) that when the origin and axes

remain fixed we may still transform the plane congruently

by the collineation

x'^e^x, y'=eid
*y.
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If the vertices of a general triangle be

(a,0) (6,0) (0,c),

we may carry it into a real triangle in this way when, and

only when,
o6 = a6.

Now in the real domain, the Hermitian metrics are identical

with the elliptic or euclidean metrics, so that when this equa-

tion holds, the trigonometry of our triangle is the usual

elliptic or euclidean trigonometry. It remains to interpret

this equation geometrically. A moment's calculation shows

that it gives the N. S. condition that the altitudes of the

triangle should be concurrent, while the work immediately

preceding shows that it expresses the N. S. condition that the

foot of one altitude should lie on a normal chain through the

vertices. We thus reach the fundamental theorem of Her-

mitian trigonometry.

Theorem 52] The necessary and sufficient condition that the

Hermitian trigonometry of a triangle should be the same as

the corresponding elliptic or euclidean trigonometry is that

the altitudes should be concurrent. In this case, and in this

case alone , the foot of one altitude, and, hence, of every altitude,

lies on a normal chain through two vertices. In this case, and
this alone, the triangle can be congruently transformed into a

real triangle.

Let us look at the locus of points at a given distance from

a given point. If this be the point (y) we have, in the elliptic

(xy) (yx) — cos 2 d (xx) (yy) = 0.

Here is a Hermitian form with a non-vanishing discrimin-

ant, unless d cos d = 0. In the parabolic case we have

(x - x') (x- x') +(y- y') (y -y') = d2
.

Theorem 53] The locus of all points at a fixed distance not

zero, nor, in the elliptic case, congruent to zero (nwdulo ^
from afixedpoint is a hyperconic. The characteristic equation

K 2
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of this hyperconic, and the fundamental form, in the elliptic

case, has a double root which reduces all first minors to zero.

We shall call this locus a hypercircle.

Theorem 54] In the elliptic case, the envelope of lines making
with a fixed line a fixed non-vanishing angle not congruent

to zero (modulo ^ is a hypercircle ; in the parabolic case it is

a cha in of po ints on the infinite l ine.

Theorem 55] The polar of a point with regard to a hyrper-

circle is perpendicular to the line connecting that point with

the centre. In the elliptic case the product of the ta ngents of

the distances from the centre to a point and its 'polar is con-

stant ; in the parabolic case the product of the distances them-

selves does not vary.

We pass to the consideration of the general metrical pro-

perties of the hyperconic. We begin in the elliptic case,

and look for a canonical form to which the equation of the

hyperconic may be reduced by a congruent transformation or

change of rectangular axes. If we set up the characteristic

equation of the hyperconic and the fundamental form, we see

that there must be one real root, giving a point which has the

same polar with regard to both forms, and the point itself does

not lie on this line. Using this point and line as parts of the

coordinate triangle, we may make a first reduction of the

equation of our hyperconic to the form

"^'ll'^l'^'l ^12*^1 ^12^2^1 22^2^2 33^3 ^3 ~~~ ^"

The essential part of the characteristic equation is now

a
i2

A 22 — p

and is bound to have two real distinct roots, since

(^n-^22)

2 + 4a12
a12 >0.

We are thus able to write our canonical form

A^x^A^x^-A^x^O. (26)

When the first two coefficients are equal, we have a hyper-

circle.
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Theorem 56] In the elliptic case, every hyperconic not a

hypercircle has three centres, one inside and tivo outside.

In the parabolic case, we have a greater variety of choice.

If the hyperconic be not tangent to the infinite line, xz
= 0, we

may reason as above, and reach the two canonical forms

a2+ 62
' a2 6 2 { J

If it be tangent, we may, by the usual devices of elemen-

tary analytic geometry, reduce to

yy = ocx-\-ocx. (27
r
)

All points of this locus are equidistant from the point

(1 + Ri) - and the line X + (1 -Ri) - = 0.

Theorem 57] There are four types of hyperconic from the

point of vieiu of parabolic Hermitian metrics: the hyper-

hyperbola with an outside centre, the hyper-ellipse, with am
inside centre, the hypercircle, and the hyper-parabola, whose

points are equidistant from a fixed point and a fixed line.

There is a sub-variety of hyper-hyperbola where A
1
=A

2
.

Here the tangents from the centre, called asymptotes, are

mutually orthogonal in pairs and form a normal line chain.

In the elliptic case, consider the asymptotes given by the

1 A 2 ^2— 3 *^3 *^3 ^ *

The hyperconic itself may be expressed parametrically in

the form

_ r
_ e^sinhZ _ e^coshX

Xl ~ VA^
X '

2 ~ ^Z" '

X '

6 ~ VA,

The sine of the distance from this point to the asymptote

~7T
x
'~~7l

x

13

3 "

sinh L — cos L

VP + y cosh2 X + i^sinh2 iy

an expression which becomes infinitesimal as L increases. A
similar result may be found in the parabolic case

:
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Theorem 58] As a point of a hyperconic recedes indefinitely

from an outside centre, its distance from the nearest asymptote

becomes infinitesimal.

Can we find a point of such a nature that conjugate lines

through it are mutually perpendicular in pairs 'i A line

through a centre is perpendicular to a conjugate line when,

and only when, the one or the other is an axis, i.e. a line con-

taining two centres. Hence, if there be any point fulfilling

our conditions it must be on an axis, but inside the hyper-

conic. Assuming in (26) that A
t > A

2 , consider the point

(0, y2i 2/3).
An arbitrary line through it has the coordinates

(«** 2/3—2/2)-

The perpendicular is

(-^±MS y3> -y2).

These will be conjugate with regard to the hyperconic if

_ 2/2^2+2/3^ + y_sh _ y*ik = 0.
A

1
A

2
A.

6

This gives a chain of points, in view of the inequality A
x
> A

2 ,

but would not if the inequality were reversed, so that there

are no corresponding points on the other axis through the

inside centre. We shall call these points foci. In the para-

bolic case, we shall find them in the same way for the central

hyperconics. 'For the hyper-parabola we should have on the

x axis the system of points

<xx
1 + olx

1
= ota,

which is the system found just before 57]. Such points shall

be called foci.

Theorem 59] On just one axis of a hyperconic not a hyper

-

circle there is a chain of foci characterized by the fact that

conjugate lines through them are orthogonal.
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Consider the focus of the elliptic central conic

Vi = 0, y,= VAZ {A X
-A2)^} y, = VA^A^A,)^.

Its polar is called a directrix. Its coordinates are

v
x
= 0, v

2
= jAjA^AJe-" v, = - VA

d
(A

1 + AJe-'t

We thus reach

:

Theorem 60] In the elliptic case the ratio of the sines of the

distances from a point of a hyperconic to a focus and to the

corresponding directrix is constant, and is the same for all

foci. In the parabolic case the ratio of the actual distances is

constant, and is equal to unity in the case of the hyper-

parabola.

The following system of hyperconics are confocal

:

A-t _ A 9 _ Ar, _

A
x
-L 1 1 A

2—L 2 2 A
z
-\-L

3 3

From the equations

T^L
2

y^ + if-L-y^ j^T2
y^ = °-

We deduce

A* _ A* _

(A, -

L

l}
(A, - L

2 )
Mi+ (A

2
-

L

x)
(A

2
-

L

2 )

V*

^

A*
+

[As +LJiA^L^- 0
'

which involves the tangents at (y) to the two hyperconics of

the confocal system passing through that point

:

Theorem 61] Through each fi nite point not on an ax is of the

hyperconics of a confocal system ivill pass two of these hyper-

conics, and these intersect orthogonally.

By turning to the covariant (9) of a hyperconic and the

fundamental form, we reach :

Theorem 62] The locus of points whence tangents to a
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central hyperconic are mutually perpendicular in pairs is

another hyperconic.

We shall close our discussion of Hermitian metrics with

a few differential expressions. Consider the curve

y = y(*h y = S(x)-

We seek the curvature, defining that function in the usual

way as ratio of angle to arc ^

,

(xx + yy + 1)

Equation of the tangent is
*

y'£-n+{y-xy') = o.

y' -1

du ^yy^L 9 dv =

(y-xy) (y-xy)

yy"dx

(y-xy'f
LV
° (y-m/f

j Vdudii + dvdv + (udv — vdu) (iidv — vdii)
Cld = ~. _ -T

{UU +W+ 1)

*/xx + yy+lV y
ffy"

Vclxdx.
V 1 + y'y' + {y- xy

f

) (y- xy')

dO _ 1 _ Vyg
ds ~ k ~ r 1 + y'y +(y- xy') (y-xy')y>

L xx + yy+\ J

In the parabolic case

d6 1

(28)

(28')
ds k

On the other hand, consider the surface whose distance

formula is

ds- = 2Fdxd-x = *+^+fr-^)ff-^> dxdx
(xx + yy+iy

uu+ vv+1
vv (xx + yy+ 1)

:

dxdx.
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The Gaussian curvature is

i = 1 yiogJ 1

^ -*v"y" 4
K F *x*& n+y'y+iy-^y') (y-xy') ~?

L xx + yy+1 j

In the parabolic case

1 _ 2^

Theorem 63] 2%e Gaussian curvature of a surface having

the same distance element as a given curve in elliptic

Hermitian measurement is four less than minus twice the

square of the Hermitian curvature. In the parabolic case the

difference four is lacking.

Let us see if we can find a curve of constant curvature 1

The straight line answers this description; are there any other

such curves 1

Let the normals at adjacent points A and A f on the curve

meet at G, while the tangents at these points meet at D.

Owing to the constant curvature the angles LAA'D and

Z A'AD are equal, or differ by an infinitesimal of the second

order. We may show by two lines of algebraic work that

a line through the vertex of a right triangle makes com-

plementary angles with the legs, hence LAA!G—LA'AG, and

hence A'G = AG, or differs therefrom to an infinitesimal of

the second order. Now the usual geometric proof that the

differential of arc of the evolute is the same as that of the

radius of curvature holds equally in the Hermitian metrics,

and as, in this case, the differential of arc of the evolute is of

the second order, the evolute must reduce to a single point.

If the normal to a certain curve always pass through the

origin, we shall have
xc( - + yd - = Q

xdx +ydy = 0,

xx + yy = k2
.

The curve would have to lie on a hypercircle ; but the hyper-
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circle contains no curve, for the polar of an inside point does

not meet the hypercircle at all.

Theorem 64] The only curves of constant curvature are

straight lines*

Let ns seek, lastly, the differential equation for a geodesic

thread on a given curve. We wish to have x and x such

functions of a real parameter t that the expression

rb r h

V2Fx'x'dt = \ R (x, x, x's
x't) dt

'a J a

shall be a minimum. We may treat x and x as independent.

Thus _ d m_^7>R
9

<>£c
~~

dt da/'
~~

dt hx'

This gives, in the present case,

d2v r /^\2]f"^H__ ^1_ 0
du2

L \du/ J [_du Zu <>vj~~

In the special case of the line y = 0,

(xx + 1) (x'x"— x'x") + 2 x'x' (xx'- xx') = 0,

yc + o

a normal chain.

§ 5. Hyperalgebraic forms in general.

Suppose that we have an algebraic thread

x = x(t)
3 y = y(t).

* This theorem is correctly given in the author's article on Hermitian

Metrics, but the proof is not above suspicion.
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If this be represented by a real curve in any space, the genus

of that curve will be an invariant for every one to one

algebraic transformation. The transformations on the repre-

senting variety will appear as algebraic transformations of

the plane, or transformations of a pseudo-algebraic form

x'=f{x,y,x,y), y'= ${x,y,x
y y), x'= f{x,y,x,y),

y'=4>(®>y> ^ y).

The genus of the curve which represented the thread will

be a numerical invariant under these transformations. Every

algebraic thread lies on an algebraic curve, and it might seem

as though the genus of this curve would be another numerical

invariant. Such, however, is not the case. Consider the

thread x = §> (x) + i$>' (t), y = 0,

which lies on a straight line, and the thread

« = V = P'{t)>

which lies on an elliptic cubic curve. The one is transformed

into the other by the transformation

x' = 4 y' = J (x-x).

Beside this algebraic invariant, we have certain projective

invariants, as the Pliicker characteristics of the curve on

which the thread lies. Again, if the thread be given by
equations F(x,x) = 0

}
<i> (y,y) = 0,

the highest degree of either of these equations will be an
invariant.

A two-parameter algebraic system will be given by two
polynomials

f^ y> ft g) = /(- g> x> y)
= Q

The degree of these polynomials will be a projective

invariant, while two algebraic invariants will be furnished

by the algebraic and geometric genera of the algebraic

surfaces which represent this system in a four-dimensional

space.

The most interesting algebraic varieties are those which
depend on three real parameters. Such a variety may be

written
F(x> y>

. _

} s g> ^ y)
_

0>
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or more neatly in the symbolic form

(ax)n (ax)n = 0. (29)

A point will be non-singular if the three partial derivatives

to x19 x2 , and x3
and, hence, to do not vanish,

(ax) 11
' 1 (ax)n a

i ± 0.

Suppose that there is such a point, then, in the real four-

dimensional universe

we have a real algebraic equation

(X
1 ,
X

2 ,
X 3i X4) = o,

which is satisfied for at least one set of coordinate values,

where the first derivatives are not all zero. Hence, by the

implicit function theorem, there is a three-parameter real

system of points forming a hypersurface in four dimensions

whose coordinates satisfy this equation.

Theorem 65] If there be a single point ivJtose coordinates

satisfy a real homogeneous algebraic equation in (x) and (x)

without being singular, then there is a triply infinite system

of such points.

We shall call a variety of this sort a hypercurve.

Theorem 66] If a chain share with a hypercurve a number

of points which exceeds the degree of the equation of the latter,

the chain will be completely contained therein.

Let us find where the general chain from (y) to (x') meets

the hypercurve (29)

x
i = XiPyi + X2

xi>
X* n

p
n ~pn (ay)n (dy)n

+ nXl
^X^T>^{ayy'\ay)^\p(ay) (ax') + p(ax') (ay)]

+
^

(^ 1)z
i

2(W^ [P\ayf(axf

+ ^^ Pp(ay)(ay)(ax)(dx)+p
2 (ax

/

)
2 (ay)]+... = 0. (30)
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The coefficient o^X^ n~ hX^ is, dropping the primes from x'%

(ay)n
- h (ay)n

-k
P
n - h

p
n-k

n !

(ay) k (ax)k p
k

kl(n-k) !

(ay)k
~1 (ax) (ay) (dx) k

~ Y

p
k ~ l~p

k\(n-k)\
n !

-(ax) k (dy) kf^ (31

If (y) be on the hypercurve,

(ayr(dy)n = Q,

and (30) has one root x
2
— 0. It will have a second such

root if

p(ay)n (dy)n
- 1 (dx) + p(ay)n

' 1 (ax) (ay) = 0.

If neither term vanish alone, then ^-is uniquely determined,

and there is just one tangent chain from (y) to (x). If one

term vanish the other will. The straight line

(ayf^(dyY(ax)^0, (32)

which is well determined when (y) is not a singular point,

shall be called the tangent to the variety at (y).

Theorem 67] If a non-singular point be chosen on an
algebraic hypercurve, every point of the plane not on the tan-

gent at that point will be connected therewith by a single chain

tangent to the hypercurve at the non-singular point. Every

chain on the tangent which passes through the point of co ntact

is tangent to the hypercurve.

We shall study these tangent chains in greater detail in the

next chapter. We define as the (pf q) polar of a point (y) the

locus given by

(ay)P(ayY(ax)n-P(dx)n
~

<l = 0.

If this equation have any solution at all which is not singular,

it will give a two-parameter family when p=fcq, and a hyper-

curve when p = q.

Theorem 68] If (x) be on the (p } q) polar of (y), then (y) is

on the (q, p) polar of (x).
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The condition that (y) should have a multiplicity k + 1

,

i.e. that every chain through it should meet the hypercurve

at least k + 1 times there, but usually not more times, is

{ay)n
-r (ay)n

-
s {ax)r (ax)s = 0, r + s = k. (33)

Theorem 69] If a point have a multiplicity k+1 and

if r + s = k, its (n— r,n— s) polar is illusory, ancFit lies on
the (r, s) polar of every point.

The simplest polar is the (n— 1, n — 1) or hyperconic. This

is given by (ay^-^ay^iax) (ax) = 0. (34)

Assuming that (y) is a non-singular point of the hyper-

curve, this is either a hyperconic with the same tangent at (y)

or a chain of lines, or the point (y) alone. The condition for

one or the other of these latter cases is by 20]

(ay)n
~
l {a'y)^ 1

(a'^yf'
1 {ay)n

- l ){ay)n
- 1 (cFgf-1

\

aa'a" •
|

aa'a"\

Wf WF VF= K = 0.

tyltyl ^2^2 ^3^3
In non-homogeneous coordinates, if the equation of the

variety be F(xyxy) = 0,

this latter hypercurve has the equation

&F tfF

ZxZF <)x ~by Zx

WF &F }>F

7>x*F Zy

ZF IF
F

<>x *y

= 0.

It will meet the hypercurve in the same points as the pseudo-

Hessian
'

&F &F *F
Zx*F ~bx ~by <>x

&F WF }>F

ZyZF *y*y *y

7>F hF
to *y

0

= 0. (35)
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It must be noticed that this latter is a covariant for all

changes of conjugate imaginary variables x, y, x, y. Let the

origin be a point where a three-parameter variety meets the

pseudo-Hessian. The tangent at {x-^y^} has the equation

as we shall see more fully in the next chapter. Let the x axis

be the tangent at the origin to the present variety. The

equation of the latter will be

0 = yxy + An + xx + a
l2
xy + a12yx+A 22yy+cnx

2

+ 2c12xy + c22y
2 + 6nx* + 2612xy + c

22 if + . .

.

Let us represent the thread cut on the x axis in the Gauss

Vlane - x = i + cr
] , y= 0.

0 = AU (p + r,
2
) + (cn + en)

2- r?
2
) + 2 c (c12

- 612) frj + -

.

The simultaneous invariant of the quadratic terms and f
2 + rj

2

is 2 Au and vanishes when the tangents to the two branches

of the curve through the origin of the curve and the Gauss

plane cut at right angles, which means, in invariant language,

that the tangent chains to the two branches of the thread are

mutually orthogonal. But An vanishes also when, and only

when, the origin is on the pseudo-Hessian.

Theorem 70] The pseudo-Hessian of a three-parameter

variety meets it in the singular points, and in the non-

singular points vihere the tangent meets the variety in such

a thread that tangent chains to the two branches through the

point of contact are mutually orthogonal.

Theorem 71] The necessary and sufficient condition that

the hyperconic polar of a non-singular point of an algebraic

hypercurve should degenerate to a line chain or a single point

or line is that this point shoidd lie in the pseudo-Hessian.

Let us find the geometric significance of the number 2 n,

the total order of the equation of our hypercurve. Let us call

this the order of the hypercurve. Let us suppose that we have
found a satisfactory definition in the case where the degree is
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2 (n — 1 ). We set up the following transformation of the

plane

:

1) Each point in a finite number of four-dimensional

connexe regions of the plane corresponds to a hypercurve of

order 2(n—l) of a certain system, and each such hypercurve

corresponds to a point.

2) The (1,1) polar of (z) with regard to the hypercurve

corresponding to (y) is identical to that of (y) with regard to

the curve corresponding to (z).

3) A triply infinite set of points lie on the corresponding

hypercurves, and these do not generate a hypercurve of order

2 (n— 1) or less.

We may repeat practically word for word the reasoning in

Ch. II that led up to 51], merely putting three subscripts to

the Z's in place of two, thus reaching

:

Theorem 72] The order of an algebraic hypercurve exceeds

by two twice the number of transformations of the type given,

necessary to generate it.

This order is, of course, a projective invariant. A second

such invariant may be obtained from the algebraic three-

parameter variety of tangents to the hypercurve. There does

not seem to be any one number that corresponds simply and

naturally to the genus of an algebraic plane curve. Each

algebraic hypercurve will correspond to an algebraic hyper-

surface in four dimensions, and such a hypersurface has

various genera whose interpretation in the plane does not

seem perfectly simple.



CHAPTER VI

DIFFERENTIAL GEOMETRY OF THE PLANE*

§ 1, Congruences of points.

In studying the differential geometry of the complex plane

we have to consider one-, two-, and three-parameter systems

of points. The first of these are called threads, as we saw in

the last chapter, and are characterized by equations of the

general type

:

x = x(u), y=y(n), x = x(u), y = y(u), u = u.

By giving to the parameter complex values we obtain the

single curve on which the thread lies. No thread could lie on

two curves, as these latter will always intersect in discrete

sets of points. A thread may also be given by such equa-

tions as F
(Xi £) = 0j <j> fa

_
0>

Of far greater interest than the thread is the congruence

given by

x = x(u,v), y = y (u, v), x = x (u, v),

y — y (u, v), u = u, v — v.

The fundamental question connected with any congruence

is this : What is the necessary and sufficient condition that it

should be a curve ? If a congruence be a curve, the ratio^
dv

must be independent of and this involves the equation

*fay) _
Q

* The major portion of the present chapter is contained in an article by
the author, entitled ' Differential Geometry of the Complex Plane Transac-

tions American Math. Soc, vol. xxii, 1921.

2674 L
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Conversely, if this equation be satisfied for all real values

of u and v, we see, by the fundamental lemma of Ch. II, p. 58,

that it is satisfied identically.

Theorem 1] The necessary and sufficient condition that the

congruence

x = x (u, v)
y y = y (u, v), U = U, V = V

should be a curve is that one at least of the quantities x and

y should depend upon two real parameters, and that for all

real values of u and v*

^=0. (1)

In homogeneous coordinates we have the corresponding

OX^ CX,
equation

1 OU CV
= 0.

If the congruence be given by the equations

f(x,y,x,y) = 0, f{x,y,x,y) = 0,

then ^ dx+^ dy+^dx+yidy = 0,
ox oy ox

y dx+ydy+ydx + y<iy

=

0.
ox oy ox °y

It will be possible to eliminate dx and dy simultaneously

when, and only when,

KfJ) = Mff) = Q
o(xy) o(xy)

for all sets of values of x, y, x, y satisfying the equations

above.

If a congruence be not a curve, a point where (1) is satis-

fied shall be called an unusual point, otherwise, a usual ' one \

* It is not perfectly clear to whom the credit for this important theorem

is due. Study, Ausgewahlte Gegenslande, cit.
, p. 43, ascribes it to Segre, Nuovo

campo, cit., but the latter, though doubtless familiar with the sufficiency of

the condition, does not seem to have proved it. Theorem 2 is found there,

p. 437.
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The singular points where the derivatives vanish will fall in

the former category. At a usual point

dx = — du+ ~ dv, ay = ^- du + ~ av.

The equation of the tangent line there will be

and we thus reach, from what was said at the beginning of

Ch. V,

Theorem 2] If a congruence be not a curve, the tangents at

a usual point will generate a line-chain.

We must now make rather a tiresome digression into the

theory of analytic transformations of the plane. If (x, y) and

(x\ y') be the coordinates of corresponding points, instead of

expressing the latter as functions of the former, we may ex-

press both as functions of parameters u and v and look at the

differential invariants. The relation will be conformal if the

minimal directions correspond, i.e. if

dx/2 + dy/2 = \(dx2 + dy2
),

^-dx—^-dy ~ dx— ^ dy
_ CV OV _ ^U °

du = —:
' dv — — —,—-——

.

<)(uv) <>(uv)

<){u,v) 7)(u,v) ^(u
t
v)

Ui

l(u,v) * Z(u
s
v) Z(u,v)

J

The relation will be conformal if

[
H<v)i\ \

*(y\y)r= r^>)i
2

, r%^)i 2

L*(u,v)] L^,v)J l*(u,v)] * ll(ut v)\

*{af,y)*(af,x)
,
^(y\y)My\x)—:

—

-z-L —:—:—_ a. vty JW ' " ' '

ci(u,v) Z(u,v) ^(u,v) <*(u,v)

L 2

= 0.
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A) Directly conformal

—

a(«,aQ = Hy,y')
i

Hx,y
f

) = Ijyrf)

<)(u,v) ^{u,v) %(u,v) <)(u,v)

B) Inversely conformal

—

*(s,aQ = Hy,y') *fo y
f

) = %,aQ
t

~d(u,V) C*(U,V)' ()(U,V) c)(U,V)

C) Directly equi-areal

—

Hx,y) _ *(x',y')

d (u, v) <) (u, v)

D) Inversely equi-areal

—

Hx,y) = HxW)

A directly equi-areal transformation shall be defined as

special if

Equations C) and E) are equivalent to

d# d^/ ^2/
'

<>x ^y

Let us find the meaning of these. The corresponding-

directions and —> are mutually perpendicular if

^-dx2 + + ^- + ^-dy2 = 0.

The square of the stretching ratio is

[(©©>•[££.££]'**

cZ&'
2 + cfo/

2
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This will be a maximum or minimum if

[<$'+(#'- (ST-

These will be the directions given above when, and only

when,
<>x «>2/' _

A directly equi-areal transformation will be special if the

directions of maximum and minimum stretching are the

directions orthogonal to the corresponding directions.

Let us return to the complex plane. Two conjugate

imaginary points have certain invariants of fundamental

importance. v ,

<>(u
}
v)

*(x> n)
+ %» S) = iH

*{®>y) _ %, a) = K^

Each of these is absolutely unaltered by a real change of

rectangular axes, and multiplied merely by the Jacobian

when the real variables u and v are properly replaced by

others. We have also an identity which will be occasionally

useful. It is the fundamental identity in the invariant theory

of binary forms, and amounts in the present case to

a (a, y) 3 (a, y) = a (a;, x) h(y, y) l(x, y) %, x)

<)(u, v) v) ^{u, v) <i(v,
9
v) v) v)

From this we easily prove that —H 2
is the discriminant of the

definite form , 7 _ 7 7 _dxax + aydy.
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In connexion with our study of congruences it is well to

bear in mind the Laguerre and Marie representations of com-

plex points which we took up in Ch. IV. Each of these is

a representation by means of two real points (X, T) and

(X\ Y'). In the Laguerre representation we have

v x + x .y— y t-t y-Vy .x — x

x— x

L o (W, V) d [U, V) J

K = ra(r,
+

a(x, F) -i

In the Marie representation we have similarly

t x+x x-x y_y+y -y-y

(4)

j+ij'=
<) (u, v)

HX,Y>) 2>(F,X')

i (W, V) c> (u, V)

f
a(F, F0

L a («,«) c) (U, V)

rJ(i", F')
+

»(*. F)

c> (U, V)

L ^(u, v) s(

tF) -|

Wj v) J

H =

K =

L 2>(w, c>(w, t>)
]• (5)
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We obtain from (3) and similar identities

V d (U, V) d (U, V) /

(
HX, Y f

) *(Y,X'K *

V *(u,v) l)(u,v) J

.
(
e
)

= ,l(X, X') »(F, Y'K* / »(*, Y') *(F,ZV
V ?>(u, v) *{u, v) ) \ <) (u, v) d (u, v) )

'

Suppose that we have a curve in the complex plain. We
see from (1) and (4) that in the Laguerre representation

HX,X ')

=
*(F, 3(X, F') = *(F,XQ

v) Z(u,v)
3

c*(u,v) Z(u,v)

This gives an inversely conforms 1 real transformation by B)

unless F) DX', Y') _
%(u,v) <>(u,v)

If the first factor vanish, then either (X, Y) is stationary, or

moves along a curve. Making the latter assumption, and

taking u as the parameter that varies on this curve

— - — - 0

t)X' ^ Y'
then either -— — —— = 0, which is inadmissible,

or else /^X\ 2

[

/^\ 2

_ Q

In either case dX _ d F _

It appears that (X, F) must be fixed, or (x, y) traces a minimal

line. Turning to the Marie representation, we have

MX\ Y') = »(X, Y) 3(X, Y') = d(F, X')

a special directly equi-areal transformation unless

>(*', n = F) = o
<) (U, V) d (w, f

)



168 DIFFERENTIAL GEOMETRY ch.

Here we may assume

dv
~~

dv
~~ du du

dx .dx dy .dy
t- + i -c- = + i

-f-
= 0.

<)V dV dV

dX ^ dX _ dy "bff

dtt
~~

die, die,
~~ '

" dy _du dv _dy
dx ~~ dx~ dx~~ dx

dV, dV

Let x=p + iq, y = y(p + iq),

dy

dx
= P(p,q) + iQ(p,q), Q = 0.

By the Cauchy-Riemann equations

^P aP . _ D— = = 0. Hence P = const.,
dp dq

or (x,y) traces a line in the real direction, i.e. parallel to that

traced by (x,y). The same is true of (Xf

,
Y) and (X, Y').

Theorem 3] If a finite curve be not a minimal line, the

corresponding pairs of points in the Laguerre representation

are connected by a real inversely conformed transformation;

if it be not a line with real direction, the corresponding pairs

in the Marie representation ivill be connected by a real special

directly equi-areal transformation.

Theorem 4] If an inversely conformed real transformation

of the plane be given, and each corresponding pair of points

be rotated through an angle of 90° about their mid-point,

the result ivill be a real special directly equi-areal trans-

formation*

* These two splendid theorems are due to Study, AusgewaMte Gegenstande,

cit., pp. 63, 64. The remainder of this remarkable article is devoted almost

entirely to studying the two representations of different types of curves.
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We have seen what happens when our two invariants J and

J' vanish. Suppose next that

iR =
x)
+ Hy,y) _

0>
Z (u, v) <) (u, v)

In the Laguerre representation we have

i(X, Y) = HX',T)
<i(u,v)

"
<>(u,v)

If each of these vanish we have

K = 0,

so that (x, y) and (x, y) are connected by an inversely con-

formal relation.

Theorem 5] The relation between conjugate imaginary

pairs of points and their Laguerre representatives is such

that if either pair generate two finite curves which are not

minimal lines, the other pair will be connected by an inversely

conformal relation, and conversely.

We obtain in just the same way

Theorem 6] The relation between conjugate imaginary

pairs of points and their Mar ie representatives is such that if

either pair trace two fi nite curves which are not parallel lines,

the other pair will be connected by a special directly equi-areal

relation, and conversely.

We find from (2) that the condition for a directly conformal

relation between (x,y) and (x,y) is

H2-K* + J 2 + J' 2 = 0, (7)

and this gives, with the aid of (6),

Theorem 7] The necessary and sufficient condition that the

relation betiveen a congruence, not a curve, and its conjugate

should be directly conformal is that the corresponding trans-

formation in the Laguerre or Marie representation should be

directly conformal.

Theorem 8] If corresponding pairs of points in a real

directly conformal transformation be rotated through an
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angle of 90° about their mid-point, the resulting transforma-

tion is directly conformal.

Theorem 9] If in a congruence, not a curve, the equation

iH=0
subsist, while nevertheless conjugate imaginary points are not

connected by an inversely conformal relation, then the corre-

sponding transformation in the Laguerre representation is

directly equi-areal.

Theorem 10] If in a congruence, not a curve, the equation

K=0
subsist, while nevertheless conjugate imaginary points are not

connected by an inversely conformed relation, then the corre-

sponding transformation in the Laguerre and Marie repre-

sentations are inversely equi-areal.

Theorem 11] If an inversely equi-areal transformation be

given in the plane, and each pair of points be rotated through

an angle of 90° about their mid-point, the resulting trans-

formation is inversely equi-areal.

The congruence where (x, y) and (x, y) trace curves is a

special case of a wider type of congruence, namely, that where

a point forming with them a triangle with given angles, or

dividing their segment in a fixed ratio, traces a curve. It is

not difficult to show that the coordinates of such a point are

expressible in the form

, _x—rx y—vy.
, x—x y—ry

X ~ l-r
~~

P 1-r '
V ~~ P l~-r

+ 1-r
'

= oc[J + ijn + 0 [J- iJ'] + yH + hK = 0.
?>(uv)

L J L J

52-y2 = 4 a/3.

This will involve the additional equation

« [J-iJ] + /3 [/+ iJ] + yH + lK.



VI OF THE PLANE 171

The two will be equivalent if

? _ @ - y - 8

f}

~~ a
~~

y
~ B*

After rather a tedious calculation, we find that if p ^ 0,

P

The most interesting case is where p = 0 and {xyr
) is a

point dividing the segment from (x, y) to (x, y) in a fixed

ratio r.

d(w,v) <)(u,v)/

?>(u,v) %(u,v) ^(u,v) %(u,vy

If TV — 1

,

the point (a?', 2/') is real, and the two equations reduce to

e-
i0
(J+J') + e

ie
(J-iJ') = K.

When, however, (x', y') is not real,

<> (U, V) (u, V)

Theorem 12] If two conjugate imaginary points trace two

such congruences, not curves, that a complex point which

divides their segment in a fixed ratio traces a curve, then

corresponding areas in the two congruences have fixed ratios

whose absolute value is unity.

Let us see under what circumstances a congruence will

include a set of threads lying on minimal lines. As (x,y) and

(x,y) trace two minimal threads, one Laguerre representative

must be fixed. This involves

MX, Y) HX,Y) 2 0t
<i (u, v) d (u, v)

H2-K*=0. (8)

We pass to the more difficult question of finding the N. S.
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condition for the existence of a normal net in a congruence.

We require the conditions for the subsistence of the equations

dx bx + dyby = 0,

dxbx + dy by = 0.

This means that the Jacobian of the binary quadratic

equations,

dx2 + dy2 = Edu2 + 2 Fdudv + Gdv2 = 0,

dx2 + dy2 = Edu2 + 2 Fdudv + Gdv2 = 0,

must have real roots. The condition for this is

E F G 0

0 E F G

E F G 0

0 E F G

> 0

K2-H2 >0.

b(X,Y) a(Z',F)

(9)

>o.
b(u,v) b(u,v)

Theorem 13] The necessary and sufficient condition that a

congruence should include a normal net is that in the

Laguerre representation corresponding infinitesimal areas

should always have the same sign.

Theorem 14] A congruence which contains a system of

minimal threads cannot contain a normal net.

Let us next see under what circumstances the congruence

contains a system of threads whose tangents have real direc-

tions, so that along them (x, y) and (x,y) move parallel to one

another. For this it is necessary and sufficient that in the

Marie representation there should be a system of curves

parallel to their corresponding curves. We must have

dxdy— dydx = 0.

\dUdU dU bU' L\vU OV bvbu/

\bu bv bv bu/j L

bx by

bv bv

'by bx

bv bv_
dv2 = 0.
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The condition for real roots is

(\ (a
y)\

2

, (l
(y> ®h8

o r * fax) * {y> s)
,

* fa 2/) * y) 1
0

L^^,^) <>(it,
s
v) <*(u,v)j

We thus get, with the aid of (3),

Theorem 15] The necessary and sufficient condition that

a congruence, not a curve, should contain a system of threads

whose tangents have real directions is

K*-(J* + J' 2
) > 0. (10)

This is also the jV. S. condition that in the Marie ^presenta-

tion there should be a set of curves parallel to the correspond-

ing curves.

Let the reader show by similar reckoning

Theorem 16] The necessary and sufficient condition that

a congruence should be such that in the Laguerre representa-

tion there should be a set of curves parallel to the correspond-

ing curves is J*-(K*+.H*)>0. (n)

When will the distance of two points of a congruence be

independent of the path? This is certainly the case where

the congruence is a curve. Conversely, if the distance

between two points be a function of the values of u and v

corresponding to them, the distance element must be a com-

plete differential, i.e.

EcW + 2F dudv+ G dv2

is a perfect square and

L*(u,v)J

Theorem 17] A curve is the only congruence where two

paths of a simply connected region connecting two points have

necessarily the same length

If a congruence be not a curve there must be a geodesic

thread connecting two points. But how shall we define a

geodesic thread ? If we define it as a path whose first varia-

tion is zero we encounter equations in our real parameters
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u and v which will not, in general, have real solutions. The
most natural thing would seem to be to define as a geodesic

a thread where
p
VE+2Fv' + Gv"du

is a minimum. Let us write

VFJ+2Fv' + Gv' 2 = <j) (u, v, v') + if(u}
v, v').

We must minimize

It is by no means easy to see just what can be done with

such an equation. Lastly, instead of minimizing the absolute

value of the integral, we might have minimized the expression,

J
Ve+2Fv'+Gv 2 Ve+2Fv' + bv'2 du,

which is the integral of the absolute value of the differential

of arc. Here we are at least face to face with a straight-

forward problem in the calculus of variations, but it seems

a stretch of language to apply the term geodesic to a path

obtained in this way.

We saw in 2] that the tangent at a usual point of a con-

gruence which is not a curve will generate a line-chain. Let

us look more closely at this chain

:

x' = x (u, v) + (U-u)g + (F-,)^ + i [(U-u? g

y> = y («, V)+(U-U)^ + (V-V)g + i g
(12)
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This will meet the line

y'-y(u, V) = X(x' -x(u, V)).

»=[^4:]<"-Ka-^]<"-">-'

175

Similarly

We have two curves in the U, V plane, which meet at

U = u, V=v.

They will touch if

by _ bx by - bx

bu bu bv bv

by ^bx by ^bx
bu bu bv bv

= 0.

U^-^-A^ + JM = 0. (15)
b{UV) b(UV) b(uv) b(UV) v '

This is the equation of the line-chain of tangents. It will

be unchanged if we replace A and X by their conjugates A and A

when, and only when, K — 0

It will be unaltered when we replace A and A by the diametral

imaginary values— \ and — \ when, and only when,
A A

H = 0.
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We thus get from 9] and 8]

Theorem 18] The necessary and sufficient condition that the

tangents at an arbitrary usual point of a congruence, not a

curve, should have, in pairs, conjugate imaginary slopes, is

that the corresponding transformation in the Laguerre repre-

sentation should be inversely equi-areal; the slopes will be

diametral imaginaries in pairs when this transformation is

directly equi-areal.

Let us see whether we can find a tangent that osculates

the congruence. For this it is necessary and sufficient that the

curves (13) and (14) in the (U, V) plane should osculate one

another at U = u, V — v. If these curves be

F(U,V) = 0, F(U,V) = 0,

the conditions are ^(F, F) _
<) (u, v)

d^2
+ Y$ 'k' ~~

dU<)V ^U ^V

[<$" (£7

Mi
7
- ^M) '

+ M? ^u' ciu^v <>u <iv

It is necessary and sufficient that the following expression

should be equal to its conjugate

(^y Wx\/1)y fc*>\2 /^_ A ^\/— -A^Y
\W~ X ^)\M}~ k

7*v)
+W ^'V^H W

2
\MTbv _ *uwU ^u) \bv ?>y)
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The general solution of (15) can be written

^ _ 2)U ()V _ "bu ^u
~~

bx ^^x ~~
x

<)x

cu ov ov ov

x * (ay)

\dv bv)~OX Tr <)£C

The expression above becomes

Equating this expression to its conjugate, removing the

common denominator (1 +X 2
)!, and expressing k in terms ofX,

we get the real equation

PX* + QX2 + RX + S = 0,

which surely will have one real root, perhaps three of them.

Hence at an arbitrary usual point there is necessarily one

osculating tangent, and there may be three of them. A thread

whose tangents osculate the congruence shall be called an

asymptotic thread.

Theorem 19] Every congruence, not a curve., contains at

least one system of asymptotic threads.

There remain to be considered the unusual points character-

b(u,V) ' b(u,V)

Usually these equations are distinct. When, however, they

are equivalent we have a thread of unusual points. We thus

get from 3]

Theorem 20] The necessary and sufficient condition that a

congruence, not a. curve, should contain a thread of unusual
5C74 M
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points is that in the corresponding transformation in the

Laguerre representation there should be a curve whose points

are inversely conformally transformed.

§ 2. Three-parameter systems.

There are two natural ways to represent a three-parameter

system of points in the plane, namely

x = x (v, v, w), y = y(u
}
v, w)

;

x = x(u,v,w), y = y(u,v,w) (16)

F(x,y,x,y) = F(x,y,x,y) = 0. (17)

The fundamental question to be asked about such a system is

whether it will contain a curve or not. We have seen exam-

ples of both kinds in our study of ternary Hermitian forms in

Ch. V. Let us find the N. S. condition that our three-para-

meter system (16) should contain a curve. Let this curve be

characterized by
(p (u, v, iv) — const.

b
(f)

bj> b(f)

bu' bv' blV

bw ^W
%

bu' b V
*

The Jacobian of x and y with regard to u and v under

these circumstances must vanish, or

bx bx bw bx bx bw
bu bw bu biv bv

by 'by bw by by bw
bu blV bu bv^~ bw bv

= 0.

bj> l(x, y) b$ b (x, y) +
b^ b(x, y) =Q

bu b(v,%v) bvb(w,U) blvb(u
}
V)

H Mx,y)
+

3<H(as,ff) bcfr b(x,y) _ Q
bllb(v,w) bvb(lV,u) bwb{u,v)

The reasoning is reversible, so that it is necessary and

sufficient that there should be a function of u, v, and iv, whose
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partial derivatives are proportional to the determinants of the

matrix
a fa y) y)

b(v,w) b(w,u) b(u,v)

a faff) />faff) * fay)
b(v,w) b(w,u) b(u,v)

Theorem 21] If x and y be functions of three reed para-

meters, u, v, and w, and no less, the necessary and sufficient

condition that the system so defined should contain one, and,

hence, an infinite number of curves is that the Pfaff equation

du civ dw
a fa y) Hx,y) Hx>y)

b(v,iv) b(w,u) b(u,v)

3 faff) a faff) b(x,y)

b(v,w) b{%v,u) b(u,v)

should be integrable.

= 0 (18)

We must now test for curves when the system is expressed

in the form (17). Suppose that the curves, depending on the

real parameter R,

y = y(x,R), y=y(x,R),

are contained in the variety (17),

F (x, y (x, R), x, y (x, R)) = 0.

bF bFdy = bF bF dy _
bx by dx ~ bx ^ by dx~

b*F b*F dy b*F % b*F dydj[_
o

bx bx bybxdx bx by dx by by dx dx
~~

bFbF b*F bFbF b2F bFbF b 2F
+

bx bx bydy by by bxclx bx by by bx

bFbF b*F

by bx bx by
= 0.

This means that for every point where

F(x,y,x,y) = 0

m 2
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the pseudo-Hessian

1>*F VF 7>F

'dx'dx ?)x~dy ~dx

VF WF IF
'dy'dx ^y^y *y

DF IF
<)X

0

= 0.

Conversely, if the pseudo-Hessian vanishes for all points of

the variety, the Jacobian in x and y of

(IF

F and
<)x

ZF
vanishes.

Hence F, looked upon as a function of x and y t
can be written

IF^

4> x, y
dx

VF
*y)

o.

and this holds when we treat x and y as variables indepen-

dent of x and y.

If, then, we so determine x and y that

ZF
Zx ty

9 — - X—

,

Zx <)y

<f>
(x, y, L) = 0,

and this curve is contained entirely in the variety. We thus

get from V. 68]

Theorem 22] The necessary and sufficient condition that the

variety (17) should contain a one-parameter family of curves

is that the pseudo-Hessian should vanish for all points of the

variety. Every tangent line xuill meet the variety in a tliread

with a double point at the point of contact ; tangent chains to

the two branches will be mutually orthogonal.
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The invariants of a three-parameter family of points are less

simple and interesting than those of a congruence. The

squared differential of arc

dx2 + dy l

is a ternary quadratic form in du, dv, and dw, but its dis-

criminant is equal to zero, since it is merely

/ *(x,y, 0) \ 2

(u,v, wy

Another invariant is the discriminant of the positive form

dx dx + dy dy,

and this turns out to be

1 Y^(x,y,x) t(x,y,x)
^

*(x,y,y) *(x,y,y) l
Q

4 \J> (u, V, w) c> [u, v, w) d (u, v, w) d (u, V, w)j

as we see by taking the special case, where

x = u + iv, y = w +.if (uvw).

A three-parameter system will always have a one-para-

meter family of minimal threads. Their differential equation

is obtained from
dx+idy = 0, dx±idy — 0,

du dv div

H{v,w)±K(v,iv) H(w,u)±K(w,u) H{u,v) ±K(u, v)

Let us look at tangents to three-parameter varieties. If we
take the variety (17) and replace x, y, x, and y respectively by

x + tpx' y + tpy' x + tpx' y + tpy

1 +tp 1 + tp '
1 +tp

3 l+tp

we shall find where an arbitrary chain connecting (x, y) and

(x\ y
f

) will meet the variety. We get the equation

( r~ <) IP ^ F~~\

0 = F(x,y,x,y) + t\p [(»'-*) ^ + (^-y)~
J

+ p [
(Sf- x) + ig-y)

J
+ t

2 [a p
2 + 1 Pp + & + . .

.
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Let (x, y) be a point of the variety. Then the constant

term will vanish, and we have one -root t = 0. For (x\ if) in

general position we can always determine p and ~p so that

there shall be a second root t = 0, i.e. any point in the plane

may be connected with (x, y) by a chain tangent there, and

usually by one such. But if we have

w-*)^+W-y)^=<>> (*»>

the conjugate expression will also vanish, and every chain

from (x
y y) to (x\ y') will meet the variety twice at the

former point, and so be tangent, unless this latter is a singular

point. We shall call this tangent. We may thus restate

V. 66] in more general form.

Theorem 23] If a non-singular 'point be chosen on an
analytic three-parameter variety, every point in the plane, not

on the tangent thereat, may be connected therewith by a single

chain tangent to the variety at the non-singular point. Every

chain on the tangent which passes through the point of contact

is tangent to the variety at that point. The tangent meets the

variety in a thread having a double point at the point of

contact; tangent chains to the two branches are mutually

orthogonal when the point is on the pseudo-Hessian.

There are other forms for the equation of the tangent which

are worth giving. Let x and y be functions of u, v, and w.

Then (17) is an identity in these three variables, giving three

equations such as

^F^x ZFZy TiFZx *F*y_
0

%u ^y <>u ^x <)u ~by ^u

The equation of the tangent will be

v ' *(wuw) yij U/ Z(uvw) v 1

This gives the differential form

v, y)

dy _ V, W)

dx

V, iv)



VI OF THE PLANE 183

Comparing with (3) of Ch. V we see that this appears as

a singular element in the parametric expression for the pencil

of lines through the given point. Expanding dx and dy
in terms of du, dv, and dw, we find once more (18), which
appears as the differential equation of the tangent. If the

variety contain an infinite number of curves, each obtained

by putting w = const., then

}>(x,y) = 7)(x,y) _ Q
c> (U, V) h (U, V)

'

and (18) becomes dw = 0, w = const.

Theorem 24] If a three-parameter system contain an in-

finite number of curves, the tangent at any point is the

tangent to the curve through that point.

In homogeneous coordinates, changing u, v, w to u
x
u.,uz

respectively, the equation of the tangent at (7) will be

i = 3

y
}y_ }y_

*uk ^u,
yx = 0. (21)

Usually this will give a three-parameter system of lines.

An arbitrary line in the plane will determine with any line of

the system an infinite number of chains, just one of which will

be tangent to the three-parameter line system. There is, how-
ever, a single point on each non-singular line of the system,

called its point of contact, which has the property that every

chain through it includes the given line as tangent. The

given line appears as a double line in the one-parameter

system of lines of the variety through the point of contact.

Let us find the point of contact of an arbitrary tangent. We
write

^u n *uk ^Ui
yx yqx = (ax) = 0. (22)

The point of contact will have the equation
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9m 9n

Vm Vn
+

Mm

By definition (ag) = (ay) = 0,

*2/

Again

. k\ _ I _ _

21*
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But

* y
(•3D

}y_
jig ly_

-if M y

}y}y

ly --(«©•

Hence the first term on the right vanishes, and the equation

of the point of contact is _ q

Theorem 25] i/' a three-parameter system of lines have a

three-parameter system of tangents, then each point of the first

system is the point of contact for its own tangent*

It may happen, however, that there is only a two-parameter

family of tangents. Then each tangent has a single infinite

system of points of contact, forming a chain, for we have here

the dual of 2].

Theorem 26] If a three-parameter system of lines have a two-

parameter system of tangents, then each tangent has a singly

infinite number of points of contact, forming a chain.

* The author found this theorem and the next, with substantially these

proofs, in a set of notes he took on a course of lectures on Complex Geometry,

delivered by Professor Study in Bonn in the summer semester of 1904.



CHAPTER VII

THREE-DIMENSIONAL COMPLEX SPACE.

§ 1. Representation of Complex Points.

The problem of representing the complex points of a three-

dimensional space by means of real elements is so much
more difficult than the analogous problem for the plane that

comparatively little attention has been paid to it. It is

necessary to find a six-parameter system of real elements, and

associate in a way that is not too artificial with the six-

parameter assemblage of complex points. We shall here give

only three of the methods that have been suggested. We
begin with the Marie system, which carries over with less

alteration than any other. The defining equations are, as

before,

y. _ x+x
-
x-x

Y _y+y AV-y z =
z *~z

i

z
~~

z

2 2 2 2 ' 2 2

x+x x-x v,__y+y .
.y-y .4*-*/^X Y_— +*-r-> ^ --2"+*—W

The representation is perfect for the finite domain, and the

relation between representing point and conjugate imaginary

pair is invariant for real motions

:

Theorem 1] In the Marie system each complex point of the

finite domain is represented by an ordered pair of real points,

collinear with the given point and its conjugate having the

same mid-point as the latter pair, and separated by a distance

whose square is the negative of the square of distance of the

conjugate imaginary points. Tlie representing points are the

closest pair in the elliptic involution ivhose double points are

the given complex point and its conjugate.
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There is no interest in discussing the point-systems which

represent various loci lying in real planes, as this has already

been done in Chs. IV and VI. Thus, an imaginary line with a

finite real point appears as a real directly equi-areal collinea-

tion of the plane. Let us turn to the representation of a

complex line that is skew to its conjugate. We may take the

common perpendicular to the two, which is surely real, as

the z axis, while the real directions bisecting the angles

of the complex lines may be taken as those of the x and

y axes. The lines may then be written

y = Rix, z = Si.

X' = i F, Y'= -RX, Z'=-Z=-S.

Theorem 2] In the Marie system a complex non-minimal

li ne ivhich is skeiv to its conjugate ivill appear as a pair of

parallel planes, connected by a directly equi-areal collinea-

tion of period four.

In case the complex line is minimal, we have the simpler

case R2 = 1

.

Theorem 3] In the Marie system a minimal line which is

skeiv to its conjugate will be represented by two parallel planes

connected by a screiv motion about a common perpendicular,

the angle of rotation being — •

2

Let us consider a general non-minimal space curve. We
may express it in the form

. x( + iv) — x(u — iv)

,y(u + iv) —y{u— iv)

7 _ z (u + iv) +z (u — iv) . z(u + iv)—z(u— iv)

To discover the nature of this surface let us put

u + iv — £, u — iv= C

v x(u + iv) + x (u—iv)X = g

Y _ y (u + iv)+y(u— iv) _~
2
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We then treat ( and ( as independent variables. Our surface

is of the general type

Y=F
2 (C) + M0-

* = *'.(0+ *»(*)•

These equations are characteristic of a translation surface,

i.e. one that can be generated in two ways by translating

a curve of fixed form so that it always meets a given curve.

{X'Y'Z') will trace a second such surface. We have the

relations

ax _ ax7 ax' _
~bu <)V

3

<)V
~~

c>U ' <)U Dv
'

E = G\ G = E\ F= -F'.

We see from these equations that the u and v parameter

curves on the two surfaces are isometric, so that u = const, on

one is parallel to v = const, on the other at the corresponding

point. Conversely, it can be shown that these conditions are

sufficient, so that we can state

Theorem 4] Two real surfaces in one to one correspondence

will represent an analytic space curve which is not minimal

when, and only when

:

A) They are translation surfaces ivith conjugate imaginary

generators

;

B) There is a first and second system of curves on the one so

related to a first and second system on the other tJiat at corre-

sponding points the tangent to the first curve on either sur-

face is p)arallel to the tangent to the second curve on the other

;

G) The relation is directly equi-areal.*

When the given curve is minimal we have

ED"+GD-2FD'= 0.

* See the dissertation of Graustein, Eine reelle Abbildung analytischer komplexcr

Kurven, Teubner, Leipzig, 1913, p. 66.
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Theorem 5] The surfaces which represent minimal curves

are of the type described in 4], but they are a minimal surface,

and the net of curves is an orthogonal one*

It is certainly a blemish on this method of representation

that use is made of conjugate imaginary systems of curves on

the real representing surfaces, and, although this could doubt-

less be avoided, it seems likely that the resulting statement

would be decidedly cumbersome.

We pass next to the Laguerre representation, which takes an

entirely different aspect in three dimensions from what it pre-

sented in two. Every finite complex point in space is the

vertex of a minimal cone going to the circle at infinity ; the

conjugate imaginary cone will meet this in a real circle, of

which the imaginary points are called the foci. The line con-

necting them is the axis. There is a one to one correspon-

dence if we distinguish, on the one hand, between the first and

second focus, and, on the other, between the circle with one or

the other sense of rotation.

Theorem 6] The Laguerre system in space consists in repre-

senting each real point by itself and each complex one by the

real oriented circle ofwhich it is thefirstfocus. The representa-

tion is one to one for all finite points, and has no exception

whatever if the infinite domain be defined as a single real

point, the vertex of a minimal concf

Let us recapitulate certain familiar theorems about circles

in space. Each has two foci. The N. S. condition that two

circles should be cospherical or coplanar is that their foci

should be concyclic or collinear. When this is not the case,

the single sphere or plane through their foci is their common
orthogonal sphere or plane.

Two non-cospherical circles will usually be cut twice at

right angles by two other circles. The axes of these cut the

* Ibid., p. 70.

t Laguerre, ' Sur Pemploi des imaginaires dans la geometrie de l'espace

Nouvelles Annates de Mathematiques, Serie 2, vol. ii, 1872. Also Molenbroch
(better Molenbroek), 'Sur la representation geometrique des points imagi-

naires dans l'espace ibid., Serie 3, vol. x, 1891. The treatment here given

is from the author's Treatise on the Circle and the Sphere, Oxford, 1916, pp. 535 ff.
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axes of the given circles, as well as their polars with regard

to the common orthogonal sphere. The circles cutting twice

orthogonally are those whose foci are the intersections of the

lines last found and the sphere.

It may happen, however, that the axes of the two circles,

and their polars, with regard to the orthogonal sphere, are four

generators of a regulus, so that they are cut by an infinite

number of lines generating the conjugate regulus. Each

regulus will contain two generators of the sphere, i.e. two

skew minimal lines. The given circles are then said to be

liaratactic* Two real circles are paratactic when, and only

when, their foci lie in pairs on two aggregate imaginary

skew minimal lines. They are cut twice at right angles by an

infinite number of circles generating a cyclide, the given

circles belonging to the conjugate generation. If the given

paratactic circles be real the same is true of the circles cutting

them twice orthogonally. Lastly, if two circles be so related

that their first and second foci lie on two intersectional

minimal lines they are tangent, and conversely. A circle

is paratactic to an oriented line if its first and second foci lie

on the first and second minimal planes through that line.

The best way to discuss these relations analytically is to

take a system of pentaspherical coordinates. We write

px0 =j(a? + y
2 + z* + t*)

} Px1
= (x2 + y

2 + z2 -t*),

px2
= 2xt, px

3
= 2yt, px

A
= 2zt.

j
2 =-l- (2)

i = 4

(xx) = 2^/ = °-

i = 0 l

Every sphere or plane will have a linear equation in (x), and

every such equation represents a sphere or plane. A point

(x
f

) lies on the circle whose foci are (x) and (x) if

(xx') = {xx) = 0.

* The first mention of the paratactic relation between two circles seems to

be in an article by the author, ' A study of the Circle-Cross ', Transactions

American Math. Soc, vol. xiv, 1913.
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A chain of points on a circle, which may be defined for

present purposes as the inverse of a linear chain, may be

expressed in the form

ax'^T^oc^TB^yi.

Theorem 7] A chain of points on a line or circle will appear

in the Laguerre representation as a series of circles generating

a surface of the eighth order, which may, in special cases,

degenerate to a Dupin cyelide, cylinder of revolution, sphere or

plane.

Theorem 8] A real chain ivill be represented by the totality

of oriented circles which have that line as axis.

Theorem 9] A real or self-conjugate imaginary circle will

be represented by the totality of circles orthogonal to a non-

tangent system of coaxal spheres.

If a complex circle be given which is not its own conjugate,

then if the first and second foci of a circle lie on this circle

and its conjugate this real circle is paratactic to that real

circle whose foci are the first foci of the two given circles, as

well as to that one whose foci are their second foci.

Theorem 10] The points of a complex circle which is not its

own conjugate, and which does not lie in a minimal plane,

will be represented by the totality of real oriented circles para-

tactic to two circles which are not paratactic or tangent to one

another.

Theorem 11] The 'points of an imaginary circle in a
minimal plane will be represented by the real oriented circles

paratactic to a real line, and a real oriented circle not coplanar

or paratactic therewith.

Theorem 12] The points of a non-minimal finite line which

is skew to its conjugate will be represented by the real oriented

circles paratactic to two real skew lines.

Theorem 13] The points of a minimal line skew to its con-

jugate will be represented by the system of oriented circles

paratactic to two real paratactic circles.

What sort of a circle congruence will represent a general

curve in space ?
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A non-minimal curve has an osculating circle at every

point which is not singular. Conversely, if a congruence of

points possess the property that if a point in general position

be connected with two near-by points by a circle, this circle

will approach a definite limiting position as the near-by

points approach the given point as a limit, there is surely

a tangent at every point and the orthogonal projection of the

congruence on any plane is a curve (if the congruence itself be

not a set of lines). Hence the congruence itself is a curve-

If thus P, P+AP, P + A'P be three adjacent points on the

curve, P, P+AP, P + A'P their conjugates, and if F
X
F

2
are

the foci of the circle through the first three points, while F
Y
F

2

are those of the circle through the other three, the real circles

whose foci are F
1
F

1 , and F
2
F

2
respectively will approach

definite limiting positions, no matter how P+ AP and P + A'P

approach P as a limit in the congruence.

Theorem 14] A congruence oforiented circles will represent

a non-minimal curve when, and only when, the circles 'para-

tactic to three adjacent circles approach definite limiting

positions in each case, as the three approach definite limiting

positions in the congruence.

If a curve be minimal the osculating circle lies in a

minimal plane.

Theorem 15] A congruence of oriented circles will represent

a minimal curve, not a line, when, and only when, the con-

gruence is of the type described in 14], and the circles cutting

twice at right angles two adjacent circles of the congruence

do not tend to definite limits as the given circles approach

coincidence.

Theorem 16] The points of a real or self-conjugate

imaginary sphere will be represented by the totality of circles

with which a given point is coplanar, and has a constant

power.

The system of circles representing a complex sphere is

harder to describe * We leave it aside, and pass on to our

third method of representation.

* Cf. the author's Treatise on the Circle, cit. p. 544.
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\*b-0y\±O
9

Let us take a point with the homogeneous rectangular

Cartesian coordinates (x, y, z, t), subject to the restriction

x2 + y
2 + z2 + t

2 =£0. (3)

If this inequality were replaced by an equality, we should

say that the point lay on the fundamental sphere, whose

centre is the origin. This point will determine a unique

linear transformation of the complex homogeneous variable (Q

f/= (-x + iy)C1 +(it + z)C2

Conversely, every linear homogeneous transformation

ft;

will give a complex point, not on the fundamental sphere,

namely,

# = /3 + y, y = -i(/3-y), z = a— 5, t = i((X + S). (5)

We shall call this the representation of Stephanos.*

Theorem 17] In the method of Stephanos, each point of a

complex three-dimensional projective space which does not lie

on the fundamental complex sphere is represented by a real

directly conformal circular transformation of the Gauss

plane, and every such transformation ivill represent a com-

plex point not on the sphere.

If we solve our equations (4), we find

pCi = (it + z) Ci + iy) Ci> p(2 = (x- iy) Ci + {it - z) £>'.

Theorem 18] Mutually inverse transformations represent

points which are the reflexions of one another in the origin.

Involutory transformations represent points in the infinite

plane. The origin represents the identical transformoiion.

* This writer was not especially interested in the representation of com-
plex points, but rather in the establishment of a correspondence between the
point of a three-dimensional projective space and the linear transformations

of the binary domain. See his article, ' Memoire sur la representation des

homographies binaires par les points de l'espace Math. Annalen, vol. vi,

1883.

2674 N
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Let us look for the product of the transformations corre-

sponding to the point (x, y, z, t) and (x
f

,
y'

,
z', t'). We shall

find xt'-yz' + zy' + tx'

y"= xz' + yt'— zx' + ty\

z"— —xy' + yx' + zt' + tz',

t"= -xx'-yy'-zz' + tt'.

The necessary and sufficient condition that the product of

one of these and the inverse of the other should be involu-

tory is xx ' + yy* + zz ' + 1?= 0 . (6)

We encountered this relation in II (14), and defined the

transformations in this case as being ' orthogonal \

Theorem 19] The transformations orthogonal to a given

transformation will be represented by the points of a plane

not tangent to the fundamental sphere , and every such plane

will be so represented.

If equation (6) hold with the restriction

x'2 + y'2 + z'
2 + t'

2 = 0,

we may find Ci • C2 an(^ Ci 1 £2' so ^na^

& QC2
'=x', d Ci' + QQ'= iy\ +W =

-it',

which shows that the transformation carries (Q into ((').

Theorem 20] The points of a plane tangent to the funda-

mental sphere will be represented by the totality of trans-

formations which carry a given point into another given

point. These two points ivill be identical when, and only

when, the plane is a minimal one. Conversely, every set of

transformations so transforming a given point, will be repre-

sented by points of a plane.

Theorem 21] The points of a line not tangent to the funda-

mental sphere will be represented by the transformations which

carry two specified points into two specified points, A non-

minimal line through the origin will be represented by the

totality of transformations with two specified fixed points.

When the line through the origin is minimal, the trans-

formations will be parabolic, with specified invariant circles.
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A tangent to the fundamental sphere at a finite point may
be determined by the intersection of a tangent plane with

another plane whose pole is in the tangent plane.

Theorem 22] The points of a tangent to the fundamental

sphere at an infinite point will be represented by the trans-

formations which carry a specified point into a specified point,

and are orthogonal to a given transformation which does this.

§ 2. Linear and Bilinear Systems.

We shall begin the present section with an enumeration of

systems of points linearly dependent, in terms of real para-

meters, on a certain number of given points

x
i = XiVi+X^i- (

A
)

Here we have clearly a chain, using the general definition of

this term. In the same way we have the dual figure

U
i = Xl

V
i +X2

Wi> (
A')

which we define as a chain of planes)
and whose nature needs

no further discussion. We pass on to the next case

x
i = xiyi+X2*i+xsPi- (

B
)

If (y), (z), and (p) be collinear, this represents their whole

line, or merely a chain on it, otherwise a chain congruence in

their plane, as defined in Ch. V.

X
i = XlVi + X2*i +XzVi + XAi> (

c
)

If
I

xyzp
|

= 0

we have one of our previous systems, or else a chain of lines

in a plane. In the opposite case we shall have what we define

as a chain space.

Theorem 23] Every chain space is protectively equivalent to

the real domain. It meets every line in a single point or

a chain, or not at all, and every plane in a line or a chain

congruence.

x
i = Xi\Vi + x2-i + Xzlh + X^i + X^i. (D)

N 2
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If the given points be coplanar we have the totality of

points of their plane, or else one of our previous systems.

When they are not coplanar, we may find a linear trans-

formation to carry the system into

x
l
= X

l + (R
l
+iR

1
')X

b ,

x
2
= X, + (R

2 + iR2
')X

5 ,

*4
= X

4 +(iJ4 + iJS4')Z5 .

Au arbitrary point on the line from (x) of the system to the

point (iR{)x will be

x,'=x
{ + (P+Q)(iR{

')

= <X«

-

PRi - QR-) + (fit + iR/) (Z, + P).

This is also a point of the system. The system consists in

the lines connecting the points of a chain congruence with

a point outside its plane

<*< = XiVi + Y*
z
i + XsPi + XMi + + (

E
)

As before, we may reduce to the canonical form

Xi = Xi +X50Li+XsPi.

If (U) be a real plane which satisfies the equations

(Uoi)=(V&), (U/3) = (Uj3),

then the conditions

(Ux)=0, (Ux) = 0

are equivalent, and all points of this plane belong to the

system. We have a chain of planes such as was given in (AO.

The study of collineations and anti-collineations in three

dimensions follows exactly the same lines in two dimensious

and need not detain us. The study of antipolarities leads

to the hyperquadrics, characterized by the equation

When the discriminant is not zero, we can reduce to
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The number of positive and negative terms here is significant.

If all the terms were positive, or all were negative, the equa-

tion would involve an absurdity. With three terms of one

sign and one of the other, we may reduce to

B
l
x

1
x

1 + B2x2x2 +B3
x
ax3

— B^x^x^ = 0 B^O.

This hyperquadric has oo 3 points, but contains no line, for it

has nothing in common with the plane

x± = 0.

The polar j)lane of a point on the hypersurface meets it

there and nowhere else. On the other hand, with two terms

of each sign we may write

_Bj X-^ X-^ *t~ B2
X

2
X

2 ^3^3 *^4 *^4 — ^
* i ^ ^

*

The polar plane of (o, — —~u 0)5 which we may
^ v B

2 VB
3

'

assume to stand for any point on the hypersurface, meets the

latter in a line chain. On the other hand, no plane is com-

pletely imbedded, as the hypersurface has no point on the line

x
z
— x± = 0.

Let us see what happens to our hyperquadric when the

discriminant vanishes. If the rank of the matrix be 3, there

will be a single singular point whose polar plane is inde-

terminate, and the variety consists either in that point alone, or

in all points on all lines from there to the points of a hyper-

quadric whose plane does not contain that point. When the

rank of the matrix is 2 there is a line of singular points, and

the variety consists either in that line alone, or in a chain of

planes through it. When the rank is 1 we have a single plane.

The study of linear systems of hyperquadrics and their

intersections may be carried on much as in two dimensions,

but is naturally more complicated.* In the same way the

study of the Hermitian metrics follows copy to a certain

extent. At the same time there are places where the analogy

breaks down, and a deeper investigation into this subject

* Segre, Nuovo campo, cit., vol. xxvi.
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would seem to be desirable. For instance, take the elliptic

case, where the fundamental form can be written

^Ct{jXi%j EE (xx).

The distance and angle formulae of Ch. VI are applicable

here as soon as we introduce an additional coordinate, and

understand angles to refer to planes. There will be skew,

parallel, or paratactic lines in space, like the well-known

Clifford parallels or paratactics, which we reach as follows.

We determine a line by its Plucker coordinates

The polar of (p) with regard to the fundamental form will

be (/) where
p .. =

pftj<

Two lines will intersect orthogonally if each intersect both

the other and its polar in the fundamental form
;
(r) cuts (p)

and (q) orthogonally if

^Pij ru = ^Pki ru = 2^ ru = 2?wrw - 2r#rto
= °-

The summations in each case cover the six pairs of numbers

(14, 24. 34, 23, 31, 12). These five equations have usually

two solutions. There will, however, be an infinite number of

solutions when the first four are linearly dependent. Let (q)

go from (0, 0, 0, 1) to (x19 x
2 ,
x
3 , 0)

Sty = X
i> 223 = ?31 = ?ia = °-

Since the first four equations above are to be linearly

dependent, we must have

Xi = KPij + M>jk'

= ^Pjk + PPij-

AA — }XfjL.

It appears thus that (x) traces a chain on the line from

fe3 > Pbv Pi2> 0) to (pUi p,4 , pUi 0).

Theorem 24] In the Hermitian metric of elliptic type there

will pass through each point outside a given line a chain of

lines having thereivith an infinite number of common perpen-
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diculars. All of these lines are skew to the given line and the

lengths cut off on all the common perpendiculars are the same.

This last fact is evident when we realize that if two skew
lines have an infinite number of common perpendiculars, any
two of these may be interchanged by a reflection in a properly

chosen common perpendicular.

There is another sort of elliptic Hermitian metric in three

dimensions, which we shall call pentaspherical and which

deserves passing mention, as it has a certain connexion with

the Laguerre representation discussed in the beginning of the

present chapter. Let a point in space have the pentaspherical

coordinates
P£1 =2x1x4

p£2 = 2x
2
x^

p£4:
= (xx)-2xi

2

p(5 =i(xx)

m = 0.

We shall define the distance of two points (£) and (rj) by the

usual formula.

cos a — _
— •

If we have given two pairs of conjugate imaginary points

(£) (l)> (*?) tney determine two distances, d
x
and d

2 ,
where

cos d
2
= 1—z==r ' cos d

x
— _.—= *

Now (£) and (f) are the foci of a real circle, and (77) and (rj)

those of a second one. They have, as wTe saw earlier, two

common perpendiculars, i.e. two circles cutting each twice

orthogonally, exceptions occurring when they are cospherical,

coplanar, or paratactic. Through each common perpendicular

will pass a pair of spheres, one through each of the given

circles, and the angle of a pair of this sort may be defined as

one of the two angles of the given circles. If 0
L
02 be the
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angles of the two circles whose foci are given above, it may
be shown that their values are obtained from the equations *

cos 0
1
cos 0

2
= (fo)(&Mft)(iia

cos B
1
— cos 6

2
= 2 cos c£p

cos 6
1 + cos 0

2
= 2 cos d

2
.

Theorem 25] If the points of space be represented by oriented

circles according to the Laguerre scheme, the cosine of the

distance of two points in the elliptic pentaspherical Hermitian

measurement is one-hcdf the difference of the cosines of the

angles of the representing circles, while the cosine of the distance

of each from the conjugate of the other is one-half the sum
of the cosines of these angles.

§ 3. Geometry of the Minimal Plane.

The formulae and point of view of the Hermitian metrics

form a natural introduction to our next topic, which also

deals with distances and angles. Our starting point is the

fact, often overlooked, that certain geometrical principles

which are fundamental in the real domain, and form the basis

of real geometry, suffer exception when the domain includes

complex elements as well. What we do in actual fact is this.

We start with a set of axioms for real geometry and develop

the science as far as need be. Then we introduce complex

coordinate values, complex parameters in our various func-

tions and invariants, and extend our language by saying that

the expressions which in the real case defined real distances,

angles, &c, shall be said to define complex distances, angles,

&c. Since the functions used are analytic, identities which

hold in the real domain hold in the complex domain also, and

we sail merrily ahead under the delusion that nothing has

been changed by this extension of our domain. This is not

the case. Some of the fundamental properties which we used

* See the author's Treatise on the Circle and Sphere, cit. p. 452.
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to build up our real geometry are no longer necessarily true

in the complex domain. For instance, the principle which

some writers would like to set up as an axiom, that the sum
of two sides of a triangle is greater than the third side, is

certainly invalid when one of the three lies on a minimal line.

In three-dimensional geometry we have an exceptional

system of metrics, namely, that which obtains in a minimal

plane, and our next task shall be to look into it.*

Distances in a minimal plane of Euclidean space should not

be given a different definition from the usual one, for two

points in general position, that is to say, two points whose

line does not meet the circle at infinity, always lie, in two

minimal planes. On the other hand, if we remember

Laguerre's theorem, whereby the angle of two intersecting

lines is a constant multiple of the logarithm of the cross ratio

which they form with the minimal lines of their pencil, then,

in a minimal plane, where these minimal lines coalesce the

angle of the given lines will appear as zero. There is no

absolute invariant for two lines under the congruent trans-

formations of the minimal plane. They have, however, a

relative invariant, i.e. an expression which is multiplied by

a constant factor. This invariant we shall now develop.

Consider the plane
,r y = lx.

Let two lines have the direction coefficients x ilxiz and

x':lx':z'.

sine = vl + l*(xz'-zaf)

Change the angular unit, writing

sin Vl + L
2
h xz'

Vl + P V(l + V1) x* + z2 + l*)at* + z
ft

'

* See Beck, ' Zur Geometrie in der Minim alebene Sitzungsberichte d. Berliner

Math. Gesellscha/t, vol. xii, 1912, and Moore, 'Geometry where the Element of

Arc is an Exact Differential Proceedings American Academy of Arts and Sciences,

vol. 1, 1914.
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Now the limit of this, as I + 1
2 approaches zero, is

x xf

h = ,>
z z

and the limiting position of our plane is a minimal plane

through the z axis. This expression shall be called the

divergence of the two lines.* It comes from the angle by

just the same sort of limiting process that can be used to

derive the Euclidean metrical formulae from the non-Euclidean

ones, as the absolute quadric approaches the degenerate form

of a plane counted twice and a conic therein.

The best way to handle the minimal plane analytically is by

means of a parametric representation. Let the plane be

x + iy = 0

;

we may write x = % y = i% 0 = u (7)

The distance of two points will be

d^fa-vj. (8)

For the differential of arc, we have

Ids = dw. (9)

If a line have the equation

ax + by + cz + e = 0,

the direction ratios are

X: Y:Z = c:ci:-(a + bi).

Writing the equation of the line

(j>u + xv + \ls = 0,

(j) = 0, x = a + bi, \js — I.

The divergence formula for the lines (<£i , x 1 > ^1) W^^jV^) ^s

6 = ^-^- (10)
X 2 Xi

Theorem 26] In any finite triangle in the minimal plane

with no minimal side, the sum of the lengths of the sides, when

* Beck, loc. cit., uses 4 Sperrung', which seems to be a typographical term

for i spacing'; Moore uses 'angle', which seems objectionable.
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properly oriented, and the sum of the divergences of the angle

is equal to zero.

Theorem 27] The locus of points at a given distance from
a finite point is a minimal line, the envelope of lines having a

given divergence from a given non-minimal line is an infinite

point.

Let the vertices of a triangle be

The divergence of two sides will be

u
i
~u

3
u

1
—u2

Half the product of this and the length of the third side

willbe i\u,v2
1 |.

On the other hand, the product of two divergences and the

included length will be
\

u
1
v

2
1

|

2

Theorem 28] In a finite triangle of the minimal plane,

ivhere no side is minimal, the product of the lengths of two

sides and the divergence included, and the product of two

divergences and the included length, is independent of the

choice of sides.

A collineation of the minimal plane shall be called conformal

if it leave the infinite line, and its point on the circle at infinity

invariant. Such a transformation may always be written in

the form u'=au + b,

v'= cu + dv-\-e.

It will keep distances invariant if

a = 1.

Theorem 29] The general congruent collineation of the

minimal pjlane vnll mult iply divergences by a constant factor

which is equal to unity only in the special case ivhere the line

at infinity is the only fixed line.
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Theorem 30] In a congruent collineation of a minimal
plane, either there is no finite fixed point, or all points of

a finite line are fixed.

The curvature of every curve in a minimal plane is zero,

since all angles are zero. There is, however, an analogous

function involving divergence which is worth notice. Let us

seek the limit of the divergence of adjacent tangents divided

by the connecting arc, a limit which we shall call the deviation

of the curve at that point.* If the curve be expressed in

the form « = «(*), v = v(t),

the equation of the tangent is

(U-u)i/-(V-v)vf = 0.

The divergence of adjacent tangents will be

dt,

ds == v'dt

hence the deviation is equal to

When the curve is written

v — v(u),

the deviation takes the simple form

-v".

This will be constant only for the simple curves

v = au2 + bu + c.

Theorem 31] The only curves in the minimal plane which

have a constant deviation are straight lines and parabolic

circles.

If the vertices of a triangle be (ult (u
2
,v

2 )
(u

3 ,
v
3)

the

equation of the circumscribed parabolic circle is

|

u2u
x
v
2

1
I

= 0.

* Beck, loc. cit., uses ' Abweiehung Moore, ' Curvature '.
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Its deviation is

-2
|

u
x
v
2

1
|

(u
2
-u

z )
(u.

d
- u

x )
{u

x
-u

2 )

Theorem 32] The ratio of a side of a triangle to the opposite

divergence is equal to twice the reciprocal of the deviation of the

circumscribing circle.

§ 4. Differential Geometry of Complex Space.

The totality of points of a complex three-dimensional space

will depend upon six real parameters. We have, therefore,

one-, two-, three-, four-, and five-parameter systems of points

to consider. The differential geometry of the one-parameter

system or thread presents very little interest. We shall begin

with the congruence

x = x(ult u2 ), y = y(u
1 ,
u2), z = z{%b

l ,
u

2 ).

The following theorem is perfectly obvious

:

Theorem 33] The necessary and sufficient condition that

a congruence should be a curve is that its projection on two

non-parallel planes should be curves.

The analytic condition for a curve will thus be

_ * a) _ l(x,y)
^ 0 ^

d (u
x ,
u

2)
d (u

x ,
u2)

d , u2j

If these equations be nob fulfilled, we have, at an arbitrary

point,

dx = du, + du 9 ;
dy = ~- du, + ~- du9 :

dl^ 1 dw
2

2 J ^Uj 1 %u
2

'hz 7 *bz ,

dz = r— du, + — auo.
ou

2
cu

2

Theorem 34] If a congruence be not a curve, the tangents at

an arbitrary point generate a line-chain.

We pass on to the three-parameter system

x = x (Uj
,
u

2
,Wo), y = y(u

1
,u2) us ), z = z (u^

,
u

2 ,
u3).
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Suppose first that

y, z) = 0. (12)

If this equation hold identically for all real sets of parameter

values uv u
2 ,
u

3 , it is an absolute identity for all values of

this parameter, and
f (x y z) = 0

so that our system lies on some surface. Conversely, when an

equation like the last equation holds,

<>y c)^ '

if^ + . i/ii = 0

and (12) is satisfied. The rank of the matrix of the deter-

minant could not sink to two, for then we should have a curve,

and no three-parameter system at all. Assuming that (12) is

satisfied, we see that dx, cly, and dz are linearly dependent, and

conversely.

Theorem 35] The necessary and sufficient condition that

a three-parameter system ofpoints should lie upon a surface is

that the tangents at an arbitrary point should generate a pencil

of lines.

Theorem 36] If a three-parameter system of points do not

lie on a surface, the tangents at con arbitrary non-singular

point will meet an arbitrary plane in a chain congruence.

There is another way of expressing the condition that

a three-parameter system should He upon a surface, which

leads to a curious result. Reverting to our equations (1),

we have
7>{X-iX\ Y-iY', Z-iZ') =

Let us choose X, F, and Z as our real parameters, so that

u
x
= X, u

2
= F, u

3
= Z,
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dX' .aF'

7* ax ~*ax

''IF
dF'

.aF'
-'17

= 0.

Dividing into real and imaginary parts, we find

a(X', y\z') _ ax' yr
a(X, F,Z) "~ bX +

S 7 + d£*

3(F',iH
|

*(S',X')
|

»(X',F)
o.

MF,Z) '
' *(X,F)

On the other hand, let us look for real directions at

(X', Y\ Z') which are parallel to the corresponding directions

at (X, Y, Z)

dX,= PdX)
dY'= PdY, dZ'=pdZ,

IX' W *Z'

, 2
nx f

aX

ay

3X'

zz

i)F'
+

aF'

IZ

7>Z'-\

aX

a Y

*z

= 0.

Lax T aF r tz\

l(Y',Z') *(Z\X') a(X', F')l a(X', F', Z')
+ P l*(Y,Z)

+
*(Z,X)

+
a(X,F)J *(X,Y,Z)

= o.

(13)

In the present instance this becomes

/ l{X'
y
Y',Z f

)\,
' „ A

Our three-parameter system will lie upon a surface, when,

MX' F' iT')
and only when, (13) has the roots \ \1

'

, i, —i. What
o (A

?

Z)

will be the geometric meaning of these facts 1 The real root
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will give us a single real fixed direction, and along this the

"hiX' Y' Z')
ratio of stretching is J. v

} ; which is the ratio of corre-
d(X, i, Z)

sponding infinitesimal volumes. The complex roots will give

us two conjugate imaginary fixed directions,

dX'=<rdX
s

dY'_=**dY
9

dZ'=<rdZ,

dX'=*dX, dY'=5-dY
}
dZ'=adZ.

There is a fixed elliptic involution of directions given by

kdX + XdX, XdY+ldY, \dZ + \dZt

\dX-ldX, XdY-ldY, \dZ-\dZ.

The square of the ratio of stretching for corresponding

directions is + 2 /3 0-<rAA + acf2A2

aA2 + 2/3AA + aA2

<x = dX2 + dY2 + dZ2
i

5c = dX2 + dY2 + clZ 2
,

(3 = dXdX + dXdY+dZdZ.

This is a maximum or mininum when, and only when,

af3
2 \2

o- + aa((r + 5-)\\ + 5-j3l
2 5- = 0.

The roots will give a pair in the involution when

(j + a = 0,

and it is only under these circumstances that we shall have an

orthogonal pair which belongs to the involution and whose

members correspond to one another. The roots of the equation

for maximum and minimum stretching are now

A2 _ a

A2 ~~ a*

Putting 0L = Re
i<p

i
a = Ec"^,

A = ±<^A.

The squares of the two stretching ratios are now

a 2(R-B) <t
2(R + B)

(R + B) ' (R-B)
'

The product of these is a4 .
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Our reasoning is reversible, so that we have

Theorem 37] Necessary and sufficient conditions that a

three-parameter system ofpoints should lie on a surface are:

a) that in the corresponding real transformation of space

in the Marie system of representation there should be in each

point in general position just one real invariant direction, and

b) that the stretching ratio for this direction should be the

ratio of corresponding infinitesimal volumes at the corre-

sponding points, and

c) that there should be an invariant real elliptic involution

pencil of directions, and

d) that in this pencil there should be an orthogonal pair

that correspond to one another, and

e) that the product of the stretching ratios for this pair,

which are the maximum and minimum stretching ratios for

the pencil, should be equal to unity.

We turn next to a four-parameter system, where x, y t
and z

are functions of ult u2 ,
u3i and uA . If this system constitute

a surface, then from (12)

^ (x, y, z)
*

U
' = 0, % = 1, 2, 3, 4.

^(up uk9 ui)

Conversely, suppose that these equations are identically

satisfied. We may put
t>z . <sz 2>0 ~bz

x = u, + iu
2 , y = u3 + iu*, r

—

+^-— = — =0.
* CU

Y
<iU

2
dw

3
du

4

Let z = Z
x + iZ

2 ,

^Uj bu
2

dw
2

c)Uj

zz
1
_zz

2 IZi _ _ ^

.

dit
3

<>u
2

<)u
2

2>u3

This shows that z is an analytic function of x
}
when y is

constant, and of y when x is constant, hence it is analytic

in x and y together, and we have a surface.*

* Cf. Osgood, 'Zweite Note uber analytische Funktionen Math. Annaten,
vol. liii, 1900, pp. 460 ff.

2074 O
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Theorem 38] The necessary and sufficient condition that

a four-parameter system of points should constitute a surface

is that every three-parameter sub-set should lie on the same

surface, or that all the tangents at an arbitrary point should

be coplanar.

The tangents to a surface will generate a plane, and two of

them, usually distinct, will osculate the surface. When the

four-parameter system of points is not a surface the tangents

at an arbitrary point will not be coplanar
;
they will, by V. 12]

either generate a chain of planes, or meet an arbitrary plane

in chain congruence of points. The condition for the former is

that they be linearly dependent on three of their number, i.e.

2 xiS.= 2£<U.= 2-&«|^=«.

_ R Hx,S>*) i= l5 2,3,4. (14)

Leaving this equation hanging in the air for a moment, let

us inquire under what circumstances our system will include

three-parameter sub-systems which lie on surfaces, where it is

necessary and sufficient that when

^(ul5 u2
,U3,u4)

= 0,

afe y, z) = 0

The partial derivative of x to Uj in this expression is

<)X <)X 'bUi _ <!>X ~bx <>Wj

Substituting, we get

^}>F *(x,y,z) _ n
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These equations, when independent, cannot have more than

two independent solutions—they may have only one, or none

at all. When they are equivalent, there are three independent

systems.*

Theorem 39] The necessary and sufficient condition that the

tangents at an arbitrary point of a four-parameter system

should meet an arbitrary plane in a chain congruence is that

there should be three independent systems of surfaces, each of

which contains a three-parameter sub-set of points of the given

system.

We pass finally to the five-parameter system, where x
s y,

and z are functions of U-^
,
U2

,
Uq

,
u^ , and ^(

5
. When will this

constitute a one-parameter system of surfaces? Let these

surfaces be given by

F(ult u2 ,
u

3 ,
u4 ,

u
5)
= Const,

d F
Assuming that -— ^ 0, we have for the partial derivatives of

oUz

our coordinates

Dili

F)

7>F

<>uK

i=l,2, 3, 4.

The conditions for a surface are given by 38]

H*>'y, *) _ a (33, y, z) _ a (x, y, z) = *(x, y,z) _
^(u^u^uj ^(Ug,^,^) ^(u^u^Uz) ^(u^u^Us)

The first of these gives, when slightly expanded,

1

YF

Mx, F)

d(w
2 ,
u

6)

Hy,F)
^(u

2 ,
u6 )

Hz, F)

^F
^uA ZUn

Hx, F) Mx, F)

*(l*4,'f*8)

My,F)

*(u3
,u

5)

My, F)

*(w
3 ,
u5)

H*>f)

HwA ,
u

6 )

Hz, F)

= 0,

d(u
2
,tt

5) ^(%>%) HU^U6)

* Cf. Goursnt and Bourlet, Lemons sur Vintegration cles equations a derivees

partieUes, Paris, 1891, pp. 49 ff.

o 2
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which can be written also

^(u
2
,u

3 ,^4 ,u5 )

Our condition is, thus, that the rank of the matrix

*F IF

bx

bu
x

H

~bz

7>u5

should be 4 or less.

bx <)y t>z

tfl^ 0^ dlt^

Since the left-hand side is real,

c)x by bz _ bx - by bz

c)^. bu
{

bit- bu-

The values of a, /3, y, a, (3, y must be such that the expression

by bzbx

bu>

is proportional to the partial derivative of F, i.e.

b(x,y,z) b(x,y,z) ^i7

r= i * K*

>

u
; '
uh) * fa, >u>i,uj b Ui

We therefore write

i,j,k=
b(x,y,z) b(x,y,z)

diii = 0
rT= !

* fa > «y 1
d (u

. , ^ , u

J

(i-m) (k-l)(k-m) ± 0. (15)
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Theorem 40] If the coordinates of the points of a five-

parameter system be analytic functions of the independent

parameters the necessary and sufficient

condition that the system should contain one, and, hence, an
infinite number of surfaces is that the Pfaff equation (15)

should be integrable.

Let us now assume that our system is given in the other

form, namely,
F(x

>
y,z

>
x,y,z) = 0. (16)

Let the surfaces be given by the equations

z = z(x,y, R), z = z(x, y, R),

4>(x,y,x,y,R) = o.

We may treat x,y, x, y, as independent variables, and write

oF oFoz
OX OZ OX

oF oFoz
OX oz ox

o 2F oFoF o 2F oFoF oFoF o 2F
ex ox oz oz ozoz ox ox

o
2F o*F oF

_ ZFZF o 2F _
ox oz ozox oz ox oxoz ~ '

Similarly,

oxox oxoz ox

o 2F o 2F oF
ozox ozoz oz

oF oF
ox oz

0

o 2F o 2F oF
oyoy oyoz oy

o 2F o 2F oF
ozoy ozoz oz

= 0.

= 0.
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By cross-differentiation

b 2F b 2F
bxby

b2F
bzby

IF
by

bxbz

b 2F
bz bz

bF

bF
bx

^F
bz

Ti
0

b 2F b 2F
bybx

b 2F
bz bx

bF
bx

bybz

b 2F
bz bz

bF
by

bF
by

bF
bz

— 0

= 0.

Hence it is a necessary condition that for all values where
F = 0, the matrix

b 2F b 2F b 2F bF
bxbx bxby bxbz bx

b 2F b 2F b
2F bF

bybx by by bybz by

b 2F b 2F b 2F bF
bz bx bzby bzbz bz

bF bF bF
bx by bz

0

(17)

should be of rank 2. Conversely, when this condition is

fulfilled for every point of the variety, every plane which

meets it in oo 3 points will meet it in oo 1 curves, and these may
be assembled into go 1 surfaces.

Theorem 41] The necessary and sufficient condition that

a jive-parameter system of points, given by an equation such

as (16) should contain a singly infinite system of surfaces is

that the rank of the matrix (17) should be 2.

It seems certain that some simple geometrical condition

must be fulfilled when the rank of (17) is 3
;
unfortunately

the present writer has been unable to find it. We find

exactly as in VI (19) that the tangent plane has the equation

(
^)_ + (/_ 2/)_ +(/_,)

_ =0 .
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If the tangent plane at (x, y, z) be

z'-z = 0,

the three-parameter variety will meet the plane in a two-

parameter variety given by

}>
2F

° = {X'~- X) T^ +2(af-x)(y'-y) ^-^(y'-y)

^ 2F

ZxZy

7>
2F

y*F

*y*
+ ...

w
i 2F

+ ...

~d 'F
+ (x'— x) (x

f— x) . . _ +(x'— x) (y—y)

7)
2F c>

2F
+ <?-S)tf-ti— +tf-yM-g) s-^ + ....

To find where a line through the point of contact meets this

system, let us put

y'-y = \(x'-x) =k[X + iY]i y'-y =\(x'-x) = X[X-iY],

Z 2F W _ ^ 2F _ W]
+ A. r—— + A r-— + AA~—— + ....(Z 2+F 2

)

[^xdx ~dy~dx <)X()y

If
~b
2F l*F - * 2F - Z 2F

c—r-= + A —— + A—— + AA^-t-_ = 0.
^X^X <>y~bx ~bx~dy ^y^y

The two branches of the thread on this line have mutually

orthogonal tangent chains. There may be a chain of such

tangent lines, or none at all. There will be just one, by

II. 25], if

WF Z2F
~bX^X ~dX~dy

Z 2F WF
<)y<)x ^y^y

= 0,
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and this means that the matrix (17) has a rank (3) at this

point.

Theorem 42] The matrix (1 7) has the rank 3 at those points

where there is just one tangent in the tangent plane meeting

the variety in a thread with a double point at the point of

contact of such a nature that tangent chains to the two branches

are mutually orthogonal.



CHAPTER VIII

THE VON STAUDT THEORY

§ 1. The Basis of Real Projective Geometry

The problem of complex geometry, as we have studied it so

far, can be stated in the following terms

:

' There exists a class of undefined objects called points which
are in one to one correspondence with groups of real numbers
called coordinates. Let the coordinates be allowed to take
complex values ; what real objects may then be found to corre-

spond to them, and what geometrical relations will obtain ?

'

As a matter of mathematical history, geometry was a

highly developed science before the birth of Descartes
;
many

geometers before and since have considered coordinates and

the whole analytical apparatus as one method, and by no

means always the best one, to reach geometrical truth. In

particular, since the time of Poncelet and Steiner, projective

geometry, treated by rarely synthetic methods, has reached

a very high state of perfection. But even here the student

is pursued by complex elements. It is intolerably clumsy to

say that a straight line coplanar with a conic may intersect it

or may not. Consequently, geometers have tried one expedient

after another to smuggle the imaginary back into their science.

One school of writers have used what they style 'the

principle of continuity.' Here is a typical statement of this

principle *

:

' The principle of continuity enables us to combine the

elegance of geometric methods with the generality of algebraic

methods. For instance, if we wish to determine the points in

which a line meets a circle, the neatest method is afforded by
pure geometry. But in certain relative positions of the line

and the circle, the line does not cut the circle in visible points.

* Cf. Kussell, Elementary Treatise on Pure Geometry, second edition, Oxford,

1905. pp. 269, 270.



218 THE VON STAUDT THEORY CH.

Here Algebraical Geometry comes to our aid. For if we
solve the same problem by Algebraical Geometry, we shall

ultimately have to solve a quadratic equation, and the quad-
ratic equation will have two solutions, real, coincident or
imaginary. Hence we conclude that a line always meets a
circle in two points, real, coincident or imaginary.'

The fundamental difficulty is that we are given no hint

whatever as to what the so-called imaginary points may be.

They certainly are not points in the sense in which the

substantive has been used so far. They seem to be something

which is common to a line and a circle which have no common
points. The only explanation which this writer gives is on

the following page

:

' The best way of defining a pair of imaginary points is as

the double points of an elliptic involution. This statement
would be unexceptionable if the word "defining" were replaced

by " determining ", but the phrase as it stands is meaningless,

for the one certain thing about an elliptic involution is that

it has no double points, in the sense in which the words have
been used so far.'

It is perfectly clear that all such procedures, however defen-

sible on purely didactic grounds, are repugnant to the spirit of

modern rigorous mathematics. We must find a better way.

Whenever it is necessary to enlarge our universe of mathe-

matical discourse by including new elements, there are just

two ways of proceeding :

A) We may build a new mathematical structure from the

ground up, where the new elements are included among the

objects whose existence is postulated at the beginning, and

which are defined only in so far as independent assumptions

of a purely logical nature are made about them :

B) We may define the new elements in terms of the elements

already recognized. Each of these methods is sound and

legitimate, although it should be noticed that if we had

recourse to A) every time we introduced a new concept, our

progress would not be rapid. Still, as a logical method of

proceeding it is unexceptionable. In the present case we are

not obliged to define imaginary points per se any more than
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we are obliged to define real ones, provided that we start

from a set of fundamental assumptions which will take account

of them automatically. This method has been successfully

followed by one or two recent writers who have laid down
sets of independent postulates sufficient to build up the

geometry of the complex domain.*

It is not our present intention to follow this method, or to

show the correspondence between the objects so defined and

complex sets of coordinate values. We shall follow the other

lead, and define imaginary elements in pure geometry in

terms of real elements which have been already admitted.

This method was first worked out by that geometer whose

name appears in the heading of the present chapter, and

subsequent writers have done little in the field but refine

and improve the details of his presentations. Yet all of the

discussions which have so far been published are subject to

one important criticism. The discoverer, and most of his

successors, wrote before the age of modern abstract views of

geometry, and the critique of geometrical assumptions which

has been so ac^ve in recent years. Consequently, in all their

treatments, there are certain assumptions taken directly from

intuition, notably the idea of sense of description of a line.

Such a procedure is to-day intolerable. A theory of imagi-

naries in pure geometry has no raison d'etre unless it be built

up logically from a definite set of axioms, with no intuitional

element whatever. It is the object of this concluding chapter

to show how the Von Staudt theory can be developed in

this way.f

* Pieri, ' Nuovi principii di geometria proiettiva Memorie delta R. Accademia

delh Scienze di Torino, Series 2, vol. lv, 1905. Also Veblen and Young, Projec-

tive Geometry, vol. i, Boston, 1910, Assumptions, A, E, P, H2 ,
K2 .

t The principal existing articles dealing with the Von Staudt theory are

'Von Staudt, Beitrage zur Geometrie der Lage', cit., Part ii
;
Pfaff, Neuere

Geometrie, Erlangen, 1867 (which the present author has not been able to see)
;

August, ' Untersuchungen uber das Imaginare in der Geometrie Berlin,

1872, and a long article by Luroth, ' Das Imaginare in der Geometrie und
das Rechnen mit Wurfen', Math. Annalen, vol. viii, 1874. Two writers have

explained the theory in algebraic form. Stolz, ' Die geometrische Bedeutung

der komplexen Elemente', Math. Annalen, vol. iv, 1871, and Stephanos, ' Sur

la definition g^ometrique des points imaginaires,' Bulletin des Sciences mathema-

tiqaes, Serie 2, vol. vii, 1883.
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We start with a system of assumptions for projective geo-

metry in three dimensions.*

Axiom I] There exists a class of objects called points

which contains at least two distinct elements.

Axiom II] Each two distinct points belong to a single

sub-class called a line.

The line shall be said to contain the points, while the

points are on the line. The line determined by points A and

B shall be AB.

Axiom III] Two distinct points determine among the

remaining points of their line two mutually exclusive sub-

classes of points, neither of which is empty.

These classes are called separation classes. Points in

different classes shall be said to be separated by the given

points. Points in the same class, are naturally not separated.

If A and B separate P and Q, we shall write AB PQ, while

for non-separation we shall write AB PQ.

Axiom IV] If AB PQ then PQ |AB.

Axiom V] If four collinear points be given, there is one

and only one way in which they can be divided into two

mutually separating pairs.

From these axioms we easily find

:

Theorem 1] If AB CD, AE CD, EB CD.

Theorem 2] If five collinear points be given, a chosen pair

will separate tivo and only tivo of the pairs determined by the

other three, or none at all.

Theorem 3] If AC BD, AE CD, then AE
J
BD

This theorem is absolutely fundamental. We may give its

significance in intuitional form by saying that if D be very

* The development of projective geometry from axioms here given is taken

from the author's Non-Euclidean Geometry^ cit. pp. 246 ff.
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distant, and we start from J., and find that G is beyond B,

while E is beyond G, then E is beyond B.

In intuitional terms this is a betweenness theorem. It tells

us that if G and D be between A and B, Q between G and D,

then Q is between J. and B. We have thus established

axiomatically betweenness and beyondness ; we also need

continuity.

Axiom VI] If all points of the separation class bounded

by A and B be so divided into two sub-classes that no point

of the first sub-class is separated from A by B and a point

of the second sub-class, then there will be a single point G
in the class such that no point of the first sub-class is

separated from A by B and G, and none of the second is

separated from B by A and G.

The point G may be reckoned as belonging to the one or the

other class, according to the definition of the dichotomy. It is

the existence of this point that forces us to state our axioms

in terms of non-separation rather than in the simpler terms of

separation. The intuitional meaning of the axiom is this.

If A be to the left of B, and all the points between A and B be

divided into two sub-classes such that a point of the first is

never to the right of one of the second, then there is such

a point (7, that a point of the first class is never to the right of

it, and one of the second is never to the left of it.

Axiom VII] All points are not collinear.

Definition. The assemblage of all points collinear with a

given point and with the points of a line that does not contain

that point shall be called a plane.

Axiom VIII] If a line intersect in distinct points two of

the lines determined by three non-collinear points, it inter-

sects the third line.

Theorem 4] PA GD, PB AB, then PQ GD.

Theorem 5] A plane contains every line ivhereof it contains

two points.
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Theorem 6] If A'B'Gf

be three non-collinear points of the

plane determined by A and BG, then this latter is identical

with the plane determined by A' and B'C.

Theorem 7] Two lines in the same plane always intersect.

Theorem 8] Any three non-collimar points in a plane

will determine it.

Axiom IX] Not all points are in one plane.

Definition. The assemblage of all points collinear with

a fixed point and with the points of a plane which does not

contain the given point shall be called a space.

In the remainder of the present chapter all points are in one

space.

It is easy to show by straightforward reasoning * that a

space contains every line whereof it contains two points, and

every plane whereof it contains three points which are not

collinear. Moreover, we may show that a space is equally

well determined by any four of its points which are not

coplanar, so that two spaces sharing four non-coplanar points

are identical. It will follow from this that a line and plane

in the same space will always have one point in common, and

two planes will share a line. A system of planes through

a line is said to be co-axal, the line being their axis, or to form

a pencil. This latter name is also applied to a set of con-

current coplanar lines.

Axiom X] If four co-axal planes meet one transversal in

A, B,G, and D while they meet a second in A', B\ C, and D'

respectively, and if AG BD, then A'G'
J
B'U.

This axiom amounts to saying that the relation of separation

is invariant for projection and intersection. We may also

define separation in a pencil of lines by means of the separation

relation cut on any transversal.

It is now possible to give the usual demonstration of

Desargues two-triangle theorem, and to draw therefrom the

* Ibid., pp. 250 ff.
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theorem that if two complete quadrangles be so situated that

five sides of the one meet five of the other in points of a certain

line, the same is true of the sixth pair of sides.

K

Theorem 9] If the pairs of opposite vertices of a complete

quadrilateral be AC, KM, and LM respectively, then KM and
LN will meet AG in two distinct points B and D such that

AG [bD*

Let S be such a point of the line ML that AL MS.

Project S from B into R on KL ; then GL KR.

In the triangles KNM, SLR, all of whose vertices we may
suppose distinct, corresponding sides are concurrent in the

collinear points A, C, B.

Hence KS, JVZ, and MR meet in a point 0. Let KS meet

AC in Y, while MR meets it in X, both points being distinct

from A, B, G, D.
-*

MS, projecting on AG from K and from 0Now, since AL

we have
AC\by, AD XY.

* Cf. Enriques, Lezioni di geometria proieitiva, Bologna, 1898, p. 56. In some
systems of axioms for projective geometry, as Veblen and Young, loc. cit., it

is necessary to introduce the specific axiom that the diagonals of a complete

quadrilateral are not concurrent.
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In the same way, since GL RK,

CD AG BX.

Since 07

Hence

BX, AyIdX, then, by 2] AC\DX.

AG BD.

Definition. Given two pairs of points whereof the first is

composed of opposite vertices of a complete quadrilateral, and

the second of the intersection of this diagonal with the

opposite two, the first pair are said to separate the other pair

harmonically.

We are able next to give the usual proof of

Theorem 10] If A and G separate B and D harmonically,

then B and D do the same for A and G.

We see in this way that a point has just one harmonic

conj ugate with regard to two given points collinear with it

;

the relation of harmonic separation is invariant for projection

and intersection, and we may define harmonic separation in

a pencil by means of any transversal. This enables us to

introduce the idea of cross ratio, which is done in the following

terms.*

Suppose that we have given three collinear points i^, P
0

and Plt the harmonic conjugate of P
0
with regard to P

1
and P^

shall be called P
2

. That of 1^ with regard to P
2
and P^, P

3 .

That of Pj with regard to P0 and P^ shall be Hv and in

general Pn+l and Pn_ x
shall be harmonically separated by Pn

and P^ , where the subscripts are integral.

Next take a positive integer m and construct a new scale

where P, replaces P
1

in such wise that Pm is the same point

as P^. We shall then find that Prm is identical with Pm

There will thus be a single definite point to correspond to each

* Cp. the author's Non-Euclidean Geometry, cit. pp. 255 if.
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rational subscript. Lastly, we shall find that every dichotomy

in the rational number system will give a dichotomy in a

separation class and a limiting point, exactly as is required

for Axiom VI, and conversely every such dichotomy in the

separation class will give a dichotomy in the number system,

and so a rational or irrational number. The proof follows

step by step the usual one where we show that any length can

be expressed rationally or irrationally in terms of any other,

our Axiom VI replacing that of Archimedes. If

x>0, P^P^P* if *<0, P^pJp^.

If A, B, C, and D be four distinct points, and if A, C, and B
be made to play the roles of i^, i^and P

l}
then the subscript

to be attached to D shall be called a cross ratio of the four

given points, and written (AC, BD). Since this expression

depends merely on a succession of harmonic constructions,

it is invariant for projections and intersections, and may be

used equally to define the cross ratio of four elements of

a pencil. We find by a simple construction

{AC, BD) = {CA, DB) = (BD, AC) = (DB, CA).

The range of collinear points, the pencil of coplanar lines,

and the pencil of co-axal planes shall be defined as funda-
mental one-dimensional forms. Two such forms shall be

said to be projective if their elements are in one to one corre-

spondence and corresponding cross ratios are equal. If the

two be so related that they are connected by a sequence of

projections and intersections, they are surely projective. Con-

versely, as we may easily find a sequence of projections and

intersections to carry three chosen elements of line form into

any three of the other, and as these may be taken as the

basis of cross ratio measurement, we see that we have proved

the fundamental theorem of projective geometry whereby the

necessary and sufficient condition that two fundamental one-

dimensional forms should be projective is that they should be

connected by a succession of projections and intersections.

It is now necessary to examine a little more closely the
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relations of the various cross ratios of given point systems.

We may easily show that *

(PP PP\ - a ~ /3
.

y_§
.

If we assign to the three points i^, P
0 , and Pj the pairs of

homogeneous coordinate values (0, 1), (1, 0), (1, 1), then the

point Px will have coordinates (x
Q ,

xj, where x = — •

A cross ratio of the four points Px ,
P
y ,

P
Z)
P

t
will be

expressed

Xq x
x

!h

x
o

z
0
z

1

i VoVi

This will be absolutely unaltered on the linear trans-

formation

x
Q
= (IqqXq -{-a^x^ ^

X^ — (&iqXq -f- tt'jj C^j

This is surely a projective transformation, and, as there are

parameters available to carry any three points into any other

three, it is the most general projective transformation. It

will be involutory if

«oo + «n = 0.

We distinguish between the hyperbolic involution, where

each pair of corresponding points are harmonically separated

by the self-corresponding ones, and the elliptic involution,

where there are no self-corresponding points. In a hyperbolic

involution two pairs do not separate one another, for their

cross ratio is positive ; in an elliptic they do. An involution

is completely determined by two pairs, and a one-dimensional

* Ibid., pp. 261, 262.
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projectivity is involutory if a single pair correspond inter-

changeably.

The whole of real projective geometry in three dimensions

is now open to us without further axioms, so that we may
assume any of the standard theorems in this science which we
desire. In particular, let us assume that we have developed

the usual theory of collineations and correlations, including

polar systems, and have laid down the broad lines for the

theory of conic sections. Let us recall, among other facts,

that if an involution of points be given on a conic, the lines

connecting corresponding points pass through a fixed point

called the centre of the involution. If the involution be

hyperbolic, the double points are the intersections of the conic

with the polar of the centre.

A point shall be said to be inside a conic if its polar fails to

meet the latter; it is outside if its polar meets the conic twice.

Suppose that we have a self-conjugate triangle whose vertices

are A 1} A 2 , and A 3
. Let P be a poinir on the conic, and let

PA
i
meet A-A k in A/, while the tangent at P meets this

latter line in A(\ Then A/A/' and AjA k are pairs in the

involution of conjugate points on AjA k .

Suppose that ^2 ^-3'

Then

If

A
Y
A.!>^A

2
A,

If

A
1
A3

' A
2
A3

", then A
1
A

3
j

A
1
A

2 ^AJAZ
'\ then A

1
A

2

f

A 9 A/.

A, A"

It will follow from this that two sides of that triangle

will bear hyperbolic involutions, and the third side will bear

an elliptic one

:

Theorem 11] If a point be inside a conic, every point con-

ugate to it is outside.

Theorem 12] Every line through a point inside a conic

meets the latter in two distinct points.

2674 P 2
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Theorem 13] Given an elliptic involution and another

involution on the same fundamental one-dimensional form,

they have necessarily one common pair.

This is proved by projecting them into two involutions on

the same conic, and connecting the centres, one of which is

inside. As a corollary we find a theorem of first importance

in the constructions which we shall take up presently

:

Theorem 14] If any pair be taken in an elliptic involution,

a second pair may always be found which divides the first one

harmonically. «

Suppose that we have an involution of collinear points

which are conjugate with regard to a conic. Let PP' be an

arbitrary pair of this involution, Q the pole of their line, S any

point of the conic. Let PS meet the curve again in S' while

S'Q meets it in T, and PT meets it in T'. The self-conjugate

triangle PQP' is the diagonal triangle of the quadrangle

SS'TT', so that ST' goes through P', and S, which is an

arbitrary point of the curve, projects our involution of con-

jugate points into the involution on the conic whose centre is

the pole of the given line.

Suppose, conversely, that we have an elliptic involution of

collinear points which is projected from two different points

R and S on a conic into the same involution.

Let L be the pole of the given line, G the centre of the

involution on the conic, this latter point being necessarily

within the conic. The line GL will meet the conic in two

points P, P', which are projected back on the given line from

R and S into pairs of points which belong to the given involu-

tion and are conjugate with regard to the conic. If they

were distinct pairs, the given involution would consist in

conjugate pairs with regard to the conic. Suppose that P, Pf

are projected from R and $ into the same pair of points on the

given line. L, the pole of the line, will then be the intersection

of PP' and RS, and the tangents at R and S will intersect on

the given line. But the mate of this point in the involution

on the given line must lie on RG and SC
t

for this point

could not be C itself as it is outside. Hence, once more, C=L.



VIII THE VON STAUDT THEORY 229

Theorem 15] The necessary and sufficient condition that

an elliptic involution of collinear "points should be projected

from two points of a conic into the same involution upon the

conic is that it should be an involution of conjugate points.

The centre of the involution on the conic will be the pole of the

given line.

Definition. A projective transformation of a fundamental

one-dimensional form shall be defined as infinitesimal when

all cross ratios with three fixed points are altered infini-

tesimally in value. The necessary and sufficient condition

for this is that the corresponding algebraic equations should

differ infinitesimally from those which give rise to the identical

project!vity.

Definition. Two ordered triads of points on the same line

shall be said to have the same sense when the transformation

that carries the one into the other can be altered continuously

into the identical transformation. When this is not the case

they are said to have opposite senses.

Theorem 16] The necessary and sufficient condition that

two ordered triads of collinear points shoidd have the same

sense is that the projective transformation (1) that carries the

one into the other should have a positive discriminant.*

Theorem 17] Ttuo triads whose senses are the same as, or

opposite to, the sense of a third triad, have the same senses

as one another.

Theorem 18] If one of tivo triads have the same sense as

a third, and the other have a sense opposite to that of the third,

the two have opposite senses.

Theorem 19] If the members of a triad be permuted cyclic-

ally, the sense is not altered.

We may confine our attention to the triad (0, 1) (1, 0) (1, 1).

They are permuted cyclically by the projectivity with positive

discriminant x '- rx r'— -rx +rx
* There is a certain lapse from the purity of the Von Staudt method in

using this theorem and the related algebra, but the gain in simplicity is

great. Cf, Veblen and Young's Projective Geometry, cit. vol. ii, pp. 40 &.

p 3
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Theorem 20] If two members of a triad be interchanged,

the sense is reversed.

We take the previous three points, and the transformation

We may define sameness and oppositeness of sense for triads

of a pencil in analogous fashion, or by the senses on any
transversal, for a continuous change in the intersections with

one transversal will produce a continuous change on all.

Incidentally, we may easily prove :

Theorem 21] The necessary and sufficient condition that

two triads on the same one-dimensional fundamental form
should have opposite senses is that in the projectivity which

carries the one into the other there should be two self-corre-

sponding elements, which separate all pairs of corresponding

elements.

Theorem 22] If l
Y
and l

2
be two coplanar lines, V

x
and V

2

two distinct points of their plane, the necessary and sufficient

condition that a triad of points on l
x
should be projected from

V
Y
and V

2
upon l

2
into two triads ivith the opposite senses is

that V
1
V

2
should meet l

x
l
2
in two ptoints ivhich are separated

by the first two points.

It is clear that similar theorems will subsist when the triads

are projected by co-axal planes. Finally, let us note that we

are free to speak of a sense of description of a whole funda-

mental one-dimensional form if we mean thereby that all

triads have the same sense as a given triad to which an order

of elements has been assigned.

§ 2. Imaginary Elements in Pure Geometry.

' Ain't I glad to get out o' de Wilderness.' We have at

least completed the long preliminary discussion necessary to

take up the Von Staudt theory.

Definition. An elliptic involution on a line, together with

a sense of description for that line, shall be called an imagi-

nary point. The same involution coupled with the opposite

sense shall be called the conjugate imaginary point.
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The line shall be said to contain the point, which latter lies

on the line.

Definition. An elliptic involution among the planes of

a pencil, together with a sense of description, shall be defined

as an imaginary plane. The same involution coupled with

the opposite sense shall be defined as the conjugate imaginary

plane.

The axis of the pencil shall be said to be in each of these

planes, which latter are said to contain all points on the

former.

Definition. An imaginary point shall be said to be on an
imaginary plane when it is on the axis of the axial pencil,

or when the involution determining the imaginary plane cuts

the involutiou determining the imaginary point, and the

desired senses in the two correspond.

Definition. The totality of points common to two imagi-

nary planes shall be called an imaginary line.

There are three kinds of lines altogether.

(a) Real lines, each lying in oo 1 real planes.

(b) Imaginary lines of the first sort lying in imaginary

planes whose real lines intersect.

(c) Imaginary lines of the second sort, common to two

planes whose real lines do not intersect.

It is to be noted that lines (a) contain x 1 real points, lines

(b) one real point each, and lines (c) no real points.

A word or two as to the apparent unnaturalness of these

definitions. We saw in Ch. Ill, p. 77, in a discussion which

connected the Poncelet supplementaries with the work of

Paulus and Marie, that there is a perfect one to one corre-

spondence between the pairs of conjugate imaginary points

of a plane and the elliptic involutions of collinear points

therein, and the same will hold in space. The introduction of

sense is a device, a ' Kunststiick ' as the Germans say, in order

to attach to each involution two opposite marks to correspond

with the separation of conjugate imaginaries. As for the use
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of an infinite number of points to define a single point, that is

exactly analogous to what we do when we define an irrational

number as a cut in the rational number system.

Theorem 23] Two points in a real plane will lie on a line,

all of whose points are in that plane, and two lines in a real

plane will intersect in a point thereof.

It will be sufficient to prove the first part ; the second comes

therefrom by polar reciprocation in a conic. If at least one of

the given points be real the proof is immediate, for the real

plane must contain the real line connecting the imaginary

point and its conjugate. The imaginary point and a real

line through the real point will determine an imaginary

plane meeting the real plane in the line desired. Assuming,

then, that both given points are imaginary, let the real lines

through them meet in A, whose mates in the two involutions

are A/ and A
2
' respectively. Let B

1
and B

x
' be the pair of

the first involution which by 14] divide AA± harmonically,

while B
2
B

2
perform the same function for the second involu-

tion. The complete quadrangle whose vertices are BJB^
'

,

B
2
B

2
' has, besides A, two diagonal points, HK. whence the

one harmonic set is projected into the other. These, and

these only, are the points from which one given elliptic

involution is projected into the other, and since they are

separated by the lines AB
Y ,
AB

2
from one of them only,

say from H, the given sense on AA^ is projected into the

given sense on AA
2

. The two imaginary points will thus

determine, with a real line through H, an imaginary plane

which meets the given plane in the imaginary line required.

The steps here taken are typical of those which one must

frequently take. For instance, by polarizing the whole con-

struction in a quadric we reach

:

Theorem 24] An imaginary line of the first sort lies ivith

its conjugate in a real plane, and is the intersection of this

plane and an imaginary plane. An imaginary line of

the second sort lies in no reed plane, and contains no real

point.
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We must now turn to the arduous but vital task of proving

Theorem 25] If two points of a line lie in a plane, the

whole line is in that plane.

The theorem follows from 23] when the plane is real, and is

equally evident when the line is real. If the line be imaginary

of the first sort, it will be determined by a pencil of lines in

elliptic involution in the real plane connecting it with its

conjugate, together, of course, with a sense of description.

Since two points of a real plane can be connected by only one

imaginary line of that plane, our imaginary line must be

identical with the intersection of the real plane and the

imaginary one, and the theorem is proved. There remains

the case of an imaginary line of the second sort, the plane

being necessarily imaginary. Let the plane he given by the

involution aot', (3fi' about the line I, and let it contain the

imaginary points given by the linear involutions A
1
A

1

'

}
B

X
B^

and A
2
A

2 ,
B

2
B

2
', each having a prescribed sense. Lastly, let

Ao A3', B
3
B

3 , with a given sense, determine another point of

our line. As a preliminary step, we shall show that we may
assume that our line is given by the intersection of a plane

through A
1
BYi and one through A

2
B

2
. Let the real lines of

the planes giving the imaginary line be m and n. The
involutions on A

1
B

1
and A

3
B

3 determine the same elliptic

involutions about m and n. Consider the regulus of lines

gliding along m, n, and A
x
B

Y
. Its members are paired in an

elliptic involution by the involution on A
1
B

1
. This regulus

in involution will determine an involution on the conic cut by
any plane through A

3
B

3
. Since the involution on the conic

is projected from m and n into the same involution A3A3)

B
3
B3) it is by 15] projected from A

1
B

1
into this same

involution, or the regulus in involution determines about

A
1
B

1
an involution giving an imaginary plane which contains

A
3
A 3) BoB

B
', which is any imaginary point of the original

line. It thus appears that we may replace m by A
x
B

X)
and

similarly n by A
2
B

2
. Now consider the regulus of lines

gliding on I, A
1
B

1 , and A
2
B

2
. About each of these lines

there is an involution and the generators of the regulus are
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paired in such a way as to determine about I and A
x
B

±
the

involution cutting A
2
A

2
', B

2
B

2 ,
just as before we cut in

a conic by a plane through A
3
B

3
. The involution on the

conic is projected from A
1
B

1
, and from A

2
B

2 , into the

elliptic involution A
3
A

3 ,
B

3 ,
hence, by 15], it is projected

from the line I into this same involution, so that if the senses

are right this imaginary point lies on the imaginary plane

through I.

With regard to senses, if we take a triad of points on

a conic, they will project from two points on a conic into

two triads on a line which have opposite senses when, and

only when, the line meets the conic in two points which

separate the given points, as we see from 21]. In the present

case A
3
A

3 ,
B

3
B

3
is an elliptic involution of conjugate points,

so A
3
B

3
fails to meet the conic. A triad on the conic is

projected from I, A
1
B1) and A

2
B

2
into three triads having

like sense, and our proof is complete.*

The reasoning used in 23] gives at once

Theorem 26] Two conjugate imaginary elements are

. harmonically separated by each pair of the real elliptic in-

volution that defines them.

We must now undertake another long proof of a funda-

mental proposition.

Theorem 27] Ttvo lines in the same pla ne have always one

common point.

If the plane be real this follows from 23]. If the plane be

imaginary, and both lines be imaginary of the first sort, we
have merely to find the intersection of the imaginary plane

with the real line common to the two real planes, one of

which passes through each of the given lines. If one line

be imaginary of the first sort, and one of the second, it is still

a problem of finding the intersection of two imaginary lines in

the same real plane, namely, that which connects the line of

* This theorem shows the simplification when it is not necessary to distin-

guish between conjugate imaginaries. For problems of this sort see Segre,

' Le coppie di elementi imaginarii,' &c, Memorie delict R. Accademia delle Scienze

di Torino, vol. xxxviii, 1886.
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the first sort with its conjugate, and may be solved by the

methods of 23],

Suppose that we have two imaginary lines of the second

sort, one determined by axial pencils about the lines l
x
and l

2 ,

the other by the same involution about l
t
and another about l

2
.

Draw a line to meet the three axes. Find the mates of its

intersection with \ and l
2
in the involutions upon these lines,

and the pair in each involution dividing this pair harmonically.

We thus determine a regulus in involution whose lines cut

the required involutions on l
Y
and l

2
or determine the required

involutions about these lines. This regulus can be determined

in two ways according to the way that we join up the har-

monic pairs criss-cross. We choose that way which determines

among the planes about l
±
and l

2
the senses required by the

given imaginary planes through these lines, as in 23]. A line

of this regulus meets l
3
by the original construction, and we

are looking essentially for a point common to an imaginary

plane through this last line, one through lZi and one through l
x

.

But the former planes intersect in an imaginary line of the

first sort, since their real lines meet, and we are back on the

previous case of a line of the first sort and one of the second,

and the same plane.

We have now reached the point where we can say that all

of the fundamental theorems of concurrence, collinearity, and

coplanarity hold in the complex domain exactly as in the real

one, and all theorems which do not involve either separation

or continuity, as the quadrilateral and quadrangle ones, hold

in one domain exactly as in the other. In particular, we may
take over the definition of harmonic separation just as soon

as we are certain that the diagonal of a complex complete

quadrilateral are not concurrent. The proof given in the real

domain is not applicable, as it depended upon separation.

However, a moment's thought shows us that by means of two

successive projections a complex complete quadrilateral may
be carried into a real one, so that the theorem of non- con-

currence holds in the complex domain as well as in the real.

Our previous definition of harmonic reparation is universally

applicable.
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There are a good many problems in construction where

some of the elements or data are imaginary which might be

considered at this point, but as they are not vital to what
follows we content ourselves with referring the reader to

other sources.* It is time to see what we have in the complex

domain to correspond to a projective transformation of the

real one. This involves somewhat circuitous reasoning, begin-

ning with a re-examination of the imaginary line of the

second sort.

We take three points on such a line lying on three real

lines l19 l
2 , and l3 . The lines meeting these three will form

a regulus, whose members are paired in an elliptic involution,

cutting a point involution on each line of the conjugate

regulus. Moreover, there will be a definite sense attached to

each line by the senses of the given involutions. We have

thus a system of go
1 points of our given line, and this system

will be defined, according to Von Staudt's original plan, as

a chain.-f The points of this chain are carried by the planes

through a line of one regulus into real points on a line

of the conjugate regulus whose real cross ratios may be

denned as the cross ratios of the points of the chain. In any

case, four harmonic points belong to a chain, as do all points

reached from them by successive harmonic constructions.

The elliptic involution of points determining a point of the

imaginary line that does not belong to the chain will, by 15]

be an involution of points which are conjugate with regard to

the quadric of the regulus.

Let us now take a real plane containing the real line

through one imaginary point of our given line. Every other

imaginary point will be represented by the intersection of its

real line with that plane.

* Beyel, ' Zur Geometrie des Imaginaren ', Vierteljahresschrift der naturfor-

schenden Gesellschaft in Zurich, vol. xxxi, 1386
;
Servais, ' Sur les imaginaires

en geometrie', Memoires couronnes et autres memoires de V Academie de Belgique,

vol. lii, 1889 ;
Griinwald, ' Losung der Aufgaben iiber Verbinden und

Schneiden imaginarer Punkte, Zeitschrift fur Math, und Phys., vol. xlv, 1900,

and Griinwald, ' Ueber die Konstruktion mit imaginaren Punkten,' Ibid.,

vol. xlvi, 1901.

t loc. cit., p. 137.
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Theorem 28] The points of an imaginary line of the second

sort may be put into one to one correspondence with a given

real line and with the individual real points, not on this line,

but in a real plane through this line. A chain of points

which does not contain the point represented by the special

real line will be represented by the points of a conic with

regard to tuhich the involution of points on the special line is

an involution of conjugate 'points. A chain including the

point represented by the special line ivill be represented by

this line, and by the points of another real line. Harmonic
points not including the point represented by the special line

will be represented by harmonic points on a conic or line of

the sort described.

The neatest way to realize this is to assume a Euclidean

measurement in our projective space, take the special line as

the line at infinity, the involution thereon being that of

orthogonal directions. A chain will then be represented by the

points of a line or circle as in Ch. II.

Every transformation of the given imaginary line into

itself may be expressed as a transformation of the lines of the

real linear congruence of lines meeting the given imaginary

line and its conjugate. The transformation will be infinites-

imal if the cross ratios of each line with such fixed elements

as are necessary to locate it are infinitesimally transformed.

A transformation will be continuous if these cross ratios be

continuously altered. Such is certainly the case when the

transformation is a product of projections and intersections.

Two transformations can be carried over continuously into

one another, if such be the case with the parameter values

which serve to determine them, and if for no intervening set

of parameter values the transformation becomes improper.

Suppose, thus, that we have a continuous transformation of

our complex line into itself which has the property that it

carries harmonic points into harmonic points. This may be

represented by a continuous transformation of the Gauss plane

which carries points into points, and leaves invariant the

relation of harmonic separation. But we saw in Ch. II. 18]
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that every such transformation might be represented in the

form

yz + h yz + h

The first of these is distinguished by the fact that it can be

continuously changed into the identity.* Each of these trans-

formations is completely determined by the fate of three

points.

We next define as projective any transformation of our

fundamental one-dimensional forms which is the result of

a sequence of projections and intersections, Such a trans-

formation is continuous, carries harmonic elements into

harmonic elements, and can be continuously changed into

the identity. Hence it is completely determined by the fate

of three elements. This yields once more the fundamental

theorem of projective geometry.

Theorem 29] A projective transformation is completely

determined by the fate of three elements. If three elements

be invariant, the transformation is the identity.

Theorem 30] A one to one continuous transformation of

the elements of a fundamental one-dimensional form ivhich

leaves harmonic separation invariant is either a projective

transformation, or the product of that and an involutory

transformation projectively equivalent to the interchange of

conjugate imaginary elements.

We find from II. 19]:

Theorem 31] A one to one transformation of the points

of an imaginary line of the second sort into itself ivhich

carries the points of a chain into the points of a chain, is

either a projective transformat ion, or the product of that and
a transformation projectively equivalent to the interchange

of conjugate imaginary points.

Theorem 32] A projective transformation has always two

* It is saddening to think how much the statement of this transformation

might be simplified if the supposition in the note to II. 18] were proved

correct, and we were enabled to dispense with the requirement of continuity.
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distinct fixed elements, except in the case where there is a fixed

element harmonically separated from a given element by those

which correspond to it in the transformation and its inverse.

Theorem 33] If in a projective transformation a single

pair of elements correspond interchangeably, the same is true

of every pair, and corresponding elements are harmonically

separated by the tivo fixed elements.

We may properly call this last transformation an in-

volution.

Theorem 34] If tivo projective pencils of lines be coplanar,

and if the common line be self-corresponding, the locus of their

paints of intersection is a straight line.

The locus of the intersections in the general case when the

common line is not self-corresponding is called a conic. This

is Reye's definition, and we can go on to prove by very

familiar methods the truth of Pascal's theorem, as well as the

theorem whereby any two points of the conic will serve

equally well to determine it.* The polar theory will also

follow easily.

Theorem 35] A line not tangent to a conic ivill meet it

twice.

Theorem 36] If an involution of points be given on a conic

the lines connecting corresponding points are concurrent.

It is not too much to say that we have now laid the basis

for the complete development of projective geometVy in the

complex domain, and all theorems of the real domain which

do not explicitly depend upon linear order hold equally well

in the new universe of discourse. We are, in fact, able to

take the last step, and apply our usual complex number

system to this extended geometry. The procedure is as

follows

:

Definition. Four collinear or conconic points, co-axal planes,

or lines of a pencil shall be called a throw.]'

* Cf. Reye, Geomefrie dcr Lage, third edition, Leipzig, 1886, chap. iii.

t German 'Wurf ', cf. Von Staudt, loc. cit., p. 132.
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Definition. Two throws which can be connected by a series

of projections and intersections shall be defined as equal.

If X, F, Z, and T be four elements of one of our fundamental

forms or a conic, we shall use the notation [XY, ZT] for one

of their throws. Since we may easily find projective sequence

to interchange the two pairs in a tetrad, we have

[AB, CD] = [GA, BD] = [BD, AG] = [DB, CA].

Definition.

[AG, BB] = 1, [AG, BG] = 0, [AG, BA] = x.

Definition. If AA, OZ, XY be three pairs of an in-

volution,
^
AQ} + = XY

^

Note that, by this definition, the addition of throws is

commutative, and that the result of adding zero to a throw is

to leave the latter unaltered. The associative law is proved

by taking the points on a conic and applying Pascal's

theorem.

Definition. If A O, IZ, and XY be pairs of an involution,

[AO, IX] x [AO, IY] = [AO, IZ].

Multiplication is clearly commutative. We also find that

a throw multiplied by zero gives a product equal to zero, and

multiplied by one gives the multiplicant. The associative

law may be proved by the use of Pascal's theorem, the pointer

in question being supposed to be on a conic. The distributive

law is proved as follows

:

Theorem 37] [AO, IX]x [AO, XY] = [AO, XY].

Let the pairs AO, IY, XZ form an involution. Then

[AO, IZ] = [OA, YX] = [AO, XY].

But, by definition,

[AO, IX] x [AO, IZ] = [AO, XY].

Theorem 38] [AO, IX] x [AO, XI] = 1.

This follows immediately from the preceding, and from the

definition of unity. Let us now try to multiply [AO, XI] by
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the sum of [AO, 77] and [AO, IZ\ This sum is [AO, IT],

where AA, YZ, and OT are pairs of an involution, and the

product is [AO, XT]. But, by the definition of addition, this

last throw is the sum of [AO, XY] and [AO, XN], which

proves the theorem.*

It is well known that the only system of symbols which

obey all the fundamental laws of multiplication and addition

are the symbols for real, and those for the usual complex

numbers, so that, strictly speaking, the algebra which we
have now defined is the ordinary complex algebra. It is

wise, however, to go just a little further and show how the

actual connexion may be made.

Theorem 39] If A and G be harmonically separated by B
anclD, [AO, BD]= -1.

Its square is unity, but it is not equal to unity itself by the

definition of that number. If now we compare our former

construction of cross ratios with our present system of throws,

in the case of real elements we find that

[AO, BD] = (AC, BD).

This identity holds by the succession of harmonic construc-

tions as long as the value is rational. If irrational we may
assume it by definition of the value of the irrational throw.

If three points be given, there will thus be a single point

making with them any assigned real throw.

Suppose now that we have four points, not projectively

equal to those of a chain. We may carry them by projection

and intersection into A, B, C, three real points of a real conic,

and D, a complex point thereof, D' being the conjugate

imaginary point. These two are the double points of a real

elliptic involution on a line running clear of the conic.

Find the point where the tangent at A meets this line, and

connect it with C by a line meeting the conic again at E,

[AC, BD] + [AC, BDf

] = [AC, BE],

and this is a real value. Again, since AC is not the same

* For other proofs of the fundamental laws see Sturm, ' Ueber die "Von

Staut'schen Win-fen', Math.~'Annalen, vol. ix, 1875.
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line as DDf
these two will intersect in a point which we may

connect with B, thus cutting the conic again in F,

[AC, BB] x [AG, BD'] = [AC, BF\

It thus appears that [AG, BD] is a root of a quadratic

equation with real coefficients. It certainly could not be

a real root, for then we could find such a real point H of the

conic that

[AC, BD] = [AG, BF]

[AC, EB] x [AC, BD] = [AG, HD] = 1,

and this will imply a contradiction with the definition of

unity. The given throw is then a complex root of the

ordinary sort.

It should be noticed in conclusion that, if we take five points

in space, of which no four are coplanar, we may assign to them

the coordinates (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, I, 0), (0, 0, 0, 1), and

(1, 1, 1, 1), we 'may assign to any point four homogeneous

coordinates x0 : x
1
:x

2
:x

3 , not all zero, of such a nature that the

ratio of two is the throw of two faces of the tetrahedron and

the planes through the included edge to the unit point and

the given point.* Our system of complex points and complex

values is thus brought into accord with the usual analytic

expressions.!

* See the author's Non-Euclidean Geometry, cit. pp. 263, 264.

f Cf. Servais, ' Sur la projection imaginaire', Memoires couronnes et autres

memoires de VAcademie de Belgique, vol. Hi, 1899, where another method of treat-

ing complex cross ratios is given.
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