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PREFACE

I HAVE been fortunate in the help received during the preparation
of this work. The manuscript was read with great thoroughness by
Dr Sheila M. Edmonds, of Newnham College, Cambridge, whose
criticisms and suggestions were of great value and kept me firmly
in the paths of rigour. Dr J. W. 8. Cassels, of Trinity College,
Cambridge, read the proofs and drew attention to a number of
slips. To both I would express my sincere thanks.

A number of pupils helped me in the preparation of the answers.
Special mention must be made of Mr J. E. Wallington and
Mr P. A. Wallington, who, acting almost as a committee, provided
me with a complete set of checked answers; any slips that remain
must be due to my own carelessness in transcription. I am deeply
indebted to them for a very substantial piece of work.

As on former occasions, I have been greatly helped by the staff
of the Cambridge University Press, and I should like to place on
record how much I owe to their skilled interpretation of the
manuseript.

The Examples come from many sources—the Oxford and
Cambridge Schools Examination Board, Scholarship examinations
in the University of Cambridge, and Degree Examinations in the
Universities of Cambridge and London. I am grateful for
permission to reproduce them.

E. A M.

Queexs’ CoLLrEGE CAMBRIDGE
June, 1963

NOTE ON THE THIRD IMPRESSION

A number of corrections have been made, mainly small. I am
indebted to Mr L. E. Clarke of the University College of Ghana
for a very helpful list covering this and the later volumes.



INTRODUCTION

THE ATM of these volumes is that they shall together form a
complete course in Calculus from its beginnings up to the point
where it joins with the subject usually known as analysis. The
whole conception is based on considerable dissatisfaction with
much that seems rough-and-ready in the basic ideas with which
pupils reach the universities, so that almost anything seems
acceptable for ‘proof’ which is superficially plausible. Of course
the early work cannot be treated with the rigour appropriate to
more mature judgement; but I have tried here, however unsuccess-
fully, to present the subject in such a way that the more exact
treatment, when it comes, can follow by natural development,
without being forced to return to a fresh beginning which is often
felt to be both unnecessary and even pointless. (How many
students lose the thread of analysis just because they do not see
any reason for the first few lectures and therefore do not give
them serious attention ?)

The first volume deals with the basic ideas of differentiation
and integration. Graphical methods are used freely, but, it is
hoped, in such a way that the essential logical development is
never far away. The examples at this stage are mainly very
simple, and beginners should have no difficulty in acquiring a
fluent technique. Integration appears from the start as area and
summation, the method of calculation by inverse differentiation
being deduced. All the usual elementary functions are treated,
but the logarithmic and exponential functions are postponed.

In Volume II, more advanced parts of the theory make their
appearance. The logarithmic and exponential functions are
treated in some detail, followed by Taylor’s series and the
hyperbolic functions. The treatment of curves seems somewhat
different from that usually adopted—for example, the formula
tany = rdf/dr is derived without the help of the ‘elementary
triangle’, and other ideas often left to intuition are developed on
a logical basis. There is a lengthy account of complex numbers,
and the volume concludes with ‘infinite’ integrals and systematic
integration. The examples include many that are simple, but go
up to scholarship, or early university, level.



xii INTRODUCTION

Volume IIT contains a treatment of the functions of several
variables, including both partial differentiation and multiple
integration, and also a chapter on curve-tracing. We are now
definitely at sixth form, or first-year university, level. Volume IV
deals with more advanced work, such as differential equations,
Fourier series and similar topics. For these two volumes, the
examples are mainly of university standard.

It is hoped that a reader will find material for a continuous
study of the subject from the start until he leaves it at the end
for more advanced study, or perhaps earlier in order to apply it
to other sections of his work. Although I have tried to keep the
standard of discussion at a level which the mathematical specialist
will appreciate, I have also tried to remember the needs of others
and given much attention to keeping the actual exposition as
simple and clear as is possible. In particular, I hope that the
scientist and the engineer will find all their basic needs in suitably
digestible form. But I ought to state explicitly that, although a
number of practical applications appear as illustrations, I have
made no attempt at all to write a specifically ‘applied’ calculus.
My own feeling is that the underlying foundations should be
made firm by a study of calculus in its own right; the applications
can then be made by others according to their own individual
requirements. To attempt the two things at once may lead to
confusion.

CHAPTER I

THE IDEA OF DIFFERENTIATION

1. Functions. If a stone is thrown vertically upwards from
the ground, it gets slower and slower till, at a certain height, it
stops and immediately begins to fall down again. When the speed
of projection is u feet per second, the height s feet at time ¢ seconds
is given approximately by the equation

8 = ut— 1642,

This formula expresses a relation between the three quantities

s,u,t; when two of them are known, the third can be calculated.

(i) If u,t are given, then s is determined uniquely; the height

can be calculated at a given time for a definite speed of projection.

(ii) If s, are given, then u is determined uniquely; the speed

of projection can be calculated for a given height at a given time.
(iii) If s,u are given, the equation for ¢ is the quadratic

162 —ut+8 =0,

so that there are two values of ¢; the particle, projected with given
speed, is at a given height twice (provided, of course, that it gets
there at all), once going up and once coming down.

We say that there is a functional relation connecting s,u,t, or
that each of them is a function of the other two. The magnitudes
connected by the relationship are called variables; those to which
we assign values of our own choosing are called independent
variables and those whose values are then restricted (perhaps even
determined, as in the example quoted) are called dependent. Thus
the value of a dependent variable is governed by that of the
independent variables.

In the example just given, the functional relationship was
expressed by means of a precise algebraic formula. It may be
helpful to point out at once that variables may be functions of
each other even when such a formula is lacking; the essential
thing is that there should be some rule whereby the dependent
variable may be found when the independent is given. Suppose,
for example, that y is the first prime number greater than z.



2 THE IDEA OF DIFFERENTIATION

When 2 is given, y is completely determined, but there is no
formula connecting them. All the same, y is a definite function of z.

EXAMPLES I
1. Write down the functional relation connecting « and y for
the following data:
(i) The product of z* and y exceeds y® by 4.
(ii) The sum of z* and y* exceeds the square root of y by 2.

2. State the functional relation connecting the sides a,b,c¢ of a
triangle 4 BC in which the angle at 4 is a right angle. Taking
a,b as independent variables, express ¢ in terms of them.

Let us return to the formula
8 = ut— 1642,

Each of the variables is a function of the other two, but in a
particular problem any one of them may remain fixed in value.
The most natural example would be the motion of a particle with
given speed of projection . Then we should regard u as a constant
and the formula as a relation between Two variables 8,t, each
being a function of the other.

A number such as u, which enters into the formula but remains
unchanged throughout the problem, is called a parameter. Its
presence influences the ‘size’ of the genuine variables.

There is one difficulty to which we should refer at once. Consider
the two functions 1 e
-, gin (H) 5
x x

where the symbol ° is used to denote measurement in degrees.
Each has a definite value for every value of z, except when x is zero.

(i) The function 5 assumes the form % when z is zero, but there
exists no such number.

(ii) The value of sin G:)e always lies between —1 and + 1, but
nothing at all can be said when z is zero. We may, for example,
evaluate sin e)o for z=-1,-01,-001,... (i.e. sin10° sin 100°,

8in 1000°...), but we are no nearer to a definite value for z = 0,

FUNOTIONS 3

In what follows, we shall assume that a function has a definite
unique value for each relevant value of the independent variable,
except perhaps in cases which we shall indicate explicitly.

EXAMPLES II
1. For what values, if any, of the independent variable z have
the following functions no definite value ¢

1 1 1 1
z—1" 22—1" 22—42+5" 22—4x+3

2. For what values of  have the functions

1
—, tanz
sinz

no definite value?
3. For what values of z have the functions

col gin? (-~
sx’ z2—-1

no definite value?

2. Discrete and continuous variables. Consider the follow-
ing examples for a function y of an independent variable z:

(i) y is defined in terms of # by means of the relation y = 22+ 3;

(ii) y is defined to be the first positive integer greater than z;

(iii) y is the average height in inches of the first 2 men named
in the Cambridge Telephone Directory for 1952;

(iv)  is the number of children of the #th man named in the
Cambridge Telephone Directory for 1952.

There are important differences in the allowable values of the
variables. Let us take the examples in order:

(i) The values of z and y are both unrestricted; each can take
any value, positive or negative, integral or fractional.

(ii) The value of x is unrestricted, but y must be a positive
integer. That is, the value of y moves by ‘jumps’.

(iii) The value of z is necessarily a positive integer; the value
of ¥ may, by chance, be an integer, but is more likely to be a
fraction, probably between 54 and 78.

(iv) The values of z, y are both positive integers, with y possibly
Zero.
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A variable whose values proceed by steps is called discrete; a
variable which can take all values (at any rate within limits
relevant to the problem in hand) is called continuous.

3. Notation. We now direct our attention to functions of a
single continuous variable. A function of the independent variable
@ will be denoted by a symbol such as f(z), g(z), F(z), and so on.
Thus, if the function were 222 — 3, we should write

flz)=222-3,

where the sign ‘=" is used to mean ‘is identically equal to’, or
‘stands for’. For example,

f4)=2.42-3 =129, f(0)=2.02—3 = —3,

When more than one function is considered, we use separate
symbols for each; for example, we might have the three functions

f@)=14+22 gx)=2x, hx)=1-22

These functions are actually re-
lated, being connected by the
identity

{f@)f ={g)}* + {h(2)}2 T
It is sometimes convenient to
omit the reference to the inde-
pendent variable when no con-
fusion can arise, and to use the
shorter symbolsf, g, F,and so on,
for the functions. The identity
just given then appears more
.compactly in the form

Frmghthd,
In practice, too, we often use Fig. 1.
a SINGLE LETTER (usually ) to

denote a function of the independent variable . Thus, we might
write

y=a?-5

to mean ‘y is the function 22— 5. By convention, however, the
ordinary sign for equality is usually employed in this context,

and we wri
rite y = 225,

NOTATION 5

This notation is linked up with the common representation of
a function by means of a graph. The diagram (Fig. 1) shows the
graph y = 2*— 5 representing the function just quoted.

A function may on occasion receive the alternative names y or
f(x) according to convenience, and the graph y = f(x) is then
called the graph of the function.

We assume that the reader has already had practice in the
drawing of graphs. The following revision examples are typical.

EXAMPLES III
Draw the following graphs, choosing your own scales and ranges
of values for z:

l.y=a+3. 5. y=(x—1)(x—2).
2. y=2x-38, 6. y=(x—1)(x—2)(x—3).
3. y =sinz. 7. y=2%x—1).

4. y = xcosa. 8.* y =z

4. Limits. Suppose that a stone, initially at rest, is dropped
from some point at a certain height above the ground. As it falls,
it is subject to resistance from the air, and some idea of the
motion may be found by making the simplifying assumption that
the resistance is proportional to the speed—say & times the speed
per unit mass. It may then be proved that, if g (approximately
equal to 32) is the usual constant of gravitation, the speed after
t seconds is

i
kM’

where e is a number about which we shall have much to say later,
but which for the present we may take as having a value near
to 2-7.

As ¢ increases from zero, e increases steadily, and the term
g/(ke*) gets less and less, becoming almost negligible for large
values of . Hence as time goes on the speed of the stone (if it has
far enough to fall before reaching the ground) approaches more
and more closely to the value g/k given by the first term. This
value is, in fact, called the terminal speed of the stone.

ge
k

* Here and elsewhere the symbol ,/implies the positive square root unless
the contrary is stated explicitly.

2
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It follows that the expression for the speed of the stone is a
function of the time which approaches more and more nearly to
the value g/k as ¢ becomes larger and larger. We say that the
function tends to the limit g/k for large values of .

We have begun by explaining the idea of a limit with the help
of a physical example, in which that limit is approached for large
values of the independent variable. More generally, we must
consider the limit approached by a function as the independent
variable tends towards any given finite value. In many cases the
answer is obvious; for example, the limit of 1+ z as z approaches 2

.
is 3. But it is not so obvious what we are to say about ";—11
as z approaches 1, or about __sn;x as x approaches 0. This is the

problem which we now begin to examine.

Suppose that f(z) is a given function of z, and that we wish to
discuss what happens to f(z) as « tends to a certain value a.
Suppose, too, that there exists a number L (which, in practice,
may require some skill to determine) such that f(z) is very near
to L whenever z is very near to . We say that L is the limit of
f(z) as « tends to a, and we write this statement in the form

lim f(z) = L.
a—ra

We must, of course, have some criterion to apply to the
words ‘very near’—that is, we must devise a ‘test of nearness’.
For this purpose we choose any small positive number, which it
is customary to call e. We might take ¢ to be -1, 01, -00001, and
8o on, according to the degree of accuracy which we propose to
adopt. The point is that € is an arbitrary number of our own
selection, and that it may be taken as small as ever we please.
In order to say that f(z) tends to the limit L, we are to insist
that the numerical value of the difference between f(x) and L,

wrlion " If@)-LI,

is less than this number ¢ for all values of z sufficiently near to a;
and this must be true however small ¢ is selected.

We require, in fact, that when e is given there can be found a
certain positive number n (whose value will depend on ) such
that the difference |f(x)—L| really i¢s less than e whenever z
differs from a by less than .

LIMITS 7
DEFINITION, A function f(z) tends to the limit L as  tends to

the value a if, when e is a given positive number (however small) a
positive number v can be found, depending on e, such that

|[f@)—L|<e
whenever O<|z—a|<y.
S(x)
Lte-cecmcmnccccccnae Y= -
[}
L :
]
;o SO GEREREEY L (S SRR
| 1
1 1
] I
1 ]
]
: '
1 I
] ]
] 1
0 ﬁnlf'_ [ n x
Fig. 2.

The definition may be illustrated graphically. The diagram
portrays the graph y = f(z), in which y = L when z = a, the
corresponding point on the graph being P. The band between the
dotted lines at the levels L — €, L + € encloses that part of the curve
for which f(z) lies between L — ¢, L + ¢; the points where the curve
meets the dotted lines are U, V, giving values m,n for z. If we
take 7 to be any number less than both ¢ —m and n—a, then the
value of f(z) is between L—e and L+ ¢ whenever z lies between
a—n and a+7; that is, |f(x)—L| is less than ¢ whenever |z—a|
is less than 5. Hence lim f(z) = L.

z—ra

Note. The function may never actually TAXE the value towards

which it TeENDs. For example, the relation

z—1

— 1
e z+
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is true whenever x is not equal to 1, and this is so however close
to 1 it may be. For example, if 2 = 1-0000001, then

(@2—1)/(z—1) = 2:0000001.

2 _
Hence lim i

z—>1%—1

=2

But the function itself has no value when # = 1, since numerator
and denominator are both zero.

The modification when the independent variable becomes
indefinitely large is easily supplied (compare the physical example,
p- 5). The idea is that, if f(z) tends to a limit L for large x,
then, whatever positive number ¢ we take, we can ensure that
|f(z)—L]| is less than e by taking « sufficiently large; in fact, we
must ensure the existence of a number N (whose value will
depend on ¢), such that the difference |f(x)—L| is less than e
whenever 2 is greater than N.

DerintrioN. A function f(x) tends to the limit L as x becomes
larger and larger (or, as we say, ‘tends to infinity’) if, when € is a
given positive number, however small, a number N can be found,
depending on e, such that

lf@)-Li|<e
whenever z>N.
The symbol ‘co’ is often used for ‘infinity’, and the statement
J(x) tends to L as z tends to infinity’
can be written in the form

Um f) = I,

T—>

IrrustraTION 1. In order to show what is implied by these
definitions of a limit, we consider the two examples
lim a:___+5, i x—-—+5.
e>12+2 o, 02+2
In each case the limiting value itself is easily obtained. We
demonstrate how the value fits in with our formal definitions.

LIMITS 9
(i) We should naturally expect the solution

x+5 1456
B s
z-+1x+2 1+2

I
»

For detailed proof, we turn to the definition of a limit, putting
fl@)=(z+5)/(x+2),L = 2. Then

If(@)=L]| =

We have to show that, if ¢ is any given positive small number,
then we can establish the existence of a positive number 7 (depend-
—z+1

is less than e whenever
z+2

ing on ¢) with the property that

z lies between 1—7 and 1+7.
Since we are concerned only with values of z near to 1, we may
take 2+ 2 as positive. The argument divides itself into two parts,

according as z>1or z<1.
If 2> 1, we write 2 = 1+ 8, where 8 is positive. Then

J=z+1|=|=(1+8)+1|=|-8|= 3,
and |z+2|=3+6.

The condition is therefore

—3+8<£,
or 8 < 3e+ Be.

[When ‘clearing fractions’ for an inequality, it is essential to
be sure that the denominator is positive. This is the point of the
remark that xz+ 2 may be taken as positive.]

The inequality is certainly true if we choose & so that

8 < 3e.
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If z<1, we write = 1— &', where &’ is positive. Then
|—z+1|=|—(1-8")+1|=|8'|= &,
and |#+2|= 8—8'. The condition is therefore

*

m <eE,
or, the denominator being positive,
8’ <3e—2d'€,
or (1+¢€)8" <3¢,
or é'< 1?":&_.

If we choose 8 and 8’ so that both are less than 3¢/(1+ ¢€), then
each of the inequalities

8<3e, &< e

14 ¢
is satisfied. In other words, if we take

" 3e
L [0

then the expression (z+ 5)/(z+ 2) differs from 2 by less than ¢ for
all values of z in the range

l-g<z<l+q.
Hence, by the formal definition of a limit,
. x+5

ot AP Y

z—>1%+2
(ii) Consider next the limit

z+5
z>oZ+2

We write the expression (z+ 5)/(z+ 2) in the form
1+
x
1+(3)
,

LIMITS 11
As x becomes very large, 5/z and 2/z become very small, so that

z+5 i 1+0
Pt £ VTSR T
=]

Now turn to the corresponding formal definition, and put
f(x) = (x+5)/(x+2),L = 1. Then

|f(x)—L]| =

x+5_1
x4+ 2

.
x4+ 2

We have to show that, if ¢ is any given positive small number,
then we can establish the existence of a number N (depending

on ¢) with the property that

—-3—i is less than ¢ whenever z is
z+2

greater than N,
As we are concerned with large values of z, we need only
consider z to be positive, so that

. [
z+2| z+2'
and the condition is
x+2<$

or, the denominator being positive,

3 < exr+ 2e,
or € >3 — 2¢,
or, finally, x> 3:_2€.

If we write = e 2€,

i

then the expression (z+ 5)/(z+2) will differ from 1 by less than
« for all values of z greater than N. Hence, by the formal definition

of a limit,
x+5

— =1,
z+o®+2
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EXAMPLES IV
Evaluate the following limits:

- x+5 1
. lim 2 o 1 1E
z—>1x+ll 2. zlimml_m'
2243242 3
3 lm——m——, :
z—>0x2—3$+2 4. zll;mw4+5$.
Sx+17 el
5. I =. 6. limx 4.
2w 32+5 aory =3
x2—1 2
7. lim T i
z->-1Z+1 8. mh—?zxz—%+5'

5. Continuity. The treatment of the preceding paragraph
must sometimes be modified. Anyone looking at the diagram
(Fig. 8) would agree instinctively that the function f(x) repre-
sented there is ‘contin-
uous’ for negative values £(x)

of # and ‘continuous’ for
positive values of z, but
‘discontinuous’ when z is
zero. We must examine L,
the idea of discontinuity
more closely. L
We can, if necessary, l
split up the work of the
preceding paragraphs to
define Two limits at 2 = a:
(i) The limit as z tends [ ®
to @ ‘from above’, where
we replace the conditions
O<|z—a|<n in the de- Fig. .
finition by the conditions
0<#—a<7, making z greater than a. This corresponds to an
approach to the point L, in the diagram.
(ii) The limit as = tends to @ ‘from below’, where we replace
the conditions 0 < |z—a|<7 in the definition by the conditions
O<a—z<7%, making z less than a. This corresponds to an
approach to the point Z, in the diagram.
We shall not have much to say about these two limits, except
to note the definition of continuity which they imply:

CONTINUITY 13

DermNiTION, The function f(x) is coNTINUOUS when x = a if
f(x) tends to a limit L as x tends to a from above and to the same
limit L as x tends to a from below, while f(x) = L when x = a.

Continuity is therefore a LOCAL property, as the diagram indi-
cates. Continuity at one point by no means implies continuity
at any other.

One of the commonest cases of discontinuity which occurs in
practice is when f(2) assumes the form of a “fraction with a zero
denominator’, The simplest illustration is the function

f@)=1,

and the diagram (Fig. 4) shows the graph
1

S
¥
y
O X
O x
Fig. 4. Fig. 5.

For very small values of 2, we see that y is large; but y jumps
from very large NEGATIVE values to very large POSITIVE values
as z moves across the value zero. There is therefore a dis-
continuity at x = 0; indeed, the formula does not define f(x) at
all when =z is zero.

Similarly a function such as

has a discontinuity at z = 1.
We add that a function such as
y=lz|
(i.e. y = the numerical value of z), whose graph we show (Fig. 5),
is NoT discontinuous at @ = 0.
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EXAMPLES V

Name any points at which the following functions are dis-
continuous:

.. ;l—l 2. xail 3. :—:'_1;
; x?—_%ﬁ 5. iﬂ 8. ﬁ
7. tana. 8. :‘—_n‘f 9. x%"i_%
10. 1—:1mx' 11. 41_*;::2. 12. T-:2+Tzfsx'

13. Prove that sinz is continuous (i) when z =0, (ii) when
@ = §m, (iii) when z has any general value z,. [Remember that
sin (x4 k) —sinz = 2 cos (z + 34)sin }4.]

14. Prove that cosz is continuous (i) when z = 0, (ii) when
z = §m, (iii) when « has any general value z,.

6. Rate of change. It is familiar that, under suitable con-
ditions, the pressure p of a gas and its volume v are related by a

law of the form 6 = canslenh,

say pv=>,
so that p is the function of v given by the relation
b

: e

Suppose now that the volume of the gas is altered slightly;
the pressure will change in sympathy. A standard notation is to
denote the small change in the value of » by the symbol

8 [read ‘delta v']

which may, of course, be positive or negative. As a result of this
variation, the pressure suffers a change, which we denote similarly
by the symbol 8p.

RATE OF CHANGE 15

[The signs ‘82" and ‘8p’ are composite symbols for these changes
and stand for single algebraic variables. The ‘¥’, v’ and ‘p’ are
not separable entities.]

It is an obvious use of ordinary language to think of the ratio

3p

o

as measuring the rate at which p varies with v.

We now form an estimate for this rate when v has a certain
given value which we may conveniently denote by »,. When the
volume has been increased by the amount 8», (positive or negative)
to the value v,+ 8v,, the pressure may be written as p,+8p,,
where p, is the value of p corresponding to v,. These numbers
are connected by the relation

P+0p, = P
b
But P = ;s
1
so that, by subtraction,
b b
KaETe= T
—bdw,
(v + 80y)”
8py _ b
Henee Sv, vy(v,+8v)

The rate of change of p with v is obviously best measured by
taking the values of the ratio 8p/dv for very small changes in v,
In fact, if the ratio 8p/dv tends to a limit as the variation &v is
taken smaller and smaller, that limit will suit admirably to define
the rate of change. Now, v, itself being given, we have the result

tim |-l =

de,—ol  Uy(v1+00y) v}

and so the rate of change of pressure, at an instant when the
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volume is v, is measured by the formula

b

—a
Note. Since b is essentially positive, the rate of change is

negative. This agrees with the common-sense observation that P
decreases as v increases.

7. Gradient. Closely related to the idea of the rate of change
of a function is that of the gradient of a curve. We choose an
alternative illustration.

The electrical resistance of a metal may be expected to vary
with the temperature, and experiment shows that for platinum
the resistance R when the temperature is 6° C. is given by the

relation
R = Ry(1+ a0+ p62),

where R, is the resistance at 0° C. and o, 8 are positive constants.

Fig. 6.

The relation between R and 6 may be illustrated by means of
the accompanying diagram (Fig. 8).

Suppose that the resistance is Ry, R, when the temperature is
6,, 05, the corresponding points of the graph being P, P,. The
variation of resistance with temperature may suitably be measured

GRADIENT
by considering the ratio

resistance increase  R,— R,
temperature increase  6,— 6,

In the diagram, draw the straight line P, P,, and also the line
P,M perpendicular to the ordinate through P,. Then, if the line
P, F, makes an angle ¢’ with the axis of 6, the value of tany’,
being the ratio (R, — R,)/(8,— 0,) just indicated, gives a measure of
the rate of change of R with 0 for the range of temperatures 8, to 0,.

It is important to have an expression for the rate of change of
R with 0 at the value 0, itself. To do this, we take P, progressively
nearer to Fj; the chord P, F, tends to take up a limiting position
called the fangeni to the curve at P, and 4’ assumes a limiting
value .

Derixirion. The rate of change of R with 0 at the point 0, is
measured by tany, which is called the GRADIENT of the curve at P,.

We can find an expression for the gradient by a method similar
to that used in the preceding paragraph. Suppose that the increase
of 0 from 0, to 6,+ 36, causes an increase of resistance from R,
to B;+8R,. Then, by the formula for R,

R, + 3R, = R{1+a(0,+86,) + B(6, + 86,)%},
R, = Ry{l + b, + p63}.
Subtracting, we have
8RB, = Ry{a80, + 286, 80, -+ B(56,)3}.
Now R,— R, = 8R,,
0,— 6, = 86y,
so that tany’ = g—;—{‘
= Ry{a+ 2806, +p86,}.
By definition, the gradient is
&0
il ot
- JEEoRo{“ + 200, + 36, }

= Ry(a+ 240,).
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Hence the gradient of the graph (the rate of change of R with 6) at
the value 0, is
Ry(a+ 286,).
More generally, suppose that
y =flz)

is a given curve (Fig. 7) and P, P’ two close points upon it given

Y ¥
P/
Vi
B,
P
%
( i
0 x xgpex, * O il *
Fig. 7. Fig. 8.

by 2 =2,2,+82 and y=y,y, +8y, respectively, Then the
chord PP’ makes an angle ¢’ with the x-axis, where

= Sl + 8"’}) —f(=y)
8z, ’
If P’ is taken progressively nearer to P (Fig. 8), the chord PP’
assumes (in ordinary cases) a limiting position, the tangent at P
and J’ assumes a limiting value 4, where

tani) = lim L

8z, — 0 83’1
= I Sz, + 8z,) —f(=z,)
éz, —0 1 *

This limiting value of tany is called the gradient of the curve
Y = f(z) at the point for which z has the value z,.

GRADIENT 19

EXAMPLES VI

1. Find the gradient of the straight line y = 32+ 4 at the points
where z = — 2,0, 2, 4 respectively.

2. Sketch the curve y = 22, and find the gradient at the points
where 2 = —1,0, 1, 2 respectively.

3. Prove that the gradient of the curve y = 2%, at the point
where z = z,, is 32}

4. Prove that the gradient of the curve y = 2®+ 5x+4, at the
point where z = z,, is 2z, +5.

5. Prove that the gradient of the curve y = 2®—z, at the point
where 2 = x,, is 323 - 1.

6. Determine the range of values of « for which the gradient
of the curve y = 22%— 922+ 12z is negative.

7. Prove that the gradient of the curve y = 2®—4 is positive
for all positive values of z.

8. Find the equation of the tangent to the curve y = 2? at each
of the points (1,1), (—2,4), (0,0), (3,9).

9. Find the equation of the tangent to the curve y = 22+ 2z
at each of the points (1,3), (—1, —1), (0,0).

8. The differential coefficient. We now gather together
(with some repetition) the ideas of the last two paragraphs.

Let f(x) be a given function, and z, a certain value of the
independent variable z. Suppose that 2, receives a small incre-
ment; in the notation of the preceding paragraphs this would be
called 8z,, but it is now more convenient to use the single letter k.
The values of f(z) corresponding to the values a,,z,+k of the
independent variable are f(z,),f(2;+ %), and the rate of change of
[(=) between the values x,,x,+h is

J@+ 1) —f(z)
3 .

The rate of change of f(x) at the point z, is thus
lim f(zl i h) _f(fl_)
h—0Q h :
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and this limit (if it exists) is called the differential coefficient of
f(®) with respect to x at the value z,. The phrase derivative of [(x)
is also used.

Thus the differential coefficient of b/v with respect to v at the
value v, is (p. 16) —b/v?, and the differential coefficient of
Ry(1+af+B6?) with respect to 6 at the value 6, is (p. 18)
Ry(a+ 286,).

TrrustraTiON 2. To evaluate the differential coefficient of 322 — 4z
with respect to x when x = 4,

If f(x) = 322 — 4z,

then J(4+h) = 3(4+h)2—4(4+h)
= 3(16+ 8 +Ah%)—4(4+h)
= 32+ 20% + 3A2,
and f(4)=3.42—4.4 = 32,
Hence J(4+h)—f(4) = 20k + 3A2,
and M’%-_@ = 20+ 3h.

The differential coefficient is the limiting value of this function |

as h tends to zero, and so its value is 20,

In practice, it is customary to write the value of the differential
coefficient so as to refer to a general value z; thus the limit
i f@+ 1)~ (@)
h—0 h
gives the differential coefficient of f(x) at the point z. But it
should always be kept in mind that a definite value of z is implied.

IrrustrATION 3. To find the differential coefficient of a2.
The differential coefficient is

S __ o8 2
i (x+h)}?—2 = lim 2ha + b = lim (2a+h)
h—0 h h=>0 h h—0
= 2z.

Hence the differential coefficient of a2 is 2.
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InrustrATION 4. The function xt has no differential coefficient
at the point = 0.

If f(.‘):) o .’.C*,
f(O+R)—f(0) _ f(R)—f(0) _R¢—0
then A = A I
1
i }T‘.

As h becomes smaller and smaller, 1/A! becomes larger and larger,

d
1 i JO+R)—=1(0)

h=0 h

does not exist.

IrvustraTION 6. The differential coefficient of 1]z is —1/[a2.
The differential coefficient is

1 1
. z+h z . z—(x+h)
li o
ins B h—?ohx(x-l‘h)
—h 1
) e it e et b
o BE@HR) | o @@+H)
1
=_:?ﬁ'

It is understood that x+0, otherwise there is no differential
coefficient—indeed, the function is itself undefined.

9. Notation. Several notations are in use for the differential

coefficient.
If f(x) is a given function of z, its differential coefficient with

respect to x is denoted by the symbol
J'(@).
Alternatively, if the function is denoted (as, for example, in
graphical work) by the letter ¥, so that

Y= f (),
then the differential coefficient of y with respect to z is denoted
by the symbol %
d'_xo
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Here we do NoT mean a process of division. The notation is an
appeal to the eye based on the fact that, if 8y is written for
Sf(x+ 8z)—f(z), then

fla+82)—f@) _ 8y

oz oz’

and the limit of this quotient is g—z

The notations Y, :—x {f(x)}

are also in common use.
When we wish to specify precisely that the differential coefficient
is evaluated at, say, 2 = a, we use one of the forms

)

or other obvious modifications.

The process of finding the differential coefficient is known as
differentiation, or differentiating the function.

In illustration of the notation, consider the function z? whose
differential coefficient (p. 20) is 2z.

(i) If f(z) = 22,
then Jz) = 2z.
(ﬁ) If o= 2%,
then :_Z = 2z,
or y = 2,

If we evaluate the differential coefficient when z = 5, then

y d /
f'(5) =10, or (Ey)5 =10, or y;=10,
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EXAMPLES VII

1. Prove that, if f(z)=2%2+2, then f'(z)=2zx+1 and that
J'0) =1 3

2. Prove that, if y = 4a?, then a-g =R

3. Prove that, if y = 522, then y; = 30.

4. Prove that, if f(z) =23, then f’(z) = 32

5. Prove that, if y = z, then y' = 1.

d
6. Prove that, if y = 2®—8, then d—Z = 823,
g dy

7. Prove that, if y = 5, then St 0.

8. Prove that, if y = 4¢+ 3, then y' = 4.

9. Evaluate f'(2) for each of the functions 4z, 522, a3,

10. Prove that the function —II has no differential coefficient
when z = 1.

10. Tangent and normal. We explained in § 7 (p. 18) what
is meant by the tangent to the curve

y = flx).
If P is the point (2,,%,) of the curve (Fig. 9), then the tangent

[¢] / 2

Fig. 9.

at P makes with the z-axis an angle ¢ such that
tany = f'(z,)

=¥

&
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where f'(z,)=y; is the differential coefficient of f(z) evaluated

at z;. Hence, by elementary analytical geometry, the equation of
the tangent at P is

Y=t = (z—z,)f" (=),
or Y—th = (x—2z,)y;.

Dermxrrion. The normal to the curve at P is defined to be the
line through P perpendicular to the tangent. Hence the equation
of the normal at P is

Y=y (@) + (@—2,) = 0,
or G-y +(@—2) = 0.

ILLusTrATION 6. To find the tangent and normal to the curve

Y= 32— 4z
at the point (4, 32).
We have proved (p. 20) that

1(4) = 20,
Hence the equation of the tangent is
y—32 = 20(z—4),
or 20—y = 80—32
= 48,
and the equation of the normal is
20(y—32)+(z—4) =0,
or x4+ 20y = 644,

EXAMPLES VIII
[Compare exx. 3, 4, 6 on p. 23.]

1. Find the equation of the tangent and of the normal to the
curve y = 52 at each of the points (3, 45), (— 2, 20), (0, 0).

2. Find the equation of the tangent and of the normal to the
curve y = #* at each of the points (2, 8), (-1, —1), (0, 0).

3. Find the equation of the tangent and of the normal to the
curve y = 2*—8 at the points where it crosses (i) the z-axis,
(ii) the y-axis.

CHAPTER 1I

THE EVALUATION OF DIFFERENTIAL
COEFFICIENTS

1. Some theorems on limits. The direct evaluation of a dif-
ferential coefficient from its definition is often a troublesome
matter, and we must now devise a number of rules to shorten
our labours. First of all, we ‘borrow’ from Pure Mathematics
some theorems about limits which seem obviously true but which
are not too easy to prove rigorously.

(i) The limit of the sum of two functions is the sum of their
individual limits. Thus

lim {f() +g(x)} = B f{)+ B g(a).

This result can be extended to any number of functions.
For example, we can prove that

1—22 1—a8 S
i = 1 = 1i = 4
:1—?11—3 % 31—?11—3 3, e TZ ’
anil b ki (1—-2%)+(1—2%)+ (1 —at) —o
z—>1 1-z

(ii) The limit of the product of two functions is the product of
their individual limits. Thus

wli_fl {f(@)g(x)} ==linz f(w)zli_ri g (x).

This result can be extended to any number of functions.
Properties (i), (ii) can be combined in obvious ways. For
example,
jim (L=2%) (1 —2%) + (1 —2%) (1 —2%) + (1 -2%) (1 - 24)
L 2
®—>1 (l i '7-7)

=4.3+3.2+2.4 = 26.
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(iii) T'he limit of the quotient of two functions is the quotient of
their limits, PROVIDED that the limit of the denominator is not
zero. Thus

L f@) _ zh_rpaf(x)
e—ag(@)  limg(z)’
provided that lim g (x)+0.

T—>ra
For example,
oo 1=t . (1-2f)/(l-2) 4
e T2 = I (=) (1=2) ~ 3

Our next step is to establish three general theorems, after which
we shall derive some standard formulse for differential coefficients.

2. The differential coefficient of a sum of functions.
It is an immediate consequence of § 1 (i), p. 25, that

S @) 9@+ hE) +..} = F @) +¢'@) +H @)+

so that the differential coefficient of the sum of a number of functions
18 equal to the sum of their differential coefficients.

The proof is similar to, but easier than, the corresponding
theorem for a product of functions given in the following para-
graph, and is therefore left as an exercise for the reader.

3. The differential coefficient of the product of two
functions. We prove that, if u,v are two functions of x, then

d dv du
d—x(uv) = ud—z‘“l"”d—x,

or (in other notation) (uv)’ = wo’ +vu’,

provided, of course, that the limits of %, g exist,

If u,v are the values of the functions when the independent
variable has the value z, and %+ 8u, v+ v the values for z+ O,
then, by elementary algebra,

(u+du) (v+dv)—uv  8v Su Sudv
dx B R L
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KNS
Since the limits B oY, | tim
sz >0 OF 8z — 0 OF
exist,
d e (wdu) (4 8v)—uw Sl 5 ]
E(uv) = allfo 5% [definition; p. 19]
g ov : du . (Su )
= — )+ lim (v— |+ lim |—&
a:]:-rfo(u 8“") o Jz—-ro(v 3”) y: sz —0\0% Y
[limit of sum; p. 25]
= ud—v+vd—u+§—”—' lim dv [limit of product; p. 25]
dz dx  dx sz —0
dv du
=t=t'a
since lim 8v must be zero for lim (8v/8z) to exist.
Sz —+0 dz—0

The theorem is therefore proved.

CoroLLaRY. By repeated application of this theorem, we have
(uvw)' = (uv)' w+ (uv)w'
= (w'v+uw)w+ (uwv)w'
= w'vw+ uv'w + uvw'.
In the same way, for any number of functions u,v,w, ...,

(wvw...) = w'vw... + w'w... +uow'... + ...,

4. The differential coefficient of a ‘function of a func-
tion’. We prove that, if u = f(z) is a given function of z, and
y = g(u) a given function of u, so that y can be expressed as a
function of x in the form y = g{f(x)}, then

dy dydu
dz ~ dudz’

Suppose that when x assumes the value x+ 8z, the value of u
becomes u+ du, so that the value of y is y+38y. Then (but see
the Note below)

dy OSydu
Sz~ Sudx’
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so that
dy .. 8y b
== 3350:3; [definition; p. 19]
. Oydu
= lim =—
8z -0 OU 8T

s 3y . ou
= h " e 1imits*
e mo 3 h.n:la 5 [pl'oduct of hmltﬂ, P 25].

But Su—0 as §z—>0 (assuming that %" exists, as is implicit in

the enunciation). Hence

dy . 0y .. &u
=== lim = lim —
dx du—0OU gz o OF

_dydu

& " dudz’

CororLraRrY. The differential coefficient of the quotient ufv is

vu' —uy'
"~ Ay
Let Y = ufv = uyl,
dy du d(v1
Then, b - L ORI
as above, gl i ) -
du d(v-1)dv
badi P =
v 4 u 5 s
But (p. 21) d(;’:) = —vla,
% ihad dy ldu udv ou' —uyf

I~ vdz BdzT @
Note. When ite %y = ﬁ;a_u
we wri A
we hav? in mind that the increment 8w is not zero. But we know
that u is the given function S(z), and so there will usually exist
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(isolated) values of z at which f'(z) = 0; that is to say, the limit
of du =+ 8z is zero at such points, and so the initial step of dividing
8y by du is open to the suspicion of being division by a zero
denominator. To avoid this difficulty, we proceed as follows:
If du = 0, we have
Oy _ glu+du)—g(u) _ g(u)—g(u)

ox dx oz

and so

as dxz—> 0 through values such that du is zero.
But, by hypothesis, we are examining the case when :—: = 0,
and so we have the two relations
Won B
de " dx
Hence it is still true that

0.

o SO e

dz  dudz’

TrrustrATION 1. To find the differential coefficient of
y = (ﬁx'i' 3)31

Write u = bx+3,

du
so that = 5.

We have proved (p. 20) that

L
@(u)—%u.

dy _ dydu
dz dudz
= 10(5z + 3).
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5. The differential coefficient of x» is nxn-1, e aw SO adlE®)

(This result is often proved by using the binomial series for d dzx i
(x+h)*. There is, however, the danger of argument in a circle if d(z—m)
the proof of that series depends on the result known as Maclaurin’s or T ma 4 == = 0,
expansion, which comes later in a normal calculus course. There
are, of course, other derivations of the series not open to this = d(@™)
objection.) » Sl Tdz %

(i) Suppose that n is a positive integer. If we assume that, for d(z™) —m—1
some definite value of n, we have . T '

d(x™
;_x () = nam-1, o, Hunly, J&“x_) £

(iii) Suppose that n is a rational fraction. Suppose, that is, that
n is of the form p/q, where p, g are integers; we can regard ¢ as
positive, but allow p to have either sign. Then

then we can prove the general result by induction. For

2 @) =2 (.2
(xma)a = 2P,
dx d(z")

i x"d—x+a: dx (p- 26) Differentiating by means of the formula for a ‘function of a
B M [ function’ and the rule already proved for integers, we have
= (n 548 l)m". g(xpm)q-l % (xpfﬂ) = pa;p—l,

If the result is true for any particular value of n, then it is true d
for all subsequent values. But it is true for n = 0, since - so that FoAait) = %x(p-li—pm—lilc

=2 po1-vipe

Lem-Loymo

Hence it is true for » = 1; hence for n = 2; hence for n = 3: =2 gpia,
and so on, %
(ii) Suppose that n is @ negative integer. Write n = —m, so that Heios 4 (x™) = nan-1
b e

m is a positive integer. Then
e
da
=0,

(iv) Suppose that n is irrational (for example, an unending, non-
recurring decimal). We propose to regard it as obvious that »
may be approximated as closely as we please by a miional fraction,
so that the theorem is true to as high a degree of accuracy as we
desire. But this seemingly innocent remark covers a number of
points of considerable difficulty, and a more advanced text-bhook
must be consulted later when details are required.

; |
Zemae=Lemm = Lo 2,

[The reader may wish to remind himself from a text-book on
algebra about the rules for indices, The basic rule is that
2P 29 = gpie,]
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EXAMPLES I
Find the differential coefficients of the following functions:

1.8 2. (z+3)% 3. (2z+3)4
4. 2%(2%+1). 5. 2d(x+ 1), 6. (z+1)%zx+2)2
1 1 1
o=, 8. —. N ——
x xt . (z+2)%°
1 1 1
10, ————. . —_— —_—
C+ar 1 Ga—sy 2. G
13. . 14, a2, 15. (x+1)=.
16. J(2z+3). 17, (5z+ T 18. 24,
19. (z+7)+ 20, (z—8)J(2z+5). 21. —%_
(e+7) @=3)(2z+5). 21 2.
2t Jz (x+ 1)
A - . T i
(2z+3)? =8 (4x—1)3" i (@— 1)t

6. The limit as x— 0 of sin x/x is unity. In the diagram
(Fig. 10), AOB is a triangle, right-angled at 4, in which 04 is of
unit length and the magnitude
of 2 BOA is z radians, where P,
@ is small. (It should be re- g
membered carefully that, in
work of this kind, angles are
always measured in RADIANS.)

The line AC is drawn per- % A
pendicular to OB, and an arc ' Fig. 10.

of a circle of unit radius, with

its centre at O, passes through 4 and cuts OB in P. Then
P lies between B and C, and we propose to regard it as obvious

by intuition that
AC<arc AP < AB:
Now AC = sipz, arc AP = 2, AB = OBsinz, and so

sinx<x<OBsinz,

or 1< —~.x <0OB,
sinx
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Now let - 0; then OB tends to equality with 04, so that

limOB = 1.

z—>0
Tt follows that lim siiTc’ which lies between 1 and lim OB, itself

z—>0 z—>0
has the value 1, and so

It is customary to write this result in the inverted form

sin &

Iim ——=1.
z—+0 %
Note. Although lim sme exists, the value of the function E%a-:

z—>0
is indeterminate when z is actually zero.

7. The differential coefficient of sin x is cos x. For
sin (x+h)—sinz _ 2cos(x+}h)sin }h

h h
= cos (z+ ih).mz—fh.
Now, as h—>0, cos (x+ k) > cosz
and : “l;‘f" -1 (§6).

(For the first limit, we have
c0s ( + 3h) — cosz = — 2sin (x + 1A)sin 1A,

But sin (z+ 1%) lies between —1 and 1, and sin}h—> 0, so that
their product also tends to zero. That is,

cos (z+ $h) — cosxz—0.)

Consequently, since the limit of the product is the product of
the limits,

lim sin (z+A)—sina .

coszx.1,
h—>0 h

i(s;in:t:) = cosx
or = = COSZ.
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8. The differential coefficient of cos x is —sin x,

Let Y = cosz,
and write u=ir+taz.
Then Yy = cos (u—4n) = sinu,
HBDOB d—y = COSU;

du
and also @ =1,
dx
dy dydu
It follows that ol
= cosu
= cos (}7 +z)
= —sginz,

Note. Since 180° = radians, the differential coefficient of
sinz® is (m/180)cos2°, and the differential coefficient of cosz’ is
— (w/180)sinz°. [For sin2° = sin (72/180) in radian measure.]

EXAMPLES II

(It is most important that the student should acquire complete
mastery of the rules so far derived, and examples such as these
should be practised regularly.)

Differentiate the following functions:

1. sin 22, 2. cos 3x. 3. 5sin bz, 4. 2 8in 2z,
5. 22 cosz. 6. 3z cos 3. 7. (®+1)%sin 72. 8. sin (3z+ 5).
9. (2x+1)%  10.1/(z+2)%. 11.z/sine. 12. 2(1 + sin ).
13. sin?z, p 14, cos?z. 15. sin®z, 16. cos®z.
17. zsin?2, 18. 2® cos? z. 19, 22 cos? 2z, 20. (14 2)sin2z,
21. cos (x— ). 22. sin?(z + ). 23. Jz. 24, 1/,
25. zisin?zx, 26. ¥/(sinz).  27.x(sinz). 28. 2?/(sin 4x).
29. cosecz. 30. seca. 31. tanz. 32. cot .
33. cos 22°. 34. tan 3a°. 35. zsin 2°. 36. sin%2°,
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9. Differential coefficients of higher order. If f(z) is a
given function of z, its differential coefficient f’(z) is another
function of x, having in general its own differential coefficient.
This is called the second differential coefficient of f(z), and is
denoted by the symbol (@),

Alternatively, if y = f(z), the second differential coefficient of y
is written in one or other of the forms
ey .
@ v
In the same way, the differential coefficient of f/(x) is the third
differential coefficient of f(x); and so on. In this way we form a

sequence which it is customary to denote by the notations

f@), fl@), f'@), @), f%), .., [O), ..
dy d*y d*y dty dry

Y W @ & @ T @
Ys Yo o ¥ ¥, Y% wenp ¥y,
For example, if y =23
then yi=3z% y'=8z g =8, Yy =0,

In the case of sin 2, cos 2, we can obtain a convenient expression
for these coefficients:
Let y = sinz;

then y' = cosx.
But, by elementary trigonometry,

cosz = sin (3= +z),
so that y' = sin (3= +2).

Thus the effect of differentiating is to add }= to the independent
variable. Proceeding in this way, we have

y" = sin (n+2),

y" = sin (§r +2),

...............
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In the same way, if

SOME STANDARD FORMS

I[. GexeEraL RULES.

317

du dv
Yy = cosz, (i) d%(“"'”) = ﬁ'{"ﬂ (p. 26).
) = cos (2 dv d
then Yy cOos (21r+x). (ii) ;-;(uv) - “CT:““"EE (p. 26).

EXAMPLES III

(p. 28).

(i) d (u) _ou' —w
2, 48 dz\v v?
Find %, g-??{ ; :?‘? for each of the following functions:

. dy dydu
(iv) = ==2-—(p. 27).
1 a5, 2. o, 3. 2. e
4. zsinz. 5. a%cosz. 6. xsin®z, 1I. ParticurLar FuNCTIONS.
7. sin 2z, 8. cos 4a. 9. sin’z. o g 30)
10. 1/z. 11. 1/(2z-3). 12, 1/a5. i -2
13. Prove that, if f(x) is a cubic polynomial in z, then (i) da (sinz) = cosz  (p. 33).
f(z) = 0. dz

14. Prove that, if f(z) is a polynomial in z of degree n, then

d 4
iii) ——(cosz) = —sinz (p. 34).
J™(z) is a constant independent of z. (i) d-"’( )

15. Prove that, if y = sin ma, then (iv) % (secx) = secrtanz.

d*y

— I miy =
dat T™Y = 0. (v) %(ta.nz) = sec?z,
16. Prove that, if ¥ = 2sinz, then d
2?y" — 22y’ + (224 2)y = 0, (vi) & (cosec x) = — cosecz cotz.
d( d d*y dy v B
17. Prove that E‘x(x?ixg) = xd%+ i (vii) a(oota:) = —cosec?x.
18. Prove that We prove the last four of these results (II, iv—vii):
a ( sd’y) o8y, Py dy (iv) Let y = secz.
|t =t st S+ 22,
di\" det) " dat T " da® T " da? Then y = (cosz),
10. Some standard forms. There are one or two basic 80 that % = (—1)(cos x)";—x (cosz)
‘ formule which follow directly from results already obtained, and Fie
which the reader should commit to memory. For convenience, = (—1)(cosz)2(—sinz) = i

we gather together the standard formule of differentiation into

this one paragraph. = secx tanz.
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(v) Let y= tanz,
Then y = sinzsecx,
so that 3—2= cosz.secz+sinx.seextanz
= 1+tanz
= sec?a,
(vi) Let Y = cosecz,
Then Yy = (sinz)?,

so that, by reasoning similar to that given for secz,

g—i{ = —(sinz)%cosz

= —cosec z cot z.
(vii) Let y = cotz,
Then Y = COS X cosecy,
so that %= (-—sin:z:)cosecx+cosa:(-—cosecxoot_x)
= —1—cot®x

= —cosec?z,

EXAMPLES IV
Differentiate the following functions:

1. sec 2zx. 2. sec?2z. 3. tan®2x.

4. tan3 3z, 5. zcosecz. 6. 22cot 2.

7. secxtanz. 8. J(secz). 9. cosec?® 2z.
10. 2™ tannz, 11, z—"mgecmz, 12. zitanlz,

11.* The inverse circular functions.
I. TeE INversE SiNe. The relation
v=sinu

serves to define v in the ordinary way as a function of u. But it
can also be used to define % as a function of v, and we use the
notation s

% =ginly

* This paragraph may be postponed, if desired,
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to mean that « is the function whose sine is v. The notation
% = arcsinv
is also used.
It is familiar from elementary trigonometry that, if
sinu = sin oy
then u=nm+(—1)"q,
where » is a positive or negative integer. Hence the relation
% =g8in~1y does not define » as a single-valued function of v.
The graph shown in the diagram (Fig. 11) implies this; when « is

given, v is determined uniquely, but, when v is given (lying
between —1 and + 1) there are infinitely many values of .

v

) ~—— 27 S~ 47 "

Fig. 11,

Our immediate problem is to evaluate the differential co-
efficients, with respect to z, of the function sin—1z,
We write
y = sin”'z,

so that, by the definition,
o =rmmny,

Differentiate with respect to . Then

1=cosy%,
dy 1
dz  cosy |
1
=i
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Now inspection of the curve z = siny, shown in the diagram
dy

(Fig. 12), reveals that the gradient T is positive when y lies
between —g,g and, more generally, between

- T
2ﬂﬂ—§, 2n1r+§,

where n is any positive or negative integer; on the other hand,
the gradient is megalive when y lies between %,31 and, more

generally, between

(@n+1)m—7, (2n+ 1)1r+%.

&

1
=4+

Hence - —J(l—xz)’

o

with positive sign if the angle sin—!z is between 2nmx — 1—2r, 2n1r+1—;,

and with negative sign if sin—'z is between (2n+ 1)17—?

m 2’
Cn+1)7m+-.
2 »
In particular, if sin—1z is an ACUTE angle, then |/
d 6
B oikde,
da J(1—a?)
IT. Tar Inverse CosiNe. Similar con- 4>
™

siderations guide us in finding j—i when

y = cos~ 1z, 8
0

)
3

or x = cosy.

Differentiate with respect to z. Then

. dy

1=— .

siny -,
dy 1

that = = ——
ol dx siny

=2m

1
=i Fig. 12.

—

—

—— - a
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To determine the choice of sign, we appeal to the curve x = cosy

shown in the diagram (Fig. 13), and see that the gradient %—E is
positive when y lies between =, 27 and, more generally, between

2n+1)7, (2n+2)7;

the gradient is megative when y lies between 0,7 and, more

generally, between B, (3w yur.

Hence g—z = i—__\/(l}-a:z)’

with positive sign if the angle cos— z is between (2n+ 1), (2n +2)m,
and with negative sign if cos~'z is between 2nm, (2n+ 1) 7.
In particular, if cos™'x is an ACUTE angle, then

is much simpler. Differentiate with respect to z.

. I y
de J(1-2%) &

III. TaE InvERSE TaxcENT. The evaluation 4m>

dy
of = when <
y = tan~lz,

or x = tany, 2"")

<O

Then = seczy%, 9 x
dy 1
so that o sty -—21r—>
- 1
T 1+42? Fig. 13.

EXAMPLES V

1. Evaluate t;_?a,: for each of the functions sin—!z. cos~1z.tan"1z

when the angle has the value

M 3 (@) % (iii) % (iv) 5_6-", (v) %”, (vi) “_6_"’,
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Taking the angle to be acute, find dy for each of the functions:

dx
2. ztan—lz. 3. st (23), 4, xcosla.
5. x%sin—1(2z). 6. 2%cos (a2). 7. (tan—1zx)?,
8. secla, 9. coseclz, 10. cot1z.
11 (sme=ad, 12. z(cos—1z)3. 13. a?secla.
14. zcosecla. 15. z%(sin—1z)2, 16. 1/(sin~1z).

12.* Differentials. It follows, from the definition of the
differential coefficient f'(x) of a function y=f(x), that the incre-
ment 8y in the value of ¥ when z receives a small increment 8z is
(in ordinary cases) not very different from f'(x) 8z, so that

_ 8y = f'() 5z
approximately.

For many purposes, however, it is desirable to work instead
with an exact relation, and this leads to the idea of a differential,
which we must now explain.

When the increment 3z is given an arbitrary value, not neces-
sarily small, the expression

f'() 8z,

where f'(z) is the differential coefficient of the function y=f(x),
has a definite value, and is denoted by the notation dy, so that

dy = f'(z) dz.

The expression dy, or f'(x) 8z, is called the differential of y corre-
sponding to the increment 8z. The relation dy = f'(x) 8« is ExacT,
without any approximation; it is an automatic consequence of

“the definition of the differential. The differential dy and the incre-

ment 8z are proportional, the coefficient of proportionality being
['(@).

[Note that the increment 8y is not usually equal to the differ-
ential dy, although they are approximately equal when 8z is
small.] :

* This paragraph may be postponed, if desired.
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In particular, we can assign a meaning to the symboll dz, which
is the differential of the function z itself corresponc?mg to the
increment 8x; for the differential coefficient of x is unity, so that

dx = 1.8z
= 8z.

Tt follows that, if dy,dx are the differentials corresponding to
the (arbitrary) increment éz, then

dy = f'(x) 8z, dx = oa.
Hence the differentials dy,dx satisfy the fundamental exact relation
dy = f'(z)dz.
The notation dy,dx for differentials is, of course, designed to
agree with the composite symbol ﬁ—z for the differential coefficient.
In fact, if we divide the relation just given by dz, we obtain the

equation d
dy - = Ey’
d
or dy = d—zdx,
and obtain :—Z as the actual coefficient of the differential dz.

In practice, especially in physical applications, it is customary
to use the symbols dy,dz when the increments &y, 6z are really
intended.

With this incorrect usage, the equation

dy = f'(@)dx
is often written where Sy = f'(z) éx
is meant.
The difference between dy, 8y may be illustrated graphically,
as in the diagram (Fig. 14). Let
P(x,y), P'(@+ 82,y + &y)

be two points of the curve

y = f(=).
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Draw PM perpendicular to the ordinate through P’, and let the
tangent at P meet that ordinate in . Then

PM = 8z = dx,
MP' = &y.
¥y
Py
Q 3y
dy
B I Af N
/ ox =dx I
y
(@] x+dx ¥
Fig. 14,
M
Moreover, Fﬂg = tan M PQ
= tan (angle between PQ, Oz)
=f'(x) (p. 23).
Hence MQ = f'(x).PM
= f'(x) 8z
= dy,

by definition.

Thus MP’ represents 8y, while MQ represents dy. When 8z is
small, the difference between MP’, MQ is very small indeed; in
fact, @P' is then small in comparison with 8.

ILLUSTRATION 2. A wire is pulled out so that its length is increased
by 1 per cent. Assuming that the wire can be treated as a cylinder
of small cross-section and that the volume remains constant, by what
percentage is its diameter decreased?
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Suppose that the constant volume is ¥ and that the length
is . Then the area of a cross-section is V/z, so that the radius
r is given by the relation

r= /(&) = vima

Hence the differentials dr,dx are connected by the relation
dr = =} |(V/[m)a-td,

go that d_r = _Eix

For small variations, the differentials are approximately in the
same ratio as the increments, so that, if

é_zh_l_
z 100’
dr 1
then i

and the decrease in radius (or diameter) is approximately 3 per
cent.
EXAMPLES VI

1. If y = 52%, find the percentage increase in y corresponding
to an increase of 2 per cent in 2.

2. If y = 1/2%, find the percentage decrease in y corresponding
to an increase of } per cent in z.

3. If y = 222 find the approximate increase in ¥ when z increases
from 5 to 5-01.

4. If y=1/Jz, find the approximate decrease in y when z
increases from 16 to 16-03.

13.* The differentiation of determinants. The process of
differentiation when applied to determinants may be illustrated
by the special case when the order of the determinant is 4. We

then have
Uy Uy U Uy

Uy Uy V3 Yy
Wy Wy Wy wy
P P2 Pz Pa
* This paragraph may be postponed, if desired.
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where u,, %, ..., D3, P, are all functions of the independent variable
#. By definition,
A= z( - = ut”jwkpl)s

where the sign + or — must be taken according as the number
of interchanges required to bring the four distinct integers i, j, &, !
to the order 1, 2, 3, 4 is even or odd.

It follows that, if dashes denote differentiations with respect to z,

A" = Z(+u;v;w, p)
+2( £ u; v we )
+E(t g v; wip)
+Z(+ u; v; wy Pp).
Hence L T T T
% Y Y% Y%
Wy, Wy Wy Wy
P Py Dy Pu
Uy Uy Uy Uy
% v v o
W Wy, Wy wy
Py P2 Ps Pa
U Uy U3 Uy
Y1 % Y Y
w owp wh w
P P2 P3s P4
W N W,
v U Y 9,
w, wy, wy w, |
Py Py Py P
Thus A’ is the sum of the four determinants each obtained by differ-
entiating one row of A and leaving the rest unaltered.

Similarly, A’ is the sum of the four determinants each obtained by
differentiating one column of A and leaving the rest unaltered.
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EXAMPLES VII

1. Prove that, if
2® (x+1)2 (z+2)°
A=| =z (z+1) (x+2) |,
1 1 1
then a? (x+1)2 (z+2)
A= 3| = (z+1) (=+2)
1 1 1

2. Prove that, if (x—a)® (z—a)® 1

A= | z-bF (=0 1|,
(®—c)® (z—c)® 1
then (@—a) z—a 1

A =2 (z—bP® z--b 1.
(x—ec) z—c 1




CHAPTER III
APPLICATIONS OF DIFFERENTIATION
1. Ilustration from dynamics; velocity, acceleration.

S}lppose that a particle is moving in a straight line so that its
distance at time ¢ from a fixed point O of the line (Fig. 15) is =,

x40 x

1Y

=R

Fig. 15.

a.nd. at time ¢+ 8t is 2+ 8x. The particle describes the distance
8z in the time 8¢, and so its average speed in that time is

S
t’
We thus obtain an expression for the velocity at time ¢ in the form

. oz
a5
dx
dt’
Let us denote this velocity by u, where

da
dat’
and Proceed to find an expression for the rate of change of
velocity with time. This rate is, in accordance with our usual
principles, Su

Hm —,

st—o Of
where u + 8u is the velocity at time ¢+ 8f. This limit, called the
acceleration at time t, is

or

U =

du
Ea
d*z

.)36 =
or (p. ) T
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Note. Differentiations with respect to time are often indicated
by dots on top of the dependent variable. Thus the velocity and
acceleration are &, respectively.

Suppose, for example, that a particle moves in a straight line
<o that its distance at time ¢ from a fixed origin O is a sinnt; such
motion is called simple harmonic motion. We have

x = asinnt,
go that & = an cosni,
and & = —an?sinnt

= —n*z.
Thus the velocity at time ¢ is ancosni, and the acceleration is
_an®sinnt. The acceleration, being also expressed in the form
—n2g, is directed ToWARDS the origin and is in magnitude pro-
portional to the distance of the particle from the origin.

EXAMPLES I
Find the velocity and acceleration of a particle moving in a
straight line so that its distance z at time ¢ from a fixed point
is given by the following relations:

1. z = cost. 2. x = sinint.
3. x = 5t—328% 4, x= 324,

5. = tsin }nt. 6. x = t2cosint.
7. x = (t—32) (t— 64). 8. x = tsin® i,

2. Maxima and minima illustrated. a

TrrustraTION 1. A log of wood is in
the form of a cylinder of radius a. It is
required to cut as strong a beam as possible y
having rectangular section, on the assump-
tion that strength is proportional to width
and to the square of height (Fig. 16).

If z,y denote the width and height
respectively, and s the strength, then

8 = kxy?,
where k is a constant depending on the nature of the wood.

C
Fig. 186.
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By the theorem of Pythagoras,
z'+y? = 4a?,
so that 8 = ka(4a®—2?),
We have to find the greatest value of s.
For this purpose, draw a graph of s against = (Fig. 17). Tt is

easy to obtain the shape shown in the diagram, where, of course,
only the part between the values z = 0,2 = 2a is relevant.

=20, W 2a\x

Fig. 17.

A glance at the diagram (Fig. 17) shows that the greatest value
of s occurs where z = OM and s = MP. Now the characteristic
quality of the curve, from which we shall be able to calculate
these values of z and s, resides in the fact that the curve has, as
it were, ‘stopped rising’ at P, so that the tangent at P is parallel
to Oz. In the language of Chapter I, § 7, p. 16, the gradient of
the curve is zero at P; that is, the greatest value of & occurs at a

point where
ds

ah

We have the relation
8 = kx(4a®—2?)
= da’kx — k3,

go that d—s = da®k — ka2,
dx

Hence j‘—; = 0 when 2 = 42,

or z=%+%a,3.
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The relevant value of z is positive, and so we see that the beam
of greatest strength has width $a./3, height a6, and therefore
strength 32ka® /3.

EXAMPLES II
1. Taking k= 4, a = 1, draw the graph s = }x(4—2?), plotting
the points which arise from z = —3, — 24, —2,...,2,24,3.
2. By means of a graph, find the greatest value of the function
y=2x—2a%
3. Find the least value of the function 2?— 4z,

3. The determination of maxima and minima. The dia-
gram (Fig. 18) illustrates the graph of a function

y = f()

with the properties that the value of f(z) at P exceeds that at
any point NEAR IT, while the value at @ is less than that at any
point NEAR 1T. The function f(x) has a maximum at P and a
minimum at Q.

Fig. 18. Fig. 19.

It is important to realize that the words mazimum and minimum
refer to the parts of the curve near P and Q respectively. Clearly
the values at P and @ need not be the greatest or the least values
of f(z) over the curve as a whole.

To find the positions of the maxima and minima, we follow
precisely the argument of Illustration 1 (p. 49). The criterion

R Kk the gradient of the curve is zero
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at a maximum or minimum. In other words, if the function f(x)
has @ maximum or a minimum value where x = a, then

J(a) = 0.
The converse result is NoT necessarily true At the point R in

the diagram (Fig. 19) the gradient is zero, although the function
has neither a maximum nor a minimum there.

EXAMPLES III

Find the values of z at which each of the following functions
has a maximum or minimum value, and illustrate by sketching
the curve y = f(x).

La®+1. 2. 22—22 3. 23—-3x—4. 4. 20—22247.

5. sinz. 6. sin2z. 7. cosz. 8. cos x.

4. Increasing and decreasing functions. We should say
that, from its appearance, the function f(z), whose graph is
shown in the diagram (Fig. 20), is a steadily increasing function
of z. We must now consider how this feature is to be interpreted
in terms of the differential coefficient of f(z).

If z undergoes a small positive variation 8z, then f(z), by
definition, must increase, so that

fl@+ 8x)—f(=) fle)
is positive. It follows that the quo-
tient

flz+ 82)—f(2) b

ox ax
is essentially positive, and so <
U' X x#0x 2
lim f@&+32)~f(z) Fig. 20.

Sz —>0 dx

is positive. Hence the differential coefficient of a function is positive
in an interval where the function is increasing.

Similarly, the differential coefficient of a function is negative in
an interval where the function is decreasing.

The converses of these two results are also true.
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ILLustrATION 2, To prove that, if x is positive, the value of
sinx lies between

a3 o
ﬂ:—iﬁ and a:—-ﬂ+5—1.
Write U = sina:——a:+;:—:.
22
Then u' = cosx—l+§i,
%" = —sinz+2,
u'" = —cosxz+1.

The differential coefficient of the function %'’ is 1 —cosz, which
is necessarily positive; hence %'’ is an increasing function of z.
But %"(0) = 0, and so %" increases steadily from zero. That is,
u"" is positive when z is positive.

The differential coefficient of the function %’ is %'’, which we
have just proved positive; hence #’ is an increasing function of z.
But %'(0) = 0, and so %’ increases steadily from zero. That is, %’
is positive when 2 is positive.

Now consider » itself. Its differential coefficient «’ has just
been proved positive; hence » is an increasing function of z. But
%(0) = 0, and so % increases steadily from zero. That is, « is
positive when 2 is positive.

Hence sinx exceeds z—;—j for positive values of z.

In the same way, by considering the function

v = a:—~x—s+f—sinz
Rl s J

we may prove that sinz is less than z— for positive values

a8
31751
of .

The result is therefore established.

EXAMPLES IV
1. Prove that, if 2> 0, then

1 i4<oos:..-'<1 8 f
T3l 21T ar
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2. Prove that, if z lies between 0 and =, then

Binx >x cos .
3. Prove that, if  lies between 0 and =, then
xsinz+ cosz> 1+ $a?cosa.

4. Find the ranges of values of « for which the following
expressions are increasing functions, and illustrate your answers

graphically:
(i) a®—z. (i) a®+x—2. (iii) 2®—3x+ 2.
(iv) 2*+1. (v) a*—2a2, (vi) 22°— 152+ 24z,

5. The second differential coefficient and concavity.
The diagram (Fig. 21) represents a curve where, in the ordinary
sense of the phrase, ‘the concavity is upwards’. The curve, as
usual, is the graph of a function

v =f(z).
b
B by
A G
= E
'F
0 70 =
Fig. 21. Fig. 22.

As z increases, the corresponding point describes the curve
between 4 and B, moving in the sense indicated by the arrow.
The gradient is negative to the left of C' and positive to the
right, but the important thing is that it INCREASES STEADILY
with 2. At A the gradient has a fairly high negative value;
between 4 and C it remains negative but decreases in numerical
value so that (being negative) it actually increases; at C it has
increased to the value zero. After C, the gradient remains positive,
and continues to increase.

But the gradient of the function is f’(x), and the condition that
f'(@) should increase is that 1rs differential coefficient f*'(x) should
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be positive. Hence the condition for the concavity of the curve
y = f(2) to be ‘upwards’ during an interval a<z<b is that f"(z)
should be positive in that interval.

In the same way, the diagram (Fig. 22) represents a curve
whose concavity is ‘downwards’ between E and F. The gradient
is positive at E, decreases steadily to zero at @, and thereafter
continues to decrease as its value becomes greater and greater
with negative sign. Hence the condition for the concavity of the
curve y = f(x) to be ‘downwards’ during an interval e<x <f is that
f''(x) should be negative in that interval.

6. Points of inflexion. The diagrams in § 5 (Figs. 21, 22)
illustrated curves in which the concavity was always upwards, or
always downwards, in the interval considered. The present dia-
gram (Fig. 23) illustrates a curve

y =f()

in which the concavity is ‘down-
wards’ between U and W, but
‘upwards’ between W and V,
changing sense at the point W
itself.

The value of f"(x) is negative
to the left of W and positive to
the right. At W, the value of
f"(x) is zero.

It is instructive to trace the

progress of the gradient as the
curve is traced by a point mov- Fig. 23.
ing from U, through W, to V.
At U the gradient is positive, but it decreases steadily as the
point approaches W; after W, however, the gradient begins to
increase again, so that it has a minimum value at W. Hence the
differential coefficient of the gradient vanishes at W; that is,

J'(@)=0

7

at W.
A point such as W, where the concavity changes sense, is called
a point of inflexion of the curve.
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The condition f”(z) = 0 is necessary for a point of inflexion,
but not sufficient to ensure it, as the first two examples below
illustrate.

EXAMPLES V

¥ S.ketch the curve y = 32® for values of z between — 2,2,
Verify that the curve has a point of inflexion at the origin,

2, S'ketch the curve y = }a* for values of = between —2, 2.
Verify that the curve has Nor a point of inflexion at the origin

alth ddy .
though 7at vanishes there,

3. Sketch the curve y = }(x+ 23) for values of x between — 3,3.

:. 4Sketch the curve y = }(4x—2%) for values of z between

7. Discrimination between maxima and minima. We are
now able to devise a method, which can be stated in two alterna-
tive forms, for deciding whether a turning value of a function
f(z) is a maximum or a minimum, The diagram (Fig. 24) shows
the curve

¥ = f(z)
with a minimum at P and a
maximum at @ (see p. 51).

Form I. Consider the point
P. The gradient there is zero, 0
and the characteristic feature
associated with the minimum

is that the gradient passes from . ¥

negative, through zero, to positive 4 \ .
as x passes, in the increasing

sense, through its value at P, Fig. 24.

Thus:
. If f'(z) 1s @e.grative Jor values of x just less than z,, zero at 2
meb.", and positive for values of x just greater than @, then f(x) has
a minimum at x = z,.

Slmﬂ&rljf, if f'(x) is positive for values of x Just less than x,
zero at x, iself, and negative for values of x just greater than z,,
then f(x) has a mazimum at x = ;.
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Form II. The first form just given may be reworded to state
that the gradient of the curve is an increasing function of z at a
minimum and a decreasing function at a maximum. Hence if
f"(x) is positive at a turning point, the function has a minimum
there; and, if f''(x) is negative at a turning point, the function has
a maximum there.

Note. It is often better to use the first form rather than the
second, especially if (as often happens) the second differential
coefficient is awkward to manipulate.

ILLusTRATION 3. The potential energy of a uniform rod.

Suppose that 04 (Fig. 25) is a uniform rod, of length 2a and
weight W, suspended from one end O. If it makes an angle ¢
with the downward vertical, the potential energy V is defined to

be the function of @ given by the relation o
V = const.— Wacos 8.
av
e i g\a
Hence 70 Wasin 8,
2
% = Wacos#. G
The significantly distinct values of & which give a
rise to the turning values of the potential energy are
derived from the equation
Wasin f = 0,

so that =0 or m. Fig. 25.
To distinguish between the cases 6 = 0,7
Form 1.

(i) 8 = 0 (the rod hanging down).

When 8 is just less than zero, 30 is negative; and, when 6 is
just greater than zero, %—g is positive. Hence the potential energy
is a minimum.

(ii) 6 = = (the rod ‘standing up’).

When 6 is just less than =, sin@ is positive, so that % is
positive; and, when @ is just greater than =, sin 0 is negative, so

that % is negative. Hence the potential energy is a maximum.
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Forwm II.
(i) 68 =0.
d*V 3 -
When 6 = 0, 30 = Wa, so that V is a minimum.

When 6 = =, d—;= — Wa, so that V is a maximum.

EXAMPLES VI

The positions of the maxima and minima of the following
functions were found in Examples IIT (p. 52). Use both forms
of test to distinguish between maxima and minima.

1. 2241, 2, 22— 2z,
3. 28—3zx—4, 4, 24 —222417,
5. sinz. 6. sin 2z.
7. cosz. 8. cos iz,

9. Prove that the curve
Yy =2a%—322— 92
has a maximum where x = —1, a minimum where z = 3, and a
point of inflexion where # = 1. Sketch the curve, and check that
the concavity in your sketch agrees with the results of §5 (p. 54).
10. Find the results analogous to those of Ex. 9 for the curves
(i) y = 28— 120,
(i) y = 22+ 322
11. Find the maxima and minima of the funection
sin 3z + 3sinz,
and distinguish between them.

12, For the function y = 2% — 9a2 + 12z,

(i) find the maxima and minima, and distinguish between
them,

(ii) find the values of 2 for which y is (a) an increasing
function, (b) a decreasing function,

(iii) sketch the curve.
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8. The sketching of simple curves. The ability to sketch
quickly the principal features of a curve

y=/@)

is important for many purposes. The following properties are
important:

(i) passage through characteristic points;

(ii) symmetry;

(iii) the sign of f(z) for various ranges of values of z;

(iv) the gradient;

(v) maximum or minimum values of f(z);

(vi) the concavity.
Common sense and experience must decide which of these

properties seem likely to be most helpful for a particular curve.
The illustration which follows is typical.

ILnusTRATION 4. T0 sketch the curve
y=a—622+92-1,
By differentiation,
y =322—1204+9=3(x—1)(x—3),
y"' =6z—12 = 6(z—2).

The critical features may be expected to be:

(@) where y = 0, but it is not easy to find such points for this
particular curve;

(b) where ' = 0, that is, where 2 = 1, 3;
(¢) where ¥’ = 0, that is, where z = 2.

We may therefore construct a table as follows:

z la<t| 1T |I=<z<3| 2 |2<w<8| 8§ |23

y || 2 3 ? 1 ? -1|?
+ 0 - -3 — 0 oL

y” - | —6 - 0 + UMb
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The. concavity is ‘downwards’ for < 2 and ‘upwards’ for 2> 2;
there is a point of inflexion at (2, 1), with gradient —3,
There is a maximum at (1, 3) and a minimum at (3, —1).
These features are all gathered together in the diagram (Fig. 26).

EXAMPLES VII Y

Sketch the curves given by the
following equations:

1, 4 =28, i

S =l i

3. y=22-32x+2. T .

4 y=(2—1)(2—2)(z-3). ' ﬁ\_/ i
5. y = a%— 3z,

6. y = 28— 222,

See also Examples V (p. 56).
Fig. 26.

9.' Rolle’s theorem. To verify that, if f(x) is a function of z
cont:mumw between two points x = a,z = b, at each of which it
vanishes, the curve y = f(x) having a tangent at all points between
a,b, then there exists at least one value of z between a,b at which
J'(x) vanishes. :

The diagram (Fig. 27) is typical of the form which the graph
Yy = f(x) must take, cutting the z-axis at the points A4, B corre-
sponding to z = a, b. ’

We propose to regard it as obvious
from the diagram that there exists
between 4,B at least one point
where the tangent is parallel to /_\
the z-axis. For a rigorous proof, ¢ /4 “ 3
the reader should consult a more
advanced text-book. Fig. 21.

b

EXAMPLES VIII

Verify. Rolle’s theorem by actual calculation of ['(z), and also
by drawing a graph, for each of the following functions:

L flx)=a2®—32+2;a=1,b=2.
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2. fx)=(z-1)(x—2)(z—3);a=1,b=2,
3. flx)=a*x—1);a=0,b=1,
4, flx)=z(x—1)%a=0,b=1.
5. f(x)=sinz; a = #,b = 2m.
6. f(x)=cos?z; @ = }m,b = §m.

10. The mean value theorem. To verify that, if f(z) is a
function of @ (continuous and) having a differential coefficient* at
each point between x = a,x =b, then there exists a value ¢ of x
between a,b with the property that

Jb) = f(a)+ (b—a)f'(§).
In the diagram (Fig. 28), let 4, B be the points of the curve

y = f(x) for which z = a,b, and draw AP perpendicular to the
ordinate through B. Then

f®)—f(a) _PB _ ”
W" =E‘ = tan PAB.

But the graph shows that
there must be at least one
point X between A, B where
the tangent is parallel to AB.
If this pointis given by z = &,
then

£'(#) = tan PAB,

8o that

f®)=fla)
= o = f'(€).

This is equivalent to the required result.

Avrrer. The following proof is instructive, and worthy of close
study. It is the basis of the proof of a generalization of the mean
value theorem to be given later (Vol. II, p. 44).

* Having a differential coefficient ensures that the function is continuous.
It should be noted, however, that the converse need not be true—a function
may be continuous but not have a differential coefficient. For example,
if y = +2 when z is positive and —z when z is negative, then (i) v is
continuous at z = 0; (ii) ¥ = +1 when = is positive; (iii) ¥’ = —1 when z
is negative; but (iv) ¥’ does not exist when z is zero.




62 APPLICATIONS OF DIFFERENTIATION
Define a function u(z) as follows:

ue@)=/0) =@~ (1L o),

Since f(z) is continuous between a, b, so also is u(z). Further, it
is easy to see that w(a) = 0,u(b) = 0, so that u(x) satisfies the
conditions of Rolle’s theorem (p. 60). Hence there exists a value
£ of  between a, b such that

u'(£) = 0.
Now w'(2) = —f'(2)+ {f——(bg :‘Z:(a)},
and so g <L0-10),

as required.

ILLusTrRATION 5. To prove that, if f(z) is @ continuous Junction
of x such that f'(x) = 0 throughout a given interval, then f(z) is
constant in that inferval.

The result is, of course, obvious graphically, but the following
proof is of interest.

If 2,2, are any two values of z in the interval, then, by the

mean value theorem, there exists at least one value of £ between
Z,, ¥, such that

J(@y) = f(2)) + (2 — ;)£ (8).
But f’(f) =0,
and 50 f@9) = fzy).

Since this is true for all values of &3, %, in the interval, f(z) must
be constant.

EXAMPLES IX

1. Prove that, if f(z) is a continuous function of z such that
J'(z) = 2 throughout a given interval, then f@)=2z+b in that
interval, where b is some constant.

2. Verify the mean value theorem by caleulating ¢ for each of
the following functions, and illustrate your results graphically.
(i) f(x)=2%a=0,b=2.
(i) fx)=22+2;a=1,b= 3.
(iii) flx)=2®+32;a =—1,b = 2.
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11. The real roots of the equations f(x) = 0, f'(x) = 0.
Suppose that we have to solve an equation f(z) = 0, and that the
diagram (Fig. 29) represents the curve

y = f(=z).

We restrict ourselves for the moment to the case when the roots
are ALL DISTINCT. This restriction, the purpose of which is to
ensure that f'(x) and f(x) are not both zero together, is essential
for the work which follows.

It is assumed, too, that Y
the curve is continuous,
with a continuously turn-

ing tangent.
Our aim is to discuss,
without the analytical de- = O/

tail required for a full
study, those properties
which may be asserted
with reasonable confidence Fig. 29.

from a study of the graph.

(i) The sign of f(z). If z is imagined to increase from —co to
+00, the value of f(z) changes sign every time that z passes
through a point where f(x) = 0. Hence the number of (real) roots
18 equal to the number of changes in the sign of f(x) as x increases
from —ooto +co.

If f(a),f(b) have the saME signs, then there is an even number
(or zero) of roots between a, b.

If f(a), f(b) have opPPOSITE signs, then there is an odd number of
roots between a, b.

In particular, if

flx)=apa+a, 2" 1 +...+a,

is a polynomial in  of degree =, and if » is odd, then, for large
negative values of #, f(z) has sign opposite to a,, and for large
positive values of z, f(x) has the same sign as a,. Hence if f(x) is
a polynomial of opD degree, the equation f(xz) = 0 has at least one
real root.

(ii) The sign of f'(x). Suppose, for the sake of explanation, that
the sign of f'(x) is positive at a point £ where f(x) = 0. Then f(z)
is an increasing function of z at z = £, so that the curve y = f(z)
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goes ‘above’ the axis as z increases from £. As z, still increasing,
approaches the next root z =7, the curve ‘drops’ towards the
z-axis, so that f'(z) is negative there. Hence the differential co-
efficient f'(x) assumes alternate signs at the successive roots of the
equation f(x) = 0.

Applying the result (i) above, we see too that the equation
f'(@) =0 has an odd number of roots (at least one) between con-
seculive roots of the equation f(x) = 0.

(iii) Since f'(x) has constant sign between successive roots of
the equation f'(z) = 0, the value of f(x) either rises or, alterna-
tively, falls Arr. THE way between successive maxima and
minima. Hence the equation f(z) = 0 has either ome root or n0
rools between consecutive roots of the equation f'(x) = 0.

RS g

Fig. 30a. Fig. 30b.
When the roots of the equation f(@) = 0 are not all distinet, care
must be taken in applying the rules. Thus the equation

f (JE} =0,

y =fl(z)

is shown in Fig. 30a, has a double root z = &, corresponding to

the point 4; and in Fig. 305 it has a triple root z = 7 corresponding

to the point B. The function f(z) has the same sign for values of z

on either side of £, but opposite signs for values on either side of 7.
It is probably wiser (at any rate, for the Present) to treat each

case on its merits as it arises rather than to seek a more elaborate
set of rules.

whose graph

ILLusTrATION 6. If

x? an
Pn(x)=1+z+2—!+...+m,
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prove that the equation P,(x) = 0 has no real roots when n is even
and exactly one real root when n i8 odd. |

This is a typical problem. Assume that the result is true for
n=1,2,...,N. We prove that it is then true for n = N + 1. )

(i) Suppose that N is even. By the assumption, the equation

PN(E) = 0
has no real roots.

Consider the equation
Py (2) = 0.

By direct differentiation, we have the relation
P11 () = Fy (@),

so that Py.,(x) is never zero. Hence the polynomia_\.] Pys()
either increases steadily or decreases steadily. But, since N +1
is odd, Py,,(x) is negative for large negative va.lm'ss of @ and
positive for large positive values. (Indeed, Py,,(x) is obviously
positive and increasing for positive z.) Hence, the graph
y = Py,,(x) crosses the xz-axis once, and once only, and the
equation Py, (2) = 0 has precisely one root. : :
(ii) Suppose that N is odd. By the assumption, the equation

Py(a) =0

has exactly one real root, say £, which cannot be zero.
Consider the equation

Py (@)=0,
where, as before, Py (z) =Py (),
so that Py (&) =o.

The curve y = Py, () therefore has a turning ?ra.lue atz = E; fu.xd,
as this is the only turning value, while Py, (z) is large and pos1t.1ve
(N +1 being even) for large positive or negative z, the tm
point is actually a minimum and gives the least value attained

by Py, (z). Moreover,

g’ gN gN-}-l
Py (&)= (1 +E+5+ --""1\71) twE
gN-i-l

RS
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since Py(£) is zero. Hence, as N+1 is even, and ¢ is not zero,
Pyi,(é) is positive. Since the least value of Pyy4(x) is positive,
Py y(2) can never be zero.
The result is therefore true for N + 1 whether N is even or odd.
But it is clearly true forn = 1. Hence it is true for n = 2,3,4,5,...,
and so generally.

EXAMPLES X
1. Prove that, if f(2) =2%(1 —2)?, then the roots of the equation
f"(x) = 0 are distinct, and lie between 0 and 1.
Prove the corresponding result for the equation g'"(x) =0
where g(z) =231 —x)3.
2. Indicate in a single diagram the relative positions of the roots
of the equations

a8 a8 af
f1=3= 0, f2=$—ﬂ=0, fa=x—ﬁ+5—l=0,
22 a2
HEl=gi =0 H=l-gag =0

12.* Mean value theorems for two functions.

(i) Cavcmy’s MEAN Varur Tumorem. To prove that, if the
functions f(x), g(x) have differential coefficients which do not vanish
simultaneously in the interval a, b, and if g(a) is not equal to g(b),
then there is a number £ between a, b for which

f®)=f(@) _ 1€
g(b)—g(a) g'(€)

Introduce a function ¥(z) defined by the relation

F(x)=f(x)+Ag(z)+ B,
where A, B are constants chosen so that
F(a)=f(a)+Ag(a)+ B = 0,
Fb)=f(b)+Ag(b)+ B = 0.

These two equations can be solved for 4, B since g(a), g(b) are
not equal.

By Rolle’s theorem, there is a number £ between a, b such that
F'(§) = 0. That is,

f(&)+4g'(€) =o.
* This paragraph may be postponed, if desired.
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Moreover, g'(£) cannot be zero; if it were, this equation would
make f'(£) zero also, contrary to the first hypothesis. Hence we

may divide by ¢'(£), giving
e
g'(€)
But, by direct subtraction,
F(b)~F(a) = {{6)~f(@}+ A{g(5)—g(@)},
so that, since F(b) = F(a) = 0 and g(b) —g(a) is not zero,

jb)~f@) _

g(b)—g(a)
= f&)=f@) _f(&)
g g(b)—g(@) = 7€)

(ii) To prove that, if the functions f(x),g(x) have :second differ-
ential coefficients such that f'(x),g" (x) do not vanish szmultawly
in the interval a—h,a+h, and if gla+h)+gla—h)—2g(a) is not
zero, then there is a number ¢ between a—h,a+h for which

fa+)+fa=h)~2f@) _ ()
gla+h)+gla—h)—2g(a) g"(£)
Introduce a function F(z) defined by the relation
F(z)=f(z)+ Ag(x)+ Bx+C,
where 4, B, C are constants chosen so that
Fla+h)=fla+h)+Agla+h)+Bla+h)+C =0,
Fla—h)=fa—h)+Agla—h)+Bla—h)+C = 0,
F(a) =f(@) +Agla) +Ba +C=0.

By Rolle’s theorem, since F(a) = F(a+h) = 0, there is a number
£, between a,a + k such that F'(£,) = 0; and, since

F(a—h) = F(a) =0,
there is a number £, between a—h,a such that F'(£,) = 0. :
Now apply Rolle’s theorem to the function F’(z), which

vanishes when z = £,, £, There is a number ¢ between 5.1, &, and
therefore between a—h,a+ h, such that F''(¢§) = 0. That is

F'(§)+4g"(€) = 0.
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But f"(£),9"(¢) are not both zero, by hypothesis, and so g'(¢)
cannot vanish. Hence
f”( f) A-

gH(E) T
Moreover, from the three equations for 4, B, C, we have
{fla+h) +f(a—h)—2f(a)}+ Afg(a+h)+g(a—h) - 29(a)} = 0,
so that, since g(a+ %)+ g(a—h)— 2g(a) is not zero,

fa+h+fa-n-20@) __
gla+h)+gla—h)—2g(a) —
2l &)
g"(€)’

13. A_pplication to certain limits. To prove that, if f(z), g(x)
are (continuous) functions such that fla) = gla) = 0, and if f'(a),g'(a)
both exist (g'(a)+0), then

im @) _ f'(@)
b g'(a)’
Since f(a) = g(a) = 0, we have the relation
f@)—fla)
f@)_ _w=a_
9(x)  g(x)—g(a)
z—a

(z+a).

Now let z—>a. The right-hand side tends to the ratio (which, by
hypothesis, exists) of the two differential coeflicients at o = a,

so that o m _ -I:(“_)
z>af(®) g'(a)

, ExTENsION.* More generally, if f(z), g(x) are (continuous) func-
tions such that f(a) = g(a) = 0, and of f'(x)/g' (@) tends to the limit |
as x lends to a, then

lim == = .
z—a J(T)

To prove this, we use Cauchy’s mean value theorem (p. 66),
that
f@)—f@) _ f'¢)
g(®)—=gla) ¢'(§)
* This exvension may be postponed, if desired.
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for a number ¢ between z,a. As z tends to @, the number £ must
tend to a also, and so
Jim 2 = 1
- I 0

Note. This extension (which the reader who has not yet
studied Cauchy’s mean value theorem may accept without
proof) leads to a ‘continuation’ process for evaluating the limit
J(x)/g(x), assuming existence and continuity where necessary:

(i) I f(a) = g(a) = 0, but g'(a) + 0, then
im @ _ @
@~ 7@
(ii) If also f'(a) = ¢'(a) = 0, but g"'(a) = 0, then
ch—?a g'(x) 3 zhfla gu(x)’

. fl®) _f"(a)
e g@)  ¢"()’

so that
and so on.

ItrusTrATION 7. To evaluate the limit

1—cosx
lim .
z—>0 xﬁ

If fl@)=1—cosz, g(z)=a%
then f(0) = g(0) = 0. Also
f'() = sinz, g¢'(z)= 22,
so that f'(0) = ¢'(0) = 0. We therefore proceed to the next stage
f"(2) = cosz, ¢"(z) =2,
so that J'(0)=1, g"(0)=2.

l—cosz 1
Hence lim ==,
oy B B
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EXAMPLES XI
Use the method of § 13 to evaluate the following limits:

. 1=a? . (l—a)®
1. lim —. 2. lim —.
a—>11—22 g1 1—2°
8 i = 4. lim =2
a2 T—2 z—>0 T
r—sing sin2z
6. lim . 6. lim =
z=>0 xs z—>0 a?

REVISION EXAMPLES I
‘Alternative Ordinary’ Level

1. Differentiate the following functions with respect to 2:
(i) cosz+zsinz, (i) (3z—1)(x—3), (i) 1/(1+=2?).

2. Differentiate with respect to z:
sv' s so) Lol 2 sain. =1
(i) «®J(1—=), (ii) sin®zcos®z, (iii) 21
3. Differentiate with respect to z:

EDE=D ) s,

(@)
4. Prove from first principles that the differential coefficient of
1/2? with respect to x is — 2/a3,
Differentiate with respect to z:
’ 0yl
W (o+) . @
5. Differentiate with respect to z:
(i) 2®(1+=)?, (i) sin®2x, (iii) (1—227).
6. Differentiate the following with respect to z:
(i) 2%(8—2x), (ii) sin2xcosz, (iii) 1/J(1—22).

sinz
1+sinz’

(iii) |(a®—2?).

7. Find the equation of the tangent to y = 2® at the point (1,1)
and of the tangent to y = $2® at the point (2,$).

Show that these tangents are parallel and that the distance
between them is § /5.

REVISION EXAMPLES 1 g |

8. The curve y=z(xz—1)(x—2)

cuts the z-axis at the points 0(0,0),A4(1,0),B(2,0). Find the
equations of the tangents at 0, 4, B.

Find the coordinates of the point at which the tangent at 4
cuts the tangent at B.

9. Find the z-coordinates of the points on the curve
y = (z+1)(z—2)?
at which the gradient is zero, and test whether y has a maximum
or minimum value at each of the points that you have found.
Also find the z-coordinate of the point at which the tangent is

parallel to the tangent at the point (3,4).
Draw a rough sketch of the curve.

10. Find the equation of the tangent to the curve

y=at+4a2+1
at the point (—1,%).
Find the coordinates of another point on the curve where the
tangent is parallel to that at the point (—1, ).

11. Find the coordinates of the points of intersection of the
line 3y = « with the curve

y = 2(1—22).
If these points are in order P, 0,Q, prove that the tangents to

the curve at P, are parallel, and that the tangent at O is per-
pendicular to them.

12. Find the equation of the tangent to the curve

y=2°— 022+ 202 —8
at the point (1, 4).
At what points of the curve is the tangent parallel to the line
dx+y = 3%

13. The point (h,%) lies on the curve y = 222+ 18. Find the
gradient at this point and the equation of the tangent there.

Hence find the equations of the two tangents to the curve
which pass through the origin.
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14. Prove that the equation of the tangent to the curve
Y =2a3+222—8x+17
at the point (1,3) is 22—y +1 = 0.

Find also the abscissae (z-coordinates) of the points on the
curve at which the tangents are perpendicular to the first tangent.

15. A curve whose equation is

12y = az®+ ba® +ex+d
has the following properties:

(i) it passes through the origin, and the tangent there makes
an angle of 45° with the axis 0X;

(ii) it is parallel to the axis OX when = 1 and when z = 2;
determine a,b,c,d and sketch the curve.

16. Find the maximum and minimum values of the expression
2+ 428 — 222 — 1224 2,
distinguishing maxima from minima.
17. Find the maximum and minimum values of the function
e —2)%z+4),

carefully distinguishing between them.
Use these results to sketch the graph of the function, and find
the equation of the tangent at the point (0, 2) on the graph.

18. Find the points on the curve

y = 223 — 32— 122420

at which y has a maximum or minimum value.
Use your results to make a rough sketch of the curve.

19. Find the points (z,y) on the curve whose equation is
y=2a%— 622+ 9z +2

at which y is a maximum or minimum.
Use your results to draw a rough sketch of this curve,

20. Find the gradient of the curve
y = 22° — B2 —dar + 12
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at the point (2,0) and determine whether  has a maximum or a
minimum value at this point. Illustrate your answer by a rough
sketch showing the slope of the curve in the neighbourhood of
the point.

21. Find the coordinates of the points on the curve
y=2x%— 622+ 92 —2

at which the tangents are parallel to the z-axis.

Show that the slopes of the tangents at points whose abscissae
(z-coordinates) are less than 1 are all positive, and that at points
whose abscissae lie between 1 and 3 the slopes are negative.

Sketch the curve, and state what you infer as to the nature of
the roots of the equation

23 —622+92x—2 = 0.

22. A particle is moving along a straight line in such a manner
that its distance from a point O on the line at time ¢ sec. is given
by z = pt®+qt®, where p and g are constants. Find the velocity
and acceleration of the particle at time ¢ in terms of p, g, .

Find also the values of p and g for which the maximum velocity
is 48 ft./sec., this velocity being attained when ¢ = 4.

23. OX and OY are two perpendicular straight roads, and 4
is a fixed point on OX, distant @ ft. from 0. A motor-cyclist P is
travelling along OY at a constant speed v ft./sec., and at time ¢
the angle OAP is 6 radians. Prove that the rate of increase of
the distance of P from A is vsin @ ft./sec. and that the rate of
increase of the angle @ is (v/a) cos? § radians/sec.

24. A particle moves along the z-axis in such a way that its
distance # ft. from the origin after ¢ sec. is given by the formula
x = 27t— 22, What are its velocity and acceleration after 6% sec?

How long does it take for the velocity to be reduced from
15 ft. per sec. to 9 ft. per sec., and how far does the particle
travel meanwhile?

25. A point moves along a straight line so that, at the end of
t sec., its distance from a fixed point on the line is #— 22 +1¢ ft.
Find the velocity and acceleration at the end of 3 sec.

26. A particle moves along a straight line so that its distance at
time ¢ from a given point O of the line is z, where z = {sin ¢+ cos .
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Find its velocity and acceleration at time .
Prove that the particle is at rest at the times

t= 0,%‘”,%‘1’?,%‘#,‘;#, aas

27. The angle C of the triangle ABC is always right. If the
sum of C4,CB is 6 in.,, find the maximum area of the triangle.

If, on the other hand, the hypotenuse 4B is kept equal to 4 in.
and the sides C4, CB allowed to vary, find the maximum area of
the triangle.

28. A man wishes to fence in a rectangular closure of area
128 8q. ft. One side of the enclosure is formed by part of a brick
wall, already in position. What is the least possible length of
fencing required for the other three sides? (Prove that your
result gives a minimum.)

29. B is a point a miles due north of 4, while C is 3a miles due
east of B; P is a variable point on BC at a distance z miles from B.
A man walks straight from 4 to P at 4 miles per hour and then
straight from P to C at 5 miles per hour. Prove that the time
for the whole journey is, in hours, '

1(@*+2%)+1(3a—2).

Find what the value of # must be for the time taken on the
whole journey to be a minimum, and also find this minimum time
in hours.

30. A statue 12 ft. high stands on a pillar 14 ft. high. A man,
whose eye is 5 ft. above the ground, stands at a distance z ft.
from the statue. Prove that the angle § which the statue subtends
at his eye is given by the equation

122

tanﬂ = x_-2+189'

Find the value of x for which 6 is as great as possible, giving
your answer correct to one place of decimals.

31. A rectangular tank, open at the top, on a base z ft. by
y ft. and of height = ft., is to be constructed of iron sheeting
(whose thickness may be neglected) of total area 1350 sq. ft., so
that the volume of water which it can contain is a maximum,
Find this maximum volume.
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32. Post Office Regulations restrict parcels to a maximum
length of 3 ft. 6 in. and a maximum girth of 6 ft. Find the
maximum permissible volume of a rectangular parcel.

Find also the length of the longest thin rod which can be packed
inside a parcel of maximum permissible volume, giving your
answer in feet to three significant figures.

33. An open tank is to be constructed with a horizontal square
base and four vertical rectangular sides. It is to have a capacity
of 32 cu. ft. Find the least area of sheet metal of which it can
be made.

34. A piece of wire of length I is cut into two portions, the
length of one being z. Each portion is then bent to form the
perimeter of a rectangle whose length is twice its breadth. Find
an expression for the sum of the areas of these rectangles.

For what value of z is this area a minimum?

35. Prove that, if the sum of the radii of two circles remains
constant, the sum of the areas of the circles is least when the
circles are equal.

36. A farmer has a certain length of fencing and uses it all to
fence in two square sheep-folds. Prove that the sum of the areas
of the two folds is least when their sides are equal.

37. A piece of wire of length [ is cut into parts of lengths z
and ! —x. The former is bent into the shape of a square, and the
latter into a rectangle of which the base is double the height.
Find an expression for the sum of the areas of these two figures.

Prove that the only value of « for which this sum is a maximum
or a minimum is # = £ /; and find which it is.

38. The vertex and circumference of the base of a right circular
cone lie on the surface of a sphere of radius RB. The centre of the
sphere lies inside the cone. It is a known result that, if the height
of the cone is @, its volume is }m2?(2R—=). Prove that, if R is
unaltered while 2 is increased by a small quantity &, the volume
of the cone is increased by 4mz(4R — 3z)h approximately.

39. A cubical block of metal is heated and expands slightly.
If its volume increases by kb per cent, show that the length of
each edge increases by A per cent approximately.

By what approximate percentage is the surface area increased?
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40. A body consists of a cylinder of variable radius z in. and
fixed length 10 in. closed at each end by a hemispherical cap of
radius z in. The volume of the body increases at the rate of
144 cu. in. per sec. At what rate per sec. is z increasing when
z = 3%

41. It is known that, if [ in. is the length of a pendulum and
¢ sec. the time of one complete swing of the pendulum, [ is pro-
portional to ¢*. If the length of the pendulum is increased by
h per cent, where % is small, show that the time of the swing is
increased by A per cent approximately.

A clock loses 30 sec. per day of 24 hr. Should the pendulum be
lengthened or shortened to make the clock keep correct time, and
by what percentage?

42. The height of a closed cylinder is 3 in., and remains constant.
The radius of its base is 2-5 in. and it is increasing at the rate of
0-01 in. per sec. At what rates are (i) the volume, (ii) the total
surface of the cylinder increasing?

43. A sphere is expanding so that its surface is increasing at
the rate of 0-01 sq. in. per sec. Taking = = 22, find the approxi-
mate rates of increase of (i) its radius, and (ii) its volume at the
instant when its radius is 5 in.

44. The volume of a spherical lump of ice ¢ hours after it has

begun to melt is V cu. in., its surface is S sq. in. and its radius

3l av dr

18 7 1. Ha—=—3s, find E-
What is the rate of decrease of § in square inches per hour

when r = 17

45. A solid rectangular block of metal expands by being heated
through a certain range of temperature, the percentage increase
in its length, breadth and thickness being the same. It is found
that the percentage increase in its volume is h, where 4 is small.
Find the approximate percentage increase in the length of the
block.

CHAPTER IV
THE IDEA OF INTEGRATION
1. The area ‘under’ a curve. The diagram (Fig. 31) repre-

sents the graph of the function
y=f)

for values of x between a,b. We assume for the moment that the
curve rises steadily from its value at a to its value at b, and lies

¥
L?-

=
L. G:=R
L--ffx.
L1.-- ﬁe

O M, M, M, My My M5 Mg M; M., a
a4 =B

Fig. 31.

entirely above the z-axis* The ordinates AF, BG are drawn for
x = a, b respectively.

Our problem is to find an expression for the area of the figure
ABGF.

The basic definition of an area to which we appeal is that, if a
rectangle is drawn with sides of lengths p, g, then its area is pq.

* An example will be given later (p. 84), when the reader has acquired
more experience, to illustrate the treatment when some of the curve F'@

lies above, and some below, the z-axis.
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We therefore seek to attach rectangles as closely as may be to
the figure ABGF.

Divide the segment 4B of the z-axis into n parts, not neces-
sarily equal in length,

AL, M, My, My M, ...., M, o M, ,, M, , B.

For convenience of notation, call 4, B the points M,, M,; then
the intervals are

%MD -MrMs: M;e‘Mss g Mn—zlun-ls ‘M;u-l Mn'

Through each point M, M,, I, ... draw the ordinate, meeting the
curve in points Fy, P, B, ...; let the lengths M\Fy, M, P, M, F,, ...
be denoted by the letters y,,y,, Y3 ... (The diagram (Fig. 31)
illustrates the case n = 8.)

Complete the two sets of rectangles
My M, N, Py, M, M, N, P,, M, M, N, F,, M, M, N, P, ...
and MM, P Ly, M, M,F,L,, M, M, P,L,, M,M,P,L, ...

shown in the diagram. We propose to regard it as obvious
intuitively that the area ABGF lies between the sum of the

areas of the first set of rectangles and the sum of the areas of
the second set.

Now write
My My = 8xg, My M, = 82y, M, M, = 8z, M M, = 8,,....
Then the two sums of areas of rectangles are
Yo 0%+ Yy 821 + Y 82y + Y5 825+ ...
and Y1820+ Y3 821 + Y3 825+ Yy 825+ vuuy

or, in more concise notation,

n—1

% Yi 024

n—-1

Zo: Yis10%
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Thus, if A is the required area,
n—1 n—i

2 ydoy<A< ‘::. Y1024
o

We may now suppose that the number n of intervals is taken
larger and larger, while the length of each interval becomes
smaller and smaller. Then the area of a typical relcta.ngle of th;
first set, sa N,., P, becomes progressively nearer an
nearer to thz feftgfl t}?: c:)rresponding rectangle M, M, , F;., L,
of the second set. In the limit, as the number of intervals increases
indefinitely, their size decreasing indefinitely, the two sums

n—1 n-1

%‘. y; 8, x:.‘a Y41 0%

approach equality, the sum of the areas of the small rectangles
‘covering’ the arc F@ shrinking to zero.
This common limiting value is known as the area of ABGF.

ILLusTRATION 1. To find the area ‘under’ the curve
y =

between the ordinates x = 1,2 = 2.

y
E
= y B
Fig. 32.

Divide the interval between the two points A(1,0), B(2,0) into
n equal parts (Fig., 32). The points of division occur where

P, (n—=1)
= 1’ 1+a! I+a) seey 1+T’ 2.
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In the notation of the preceding paragraph,

1 1 1\2 1 2\2 1 3\2
yo=z, y1=2(l+ﬁ) :?la=z(1+;) ,ya=z(1+1—a) e

n-1 n-11] 21
Hence 2 Yy = 3% (1 + )
0 0o 4 n
1n1 21, 2
) Z ( n n“)
Now it is proved in text-books on algebra that
k
Zl=k+1,
[
k -
26 = k(k+1),

%i’ = $k(k+1)(2k+1),
g0 that

61 _ & 2 (n=1n 1 (n-1)n(2n-1)
2 e {"""E' 2 tw 6

£

2 1)+(n_w_n}
=Z]-:Ti[2” 1+ 3'n.+lJ

" 12n% —6n+ 202 —3n+1
24n2

4 14n2—9n+1
K 24n?

+

P PR
T 12 8n 242"

—

}
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If n increases indefinitely, the number of intervals becomes
larger and larger while their magnitude becomes smaller and
smaller. In the limit, as n— oo,

n-1 3 7
% y,‘ x¢—)‘I§-
In the same way,

n—1 !I—Il $'+1 2 1
ZYadr;= 3 -(1 +“—)
(1} 0 n

It can be proved similarly that

n—1

|
% Y410~ 13

Thus the two sums have the same limit, which is the area of
the figure ABGF. Hence the area is {5 square units.

EXAMPLES I

n—1
1. Prove that 2 Y 83:,,—)1%.
0
2. Use the method of Illustration 1 (p. 79) to prove that the areas
‘under’ the curves y = 2 and y = 2°® between 2z = 1 and 2 = 2 are

k
# and Af respectively. [You are given that ¥ 4% = 1A%(k+1)%]
o

2. The integral. The ideas which we used in § 1 can be put
in a somewhat more general form. Suppose that f(z) is a function
of z defined between the values z = a,b. As before, we divide the
interval into » parts, not necessarily equal, at points where z
assumes in turn the values

O, s Bg Dayn e iy W lg, Brq, B

For convenience of notation, we also write z, = a, z, = b.
Consider a typical interval (x;, #;,,), whose length we denote by
the symbol 8z, so that
83:.‘ =Ti1— %4

Throughout that interval, f(z) assumes a succession of values, and
these will (for ordinary functions) have a greatest value and a
least value. We denote the least value of f(z) in the interval
(4, %441) by the symbol m,, and the greatest value by M.
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Now form the two sums

n-1
&= 2 my 82!‘,
0

n—1
Sn = E 'Mi 837‘-
0

These correspond to the sums

n—1 n—1

%: Y82, Yis1 0%,

respectively in §1 (p. 78); but here we are not assuming that
the least and greatest values m,, M; in the interval (x;,z,,,) occur
at its end points.

Suppose that the number of intervals is taken larger and larger,
while the magnitude of each interval becomes smaller and smaller.
The two sums s, 8, tend to limits which we call s, § respectively.
We assume without proof the theorem that the values s, S are
independent of the way in which the subdivisions proceed to
their limit. :

DeriniTioN. When the two limiting sums 8,8 are equal, the
Junction f(z) s said to be INTEGRABLE between a, b, and their common
value is called the integral of f(x) between the limits a, b.

Thus Tllustration 1 (p. 79) tells us that the function }a? is
integrable between the limits 1,2, and that the value of the
integral of }a® between the limits 1,2 is v%.

CororraRrY. If we replace m; or M in the definitions by f(£,),
where ¢; is any point of the interval 8z, then

n-1
% f(£;) 8z,
lies, by definition of m,, M, between the two sums

n—1 n—1
%} m; 8z, En"' M, 8z,

n—1

’En: J(&,) 8z,

Hence the sum

also has as its limit the integral of f(z) between the limits a, b.

NOTATION 83

3. Notation. We have seen that the integral of a function
f(x) between the limits a, b is the common limiting value assumed
by the sums

]
> my 8wy,
0

n—1

A:-: M; by,

or, by the preceding corollary,
n—1

= (€:) 8z,

To imply that we are to sum over an ‘infinite’ number of
intervals, we replace the symbol of summation £ by a symbol of

integration f; we also replace the particular z; by the current

variable #, and, instead of the notation 8x; for the very small
increment at the point x;, we write the symbol dz. The result is
the notation

b
[reras
to denote the integral of f(x) between the limits a,b. For example
(p- 81), y "
Sl s v
J: i% de = 15°

Cororrary (i). It is an immediate consequence of the definition
of an integral as summation over sub-intervals that

e b
[Ferae+ [ Farde = [Faa
CorOLLARY (ii). When a = b, it is clear that
J; Yiz)dz = 0.

CoroLrLARY (iii). We can use Corollaries (i), (ii) to give us an
interpretation for the integral

L Tz (a<b),
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which has not yet been defined. We adopt the meaning, consistent
with (i), that

ff(-”«‘)dx+ff(sc)dx - J; bf(x)dz
=0 (by (i)
[rere = - 1012

Thus the value of an integral is changed in sign by interchange of
the limits.

That is to say,

4. The sign of the area. The value of an integral, defined as
the limit of the sum

n-1

%: fx;) 8z,

may easily be negative in cases where f(x) is not restricted to a
positive value.
Suppose, for example, that the fune-

tion f(x), whose graph
y=J() >
is illustrated in the diagram (Fig. 33), b ef Bl "’
is positive in the interval (a,c) and
negative in (c,b), being zero at ¢ where Fig. 33.

the curve crosses the z-axis. If 4, Bare
the values (essentially positive) of the two areas indicated, then

e L *be)da

as before; but —— f ?’(m)dz,
[

since the area is the limiting value of the areas of a number of
rectangles of typical length 8z; and ‘height’ —f(z;), this being the
numerical value of the negative number f(z;). Hence
b ¢ b
[F@rte = [[faro+ [ farae
a c
=A4A-B,

and this may be positive, negative, or zero.

THE SIGN OF THE AREA 856

It follows that it is always wise to skeich a diagram when cal-

culating the area ‘under’ a curve.
Further, and more detailed, treatment of areas contained by

closed curves will be given later (Vol. 1I, p. 128).

5. Definite and indefinite integrals. Consider the integral

[feaa.

Its value depends on each of the limits a, b, so that it is, in fact,
a certain function of a, b.

Suppose that the lower limit @ has an assigned value, but that
the upper limit b is subject to variation. In order to imply this
ability to vary, we change the name from b to # The value of
the integral is then a function of #, and we may write

u(@) = J; ) da.

Having done this, it is customary to drop the bar from the
symbol &, thus denoting the upper limit by the letter x itself, and
to write

u(z)= sz(x)dx.

The symbol z is now doing double duty, as the variable in the
function integrated, and as the upper limit of integration. This
double use sometimes troubles beginners, and it should be watched
carefully. The point is sometimes met by changing the name of
the variable in the function integrated to the letter . We then
have

ulz)= f “f)as.
a
[It may be useful to point out explicitly that the value of an

integral is not affected by changing the name of the variable
integrated, the limits being unaltered. Thus

[roa- [anau
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We now notice that a change in the lower limit @ merely affects
the value of u(z) to the extent of an additive constant. For let
a,, a, be selected as two values of the lower limit. By Corollary (i),
p- 83, we have the relation

[eyia = [Forae [ “fa),

ay
and the expression f f(x)dz is a constant, unaffected by a change
a,

in the value of the upper limit x in the other integrals.

Finally, it is customary in many problems to leave the lower
limit unspecified. We then obtain an integral which might be
written

[1@1a,

but which is in practice written in the simple form

[raraa

with limits omitted. This is a function of z, determined to within
an additive constant whose magnitude is arbitrary because of the
unspecified lower limit.

b
The integral I [f(z)dz
a
with given limits is called a definite integral, and the integral

[reraa

with unspecified limits is called an indefinite integral.

6. The evaluation of an integral. The process of calculating
the value of an integral by subdividing an interval, summing, and
proceeding to the limit is usually troublesome, and simpler alterna-
tives must be found. In practice, it is often easier to find the
indefinite integral first and then the definite. The fundamental
link is found in the following theorem:
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If g(x) is a function of = defined as the integral of a continuous
Sfunction f(x) in the form

9)= [ 1),
then the differential coefficient g'(x) exists, and
g'(z) = f().

In other words, g(x) is a function whose differential coefficient

is f(x).
In order to prove this theorem, we go straight to the definition
of a differential coefficient, and consider

g(@+h)—g().
If the lower limit of integration is @, then

z+h 'z
9@ +h)—g(z) = f () dz— j f() e

s f “@)dz.  (Corollary (i), p. 83)

Now suppose that z, is a value of & at which f(z) takes its least
value in the interval (z,z+h4), and that z, is a value of z at
which f(z) takes its greatest value. Then, by the very definition

z+h

of an integral, the value of f f(z)dx lies between hf(z,) and
T

hf(x,)—since & is the length of the interval of integration. Thus

z+h
L
lies between hf(zg), Af(xy),
glxz+h)—g(z)
and so Tt RETEIR I

fxo),  fl=y)-

Now take & to be progressively smaller and smaller. The values
%, @, ultimately coincide with a itself, so that, since f(x)is
continuous,

lies between

h=—>0
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lies between two values which in the limit are each f(z). Hence
lim 2@ +7) —g(x)
h—0 h
exists, and its value is f(z).

Thus g'(x) = f(2).

We therefore have the rule:

In order to integrate the function f(x), we must find a function
g(x) of which it is the differential coefficient. (Note the implication
that g(x) is continuous; compare the footnote on p. 61.)

g'(x)=

Note. If C is any constant,

2 @) +0) = g'a)

so that g(x) is undetermined to the extent of an additive constant
(compare p. 86).

Finally, we prove that the integral

glx)= ff (x)dz

as evaluated by the rule g'(z) = f(=z)

18 unique apart from the additive constant.
Suppose that, on the contrary, k(z) is another function such

- »'(@) = f(@).

Write u(z) = g(z)— h(z),

where u(z) is continuous since g(z), k(z) are.

Then u'(z) = g'(x)—hk'(z)
= f(@)—f(z)
=0,

Hence (p. 62) the function u(z) is constant.
Another way of stating this result is that the equation

Y - fta)

leads to the result
uniquely.

v= [fwraz+0
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7. The link with differentials. Suppose that y is a function
of x whose differential coefficient is the given function f(x), so that

dy _
T J().
The differentials dy, dx satisfy (p. 43) the relation
Y
dy — I’xdz’
or dy = f(x)dz.
We have also just proved that
§= ff (@) de.
Hence we have the suggestive remark that the relation
dy = f(x)dz
between the differentials leads to the integrated relation
v= [reas.
This is the justification for the common sequence of argument:
dy ¢
E 3 1 f ($),
therefore dy = f(x)dz,
therefore y = |f(x)dz.

8. The evaluation of a definite integral. Once we have
obtained (by methods to be given later) the indefinite integral

[reras

by finding a function g(x) whose differential coefficient is f(z), we
can evaluate the definite integral

J:}(z) dx
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by a simple rule. For suppose that

F(z) = f F(a)d.
Then 2 (P @) -g(e)

= f(z)=f(z) [p. 87 and definition of g(z)]
so that (p. 62) F(x) —g(x) = constant.

But (p. 83) F(x) = 0 when z = a, and the value of the constant
is therefore —g(a), so that

F(z) = g(x)—g(a).
Hosice faf(w)dm=9(b)—a(a)»
each side being equal to F(b).

Thus we have the rule:
In order to evaluate the definite integral

b
[z,
Jind a function g(x) whose differential coefficient is f(x); then
[1e)d2 = 96)- gt
Norarion. It is often convenient to write

o]

to denote g(b) —g(a).

9. Some simple standard forms. The evaluation of

[f@e

by finding a function g(z) whose differential coefficient is f(x) is
naturally a matter of some difficulty. A start can, however, be
made by inverting the formule for differentiation given on p. 37.
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This gives us the formulse:

fxﬂdm = +O’ (n# —1).
J.eosa:da: =sinz+0C.

J‘sin::dz = —cosz+C
fmcxta.nxdx = secz+C.
Jseo’xdx =tanz+C.
fmsecmcota:dx = —cosecz + C.

J-coseo’xda: = —cotz+0.

We also have (pp. 40, 41)

.[Wli—%‘) TRy 1
I-l—ii-%—i =tan-lz+C.

In the case of I = the arbitrary constant may be taken as
a multiple of = a.nd 80 the ambiguity of sign may be allowed for.

Note. The following results are also easily proved. If 4 is a
constant, then

[ar6)e - 4 [fo)2z

and if f(x), g(x) are integrable functions of z, then

[r@r+o@pie = [rere+ foera.
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IuLustraTION 2. To find the height at time t of a particle pro-
Jected vertically upwards under gravity with speed V.

The physical law is that a particle moving freely under gravity
is subject to an acceleration vertically downwards of amount

usually denoted by g. In ordinary foot-second units, the value

of g is approximately 32.
Let « be the height of the particle above the ground at time ¢,

2
Then (p. 48) its acceleration (vertically upwards) is %ﬁz, so that
B
7
or @ = — ( B =iz)
> Taau gl tae ) )

Hence, integrating to find the function &,
&=—gt+C.

Now we are given that the velocity  is equal to ¥ when ¢ is
zero, so that 0 = V. Hence '

% =—gt+ V.

Integrate to find x; then
z=—1gt*+ Vi+ A.

But # = 0 when ¢ = 0 if the origin for z is taken at the point of
projection, and so 4 = 0. Hence

z = Vi— g%

EXAMPLES
1. Prove by subdivision of the interval and actual summation

e (i) fdx=1, (ii) fzdx=g-, (i) f:xda:=%.

2. Find the indefinite integrals

dx 5
fz‘d:c, 2 f:c dzx.

SOME SIMPLE STANDARD FORMS
3. Find the indefinite integrals

J.cos 2z dzx, Ism $xdz, IZ cos? jxdz.
4. Write out a formal proof of the theorems
b b
0) [[Afa)ae = 4| j)da,
a a

]
(i) f (@) + 9@} de = ff(x)dx+ f o) dz

based on the definition of § 2 (p. 81).
5. Evaluate the definite integrals

4
fsw’dz, flxsdx, f'wam, J' (A 2) e
1 -1 0 2

6. Evaluate the definite integrals

1% i 2 dx
Lcosxdx, J;smxdw, fmn"}xdz, J.:m-

7. Evaluate the definite integrals

_L' (1—2)da, J:' @=1)(2—2)ds, J;" (x’+:-cl;)2dx.

8. Find the value of
ir i
J‘ sinﬂzdm+f cos®ada.
o 0
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CHAPTER V

DEVICES IN INTEGRATION

THE DIRECT EVALUATION ofJ'f(a:)da: by finding a fune-

tion g(x) with differential coefficient f(z) is possible only in the
simplest cases. A number of methods are, however, available to
extend our scope considerably.

1. Substitution, or change of variable; indefinite integrals.
Consider an integral such as

1= [t

Experience (gained by solving many similar examples) enables
us to see that the ‘essential variable’ is not really =, but z5+ 1.
We therefore begin by finding the effect of replacing 2°+1 by a
new variable ¢, so that

t=2a+1,
Then dt = bxtdx,
1 (dt 1
E— — R e — ’
so that I = 10;——

s
= 10+ 1)

The substitution of t for the function 25+ 1 has therefore led to
the evaluation of the integral.

As another example, consider
I= fsin’x cosxdx.

The ‘essential variable’ is sinz, so we write
i =sina,

giving dt = coszdz.

SUBSTITUTION—INDEFINITE INTEGRALS 956
Hence I=|i"dt=13%

= sin®a.
The theoretical basis on which the justification for the method
of substitution rests is as follows:

Let I= J.f (z)dz

be a given integral, and suppose that a certain function u(z)
appears likely as an ‘essential variable’ for the integration. Write

t = u(z).

Then g—-x = f(x) (p. 87).

But ﬁ-—i = %% (p. 27),

so that flx) = ‘-z-{'f-‘-'(m)-
Il _ f(z)

= dt u'(x)

But the relation ¢ = u(x) enables us to express z in terms of ¢,
and so f(z)/{u'(x)} may be expressed as a function of ¢, say F(f).
Then dl

T = F(t)l

so that (p. 89) I=|F()dt.

Thus the effect of the substitution
f= u(z)

is (i) to replace u'(z)da by dt; (ii) to replace f(z)/{u'(z)} by the
corresponding function F(t) of ¢; (iii) to replace integration with
respect to z by integration with respect to &.

f=)
w'(z)
whole virtue of the method lies in the selection of the function
u(z) in such a way that f(z)/{'(z)} falls naturally into the form

Note. The expression may look complicated; but the
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F(t) as a function of . There is no point in remembering this
formula; it is the method of substitution that must be known.

CoroLrLARY. T'o prove that, if a,b are constants, then

f Flaz+b)du % J' ).

Write £ = ax 4+ b, so that df = adz. Then
P N |
ff(aﬂb)dx = ff(t); = E"‘f(t)dt.

For example, J;in bxdx = — 3 cos bz.

After a little practice, the reader should find that he uses this
corollary so automatically that he is unaware of any substitution
at all.

EXAMPLES I

Find the following integrals by performing the substitutions
mentally:

1. J-sin2xda:. 2. fcmszdz. 3, fsin;xdz.

4, fwc’ 4xdz. b. fec iz tan jxde. 6. I (x+1)da.

7. I(m+3)’dx. 8. f(x+5)¢dz. 9. f%;
dx

dx dx
10. J.m- 11, fm. 12, (sz)ﬂl
13. I(2x+1)2dz. 14, I(Ba:—.‘%)’dz. 15. f@xw)*dz.
dx dx dx
‘6. fml 17. f“w_-_3)sc 18- W-
19. fJ(x+l)dz. 20. f(a:—l)‘d:c. 21. f\ﬁ%

dx dx dx
22, J.J(%I—)- 23. “‘(2_1’;—_3)" 24, m.
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Find the following integrals:
zdx 2?dx ridx
25. '(:Ba-l-—l)’. 26. m- 27- J‘(_sm'
xdx

28, 29, fcos“msinxdx. 30, J.sinsa:dx.

secizdx
83. J' T

(1 — Ba2)®’

31. jsin’xcos“xda:. 32. ftan%zdx.

34, f(l +seca)secx tan z dz. 35. fsen‘ zda.

36. J-sec‘xt.a.n’x dz.
Note. It is sometimes more convenient to make the substitution
from z to ¢ in the alternative form
x =v(t).
We then have
J’ f(@)de = J‘ T 0)d,

an integral with respect to £. This is, of course, easier to state
than the earlier form (p. 95), but in practice the substitution
t = u(x) is probably the commoner.

IrvusTrATION 1. To find

dz
I= [

Let z=3tan@
(remembering that tan® 6+ 1 = sec? ),
so that dz = 3sec?d6.
3sec? 0d0 3sec®0df
Then I=f(9tm38+9)3=_[815m‘9
- f cos? 08

1 1
= ﬁJ‘2cc:usl"8dﬂ = a~j.(l+coa 260)do

1 i 1 :
- a(8+'}sm28) - (6 +sin @ cos ).
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Now sind cosf 1
IR T R
. L 3z
Hence = {tan (}m)+x2+9 .
EXAMPLES II
Find the following integrals:
1 J‘ dx 9 z?dx
R =22
x?dx
3. J:]-_'I:Eﬁ. 4, J.J(I —w’)dx.
142 '
[For examples 7-10, compare the device at the start of Illustration 4,
p- 100.]
zdx
7. | 8.
J(1-2) I JO-=z)

9. ij(l—x)dx. 10. Iz“,[(a:—et)dx.

2. Substitution, or change of variable; definite in-
tegrals. The introduction of limits for the integral presents no
essentially new feature, except, of course, that the original limits
for z must now be replaced by corresponding limits for the new
variable £. (However, we add the warning that care must be
taken in more advanced examples.)

IrLustrATION 2. To evaluate

in
f sin®2 cos z dx.
0
Write - t =sinz;
then dt = cosxdzx.
Hence fsin‘mcos zdx = ft‘d’t.

SUBSTITUTION—DEFINITE INTEGRALS 99

Now as z, starting from zero, increases to the new variable ,
starting from zero, increases to 1. Hence

£ 1
f afib o0k s = J' Ht
0

- e,

g,
5
IrLustraTION 3. To evaluate.
Pl )
J; (507 + 2)8.
Let t = bx+2;
then dt = bdz.
de 1 (dt
R _[(5x+ 2P "5

Now as z, starting from 2, increases to 8, the new variable ¢,
starting from 12, increases to 42. Hence

il
-4l
i
o
S

[
<

Sl"‘

|
l g|
— Oy

&
= Rl
@®)
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ILrustrATION 4. To evaluate

4 dz
J: (z+5)J(1+=)

It is a common device in such integrals to write {2 for the
expression under the square root. Thus

z=1-1,
so that dx = 2tdi,
Also, as z rises from 3 to 11, ¢ rises from 2 to 2,/3. Hence

1 dz _ (A ode e dt
,L(x+5)J(l+x)_L @+4)t ,L [y

Now write t=2tan§,
so that dt = 2sec? 0d6.
As { rises from 2 to 2,/3, 0 rises from }x to 7. Hence

i 2
I=2J‘ 2sec?8df J‘ 6

;,,4ta.n”0+4
1
G:Lw = Eﬂ—;‘n'
9
= 121!'.

IrrustraTION 5. To find the area of a circle of radius a.
Referred to rectangular Cartesian axes with the origin at the
centre, the equation of the circle (Fig. 34) is

22 +y? = a?, y
so that  y =+ J(a®—2?),

the two values of y for a given value
of z corresponding to the parts of the
circle ‘above’ and ‘below’ the z-axis. o) =

The area of the whole circle is double
that of the upper semi-circle, and so we
may take

A=2 f " (@ —2?)dz,
—a

Fig. 34.
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Make the substitution
so that dx = acostdi;

the range (—a,a) of z corresponds to the range (-4, }n) of &
Hence i
A=2J acost.acostdt.

—§m

x = asint,

[Note. Since acost is positive in the range (— 3=, ), we have
taken the positive square root throughout the range.]

i in
Thus A= a"f 2cos?idt = a”f h(1+eos2t)dl
_.h =

! i
= az[t+§sm 2t]
_h

= a®{(}m) — (- im)}

= qa?,

EXAMPLES ITI
Evaluate the following definite integrals:

o
. f sin® 6 cos 8.d6.
0

1 d»
s [,

¥
5. IOJ(l—m‘)dz.

i
2. J sin® §.d0.
0

4. f :4(1 —2%)de.

in
6. f sec?ftan®0d6.
0

£ ETd
7. f " ect 0d0. 8. 'f cos’ 0.6,
0 yn

1 4
9. f 1-2)da. 10. f V(6-2)da.

TrLusTRATION 6.* To evaluate
sin 8d6
0 y(1—2acos 8 +a?)’

It is implicit in such a question that the positive square root is
to be taken.

* Tllustration 6 may be postponed, if desired.
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Let t = +(1—2acos 0+a?),

so that 2 = 1—2acos 0 +a?,

and 2tdt = 2asin 0d6.

H gin 0 d@ t_d_t 1
S J(1—2acos 9+a’) a i

= t/ﬂ.

Consider now the range of values of ¢ as 6 runs from 0 to m.
When 8 = 0, we have the relation

J(1—2acos §+a?) = J(1—2a+a?) = + (1—a),

that sign being taken which makes the square root positive.
When 6 = #, we have

J(1—2acos 0+a?) = J(1+2a+a?) = + (1 +a),

that sign again being taken which makes the square root positive.
Various cases must therefore be considered:

(i) When a lies between —1,1. The positive square roots are
1-a, 1+a respectively, so that the value of the integral is

11 Ji+e
E[t]l—a
= i{(l +a)—(l—a)} = 2.

The value of ¢ varies continuously from 1—a, through 1 (when
cos 0 = }a), to 1+a as § moves from 0 to =.

(ii) When a is greater than 1. The positive square roots are
a—1, a+1 respectively, so that the value of the integral is

o

- {a+D-@-1) =2

The value of ¢ rises continuously from a—1 to a+1 as # moves
from 0 to =.
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(iii) When a (being negative) is less tham —1. The positive
square roots are 1—a and —(1+a) respectively. (For example,
if @ = —4, the square roots are 1 —(—4) and —(1—4), that is to
say, 5 and 3.) Hence the value of the integral is

il
- l-1-a-a-a)=-2.

This valuelooksnegative, but is actually positive, since a is negative.
The value of ¢ falls continuously from 1—a to —1—a as 0
moves from 0 to .
SummaryY.|The value of the integral is 2, 2/a, — 2/a according as
—l<a<l,a>l,a< —1.

EXAMPLES IV
Evaluate the integrals:
" sin0df sin 840 T  sinfdf

i 0 (5 —4cos 0) 0 (10+6cos ) 0 4/(50—14cos )’

3. Integration by parts. A very important method of integ-
ration follows as a direct result of integrating the formula for the
differentiation of a product. If u(x), v(x) are given functions of z,
then d dv du

d-—x( uv) =u dx+” iz
vé'l—a = i (ma)—ud—
dz dx dx
Hence, on integrating from an arbitrary lower limit ¢, and denoting
the variable of integration by the letter ¢ (p. 85), we obtain the
important formula

[rowna=[uwo] - [uvoa

We observe that the left-hand side is the integral of the product of
two functions v, u’, one of which can be recognized as the differential
coefficient of a function u.

It is customary to quote this result in its ‘indefinite integral’ form

jv(x) w' (x)de = u(x)v(x)— ju(z)v'(z)dz,

or

and we shall usually do so (Illustrations 7, 8); but note the warning
which follows.
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Warning. The omission of the term —u(a)v(a) may occasionally
lead to curious results. For example, if v(x)=secx, u(x)=cosz,
we appear to have

fséoz(—sinm)da: = cosmsecx—fcosz(seoxtanx)dx,
or —ft.a.nzdz = l—jthdx,

or 0=1.

(The product coszsecz is a constant rather than a genuine
function of z, and would be cancelled in definite integration.)

ILLusTrRATION 7. To find
fm sinz dz.

We have to integrate the product zsinz, where we recognize
sinz as the differential coefficient of the function — cosz. Apply-
ing the formula, we have

stina:dx= fmd%(—cosz)dx
= x(—oosm)——ﬁ-cosz).l.dx

= —moosx+fcosa:da=

= —2cosx+s8inz,

the desired value.
It may be remarked that an alternative first step could be

f sinza% (3x?)da
leading to sinx.,}xs—fw%(sinm)dz
= gxssinm—gfm’ooszdz.
However, a glance at the integral
jx’ cosz dx

will convince the reader that he has not made the problem any
simpler by this beginning.
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The whole success of the method depends on an intelligent
first step, and certainty of touch should be acquired by working
many examples.

IrustrAaTION 8. To find
I= |sinladx.

This example illustrates a case where the possibility of integ-
ration by parts might pass unsuspected. We have

S 4 fsin—lx.1.dx= jsin"x.%dz

= gsin~lz— fz'J—(l ixz) dz.

Write T oreo
J(1—2%)
and put 1-2%=y2
so that —2zdx = 2ydy.
= -—J(l —m*).
Hence I = zsin-lz+.J(1 —22).
EXAMPLES V
Find the integrals:
) 1S fa:oosa:dx. 2 fx’cosa:dx.
3. J-2xseo“a:tan xdz. 4. J'xta.n—’a:dx.
Evaluate:
tr
5. J.hxoosmd,’x. 6. J 2?sin v dzx.
0 0

n ¥
T f(1+:c)2sinxdx. 8. J; (xz—2)%cosxdx.
0
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In conclusion, we remind the reader of the value of a good

technique in the normal processes of algebra and trigonometry
For example,

fsin 3xsin 5w dx = %f{cos 22 — cos 8z} dx

1. o
=Zsm2:c—ﬁsm83:.

Again, fsin‘zdx = ;J‘(2 sin®z)?dx
= ‘—if(l—eoszx)"dx
= %f(l-2m2x+cos’2m)dz

=if{l—2cos2x+%(l+oosix)]dz

1[7/3 1
= ZI(§—2w3%+§msém)dz

=1_3_x '2x 1'4;
412 —8ln +§Sm }o

EXAMPLES VI

Find the integrals:

1. f sin 5z cosx dz. 2. fcos’ zdz.

3. fsmzmdz. 4. fsin*.lzsin?-xdx.
Evaluate:

m "
5. f sin z cos 4z dz. 6. J'sinsmdw.
0 0

m in
7. joosxcosiwdz. 8. J. costzdx.
0 0

4.* Formulz of reduction.
Consider the integral

1 afﬁn“xdx (n a positive integer).

* This paragraph may be postponed, if desired.
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Writing this in the form
I= |sin®12.sinzdz,
and integrating by parts, we have
Is —sin"—lxcosz-{»J.(n— 1)sin®*22 cosz.cosz dx
= —sin®lzcosz+ (n— l)fsin""x(l —sin?z)dz

= —sin®»1xcosz+(n—1) |sin®2xdr—(n— l)fsin":r.dx

= —gin"lzcosx+ (n— l)fsinﬂ“’a:dx—(n— 1)1.

Hence nl = —sin®1xcosz+ (n— I)J'sin"'-’ zdz,
inn—1 -
or Pt Tt EET lfsin"—’xdx.
n n

In this way we have made the integral of sin®z depend on the
integral of sin®~2x, whose degree in sinz is less than that of the
original. To emphasize this reduction of degree, we write

I;,Efsin"xd:c, L,_,sfainn—%dx.

gsin®lxcosxz n-—1
Thus L‘ il n & & n In_]-

It is implicit that n> 2.
In the same way,
Lis=-

sin®"3 zcosx 'n.-SI
n—2 n—-2""¥

by = _in"“a:oosa:+n—51
o n—4 n—4 "

and so on.
By repeated application of the formula, we reach a stage where
we must evaluate
IL= J.sinwdz = —CO8 %

when = is odd; or Iosfda: = 2,

when = is even.
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A formula such as
sin®lzcosx n—1
I,=-

n n

Los

which enables us to reduce the index n by successive stages is
called a FORMULA OF REDUCTION for the integral.

ILLusTrATION 9. T0 evaluate
Fe
.[ cos?? g dx.
0
o
Write I,lEJ‘ cos? zdz.
0
(This is a slight change of notation from the preceding, but

perhaps a little more convenient.)
We have

i
Iﬂsf cos* 1z cosxdx
0
in i
=[cog®*Lzainz] —f (2n— 1) cos?2x( —sinz).sinrdx
] 0
¥
=0+ (2n— I)J‘ "oos”“*’z(l-—cosﬁm)dx,
]

since cos?"~!zsinz vanishes for z = 0, and, when n > 1, for z = }=.

H
i L= @n—1)(Ly—1L)
2n—-1
or ‘Ll = 2” Iﬂ—l'
Applying this formula successively, we have

on—-12n-3
L= oo

M—120n—32n—-5
2n 2n—22n—4 "3

in
where I,,=J‘.dz=?'

Hence I =
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2'I

_(@n—=1)(2n—3)...3.1m
2n(2n—2)...4.2 2

EXAMPLES VII
Find the following integrals by the use of formulz of reduction:

| 19 Isin‘mdx. 2 fcos"'xdz. 3. Isin'a:da:.

Evaluate the following integrals by the use of formule of
reduction:

i o in
4, f cosbzdzx. 5. J. sin? x dx. 6. f sin1® 2 da.
0 0 0
in in
1. Jhain’"a:dx. 8. I cos?lxpdx. 9. f sin??+l z dzx,
o 0 o
IrrusTrATION 10. To evaluate
in
J‘ gin?m g cos? 1 x dz,
0
To imply dependence on both m and n, write
tm
Im’nEI sin?™ z cos?" 1 2 dx.
0

n
Then I,,= J sin®m z cos®™ x cos x dx

0

h -

= J. sin2™ x cos®" z d(sin x)
0

in

= [2m+ 1 sin’""'"a:oo’“x]

¥
Y 2mtly 2n cos? 1 z( —sinz)dz
0 2m+1

0

2n

=0t o sl

t L
J. sin?n+2 g cos®*a de,
0
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since sin®™*lgcos®**x vanishes when z = 0, and, when n >0, for
z = }m. Hence

2n ;
Im'“ = mﬁhsm’”‘z cOﬂsﬁ-lx(l —mﬂnx)dx

2n
= g1 dmn-a—Innb

or (2m+1+42n)L, , = 2nl, .4,

2n

i Ton = S om g1 T

Reducing n successively, we have

2n 2n—2

Ton = 2m+2n+1 2m+2n—11"‘-""
- 2n 2n—2 2
2m+2n+12m+2u—1'"2m+31""°'
i
Also Ln.0=f sin®™ gz cos x dz
0
L 1 [Bin"“"’lz]h— 1
2m+1 0 _2?'-"!:'1'1.
BEE A 20 (2n—2)...2

(2m+2n+1)(2m+2n—1)... (2m+1)°
EXAMPLES VIII

Evaluate the following integrals by the use of formule of
reduction:

i i
: j sinz cos? x dx. 2. f sin®z cos® x dz.
0 0
1
3. J‘ 2™(1 —z)"dx (by the substitution, z = sin? §).
0
i i
4, f gin?™  cos®™ x dz., 5. f sin?m+1 z o+l g g,
0 [

1 1
6. J; a%(1 —z)Vdz. % J; (1 —2)ida.

CHAPTER VI
APPLICATIONS OF INTEGRATION

1. Use in dynamics. Suppose that a particle P (Fig. 35) is
moving along a straight line so that at time ¢ its distance from a

P

(o] x
Fig. 36.

fixed point O of the line is z. We have seen that, if »,f are the
velocity and acceleration respectively, then (p. 48)

f)=m,
dv d*xz
I=a=a

(i) If v is a known function of ¢, then z can be evaluated by
means of the integral
&= fv dt;

and if f is a known function of ¢, then v can be evaluated by
means of the integral
V= J fdt,

after which 2 can be determined by a further integration, as before.
At each integration an arbitrary constant is introduced; its
value depends on given initial conditions for a particular problem.
(ii) If » is a known function of z, then ¢ can be evaluated by

means of the integral
= J‘ o
v

If f is a known function of z, we find v by means of the relation

. 27) d" 3o do" e

Ul Tl o T P
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so that = %d%’:).

Hence = f of da,

so that v can be calculated.

InLusTrATION 1. Suppose that f is given as a function of ¢ by

means of the formula

f= ]dcoﬂt.
and that v = &, 2 = 0 when ¢ = 0.
dv
Th _— =
en 7 ktcost,
80 that v= kjtoostdt

= ktsint-kfsintdt (by parts)
= kisini+keost+C,

where, since v = k when ¢ = 0,

k=Fk+0C,
or C=0.
Hence v = ktsint+ keost;
that is, Z—f=ktsint+kccst,
so that x=k tsintdt-i-kfcostdt

= k{—tcost+sint}+ksint+ D,
where D = 0 since # = 0 when ¢ = 0. Hence
« = k(2sint—tcost).

TrrusTrATION 2. Suppose that f is given as a function of z by
means of the formula

f=2kx(2?+1)
and that x = 0, v = k when £ = 0.
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We have d—sgl = 4f2x(2?+ 1),
so that v:= k’J‘(4m3+ 4z)dx
= k324 + 22%) + C,
where, from the initial conditions,
BP=0,
Hence v? = k(2?4 1)},
80 that v =+ k@?+1).
But v =k when z = 0, so the positive square root must be taken.
Hegteo s G 0,
It follows that %‘: = k(a?+1),
go that kt = fz—gzﬁ
=tan—lz+D.
But z = 0 when { = 0, so that D = 0, and
kt = tan—1x,
or x = tankt.

Note. The formul are relevant only up to time =/2k, when =
tends to infinity.

2. Area; Cartesian coordinates. We have already (pp. 77—
85) discussed in some detail the meaning and evaluation of the
area ‘under’ the curve

y = f(x).

For completeness, we repeat the formula

[ECLE

for the area A BQP of the diagram (Fig. 36), reminding the reader
to be careful about sign when the curve crosses the z-axis (p.
84).
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It may be useful to note also that, for the area bounded by
a curve
= f{y)’
two ordinates y = ¢, y = d, and the part of th i
; » ) e y-axis b
those ordinates (Fig. 37), the area is = _ea

ff () dy.

O
7}

P

[0] A B X 0
Fig. 36. Fig. 37

3. The area of a sector, in polar coordinates. 7'he 1
of a curve in polar coardimt’es is . e

r = f(6),

where r i8 a single-valued function of 8. To find an 1

! expression
ﬂa:e area of the sector OAB (Fig. 38), bounded by the radii 0A (f)aé
given by 0 = «, B and the arc AB. ’

Fig. 38. Fig. 39.
MeTHOD I. Divide the arc 4B into n parts at points
A, PLB ..ol s b yhumB:
Write £ FP,OF,,, = 80, (Fig. 39).
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Denote the least value of the function f(6) in 36; by the symbol
m; and the greatest by M;. Then the area of a typical element
P,OP,,, lies between that of a circular sector of angle 86, and
radius m,, and that of a circular sector of angle 86, and radius M;.

Moreover, we proved (p. 100) that the area of a circle of radius
a is wa?, so that, by proportion, the area of a sector of angle 80, is

2% (rat)

or $a®60,.

Hence the area of the sector OAB lies between the two sums
n—-1 n-1
S im3s;, % 3MIS0,
0 0

In the limit, as the number of intervals increases indefinitely,
the size of each interval decreasing indefinitely, these two sums,
for ‘ordinary’ functions f(6), approach (p. 82) the limit

3| eyeas,
2)a
go that we have the formula

Avea 0AB = 'f " (6))2a0
12
3 —2-J;r’d0.

Mzruop IT. The area of a sector
AOP (Fig. 40), where 2 z0P = 6, is ¢
a function of the angle 6, say A(6).
Suppose that P’ is a point on the
curve near to P, so that

L20P' = 6+ 36;

then the area of the sector AOP’ is
A(0+86).

We make the postulate, in in-
formal language, that, when P is 0 %
near to P, the area of the sector Fig. 40.
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THE AREA OF A SECTOR 117
POP' is not very different from that of the triangle POP’; in li
more formal language, that TruusTRATION 3. To find the area of the curve (a limagon) for
which r = 1+ % cos 6.
area of sector POP' 1 The curve (Fig. 41) may be sketched
p— parea of triangle POP' ~ ™ by putting
A(0+50)— A(6) sector POP’ 0=0,}mdm dm, ... 2w
Now = 0 %
o0 Ll in succession; note that
_ sector POP" A POP’ dr ity
&P 88 ° > 7 g —3%sind,
where A POP" is the area of the triangle POP’ so that so that » decreases steadily between Flig My
' r 0,n, after which it increases again.
A POP = *OP.OP ﬂmsa- The e i Symmetﬁcal &bout the line a =0.
Hence The area is
A(6+586)—A(6) sector POP' ,. §in 86 1 f 20
) = =4 pop—40P.0P) .22 | 2,
Let 860, so that P’ P. Then & %rw(l+cosﬂ+;oos26)d0
- ]
. A0+30)—A4(0)  ,, . -
lllglll j 80 =4 (e)l =%J.2 1+cos ﬂ+%(1+00828)}d0
1]
sector POP’
i ————es 2 i l 2 g 1
RO i (deostylate); -3 J'o {g +cos 9+§eo329}d8
lim (J0P.OP') = JOP? = 3 _19, . sno+ L ]"
F_w(% )=1 3 _5[88+sm8+16m26 ,
i . sin 86 1[/9
g lim 222 =1 (p. 32). S i
we B 400 ol (§2) -]
Moreover, the limit of a product is the product of its limits, 9
and S0 = §1I'.
4(0) = 1%,
thak At [' 839 EXAMPLES T
80 0)= |3 Find the area of each of the following curves:

Note. Tt is usually advisable to make a rough sketch of the 9. The cardioid = 1+ cos 8.
curve before applying this formula.
3. The limagon 7 = 83— 2cos 6.

9
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4. Centre of gravity, or centroid. If a number of particles
P, Py, B, ..., of masses my,my,my,..., are situated at points
(xliyl)s (321 ya), (m.\l:ys) ina pla.ne (Flg 42)’ their cenire Of gmvity
(more accurately, centre of mass) or centroid is defined to be the
point G(£,7), where

Fm mlxi+m2x3+m3x34;:
My +My+Mg+ ...
_ Myt MeYs +MyYs+ ...

< my+myg+my+...

Writing M =m, +my+mg+ ... for the total mass, we may express
these relations in the form

M¢ = Zmyay, Mn=Zmgy,,
where the summations extend over all the particles.

¥ —
i

Fig. 42, Fig. 43,

Our purpose is to extend this definition to a lamina, such as
that shown in the diagram (Fig. 43), bounded by a closed curve.
It is assumed that the lamina is made of uniform material. For
convenience, we have placed it in the first quadrant, but that
restriction is not necessary.

If the area is divided, in any way, into a large number of
elements, so that a typical element surrounds the point (2, z)
and has area 84,, then, by obvious extension, the centre of
gravity is the point G(¢,7), where

e 284, + 2,84, + 2384, + ...
84, +084,+34,+... ’

< 84, +y, 84, +y,84,+ ...
84, + 84, +84;+... °
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The sum 84, + 84, + 845+ ... is equal to 4, the area enclosed by
the curve. The remaining problem is to find an expression for

gt 2,54, Ty,04,

as the number of elements of area is increased indefinitely while
their sizes decrease indefinitely.
We begin with the coordinate £.
As a first step, consider the
area ‘under’ the curve

y=/()
between the ordinates z = a,
z=>b, where f(z) is a single-
valued function of z (Fig. 44).
Divide the interval at the points _ £
A=M, M, M, ..., M, ,, M,=B © R g gl
with 2-coordinates ! i

G Wy, By Ras s vy Lmmits T WO,

and draw the lines through these points parallel to the y-axis.
(Compare the introduction to area on p. 77.) .
Confining our attention to a typical filament whose base, joining
the points ;, %, is of length 8z;=2;,,—®; let us divide it into
rectangles by lines parallel to Ox and take these rectangles as the
elements 84, of the definition. Denote the least and greatest
values of f(z) in the interval by m,, M; respectively, and extend
the rectangles to the height 3. Then the contribution from the
filament to the sum Zx;, 84, lies between z,(m, 8z;) and x,, (I, 8z,),
so that

/r'Q

¥
7 21| R 1
m;

Fig. 44,

-1 n—1
5 (eym) 2, < B2y 84, < S (@110 1) 32
i=0 -

In the limit, for ordinary curves, the two outer sums have the
same value, namely,

)
[[ar@rae,
a
and so the formula for £ is
fnx [(x)de
f s _93 .

[Frae
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Proceeding now to the closed curve with which we began,
suppose that it lies between ordinates

A2
r=a, T= b Q
which it meets at P,Q respectively
(Fig. 45). Suppose, too, that the ‘upper’ £
and ‘lower’ parts of the curve have the
equations 0 Y 5=
y=fz), y=g). Fig. 45.

In practice, the two different forms for y may arise because
the ‘upper’ and ‘lower’ curves are quite different; but they may
also arise, perhaps more usually, because when the equation of the
whole curve is solved for y in terms of z, two functions are
obtained distinguished from each other by the sign attached to a
square root. For example, if the bounding curve is the circle

(=20 (22 =1,
then y-2=1 J{1-(z-2)% = £ J(4x—2*-3).
Thus f@) = 24 (4z—22—3),
9(@) = 2—(4z—22—3)]

Then the contribution to Zx;, 64, from the area enclosed by the

curve is equivalent to that from the area under y = f(x) LEss

that from the area under y = g(z). Thus, if 4 is the area enclosed
by the given curve,

At L T f Yt

This formula may be expressed more concisely. Write

(]

to denote the difference between the two values of y corresponding
to z, so that y] = /() — g(z).

b
[[sty1ae
__Ja
Then &= S
In the same way, and with similar notation,
d
L ylzldy
M T
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ALTERNATIVE EXPRESSION. Another formula for n for a lamina
defined by the area ‘under’ a curve y = f(x).

Referring to the diagram (Fig. 44) for the area A BQP, consider
the contribution from the filament on 8z; towards the sum
;. 84, required to calculate n. If the points of division of the
filament are at heights

0=Yp Y1:Y2s -+
then a typical contribution is
i 8y; 35’;),
where &Y= Yj—

and y; lies between y; and y,,,.

Keeping 8z; constant, let the number of subdivisions of the
filament be increased indefinitely while their sizes decrease
indefinitely. Then the contribution from the filament lies between

M
j"”ydy 52, L ydy 52
0

or $m3dx;, 3 M3 oz,

Summing now for all 8z; and proceeding to the limit in the usual
way, we obtain the integral

3, (@,
i f {f(w)}’dw’
f fla)da
I 2
or 7= E}';::c

For an oval curve not meeting the 2-axis, the corresponding

formuls is
f [y*]dz

f’ Wlde

where [¥%] = {f(@)}* - {g(=)}*
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InLusTRATION 4. To find the centre of gravity (cenmtroid) of the
area in the first quadrant bounded by the axes and the curve

y=2+z-2%

The range for z is 0,2. The area is given
by the formula

b
J-‘ydx = J1(2+m—x3)d:c
0 0
. . !
& [2x+§x’—§w’]o
wdd Ry T
3" Fig. 46,
2 2
Then EJ. ydx=jxydx
[} 0
=f(2x+x’—x3)dz
TR
= |24+ —-
[a’: +3x3 4:&‘]0
8
=3,
8/10 4
1
Ako 2 ydx=§ry’dx
1] 0

& %r(4+4x—3x3—2m’+m‘)dx
[1]

1 1 1 ]2

16

. &
. _ls/10 24
so that "=%/3 "3
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5. The moment of inertia of a lamina.

(i) Tae MomMENT oF INERTIA ABOUT A LiNe. If a number of
particles Py, B,, P, ..., of masses m,, my, Mg, ..., lie in a plane (see
Fig. 42, p. 118), their moment of inertia about a line I in the
plane is defined to be the magnitude I given by the formula

I = mypi+mepi+mapi+ .nes

where p,, Py, Ds, ... are the perpendicular distances of P, P, B, ...
from 1.

Whenever possible, the line I is taken to be one of the axes of
coordinates. Thus, if I, is the moment of inertia about Oy, then
I, = mya} + moa} + myai+ ...,
where (z,,¥,), (%3, ¥s), ... are the coordinates of P, F,, ....

Similarlys f = myg e magdtmegd o

The definition can be extended to a lamina bounded by a
closed curve (see Fig. 43, p. 118). The reasoning is exactly
analogous to that just given (§ 4) in calculating centres of gravity,
and need not be repeated. With the notation explained there,

we have
3= [y

L= [ vy

(ii) TeEe MoMENT OF INERTIA ABOUT A PornT. The definition
of the moment of inertia of a plane system of particles P, F,, ...,
of masses m,,m,, ..., about a point O in the plane is very similar,
namely,

Iy = myOP} + myOP} + ...

If the polar coordinates of P, P, ... are (ry,0,),(rs, 03),... when

R e I = myrd +myri+....

Alternatively, if the Cartesian coordinates of P, P, ... are
(%1, %1)s (9, Y3); -+, With O as origin, then

I, = my(xd+ y3) + mo(23 + 43) + e
It follows that L=IL+1,

so that the moment of inertia of a plane system of particles about a
point O of the plane is the sum of the moments of inertia of the
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system about two perpendicular lines lying in the plane and passing
through O.

The extension to a plane lamina is immediate.

ILLusTRATION 5. To find the moment of inertia about the y-axis
of a uniform lamina of density p bounded by those parts of the x-axis
and the curve y = cosx which lie between x= —}n and z = }m.
(See Fig. 47.)

¥

We have

L=p[" Sylde

—in
i
=PJ x® cosxde
_*”
o d
—pf a:’—(sula:)d:c
i
in
=p[xssinz] —pf sinz, 2z dx
—im

Ao-{-o e

t L
~—+2p[:ccosx] —2pf 1.coszdx
-i’r

—in

M’%.

“"’—2~+ 2p[0] - 2p[sin x]
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TLLUSTRATION 6. To find the moment of inertia of a circle about

its centre.
Suppose that the equation of the y

circle (Fig. 48) is
Q x

2?+y% =a?

Divide the area bounded by the

circle into concentric rings, of which

a typical one is enclosed by circles

of radii r,7 + 8r. Then, by the defini-

tion of moment of inertia about a

point, the moment for the ring is Fig. 46.

(27 6r) 73,
where the number r; lies between r and r+ 8r. Adding for all the

rings, and proceeding to the limit in which their number is
increased indefinitely,

L= J' “omddr
0

= %‘lra"
= i:la’,
where A is the area of the lamina.

CoroLLaRY. By symmetry, I, = I,. Hence
L, =1, = }4a®

6. Volume of revolution. Let
y=f(x)

be the equation of a given curve, where f(z) is a single-valued
function of &, and consider the usual area 4 BQP (Fig. 49) bounded
by the curve, together with the lines # = a,z = b,y = 0.

Suppose that the curve does not cut the z-axis between
z=a,z=0>.

To find an expression for the volume generated by the complete
revolution of this area about the axis Ox.

Suppose, as usual, that the interval a,b is divided into n parts
at the points b

=2y, %y, Dy, .oy By, L =0,

and thalt 83‘ 3‘4’_1 — 24
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Suppose also that m, 3, are the least and greatest values of the
function f(z) in the interval 8z;. Then the volume (Fig. 50) of the
corresponding element lies between that of a eylinder of height
dz; and radius m,, and that of a cylinder of height 8z; and radius
M;. Hence the volume of revolution lies between the two sums

Smm}sx;, EwM3sz,

Fig. 49,

If we now allow the number of subdivisions to increase indefin-
itely, their lengths decreasing indefinitely, then, in ordinary cases,
these two sums tend to the limit

(]
[treypas,
a
b
or f wy*d,
a
which is therefore the expression for the volume ¥,

b
Hence V= L nydz.

ILLusTRATION 7. To find the volume
of a sphere of radius a.
The sphere may be regarded as

y
generated by the rotation of the vj x

‘upper’ semi-circle of the circle

22+ = ad

about Oz (Fig. 51). Fig. 51.
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a
Then V=| =ylde
-a

" I j“-rr(a’—-z’)dx

7. The centre of gravity of a uniform solid of revolu-
tion. We regard it as obvious that the centre of gravity of a
solid of revolution, generated as in § 6, lies on the axis Oz.

To locate the centre of gravity, we use the same principle as in
§4 (p. 118) for a lamina. In the present case, we see that, if ¢
is the z-coordinate, then

gzay{ = in api"
where 87 is an element of volume generated by a small area of
z-coordinate ;. Dividing the area, and so the volume, into strips
as in § 6, and proceeding to the limit, we obtain the formula

b
£V = _[ neytdz,
a
where ¥V = J.b my?dz, the volume of the solid.
a

IrrusTrATION 8. To find the centre of gravity of a uniform hems-
sphere.

Regard the hemisphere as generated ¥
by the rotation about the axis Ox (Fig.
52) of that arc of the circle

which lies in the positive quadrant. 2 4
Its volume, as above, is
2
s
g Fig. 62.
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2 a a
Hence Emag = f xy?de = w | z(a®—2%)dx
0 0

1 1 e
= —alz?——
-rr[za,x 42:‘]0
1

- 7at,

80 that £=§a.

. 8. First theorem of Pappus. Suppose that a solid of revolu-
tion is obtained by rotating the usual area 4 BQP about the z-axis
(Fig. 63). We proved (p. 126) that, if PQ is the curve

y =f(z),
the volume ¥V so generated is given by the formula
b
V= f Sk,

But we also proved (p. 121) that the
y-coordinate 7 of the centre of gravity
of the plane area is given by the formula Q

b
%J‘ays‘ix
ﬁ'
(4]

2 B a ’

A B

b
where A= J y iz i the aven ABQP. .
% Fig. 53.

Hence V = 274y

Since 27 is the circumference of a circle of radius 7, we may
express this result as follows:

If a given area, lying on one side of a given line, is rotated about
that line as axis to form a solid of revolution, then the volume so
generated is equal to the product of the area times the distance
travelled by its centre of gravity.

This rule enables us to calculate the volume when the centre
of gravity is known; or, alternatively, to find the y-coordinate of
the centre of gravity of the area when the volume is known. The
result can also be extended easily to prove that the volume of
the solid, generated by the rotation of the area bounded by a
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closed curve lying entirely ‘above’ the axis of rotation, is equal
to the area times the distance travelled by its centre of gravity.

For example, the volume of the anchor-ring obtained by rotating
the circle 22+ (y—b) = a?, where b>a, about the z-axis is
(wa?) . 2nb, or 27%a?b.

ILLUSTRATION 9. To find the centre of gravity of a semicircle of
radius a.

Rotate the semicircle about its bounding diameter. The solid
generated is a sphere, whose volume is known to be §7a®.

The area of the semicircle is }wa?, and so the distance rotated
by the centre of gravity is

4 1 8
) e e
E'ﬂa/i‘lﬂl 3G

8

Hence 2 = 3%
4a
or L o =

The centre of gravity therefore lies on the line of symmetry of
the semicircle, at a distance

4a
37
from its bounding diameter.

9. The moment of inertia of a uniform solid of revolu-
tion about its axis. The definition given in § 5 (p. 123) for the
moment of inertia of a system of particles P, P, ..., of masses
My, My, ... about a line 7 holds equally well in space. If py,p,, ...
are the distances of P, P,, ... from [, then

I =mypi+mepi+...

In order to effect the summation for a solid of revolution,
when [ is the axis, we refer to the diagram (Fig. 50) and notation
of § 6. The volume is divided into a number of circular discs, of
which a typical one has radius between m,, }; and breadth dz;.
The moment of inertia of this solid disc about its centre is there-
fore between &z, times that of a circle of radius m,; about its
centre and 8z, times that of a circle of radius 34;. Hence (p. 125)

-1 n—1
'S yrmi sz, <I< 'S ymMida,
0 0
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In the limit, these two sums are equal, and so

b
1= [(inif@)ds
]
= [[imtaa.
a
IrrustrATION 10. To find the moment of inertia of a solid sphere

about a diameter.
Suppose that the sphere is generated by rotating the circle

xs_i_ys = a’
about the diameter Oz, taken to be the given diameter. Then
1= jmytdz
-a

1 =
=37| (a*-a®)dz
-a

- %ﬂ * (@'—2022* +2%)dz

il 2 1 e
e e e
2w_aa: 3a m3+5a:]_.
8 4 2
= B Tagigl Sop
211-20, 3a+5a]
_1_[16a°
=27 15
8
g
15"
2
=5Va,

where V =4ma® is the volume of the sphere.

10.* The area of a surface of revolution.

Lemva. The area of a right circular cone.

Consider a right circular cone, of slant height I, whose base is a
circle of radius » (Fig. 54a). If the cone is slit down a generator
and then opened up so as to lie in a plane, we obtain the sector

of a circle of radius / subtended by an arc whose length, equal

* This paragraph may be postponed, if desired.
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to the circumference of the base of the cone, is 27r (Fig. 54b).
Hence the area is the fraction (27r/2xl) of the area of a whole
circle of radius I, so that

A= ;(ﬂl’)
= 7rl.

What we shall actually require is the area of a frustum of a
cone, as indicated in the diagram (Fig. 55). If ry,l, and ry,1, are

T 27r
Fig. b4a. Fig. 54b. Fig. 55.

the values of r,l for the two boundaries, then the area of the
frustum is wlryly—ryl)e

Now, by similarity, L B

ry 1 fg—ry

and so, on substituting for l,,[;, the area is

mr3-r) (2=2)
= n(ry+ry) la—1).

If we draw the ‘half-way’ circle through the middle of the frustum,
its radius is 3(rp+7,) and perimeter =(ry+r,). Hence the area of
the frustum is

(perimeter of ‘half-way’ circle) x (slant height of the frustum).

We now proceed to our main task:

To find the area of a surface of revolution. Let f(x) be a positive
single-valued function of z in a certain interval (a,b), and rotate
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Yy =f)
through four right angles about the z-axis. We require an
expression for the area of the surface generated.
Suppose that the area traced out by the arc AP is § (Fig. 56);
then 8 is a function of # which we denote by the symbol S(x).
In the plane, let P=(z,y), @=(x+h,y+k). Then

the curve

S(z+ k) —8(z) i 0_
h B . k
_ area traced by are PQ
_area traced by arc PQ
" area traced by chord PQ o x o 4
 area traced by chord PQ
3 Fig. 56.

We assume as a matter of definition that

lim _rea traced by arc PQ _ L
»—oarea traced by chord PQ

Moreover, the area traced by the chord P is, in accordance with

the lemma, {2y + &) J(R2+ £2).

Thus 8'(z) = lim S_____(x o ’2 &)

h—0

= lim #(2y + k) (1+%—:)

h—0
. k
- w0 /1)
dy\?
=2, [+ ()}

s0 that, S(z) = f2fry J [1 + (%)’} do

between appropriate limits.
We shall see in Volume II that the integral

Jb- )
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gives the length of the arc of the curve y = f(x). Denoting this
length by s, we may write the expression for § in the form

f2n-yda.

IrrustraTION 11. To find the area of that portion of a sphere
of radius r which is cut off between two parallel planes at a distance
h apart.

The area is generated by rotating ¥
the arc 4B of the circle A

a+y? =12
\ o PO *

about the axis Oz (Fig. 57).
Let the z-coordinates of 4,B be
a, b respectively, where
b—a=h. P
Differentiating the equation of the 3
circle with respect to @, we have ¥ig. 67.

d
x+y£ =0,

d\* ., 2 Byt A
so that 1+(d_a:) _1+?=—y’ =

O T

taking positive values. Hence the area is

i)
= J.:%rdx = 2-:rr[a:]:

= 27r(b—a)
= 2mrh.

Note. This value depends only on r,k, and not on where the
portion of the sphere is situated. It is actually equal to the area
of a circular eylinder of radius » and height &.

Io
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11. Approximate integration. The evaluation of a definite
integral

[z

may present considerable difficulty, but it is often easy to reach
a good approximation to the result. In this and the following
paragraphs we give an account of some of the methods.

We proceed by regarding the integral as the area ‘under’ the

b y=f@)

between the limits # = a, x = b. In the diagram (Fig. 58), PA4,QB
are the ordinates x = a,x = b, of lengths y,,y, respectively, and
the curved line joining 4, B is given by the equation y = f(z). For
ease of exposition, we assume that
b>a and also that f(z) is positive in B
the interval; the modifications for
other cases can easily be obtained.
A crude approximation may be 5,
found by replacing the curve by
the straight line 4B, thus replacing
the area under the curve by that of
the trapezium PABQ, or

(b —a) (Y, +up)-

To improve on this, we may divide the segment P() into say,
n equal parts at points given by z = 2, ,,...,2, ,, and erect
ordinates to the curve, of lengths #,,¥,, ..., ¥,_, respectively. The
curved segment 4B may be replaced by the ‘chain’ of straight
lines joining the ‘tops’ of these ordinates, and so we obtain n
trapezia, whose areas are respectively

R

&

al=
(=]

Fig. 58.

b—a( & )b—a( £ )b—a( 6 b—a
o Wat¥) 5~ 1Y) 5~ Y2 Y3)s '"l"'fn_(yn—-l'!'yb)'

Adding, we obtain the approximation

b—a
S (Wat o)+ 201+ Yot o+ Y )b

b—a

or
2n

{(sum of outside ordinates)+ 2(sum of inside ordinates)}.
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For example, consider an:" dz,
0
where J(x)=24,
b=1,a=0.
Divide the interval into ten equal parts at the points

2:1 = '1, xa = '2, sany xn =0,

Then y; = -0001 Y = *1296
Y, = 0016 Y, = +2401
ys = -0081 Y = 4096
Yy = -0256 Yy = 6561
ys = 0625
Ya=0, ¥ =1

The approximate value of the integral is
25{1+2 x 1-5333} = 7 (4-0666)
= -20333.

1
The correct value is %[aﬁ] =}=-2
0

12. Simpson’s rule. An approximation which is often much
better than the ‘trapezium’ rule just given is obtained by replacing
the curve y = f(z) by a parabola, of the form

y = A+ Bx+C2?,

made to pass through the end points and B
one intermediate point of the curve.

[The ‘trapezium’ rule of §11, is, of course, A % Y%
equivalent to replacing the curve y = f(x) Ya
by the straight line ST g

- == dpog= ==

y=A+Bx Fig. 59.

through the end points.]

For ease of caleulation, take fresh axes with the origin at the
middle point of PQ, as in the diagram (Fig. 59). Let the ordinates
through P,Q, O be of lengths y,, ¥,, ¥, respectively. The parabola
is to pass through the points (3(b—a), #,), (0,%,), (—3(b—a),y,).
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Inserting the coordinates of the three ‘guide’ points in the
equation y = A+ Bz +Ca?
of the parabola, and writing h=}(b—a), we have
Yy, = A+ Bh+ Ch?,

¥ =4,
Y, = A—Bh+Ch?,
so that A=y,

1
B = o7 (yb_ya)!

1
O = 555 W+ Ya—201)-
Now the area under the parabola (and this area is not affected
by the simplified choice of axes) is

h
J' (4 +Bu+Cx?) de
-1

= [Az +3Bz2+ gczs] ':h

= 24h+ §Ch®
= 2hyy + $h(Yy + Ya— 241)
= Yo+ Yat+491)
= }(b—a){(sum of outside ordinates)
+ 4 (middle ordinate)}.
For example, taking the integral

1
fx*dz
0

considered in § 11, we have
Ya=0 %=1 =+
so that the approximate value is
H)+4(%)} = 30D =%
= -20833,

which is very good agreement for so simple a calculation.
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Finally, we obtain SiMpsox’s RULE as follows:
Divide the interval (a,b) into 2n equal parts at the points
LysLgy very :cm_l,

and let the corresponding ordinates be

Y1 Yoy +os Yan—1-

Apply the preceding formula to the interval (a,y), giving the
contribution

b—a
I, = e (Ya+Yat441);
then to the interval (z,,2,), giving

In=b

—a
o WatYat4ys);

then to the interval (z,, %), giving

b—a
I, = T‘;—(%*‘%""iys);

and so on, up to

b—a
I,= W(ym-s‘*'.% +4Ys,1)-

Adding, we obtain the approximation known as Simpson’s rule
for 2n divisions:

%" {(sum of outside ordinates)
+ 2(sum of even ordinates)
+4(sum of odd ordinates)}.

Applying this rule to Jﬂz‘dz with ten divisions, we have the
approximation .
2o{1 +2 x -5664 -+ 4 x -0669}
= (1 + 1-1328 + 3-8676) = g5(6-0004)
= 200013,

which is noticeably better than the corresponding ‘trapezium’
approximation (p. 135).
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EXAMPLES II

Obtain approximations to the following integrals by dividing
the interval of integration into ten equal parts and using (a) the
trapezium rule, (b) Simpson’s rule.

1
il fx’dx.
0

4 _E (@+a)ds. b, J:(x‘+x3)dx. 6. L M

2, L Fo 3. J; ‘@t 1)z,

dx 9 dx

5
i A ; 3 — . : —
J;(x‘+x)dn: 8 i P

13. Mean values. It is a matter of ordinary language that the
mean (or average) value of the seven numbers

1,3,8111,5,4
14+3+8+7+11+5+4 i 39
7 i
and that the mean value of the thirteen numbers
2,2,2, 3,3,3,3,3, 7, 9,9,9,9,
where 2 occurs three times, 3 five times, 7 once and 9 four times,

3(2)+5(3)+7+4(9) 6+15+7+36
3+56+1+4 13
64
-3
If the numbers y,, ys, ..., Y5 appear n,, Ny, ..., n; times respectively,
the mean value is

is

is

Ny Yy +n=ya+ ee +nkyk‘
g+ Mg e 1y

If a plate is divided into k pieces, of uniform densities

Wy, Woy vvey Wy,
and areas A4, ..., 4,
respectively, the mean density is similarly

A1w1+A,w3+ “ee +A,‘wt
A+ Ay +...+4,

MEAN VALUES 139

If a man walks for 4 hour at a speed of 4 m.p.h., for } hour at
5 m.p.h., rests for 20 mins., and then walks for 1} hours at
3} m.p.h., his mean speed for the whole time is, in the same way,

14)+15)+3(0)+§(F) _ 2+E+0+% _ 8} _ 102
d+i+d+z 25 25 31
= 35y m.p.h.
The last example serves to warn us of a danger: the distance
travelled is 2 miles at 4 m.p.h., 1} miles at 5 m.p.h., rest for

20 mins., and then 5} miles at 3} m.p.h. The mean speed for the
whole distance is

2(4)+§(5)+0(0)+3(F) _8+5+1§F 261
2+3+0+% e 8} ~ 68

= 3%—3' m.p.h.

In other words, the mean speed with respect to time taken is
~NoT the same as the mean speed with respect to distance covered.
Where there is any possibility of doubt, the magnitude with respect
to which a mean 18 calculated must be clearly stated.

These examples illustrate the evaluation of a mean for discrete
numbers, and we assume that the ideas are familiar. Our problem
is to extend the conception to the mean value of a function of a
continuous variable. In order to do this, we make a definition of
the term ‘mean’, choosing that definition to fit in with the more
elementary considerations.

DerixiTioN. The MEAN VALUE of the function f(u), defined for all
values of u in the interval (a,b), is the quotient

f:f (n)du
j:du ’
or _(b-l-_a) f:f (u) du.

Zf(u;) du,
[Compa.re S ]
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ILLusTtrATION 12. To find the mean density of a straight rod of
length 2a, given that the density at a distance k from the middle point
18 p(a+ k)2

Take the middle point O of the rod as the origin for a coordinate
x; then k = +x when z is positive and —a when 2 is negative.
The interval of integration must therefore be divided into the two
parts (—a,0), (0,a). Then the mean density is

-;EULP(G —a)dx+ J.:p(a + x)’dz}
- &[] o o]

= o {(—4pa®+p.80%) + (dp. 80— }pa?)
1 /14
= 5a(5 )

7 2
=§Pa_

APPLICATION TO A VOLUME OF REVOLUTION.
To find the mean density of a solid of revolution whose axis is
verlical, given that the density at height x above its base is

G(z)

(a function of x only), the height of the solid being h.
Suppose that the radius of the ‘slice’ (Fig. 60)
at height z is r, where

r = f(x).
The volume between the base and that slice is
(p. 126)
i V= fwﬂrgdz,
0

Fig. 60.
so that (p. 87) gz = qr. i

The mean density with respect to volume is, by definition,

v
J' Qv
0
]

vV
fdv
0
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where V is the total volume of the solid and where @ is the
function G(z) regarded as a function of » in virtue of the relation
connecting the two variables v, z.
Moreover, since g—: = 7%, these integrals can be expressed in u
terms of  in the form

th(x) mrida
R,
J‘ wridx
0
where r = f(z),

a given function of 2.
Hence the mean density can be calculated.

TLLUusTRATION 13. T'o find the mean density of a sphere of radius a,
given that the density at a distance x from a given diametral plane
13 Aa2.

By the formula just obtained, with obvious modification, the
mean density is

* Anrmrde

—a

a
wridx
—a

where, for a sphere, 2422 = g,

Now ;wr*dx = Jt::(a.* —2%)dz = w[a’a: - §a:3]a

-a,
= §ma®,
as is familiar.

Also r mAx?ride = | wAa?(a®—22)dx

a —a
o #:d [wxa-;za]“
—.
= g mAdab.
Hence the mean density is

t4dad,
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APPLICATION TO A SURFACE OF REvoLuTiON.* To find the mean
density of a surface of revolution whose axis is vertical, given that the
density at height x above its base is

G(x)

(a function of x only), the height of the surface being h.
Suppose that the radius of the ‘ring’ at height x is r, where

r = f(z).
The area of surface between the base and that slice is (p. 132)

'z d,r 2
5= [raem {1+ (z) ) o=
2
o hat 0.8 % o [0+ (2]
The mean density with respect to area is, by definition,
A
J' @ds
0
A ’
f a8
0
where A4 is the total area of the surface, and where @ is the

function G(z) regarded as a function of § in virtue of the relation
connecting the two variables S, z.

: ds dr
Since = 2mJ[1+(E-w)!},
these integrals can be expressed in terms of z in the form
h ar\s
LG(x).szll+(a—x) }dz
h dr\?) .
Joaen e ) o

where == f (x)s

a given function of z.
Hence the mean density can be calculated.

* This application may be postponed, if desired.
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TLLUSTRATION 14. A bowl of depth a is formed by rotating that
part of the parabola y? = da

for which 0<z<a about the z-axis. The density of the ‘ring’ at
position z is a+z. To find the mean density of the bowl. (See
Fig. 61.)

Adapting the formula given above, the 9
mean density is

J:(a+x).2wJ{l +L%)’} dx.
o1+ )

Now daz,
d;
so that 2@% = 4a, Fig. 61.
dy\? da® 4a?
and 1+(E) —1+?—1+m
_(a+2)
=

Hence the mean density is

L“(a+x).2w4(m). J (5?)4.@

K%J(m).J(a—'?)dz ’
The numerator is

4 \Ja f: (a+2)ida = hJa-i[(a+3)‘]:
= §7a{(2a)} - (@)1} = §ra’(4y2-1)

The denominator is

MJaJ?(a +a)tde = hJa.i[(ﬂ+x)‘]:

= §n Ja{(2a)t — (@)t} = §ma®(2/2-1).
i 3(4/2-1)
The mean del]Sltleth“s Bmf——l)a'
or, on wultiplying numerator and denominator by 2/2+1,
3(+J2-1)(242+1)
5(8—1)

3a
== (15+22)
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EXAMPLES III
1. ABC is an equilateral triangle of side 2a, and a point P is
taken on the side BC. Find the mean value of AP? as P varies
on BC.

2. Find the mean density of a rod AB of length 2I, given that
the density at a point P is AP2+ PB2,

3. Find the mean density of a thin hemispherical cap of radius a,
given that the density at a distance x from the base is a + 2.

4. Find the mean density of a thin bowl formed by rotating
that part of the parabola y* = 4ax for which 0 <z <a about the
z-axis, given that the density of the ring at position z is (i) (a + )%
(ii) a®+ 22

REVISION EXAMPLES II
‘Alternative Ordinary’ Level
1. Integrate (2x—3)? and 2z with respect to z.
2. Evaluate the integrals

[oran, [foan, [[2
-1 -1 1 2

How could you show graphically, without evaluation, that the
value of the first integral is greater than the value of the second?

3. Find an expression which, when differentiated with respect
to @, gives 1
2+ 2+ ot

Find the value of the integral

J':l(m+ 1)%dz.

4. Integrate with respect to z:

(i) 2*(1—a)%; (ii) sin®a.
i
Evaluate J' sin 2z cos xdzx.
0

5. Integrate with respect to x:
(i) (x+1)*; (ii) cos®3z.

i
Evaluate J. sin?x cos xdx
0
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6. Integrate the following with respect to z:

1—at
za

a® 228
7. Calculate J;m(3 =3 + F) dz.

8. A curve has a gradient which is given by % = 3z—2; also

this curve cuts the y-axis at the point where y = 4. Find the
equation of the curve, and the equation of the normal at the
point (0, 4).

(i) sin?z; (ii) (iii) sin 2 2 cos z.

9. Find the equation of the curve which passes through the
point (0, 1) and whose gradient at the point (z,y) is given by

dy
ﬂ_ W—x.

Find the values of x for which ¥ is a minimum and draw a
rough sketch of the curve.

10. The gradient of a curve at the point (z,y)is 1 — %3 Find the

equation of the curve if it passes through the point (2, 4).
Find the point of contact of the tangent which is parallel to the

- tangent at (2, 4); also find the equations of both of these tangents.

11. Prove that the z-axis is a tangent to the curve y = (2z—1)2

Find the area bounded by this curve, the z-axis, and the line
=1,

Find the area bounded by the curve, the z-axis, and the tangent
at the point (1, 1).

12. A curve passes through the point (2, %) and its gradient at
the point (z,y) is 1 —%. Find the equation of the curve.
Where has y a minimum value on this curve?

13. Calculate the area bounded by the curve y = 22+ 2 and the
linesy=2,z=1and z = 3.

Calculate the area in the first quadrant bounded by the curve
y==aand thelinesz =0,y =1and y = 4.
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14. A particle starts with a velocity of 2 ft. per sec. and moves
along a straight line. Its acceleration in ft. per sec. per sec. after
it sec. is ¢+ 3. Find its velocity at the end of 2 sec. and the distance
travelled in the next 2 sec.

15. A particle starts from rest and moves in a straight line. Its
velocity in ft. per sec. is given to be 8f—#2, where ¢ is the time in
seconds from the commencement of motion. How far will the
particle have moved in 3 seconds?

Find also its greatest distance from the starting point, and the
value of ¢ when this distance is reached.

16. The velocity of a train starting from rest is proportional to
t%, where ¢ is the time which has elapsed since it started. If the
distance it has covered at the end of 6 seconds is 18 ft., find the
velocity and the rate of acceleration at that instant.

17. A particle moves in a straight line with velocity 7t—#2—6
ft. per sec. at the end of ¢ seconds. What is its acceleration when
t = 2 and when ¢ = 4?

When ¢ = 3 the particle is at 4; when ¢ = 5 the particle is at B.
Find the length of 4B.

For what values of ¢ is the particle momentarily at rest?

18. A train starts from rest and its acceleration ¢ sec. after the
start is $(20 —¢) ft. per sec. per sec. What is its speed after 20 sec.?

Acceleration ceases at this instant and the train proceeds at this
uniform speed. What is the total distance covered 30 sec. after
the start from rest?

19. A body starts with velocity zero from a fixed point O and
moves in a straight line; its acceleration ¢ secs. after it leaves O is
3—1 ft. per sec. per sec. Find the velocity of the body 4 sec. after
leaving O and the distance travelled in the third second of the
motion.

20. The velocity v of a particle moving in a straight line 04 is
given by the equation ()
T = 8z,

where x is the distance from O and v =3 when z = 2. Find »

when z = 0; also find the greatest positive value which x attains
during the motion,
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21. The velocity of a particle moving in a straight line is
observed to be 4f+ 4{2—# cm. per sec. at the end of ¢ sec. Find
the acceleration of the point after 4 sec., the distance of the point
after 5 sec. from its position when ¢ = 0, and the distance travelled
in the fourth second.

22. A body starts from a point O and moves in a straight line.
Its velocity at O is zero and its acceleration ¢ sec. after leaving O
is 5— £t ft. per sec. per sec. Find the greatest velocity attained by
the body on its outward journey, and its distance from O at the
instant when it begins to return towards O.

23. A particle moving in a straight line has an acceleration of
3 —t ft. per sec. per sec. at time ¢sec. When ¢ = 1 the particle is at
rest at a point 4. Find for what value of ¢ greater than 1 the
particle is again at rest and how far it is then distant from 4.

24, The velocity » (in ft. per sec.) of a particle moving in a
straight line is given by v = #*—7¢+ 10, where ¢ is the number of
seconds which have elapsed since the particle passed through a
fixed point O on the line. Show that the particle is momentarily
at rest at each of two points 4 and B on the line and find the
length of AB.

25. The velocity v in feet per second of a point moving in a
straight line is given by v = 312+ 2¢+1, where ¢ is the time in
seconds that has elapsed since a given instant. Find the accelera-
tion when ¢ = 2 and the distance covered between the times ¢ = 2
and § = 3.

26. A car starts from rest with a wvariable acceleration, its
acceleration after ¢ seconds being (a—3f) feet per second per
second. If the distance covered in the first 4 seconds is 88 feet,
find the value of a.

27. From the point P(2,4) on the curve y = z?, PN is drawn
perpendicular to the axis of z. Find the area bounded by PN, the
axis of z and the curve.

Find also the = and y coordinates of the centre of gravity of this

area.
28. Find the area bounded by the curve
y=(z+1)(x-2)°
and the x-axis from 2 = —1toz = 2.
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Find also the z-coordinate of the centre of gravity of this area.

1
29, Calculate f (22 —1)dz.
-1
Find the area bounded by the curve y = 2(2*— 1) and the z-axis
(i) between 2 = —1 and x = 0 and (ii) between z = 0 and = = 1.
Explain with the aid of a rough figure the connexion between your
results and the value of the integral found in the first part.

30. Find the coordinates of the centre of gravity of the area
which lies above the (positive) z-axis and below the curve
y = 2*3—2).

31. Find the area bounded by the curve y = 2?, the axis of
and the ordinates z = 1 and z = 2.
Find the = and y coordinates of the centre of gravity of this area.

32. Calculate the coordinates of the centre of gravity of the area
enclosed by the straight lines z = 0, ¥ = 0 and the portion of the
curve ¥ = 9—2? which lies in the first quadrant.

33. Find the a-coordinate of the centre of gravity of the area
bounded by the z-axis, the y-axis, and that portion of the curve

y=(x+1)(4—2)
which lies in the first quadrant.

34. Find the area included between the axis of z and the portion
of the curve y = 22— 9 below that axis.
Find also the coordinates of the centre of gravity of this area.

35. A flat thin plate of uniform density is bounded by the
two curves y = 2%, y = —2® and the line z = 2. Find its area and
the coordinates of its centre of gravity.

36. Calculate the area above the z-axis bounded by the curve
y = 22(3 —z) and the z-axis.
Find both coordinates of the centre of gravity of this area.

37. A uniform lamina in the form of a quadrant of a circle of
radius @ is bounded by radii 04 and OB. Find the distance of the
centre of gravity of the lamina from 04 and from OB.

By considering the rotation of the lamina about OA4, prove that
the volume of a hemisphere of radius a is §=a®.
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38. The area enclosed by the parabola y* = 4x and the straight
line z = 4 is rotated about the axis of # through two right angles.
Find the volume of the solid so generated and the z-coordinate of
its centre of gravity.

39. An area in the first quadrant is bounded by the ellipse
422+ 9y® = 36 and the axes of coordinates. This area is rotated
through four right angles about the z-axis. Find (i) the volume
generated and (ii) the 2-coordinate of the centre of gravity of this
volume,

40, The area bounded by the arc of the curve y = z(3—xz)
between the points when z = 0 and z = 2, the x-axis, and the line
z = 2, is rotated about the z-axis. Find the volume of the solid
of revolution so generated, and the z-coordinate of its centre of

gravity.

41. The curvey® = 2% 2 —z) cuts the 2-axis at the points given by
@ =0 and 2 = 2. The area enclosed by the z-axis and the curve
between these two points is rotated through four right angles
about the axis of  so as to form a solid of revolution. Find the
volume of this solid and the z-coordinate of its centre of gravity.

42. Solids of revolution are generated by rotating (i) about the
z-axis the area bounded by the arc of the curve y = 22 between
(0,0) and (2, 8), the line z = 2 and the z-axis; (ii) about the y-axis
the ar :a bounded by the same arc, the line y = 8 and the y-axis.
Calculate the volumes of the two solids so formed.

43. A cylindrical hole of radius 4 in. is cut from a sphere of
radius 5 in., the axis of the cylinder coinciding with a diameter of
the sphere. Prove that the volume of the remaining portion of
the sphere is 367,

44. Sketch the curve whose equation is ¥ = 2® and find the area
bounded by the curve, the positive z-axis, and the straight line
z=2.

Find also the volume generated when this area is rotated about
the z-axis through four right angles.

45. A uniform solid right circular cone is of height % and the
radius of its base is r. Find the volume by the methods of the
integral calculus.

I

F|1
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Find also the distance of the centre of gravity of the cone from
its vertex.

46. The radius of a sphere is 5 in. Two parallel planes are
drawn at distances 2 and 3 in. respectively from the centre and
lin. apart. Use the calculus to determine the volume of the slice of
the sphere between the two planes.

[Regard the sphere as formed by the rotation of the circle
2%+ y* = 25 about the z-axis.]

47. Sketch roughly the two curves
2 +y? =25 a?+4y2 = 25.

A solid is formed by the revolution through four right angles
about the x-axis of the part of the area between the two curves in
which y is positive. Find the volume of the solid.

48. Find the volume of the solid of revolution generated by the
rotation about the #-axis of the area bounded by the curve y* = 2z
and the line y = }a.

2 .3
49. The ellipse %-}-% =1
is revolved about the z-axis. Find the volume of the solid so

formed and the z-coordinate of the centre of gravity of its right-
hand half.

50. The area between the circle 22+y? = 16 and the ellipse
92+ 16y% = 144 is rotated about the z-axis. Calculate the volume
of the solid of revolution so formed.

51. A solid of revolution is formed by rotating the portion of
the curve y = asinz between z =0, 2 = }= about the z-axis.
Find the volume of the solid and the distance of its centre of mass
from the origin.

52. Find the area included between the curve y = a:+ 22+ 323,
the axis of z, and the ordinates at # = 1,z = 3. Show also that
the area is exactly equal to that of a rectangle on the same base

(of two units) whose height is (v, + 4y, +y,), where y,, y,,y; are
the ordinates at # = 1,2 = 2,2 = 3 respectively.
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53. Apply Simpson’s rule to calculate approximately

f‘”\](2 +sinz)da,
0
making use of the table:

x 0 in in iz in
J(2+sinz) || 1-414 | 1-544 | 1-645 | 1-710 | 1-732

64. Prove that
J.b?ldx = }(b—a) {yp+Ya+ 3(y1 + %)}

where y is a polynomial in z of the third degree, y,, ¥, are the values

of y corresponding to the end points, and y,, ¥, are the values of y

corresponding to the points of trisection of the interval a,b.
Hence obtain an approximate value for

'[: *(1- 829yt .

55. Use Simpson’s rule, taking five ordinates [four divisions], to
find an approximation to two decimal places to the value of the

o o fulle-3)
z——|da.
1 x
56. A river is 80 feet wide. The depth d in feet at a distance

z feet from one bank is given by the following table:

z 0 10 20 30 40 50 60 70 80
4. & 7 .9 I3 35 14,8 3

Find approximately the area of the cross-section.
57. Establish Simpson’s rule that, if
f(x)= A4+ Bx + Cx®+ Da2?,

then J" @)z = 3{f(0)+£(1) + 4/ @)}.

Prove also that, if
f@)=A4+ Bz + C2®+ Da® + Ex?t,
then the error in still using that rule is T35 E.
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58. The speed » in miles per hour of a train starting from rest is
observed at intervals of one minute:

£ 0.1 2 "3 4. @ Mg T 8
v 0 7 13 18 22 25 28 33 27

Estimate the distance covered in the eight minutes.

59. Show that constants a@,b,¢ exist such that, if f(z) is any
polynomial function of degree five (or less), then

[ 101 = Wiaf(0)+ b7 +£(~ )1 20) 1~ 20,

Show also that, with these values of a, b, ¢ but with f(z) =25, the
expression on the right is equal to %F [flz)da.
—2h

60. Evaluate f sin! xda

approximately by Simpson’s rule, using five ordinates (i.e. at
intervals of {m).

'
61. Evaluate f " 9sin? 040
0

to three decimal places both by an exact method and by Simpson’s
rule using five ordinates.

62. If y = a+bx + ca®+ da®, prove that

3h
J; ydx = §h(yo+ 3y, +3yz +ys),

where y,, ¥, ¥s, Y5 on the values of y at x = 0, &, 2h, 3% respectively.
Hence approximate to the value of

J. i"(1 + 8sin?x)dx.
]

63. Using Simpson’s rule with seven ordinates, calculate the

area under the curve
y=a*+3

between the ordinates x = 0, = 6.

ANSWERS TO EXAMPLES

CHAPTER I
Examples 1:

1. (i) 2*y—y® =4,
2. a® = b¥+c? ¢ = (a2 - D2).

(i) 2> +y2—Jy =2

Examples II:
1. 1;1and —1;none; 1 and 3. 2. nm; 3(2n+1)m.
3. 0;1and —1.

Examples IV :

15 & 2. —1. 3. 1. 4, 0.

5. 5. 6. 4. 7. -2 8. 0.
Examples V1

[ 2. 1and —-1. 3. 3and -3.

4. 1and 2. 5. nm. 6. 3(2n+ 1L)m.

7. 3(2n+ ). % 1, 9. 3and —3.

10. }(4n+1)m. 11. None. 12, 2n+1)7 + 3.
Ezamples VI:

1. 3 at each value of z.

2. —2,0,24.

6 l<a<2,

8 22—y—1=0,42+y+4=0,y=0, 62—y—9=0,

9. 4—y—1=0,y+1=0, 22—y =0,

Examples VII:
9. 4, 20, 12,
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Examples VIII:

1. Tangent 30z —y— 45 = 0, normal z+ 30y —1353 = 0.
Tangent 20z + ¥+ 20 = 0, normal x — 20y + 402 = 0.
Tangent y = 0, normal z = 0.

2. Tangent 12z —y— 16 = 0, normal z+ 12y —98 = 0.
Tangent 32—y +2 = 0, normal #+3y+4 = 0.
Tangent y = 0, normal z = 0.

8. (i) Tangent 122 —y—24 = 0, normal 2+ 12y—2 = 0.
(ii) Tangent y+8 = 0, normal z = 0.

CHAPTER II

Examples I:
1. 4a8, 2. 4(z+3)%
3. 8(2z+3). 4, 423+ 22,
6. 32%(z+ 1) (2x+1). 6. 2(x+1) (x+2)(2x+3).
= 8. —da5,
9. —3(x+2)4 10. —10(2z+3)~S.
11, —21(3z—5)"%. 12, —8(4x+3)7%,
13. fat. 14. g%,
15. Ja—#(3z+1). 16. (2z+3)~t.
17. 4(5z+ 7). 18. —%a1,
19. —}z+7)L 20. (3z+2)(2z+5)t.
21. (z+1)"2 22. 6z(2x+3)~3.

23, —Jr}(202+1)(dx—1)" 24 }@—5)(z+1)F(@-1)*

Examples 11
1. 2cos2z. 2. —3sin 3z.
3. 25cos 5z. 4. gin 22 + 2z cos 2z.
5. 2xcosx—a?sinz. 6. 3cos 3z — 9xsin 3z.
7. 2(z+1)sinTz+ 7(z+1)*cos Tz. 8. 3cos(3z+5).
9. 6(2z+1)% 10. —4(z+2)-5

11. cosecz — 2 cosecx cob . 12, 1+sinxz+xcoszx.
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13. sin 2z. 14. —sin 22,

15. 3sin?zcosz. 16. —3sinzcos?a.

17. sin®z 4+ xsin 2. 18. 2z cos?x—a?sin 2x.

19. 2z cos? 2z — 2z?sin 4a. 20. sin?z+ (1+ «)sin 2z.

21. —sin (x— }m). 22. cos 22.

23. a1, 24, —3az i

25. gx—tsinz+atsin 2z 26. }cosz(sinz)t.

27. (14 jzcotz) (sinz)t. 28. 2z(sin 4x)! (1 +z cot 4x).

29. —cosecaxcotiz. 30. secz tanz.

31. sec?x. 32. —cosec?z.

33. —%ain&c’. 34, %sec’&u".

35. sinx°+—l%cosz°. 36. %sm&t"
Examples I11:

1. bz4, 2028, 60z2.

2. 822, 6x, 6.

3. 1,0, 0

4. sinz+xcosz, 2cosx—xsinz, —3sinzr—xcosz.

5. 2xcosx—a?sinz, 2cosx —4xsinz—a2cosz,

© W =9 >
n e e e

10.
11.
12,

" —6sinz — 6xcosx+asin 2.
sin®z + xsin 2%, 2sin 2z + 22 cos 2z, 6 cos 2z — 4x sin 2z,
2cos 2z, —4sin 2z, — 8cos 2.
—4gin 42, — 16 cos 4z, 64 sin 4x.
gin 2z, 2 cos 2z, — 4 sin 22.
—a~2 228, — 624,
—2(2x—3)~2, 8(2x—3)~3, —48(2z—3)—4,
— 324, 1225, — 605,

Examples IV :

13
3.

2 sec 2x tan 2.
4 sec? 2z tan 2x.

2. 4sec?2xtan 2x,
4, 9sec? 3z tan®3x.
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6. 2z cot 2z — 222 cosec? 2z.

8. }sinz(cosz) L.

5. cosecx —xcosecx cot .
7. secztan®z +secz.

9. —6cosec?® 2z cot 2.
10. ma™1tan™z+ na™tan® 1 sec?x.
11. —ma—™lgec™x +mr—™sec™x tan z.
12, iz—ttan®z + 2zt tanwsec?z.

ANSWERS TO EXAMPLES

CHAPTER 111

Ezamples I:
1. & = —wsinnt, £ = —ncosnt.
2. & = incosint, & = — }n?sindnt.
3. & =5—64t, & = —64.
4. & = 644, & = 64.
5. & = sinnt+ iwtcos int, £ = wcos int — }n?isin at.
6. & = 2t cos imt— {nitsin int.,

& = 2cos dnwt — 2ntsin §wt — }n? 2 cos iut.
7. €= 2{—96, & = 2,
8. & = sin?{nt+ {ntsinnt, & = wsinwi+ j=2icos nt.

Examples I1;

20X 3. —4
Examples 111 :

1.9, 2 1

3. —land 1. 4, —1,0,and 1.

5. nm+ 4w, all integral n. 6. dnm+ 1=, all integral n.

7. nm, all integral n. 8. 2nm, all integral n.
Examples IV :

4. (i) z>4%. (ii) All 2.

(iii) |x|>1. (iv) > 0.

(v) —l<x<Oandz>1.

(vi) z<1 and 2> 4.

Ezxamples V :
: -2 < 2 -2
1. (l) 2: J_ss i‘ (1!) 2: ;,3: *- (lll) 2, _'J_?'., i‘-
e g Tl -2 2
(iV) J_3’ ""2: f- (V) 4_3: 2: 2" (VI) -‘J_s., 2: i-
1. z 2z
2. tan x+1+x3' 3. J_—(l—:z‘)'
= z . - 208
4, cos ]m.—.m. b. 33’3111 23:+Wj.
223 2tan—lz
= I L G ) s
6. 2zcos 1y Ja—z0)’ 5 T+ °
1 -1
8 V@=1’ % @@=y
=1 2sin—lz
10. 'ﬁ";. 11- mt
- 3z(cos—1a)? o x
12. (cos 1$)a—w-_x—z)-. 13. 2zsec z'l‘m.
1 222gin~1z
= U S in-1g8
14. coseclz &= 15. 2z(sin—lz)*+ =
16 B
" T2 (12’
Examples VI:
1. 6 per cent. 2. 2 per cent.
3. 0:2. 4. 0-00023.

Ezamples VI:
1. Minimum.
2. Minimum.
3. Minimum at # = 1, maximum at x = — 1.
4, Minimum at # = —1 and 1, maximum at 2 = 0.
6. Minimum at z = 2n7 — {=, maximum at = 2nw + 3.
6. Minimum at 2 = n7 — }», maximum at 2 = nw + }m.

157
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7. Minimum at 2 = (2n+ 1) 7, maximum at x = 2nm. 0. Maximum at z = 0, minimum at z = 2. Parallel tangent at
8. Minimum at z = 2(2n + 1) 7, maximum at x = 4nr. z=—1
10. (i) Maximum at z = —2, inflexion at # = 0, minimum at 10. 4x—2y+5=0. Point (2 ;l)
z =2, 3’ 27
(ii) Maximum at z = —1, inflexion at # = —§, minimum 11 |F (—JE, _ljg), (0’0),( _,_Jg)_
at z = 0. 37 33 3°3A3
6r 12. 5z—y—1=0, (2,4), (4, —8).
. Maximum at # = 2n , 2 s 2nm
"+ m+ e 13. Gradient 4h, tangent y—k = 4h(z—h). Tangents through
origin y = + 12z.
Minimum a.tx_2nﬂ-+24,2mr+T, 2m+zf. 5 y3 2
14, z = —and —-.
12. (i) Maximum at # = 1, minimum at z = 2. 6 2
(ii) (@) x<land z>2. (b) 1<z<2. 15.a=2,b=—9,¢=12,d=0,
) 16. Maximum value 9 at z = — 1; minimum value —7 at z =1
Ezamples IX : and at x = —3.
2. (i) ¢=1 (i) €= 2. (iii) £=1. 17. Maximum value 4 at z = —2; minimum value 0 at z = 2.
Tangent 3z +2y—4 = 0.
Examples X1 : 18. (—1,27) and (2,0).
1. & 2. 0. 3. m 4.1 5. }. 6. 1. 19. (1, 6) and (3, 2).
20. Gradient zero, minimum.
REVISION EXAMPLES I 21. (1,2) and (3, —2). Three positive roots, one between 0 and 1,
1 () moosm ) 6o 10, (i) — 9% . o.ne between 1 and 3, and.one greater than 3.
(14222 22. Velocity = 2pt+ 3gt2, acceleration = 2p+6gt, p = 12, ¢ = —1.
4 -3 Vol e R
2. (i) 25(1 b . (ii) sin2zcos2z. (ii) 1422~ . ::’ 24, Velocity = 0, acceleration = —4. 1} seconds, 18 feet.
(1+22%) 25. Velocity 16 ft./sec. Acceleration 14 ft./sec.?
3. (i) 2.1:—3. (i) 2tanzsec?z. 26. Velocity = tcost. Acceleration = cosi—isint.
3 27. % sq. in., 4 8q. in.
4. (i) 22——. ... N —z
(1) e () T+sma) (iii) @ 28. 32 ft.
; 2 20. 2 =22, Time 2
6. (i) 2*(1+2)(3+52). (ii) 2sinda. (iii) i . @ Time = bours,
J(l S 30 13-7
’ &= 18-1.
6. (i) Bz(1—=z). (ii) 2cos2 —gin 2 Ty i
ol ( 1 )0 ; ) x cosz —sin 2zsinz.  (iii) A=z 31. 4500 cu. ft.
 ZX—=Y—1= - -8 =
w 2"’ g Sl | 32, Volume 7§ cu. ft. Length 4-09 ft.
o = x;y =20l 4,z2+y-1=0; B, 2x—y—4 = 0. Intersection 33. 48 sq. ft.
(_’ _5)' 34. Area = 75 (2 —2lx + 22%). a:.—_%.
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37. Area = 7522+ (!—«)%. Minimum,
39. £h per cent.
3 4
40. oy - in. per sec.
41. Shortened, +% per cent.
42, (i) 0-15 7 cu. in. per sec. (ii) 0-16 = sq. in. per sec.
43. (i) 0-00008 in./sec. (ii) 0-025 cu. in./sec.
44, % = — 3 in. per hour. 24x sq. in. per hour.
45. %h per cent.
CHAPTER 1V
Bzamples 11 :
il
2. A+im‘] A‘_Ea: A+%x°.
3. A+4}sin2x, A—2cosiz, A+x+sinz,
5. 8%, 0, 1, 66.
6. 1, }, m, in.
21352
7. *, i’ Wl
8. im.
CHAPTER V
Examples I:
1. C—}cos 2z, 2. C+%sin3z.
3. C—2cos iz, 4. C+ }tandx.
5. C+2secix. 6. C+4(x+1)>%
7. C+ 3z +3)% 8. C+3(x+5)%
9. C—}z+1) 10. C—}z—2)
11. C—}(z—1)-2 12. C—(z+5)1.
13. C+}(2x+1)5. 14. C+55(5z—3)%
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15. C+%(3x+7)5. 16. C—4(2z+1)"%
17. C—3}(4z—3)2, 18. C—(3z—1)=2.
19. C+%(x+ 1)L 20. C+&(z—1)L
21. C+2(z+ 1)L 22. C+(2z+ 1)L
23. C—(2¢—3)4 24, C+4(3z+ 1)L
25. C— 3@+ 1)L 26. C—3(z3+1)S.
27. C—5(325+1)72, 28. C'+5(1— 5222
29. C—}cosbz. 30. C+3}cos®z—cosz.
31. C+1sin®z—4sin®a. 32. C+4tan3zx—u.
33. 0—3(1+tanx)2 34. C+secz+3}tan?z,
35. O+tanz+ §tan’z. 36. C+§tan’z.
Ezxamples 11:

1. 0+i]36ta.n—1g+%x(x’+4)‘l.

2. C+3sinlz—jx(l—a%)kh

3. C+a—tan'z.

4. C+3}sintz+ Jo(l—2?)h

5. C+sin~lz—(1—22)k

6. C+}sinla+ ja(222—1) (1 -2k

7. 0—§(2+2) (L—2)t

8. C—%(18+x)(9—=x)h

9. O —&(2+32) (1—2x)h

10. O +125(1502% + 48z +128) (z—4)h.

Examples II1:
R % i S %+i. 4. m. 5. 7% @.

6f T8 8 o-pm 0l

8 4

Examples IV :

1

1. 2! 3. 3. 1

10. ',
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Bobngiiey it CHAPTER VI
1. C+zsinz+cosa. 2. C+22%sinx+ 2x cosz — 2sinz. B les T
. Gaadoa e ey xamples I:
3. C+asec’z—tanz. 4. C+4x ta:: z—fx+tan—1z. o 2. §r. 3. 1l
m
5. im—1. 6. 5-1-15:
% ekt S Examples I1:
ks o B 8= et 1. (a) 0:335, (b) 0-333. 2. (@) 601,  (b) 60-0.
Examples VI: 3. (a) 8:68, (b) 8-67. 4. (a) 0, (®) 0.
1. C—f5cos bz —}cos 4z. 2. C+ %+ }sin 2z, 5. (a) 0-680, (b) 0-667. 6. (@) —0-248, (b) —0-250.
8. C+3}x— Jsin 8z, 4. C+ }sin 22 — % sin 6z, 7. (a) 648,  (b) 638. 8. (@) 0:694,  (b) 0-693.
9. (a) 0-322, (b) 0-322.
gl 6. §. 1. ;. 8 2.
Examples 111:
Examples VII: 1. 1242, 2. 812, 3. {a.
1 0—lsm%oosx—ism‘zcos:c——s—smzcosx+ 3a®
ghal 24 16 4. (i) 1—9(31+6,/2). (id) 245 (325+6J2)
1 6 8 16
6 4 2, ==
2. O+7smxcos a:+35smzcos :v+355mxeos x+353mx
1 8 16 REVISION EXAMPLES II
3. 0—§mnsxcosa:—€§mn‘xeosm—msm%coez
64 128 il
i B
3155111 X Cosx 3150053:. 2. % 2 3
1, '8
357 18 637 3. PP+ 255, 5.
4 56" 5 35 b 44 i :
. @n=1)(@n=3)..3.17  _  2n(n-2)..4.2 4 Q) P—pt+te. (@) fo—feimde (@ §
" 2n(2n—2)...4.2 2 " @a+1)(2n—-1)...5.3° 5. (i) H@+1)% () Jo+rysinbe. (i) §¢3.
2n(2n—2)...4.2 6. () do—tsin2z. () —o—oad, (i) —§oos*z.
% GniD@En-1)..5.3 ® do-1 z 3

7. 10a.

Examples VIII: 8. y=522—2+4, 2y—2—8=0,

i 2. 3—- __mint | 9. y = 2*—}a?+1, minima at z = +§.
1155 63 " (mtn+1)!" 2
, @m=1P(m-—3p. .8 7 (m!)? 10. y = z—g -+ (=2,3), s+y—0 =04t (2,4), 2+y— §=0
) 22m(2m)1 "2’ T 2@m+ 1)l at (—2,8).
6. 9.12.10.....2 e I |

1
19.17.....7° - 310" , 1. Ld 12. y =z+_+1, (1,3).
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13. 8%, 43. 14. 10 ft. per sec., 31} ft.
15. 27 ft., 85} ft. after 8 sec.

16. 9 ft. per sec., 3 ft. per sec. per sec.

17. 3 ft. per sec. per sec. when ¢t =2, —1 ft. per sec. per sec.
when ¢t = 4. AB = 11} ft. At rest when ¢ = 1, 6.

18. 50 ft. per sec., 1166% ft. 19. 4 ft. per sec., 4} ft.
20, v = +5, max.x = §.

21. —12 cm. per sec. per sec., 605 cm., 197% cm.

22. 31-25 ft. per sec., 520§ ft. 23. t = 5; 5% ft.

24, t = 2,5; 43 ft.

25. 14 ft. per sec. per sec., 25 ft. 26. 15.

27. %, & 9. 28. 6%, L.

29. (i) %, (i) % 30. (3, %)

31. §, (28, 73 32. (5 %)

33. 12, 34. 36, (0, —28).
35. 4%, (8, 0). 36. 9, (3, 3

37. ;_:’ 38. 32m, §.

39. (i) 8m, (ii) 3. 40. %24, 33

41, 47, §. 42, (i) 2%n, (ii) 16m
44. 4, 1387, 45. {wreh, $h.
46. 5fa, 47. 125,

48. Stm, 49. {mab?, {a.
50. 32, 51. #,Ea—%.
52. 238, 63. 2:55.

54. 0-292, 55. 0-84.

56. 710 sq. ft. 58. 2-7 miles.
89.a=%f,b=3%c=1% 60. 0-385.

61. Exact method 0-867. Simpson’s rule 0-865.
62. 50-3. 63. 342,

INDEX

Acceleration, 48, 111
Approximate integration, 134
Area
of cirele, 100
polar coordinates, 114
sign of, 84 ‘
of surface of revolution, 130
‘under’ a curve (Cartesian co-
ordinates), 77, 113

Centroid (centre of gravity), 118
of solid of revolution, 127

Circle, area of, 100

Coneavity, 54

Continuity, 12
defined, 13

Continuous variable, 3

Curve, to sketch, 59

Decreasing function, 52
Derivative, 20
Differential coefficient, 19
of cosa, 34
of determinant, 45
of ‘function of function’, 27
of higher order, 356
of product, 26
of sinz, 33
standard forms, 36
of sum, 26
of a7, 30
Differentials, 42, 89
Discrete variable, 3
Dynamieal illustrations, 48, 111

Formulae of reduction, 106
Funection, 1
decreasing and increasing, 52

Gradient, 17
Graph, b

Increasing function, 52
Inflexion, 55
Integral, 81
approximate value, 134
defined, 82
definite and indefinite, 85
evaluation, 86, 89
formulae of reduction, 106
by parts, 103
standard forms, 90
substitution, 94, 98

Inverse circular functions, 38

Limit, 5
defined, 7, 8
of f(z) Jg(x) when f(a) =g(a) =0, 68
of sinz/z, 32
theorems on, 25

Maxima and minima
to determine, 51
to discriminate, 56
introductory illustration, 49
Mean values, 138
defined, 139
Mean value theorem, 61
Cauchy’s, 66
Moment of inertia, 123
of solid of revolution, 129

Normal, 23

Pappus, 128
Parameter, 2
Parts, integration by, 103

Rate of change, 14

Real roots of f(z) =0, f'(x) =0, 63
Reduction, formulae of, 106

Rolle, 60

Simple harmonie motion, 49
Simpson’s rule, 135
Sketching of simple curves, 59
Solid of revolution
centroid (centre of gravity), 127
mean density, 140
moment of inertia, 129
volume, 125
Substitution
definite integrals, 98
indefinite integrals, 94
Burface of revolution
area, 130
mean density, 142

Tangent, 23

Variables, 1

discrete and continuous, 3
Velocity, 48, 111
Volume of revolution, 126



SOME PRESS OPINIONS OF THE
SUBSEQUENT VOLUMES

These books can be wholeheartedly recommended for
the mathematically abler pupil. They are written in the
attractively informal style which we have come to
associate with Dr Maxwell’s school text-books.

The Mathematical Gazette

The complete series ranges over both sixth-form and
university mathematics....The aim is to supply a
knowledge of general method, rather than to give a
medley of particular cases—and in this the author
succeeds admirably. The explanations are most
lucid. . .and the printing conforms to the high stan-
dards set by the Cambridge University Press. I only
wish it had been available in my own student days.
Journal of Education

Volume II

Dr Maxwell, using his long experience of university
teaching. . .has embarked on the writing of a series to
cover the needs of the mathematical specialist from his
last year at school up to degree standard....No
Eotential scholarship winner will be wise to omit these
lrstdtwo volumes f'rodm his reading t'h tht;gtll;eatment is
ucid, challenging and invigorating throughout.

Journal of the AM.A.

Volume III

The work is admirable both in conception and execu-
tion; the rigour is never pedantic and the author has a
practical appreciation that early work cannot be
treated with the strictness appropriate to more mature
judgment.. . . This third volumeis particularly valuable,
for it treats a subject neglected by existing text-books
—the theory of functions of several variables. The
whole work is to be highly commended.. . . The series
is attractively presented and we look forward to the
final volume.... Journal of Education

Volume IV

It is easy to write text-books for students of mathe-
matics, but it is not easy to write them well. It is there~
fore something of a surprise when one recalls the
number of sanely written and elegantly produced
books which have resulted from Dr Maxwell’s part-
nership with the Cambridge University Press. The
work under review is the last of the present series, and
in it Dr Maxwell carries the study of differential equa-
tions from its beginnings down to Laplace equations
and spherical harmonics. The subject matter is not
easy to present because the results have an importance
for the applied scientist which is in contrast with the
difficulty of the proofs, but the author reaches a sen-
sible compromise.. ..This will increase the value of
the book to the undergraduate mathematician, and it
will introduce students of science and engineering to
one of the most satisfying branches of mathematics.
The outstanding virtue of the book lies in the way in
which mathematical austerity is tempered with
mercy....This friendliness and sympathy in Dr
Maxwell’s approach will go far towards guaranteeing
the success of this book.

The Times Educational Supplement
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