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CHAPTER VII

THE LOGARITHMIC AND EXPONENTIAL
FUNCTIONS

TuE particular functions which we have used in the earlier
chapters (Volume 1) are the powers of z, the ordinary trigono-
metric functions, and combinations of them such as polynomials.

We now introduce an entirely new function, the logarithm. The
need for it arises, for example, when we seek to evaluate the

integral
Jx"dx

for n = — 1. The standard formula

mﬂdz - 1 zﬂ-?-l
n+1

becomes meaningless; the integral cannot be evaluated in terms of
the functions at present at our disposal.

1. The logarithm. Consider the integral

o
=,

To make the discussion precise, we shall fix the lower limit, giving
it the value unity; the effect of this is merely to remove ambiguity
about the arbitrary constant. The integral is a function of its
upper limit, which we denote by the letter x, replacing the
variable in the integration by the letter ¢. The function is thus

te=["%.

where (Vol. 1, p. 87) fila) = ;:



2 LOGARITHMIC AND EXPONENTIAL FUNCTIONS

The function defined in this way is called the logarithm of
usually written

logz

or log, z,

the suffix e being inserted for reasons to be given later (p. 27).
il g = [

1

2. First properties of the logarithm. We now prove some
of the basic properties to which the logarithm owes its importance.
The reader will note the very close connexion with ‘logarithms to
the base 10°, with which he is presumably familiar.

(i) logl =0,
This follows immediately, since (Vol. 1, p. 83)
1dt
1t i
(ii) logzy = logz +logy.
For logzy = J.w?
1

- f"-‘cit_i_J‘Wd_t (Vol. 1, p. 83).
1 ‘ x t

Now use the substitution

t=au
in the latter integral. We have the relation
dt = zdu

(remembering that z is CONSTANT here, the variable of integration
being ). Also the values z,zy of ¢ correspond to the values 1,y

of w. Hence fwdt J"’xdu

= logy.

We therefore have the required relation

logzy = logz +logy.

FIRST PROPERTIES OF THE LOGARITHM 3

COROLLARY. log (z/y) = logz —logy.

For logz = log {G) y}

= log (z/y) +logy.

(iii) log (") = nlog=.
z di
In the relation logz = J; =
make the substitution w =18,

du = nt*-1dt.

Also the values 1,z of ¢ correspond to the values 1,2" of u. There-
fore, since

We have the relation

1 al
e
2 pgn-1
we have logz = L —n

= du . it
= f — (applying the substitution)
1 nhu

1
= log(a"),

80 that log (2™) = nloga.
Note. n may have any real value, and is not necessarily a
positive integer.

(iv) The value of log x increases indefinitely as x does.
Suppose that N is any large number and m the largest integer
such that 2m<N. Then

s (et (edt at rgg
log N = f f f ""J:_lt"',ﬂ.t

2 di
Now consider f 7
2p—1
Throughout the interval (27-1,27), the variable ¢ is less than 27,
so that % exceeds %. Hence, by the basic definition of an integral

(Vol. 1, p. 81),

dt dee. AR
i fmrwllasTwms




4 LOGARITEMIC AND EXPONENTIAL FUNCTIONS

Applying this inequality to the successive integrals in the formula
N

for log N, and noting that f ‘% is positive, we obtain the relation
om

logN>3+34+4+...4+4% (m terms),

so that log N, which exceeds }m, increases without bound.

CoroLrarY. T'he value of log tends to MINUS infinity as x tends
to zero.

For log {(%) N} =logl =0,
so that log (%) + logN = 0,
| (l = —log N
or og N) = —log N.

As N tends to infinity, 1/N tends to zero, and the result follows.

3. The graph of log x.

If y = logz,
a1
then &=
Hence :—z is positive for all positive values of z, so that logz is a
steadily increasing function of x
Jor positive z (Fig. 62). Also the Y

gradient é is large and positive

when z is small and positive,
decreases as z increases, taking
the value 1 when z =1, and
tends to the value zero as z in- [ =
creases indefinitely. Moreover,
as above, y itself tends to ‘minus
infinity’ when z tends to zero,
increases with z, taking the
value 0 when 2 = 1, and ‘tends
to infinity’ as 2 increases in-
definitely.

The general shape is therefore that shown in the diagram.

Fig. 62.

THE GRAPH OF LOGZ b

The value 2 = 0 imposes a downward barrier on the logarithm,
and the function logz is undefined for negative values of z.

Note. If z, = x,, being positive, then log z; = log z,; and, what is
more important, the converse property holds, that, iflogz, = log ,,
then &, = ;. In fact, if x, >2,, then logz, >loga,, since the loga-
rithm is an increasing function; and if 2, < ,, then log z, <log z,.

It is also clear from the graph that, if ¢ is a given number, then

the relation
logz =c¢
defines x uniquely.

WagrNiNG. The value of the integral
-3 é!
-2}
is fully determinate, but we cannot use the argument:

f-ath= [logt]:: = log(—3)—log(-2)

-2
= log (:—g) = log (3/2),

since log (— 3) and log (—2) are non-existent. We must proceed as

follows:
Substitute t=—u,

so that dt = —du.

-84t —du du

Then J‘_37=J’:_—u __J:_E.
3

= [logu] = log (3/2).
2
UNDER NO CIRCUMSTANCES may we evaluate an integral such as

+8 J¢
f -2 ¢

where the variable of integration ¢ runs through the value zero at
which (1/¢) has no meaning.



6 LOGARITHMIO AND EXPONENTIAL FUNCTIONS

We give two typical examples to show how logarithms arise in
physical applications.

ILLusTRATION 1. An electric circuit contains a resistance R, a
coil of self-inductance L, and a baitery of electromotive force E,
supposed constant. To find an equation to determine the current
t seconds after a switch in the circuit has been closed.

The equation for the current z is known to be

dz
L et Rx = E, 7
so that Ld—x = F— Rz,
dt
R L
Hence the differentials di,dx are
connected by the relation :
o Ldx | :
~E—Rz’ B
da Fig. 63
and so t=L oy

[Note. We are changing from the conception of z as a function
of t to that of # as a function of z.]

The value of the integral may be written down at once, but the
beginner may prefer to use the substitution

E~Rzx = u,
so that ' — Rdz = du,
s L (du L
giving t=—R ?——ﬁlogu-ko,

assuming that we are dealing with a case in which w is positive.
Henoe t=—Zlog (E-Ra) +C,
where C is an arbitrary constant. Now 2 = 0 when ¢ = 0, and so
L
0= — EIogE' +C,

232

or CR

log .

THE GRAPH OF LOGZ 7

Hence i = %{ng—log (B — Rx)}
- ) E
=
: dx
An alternative method for dealing with the relation L — + Rx=F

di
will be given later (p. 22).

ILLUSTRATION 2. To find the work done when a given quantity of
a perfect gas expands from volume v, to volume v, at constant absolute
temperature T'.

It is known that the volume » and pressure p are connected by
the relation v = BT,

where R is constant. Also the work done is known to be

W= r.'p dv.

s RT'd
Hence W= 'r - =

Uy
= RT [Iog v]

vy

= RT(logv,—logv,)
= RTlog (vy/v,).
The following illustrations are typical of integrals involving
logarithms.
IrrustrATION 3. T'0 find

dadx
I — fxrl-
We have
2z 2
k= (ﬁ‘ﬁ)d‘”:k’gw—”“bg(xz“)




8 LOGARITHMIC AND EXPONENTIAL FUNCTIONS
ILLusTRATION 4. T0 find

I= |tanzdz.
Write % = COSZ,
so that du = —sin zdz.
Hence I=— d;u = —logu = log (1/u)
= logsecz.

ILLusTtrATION 5. T0 find

Iz—jx"logn:dm (ns—1).

On integration by parts (Vol I, p. 103), we have

gt
+1 f +1 a:dx

gntl Zn
= ———l ogx — fﬁ dz

22"+11 ant+l
Savl BETRLIR

IrLusTRATION 6. T0 find

dx
cosx
Wo bave o coszdx _ [ coszdx
" ) cos®z ) 1—sin%z
Iaet U= Sinzl
so that du = coszdz.
du 11 du du
s 1= [Tl el
= #{—log (1 —u)+log (1 +u)}
- «}log1+u
1—
- ;1og——iisf”.

THE GRAPH OF LOGZX

This may also be expressed in the form

1 +sinz)?
1= log T
¥ glog(l +ainm:)il =4 (l +Bina':)
cosx cos
= log (sec z + tan x).

Another form for the answer is

@
I= l(.‘)gi;a.n(4 2)

TLLUSTRATION 7.* To find

oy adz s
= )t +4x+13"

Notice that the differential coefficient of the denominator is
2x+4,
and express the numerator in the form
2(2z+4)—1.
(22 +4)dx J‘ dx
%

Then Tt 22 4+4x+13 214x+13

(22 +4)dx dx
P®+ax+13 J(@+2)°+9

= 2log (2% +4x+13)— %tan"‘( 4;—2) 3

ILLusTRATION 8.* T'0 find

P (5x +8)dx
—62+25°
Notice that the differential coefficient of the denominator is
2x—6,

and express the numerator in the form
5(2z—6)+23.

_ 5[ (2z—8)dx dx
S I'=3)—ez+35 _[(?—3)2+1e
=glog(x= 6:a+25)+—3tan—1(°’43)

* An important type.
M




10 LOGARITHMIC AND EXPONENTIAL FUNCTIONS

EXAMPLES I
Find the following integrals:

dx 2 dx 3 _dz_
z+1 " )24+ 1 i T
2241 dx .
4. f * . 5. fx,__l. 6. j(z +;3) dz.
Evaluate the following integrals:
. [t « [ ' do
"z’ " Jsz+l’ " Jo3x+2
=3 do 4 de dz
10. J‘_a = .| g 2. | Gy
Differentiate the following functions with respect to z:
13. log (3z+ 2). 14. logtana. 15. log cosec .
16. 22logz. 17. z"log . 18. log (1 +22).
Find the following integrals:
10, J' log zda. 20. f 19? da. 21, fcota:da:.
2
22. fx log zdz. 23. ﬁ 24, J‘cc.)s % i
sinz sinz
(2x+5)dz 28 (22— 3)dx 97 (22 + b)dx
224 b+ 12° T )at—38z+T T Jat—22+17

o (22— 6)dx 29 (bx+T7)dx 30 (72— 2)dz
= Ja®+6x+10° © Ja?2—8x+25 " Jat+10z+ 34"

4. The use of logarithms in differentiation. The differen-
tiation of a fraction (in which the numerator and the denominator
may themselves be products of factors) is often made easier by the

method known as logarithmic differentiation, illustrated in the
following examples.

ItLusTRATION 9. To differentiate the function

_ 2(1+a?)
Y= T—zf 1+

THE USE OF LOGARITHMS IN DIFFERENTIATION 1l
Take logarithms. Then
logy = 3logx+log (1 +2%) —4log (1 —z) — 2log (1 + 2z).
Differentiate. Then

ldy 3 2 $ ool
yde =z 1+2° 1—-z 142z’

and the value of % follows at once.

With a little practice, the two steps may be taken together:

IrLusTrATION 10. To differentiate the function

_ (1—2z)*sin’2
Y= v

Take logarithms and differentiate. Then

ldy —4 +3cosx_ 16z
ydz 1-2z sinz 1442

EXAMPLES II

Use the method of logarithmic differentiation to differentiate
the following functions:

(1+42)? cos®z g % sin?z
"(1-a)®. " 1+2? ©1—-22%

(1 +x)? zsinz 6 (14 22)?
(1482’ " (1+zPE(l-2) " 2xcos?x’

541 — )3 (1+4cosx)? (1—2) (14 22)%

7

" tan?2z ° " (I+az+a?) (1—38z)3 (1 +4x)*’

5. The use of logarithms in integrating simple rational
functions. A rational function of z is an expression of the form

u(x)
v(x)’

where u(z), v(z) are polynomials in z. We shall later (p. 200) give a
detailed treatment of the integration of such functions; here we
give a preliminary account of the simpler cases.

2-2
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If the degree of u(x) is higher than that of v(x), we can divide

u(x) by v(z), and obtain an expression of the form

P+,
where p(z) is a polynomial, and w(z) is a polynomial whose degree
18 less than that of v(x).

The integration of the polynomial p(z) is immediate. We may

therefore confine our attention to the form

w(z)

(@)’
where w(z), v(z) are polynomials in z, the degree of w(z) being less
than that of »(z). The method is to express this quotient in
partial fractions; details may be found in a text-book on algebra,
but, for convenience, a brief account of the calculations involved is
inserted for reference.

In order to explain what is required, we consider some typical
examples. (Different mathematicians use varying methods. Those
which follow have the advantage of giving independent checks of
accuracy in some of the more complicated cases.)

: 2z
(i) Z)m———
J@) (®—2) (z+3)
The denominator consists of the two linear factors (x—2), (x+3),

each occurring to the first degree only. We seek to express f(z) in
the form A B

z—31z+3
A . B = 2z
2—2 z+3 (2-2)(z+3)
Multiply throughout by z—2. Then

L Ba-2)_ 2

We have

z+3 z2+3°
This holds for all values of z; in particular, for z = 2. Then

2.2 4
A O=-—=-.
Rt 5 T

o+

Hence A =

INTEGRATING SIMPLE RATIONAL FUNCTIONS 13

In practice, these steps are usually telescoped, as we now
illustrate in finding B. Multiply throughout by z+ 3 and then put

-~ T
. 4 2-3) 6

B=(—3—2)'5

4 6
Hence ﬂx)ES(x—2)+5(x+3)'

1
(if) @) E#};_W.

The denominator consists of two linear factors (z+2), (z—2),
of which (x— 2) occurs to degree 3. We seek to express f(z) in the

foum A . BLe
212 (@—2p @—2¢ z—2

shak g St R A
SOMIAY T2 @—2P @—2¢ 2-2 (@+2)(@—2)7

Multiply throughout by «z+ 2 and then put # = — 2, Thus

-2+1 -1 1

e (—2—2)  —64 64

Multiply throughout by (x— 2) and then put z = 2. Thus

241 3

.B-—2—_|_2=1.

In order to find C, D, we use these values of 4, B:
C B z+1 . /| shes ' B
@—22  (z—-2) @+2)@—2F 64@+2) d@—2)
_64(z+1)— (@—2)*—48(x +2)
64(z+2) (x—2)°
_ 642464 —2%+ 622 — 122+ 8 —48x— 96
® 64(x+2) (x—2)°

2 23— 6a2—4x 424
T 64(z+2)(2—2)F

At this point, we are able to check accuracy for the highest
common factor of the denominators on the left-hand side is (z — 2)2.
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Hence z+2 and 2—2 musT be factors of the numerator on the
right. By division, we find that

@8 — 622 — 4+ 24 = (2 + 2) (2 — 2) (z — 6)-

C D x—6

Hence @—2¢ z—2" " Gie—2p

Multiply by (z—2)% and then put 2 = 2. Thus

(=9 1
e T 16
D (z—6) - 1
Flens -2  64@z—2) 16(z—2)!
_ —x+2 -1

T 64(x—2)* " 64(z—2)’

again checking accuracy by the cancelling of z— 2,

Finally, Pl

Hence
1 3 1 1
64w +2)  4@—2p T T6@@—2) Gd[—2)

flz)=

dr—1

) f(x)E(a:— 12 (@22 +z+1)"

The denominator consists of the linear factor (x—1), repeated,
and the quadratic factor (22 +2+1). We require to express f(z) in

B S A__ B OstD
(=12 "2—1" a?4+z2+1°

the numerator above the quadratic factor being of the form Cx + D.
We thus have

A 3 B Cz+D _ dr—1
(@-10 2-1 a?+z+1 (z—12@’+2+1)

Multiply throughout by (—1)2, and then put z = 1. Thus

4-—1

A TmaT

1

INTEGRATING SIMPLE RATIONAL FUNCTIONS 15
B Cz+D dx—1 iy ool
a—1" 22taz+l (@—1)P@+z+1) @—1)
_dz—1—(2®+2+1)
T (@—1P2 (@ +z+1)
22 —3x+2
Te-1p@Eta+l)

B Cz+D _ z—2
Tenn -1 raztl (x—1)(2*+2+1)’
the cancelling of the factor z — 1 providing a check of accuracy.
Multiply throughout by z—1, and then put # = 1. Thus
1-2 ___]:
14141 3
Cz+D _ z—2 S !
B 2rz+1 (z-1)@+x+1) 3(z-1)
_ —3(z—2)—(2*+2x+1)
T 3z—-1)(2®+z+1)
2?+4x—5
T3@-1)(zt+z+1)
z+5
T 3@ +z+1)
on cancelling the factor z—1. Hence
= _i: D= _"g':
P 1! 3 x4 5
G o )=t se=1) 3tz D)
The following illustrations exhibit some further points about

the calculation of partial fractions, and also show how the
integration of rational functions is carried out.

Hence

B =

=

IrvusTrATION 11. T find

Is | ——

=1)*
The numerator is not of less degree than the denominator, so
we begin by dividing out:
x* 222 —1

tda
(?

1

@@= T
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Consider, then, the function

2231
9’(3’)=(xT__T)=-

Factorize the denominator, so that

i 2221
e

We therefore have to find constants A, B,C, D such that

3.1 o sl i@l 0D 2021
@1 21 G er I G 1P e I

Multiply throughout by {g a :;2 and then put { L 4 Thus
_21pp-1 1
i (1+12 ¢
_2(-1p2-1 1
i o At
Hence

=1 2+1 (@—1P@+1p 4@—1)2 4z+I1)p
Sa:"—4—(:c’+2z+1)—(x“—2x+1)
4z—1)%(z+ 1)
_ 6x%—6
T4@—1P@+1)p
g 3
T2e-1)(z+1)

Hence, by the usual process,

B=}% D=-}
It follows that

fh 1 3 1 3
b f{‘+4(a.-_ Y TE Ry ATy ) T 1)}“"“

1 1

INTEGRATING SIMPLE RATIONAL FUNCTIONS 17

IuLusTRATION 2. T find
1= 13da
fxa +z—10°

We must first factorize the denominator. It vanishes Whe_n
x = 2, so that 2 — 2 is a factor, and, after division, we find that it

is (x—2) (2®+ 2z + 5). We therefore seek to express

2 13 8 13
f(x)=xa+x_10=(a:—2) (22 + 22+ 5)
) A Bx+C
in the form x—2+32+2$+5’
A Bz+C _ 13
so that z—2 2°+22+5 (x—2)(22+2x+5)

Following a routine which should now be familiar, we have

13

=

L]

Bz+C _ 13 b 2%
24+ 2+6 (v—2)(22+2x+5) x—2

_ 13—2—2¢-8
= (—2) (@®+ 22+ 5)

8—22—2at
=@—2)(a®+22+0b)

. =g—4
T2+ 2245

r+4
e f{x 2 :1:2+2:r:-l-5}':!:c

— = - xz
J‘z—2 z*4-2z+56 2°+22+5

Hence

w41
= log (z—2)—}log (2*+ 2x+5)—%tan'1( 5 )
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EXAMPLES III

Integrate the following rational functions:

1 2

e e i od
xz_g (x—1)3° 3. z“—3z+2'
2
T 5. RNl nlg 9l &4
& BPrattz+1 i+ bz +4
1
i ——= T = U R i 1
=3Pt G-1PE+]) " oD@t
o 23
10, ——, 12, G 1
fe= @ P ey
13. - . 14 a?
(z—1)(z—2)(x—3) ‘@) @—20¢@=3)
1 1
e e e L x—2
PE-wr13)  Fard) " Bara)
22+5 22 2
e T o TERREC (z+1)
+7 2%+ 6z + 25 20 Y
(x—1)2 2z
B =, )
z(2?+4) s 23 —2?—8x+12°
1
23. - 24 m‘
o' ~2t4 4t = Sa ¥ " @R+ 2z 17)

.6. The exponential function. Imagine the graph y — log
(Fig. 62) to be turned, as it were, through a right angle and

viewed through a mirror, and
the axes then renamed to give
the curve shown in the diagram
(Fig. 64). Then y is a certain
function of # with the property

that
z = logy.

_.—/

y

Thus y is an ‘inverse’ function
of log z in a sense similar to that
in which sin—z is (Vol. 1, p. 38)
an inverse function of sin 2.

Fig. 64.
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We write the relation z = logy
to give y in terms of , in the form
Yy = expux,

where exp 2, whose properties we now study, is called the exponen-
tial function. It is defined, as the graph implies, for all values of z,
increasing steadily from zero to ‘infinity’ as z increases from ‘minus
infinity’ to ‘infinity’.

The exponential function (of a real variable z) is necessarily
POSITIVE.

From the relation logy = =,

we have, by differentiation with respect to z,

yaa~ "
dy
go that 2=V

Hence the differential coefficient of expz is expz itself.
It is convenient to have a name for the value of the function

when z = 1, and for this we use the letter e.

Thus
expl =e,

or, in equivalent form, loge = 1.

From the graph, we have the relation

e>1.
[The value of e, to four significant figures, is 2-718.]

We now seek to identify the function expz in terms of the
constant e and the variable z. If

y = expz,
then log {expz} = logy
= g,

Also the relation log (z") = nlogz leads, on replacing x,n by the
letters e, z respectively, to the relation
log (¢*) = zloge
= x,
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since loge = 1. Hence

log {exp} = log (7).

But we have proved (p. 5) that, if the logarithms of two
numbers are equal, then the numbers themselves are equal,

and so X

The exponential function expz is therefore identified as the
number e raised to the power 2.

dy 1 dy_
7. The relations et e

(i) TeE LoGAriTHM.
It follows from the definition of a logarithm that the relation

yields for positive x the result
y=logz+C
where C is an arbitrary constant.
If  is negative, say %

where u is positive, then

dy _dydz _ _dy,
du dzdu  dz’
dy 1
hence ol
1
=:u—'
=log(—2)+C.

We may therefore conclude that, whether 2 is posilive or nega-
tive, the equation

9.l
de =z
leads to the relation y=log|z|+C,

where | z | is the numerical value of z.
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In practice, it is customary to use the form
y=logz+C

with the tacit assumption that z is positive; but this need§ care,
The relation y = logz+ C may be put into an alternative form
by writing C = loga, where a is also an arbitrary constant. Then

y = logz+loga
= logaxz (az assumed positive).

By the definition of the exponential function, we then have
ax = év,
or z=0be,

where b is likewise an arbitrary constant, assumed to have the
same sign as x.

(ii) Tee ExPoNENTIAL FUNCTION,
We turn now to the equation

dy
az =¥
s ks B ha de 1
Writing this in the form 5%

we see that interchange of z,y in the above relation # = be? leads
to the result

y = be*.

) dy
Hence the equation ==y
leads to the relation y = bez,

where b is an arbitrary constant, assumed to have the same sign as y.
More generally, the relation

d
-
leads to the relation y = bek=:




==
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For the substitution x =ulk

dy dydxz 1ldy

e du” dedu " kds’
dy 1
so that TZ = Ta(ky)
= y_
Hence y=bev
= bekz,

) We give two typical examples to show how exponential func-
tions arise in physical applications,

.ILL‘U’STRA’I‘ION 13. We return to Illustration 1 (p. 6) of a
circuit with resistance R, self-inductance L and electromotive
force E. The equation for the current z at time ¢ is

dx
L a + Rz = E.
dx
H e mn B
ence L i E - Rax.
Write E—Rx = u;
then du o du dz
dit  dzdt
= (—R)(u/L)
= (=~ R/L)u.
Hence u = Ae~R/L)E,

where 4 is an arbitrary constant, so that
E — Rx = Ae~ /L),

If = 0 when ¢ = 0, then

E=A4e"= A,
and so E — Ry = Ee~(R/L)t,
B
or z = 2 {1 _e—cmml}.
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TLLUSTRATION 14. To find the variation of pressure with height in
an atmosphere obeying the law

pv = constant,

where p,v denote pressure and volume respectively.

Consider a vertical filament of air whose cross-sections have
area 84 (Fig. 65). Let the pressures at heights z,2+ 3z be
p,p+8p. Then the element of volume (shaded in the diagram)
of height 8z and base 84 is in equilibrium under pressure round
its sides, which does not concern us, and also
under the following vertical forces: ‘P+SP

(i) p8A upwards;
(ii) (p+ 8p)dA downwards;
(iii) pdA48z downwards,
where p is the weight per unit volume at
height . Hence
p3A — (p+8p)8A — pdadAd = 0,
or Sp+ pdx = 0.

Now let py, po, ¥, be the values of p,p,v at
ground level. Since p is the weight per unit
volume, the relation

PV = Py

2 B
P

is equivalent to
Po

and so Sp+fi‘p8:v=0.
Do

In the limit, this is ‘il’—’=—&-p,
dx Po
and S0 p= Ae-(ﬂofﬂt)z,
where A is an arbitrary constant. But p = p, when z = 0, so that
Po= A= A4,
Hence the pressure at height z is given by the relation

p= po e—(po/pl)-‘ﬂ_
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8. The integration of e=,

To find J-exdw,

we have merely to note that the relation (p. 19)

2 @)=

leads at once to the result
e = fe‘“dx,
so that the value ofJe’dx 18 €7 itself.
CoroLLARY. fe“dx = ie“.
ILLustrATION 15. To find
1= f eo2 sin b .
On integration by parts, we have
{ = le“sinbx—fie”.bcosbxdx
a a
1 g b
= - e“-’mnbx-——fe“ cos bxdz.
a a
Integrating again by parts, we have

I= 1e"”sinb:z:-%e"-“cosb:e:+£sa e%*( — bsin bx)dx
a a @

1 2 2
= —e”smba:—ie“cosbm—b—l.
a a? a?

Hence 1+b— I=le“sinbx—£e‘“cosb:c,
a? a a?
azxr
8o that I= E:Tb* (a sin bz — b cos bx).
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ILLusTRATION 16. T0 prove that, if

y = e**sin bz,

2 d
then %—2&3%+(a3+bz)y = 0.
We have j—‘z = ae®®sin bx + be*® cos bx
= ay + be* cos bx.
Hence % = afz—i+abe"=cosbx—bse“sinbx
= a%+a[%—ay}—b2y,
d
so that %—2ad—z+ (a®+b%)y = 0.

EXAMPLES IV
Find the differential coefficients of the following functions:

1. e2=, 2. . T
4. e*cosz. 5. grne 6. (1+a?)e =
: er
1 é(e“+e"‘)a; 8. xe*sinz. 9. —m.
10. (1+e*)sinz. 11. €% cos 4zx. 12. e*tanz.
Find the following integrals:

13. J'eazdx. 14. J‘e—“dx. 15. J2xe‘°'dx.
16. J.x’e—“' dx. 17. J.a:e"dz. 18. J‘xze”dx.

19, J.e““ cos xdx. 20. J.sinxcos gesn'zdy, 21, fsec%em”dx.

22, J.ex coszdz. 23. fesz cos dzdz. 24, f(l +z)e*d.

3 M 11
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IrrustraTioN 17. To find a formula of reduction Jor

LA J' erda.
On integration by parts, we have the relation
L= e“.x"-fe“.m:"‘—ldx

= .‘r“ez—nfn__l.
This is the required formula.

ILrusTrATION 18. T find a formula of reduction Jor
I = f e*sinxdz.
On integration by parts, we have the relation
I, = e*.sin™x —J-e” .nsin® 1z cosxdy
= e*sin"x —n.e*sin" 1y cos
+ nfe-" {(n—1)sin*2x cosz — sin™ ) dx
= e"sin"z—ne*sin"1xcosz
+ nfez{(n— 1)sin"2 (1 — sin®z) — sin™ x']dz

= e®sin®x —ne¥sin®1a cosx
+n{(n—=1)I,_y—nl}.
Hence
(n*+1)I, = e*sin"z —nefsin"1x cosz + n(n— DL,
This is the required formula.

EXAMPLES V
Obtain formul® of reduction for the following integrals:

I fx"e“da:. 2. |e**sin*xdx. 3. fe“cos"bzdx.

Evaluate the following integrals:

i
4. J:a:aeﬁdx. 5. f eZsinfadz. 6. I re“cosaxda:.
0 0
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9. The reconciliation of loge x and log, x. The reader will
recall the elementary definition:

The logarithm of a number N to the base a is the index of the power
to which a must be raised to give N.

If N = gk,
then | log, N = k.
In particular, if y =€,
then z = log,y.

By this relationship the work which we have just done is reconciled
to the more elementary approach, and our use of the word
‘logarithm’ is justified.

= : d ok
Note. The relation == (logz) = =

is true only for the base e.
For other bases we must proceed as follows:
Let y = log,=.

Then ; x = a¥.

Take logarithms of each side to the base e. Then

log,z = ylog,a.

. 2 1 dy
D —= o
ifferentiate. Then = log,a i’
so that dy wi 2 .
dx =zlog,a
Thus, if y = log,,z,
dy 1
the . (RN S
hai dx zlog,10
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REVISION EXAMPLES III
‘Advanced’ Level

1. Differentiate (1+z)"log (1+z) (i) with respect to =, (ii) with
respect to (1+ ).

If y=A4J(1+2)+B|x,

d? d
prove that  4a(1 +z)ﬂﬂ+ 21+ 2x)d—g—y =0,
2. Prove that, if y = Asin%z+ Bcos®z, then

dy _ dy
ta.n2x-@ = 2@.

Given that z = 4e**+ Be-2*4.C, find a differential equation

satisfied by z and not containing the constants 4, B, C.
3. Find dy/dx in terms of ¢ when
. 1+2¢

rT=— =—

1=2¢ 1-¢°

di
Prove that ay = 1 when ¢ = 0, and find a second value of ¢ for

.5 aY
Wh.lch % = 1-
Prove that @ = —g S a-
da? 3\1-¢

4. Differentiate with respect to x:

; e,
in2
logsin2z, 4/(_1+x2"

5. Differentiate with respect to x:

sin®zcosz, e%(cosax+sin azx),
log {x+J(2*+1)}, tan—? (;) ’

6. Find the differential coefficient of Jz from first principles.
Differentiate with respect to z:

1
z, 1@+ cos~1(2%), log,,z.
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7. Differentiate the following with respect to z:

-1-, sin 2z, tan—! e , e,
x 1—a?

8. Differentiate the following with respect to 2:

, 8in?3z, «xlogx—=, sin‘l(-———x )

-z V(1 +2%)

9. Differentiate the following with respect to , expressing your
results as simply as possible:

. oL 3 3 5
i) ﬁ. (i) log,tan (3 +{n), (iii) sm—l(—-—-5i - 22: :)

10. Find, from first principles, the differential coefficient of
1/22 with respect to z.

Differentiate the following with respect to z, expressing the
results as simply as possible:

-(%1)2, tan—'(2?), log,tan 2z.

11. Differentiate the following expressions with respect to z,
giving your results as simply as possible:

22+1
x

o ath ' gl &
» (a®—2%)%, sin (l+x)'

12, Differentiate the following functions of # with respect to a:
3\? J 1+z| sinz—cosz
1—— ’ ’ . .
z® 1-z)’ sinz+cosz

13. Prove from first principles that

ad—xtanw = gec®z

and deduce the values of ita.n—1 z and i cot—1 z.
dx dz
Differentiate with respect to z:

1422

T2 e #*gin 2z, log,(tanz+ cotz).
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14. Differentiate the following expressions with respect to z,
simplifying your results as much as you can:

sin?zcos’x, sin~1(Jx).

1+’
Prove that, if y = 2% cos 42, then
Py Ly
atd7+20y =0,

15. Find from first principles the differential coefficient of 1/x?
with respect to z.
Differentiate the following expressions with respect to z,
simplifying your results as much as you can:
(x2—1)} 3+4tanz

]

x 4+ 3tanz’

zlog,(2+1).

16. A particle moves along the z-axis so that its displacement
z from O at time ¢ is ¢! cos®t. Find its velocity and acceleration at
time ¢ = .

Prove that the values of # for which the particle is at rest form
two arithmetic progressions, each with common difference , and
that the successive maximum displacements from O form a
geometric progression

§er, fovie, fonite,

where « is an acute angle such that tan« = 1.

17. Two circles, with centres O and P, radii @ ft. and b ft.
respectively, intersect at 4 and B; the chord 4B subtends angles
20 and 24 at O and P respectively; the area common to the two
circles is denoted by A and you may assume that

2A = a?(20 —sin 26) + b2(2¢ — sin 24).

Prove that, if P moves towards O with a speed of u ft. per sec.,
then dA

dt
18. Find the equations of the tangent and normal at any point
on the curve # = a cos®t,y = asin®¢, when ¢ is a variable parameter.

Show that the axes intercept a length @ on the tangent and a
length 2a cot 2¢ on the normal,

= 2qusin 6.
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19. A rod 4B of length a is hinged at A4 to a horizontal table
and turns about 4 in a vertical plane with angular velocity w. A
Juminous point is situated vertically above 4 at a height 2(>a).
Find the length of the shadow when the rod makes an angle ¢
with the vertical, and prove that the length of the shadow is
altering at the rate haw(hcos 0 —a)/(h —a cos 6)>.

20. Prove that, if a, b are positive and 95 > a, then
asinz+ bsin 3z

will have a maximum value for some value of « between 0 and 1=.

Find this maximum value when a = 3,b = 0-5, proving that it
is & maximum and not a minimum.

21. Given that y=a5—bx®+52%+1,
find the stationary values of y. Determine whether these values
are maximum or minimum values or neither.

22, The perpendicular from the vertex 4 to the base BC of a
triangular lamina cuts BC at D; CD = ¢, DB = p (where g<p)
and AD = h. The lamina lies in the quadrant XOY with B on
0X,C on 0Y, and 4 on the side of BC remote from 0. It moves
so that B, C slide on OX,0Y. Prove that, if 2O0BC = 6, then 04
is maximum (not minimum) when

tan 26 = - .
q—p
Prove also that OA = CA4 when
tan @ = A X
=P

23. On a fixed diameter of a circle of radius 6 in., and on
opposite sides of the centre O, points 4, B are taken such that
AO = 38 in.,, OB = 2 in. The points 4, B are joined to any point
P on the circle. Prove that, as P moves round the circle, AP+ BP
takes minimum values 13 in. and 11 in., and takes a maximum
value 5,/7 in. twice.

24, Prove that, for real values of 2, the function
3sinz
2+ coszx

cannot have a value greater than /3 or a value less than — /3.
Sketch the graph of this function for values of  from —# to .
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25. A particle P falls vertically from a point 4, its depth below
4 after ¢ seconds being a#?, where a is constant. B is a fixed point
at the same level as 4, and at a distance b from 4. Prove that the
rate of increase of LABP at time ¢ is

2abt
a®td + 6%

and show that this rate of increase is greatest when
LABP = 30°,

26. The angle between the bounding radii of a sector of a circle
of radius r is 6. Both r and 6 vary, but the area of the sector
remains constant and equal to ¢2. Prove that the perimeter of the
sector is & minimum when r = ¢ and 6 = 2 radians.

27. If a variable rectangle has a diagonal of constant length
10 inches, prove that its maximum area is 50 square inches.

28. A straight line with variable slope passes through the fixed
point (a,b), where a, b are positive, so as to meet the positive part
of the z-axis at 4 and the positive part of the y-axis at B. If O is
the origin, prove that the minimum area of the triangle 04 B is 2ab.

Find also the minimum value of the sum of the lengths of 04
and OB.

29. Prove that of all isosceles triangles with a given constant
perimeter the triangle whose area is greatest is equilateral.

30. A variable line passes through the point (2, 1) and meets the
positive axes OX,0Y at A4, B respectively. If 6 denotes the angle
OAB (0<0<}n), express the area of the triangle OAB in terms
of 6, and prove that the area is a minimum when tan 0 = 3.

Find also the value of 6 if the hypotenuse of the triangle is a
minimum.

31. Find the turning points on the graph of the function
2z
R
stating (with proof) which is & maximum and which is a minimum,

Sketch the graph and find the equation of the tangent at the
point on the curve where z = }.
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32. The slant height of a right circular cone is constant and
equal to . Prove that the volume of the cone is a maximum when
the radius of the base is 1,/(§).

33. A lighthouse AB of height ¢ ft. stands on the edge of a
vertical cliff OA of height b ft. above sea level. From a small 't_)oa,t
at a variable distance 2 from O the angle subtended by 4B is 0.

Prove that o

224+b(b+c)

Prove also that, if « is the maximum value of 6, then

tan @ =

c

tana = w.

Integrate with respect to :

34. (i) -27?’% (ii) sin®x, (iii) 22cosz.
& 4z
33. (i) cos®2z, (ii) L (iii) 22log,x.
g8 @ AN g e iy LBl
- 18 costa’ : 422+ 3z—1
37. (i) ... (ii) sinzcos®z, (iii) ilog‘,x (n1).
] 222+ 3z —2° - an
38. (i) ﬁ?ﬁ, @) zsinz, (i) (a®—z).

39. Integrate with respect to x:

cos®z
sin?z’
12 2245

J; (22—3)(2z+1)

to three significant figures, given that log,,e = 0-4343.
40. Interpret by means of a sketch the definite integral

[Vu-ataa,

and evaluate this integral.

e*sin .

Evaluate
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41. Integrate the following functions with respect to x:

x (x—1)(z—2)
(1—22)’ z+1
2
Evaluate f zlog, zdz.
1

42. By a suitable change of variable, prove that

= dx i dr
_L 1+sine  Jp 1+cosz’

and by means of the substitution ¢ = tan }z, or otherwise, evaluate
one of these integrals.
43. Integrate with respect to z:

543

2
ztoosy, ——.
 1—922

44, Integrate with respect to z:
z(1+2?), J(1+22), 22(1+22).

in
Evaluate f sin 3z cos 2w dx.
0

. 45. Explain the method of integration by parts, and employ it
to integrate /(1 —2?) with respect to .
Integrate with respect to z

sin~lz 1
J(1-2%)" (1-2?)¥

€*(cosz —sinz).

46. Integrate with respect to a:

2241

i ¢
S 22 —11x+30°

z+ 4z’
47. Integrate with respect to z:

1 1
sin®z+ 2cosa’ a3+ 1"

By integration by parts, or otherwise, integrate sin—z.
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48. Integrate with respect to x:

?%:, (1—cos®z)’sinx, xe”.
b l—z !
PI‘OVe that! J; m dx = Sln_l E’% — %‘_

49. By integration by parts, show that
J‘mm sin(a—a)dx
0

is equal to a—sinea,
o
S
From graphical or other considerations prove that, if 0<a <,
then

LI
and also to 3 Lm“sm(a—x) dz.

J m:c"' sin(a—z)de < famsdx,
0 0

and deduce that fmxs sin(a—2x)dxr < ot
0

50. Integrate with respect to x:

1
g o W Sy
22(1+22)’
n
Evaluate f zsin xdx.
0
51. Integrate with respect to z:
z+1 .
——, xsecty.
z+2
i
Evaluate f sin 5a cos 3zdwx.
0
52. Integrate with respect to z:
4r—1 St
ﬁﬁ:ﬁ, CO8” X 8In* r.
LI
Evaluate J. z?sinzdz.
0
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2
53. Integrate (l +Ez) with respect to z, and evaluate
2 -, (1—a)dz
f sin®z cos®zdz, Jq(x+1)(mﬂ+ Iy
54. Evaluate the definite integrals:

n 4
J' cos? 2zdzx, f xlog zdz.
0 1

in
H U, = f asinazdx, and n>1, show that
0

U, = n(i7)* 1 —n(n—1)u,_,

and evaluate u,.
55. (i) Prove that, if
I = fsec” wdz,
then (n—1)I, = tanzsec" 2z + (n—2)1,_,.

Use the formula to evaluate

in
secdxdz,
0

(ii) Find the positive value of # for which the definite integral
1-¢
J: (L+1) "
is greatest, and evaluate the integral for this value of .
56. Prove that
c:',i—z (sin™*+1 2 cosg™11x)
= (m+n)sin™x cos™z — (n— 1) sin™ z cos" 2 zdz,
and deduce a formula connecting
in i
f sin™ x cos™ wdz, I sin™ z cos™ 2 xdx.
0 0

Evaluate

i
fsm’:z:cos%dx I sin®z cosb adx.

0 —in
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57. Prove the rule for integration by parts and use it in finding

J.e“ cos cxdz, J.e“" sin? bz dz.

If I, denotes J.a(a.’—z’)”dx, prove that, if n> 0,
o

2na?

L
58. (i) Find a reduction formula for
1
J (1 +22)+ da,
(1]

and evaluate the integral when n = 2,
(ii) By integration by parts, show that, if 0 <m <=, and

Fad f a2m & fan(1 — 2y d,

then I= —mf z’“—l {a:"(l z)"}dz.

d.‘l:" -1
Deduce that 1 = 0.




CHAPTER VIII
TAYLOR’S SERIES AND ALLIED RESULTS
1. A series giving sinx. By repeated application of the

method given in Volume 1 (p. 53), we may establish that, when
x is positive, sinx lies between the following pairs of functions:

@ v od a2,
(i) -5 amd -4,

wes e ey see sew s waw wen wen e

A simple inductive step completes the argument. Moreover, the
results as stated are equally true when 2 is negative, though the
directions of the inequalities must then be reversed; for example,
if  is positive, then .
z>sing>x— 37
whereas, if 2 is negative,

x< sinm<w—£3
3!’

In either case sin z is between z and « —g—?

There is, however, a more significant form in which the state-
ments may be cast:

|2 ®

(i) sinz differs from 2 by not more than -, where | z| stands

Bk
for the numerical value of z;
(ii) sinzdiffers from x—;:—z;
E2\

by not more than

5!’
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gB b
(iii) sinz differs from x_§i+m_
7
by not more than I:J ;
. . : 23 b a7
(iv) sinz differs from z— STHET— T
9
by not more than !—ng—;

and so on.
We are therefore led to a series

22 2 27 a®

a:'-—m-i-'gi—;i—l-!ﬂgi— ey
2n—
whose nt® term is (— 1)1 (; )‘, with the property that sinz
. I xr |2n+1
differs from the sum of the first n terms by less than Gl
ine this ‘diff: ’ te o writing it in the

Let us examine 1, erence’ term GV iting
f

= |z] |2] |2] |2| o] =]

12778 8T @ntl)
Suppose that z has some definite value, positive or negative. If
we ‘watch’ n increase a step at a time, there will come a point

when 2n+1 exceeds |z|. Thereafter, the later factors in the
product are less than 1; moreover the factor

|2
Cn+1)

tends to zero as » continues to increase. By taking n sufficiently
large, we may thus ensure that the value of sin z differs from that
of the sum of the first » terms of the series

b 2% a7 ad oy @l
L a7 e Ak St o v g

by as little as we please. In that case, sinz is called the ‘sum to
infinity’ of the series, and we describe the series as an expansion of
sinz in ascending powers of z.
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EXAMPLES I

1. Complete the inductive step in the argument to prove that
sin z lies between

2% o g @1
3—"3‘T+ﬂ"“..-+(—1) —-—-—-(2n_1)1

g* a8 gintl
a.nd x—ﬁ"l"a—...-"(—l)n(z—nm.

2. Obtain the expansion for cosz as a series of ascending powers
of z in the form

x? b 28 2n-2
- 0 O T N
st gt i) @it

2. A series giving 1/(1 + x). Consider the sum
S,=1-z+2®—a®+ ... +(=1)r1an
consisting of » terms. By direct multiplication, we have

28, = x—2+ad— .. 4 (=1)n2gn-14(=1)n-1gn,

so that (1+2)8, =  14(—1)r1zn,
v | 1 (_l)n—lxu
% e 1+x+ f
Hence
1 (—1)ngn

_— ] = - H L, —1 et —1

e’ S A, vl il A AL . s
as is probably familiar.

We have therefore obtained a series
l—z+a2—2%4 ...,

whose ' term is (—1)*~1z"-1, with the property that 1/(1+z)
differs from the sum of the first n terms in this series by precisely the
amount |z™/(1+z)|.

Consider, then, the ‘difference’ term |2"/(1+2)|. When z lies
between —1,1, so that — 1 <z <1, this difference can be made as
small as we please by taking » sufficiently large, and so we may
ensure that, when |2 | <1, the value of 1/(1+z) differs from that
of the sum of the n terms

l—gta?—ad4.. 4+ (=1)1gn-1
by as little as we please.
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On the other hand, when |z|>1, the difference |2"/(1+x)|
becomes larger and larger with increasing », and the value of

l1—z+at—ad+... +(—1)"1am,

so far from approximating to 1/(1+z), oscillates wildly as the
number of terms increases when z is positive, and increases
beyond all bounds when z is negative.

We have therefore obtained a series

l—x+a2—2%+...,

which represents the function 1/(1+z) for a certain range of
values of z (namely —1<z<1), but whose sum has no value
when || > 1; in contrast to the series

2 25 27

Yl T

T eee
which was shown (p. 39) to be an expansion for sinz for all
values of z.

The intermediate values z = +1, # =—1 require separate
consideration:

When 2 = +1, the series is

1-1+1-1+...,

whose sum to » terms is oscillating, being 1 when 7 is odd and 0
when #» is even.
When z = —1, the series is

7 VL BT

and the sum of the first n terms increases indefinitely as n
increases.

In neither of these cases can we assign a meaning to the sum
‘to infinity’.

3. Expansion in series. The two examples given in §§ 1, 2
illustrate the way in which a function f(z) can be expanded as a
series of ascending powers of # in the form

gyt z+aet+aza+ ... +a, 2"+ ...,

possibly for a restricted range of values of z. They suffer, however,
by referring to very particular functions, and the treatment

4 M
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given for sinz and 1/(1+4) leaves us with no idea of how to
proceed in more general cases.

In the next paragraph we shall give a formula for the coefficients
g, @y, @g,... in terms of f(x) and its differential coefficients and
later we proceed to a more detailed discussion. First, however, we
must say a few words about the meaning of the ‘sum to infinity’
in general; for a fuller treatment, a text-book on analysis should
be consulted.

Suppose that we have a series whose successive terms are, say,

Uy, Ug, Ug,y «ovy Uy, ... It may happen that the sum of the first n
te
i Sp=uy+ug+... +u,

tends to a limit S as » tends to infinity.
(For example, if 241,

1 T
14z+2?+. a1 %
-z l—=x
so that, for this series, 8, = : o
’ A N T T
5 . 1
&nd,lflx[<l, S= thn=—-——-—.)
n—>w l-z

In this case we call S the sum fo infinity of the series. We write
S=u+up+...+u,+...,

and say that the series converges to S.
On the other hand, if §, does not tend to a limit as » tends to
infinity, the series has no ‘sum to infinity’, and the expression

UYtUst...tu,+...

has no arithmetical meaning.

If the terms uy,u,,... of the series depend on z (as in the
particular example just quoted) so also does the sum S, of the
first n terms, and the sum to infinity when there is one. We shall
be concerned exclusively with series of the form

o+, x+a, 2 + ... t+a, 2+ ...,

where the coefficients a,,a,, ... are constants, and we have seen

(§3 1, 2) that such a series may converge for all values of z or for
some values only.
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Note. It is important to realize that the word ‘converge’
implies definite tending to a limit. A series such as

I K e
for which 8, =1 when n is odd and 0 when n is even, has a

finite sum for all values of #, but does not converge. The series
is said to oscillate boundedly.

4, The coefficients in an infinite series. We first assume
that expansion in an infinite series is possible, and seek a formula
to determine the coefficients:

To prove that, if f(z) is a given function which CAN be expanded in

the form J@)=ay+ax+ a2 +... +a, 2™ +...,

oy ™ (0)

then n 2’

where f™(0) is the value of f'™ (x) when x = 0.

We assume without proof that (in normal cases) we can
differentiate the sum of an infinite series by differentiating the
terms separately and adding the results, as we should for a finite
number of terms. Then

J'(@) = ay+ 2a,2+ 3ag2® + ... +na, a1+ ...,
[ (x) = 2a,+ 3.2a,2+ 4.3a,22 + ... + n(n—1)a, 22 +...,
I (x) = 8.2a,+4.32a,2+...4+n(n—1)(n—2)a, 2" 3 +...,

and so on. Putting « = 0, we have successively

Sf(0) = aq,
J(0) =ay,
f"(O) = 2ay,
17(0) = 3.2a,,

fi(0) = 4.3.2.a,,
and, generally,
f™(0) =n(n—1)...3.2a, = nla,.
Hence

7] xg e xﬂ e " (n)
flx) = f(0) +f (0)+2—!f (0)+§f (0)+...+mf 0)+....
Note. This work gives no help about whether the function cax

be expanded; for that we must go to the next paragraph.
4-2
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IrvustraTION 1. A particle falls from rest under gravity in a
medium whose resistance is proportional to the speed. To find an
expression for the distance fallen in time t.

If z is the distance fallen, then the acceleration is # downwards T
the forces acting per unit mass are (i) gravity, of magnitude g
downwards, (ii) resistance of magnitude k& upwards. Hence

&=g—ka.
The formula just given, when adapted to this notation, is

e
x = a:o+t:co+ :r:‘,+3I

where x,, #,, &), ... are the values of 2, %, #, ... when { = 0.
From the initial conditions,

2y =0, =0,

so that Eg=g—ki,=g.
By successive differentiation of the equation of motion, we have

%y = —kiy = — kg,

Ty = — ki, = kg,

and so on. Hence

LA t #
T =519+ 37(=k)+ 5 (B29)+ 55 (- Kg) +...

1 (kt) (k) (Rt
=9‘2{2: b i }

The series converges for all values of .

EXAMPLES II

Use the formula of §4 to find expansions for the following
functions:

1. sinz. 2. cosz. 3. 1/(1+x).

S. Taylor’s theorem. We come to a somewhat difficult
theorem on which the validity of expansion in series can be based.

Suppose that f(z) is a given function of z, possessing as many
differential coefficients as are required in the subsequent work.
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To prove thal, if a,b are two given values of x, then there exists a
number ¢ between a,b such that, for given n,

1®) = 1@+ b-a)f @+ 5L @)+ ..
+_(l(”:_“)1) (@) + (b— “) LD tmg).
Write
F@)=f®)~f(@) -6 -0 @ -5 @)~
- a:) (b—z)*

= 1)tfm @)~ p=ay B

where R, is a number whose properties will be described as
required, and k is a positive integer to be specified later. We
propose to use Rolle’s theorem (Vol. 1, p. 60) for F(x) exacfaly
as we did (Vol. 1, p. 61) for the mean value theorem, of which
this is, indeed, a generalization; we therefore want the relations
F(a) = F(b) = 0.

By direct substitution of b for z in the expression for F(z), we

have Fb) =

In order to obtain the relation F(a) = 0, we substitute a for
on the right-hand side and equate the result to zero; thus

(b— a)

0 = f(b)~f (@)~ (b—a)f' (@)~ 5y~ f"(@) -

(b a)

m=DT -f@) - By

We must therefore give to R, the value
(b— a)

R,=[(b)—f(@)—(b—a)f'(@)— f(a)-

2= a)

Y fm—n (a).

We have now ensured the relations
Fb)=F(a) =0,

and so, by Rolle’s theorem, there exists a value £ of x between
a,b at which F'(z) = 0.
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The next step is to evaluate F'(z). This will involve a number
of terms of which

b= o)
a0
is typical, and the differential coefficient of this term is
a0 gl

- (b;?;)pf(p+1)(x) (t{p m)l)! fwl(x}

Hence, remembering that R, is a constant, we have

F'(z) = = f' (@) = {(b—=)f" () —f ()}

-{C5 - 0= @) .
Bzt (b—z)2 . . k(b—:v)"‘1
{ (n 1)' f‘ ,( )_ (n 2)! f( )( )} (b—a)_k Rn
(b x)P— k(b —z)*-1

= l)lfm)( Mg

after cancelling like terms of opposite signs. But there is a
number ¢ between a, b for which F’'(£) = 0, and so

(b—a)t(b—&m*

Rn= k.(’n—l)! f(ﬂ)(é‘)_

Equating this to the value of R, obtained above, we have

10 = @)+ b-a)f @+ 5L @)+

(b—a)"t (b—a)(b— £

R v (T A e s Y i U

The value of k is still at our disposal. If we put k = n (as we
might have done from the start, of course, had we so desired) we
have

B, =D g,
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and the result enunciated at the head of the paragraph follows at
once. This gives us the most usual form for Taylor’s theorem,
and we have adopted it in the formal statement; but there are
advantages in keeping k& more general, as we see below.

The theorem is therefore established.

The expression

_(b—affo—-8~* .,
B=— w1 /7@

is called the remainder after n terms. It is, in the first instance,
what it says, namely a remainder, the difference between

f®)

(- d) (b—a)™~

1@+ G5 o)

and  f(a)+(b—a)f (a)+

The theorem just proved enables us, however, to express this
remainder in the suggestive form (with k = n)

%;‘i Fm(g)

by choosing ¢ suitably. This expression is known as Lagrange’s
Jform of the remainder.

By giving k other values, we obtain various forms for the
remainder. In particular, when k = 1, we have

b-a)b- &,
Y e

This may be expressed alternatively by writing £, which lies
between a, b, as a+ 0(b—a), where 0 lies between 0 and 1. Then

(b— a){b a—0(b—a)?
R,= 7

(b—a)*(1— @)1
S =7 § ]

™ {a+0(b—a)}

£ {a+0b—a)).

This is called Cauchy’s form of the remainder. Though less ‘in
sequence’ than Lagrange’s form, it enables us to deal with some
series for which Lagrange’s form does not work.
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ALTERNATIVE TREATMENT. There is an alternative treatment
of Taylor’s theorem, based on integration by parts, which leads to
yet another form of the remainder. The method is essentially a
continued application of the formula

[P e

- [-S5E e + [ remasa

- mf""(“H R (%,‘)—f"‘“’(aw)dt,

(b

the term f”"(a+t) vanishing for ¢ = b when k> 0.

This formula. may be expressed more concisely by writing

b b —
we [ I ard > 1),

k
so that Uy = %!f ®) (@) + Uy 45
Hence  wy = bf'(a) +uy
’ bs "’
= bf (G)+§‘I'f (@) +

= U@+ gy @)+ o] (@) 4y

=Y @51 @)+ +(1:J 0!

fa)+u,,
b
Moreover, = J;f’(aH)dt = f(a +b)—f(a).

Equating the two values of u;, we obtain the ‘Taylor’ relation
(with our original ‘6’ now replaced by ‘a+’)

F+0) = @)+ @+ @+t o f70 @) 4 R,

b (h — tyn—1
where e f., ((T—t)lT £ @+ t)de.
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EXAMPLE IIT
1. Prove that, if B, () is the function of z defined by the relation

Ry@) = {fl@)+ 6= @)+...+ T2 fo @) =10,
then Rl.(x) = (Izn x)l)! f™ (),
o5l didnie thuk. Baful = (i’ ‘_‘)1)1 Fo)de,

6. Maclaurin’s theorem. If we write b=a+hk, Taylor’s
theorem (with the Lagrange remainder) becomes

J@+B) = F@)+ 1 @)+ gif @+ ot

it mf(n) (g)r

where ¢ is a certain number between a,a + k.

f(n—ll (a)

A convenient form is found by putting @ = 0 and then renaming
h to be the current variable x:

=
f@) = f(0) +$f'(0)+;_:f"{o) St g (:i 0 !f(n—ll(O)

+Z1og),

where £ is a cérta.in number between 0,z. This important result
is known as Maclaurin’s theorem. Compare p. 43.
With the Cauchy form of remainder, the corresponding result is

f(@) = f(0)+=f (0)+2!.f"(0)+ =D f‘“‘”(O)

w"(l )
-1
where 6 is a certain number between 0, 1.

f ().

7. Maclaurin’s series. The remainder R, in Maclaurin’s
theorem appears in the form

gf‘"’(f) or —'"((“—“—m—' [ (0z),
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where ¢ lies between 0,z and 6 between 0,1. Then
xﬂ-—l

F@)=O)+af O+ oo o5 SV (O)+ Ry,

It may be possible to prove that, as n becomes larger and larger
(z having a definite value for a particular problem) the remainder
R, tends to the limit zero. When this happens, the sum of the
first » terms of the series

f(0)+xf’(0)+;—?f"(0)+

tends to the limit f(z), and so the sum to infinity of the series
exists, and is f(z).

The condition for the remainder to tend to zero may involve z,
so that it is fulfilled for some values of z but not for others.

It is on this basis that the possibility of obtaining an expansion
rests. The succeeding paragraphs give the details for a number
of important functions.

8. The series for sin x and cosx. Let
flx)=sinz.
Then
f'(@) = cosz, f'(x) =—sinz, f"(z)=—cosz, ...,
so that
fO) =0, f(O)=1, f"(0)=0, f"(0)=-1, ...

Hence the Maclaurin series is

2t z°
0+2‘-‘.1+ﬁ.0+ﬁ (-1)+...,
Yo S
or a i

To see whether the series converges to sinz, we consider R, the
remainder after n terms, where

Rﬂsgf‘”'(f).

The numerical value | f™(£)| is certainly not greater than 1, since
f™(£) is a sine or a cosine. Hence

|z _ |z|

n! nl "

| B, <
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n
But (see p. 39) it e
nsw Bl

for all values of x, and so the series converges to sinz for all
values of z,
By similar argument, we obtain the expansion

-
COS XY = —-é—l+4—l—6—l+.-.,

convergent for all values of .

9. The binomial series. Let
J@)=Q1+2),
where p may be positive or negative, and not necessarily an integer.
e f@) = p+ap-,
I @) =plp-1)(1 +2)P-3,
J" @) =ple-1)(p-2)(1+2)-3,
and, generally,
I ™ @) = plp=1)...p—n+1)(1 +2)pp-".
Hence Floy="1,
J(0) =p,
£7(0) = plp-1),
S70) = plp-1)(p-2),

------------------------------

f™(0) = p(p—1)...(p—n+1).

The Maclaurin series is thus

P‘g;"’mp(f";’,‘P‘z’a+...

Dl

1+px+

If p is a positive integer, the series terminates, giving the
expansion, familiar from any text-book on algebra,

(1+2)? = 14,2+ 628+ ... +¢, 27,

_pp—-1)...(p—n+1) _ p!
n! nl(p—mn)l’

where C,
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If p is Nor a positive inleger, we obtain an infinite series, and
the conditions for convergence become important. We prove that
the expansion

(1+z)P = 1+m+1if’2?_lzws+_..+?(?—l).;(1p—n+ 1).1:"+...,

where p is not a positive integer, is valid for values of x in the interval
-l<z<l.
The Cauchy form of remainder* gives

n(] — gyn—1
e f_((;___f;l_p(p- 1)...(p—n+1)(1+ bz)p-n

1-6\"p(p—1)...(p—n+1) -1
by ““(1+az) (n=1)] i s
Now 1-0<1+ 6
whether z is positive or negative, since —1<z<1,0<f<1.
1-6\»1
Hence (l-l-_ﬂx) "3
Also, if p>1, (1+02)P-1 < (14 |z |)P-1,
1
. TN, A
and, if p<1, (14 6z)p1 = T+ 0y

1
STz

For any given z in the interval —1 <z <1, the product

= -1
(11+ at:c)u (s

is therefore less than an ascertainable positive number 4.
Consider next the product

pp—1)...(p—n+ l)x"
(n—1)! .

which we denote by the symbol u,. Then

Yty PP 1)(pont(p-n) ., (n—1)! 1

u, n! ‘pp-1)...(p—n+1) 2"
3 'P—nﬁx‘

n

* The proof which follows may be postponed, if desired.
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"Take n so large as to be greater than p. Then

Write y=4(1+|x|), so that 0<y< 1. Let n, be the first positive
integer such that (n—p) |z|/n <y, that is, such that

n(l—|z|)> —2p|z|.

' Up+1 Up, -|“n—1 ”‘lum+2 ! um+1
rhen Un : Up— l’“n-e Iun.,+1 uno

<Yy.y.y.....Y.Y
so that |1 < |ty |y 04t (> mg).

Since u,, is a definite ascertainable number, and since |y|<1,
it follows that

|u,|—0
as n—> 00.
But |R,| <A|u,|,
when 4 is the positive number already defined. Hence
|R,|>0

as n—>00, and the validity of the expansion is established.

10. The logarithmic series. Let

f(z)=log (1+2).

1

Then f’(x) - H—x’

1
fﬂ(ﬂ.‘) = — -(m)—’,

2
f"'(x) o= (1+x)8,
3.2
f(lv)(x) = — m-i .
-1!
and generally, fE)= (= -
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Hence f(0) =logl =

f™(0) = (=1 @-1)!

so that the Maclaurin series is
0+a:1+ ( 1)+ (2')+ ( 3 +...
or x—%a’3+§z'3—§:r‘+...+(—})"-1£:c“+....

This expansion for log (1+x) is valid for all values of z in the
e ~l<z<l.
When 2 = 1, we have the result
log2=1-4+%-3+...
The case » = —1 is reflected in the graph (Fig. 62, p. 4) where
y—> —o0as -0,

EXAMPLE IV

1. Use the method given for the binomial series to prove the
validity of the logarithmic series when — 1<z < 1.

11. The exponential series. Let

@)=

Then f (@)=

1" (@) =

and, generally, ™ (z) =
Hence F0) =£/0) =£"(0) = ... =1.

We therefore have the Maclaurin series

®
14242 !+3,+ + = ,+

It may be proved that this expansion for e* is valid for all values
of . [See Examples V (1) below.]
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Cororrary. The work of this paragraph enables us to fill a gap
in the discussion of the exponential function (pp. 18-20) by
obtaining an expression for the number e. Putting z = 1, we have

=1+1
e=1+1+ 1+3l+ -+ l+
EXAMPLES V

1. Use the method given for the sine series to prove the validity
of the exponential series for all values of .

By direct calculation of the differential coefficients and substitu-
tion in Maclaurin’s formula, obtain expansions for the following
functions as series of ascending powers of x:

2. e, 3. log (1+ 2x). 4. sin 2z,
5. 1/(1+%). 6. 1/(1—2). 7. cos 4z.
8. e22, 9. J(1+22). 10. log (1— 3z).

12. Approximations. Ifthe successive terms in the expansion
fl@)=ay+a,z+ a2+ ...

become rapidly smaller, a good approximation to the value of the
function f(z) may be found by taking the first few terms.

InrusTrRATION 2, To estimate |J(3-98).
Writing the expression in the form

(4—-02) = 2(1—-005)t,

we may expand by the binomial series (p. 51) to obtain
2{1 +3(—-005) 4 === M é) (—-005)%+ i(;‘i)'(_j (—-005)3 +.. l

= 2{1 —-0025— }(-000025) + £5(-000000125)...},
and a good approximation is
2(1--0025)
= 1-9950,

A limit may be set to the error by means of Taylor’s theorem,
as follows:
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Since, for a general function f(z),

2
f(@) =f(0)+xf'(0)+;—l "(6z) (0<f<1),
the error cannot exceed the greatest value of

2 1)

(-005)2 1 _ 00000625

or, here, 2x 2l "4(1 _.0059)|=(1—'0058)“

In the most unfavourable case, with 6 = 1, this gives a value less
than -0000063 for the error.

EXAMPLES VI
Estimate the values of the following expressions:
1. J(4-02). 2. |(8:97).
3. ¥/(8-02). 4. ¥/(26-98).
5. 7(31-97). 6. 1/(9-03).

13. Newton’s approximation to a root of an equation.
Suppose that we are given an equation

fl@)=0

and know that there is a root somewhere near the value z = a.
Newton’s method, which we now describe, shows that, under
sustable circumstances, a betier approximation to the root is

_f@
Ty
If the correct root being sought is £=a+ %, then
fla+h) = (&) =0,

so that, by Taylor’s theorem for n = 2, with Lagrange’s form of
the remainder,

f@)+hf' (@) +g—j fr@)=0
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for a value of n between @ and a+ k. If h is reasonably small, then
the term involving h?* may be regarded as negligible for practical
purposes. We therefore have

fla)+Af'(a) = 0,

__Jla)
or h= ‘—j-,—(d):
so that the root is approximately

y Ja)
““ray

This crude statement, however, should be supplemented by
more careful analysis, and the following graphical treatment shows
the precautions which ought to be taken.

We begin with an examination of the curve

y=f=)

near the point £, taking first the case where the gradient is positive
and the concavity ‘upwards’ near that point, so that f'(z),f” ()
are both positive.

7

Fig. 66.

(i) Let X be the point (£, 0) on the curve, and let 4 be the point
for which # = a, where a > §¢; draw AM perpendicular to Oz, and
let the tangent at 4 meet Oz in P.

5
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Then OM =a,
AM = f(a),
AM &
P = tandy =7f"(a)
8o that PM = ‘m,
& /'@
f(a)
and O.P a—m

But under our assumptions that f’(x),f”(x) are positive near X
(so that the gradient is positive and the concavity upwards) the
tangent AP lies between AM and the curve, so that P lies between
X and M. Hence, under these conditions, OP is a better approzima-

tion than OM to OX. That is, a — f@ ; is a better approximation

/(@)
than a to the root.
It is assumed that f’(a) is not zero, and, indeed, that f’(x) is not
zero near the required root.

(ii) Suppose next that, with the same diagram, B is the point
for which z = b, where b < £, so that B lies ‘below’ Ox; draw BN
perpendicular to Oz, and let the tangent at B meet Oz in Q. Then

ON =b,
BN = —f(b) since f(b) is negative,
ox = tands =/ 0),

o that QN = f (:;))

» B

But now we cannot be sure that @ is nearer to X than N, for Q
may be anywhere to the right of X according to the shape of the
curve. Hence we cannot be sure whether b—f]:((b)) is, or 18 not, a
beiter approximation than b to the root.
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Similar argument applied to the accompanying diagram
(Fig. 67) shows that the results (i), (ii) are also true if (the con-
cavity still being ‘upwards’) the gradient is negative near X; P is
closer than M to X, whereas @ may or may not be closer than
N to X.

- |
A
) 0 N
—\\\ % :
B
Fig. 67.

We have therefore proved, so far, that, if f* (x) is positive near £,
the approximation a— J@ ; 18 better than a tiself when f(a) is positive.

f'(a)
It is easy to verify in the same way that, if f''(x) is negative
doid f@)
2 f'(a)

18 negative. (The whole diagram is merely ‘turned upside down’.)
In other words, we can be sure of a better approximation if
[ (x) retains the same sign mear x = a, that sign being also the
sign of f(a).
In more complicated cases, it is wise to draw sketches such as
we have shown in order to determine how the tangent at 4 cuts
the z-axis. It is, however, clear from the graphs that, for ordinary

functions, the approximation a J{'(( )) is ALWAYS better than a
itself once we come sufficiently close to the correct answer. In
other words, once it is ascertained that an approximation is
reasonably good, it may confidently be expected that Newton’s

approximation will make it better still.
5-2
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IrLustrRATION 3. An example where the answer is apparent
from the outset may help to make the principle clear. Consider
the equation

2+ fat+ 5z = 0,
so that flx)=23+5§22+ 5z,
J'(@)=3+ 52 +3,
[ (@) =6a+ 2.
It is obvious that = 0 is one root, but let us attempt to reach

that value by approximation from (i) = 1, (ii) x = — 1.
When z = 1,

f(l) = %: f’(l) = 11: f“(l) = %4‘3

so that f(1), f""(1) have the same sign; moreover f''(z) remains
positive near # = 1 (in fact, down to z = —§, where f(z) is negative,
indicating a point on the other side of the root). Hence we expect
Newton'’s formula to give a better approximation; and since

MR L g ok ity
S 38 8¥
this is actually the case.
On the other hand, when 2z = —1,
f(=1)=-1, f'(-1)=4 f"(-1)=-4%

Here, again, f(—1),f"(— 1) have the same sign; but f"’(x) changes
sign from negative to positive at « = —§, which is near —1; we
are therefore in a doubtful region; and since

_1_M
=g

the approximation is actually worse.

=—1+3=2,

IrrusTRATION 4. To find an approximation to that root of the

s A —3z+1=0
which lies between 0, 1.
We have flx)=2*—3z+1,
f(x)=322-3,
J(x) =6z
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Since f'(z) is positive when z lies in the given interval 0, 1, it is
advisable to begin with an approximation which makes f(x) also
positive. ”

Now JO) =1, fd) =% f@)=-%

We should therefore like an approximation between } and } which
keeps f(z) positive, and inspection shows that } appears very
suitable. We then have

@ =4 f@)=-%
f3) !

“Fh Tt

and the corresponding approximation is

go that

3+ = 25 = -3472,

The correct root is +3472..., so we have already obtained four
correct figures.

ILLUSTRATION 5. If 7 is a small positive number, to find an
approximation to that root of the equation

sinz = nx

which lies near to x = =.

(The intersection of the graphs y = sinz,y = nx shows that
there is a root near to =.)

Since sinw =0 and 7% is small, the approximation z == is
reasonably good.

Write f(z)=sinz—nz,
so that f'(z) = cosz—n,
[ () = —sinz.
Then  f(m)=—nm fim)=—1=n, f"(x)=0.

Although f"(=) is actually zero, so that the curve (Fig. 68)
Y = sinz—7 has an inflexion at = =, the concavity is ‘down-
wards’ in the interval 0,7 and f(=) is negative; moreover the
gradient f’(=) is also negative. The accompanying sketch shows
that the tangent lies between the ordinate z = = and the curve,
so that Newton’s method will improve the approximation.
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The corresponding solution is

_J=)

@
- (—nm) st B T
(1-m " T4q Ty

S

To the first order in % this is, on expansion of (1+7)1,

w(1—n).

-=--i

Fig. 68.

Note. This solution is less than =, as we expected from the
diagram.

14. Leibniz’s theorem. The theorem which follows is useful
in calculating the higher differential coefficients necessary for a
Maclaurin expansion.

To prove that, if f(x) 1 the product of two functions u, v, so that

then e

flﬁ) (x) p— u"ﬂ v + ﬂcl utﬂv—n v' + ﬂcﬁ u(ﬂi—z) v” +...
FqCp Uit PP e, uv1 g e uyin),
where ¢, is the binomial coefficient

L AN
"2 plln—p)

We use the method of mathematical induction, assuming the
result to be true for a certain integer N, so that

() = uWNo+ ..+ ye, uNPlo®P) 4 | 4 yeyuv™,
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Now differentiate this expression to obtain f¥+V(z). The
differential coefficient of a product such as u‘¥—?y® ig

u(N—GJ'Fl) U(P] + u(N—P) v(p+1).
As we write down these terms for the series on the right, we put
the answer in two lines, the top line consisting of terms such as

wN-p+1 @) and the lower of u¥W-Ply@+D; also we displace the
lower line one place to the right, thus:

GGt oo e eeaF N W NPV o, w VPRGN e +u'y™

Ful ' i
Now the coefficient of uN-P+lyP) jg
Ncp + Nc’;p—i
N i N!
pI(N-p)! (p-1D!(N-p+1)!

Nl
= W{W-P+1)+P}

@ +1)!
TPl +1-p)!

= N+1Cp*
Hence

FAD () = uNV Dyt 4y CuNH-D B 4 | gV,

It follows that, if the theorem is true for any particular value N,
then it is true for N + 1, N + 2, and all subsequent values. But it is
easily established when N = 1, being merely the result

() =u'v+uw,
It is therefore true generally.

Note. The expression is symmetrical when regarded from the
two ends, and will equally well be written in the form

f(ﬂ) (x) . uv(ﬂ’ +... .+. ”cputp) vlﬂ"’.Pl + 4 + u(ﬂ)v.

T e +N¢,_1qu—v+1) o'? +Nc’uw—m @41 Fvcaran ann +th+n
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EXAMPLES VII

Use Leibniz’s theorem to find the following differential

coefficients:
di : dt %
1. Ex—‘(xssmm). 2. @(xsmnx).
3 - 2% cos 3z) 4 & ot
i d?"(e s 3z). : @( e3%),

5. ;—;“(xseosx) (n>3). 6. %(m"e‘z) (n>3).

+ g8 B 2a)1) - s F Bz 1))

ItvustRATION 8. To apply Leibniz’'s theorem in finding a

Maclaurin expansion for

] fl@)=log{z+ /(2% + 1)}
We have

: 1 2z
f°“=w+ﬂﬁ+1rb+*4wudﬂ
1
= J@@+)

on simplification. Hence

@@+ D{f' @) =1
Differentiate. Then

@2+ 1).2f" () f" (2) + 22{f’ (x)* =
or @2+ 1) f" (x) + 2f ' (z) =
Differentiate » times, using Leibniz’s theorem. Write the
expansion from (22+1)f"'(z) on the first line, and from zf’ (m) on

the second; note that the expansions terminate since (z2+1)""* =
z" = 0. We obtain

@2+ 1) f ™4 () 4. 22 f"""“(x)+n(n D o pmg)

to @S EE w1 ()= 0
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We require values when z = 0, so that

F2(0) + {2ﬂ(21_ D =% 'n} TRy =y
- FD(0) = —n2f®(0).
Bk f(0)=1logl=0,
and so F(0) = fW(0) = ... = f¥(0) =
Also it
so that [0 =-1%1,
F9(0) = +32.1

foI(0) = —52.32. 1,

and so on. Hence the Maclaurin expa,nsion is
z.1+ ( 1)+ (38 1)+ ( 52.32. 1)+...

Ta® 1.8 %> 156!

o 33124572467

converging to log {z + /(22 + 1)} for such values of  (not considered
here) as make the series convergent.

EXAMPLES VIII

Use the method of Illustration 6 to obtain the following
expansions:

1. f(z)=sin"lz.
2. f(z)= tan-z.
3. Prove that, if f(z)= cos(msin—1z), then
(1 —22) f®+2) (2) — (2n + 1) f 5+ () + (M2 —n2) f W (z) = 0.
4. Prove that, if f(z)=(sin~'z)?, then
(1—22) f42) (2) — (2n + 1) af "+ (2) —m2 [ (2) =
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REVISION EXAMPLES IV
‘Advanced’ Level
1. Differentiate

(i) esstlontz, (i) sin—l{m—_f:zg—ﬁ].

If y = esind2 and y',y" are the first and second differential
coefficients of y with respect to z show that

(yy" =y = Py*(@®?y®—y").
Calculate the values of y',y" when z = 0.

2. Differentiate
L Ll sin‘{J (l;x) ;
24x 1+2
2+ 1
22— 8x—2°

log (secz +tanz),

Find the values of 2 for which
2z+1
2> —8x—2
is a maximum or minimum, distinguishing the maximum from
the minimum.
3. If y = e*tanz, prove that
d2y
Py

Prove that y = ue®tanz also satisfies this equation when u is a
function of z such that

2(1+ta.na:)d +(1+2tana)y = 0.

d?u du
ta.n:z:dxﬂ +2% =

Verify that u = cot z is such a function.

4. Differentiate y = sec™atan™a.

Deduce that the i differential coefficient of sec™z can be
expressed in the form sec™xz P, (tanz), where F,(tanz) is a poly-
nomial in tan z of degree k.

Evaluate P,(tan z) when both m and k are taken equal to 4.
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5. Differentiate with respect to a:

1 x—3 8
——z_2+2logx——-_2, x—tanz+ §tanz,

simplifying your answers as much as you can.

Prove that the first function has a maximum at z = 1 and that
the second function (whose differential coefficient vanishes at
z = 0) has neither a maximum nor a minimum at 2 = 0.

6. Find the first four differential coefficients of sin‘z.
Show that the function

at(x—3n)? +sin'z

has turning values at 2 = 0 and at # = }m, and determine whether
they are maxima or minima.

7. Prove that, if ¥ = sin?(2?), then

d*y dy E
m—(T-w+16:v:3y 8a3,

Prove that the result of changing the independent variable in
this equation from  to £, where £ = 2%, is

&y Y tra b,
7 R
where a, b are constants to be determined.
Prove also that, if 4, B are any constants, the function
y = 3+ A cos (22?) + Bsin (22?)
satisfies the first differential equation.

8. Differentiate
n
(:c+i) » (cosz+secx)™
with respect to z, and find the nth differential coefficient of
1 2
(++3
®

for all positive integral values of m, distinguishing the cases
n<2and n>2.
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9. Show that the po]ynomia.l

fl@)=z——: (2« 5) 28+ E(ﬂ 3) 25

and its differential coefficient f’(z) have the same values as sinz
and its differential coefficient respectively, at the values z = 0,
x =+ 4.
Show that the error in using f(x)dx as an approximation for
i

sin x dx is less than 0-1 per cent
0

du dv

10. (i) Given that = = €%, = sinz,
and that # = 1,v = 0 when 2 = 0, show that
d?(uv)
da*
when z = 0.

(ii) Given that y = aa™ + ba'~™, prove that
%t (m—1)y = (2n—1)azn,

dy d*y

and form an equation in @, y, > d’ dat which does not contain e or b.

11. Differentiate with respect to :

A/(a_:—_l log sec
ET T og sec .

ar [ 1 n!
Prove that E:c_“(l—z) = A=z’
and find the nth differential coefficient of

x
(1—2)(1-22)"

12. Find the nth derivatives with respect to z of

= 1 1
(1) 5 a»nd 52_—1 H

(ii) sinz and zsinz.
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13. (i) Find the derivative of ¥ = sin®2 with respect to z = cosz
by evaluating the limit of dy/dz.

(ii) Differentiate with respect to z:

%T::l—x’ (I_m)\/(l +z?), Ioge(gz_i.e—-a:).
ses d!x & dsy QE a
(iii) Prove that i / (dx) :

14. Find from first principles the differential coefficient of 1/2*
with respect to z.

What is the differential coefficient of 1/z® with respect to x%?

Differentiate with respect to x:

log,cosz, z(1—23), u_:z;T)a'

15. Find the nth differential coefficient of y with respect to z in
each of the following cases:
(i) y=1/a?, (ii) y=sin22, (iii) y = ¢**sin2z.
There are three values of k for which the function y = a*e—=
satisfies the equation

3 3
Py 3PY g W

P R~ Sl ~us

Find these values.

16. Differentiate with respect to z:
1—2x 1
(1+32)* J1+2?)
Prove that, when y = af®+ 2bt+¢,t = aa®+2bx+c¢, and a,b,c
are constants,

gtan’z  gin-1

d"y .
725 = 24a®%(ax +b).

17. Differentiate e, J (:%;)

Show that, if y = sin 6, 2 = cos 8, then

d o W By B
7; %) = —3sin26, - (y°) = 6sin30.
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18. A particle moves along the axis of 2 so that its distance
from the origin ¢ seconds after starting is given by the formula

x = acos kt+ jakt,

where a, k are positive constants. Find expressions for the velocity
and acceleration in terms of ¢, and prove that the particle is not
always moving in the same direction along the axis.

Find the positions of the particle at the two times ¢ = #/6k and
¢t = 13n/6k; also find the position of the particle at the instant
between these times at which it is momentarily at rest, and
deduce the total distance travelled between the two times.

19. A particle moves in a plane so that its coordinates at time ¢
are given by x = e‘cost,y = e'sint. Find the magnitudes of the
velocity and of the acceleration* at time ¢ and prove that the
acceleration is always at right angles to the radius vector.

Draw a rough sketch of the path of the particle, from time
t=0 to { = 7, and indicate the direction of motion at times 0,

{7, 3, §n, .

20. A particle moves in a plane so that its position at time ¢ is
given by x =acospt,y = bsinpt. Find expressions for (i) the
magnitude v of the velocity at time #; (ii) the magnitude f of the
acceleration at time ¢; and prove that there is no value of ¢ for
which f = dv/dt. '

Prove also that the resultant acceleration makes an angle 6
with the normal to the path, where

2ab tan 0 = (a®— b?) sin 2pt.
21. A point moves in a straight line so that its distance at time ¢
from a given point O of the line is 2, where
x = t%sint+ 6fcost— 12sint.
Find its velocity at time ¢, and prove that the acceleration is then
—i2sin{— 2{cos i+ 2sint.

Determine the times (¢>0) at which the acceleration has a
turning value, distinguishing between maxima and minima.

* If »,f are the velocity and acceleration respectively, then v® = 2® +¢3,
=i
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22, A particle moves along the axis of x so that its distance
from the origin ¢ seconds after starting is given by the formula
z = acospt. Prove that the velocity of the particle changes direc-
tion once, and only once, between the times { = 0, { = 2a/p and
that the change of direction occurs at the point x = —a.

The distance from the origin of a second particle is given by the

formula x = a cos pt+ }a cos 2pt.

Write down expressions for its velocity and acceleration at time .
Show that between ¢ = 0 and ¢ = 2=/p the velocity of the particle
changes direction three times, and find the values of # at which
these changes occur.

23. Prove that the equation of the tangent to the curve given by
z=31+1, y=28-1
at the point where { = tan« is
y—ztana+tan®a+tana+1 = 0.
Show that the curve lies on the positive side of the line z =1

and is symmetrical about the line y = — 1, and prove that the area
bounded by the line # = 4 and the curve is 2%,

24. Prove that there are two distinct tangents to the curve
y=2zt—2+3

which pass through the origin. Find their equations, and their
points of contact with the curve.
Give a rough sketch of the curve.

25. A curve is defined by the parametric equations
z=a(l-1*), y=a2-1)(1-1),

where a is a positive constant. Prove that

(i) the curve passes through the points 4,0, B whose coordi-
nates are (0, 6a), (0, 0), (— 3a, 0).

(ii) the point £ is in the first quadrant when —1<¢<1 and in
the third quadrant when 1<t<2.

Make a rough sketch showing the part of the curve correspond-
ing to values of ¢ between —1 and +2.

Find the equation of the tangent to the curve at O, and prove
that the area bounded by the arc AB and the chord AB is 27a2/2.
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26. Prove that the slope of the curve whose equation is

y=1l4+z+i2?+ 323

is always positive.

Show that the curve has a point of inflexion where z = — 1, the
slope there being }.

Prove also that the tangent at the point (0, 1) meets the curve
again at the point (—3, —2).

Sketch the curve, indicating clearly the point of inflexion and
the tangents at the points (—1,1) and (0, 1).

27. 4,0, B are three fixed points in order on a straight line,
and 40 = p, OB =q. A fixed circle has centre O and radius a
greater than p or ¢, and P is a point on this circle. Show that the
perimeter of the triangle APB is a maximum when OP bisects the
angle APB, and find the corresponding magnitude of the angle
POA.

28. Prove that the maximum and minimum values of the
function y = zcos 3z occur when 3tan 3z = 1/, and discuss the
behaviour of the function when x = 0.

By considering the curves y = tan3z, y = 1/z, show that
maximum values oceur near the values x = §k7, and minimum
values near x = §(2k+1)n, the approximation becoming more
exact as & bccomes larger.

29. Given that a?xt+b%y* = ¢%, where a, b, ¢ are constants,show
that 2y has a stationary value ¢?/|/(2ab). Is this value a maximum
or a minimum ?

30. (i) A right circular cylinder is inscribed in a given right
circular cone. Prove that its volume is a maximum when its
altitude is one-third that of the cone.

(ii) A right circular cone of height % stands on a base of
radius Atana. A cylinder of height & — = is inscribed in the cone.
Prove that 8, the total surface of the cylinder, is equal to

27{z®(tan® « — tan a) + @k tan o},
and prove that, when tana> }, 8 increases steadily as z increases.

31. P is a variable point in the circumference of a fixed circle of
which AB is a fixed diameter and O is the centre. Prove that,
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when OP is perpendicular to 4B, then the function AP+ PB has
a maximum value and the function 4P%+ PB% has a minimum
value.

32. If f(z) is a function of z and f’(z) is its differential coefficient,
show that, when % is small, f(a+h) is approximately equal to
fla)+hf"(a).

Without using trigonometrical tables, find to three significant
figures (i) the value of cos31°, and (ii) the positive acute angle
whose sine is 0-503. Give your answer to (ii) in degrees and tenths
of a degree.

33. Calculate
(i) 4¥/8-05 to 4 significant figures,
(ii) cos59° to 3 significant figures.
[Take = to be 3:142.]
34, Determine to two places of decimals that root of the
equation
S0 i
z+2
whose value is nearly equal to 8.

35. Determine to 3 places of decimals the value of that root of
the equation P el

which lies between 1-5 and 1-6.

36. Prove, graphically or otherwise, that, if » is a large positive
integer, there is a root of the equation sinz = 1 nearly equal to
2nm. Show that a better approximation is 2nm + (1/2nx).

37. Prove that, if 7 is small, the equation
6 +sin @cos § = 2y cos
has a small root approximately equal to
71—

[You may assume the power-series expansions for sin # and
cos 6.]
6 M II
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88. Prove that the result of differentiating the equation

(1 +x’)———2a: =
n+1 times (n> 1) with respect to z is

(1+x9)dm”+a+2(n+l)x +n(n+1) = 0.

dgntl
Hence verify that, if k is a positive integer and

dak
= Eglog(l +a?),

then z is a solution of the equa.tion
2 e &
& )dm3+2(k+ 1)a: +L(?c+ 1)z
39. By using Maclaurin’s theorem, or otherwise, obtain the
expansion of log (1+sinz) in ascending powers of  as far as the
term in z*.
40. Prove that, if y = log, cosx, then

By, d*ydy
da:"+2d ¥ =0,

Hence, or otherwise, obtain the Maclaurin expansion of log,cosz
as far as the term in 24,
Deduce the approximate relation

log, 2 16(1+ﬂ:)

41. Prove that, if y = etan2, then

dy d?
2z = Y1+, ﬂg=-—(1+t)=
where {=tanz.

Prove that the expansion of y as far as the term in 22 is
Y= 1+x+fa2+ fad
42. Prove that, if y = sin (logz), where z > 0, then

a;:@ dy

dx,—+m%+y =0,
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By induction, or otherwise, prove that

dn+2y drtly -
2 — +(2 +l)x +( +1)—-—— 0,

dxn+2 dxn+l
where n is a positive integer.
43. If y = e*logz, show that

d’y dy e

Find the equation obtained by differentiating this equation n
times.

44. Prove that, when y = e*®sin bz,

o 2a§—+(a3+b2)y 0,

az®
dy

and that =~ = y(a+b cot bx).
dx

2.8
Prove that, if e®sinbx = ¥ 2",
n=1M"
then Cpia—2aC, ., + (@%+b%)c, = 0,

and find the values of ¢, ¢, €5

45. If cosy = cosacosz, where z,y,a lie between 0 and =

radians and « is constant, find the values of y, dg :xg

Taking 2 to be so small that 2® and higher powers of z are
negligible, use Maclaurin’s theorem to show that

when z = 0.

y = o+ 32?cota.
Hence calculate y in degrees, correct to 0-001°, if « = 45° and
x =1°48". [Take = = 3-142.]
46. By using Taylor’s theorem obtain the expansion of
tan (x+ 1w)

in powers of # up to the term in 2%
Hence calculate the value of tan 44° 48’ correct to four places of
decimals. [Take = = 3-142.]
6-2
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47. Prove that, if y = log, (%E) then
. dy ‘
(i) b 2secz,

and (ii) the expansion of y in a series of powers of z as far as the
term in 2! is 2z + §a®.

Find, correct to four significant figures, the value of y when
x = 1° 48’, taking = = 3-142.

48. Prove that, if y = (sin-1z)?, then

(1-2?) (@)2 = dy,

and (1._172).* _x_d_y

dx
The Maclaurin expansion of y in powers of z is taken to be

2,x3+... +% ...
Given that y = 0 when 2 = 0, prove that a, = 0 and @, = 0. Prove
also that a,,, = n*a, when n> 0, and hence show that

© P11
y=2t X RIS

Yy=ay+a,x+

49. If y = f:u”du, prove that
1

d*y _ dy
d? = (1+10g$) a"‘x.

Find the values of the first four differential coefficients of y
when z = 1, and, by using Taylor’s expansion in the form

JQA+k) = (1) +Af (1) + 382" (1) +...,
11
deduce that the value of f u*du is approximately 0-1053.
1
50. If y = tanz, prove that
dy ¥ d’y
and find the third, fourth, and fifth derivatives of .
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Hence find the expansion of tanz in a series of powers of
up to 2%

51. Prove that, if y = sin (12sin—1z), then
2
- () iyt =,

dy

dx+m’y = 0.

(1— zz)——x

Show that the first two terms in the expansion of the principal
value of y in ascending powers of = are

ma + ym(1 —m?)z®,

52. Find the indefinite inteqrals:

If u,» are functions of #, and dashes denote differentiation with
respect to z, show that

I(w"’ +u'"v)dx = uv" —u'v' + u" v+ constant.

53. Show that J; )i = J; Yo —ahte.

7 (] —sin 22 i
— = | tan?zdx
Deduce that L (l+sin2a:)dw J; an®zdz,

and evaluate the integral.
54, Find the indefinite integrals:

2! P
J.:r:loga:dx J.sma: fl—x‘ .,

Prove that, when the expression e¢*sinz is integrated n times,
the result is

2-ine?gin (x— Inw)+ F,_,,

where P,_, is a polynomial of degree n—1 in z.
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55. Find the indefinite integrals of

1

1
eosy, ———, (I 8, —,
(log) 3—2cosx

2% (x+1)

56. Find the indefinite integrals of

2(1 +24)

32cos'w, 272%(logz)?, i

57. Integrate with respect to z:

4
2(1+z)(1+22)°
Evaluate the definite integrals:

2 1
flogxdz, J'”__dx__
i o 14+ 3cosz

58. Find the indefinite integrals:
J‘w’dx 4
25 f JEe=a) J‘:rsec zdz, J. tant xdz.

59. Find the indefinite integrals:

45 cosxdx
J‘(l 32)5" Itan 2xdzx, fzxtm ladz, J2 s

60. Find the values of

i
J;sinsxdx, fcos‘a:dx, f"e”sin”xdx.
o

61. (i) Find the indefinite integrals of

1 2x+3
z(xz+1)2 2242242

(ii) By substitution, or otherwise, prove that

rmx sin-lzdz = 3, J: (22 +1)do = 2_(1_1*#

62. Find the indefinite integrals of

1

cos®3y, —
3—2cosz’

z3sinz.
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Use the method of integration by parts to integrate

a’y %
(1-at) -z —2y—8
twice with respect to z.
63. By means of the substitution # = « cos? 6+ 8sin? 6, or other-
wise, prove that

f dx -
LJ{(F- QB-z)
Prove also that

[fta-0@-ay—ias = (57)7 [[aintngay.
64. Prove that
L'eoszada . J; " c0st 046 = .

Find the area bounded by the curve r =a(l+cosf) and
determine the position of the centre of gravity of the area.

65. Find the equation of the normal at the point (£,sin ) to
the curve whose equation is y = sinz.

Prove that, if £ lies between 0, =, the normal at P divides the
area bounded by the z-axis and that arc of the curve for which
0 <z <= in the ratio

(2—cosé—cos*f) : (2+ cos €+ cos® ).

66. The ellipse ,:z “;: 1
is rotated through two right angles about the z-axis. Prove that
the volume generated is §mab®.

(i) Prove that, if @ and b are varied subject to the condition
a+b = }, then the greatest volume generated is 2x/81.

(ii) The volume is cut in two by the plane generated by the
rotation of the y-axis. Prove that the centre of gravity of either
part of the volume is at a distance §a from the plane of separation.

67. The complete curve z%/a®+y?/b® = 1 is rotated round the
y-axis through two right angles. Find the volume generated by
the area enclosed by the curve.
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The semi-axes a and b of the curve are each increased by e.
Prove that, if e is small, the increase in volume is approximately

$ma(a+ 2b)e.

68. OA is a straight rod of length @ in which the density at a
point distant x from O is b -+ cx, where b and ¢ are constants. Find
the distance of the centre of gravity of the rod from O.

69. The gradient at any point (z,y) of a curve is given by

dy g
d; =—32%+ 3:
and the curve passes through the point (2,0). Find its equation
and sketch the graph, indicating the turning points.
Find the distance from the y-axis of the centre of gravity of a

uniform lamina bounded by the curve and the positive halves of

the z and y axes.

70. A lamina in the shape of the parabola 3* = 4ax bounded by
the chord x = e is rotated (i) about the axis of ¥, (ii) about the

line = a. Prove that the volumes generated in the two cases are
10, Hmad.

71. Integrate with respect to :
sin?z, sin®z, 22cosz.

The portion of the curve y = sinz from = 0 to = }= revolves
round the axis of y. Prove that the volume contained between
the surface so formed and the plane y = 1 is }n(#?—8).

72. The coordinates of a point on a curve referred to rectangular
axes are (af’ 2at), where t is a variable parameter which lies
between 0 and 1. Make a rough graph of the curve.

Calculate (i) the area enclosed by the curve and the lines
z =a,y = 0; and (ii) the area of the surface obtained by revolving
this part of the curve about the z-axis.

73. Find the area contained between the z-axis and that part
of the curve = 2{2+ 1,y = *— 2¢ which corresponds to values of ¢
lying between 0 and 2.

Find also the coordinates of the centroid of this area.
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74. Prove that the tangent to the curve

Jr+y =a
at the point (z,y) makes intercepts J/(az), J(ay) on the axes.

A solid is generated by rotating about the z-axis the area whose
complete boundary is formed by (i) the arc of this curve joining
the points (a,0), (0,a), and (ii) the straight lines joining the origin
to these two points. Prove that, when this solid is of uniform
density p, its mass M is Y5mpa®.

Prove also that the moment of inertia of the solid about Oz is
IMa®.

75. Find the area bounded by the curve z = 2a(f*— 1),y = 3at?
and the straight lines z = 0,y = 0.

Prove that the tangent to the curve at the point ¢ = 1 meets
the curve again at the point ¢ = — }, and find the area bounded by
the parts of the tangent and of the curve that lie between these
points.

76. Prove that the parabola y* = 2ax divides the area of the
ellipse 422+ 3y® = 4a? into two parts whose areas are in the ratio
dm+3 : 87— 3.

77. The portion of the curve y* = 4ax from (a, 2a) to (4a, 4a)
revolves round the tangent at the origin. Prove that the volume
bounded by the curved surface so formed and plane ends per-
pendicular to the axis of revolution is %2=a?, and find the square
of the radius of gyration of this volume about the axis of revolution.

78. Find the coordinates of the centre of gravity of the area
enclosed by the loop of the curve whose equationis r = a cos26,
which lies in the sector bounded by the lines 8 = + 1.

Find also the volume obtained by rotating this loop about the
line 6 = 4.

79. Find the coordinates of the centre of gravity of the loop of
the curve traced out by the point 2 = 1 -,y =t —#.

Find also the volume obtained by rotating this loop about the
line z = 3.

80. A plane uniform lamina is bounded by the curve y* = 4ax
and the straight lines ¥y = 0,2 = a. Find the area and the centre
of gravity of the lamina.
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The lamina is rotated about the axis Ox to form a (uniform)
solid of revolution. Find the centre of gravity of the solid and,
assuming the density of the solid to be p, find its moment of
inertia about the axis Oz.

81. A lamina in the shape of the parabola 3* = 4az, bounded by
the chord = a, is rotated (i) about the axis of ¥, (ii) about the
line = a. Prove that the two volumes thus generated are in the
ratio 3 : 2.

82. Prove by integration that the moment of inertia of a
uniform circular dise, of mass m and radius a, about a line through
its centre perpendicular to its plane is }ma?.

The mass of a uniform solid right circular cone is M, and the
radius of its base is @. Prove that its moment of inertia about its
axis is 5 Ma2

H
83. Eva.lua.tef ”cos“BdB when n = 1,2, 3,4,
0

The area bounded by the axis of z, the line 2 = @, and the curve
z=asinld, y=a(l—cosb),

from § = 0 to @ = }=, revolves round the axis of . Prove that
the volume generated is }ma%(10— 3x).

84. The portion of the curve 2® = 4a(a—y) from z = —2a to
# = 2a revolves round the axis of z. Prove that the volume con-
tained by the surface so formed is §f7a® and find its radius of
gyration about the axis of revolution.

85. Sketch the curve r =a(l+cosf), and find the area it
encloses and the volume of the surface formed by revolving it
about the line 6 = 0.

86. Find the three pairs of consecutive integers (positive,
negative, or zero) between which the roots of the equation

28—3224+1=0
lie, and evaluate the largest root correct to two places of decimals.
87. Show that the equation
22—-3x—-T7=0
has one real root, and find it correct to three places of decimals.
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88. Show that the equation
224+ 222+ 3x+5=0
has one real root, and find it correct to three places of decimals.

89. For a function f having an Nth differential coefficient,
Taylor’s theorem expresses f(a+x) as a polynomial of degree
N -1 in z, together with a remainder, State the form taken by
this polynomial, and one form of the remainder.

Prove by induction, or otherwise, that

;T"n (e*sinz[3) = 2"e?sin (x /3 + §n).

Hence find the coefficients a,, in the Maclaurin series Za, 2™ of the

function e®sinz /3.
By means of Taylor’s theorem, show that when 2>0 the

N-1
difference between esinz,/3 and 3 a,z™ is not greater than
ne=0

(2z)Ne®
N!
[A proof showing that the difference is not greater than
(2z)Ve®
(N=1)!
is acceptable if the form of remainder which you have quoted
leads to the result.)

90. If - y= (1+z)log(1+=z),

show that (1+x)3%+(l+x)y= 15

Deduce the first four terms in the Maclaurin series for y in
powers of z.

91, Show that y = {x+(1+2))*
satisfies the relations  y'/(1+2?) = ky,
y'(1+a%) +ay’ = ky.
Deduce the expansion

" kB o, k(k2-1) . k2(k2-22) ,
y—l+kx+axﬂ+ Y 2%+ T St

Verify that this agrees with the series derived from the binomial
series when k = 1.

L]



CHAPTER IX
THE HYPERBOLIC FUNCTIONS

1. The hyperbolic cosine and sine. There are two functions
with properties closely analogous to those of cosz and sin 2. They
are called the hyperbolic cosine of =, and the hyperbolic sine of z,
and are written as coshz and sinhz. We define them in terms of
the exponential function as follows:

coshz = }(e*+e7%),
sinhz = }(e*—e~9).

We establish a succession of properties similar to those of the
cosine and sine:

(i) T'o prove that  cosh?x—sinh?zx = 1.
The left-hand side is
Hie +e o) - (=)
= H{E* +2+e)— (¥ -2+ e7)}
= (4
= 1.
(ii) T'o prove that
cosh (z+y) = coshz cosh y+sinhzsinh y.
It is easier to start with the right-hand side:
H(e*+e%) (eV + e V) + (e*— e %) (e? — e V)}
= H(e®V + eV 4 e e = V) (¥ — eV — g%V 4 V)
= j(e=tv et

= cosh (z+7).
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(iii) Stmilarly
sinh (z +y) = sinh 2 cosh y + coshzsinh y.

(iv) As particular cases of (ii), (iii),

cosh 22 = cosh?a +sinh?z,

ginh 22 = 2sinh 2 coshz.
CorOLLARY (i). cosh?z = }(cosh2zx+1),

ginh?z = }(cosh 2z —1).
CoroLLARY (ii). Since

coshz—1= 2sinh“§

and sinhzg is positive, it follows that cosh z is greater than unity for

all (real) values of z, i.e. coshz>1.
Note. cosh0 =1,

sinh 0 = 0.

(v) To prove that  coshz = cosh (—z).

The right-hand side is
Hee+e9) = J(e=+e7)
= coshz.

(vi) To prove that sinhz = —sinh (—z).

For sinh (—z) = (e *—e ) = }(e*—e?)
= —sginhz.

Note. Sinha is positive when 2 is positive, and negative when z
is negative. For example, if z is positive, then e” is greater than
e~%, gince ¢ is greater than 1. Hence }(e*—e~%) is positive.

(vii) T'o prove that
a% (coshz) = sinhz,

d .
d—x(smh:c) = cosh z.
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d 1d
We have & (coshz) = o (e®+e7%)
= }(e—e)
= ginh z;

and dx(smhz) 2dm(e” &%)

= }e"+e)
= cosh z.

(viii) T'o prove that

fooshdx = sitih 2,

jsinhxdx= coshz.

These results follow at once from (vii).

(ix) By the formule of (vii), we have the relations

g; (coshz) = coshz,

. e :
m(smhx) = ginhz.

Thus coshz, sinhz both satisfy the relation
dz
= dal
(x) The following expansions in power series are immediate
consequences of Maclaurin’s theorem:

2
coshz = 1+x + +:cs

21 AT

b
smha:—x+3!+ !+ +

The series converge to the functions for all values of z.
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2. Other hyperbolic functions. The following functions are

defined by analogy with the corresponding functions of elementary
trigonometry:

tanhz ‘s;:il:
cothz = f:;lhs{l:,
cosechxz = ﬁ,
sechz = ooT:hm
The relations sech?z +tanh?zx = 1,

coth?z — cosech?z = 1.
are found by dividing the equation
cosh?z —sinh?z = 1

by cosh?z, sinh?z respectively.
Note the implications

sech?z <1, tanh?z<l.

The differential coefficients are easily obtained from the
definitions:

(@ If
y = tanhz = (sinhz) (cosh )1,
then dy = (cosh ) (cosh z)~* — (sinh z) (cosh 2)~%sinh

= 1—tanh?z
= gech®z,
() If
y = cothz = (cosh z) (sinh x)-1,
then dy = (sinh ) (sinh )~ — (cosh z) (sinh x)~%cosh =

= 1—coth2a
= —cosech®?z,
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(iii) If y = cosechx = (sinhz),
then z—‘z = — (sinhz)~2coshz
= —cosechz cothz.
(iv) If y = sechz - (cosh z)~1,
then % = — (cosh ) 2sinh z
= —sechz tanh z.

IuvustraTION 1. A body of mass m falls from rest under gravity
in a medium whose resistance to motion is gv®[k® per unit mass when
the speed is v. To prove that the speed after t seconds is k tanh(gi[k).

Let = be the distance dropped in time ¢. Then the acceleration
downward is & and the forces are

(i) mg downwards due to gravity,
(ii) mga®(k* upwards due to the resistance.

Hence mi = mg —mga? [k
Write ¢ =v. Then 90 = g—qut/i?,
dv
—_— = — gl
or k? il g(k® —v?).
Substitute v = ktanh 6.

(This substitution is possible so long as v is less than k, since
(p. 87) tanh® 6 < 1.)

Then k2. ksech? B% = gk*(1 —tanh® @)
= gk®sech? 6.
df g
Hence E = E’
so that 0= ‘%t-i- C,

where C is an arbitrary constant. It follows that

v=1cta.nh(%t+0).
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Now we are given that v = 0 when ¢ = 0, so that

0 = tanh C.
Hence C=0,
and so v = ktanh (gt/k).
Note that v = ktanh (gt/k)
0tk _ g—gtlk

= 1 CoUk | g—atik

1 —e—204 k
= M1 ¥ etk

Now as ¢ increases, e20/* tends to infinity (see, for example, the
diagram (Fig. 64) for e* on p. 18), so that e=2*— 0. Hence

vk

as f increases. In other words, » tends to a terminal value k as the
time of falling increases.

The example which follows deserves close attention. Tt brings
out very clearly the points of similarity between the trigonometric
and the hyperbolic functions.*

IrLusTRATION 2. Suppose that a
particle P (Fig. 69), of mass m, is free
to move on a fixed smooth circular
wire, of radius @, whose plane is verti-
cal. A light string, of natural length
a and modulus of elasticity 2kmg
joins P to the highest point B of
the wire. We wish to examine what
happens if P receives a slight dis-
placement from the lowest point of
the wire.

Let AB be the diameter through
B, and O the centre of the circle. Fig. 69.
Denote by 6 the angle 2AOP.

* Tt may be postponed or omitted by a reader who finds the mechanics
difficult.

7 M
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If = denotes the horizontal distance of P to the right of the
vertical diameter 4B, and if y denotes the depth of P below 0,

o x=asinf,
Yy = acosf.

Hence, differentiating with respect to time,

% = alcosb,

j = —abfsin 0,
and # = alflcos 0 —ab?sin 0,

4 = —alsin 6 —ab?cos 6.
The acceleration f of P in the direction of the (upward) tangent is
thus f=&cosf—gsinf
= al,
[This is a standard formula of applied mathematics.]

Now the forces on the particle are

(i) the reaction R along PO, which has no component along the
tangent;

(i) gravity mg, whose component along the (upward) tangent is
—mgsin @;
(iii) the tension 7', where, by definition of modulus,

(modulus) (extension)
natural length

o 2kmg{2a cos }0 —a}
a

= 2kmg(2cos }0—1);

T=

the component of 7" along the (upward) tangent is thus
T'sin }6

= 2kmg(2cos }0—1)sin }0.
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Equating the component of the acceleration to the component
of the forces, we have the equation of motion

all = —gsin 6+ 2kg(2 cos 6 — 1) sin 0.

Now suppose that 6 is small. By the work given on p. 38, the
value of sin @ is nearly @ itself, while cos @ is nearly equal to 1.
Hence the equation is approximately

all = — g0+ 2kg{2(1)— 1} (36)
= — g0+ kg0.
Hence we reach the equation
al = g(k—1)80,

valid during the time while 6 is small.

The argument now divides, according as % is less than or greater
than unity; that is, according as the string is ‘“fairly slack’ or
“fairly tight’.

(i) Suppose that k< 1.

1—Fk
Then b= -(—aﬂ
= —n*0,
where an® = (1-Fk)g.

It may be proved that, when § = —n?6, then 6 MUST be of the

i 6 = A cosnt+ Bsinnd,

where A, B are constants. In the meantime, the reader may easily
verify the converse result, that this value of ¢ does satisfy the

relation. i
If we suppose that the particle is initially drawn aside so that ¢

has the small value «, then @ = « when ¢ = 0, so that

A=a
If also the particle is released from rest, then 6 =0 when £ =0,
so that B=0

Hence 0 = acosnt.
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Thus if @ is initially small, it remains small, and its value
oscillates between +a. The equilibrium is stable at the lowest
point.

(ii) Suppose that k> 1.

Then ﬁz(k—a”%
= p*0,
where ap® = (k—1)g.

This equation is not satisfied by sines and cosines, but we can
express the relation between 8 and ¢ in the form

0 = AePl+ Be?!,

where, again, the reader may verify the converse result that this
value of 6 does satisfy the equation.
With the same initial conditions as before, we have

a=A+B8B,
0= dp-Bp,
so that A=B=}a
Hence 0 = Ja(ert+ e
= acosh pt.

As t increases, cosh pi increases steadily to ‘infinity’ (since e?!
does), so that § ceases to be small. The equilibrium is unstable
at the lowest point.

The differential equation, in fact, ceases to be accurate once 8
ceases to be small.

It is instructive to consider the same problem under the
alternative initial conditions that the particle is projected from
the lowest point with speed . Thus 6 = 0,a6 = v when ¢t = 0. We
take the two cases in succession:

(i) # = A cosni+ Bsinnt,
where 0= A,
v/a = nB.
Hence 0 = (v/an)sin n.
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(ii) 6 = Aert+ Be P,
where 0=A+B,
vja = pA—pB,

) v
go that 4 = %, = "%-

v
Hence 0= ap (ePt—e~PY)

= (v/ap)sinh pt.

The analogy between the pairs of solutions
acosnt, ocoshpt
and (v/an)sinnt, (v/ap) sinh pt

affords striking confirmation of the analogy between the two
classes of functions.

EXAMPLES I

Differentiate the following functions:

1. sinh 3z. 2. cosh?2z. 3. ztanhz.

4. sinh? (2z+1). 5. sinh cosz.

7. (1+ )% cosh® 3z. 8. z%tanh?4x.
10. log (sinh 2+ cosh ). N1, gwohs,

6. sechasin®z.
9. logsinhz.

12, e taohay
Find the following integrals:

13: fsm.h dxdx. 14. fsinh’ xdzx. 15. J'coshfl zdx.
16. J‘:usmhxdac 17. J&coshxdm. 18. fainhsaceoshwd:c.
19, J.a: sinh?axdz. 20. fcoshs xdx. 21. ftanlﬁ xdx.

22, Ix’ooshxdx. 23. J‘e"sinhﬁzdx. 24. jtanhxsech'xdx.
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Establish the following formulse:
25, sinh A 4sinh B = 2dnhA;BwshA;B.
%6, inh A —aoh B = 2coshA’2stmh‘4;B.
27. cosh.A+cosh B = 2eoshA;'BcoshA;B.
28, oosh A —cosh B = 2sinhA*2'BsinhA;B.

29. Prove that, for all values of u, the point (a coshu,bsinhwu)
lies on the hyperbola whose equation is

2 g2

2 p=b

and that the tangent at that point is
% coshu—Zsinhu = 1.
a b

(But note that that point is restricted to the part of the hyperbola
for which z is positive.)

3. The graph y = coshx. The two relations

y = coshz, ¥

& Pl

d—i = ginh
give us sufficient information
to indicate the general shape of
the curve: 5 %

Since
cosh (—z) = cosh (z), Fig. 70.

the curve is symmetrical about the y-axis; and since
cosha>1,

the curve lies entirely above the line y = 1. The value of y
increases rapidly with z.
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Taking x to be positive (when it is negative the corresponding
part of the curve is obtained simply by reflexion in the y-axis) we
have sinh z positive, so that the gradient is positive. Moreover,

2

% = coshz,

which is positive, and so (Vol. 1, p. 54) the concavity is ‘upwards’.
The general shape of the curve is therefore that indicated in the

diagram (Fig. 70).

4. The graph y = sinhx. We have the relations

y = sinhz, y
dy
- cosh z.
Si;me dy is positive, the gradient is
dx ’ 0 X

always positive, and y is an increas-
ing function of z, running from —co
to 400 as z increases from —c0
to +co.

At the origin, % =1, so that the Fig. 71.

curve crosses the z-axis there at an angle of }». Also

which is positive for positive 2 and negative for negative. Hence
the curve lies entirely in the first and third quadrants, with
(Vol.1,p. 54) concavity ‘upwards’ in the first and ‘downwards’ in the

2
third. At the origin, gx—?{ = 0, so that (Vol. 1, p. 55) the curve
has an inflexion there.

Since sinh (—2) = —sinh (),

the curve is symmetrical about the origin.
The general shape of the curve is therefore that indicated in the

diagram (Fig. 71).
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5. The inverse hyperbolic cosine. The problem arises in
practice to determine a function whose hyperbolic cosine has a
given value z. If the function is y, then

x = coshy, A
and we use the notation
y = cosh—1z
to denote the inverse hyperbolic cosine. o 1 -
The graph (Fig. 72) y = cosh—z is
found by ‘turning the graph y = coshz
through a right angle’ and then re-

naming the axes, as shown in the
diagram. The graph exhibits two pro-
perties at first glance:

Fig. 72.

(i) If x <1, the value of cosh—1x does not exist;

(i) If x> 1, there are T™wo values of cosh—1x, equal in magnitude
but opposite in sign.

We can express cosh—2z in terms of logarithms as follows:

If y = cosh'z,
then z = coshy
= (" +e7?),
so that e — eV 41 = (),

Solving this equation as a quadratic in e¥, we have
e =z+/(a2—1),
and so, by definition of the exponential function,
y = log {x + J(x®—1)}.
These are the two values of y. Moreover their sum is
log {x + (22— 1)} +log {x — /(22— 1)}
= log [{x+(2®— 1)} {z — (22— 1)}]
= log [2— (2®2—1)] = log 1
==l

Hence the two roots are equal and opposite. The positive root is
log {x +/(z®— 1)} and the negative log {x — /(2 —1)}.
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To find the differential coefficient of cosh—'z, we differentiate

the relation hy = #
with respect to 2. Then
dy
smhya =1,
o e, T 1

e dx ~ sinhy ~ +(cosh®y—1)

_ 1

= i—_J @Iy

The gradient is positive when y is positive and negative when y
is negative. In particular, if we take the PosITIVE value of

cosh—1«, then
. AT 10
dz  J@z*-1)

We can also obtain the result from the formula
y = log{a+/(*—-1)},
taking the positive value. For if

u=z+(x?—1)4

then é—d: = 14+z(*-1)3

’ 1 °

dy _ dydu
dz  dudz
1 u

T uJ@i-1)

oy 1
= w_—l)

Hence

Note the corresponding integral
J.,,T(zszl) = cosh—lz (positive value)
= log{z+ /(2 —1)}.
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6. The inverse hyperbolic sine. On ‘turning the graph of
sinhz through a right angle and taking a mirror image’, and then
renaming the axes, we obtain the graph (Fig. 73)

y = sinh— 1z

of the inverse hyperbolic sine of z, that is, of the number whose
hyperbolic sine is . The function sinh—lz is a SINGLE-VALUED
function, uniquely determined for all values of z.

To express sinh—1z in terms of
logarithms, we write

sinh—tz =y,

¥

so that
« = sinhy = }(e? —e7), 0 i
giving e —2ge?—1 = 0.
Solving this equation as a quad-
ratic in ¢¥, we have /
Fig. 73.
eV = x4+ [(22+1).

But (p. 19) the exponential function is positive, so that we
must take the positive sign for the square root. Hence

e = x4+, /(22 +1),

or y = log{z+(®+ 1)}
without ambiguity.

To find the differential coefficient of sinh-1z, we differentiate

the relation sinhy =
with respect to . Then
dy
cosh = 1
or DI DB
dz ~ coshy  +(sinh¥y+1)
1

=@
But, from the graph (Fig. 73), the gradient is always positive,
and so dy

1
dz =~ T j@@+ 1y

For if

then

Hence

THE INVERSE HYPERBOLIC SINE 99
We can also obtain this result from the formula

y

= log{z+(x®+ 1)}.

u=z+(@+1),

du_ 4 3
i 1+ 2(2®+1)

1

u

dy _ dydu
dr dudax
1 U
T uJ@+1)
1
=@+

Note the corresponding integral

Pl
.[J(x’+ b

= log {z+(z®+1)}.

EXAMPLES II

Find the differential coefficients of the following functions:

1. zcosh—1a.

4, se

ch—1z.

7. xcosh! (x241).

2. sinh—1(1+2%. 3. tanh—la.
5. cosech1z. 6. log (cosh—1z%).
8. (cosh—1z)% 9. 1/(sinh—z).

Find the following integrals:

10 dx
; J—(m’—ﬂ'

13. J'

dx

He+1)P2—4}

dz dz
v [

dx dx
1 [ ey ey



=

CHAPTER X
CURVES

1. Parametric representation. Hitherto we have regarded a
curve as defined by an equation of the form

y = f(x).

For many purposes it is more convenient to adopt a parametric
representation whereby the coordinates x,y of a point 7' of the
curve are expressed as functions of a parameter ¢ in the form

z=f@), y=g(t).
(Of course, there is no reason why the parameter should not be
z itself.) For economy of notation, however, we often write
x=2z(), y=y(d).

Familiar examples from elementary coordinate geometry are
the representations
z=al®, y=2q
for the parabola y® = 4ax, and
x=cl, y=cft

for the rectangular hyperbola zy = ¢2.

We confine ourselves to the simplest case, in which z(#), y(t)
are single-valued functions of ¢ with as many continuous differen-
tial coefficients as the argument may require.

The ‘dot’ notation Skl W

8,080, ...
will be used to denote the differential coefficients

dw dy dx dy
dt’ dt’ dif’ de’

The tangent at the point ‘¢’ of the curve

z = f(¢), y=g(t)
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may easily be found; it is the line through that point with gradient

dy _y

dx &
_7
@)

For the reader familiar with determinants, an alternative form
of equation may be given:
The equation of any straight line is

le+my+n=0.
If this line passes through the point = = f({), y = ¢g(f), then
if(t)+mg(t)+n = 0;
if it passes through the point 2 = f(t+ 8t),y = g(t+ 8t), then
If(t+ 8t) +myg(t + 6t) +n = 0.
Subtracting, we have the relation
{6+ ) —f ()} + mig(e+ 88) — g(t)} = O,
or, on division by &,

f@+80)—f() , g(t+38t)—g(t) _
l 5t +m 5t = 0,

For the tangent, we must take the limiting form of this relation
as 8t— 0, namely I (&) +mg’(t) = 0.

Hence, on eliminating the ratios !:m :n, we obtain the
equation of the tangent in the form

x AR
f g 1|=o0.
f'@ g@® 0

2. The sense of description of a curve. We regard that
sense of description of a curve as positive which is followed by a
variable point for increasing values of the defining parameter.
For example, if the points 4,P,Q (Fig. 74) correspond to _t}:e
values a, p, ¢ respectively, and if @ <p <g, then the sense is APQ.

It is important to realize that sense is not an inherent property;
it is a man-made convention. Thus different parametric repre-
sentations may give rise to different senses along the curve.
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For example, the positive quadrant of the circle 2?4+ y? = 1 may
be expressed with  as parameter in the form

r =z, y=+J(1—22).

¥
@ B
T
P
[
(0] % 5 T
e

A

Fig. 74, Fig. 75.

—_—
As # increases from 0 to 1, the are is described in the sense BA of
the diagram (Fig. 76). On the other hand, if the polar angle 6 is
taken as parameter, we have

z=cosl, y=sinf

As 6 increases from 0 to }m, the arc is described in the sense 4B,

3. The ‘length’ postulate. If we confine our attention to the
simplest case, where the curve has a continuously turning tangent,
as in the diagram (Fig. 76), then our in-
stinctive ideas will be satisfied if we ensure
that the length of a curved arc PQ is nearly
the same as that of the chord PQ when the
points P,Q are very close together. For
this purpose, we shall base our treatment of

length on the postulate £
: arc QP
2l T

Our aim is to let the derivation of all the standard formulse
of the geometry of curves rest on this single assumption, together

with the normal manipulations of algebra, trigonometry and the
calculus.
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The warning ought perhaps to be added that in a more advanced
treatment it would be necessary to examine whether ‘length’
exists at all and to proceed somewhat differently. The present
treatment suffices when dz/dt, dy/dt are continuous; this is true for
‘ordinary’ cases such as we shall be considering.

4. The length of a curve. Suppose that U P, P’ are three
points on the curve (Fig. 77)

y #
B,
z=2(), y=1uy{) 8y
given by the values u,p,p+ 8p of the oz 0
parameter. For convenience, we assume
s u<p<p+ép,
0 X

so that the curve is described in the

sense UPP’. '
If P, P’ are the points (z,%), (x+ 8z,y + 8y) respectively, then
the length of the chord PP’ is

V{(82)*+ (3y)%,

whether 8z, 8y are positive or negative.
Now the length of the arc UP is a function of p, which we may
call s(p). Thus, since arc PP’ = arc UP’—arc UP, we have

arc PP’ = s(p+ 8p)—s(p).

s(p+8p)—s(p) _ s(p+8p)—s(p) chord PP’
8p . wchord PP °  &p

sioa 77 (52) *(3) )
= chord PP’ ép spl |’

If we proceed to the limit, as 8p— 0 so that P'— P, then

Fig. 77.

But

dp—=0
b arc PP' 1
P—>P chord PP’ T
His e  dx .8y _dy

39-»0%=E§, 8p+08p—%.
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b ‘= J{(5) ()

where the POSITIVE square root must be taken since s increases
with p.
Replacing p by the current letter ¢, we have the relation

8'(t) = J(@+4%).
Integrating, we obtain the formula

- [ J(& ()

measured from the point U with parameter u.

5. The length of a curve in Cartesian coordinates. If the

coordinate x is taken as the parameter ¢, then the formula of §4

becomes

o= s 4
S Y

measured from the point where 2 = @, where the positive sense of
the curve is determined by z increasing.
In terms of the coordinate y, we have similarly

= LT

measured from the point where y = b, where the positive sense of
the curve is determined by y increasing.

InzustrRATION 1. To find the length of the arc of the parabola
y* = 4ax from the origin to the point (x,y), where y is taken to be
positive.

The parametric representation is

x=al®, y=2at,

80 that z=2al, 9y =20

t
Hence = f 20 J(t2+1)dt.
0
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To evaluate the integral, write

I =JJ(t=+ 1)dt

t
= v — T — dt
P f‘ J(2+1)
on integration by parts. Hence

2
= tJ(2+1) J(‘ ;221)1 dt

=t J(*+1)-I1+ ,/(T:u-}-—l)

= {J(2+1)—I +log {t+ (2 + 1)}
Hence I=3tJ(+1)+%log{t+ (2 +1)},
so that 8 = atJ(i>+1)+alog {t+(t*+ 1)}
6. The length of a curve in polar coordinates. Let the
equation of the curve in polar coordinates be

r = f(8).
If @ is taken as the parameter, then the formula of § 4 becomes

o (N (@)
v = |G (o)}
Now . x=rcosf, y=rsinb,

where 7 is a function of 8. Hence
da.  dr dy dr

30 = b cos @ —rsin 6, - desm8+reosﬂ
dz\* [(dy dr 2
so that (&-B-) +(a"a) ( d 9) -+

It follows that

o= &+
80 that 8(0) = J::J [(%)z-i—rz} de,

measured from the point where § = «, where the positive sense of

the curve is determined by 6 increasing.
8 M
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IvvustraTiON 2. To find the length of the curve (@ CARDIOID)
given by the equation r = a(1 + cos ).

The shape of the curve is shown in the diagram (Fig. 78).

We ha.veg_;=—-asin6, s0 that m
2
(g_'é) +72=a2{sin? 0+ (1 + 2cos 6 + cos?6)} O 2
= 2a?(1 + cos §) = 4a® cos® } 4.
Hence the length of the curve is Fig. 78.

m

f;2a cos $6df = 4a[sm ﬁﬂ] "

= dafsin (}r) —sin (— )]
= da[1-(-1)]
= 8a.

Note. If we had taken the limits of integration as 0,27, we
should apparently have had the result that the length is

f’zacos 1646 = m[singe]:'

= 4afsin 77 —sin 0]
=0,

It is instructive to trace the source of error. This lies in our
assumption that J(4a%cos?}6) = 2a cos }6.

When 6 lies between —a, =, this is true, since cos}# is then
positive. But in the interval =, 2m, the value of cos }6 is negative,

A Sk J(4a?cos?36) = — 2a cos }6.
Hence we must use the argument:
J‘ ¥ (4a? cos? }6) 0
0

e J'n " J(4a? cos? 46)d6 + f " J(4a? cos? }0)0
=L"2aoos§ada—f"2acoggade
» m[sin;s]:—m[singe]:'

= 4a[1-0]—4a[0—1]
= sa-
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7. The ‘gradient angle’ . If the tangent at a point P of the

curve e
makes an angle ¢ with the z-axis, then

dy
ax— = f:&nlﬁ-
The diagrams (Fig. 79) represent the four ways (indicated by
the arrows) in which a curve may ‘leave’ a point P on it, the
parameter being such that the positive sense along the curve is

that of the arrow.

P.d;_ \Q\L

e

4] x [4) x

(i) FrrsT QUADRANT (ii) SEcoND QUADRANT

de+;dy+;cosy+;siny+. dx—;dy+:cosy—;siny+.

i G

[ * ]

(iii) THIRD QUADRANT (iv) FourTH QUADRANT

de—;dy—;cosy—;siny—. dz+;dy—;cosy+;siny—.

Fig. 79.

Thus % is positive for (i), (iv) and negative for (ii), (iii); while

dy is positive for (i), (ii) and negative for (iii), (iv).

o 8-2
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ds\? dy\*
But (c_!:;:) =1+ (&2) = 1+tan?y = sec?y,
2
so that (g) = cos?y;
2
similarly (3—:1:) = siny.
Hence L have the numerical values of cos i, siny respectively;
and, if we define the angle  to be the angle (whose tangent is g—::)

from the positive direction of the z-axis round to the positive
direction along the curve, in the usual counter-clockwise sense of
rotation, then the relations

dz dy .
d—a—eos¢, E—ml’l

hold 1IN MAGNITUDE AND IN SIGN for each of the four quadrants,
as the diagram implies.
We therefore have the relations

dr dy .
E—cﬂs#ﬁ, a;—ﬂlﬂ!!',

true for every choice of parameter by correct selection of the

angle .

EXAMPLES I

1. If the parameter is z, then i lies in the first or fourth
quadrant.

2. If the parameter is y, then ¢ lies in the first or second
quadrant.

3. If the parameter is 6, then ¢ lies between 6 and O+
(reduced by 2 if necessary).

4. What modifications are required in the treatment given in

§ 7 if the curve is parallel to the y-axis? Prove that the formule

dx dy : 3
o - cos i, A siny are still true.

ANGLE FROM RADIUS VECTOR TO TANGENT 109

8. The angle from the radius vector to the tangent.
The direction of the tangent to the curve

r=f(0)

may be described in terms of the angle ¢ ‘behind’ the radius
vector. For precision, we define ¢ as follows:

Fig. 80. Fig. 81.

A radius vector, centred on the point P (Figs. 80, 81) of the
curve, starts in the direction (and sense) of the initial line Oz;
after counter-clockwise rotation through an angle 6, it lies along
the radius OP produced. A further counter-clockwise rotation ¢
brings it to the tangent to the curve, in the POSITIVE sense; this
defines ¢. o

If we assume, as usual, that 8 is the parameter, then the positive
sense along the curve is that in which the length increases with 6.
Hence the angle ¢ lies between 0 and =, as the diagrams (Figs. 80, 81)
indicate.

By definition of ¢ (p. 108) we have the relation

Y= 0+9,

with possible subtraction of 2= if desired. -
It is important to remember when using this formula that 8 is

the parameter used in defining 4.
To find expressions for sing, cos, tan ¢:
From the relations
z=rcosf, y=rsinb,
dx dr de .
we have E=a°°33-"z§m9-
%:%sinﬂ+r‘gco8,
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so that (p. 108), when @ is the parameter,

d de .
cT:cosﬂ-rEsm0= cosy = cos (0 +¢) = cos ¢ cos @ —sin ¢ sin 6,

dr . do .
Esmﬂ-}-racosﬂ = siny = sin(0+ ¢) = cos¢sin §+sin ¢ cos 6.

Solving for sin ¢, cos¢, we have the formulz

sin ¢ =r%,
cos¢ =fi-£,
de
so that =fr—
a tan ¢ T

9. The perpendicular on the tangent. Let the line ON

(Fig. 82) be drawn from the pole O on to the tangent at the point
P of the curve

r = f(0).
Then, by elementary trigonometry,
p = rsing
= r? j—g

This formula may be cast into
an alternative useful form:

1 1(ds\? 2
P 37?)
2
AE S
_1(5‘1° 1
A da) +a Fig. 82.
If we write u=%,
du 1dr
that bt eyl
% vl a0~ " #ap
2
then £-,=(§—;) +u?,

THE PERPENDICULAR ON THE TANGENT (g

Note. Since ¢ lies between 0, w, the value of sin ¢ is necessarily
positive. We may retain the formula

p=rsing
generally if we allow p to take the sign of 7. In any case, the
numerical value of p is that of rsing.

The expression for p in terms of Cartesian coordinates follows at
once; for -
p=rsing

= rsin (- 0)
= rsiny cos f —rcosysin f
= xsinn,b—ycos;!:,

where (z,y) are the coordinates of P.

It should be noticed that the step ¢ = y— 60 depends on the
conventions adopted when @ is the parameter. If another para-
meter (for example, z) is used, the sign attached to p may require
separate checking.

10. Other coordinate systems. The Cartesian coordinates
(x,y) and the polar coordinates (r,6) are by no means the only
coordinates available for defining the position of a point of a
curve. Others in use are the intrinsic coordinates (s,#) and the
pedal coordinates (p,r). The passage between Cartesian and polar
coordinates is familiar, To pass from Cartesian to intrinsic
coordinates, we have the relations

® — cos, 3 =sin,

or the equivalent

e Jpo ) -t

To pass from polar to pedal coordinates, we have

_l_(dr '+l
pr ri\dg) "
We do not propose to develop the theory of these new

coordinate systems any further. The following illustration
demonstrates the use of some of the formulz.
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IrrusTRATION 3. The PEDAL CURVE of a given curve with respect
to a given pole.

The locus of the foot of the perpendicular from a given point O
on to the tangent at a variable point P of a given curve is called
the pedal curve of O with respect to the given curve.

Referring to the diagram (Fig. 82) on p. 110, we see that N is
the point of the pedal curve which corresponds to P. The polar
coordinates of N are (r, f,), where

=0
b, = —4m.

Let us find the pedal coordinates (p,,7,) of N in terms of the pedal
coordinates (p,r) of P. We have at once

7, = P.
Also, if ¢, is the angle ‘behind’ the radius vector for the locus of N,
tang, = rlje
Now p=rsing, r§=tan¢,
so that t.an¢1=rsin9$gg+rsin¢g
=sing. rgaz rsin¢%

dé
dp
ta.n¢( sin¢+rcoa¢d¢)

= singatan.ﬁgéwsinqs

- tang g (rsing) = tang 32

= tandg.
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Hence b=,

gince each angle lies between 0, 7w and @ is being used as parameter.

It follows that {
Py =rysing,

= psing
E pzl L
and so the pedal coordinates (p,,r;) of N are (p¥/r, p).

CoroLLARY. Since tang, = p%, and ¢ = ¢,, we have the

relation
d

tang = p dgs

true for any curve.

11. Curvature. The instinective idea of curvature, or bending,
might be expressed in some such phrase as ‘change of angle with
distance’, and it is just this conception which we use for our
formal definition,

DermviTioN. (See Fig. 83.) The i
CURVATURE « at a point P of a curve is
defined by the relation
P
'x = Eg- A 3
The value of « may be positive or —5 5
negative, according as ¢ increases or

decreases with s.

For many purposes, the calculation of
« 18 best effected by the direct use of the
definition. It is, however, useful to be able to obtain the formulse
in the various systems of coordinates which we have described.

Fig. 83.

(i) CARTESIAN PARAMETRIC FORM.
If z,y are functions z(t),y(t) of a parameter #, the relations
d;

- -ﬁ,a?:singb assume the form

&

% =gcosy, y=ésiny.
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Differentiating, & = §cosy— &) sinyh
= §cosy—§%ksing,

since $= %é = «s;
similarly 9 = §sin i+ §2« cos .

Hence yoosy—Esing = §k,
or e &k,

& 8
so that K= ya:.—sxy'
§

where § = (@ +9?),

with (p. 104) POSITIVE square root.

Note. We must choose our parameter to avoid the possibility
that £ = 0,7 = 0 simultaneously. This can be done, for example,
by identifying # with z, when Z = 1.

(i) CARTESIAN FORM.

In the particular case when z is the parameter, we have
dx
da

=1, and & = 0. Hence, by (i),

4 : o ke, ks :
the denominator is POSITIVE since Iz B positive when z is the

parameter.
It follows that, with our conventions, the sign of « is the same as

‘the sign of % Thus (Vol. 1, p. 54) the sign of « is positive when

the concavity of the curve is ‘upwards’, and negative when the
concavity is ‘downwards’.

CURVATURE 1156

(iii) POLAR FORM.
When 6 is the parameter, we have the relation (p. 109)

p=0+¢,
dp  dydl
oo il s df dﬁda
dd\ db
(l+d3)da'
1dr
Now (p. 110) cotd = +ae’
142 dr\?
so that -—cosee’q’)d?s ?W:_;E(E%) >
L1 (dr d:ﬁ_ldsf__l_(d_r)'
e '{ +Fz(d_9)}&7)‘?ﬁ= =\ae)
(dr)s rd"r
dé \dp) ~ " de?
Hence d—q; TE‘;T-
+(a)
dr d?r
24 2( ) T
62
il i dd ad d _

+30= 7
#+GJ

ds r
Also (p. 105) =t J [r=+ (@) },
the positive sign being taken since 6 is the parameter.
dr dr
4 2( i 0) —7 75
Hence K = 7 .
2+ i
'+ o))
(iv) PEDpAL FORM.
We use the Corollary (p. 113)
a
tang = p—,
Rk
oo % dip ds dr
giving tang = rsing. B drds
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d;
. But d_: = cos¢, so that % = sec¢. Hence

If we write «,, x; to denote the values of «, z—: at the origin, then,
since ¥ = 0 there,
O =1  2"(0)=0; z"(0)=—ul,
yY0)=0  y'(0)=x; ¥ "(0)=x
We therefore have the expansions
z(8) = s — {283+ ...,

Y(8) = $ro8%+ $rg&® +..0e

tan¢ = xrt.aneﬁ%,

il £
i so that K= ldp
rdr’

The sign conventions used in this proof imply that 8 was
originally taken as parameter on the curve; otherwise, the sign
1l of k may require independent examination.

13. Newton’s formula. To prove that the curvature at the
origin of a curve passing simply through it, and having y = 0 as
f

12. A parametric form for a curve in terms of s. :
tangent there, is

& Suppose that O is a given point on a curve (Fig. 84). Choose the
I's tangent at O as z-axis and the normal at O as y-axis. We seek to
" express z,y in terms of s as parameter, assuming that the condi-
‘ tions are such that a Maclaurin expan-

' sion is possible.

. 2
Ko = i]_]:lu?.

We use a method like that of the preceding paragraph to obtain

| y the expansion, assumed possible, of y as a series of ascending
| Il The Maclaurin formule (p. 49) are / powers of . We have that, if
() Yy =f(x):
" j 2(s) = z(0) + sz’ (0)+3aa:”(0)+ o dy
Il e then f(x) = ok tan,
i 2
i 5) = 9(0) +85"(0) + o " (0) + ... 'l
M y(e) = y(0) +sy'(0) + 574" (0) ¥ig. 4. () = m,,ﬁrﬁ
'
il NOW §=003¢’ -Bec’glcjfgi
i ' A2z $ = sec?i. ksecy
‘ l’ so that -d—e-§=—81nllldL,,, =K8903¢v.
T ddz A\ 2 a2y Thus f(0) =0, f(0)=0, [f"(0) =«
@~ o g,) S g ks, .
i so that y = f(0)+zf (0)+§-!f 0)+...
! .T| and j—g = siny, = frg@®+....
| ‘ ! 2y & %
Hence — = K, + (terms involving z),
J' 80 that %z—:cos:ﬁ%, : * ! :
q-‘. and so, assuming conditions to be such that the remainder tends
i F‘"s‘“‘/’(ds) * °°“¢ Bay
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! THE CIRCLE OF CURVATURE 119
LLUSTRATION 4. To find the curvature of an ellipse, of semi-axes
6.0t e ond of the wibhor 420, pee, of 14. The circle of curvature. The formule
Take the required end of the minor axis as origin (Fig. 85) and dy
. ‘ tany = -,
the tangent there as the x-axis. The equation of the ellipse is i d
2 ( __b)z ﬂ
—t Y =1L ; &
a b ot T dy\ At
()
Hence y—b—ibJ{l ) =
. a}“}' show that, if the two curves
v Y= f(:l:),
y =g(@)
both pass through a point P(£,17), so that
J€)=g&) =,
and if, further, f&) =g
0 % and fr(€) =g"(é)
then the two curves have the same gradient and curvature at P.
Fig. 85. In particular, the circle which passes through P, touches the

given curve y = f(¥) at P, and has the same curvature as the given

For values of y near the origin, the negative square oot must bl curve at P, is called the circle of curvature of the given curve at P.

. . te ’ ”n
taken, giving i Ye Yp. Yp
PR J {1 _q the values of y,’,y" for the given curve at the point P(zp,yp)-
b o Suppose that the equation of the circle of curvature at Pis
- 1_[1-§§_§§+...] (@—af+y—BP = 6%
where € (a, ) is the centre of the circle of curvature and p its
el . at . radius. By differentiation of this equation with respect to z, we
2a® " 8at " " obtain the relations
R 2_?]_£ ba? {x'—a)“'(y"'ﬂ)y =0,
" @tt 1+y+@y—Ppy" =0
3 Since z,y,y’,y" are the same for the circle of curvature as for the
Hence x = lim _;’ given curve,
z>0% (@p—a)*+(yp—B) = p%
a (@p—a)+(yp—Byr' =0
at

(1+yp™)+e—Bys" = 0.
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Hence B=yp+ !1_4'_?’_?__)
Yp

a=Zp+{— (I +yP‘g)}

yp'(1+yp'™)
yP’f ]

S (l + yPrg)g
yPIl’
_ (14,
ypfla
e 2

KP"

=Zp—

(yp™+1)

where «p is the curvature of the given curve at P.
We therefore have the formula

yp'(1+yp™®)
yP" : J

(1+yp")
fof ]
(l +yp" )

P yPI ’

a=Tp—

B=yp+

1
-t—,
p
the sign being selected to make p positive.

If the coordinates z,y of a point on the curve are given as
functions of a parameter ¢, then

dy _dy |dz
dz~ dtf dt’
ded®y dyd*z
d’y _dt d " dt de dt
da® = o\ dz’
(@)
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so that, if dots denote differentiations with respect to ¢,

dy

&l
8.

d’y _ aj—yi

e A

?lP(-'-‘:Pg + ?J"Ps)
Zplp—yp ip’
Fi Ep(Ep® +9p°) !
Eplp—Ypip
(xpz +yp)t
Eplip—Ypip

1

Kkp

Hence a=Tp—

+

p=1t

H

The point C (a, B) is called the centre of curvature of the given curve
at P, and p its radius of curvature. We are adopting a convention
of signs in which the radius of curvature is essentially positive.

IrLusTRATION 5. The curvature of a circle, and the sign of the
curvature.

Too much emphasis may easily be given to questions about the
sign of curvature. Usually common sense and a diagram will settle
all that is wanted. We give, however, an exposition for the case
when the given curve is itself a circle, so that the reader may, if he
wishes, be enabled to examine more
elaborate examples. Y

The difficulties about sign arise,
with our conventions, as a result of
varying choices of the parameter
used to determine the curve. We
begin with the simplest case, in which
the parameter is selected so that the 3
circle is described completely in
one definite sense as the parameter Fig. 86.
increases.

Let A4 (u,v) be the centre of the given circle (Fig. 86), and a its
radius. Take a variable point P (z,y) of the circle, and denote by ¢

9 M

A
A (u.u}-




122 CURVES

the angle which the radius vector AP makes with the positive

direction of the z-axis. As ¢ (the parameter) increases from 0 to 27,
the point P describes the circle completely in the counter-clock-
wise sense. Then

z=u-+acost, y=wv+asint,

so that & = —asint, 4 = acost,
& =—acost, @ =—asint.
Hence #2492 = a?,

&y — g% = a®(sin®t 4 cos?t) = a?.

We therefore have the relations
2
o= (u+acosi)— (acoa:)(a ) A
a
- 2
= rraving s ER0 @) “3” )

ad
p= j;—-a.

Hence for all points on a given circle, the centre of curvature is at
the centre of the circle, and the radius of curvature is equal to the
radius of the circle.

The curvature at any point is 7] :
therefore + 1/a. With the present P
choice of parameter, the formula
of p. 114 shows at once that
x = +1/a, but other parameters
may give different signs.

For example, if x is the para- ]
meter, the sense of description of
the curve is LPM in the upper
part of the diagram (Fig. 87) and
——

LM in the lower, these being Fig. 87.

the directions taken by P,Q re-

spectively as z increases. We know (p. 114) that, when z is the
parameter, « is positive when the concavity is ‘upwards’ and
negative where it is ‘downwards’. Thus « = —1/a in the are
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LPM, and + 1/a in the arc LQM. In fact, if P(z,y) is in the arc
i y =v+{a*—(@-u)?%},

where the positive sign is attached to the square root. Hence

‘R —(x—u)
V= e

so that 14+4y2 =

a?—(x—u)?’
e =1 (x_ u)z
ot ¥ = —-w @-@—wp
at

NG

Applying the formula (p. 114) for «, we have

- a a®
<=~ e e
1

a
Similarly we may prove that x = + 1/a in the arc LQM, where

y=v—{a*—(x—u)%}.

15. Envelopes. We have been considering a curve as the path
traced out by a point whose coordinates are expressed in terms of
a parameter. An analogous (dual) problem is the study of a
system of straight lines

le+my+n=0

when the coefficients I, m, n, instead of being constants, are given
to be functions of a parameter {, say

I=f{t), m=g(t), n=~hr@).
A familiar example is the system
z—yt+al® =0
consisting of the tangents to the parabola
y? = daz.
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If we take a number of values of ¢, we obtain correspondingly a
number of lines, which lie in some such way as that indicated in
the diagram (Fig. 88). They look, in fact, as if a curve could be
determined to which they are all tangents. More precisely, the
diagram assumes that the individual lines are numbered in an

5
4
6 3
2
7 \
1

8
9/K

Fig. 88.

order corresponding to increasing values of the parameter, and the
points of intersection of consecutive pairs (1,2), (2,3), (3,4),...
have been emphasized by dots. These dots appear to lie on a
curve, and it is easy to conceive of the lines as becoming tangents
to that curve as their number increases indefinitely. In that case,
the lines are said to envelop the curve, and we make the following
formal definition:

DrrFiniTION. Given a system of lines
le+my+n =0,

whose coefficients l,m,n are funciions of a parameter t, the locus of
that point on a typical line of the system, which is the limiting posi-
tion of the intersection of a neighbouring line tending to coincidence
with it, 18 called the envelope of the system.

Consider, for example, the system of which a typical line is

z—yt+at® = 0.
Another line of the system is

z—yu+au? = 0.
They meet where z=aut, y=alu+t).
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That point on the typical line to which the intersection tends is
found by putting » = ¢ in the expressions for the coordinates,

giving z=at?, y=2al.
This is the parametric representation of the envelope, whose

equation is therefore 4 = daz,

We may now find the rule for determining parametrically the
envelope of the system of which a typical line is

af (t) +yg(t) + h(t) = 0.
Another line of the system is
af (u) + yg(u) + h(u) = 0.
Where these lines meet, it is also true that
w{f(w) —f(0)} + yg(u) —g(t)} + {A(w) — (D)} = O,
or, on division by u—t, that

f)=f(t) . glu)—g(t)  R(w)—h() _
i ikt i

To emphasize the limiting approach of u to ¢, write u = ¢+ 3t.
Then the point of intersection of the two lines ‘w’, ‘¢’ also lies on
the line

ft+8t)—f(t) , glt+8t)—g(t) , h(t+8t)—h(t) _
g T AT g ) 2

In the limit, as §#->0, this is the line

xf (&) +yg' (£)+ k' () = 0.
Hence the envelope is the locus, as t varies, of the point of intersection
fract o 2f(t) +yg(®) +h(t) = O,

af’(t)+yg' (1) +h'(t) = 0.

TLrusTrATION 6. To find the envelope of the system
zcost+ysint+a = 0.
The envelope is the locus of the point of intersection of this line

with the line —zsint+ycost = 0.
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That point is 2 = —gcost, Y= —asint,
and so the envelope is the circle

22 +9y? = a?,

Note. Envelopes exist for many families of curves as well as for
families of straight lines; but we are not in a position to give a
treatment of the more general case.

EXAMPLES II
Find the envelopes of the following families of straight lines:
(144 2y+(1—1)a= 0.
. xseci—ytani—a = 0.
zcosht—ysinhi—a = 0.
2tx+ (1= y+(14+2)a=0.
te+y—a(t®+2t) = 0.
tr—ty—c(tt—1)= 0.

I S U

16. Evolutes. Particular interest attaches to the envelope of
those lines which are the normals of a given curve. Using the
notation of § 14, denote by

Ye» Yp» Yp"

the values of y,%’,y" (where dashes denote differentiations with
respect to z) for the given curve at the point P(zp,yp). The
equation of the normal at P is

y—yp=(—1/yp") (x—2p),
or Z+Yp'y =2p+Yp'Yp.

Taking xp as the parameter, the envelope of this line is the
locus of its intersection with the line

yp''y = 1+yp"yp+yp™

2
so that y=yp+ 22D,
Yp
’ 7
- zp_yp (1 +,§/P ).

Yp
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Comparison with the results in § 14 establishes the theorem:

The centre of curvature at a point P of a given curve i8 that point
on the normal at P which corresponds to P on the envelope of the
normals.

DermvitioN. The envelope of the normals, which is also the
locus of the centres of curvature, is called the evolule of the given

curve,
TLLusTRATION 7. To find the evolute of the rectangular hyperbola
xy = c
Parametrically, the hyperbola is
x=cl, y=cft,
and the gradient at this point is —1/¢%. Hence the normal is
y—cft—t}z—ct) =0,

or Br—ty = ctt—c.
For the envelope, we have
3i2x —y = dof®,

The centre of curvature, being the point of intersection of these
two lines, is given by

2i%z = 3cit+-c,
h : = 3_t+_l_ c
so that z= 2 Tl

" E+f)c
y=\z"3)*

The evolute is the curve given parametrically by these two
equations.

EXAMPLES III
Find the evolutes of the following curves:

1. The parabola (af?, 2af).
2. The ellipse (acost, bsint).
3. The rectangular hyperbola (asect, atant).
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17. The area of a closed curve. Consider the closed curve
PUQV shown in the diagram (Fig. 89). For simplicity, we suppose
it to be oval in shape, and also, to begin with, to lie entirely in the
first quadrant.

The coordinates of the points
of the curve being expressed in
the parametric form

z=2(), y=1y(t),

we suppose that the positive
sense, namely that of { increas-
ing, is COUNTER-CLOCKWISE G
round the curve, as implied by Fig. 89.

the arrows in the diagram. [If

this is not so, replacement of ¢ by —¢ will reverse the sense.] Thus
the curve is described once by the point (z,y) as ¢ increases from a
value ¢, to a value ;. Moreover, since the curve is closed, the two
values ,, t, give rise to the saM= point, so that

x(ty) = (t,);  y(to) = y(ty).

A simple example is the circle

x = b6+3cost, y=4+3sint,

described once in the counter-clockwise sense as ¢ increases from
0 to 27, The values { = 0, { = 27 both give the point (8, 4).

In order to calculate the area, draw the ordinates AP, B@Q
which just contain the curve, touching it at two points P, ) whose
parameters we write as #p,fy, respectively. For reference, let U
be a point in the lower arc PQ and V in the upper. Then the area
enclosed by the curve can be expressed in the form

area APVQ —area APUQ.
The area APVQ is given by the formula

ares APV( = f“ydz
zp

integrated over points (z,%) on the arc PVQ. Let us suppose first
that the ‘junction’ point given by {, or ¢;, does not lie on this are.
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Then the parameter ( varies steadily along the are, and the
area is &

‘Pya"t' dt.

On the other hand, the ‘junction’ point J must then lie on the lower
arc PUQ, so we write the formula for the area APUQ in the form

area APUQ = f "y
zp
integrated over points (x,y) on the are PUQ, giving
J Ty
ares APUQ = f ydx-i—J' ik
p J
dx dx
= —dt+ = dt,
J:y a“r ) Va

where the value ¢, or {, is taken for J according to the segment of
the arc PUQ over which the respective integral is calculated, ¢, for
PJ and t, for JQ. In all, the area enclosed by the curve is thus

dx b dx dx
el T N7 e e
J:y il dt {J:Py i dt+f:y T c}
dx e dx 1 dx

'+ dx

Similarly, if J lies on the arc PVQ, we have the formulse
J T
area APVQ =J‘ yclm+f ydax
Ip J
b dx dx
= _dr,+r — di,

. i W de

zo
area.APUQ-_—f g

zp

dx
s | gt
) db
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so that the area enclosed by the curve is

([var [v2a)-[YEa

. dt dt R
'r dx dz dz
dx
Hence, in both cases, the area of the closed curve is
h dr
== e N B
J:.y di s
In the same way, if we draw the L
lines CR, DS parallel to Oz (Fig. 90),
just containing the curve, to touch it M
at R, S, and if L, M are points on the c
left and right arcs RS respectively, "
then the area of the closed curve is 0 -
area ORMS —area CRLS. P
Now area CEMS = J‘“x dy
Vg

integrated over points (z,y) on the arc RMS. If the ‘junction’
point J is not on this arc, we have

dy
x— di.
=%

For the area CRLS, the ‘junction’ point J must then lie on the are
RLS, so we have d
I i

In all, the area of the closed curve is (in brief notation)

[ 1)
=f"+f°+£
f‘:cdydt
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Similarly for the ‘junction’ point on the arc RMS, we have

IRINEIN

t dy
< J.:.x?z %
Hence the area of the closed curve may be expressed in either of the
forms

[t

where the closed curve is described completely, in the counter-clockwise
sense, as t increases from t, to t,.

A useful alternative form is found by taking half from each of
these:

The area of the closed curve is

dy  dx
5'["‘( %_ dt)dt.

ILLUSTRATION 8. T'o find the area of the ellipse

P
a8+ bﬁ

The ellipse is traced out by the point
z =acost, y=bsint
as { moves from 0 to 27. Then
dx = —asinidt, dy = bcostdt,

and %J‘(wdy-ydx)
i . :
=—2J (acost.bcost+bsint.asint)dt
0

-3l

= mab.
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The restriction for the curve to lie in the first quadrant is not
essential. For, if it does not, a transformation of the type

#'=z+a, Yy =y+b,

for suitable values of a, b, can always be employed to bring it into
the first quadrant of a fresh set of axes. But this shows that the
area enclosed is

Vb Ll e
i) (Y -y B =3[ e ra Y- wrn T
_1(4 dy_ dx rdy o, dx
wa=lo,
But A= =0,
J:d‘ I

dx (A
J:d‘ t,

since {,, ¢, give the SAME point of the curve. Hence the area is

14/ dy dx
Ef,.("’a“yaz)d‘-

18.* Second theorem of Pappus. Suppose that a surface of

revolution is obtained by rotating an arc PQ (Fig. 91) about the
z-axis (assumed not to meet it). We proved (Vol. 1, p. 130) that,
if PQ is the curve

y =f(),

the area S so generated is given by the formula

b

8= f Suyyds. P
’ 0
Now it is easy to prove that the
y-coordinate of the centre of gravity of ¢
the arc is given by the formula 1:
(@] A
ds
7= ay Fig. 91.

I ’
where [ is the length of the arc PQ. (Compare the similar work in
Chapter v1.) Hence 8 = 2yl

* This paragraph may be postponed, if desired.

SECOND THEOREM OF PAPPUS 133

Thus if a given curve, lying on one side of a given line, s rotated
about that line as axis to form a surface of revolution, then the area of
the surface so gemerated is equal to the product of the length of the
curve and the distance rotated by its centre of gravity.

TLLusTRATION 9. T'o find the centre of gravily of a semicircular are.

Suppose that the circle is of radius a (Fig. 92), and that the
centre of gravity, lying on the axis of symmetry, is at a distance 7
from the centre.

On rotating the semicircle about its
bounding diameter, we obtain the sur-
face of a sphere, whose area is known to

be 4dmra.

Hence 4dna® = 2m.7a,

2a
w Fig. 92.

so that N =

REVISION EXAMPLES V
‘Advanced’ Level

1. Find the equations of the tangent and normal at any point
of the cycloid given by the equations

T = a(2)+sin 2), y = a(l—cos2p).

Prove that s is the angle which the tangent makes with the axis
of z; and verify that, if p and g are the lengths of the perpendiculars
drawn from the origin to the tangent and normal respectively, then
¢ and dp/di are numerically equal.

2. Define the length of an arc of a curve and obtain an expres-
gion for it.
A curve is given in the form

x# = cosht—t, y = cosht+t.

Express ¢ in terms of the length s of the arc of the curve measured
from the point (1, 1).

The coordinates of any point of the curve are expressed in
terms of @ and are then expanded in series of ascending powers of s.
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Prove that the first few terms of the expansions are
z=1-7 +8—8+
T J2 4 seny

Sy 8
Y= +#+4+m.

3. Find the radius of curvature of the parabola y® = 4)x at a

point for which x = ¢, and deduce that, if A varies (c remaining
constant), this radius of curvature is a minimum when A = }e.

4. Prove that the radius of curvature of the curve
y=1a?—}loga (x>0)
at the point (z,y) is (1+22)%/4x.

Find the point at which this curve is parallel to the z-axis, and

prove that the circle of curvature at this point touches the y-axis.

5. Prove that, if 4 is the inclination to the z-axis of the tangent
at a point on the curve y = alogsec(z/a), then the radius of
curvature at this point is asecy.

6. A particle moves in a plane so that, at time {, its coordinates
referred to rectangular axes are given by

x = acos2t+2acost, y=asin2i+2asini.

Find the components of the velocity parallel to the axes and the
resultant speed of the particle.

Show that p, the radius of curvature at a point of the path, is
proportional to the speed of the particle at that point.

7. The coordinates of the points of the curve 4y® = 2722 are
expressed parametrically in the form (23, 3#%). By using this
parametric representation, or otherwise, prove that the length of
the curve between the origin and the point P with parameter ¢, is

2(1+8) -2,
and that the radius of curvature at P is numerically equal to
6ty (1+ ).

8. The tangent to a curve at the point (z,y) makes an angle ¢
with the z-axis. Prove that the centre of curvature at (z,y) is
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A curve is given parametrically by the equations
x = 2acost+acos2, y= 2asini—asin2i.
Prove that = —3¢.
P is a variable point on the curve, and @ is the centre of curva-
ture at P; the point R divides PQ internally so that PR = }PQ.
Prove that the locus of R is the circle 22+ y* = 9a?.

Prove also that no point of the curve lies outside this circle.
Draw a rough sketch of the curve.

9. The coordinates of a point of a curve are given in terms of a
parameter ¢ by the equations x = t¢!, y = i*¢. Find dy/dx in terms
of t, and prove that

dly #+2+2
7 R T )
Prove also that the radii of the circles of curvature at the two

points at which the curve is parallel to the z-axis are in the ratio
el

10. Express cosh?f in the form
@y +a, cosh 6 +a, cosh 20 +a, cosh 360 + a, cosh 46.
11. The area lying between the curve
y = cosh (z/2A),
the ordinates x = + A%, and the z-axis is rotated about this axis.
Prove that the volume of the solid of revolution so formed is
wA(A+sinh A).

Show that the volumes given by A= 1,A=1+4§ differ by
approximately (2 +e) 8 when 8 is small.

12. Prove that the two curves

y, = 3cosh 2z, y, = tanh2z

touch at one point and have no other point in common.
Sketch the two curves in the same diagram and, with them,

the curves ys = coshz, y, = sinhz.

Prove that the four curves intersect in pairs for two values of =
and indicate clearly in the diagram the relative positions of the
four curves for all values of .
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13. If s be the length of the arc of the catenary y = a cosh (z/a)
from the point (0,a) to the point (z, y), show that
8 = y?—at,

Find the area of the surface generated when this arc is rotated
about the y-axis.

14. Sketch the curve whose coordinates are given parametrically

by the relations z = a(t+sint),y = a(l+cost) for values of ¢
between —mr,w, and find the length of the curve between these
two points.

15. Find the radius of curvature of the parabola y% = z at the
point (2, /2).

16. Find the radius of curvature and the coordinates of the
centre of curvature at the point (0, 1) on the curve y = coshaz.

17. For what value of A does the parabola
y: =4z

have the same circle of curvature as the ellipse
r—a\® 1
G?J+a"‘

18. Find the radius of curvature of the curve
y = sinax®

at the origin?

at the origin.

19. Draw a rough graph of the function coshz.

The tangent at a point P(z,y) of the curve y = ¢cosh (z/c)
makes an angle ¢ with the z-axis. Show that y = csecy.

If the tangent at P cuts the y-axis at @, show that

PQ = zyle.
~ 20. Find the radius of curvature of the curve

ay?=a3
at the point (a,a).
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21. Find the radius of curvature at the point ¢ = §= on the

uEre z =gsinf, y=acos2l

22, Find the radius of curvature of the curve
y=2+z—1

at the point (z,y) and find a point on the curve for which the centre
of curvature is on the y-axis.

23. Show that the radius of curvature of the epicycloid
z = 3cost—cos3f, y = 3sint—sin3i
is given by 3sint.
24. Sketch the curve whose equation is
r=asin3f (a>0).

Find the area of the loop in the first quadrant and show that
the radius of curvature at the point (r, 8) is

(54 4cos60)t
fa (T+2cos60)”

25. Show that the two functions
sinh-! (tanz), tanh!(sinz)

have equal derivatives, and hence prove that the functions them-
selves are equal when — }7 < 2 < {=.

26. Find the point of maximum curvature on the curve
y =logz,
and the curvature at this point.
27. If y is the function of z given by the relation
sinhy = tanz,
where —}w <z <4mn, prove that
coshy = secz, y =logtan (3z+ }=).

Show that y has an inflexion at = 0, and draw a rough sketch
of the function in the given range.

10 M1
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REVISION EXAMPLES VI
“Scholarship’ Level

1. Transform the equation

Py 22 du %
dE T-2dz ' (1=

to one in which y is the dependent and z the independent variable,
vhere  1-i=y and (41— ==,
obtaining the result in the form

=0

(= ) +(2m 1) +§y=0.

2. If f(x) is a polynomial which increases as  increases, show
that, when >0, 208
o= [ fway

is also a polynomial which increases as « increases.
Show that, when z> 0, the expression

(@2—2z+2)e* 2
X x

is an increasing function of .
3. Prove that

(z+1) (;—;)Ml{(z-l- 1) (@— 1)) = (n+ 1) (d%)“{(“ 1)+ (2 — 1)),
Prove also that the fnction
() @+ 1r0@-1yy
satisfies the equation
(1— a:z) (1+a:)dm+(n+l)=y 0.
4. If y = sin (msin—z), show that

(1- :c’)———xg—%+m2y 0.
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Hence or otherwise show that the expansion of sinméf as a
power series in sin 6 is

(mP—1)(mi—3%) . o

- s
msinﬁ{l—usin30+

31 6l
L (m2=1)...[m*— (2n— 1))
+(=1) @nt 1! sm”‘9+...}.

5. By induction, or otherwise, prove that, if y = cot~'z, then
% = (=1)*(n—1)!sinnysin™y.

Hence, or otherwise, prove that, if
zsina
e AT T 0
g (1 +zcosa) 4

then 372:_( 1)"—1(:'m ! sin 7 («—z) sin® (¢ —2).

6. The function f, (z) is defined by the relation

1) = 3 o8

where y = ¢*. Prove that

=y
and deduce that
Srto(®@) — 28 a(2) = 2n+ 1) (@) = O,
and that f,(z) is a polynomial in z of degree n.
Prove that Jar1 (@) = [ (@) + 22, (%),
and hence express f,,.(z) in terms of f,(2), f,'(z) and f," ().
Deduce thati ¢ () 1 20f, () ~ 2nf (@) = 0.

7. If y = sin~'z, prove that

(1- z’) s S g—z
Determine the values of y and its successive derivatives when

z = 0, and hence expand y in a series of ascending powers of z.

10-2
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8. Prove that, if y = tan—12, then
_dny 1 7
uso= (n—1)! cos™ y cos {ny + }(n— 1)=}

for every positive integer n.

Deduce, or prove otherwise, that u satisfies the differential
equation

a2 d
(1+x2)a1:+2(n+ l)xd—:+n(n+ 1)u = 0.

dn
9. If yn(x) = ﬁ;,{(m2 X l)n}’
prove the relations
Wnia

a d
el = (@2 —1) o+ 20+ 2)2 04 (1 1) (04 2y,

% = 2(n+ l)x%+ 2(n+1)%y,.
10, T vald) = = 0 (ane-e)
prove that Y, = 3%14- (n—2)Yp_1>
Vdy, _dy,s

ndz  dw Inv
Hence show that the polynomial , satisfies a certain linear differ-

ential equation of the second order. [i.e. linear in %, %, y“.]

11. Show that, if the substitution » = t“+1% is made in

the equation du

- 18 —ta-1y2,

d? d;
th £y S
en tdt’+(a’+l)dt o= 0.

Deduce that, if @ is not a negative integer, then the value of

%3—{ when t =0 is A
(@a+n)(a+n—1)...(a+1)’

where A is the value of y when ¢ = 0.
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12. Prove that the polynomial y = (z®— 2x)" satisfies the equation

gn+2 dn+1 dn
(2x—zg)dxn+g—2(z-l)dx-—n—3+n(n+I)EH =0.

13. A function f(x) is defined for 0 <z <$ as follows:
0<z<], flz)=—3P+=;

1<2<d, fl@) = -kt +io—}.
Discuss the continuity of f(z) and its successive derivatives.
Sketch the graphs of f(x) and its derivatives throughout the whole
interval (0, $).
Prove that the function
3. mx
J (“’)—;Sm'g‘
has a stationary value at z = 1, and determine whether it is a
maximum or a minimum,

14. Prove that, if y = ¢~*"2 and n is a positive integer, then

dri2y  drtly dry
gz + O+ 0+ g = O

The functions f, (x) are defined by the formula
dn
fal@) = (— 1y 2 ().
Prove that (i) a1 = (2+1)fas
(i) fara = 2fu—tn
(iii) fﬂ+2—$fﬂ+1+(n+ l)fn =0,
(iv) f, is a polynomial in z of degree n.
15. Obtain the equations
z=38—}28+..., Y=+ ic"+..

for a curve C.
Prove that the equation of the general conic having 4-point
contact (i.e. 4 ‘coincident’ intersections) with C' at the origin 0is

2 — 3o’y + Ayt —2py = 0,

where p = 1/« and A is an arbitrary constant.
Deduce that the length of the latus rectum of a parabola having
4-point contact with a circle of radius a is 2a.
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16. Obtain the equations

z=8—3x2+..., y=13xs®+I'S+....

The point @ on the curve is such that P is the middle point of

the arc 0Q; the tangent at the origin O cuts the chord PQ at T'.
Find the limiting value of the ratio TP : 7Q as Q tends to O.
Prove that, correct to the second order in s, the angle between

the tangents to the curve at P and Q is xs(l +%%s).

17. Show that, if f(z) has a derivative throughout the interval

a<z<b, then
f®)—f(a) = b—a)f'{a+0(b—a)},
where @ lies between 0 and 1.

Find the value of 0 if f(z)=tanz, @ = {=, b = }=.

Draw an accurate graph of the function y = tanz between the
limits }w, 4=, taking 1 in. to represent g7 as the z-axis and 1 in.
to represent 0-2 on the y-axis.

Illustrate the theorem by means of your graph.

18. Given that eW = cos %
and that y, denotes d®y/da™, prove that
ays+atyi+1=0
- and express ¥,,, in terms of y;, ¥, ..., ¥y i1
The expansion of y as a power series in z is
y=0b2+bx®+... +b,2"+....

Prove that b, is zero when = is odd and that, if a is positive, b,, is
negative when » is even.

19. Prove that the nth differential coefficient of e¥2cosz is
2n ez 43 gog (w+%).

Deduce, or obtain otherwise, the expansion of the function as a
series of ascending powers of « giving the terms up to z® and the
general term.

Find the most general function whose nth differential coefficient
is e*¥3 cosz.
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20. (i) Prove by induction that, if = cot 8, ¥ = sin?#, then
dﬂ.

o7 = (—1)nlsin™ 6sin (n+1)0.

[ 1 A
(ii) Prove that En(xa— 1) - s (f)’m,
where f, () is a polynomial of degree = in z.
Prove further that
far1 (@) +2(n+1) af, (@) + n(n+1) (22 = 1) f,, 1 () = 0.

21. State, without proof, Rolle’s theorem, and deduce that
there is a number ¢ between a, b such that

fb)=fla) = (b—a)f"(§),
explaining what conditions must be satisfied by the function f(z)
in order that the theorem may be valid.
If f(x)=sinz, find all the values of { when a=0,b= 3.
Tllustrate the result with reference to the graph of sinz.

22, If o is small, the equation sinz = oz has a root nearly equal
to #. Show that all =3t~ (hat s et}
is a better approximation, if « is sufficiently small.

23. A plane curve is such that the tangent at any point P is
inclined at an angle (k+ 1)@ to a fixed line Oz, where k is a positive
constant and @ is the angle zOP. The greatest length of OP is a.
Find a polar equation for the curve.

Sketch the curve for the cases k= 2,k = 1.

24. Prove that
sTydy_oPYF (Prde (Eop
da® da* (ﬁ dydyt “\dy?

dy\* dx\* ¥
(@) (@
25. Obtain the expansion of sinz in ascending powers of z. For
what values of « is this series convergent.
A small are PQ of a circle of radius 1 is of length 2. The arc
PQ is bisected at @, and the arc PQ, is bisected at Q,. The chords

PQ, PQ,,PQ, are of lengths ¢, }¢c,, }c, respectively. Prove that
2s(c— 20c, + 64c,) differs from z by a quantity of order 27.
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26. Sketch the graph of the function
Y= g—laz+bz?)

where a,b are both positive. Prove that there are always at least
two points of inflexion.

Find the abscissw of the points of inflexion when @ = 4,6 = 5.

dy dxz d’y d®z
27. If z = f(t), y = g(t), express —3-, -—, Y 2% in terms f
&s dy Pz Py R )
dt’ dat’ de’ ae’

Prove that

(dz)”d’y_l_(dy)’d’x d*yd?z 0

y) @ \aw) ap P @ ap =
28. The functions ¢(z), () are differentiable in the interval

a<z<b, and ¢'(x) >0 for a<a<b. Prove that there is at least =

one number £ between a, b such that

$(6)—la) _ 4'(8)
SO (@ ~ F &)

If $(z) =22, Y(x) =2, find a value of £ in terms of @ and b.

29. Prove by differentiation, or otherwise, that
zy<e*'+ylogy

for all real z and positive y.
When does the sign of equality hold ?

30. (i) Prove that, for positive values of z,

2+z)
log (1 2(2+2)
og (1+=z) <2(1 )
(ii) Find whether e~*'sec?z has a maximum or a minimum
value for z = 0.

31. Show that, if f(0) = 0 and if f'(z) is an increasing function
_f@)

of z, then y = oy is an increasing function of z for > 0.

32. Prove that, if 2> 0,
(1—4$a?+ 552t sinz > (x— 28 + 1352°) cos z.
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33. If 2> 0, prove that (z— 1) is not less than z(logz)2.
Discuss the general behaviour of the function

(logz)— (z—1)~*
for positive values of z and with special reference to z = 1.
Sketch the graph of the function.
34. Prove that, if = is positive,

2
24z

Prove also that, if a, k are positive, then
log (a+ 6h)—loga — 6{log (@ + k) —loga},

considered as a function of 6, has a maximum for a value of 8
between 0 and 3.

<log(1+2z)<a.

35. If the sum of the lengths of the hypotenuse and one other
side of a right-angled triangle is given, find the angle between the
hypotenuse and that side when the area of the triangle has its
maximum value.

36. A pyramid consists of a square base and four equal
triangular faces meeting at its vertex. If the total surface area is
kept fixed, show that the volume of the pyramid is greatest when
each of the angles at its vertex is 36° 52’

37. Find the least volume of a right circular cone in which a
sphere of unit radius can be placed.

38. Find the numerical values of
y = sin (z+}7) + sindz

at its stationary values in the range —w<wz<w. Distinguish
between maxima, minima, and points of inflexion, and give a
rough sketch of the curve.

39. Prove that, if

0 =cot'z (0<f<m),

th e " (n— 1) sin® Osin nf

en ﬁ=(—1) (n—1)!sin™ # sin nd,
when = is any positive integer,



146 CURVES
Show that the absolute value of d»8/dz™ never exceeds (n—1)!

if » is odd, or (n—1)! cos™+t — T _)ifnis even.
2n+2

40. Find the two nearest points on the curves
yi—dx =0, 224+y°—6y+8=0,

and evaluate their distance.

z2(l—z
41, If y=ﬁs

(i) find the maximum and minimum values of y;
(ii) find the points of inflexion of the curve;

(iii) sketch a graph showing clearly the points determined in
(i), (ii), and also the position of the curve relative to the line y = z.

42, Prove that the maxima of the curve y = e~**sin px, where
k,p are positive constants, all lie on a curve whose equation is
y = Ae~**, and find 4 in terms of &, p.

Draw in the same diagram rough sketches of the curves
y=e*, y = —e* and y = e**sin px for positive values of z.

43. The tangent and normal to a curve at a point O are taken
as axes. P is a point on the curve at an arcual distance s from O.
Prove that the coordinates of P are approximately

2= s—hits%, y = hust+ it

where « is the curvature at 0, and «’ the value of dx/ds at O.

The tangents at O and P meet at 7'. A circle is drawn through
O to touch PT at 7. Prove that the limiting value of its radius
as P tends to O is 1/(4«).

44. Obtain the coordinates of the centre of curvature at a point
(z,y) of a curve in the form (x— psiny, y + p cosy), where p is the
radius of curvature and tan y: the slope of the tangent at the point.
Prove also that, when s is the length of arc between (z,y) and a
fixed point on the curve, dz/ds = cosy, dy/ds = siny.

The centres of curvature of a certain curve lie on a fixed circle.

Prove that pg—g is constant.
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45. Obtain the formula p = rdr/dp for the radius of curvature of
a curve in terms of the radius vector and the perpendicular from
the origin on the tangent.

Prove that a curve for which p = p satisfies the equation
r2 = p?+a? where @ is constant, and deduce that the polar
equation of the curve is

J(r*—a?) = ab +acos~1(ar),
where the coordinate system is chosen so that the point (a, 0) is on
the curve.

46. (i) Prove that the (p,7) equation of the cardioid

r = a(l+cos 6)
is 2ap? =13,
Hence, or otherwise, prove that the radius of curvature is
$acosd.

(ii) Prove that the equation of the circle of curvature at the
origin of the curve
z+y = 22+ 2%+ 323

is 3(22+9°) = 2(z+y).
47, If y is a function of z, and

x = fcosa—nsine, ¥y = ¢sina+ncosa,

- dy d?y . dn d?n
where « is constant, express = and a2 10 terms of dg and i
ay 'y
Deduce that d‘:’; 55 = d{: T
%y o
@] @ )

and interpret this result.

48, A curve is such that its arc length s, measured from a
certain point, and ordinate y are related by

Y2 =824 c?,

where ¢ is a constant. Show that referred to suitably chosen
rectangular axes the curve has the equation

y = ccosh (z/c).
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If C is the centre of curvature at a point P of the curve and G is
the point in CP produced such that CP = PG, prove that the
locus of @ is a straight line.

49. Find the radius of curvature at the origin of the curve

y = 2x+ 32— 2xy + y° + 25,
and show that the circle of curvature at the origin has equation
3(22+2) = 5(y — 22).

50. Find the values of z for which y = 2?(2— 2)? has maximum
and minimum values, and evaluate for these values of z the
curvature of the curve given by the equation above.

51. Sketch the curve defined by the parametric equations

z = acos®t, y = asin®t.

Show that the intercept made on a variable tangent by the
coordinate axes is of constant length.
Find the radius of curvature at the point ‘¢’

52. Find the points on the curve y(x—1) =2 at which the
radius of curvature is least.
53. Sketch the curves
y=al-2, y'=2a'-20,
and find their radii of curvature at the origin.

54. Prove that all the curves represented by the equation

xn+1 yn-i-l (ab)n
a T b \atd’

for different positive values of n, touch each other at the point

e )
a+b’ a+b)

Prove that the radius of curvature at the point of contact is
equal to (@®+ b2
n(a+b)*
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55. Establish the (p,r) formula for the radius of curvature of a
plane curve. For a certain curve it is known that the radius of
curvature is @®/r*1, where n+ — 1 and a is positive, and also that
p = af(n+1) when r = a. Show that it is possible to express the
curve by the polar equation ® = (n+ 1)a” cosnf.

56. Show that the curvature of the curve a/r = coshnf has a
stationary value provided that 3n? is not less than 1. Determine
whether this value is & maximum or a minimum,

57. O is the middle point of a straight line 4B of length 2a, and
a point P moves so that AP.BP = ¢ Show that the radius of
curvature at P of the locus is 2¢273/(3r* + a*—¢%), where r = OP.

58. Find the integrals:
dx dx
J.m, J.eﬂcosbzd:n (a=l=0,b=|=0), jm.

59. Prove that the area enclosed by the curve traced by the
foot of the perpendicular from the centre to a variable tangent of
the ellipse b2z®+a?y? = a?b? is {m(a®+b2%).

60. (a) Prove that, if
Fla) = e f "o f(t)di— e J‘ e f@)dt,
0 0

then (i) F(0) =
. (ii) F'(0) =0,
(iii) £ (z)—3F'(z)+ 2F (z) = f(z).
(b) Find the most general function ¢(x) which is such that

. Lz&ﬁ(t)dt = 22$(x).

61. Sketch the curve whose polar equation is 2 = a*(1 + 3 cos ),
and find the area it encloses.

62. (i) By differentiating the expression “”_‘:?;f_::ﬂ, o
otherwise, find B
sin®z’

T dz
o f Z%(a +bz)"
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63. Sketch the general shape of the curve
z = alcosl, y = atsini

for positive values of the parameter ¢.
Find an expression for the length of the arc of the curve
measured from the origin to the point ¢.

64. (i) Prove that, if » is a positive integer,

1
ni+1

in
f e*cosnzdxr = {Aet"—1},
0

where A has one of the values + 1, +n; and classify the cases.
(ii) Find the area bounded by the parabola y® = ax and the circle
22+ y? = 20,

65. Find the indefinite integral

jlog(l +2%) tan—1 zdz.

66. Show that the four figures bounded by the circle r = 3a cos 8
and the cardioid r = a(1 + cos 8) have areas

3mad, }ma®, wa?, 3mal.
67. The polar equation of a curve is
r?—2rcos f+sin*f = 0.
Sketch the curve and prove that the area enclosed by it is =/|2.

68. Determine the function ¢(x) such that '
1+ f “b(t)elde=(1+2)e.
o

Prove also that it is possible to find a pair of quadratic functions
f(x), g(x) such that

(1+2) f(z)=1+ f ooy,

(1+2)g(z)=3+9 J; o,

and determine these functions.
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69. A plane curvilinear figure is bounded by the parabola
22 = 282y from the origin to the point (13,5); by the hyperbola
22 —y? = 144 from the point (13, 5) to the point (15, 9); and by the
parabola y* = %7z from the point (15, 9) to the origin. Prove that
the area of the figure is 333+ 72log%.

70. Prove that

1 xt(1—x)4 1
EJ:x‘(l—x)4dx< J;'—l-m—dx<ﬁxﬂ(1-x)4dx.

Verify the identity
241 —a)t = (1 +22) (4 — 4a® + 5ot — 42+ 25) — 4,
and, by using this identity in the second of these integrals, prove
e 22 1 22 1
76307 7 1260
71. Determine constants 4, B, C, D such that

zt+1 _i(Am‘+Ba:3+Gx D
(x®+1)8  dx\ (22+41) ) 241"

Hence or otherwise prove that

i+ 1
0502 < omdxd 503.

72. Determine 4, B, C, D such that
z? d (Ax5+B:z:3+0x) D

@+ dz\ @E+1P @1’
1 2 1 =
and ShOW that J;(?z_i_—l)‘dz=zs'+6—4.

73. 1f y,(x) satisfies the equation
d[y_mW -
d_a:{(l x)dx}+r(r+l)y—0,

1
show that f Y@ Yp(x)dx = 0  (m=En).
-1
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74. Polynomials fy(z), fy(%), fs(x), ... are defined by the relation

fol@) = (@1
Prove that ."1 Ju(@) folz)dz =0 (m=£n),

[ itarpis = 2T oo

Show that, if ¢(x) is any polynomial of degree m,

(@) = §a,.f,,(z),

(nzl;Z;sL1r $(2) fo(x)dz.

75. If m,n are positive integers greater than unity, prove that

where

in
I"""Efo cos™x cos nx dx

i 2o -
= et = o I e

Hence show, if p, g are positive integers, that

+ "(P f Q)I
sP+a - o LI i
J; CO: xOOS(p g)a:da: Tlal’

76. Find a reduction formula for

f(l —2?)" cosh axdx.
Evaluate .[ 1(1 —2?)3 cosh zdz.
0

77. If y = sin? xcos?z /(1 —k*sin®*2z) and p,q,k are constants,
find J(l—k’sin’z)%
Hence, by taking suitable values for p, g, express

7 ginmadx

In= o V(1—k®sin®z)

in terms of 1,,_,, 1, _,.
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78. State and prove the formula for integration by parts, and
m!in!

show that 1
-La:"( 1—z)de = T
79. Find the volume and area of the surface of the solid ebtained
by rotating the portion of the cycloid
z=a(f+sinf), y=a(l+cosb)

between two consecutive cusps about the axis of z.
[Consider the range —w <0< 7.]

80. Prove that the envelope of the system of lines
(B-3t)ax+(+2)y=18
is the curve y?(z+y—1) =
81. Find the envelope of the line
zsin 3t —y cos 3t = 3asint,

expressing the coordinates of a point of the envelope in terms of
a and £.

82. Through a variable point P (at?, 2at) of the parabola y* = 4az
a line is drawn perpendicular to SP, when § is the focus (a,0).
Prove that the envelope of the line is the curve 27ay* = z(z — 9a).

83. Sketch the locus (the cycloid) given by
x = a(t+sint), y = a(l+cost)

for values of the parameter ¢ between 0, 47.
Prove that the normals to this curve all touch an equal eycloid,
and draw the second curve in your diagram.

84. Find the envelope, as ¢ varies, of the straight line whose
equation is zcos®t+ysin®t = a.

Sketch this envelope, and find the radius of curvature at one
of the points of the curve nearest to the origin.

85. As t varies, the line

z—t?y+2at* =0
envelops a curve I'. Show that for each value of ¢, other than
0, the line cuts I' at a point P distinct from the point at which

tha Ime touches I'.

ix M



154 COURVES

Find the equation of the normal to I' at P, and deduce that the
centre of curvature at P is given by

z = —20ats— (3a/dt), y = 48af>—3at.
Discuss the case ¢ = 0.

86. Find the equation of the normal and the centre and radius
of curvature of the curve ay? = a3 at the point (af? at®).

Show that the length of the arc of the evolute between the
points corresponding to ¢ = 0, = 1 is (13%/6)a.

87. Show how to find the envelope of the line

y =tz +[(0).
Show that the length of an arc of the envelope is given by

t
J‘ (@) (1 +)dt.
[
Hence obtain a formula for the radius of curvature in terms of £.

88. Prove that the equation of the normal to the curve
iyt = at
may be written in the form
zsint—ycost+acos2t = 0,
and find parametrically the envelope of the normal.
89. Find the equations of the tangent and normal at any point
of the curve
z = 3sint—2sin®f, y = 3cost—2cosdt,
Prove that the evolute is
zt 4yt = 2t
90. The coordinates of any point on the curve 2%+ 2y® = %2 can
be expressed in the form
z==20/1+8), y==/1+8).

' Find the equations of the tangent and normal at any point, and
deduce that the coordinates of the corresponding centre of
curvature are (—2— 34, 1),
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91. Prove that the complete area of the curve traced out by the
point

is 2ma®.

(2acost+acos2t, 2asini—asin2i)

92. Find the area inside the curve given by
x=acosi+csinki, y=bsint+dcoskt (0<i<2n),

where k is an integer and a, b, ¢, d are positive,
[It may be assumed that ¢,d are so small in comparison with
a,b that the curve has no double points.]

93. Sketch the curve
z=asin2, y=bcos¥t,
where a>0,b> 0, and find the area it encloses.
94. Show that the curve
x=(t—1)et, y=1tx
has a loop, and find its area.

95. Trace the curve x = cos 2t,y = sin 3¢ for real values of ¢, and
find the area of the loop.

96. Show that, for the range —a <z <a, the area between the

curve = 1 y
(-
a b

and the z-axis is dab.
97. Sketch the curve given by
x = 2a(sin®t+ cos®t), y = 2b(sin®i— cos®t),
and prove that its area is 3mab.
98. Find the area of the loop (—1<¢<1) of the curve

1-f #(1—12)

cTEw YTIEe

99. Prove that the area of the curve
z=acost+bsint-+e, y=a'cost+d'sint+c
is (ab’ —a'b).

II-2
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100. Explain the reasons for using the formula

v

to calculate the area of a surface of revolution.

Apply the formula to show that the area of the surface obtained
by revolving the curve

r = a(1 + cos 6)
about the line 6 = 0 is equal to 327a2.

101. The curve traced out by the point
z = alog (sect+tant) —asint,
Y = acost,
as ¢ increases from —}= to + }=, is rotated about the axis of z.

Prove that the whole surface generated is equal to the surface of

a sphere of radius @, and that the whole volume generated is half
the volume of a sphere of radius a.

102. Find the length of the arc of the catenary
y = ccosh (z/c)

between the points given by z = +a.
Find also the area of the curved surface generated by rotating
this arc about the z-axis.

103. Evaluate the area of the surface generated by the revolu-
tion of the cycloid :

z = a(t—sint), y = a(l—cosi)
about the line y = 0.

‘ 104. Two points 4(0,¢), P(£,7) lie on the curve whose equation
is

y = ccosh (z/c),
and s is the length of the arc AP. If the curve makes a complete
revolution about the z-axis, prove that the area S of the curved
aurfz?ce, bounded by planes through 4 and P perpendicular to the
z-axis, and the corresponding volume ¥ are given by

c8 = 2V = me(cé + am).

REVISION EXAMPLES VI 157

105. A torus is the figure formed by rotating a circle of radius a
about a line in its own plane at a distance k(> a) from its centre.
Find the volume and surface area of the torus.

106. AB,CD are two perpendicular diameters of a circle. Find
the mean value of the distance of 4 from points on the semicircle
BCD, and also the mean value of the reciprocal of that distance.

Prove that the product of these means is

8n—22log (1+42).

107. Prove that the mean distance of points on a sphere of
radius @ from a point distant f(<a) from the centre is

a+ (f*/3a).
What is the mean distance if f>a?

108. Calculate the average value, over the surface of a sphere
of centre O and radius a, of the function (1/r®), where r is the
distance of the point on the surface of the sphere from a fixed
point C' not on the surface and such that OC = f. Distinguish
between the two cases f>a, f<a.

109. The centre of a disc of radius r is 0, and P is a point on the
line through O perpendicular to the plane of the disc. Prove that,
if OP = p, the mean distance (with respect to area) of points of

the dise from P is
@ -

Find the mean distance (with respect to volume) of the interior
points of a sphere of radius a from a fixed point of its surface,

110. Prove that the mean value with respect to area over the
surface of a sphere, of centre O and radius a, of the reciprocal of
the distance from a fixed point C is equal to the reciprocal of OC
if C is outside the sphere, but equal to the reciprocal of the radius
a if C is inside the sphere.

111. A point P is taken on an ellipse whose foci are S, H. The
distance SP is denoted by r, and the angle HSP by 6. Show that
the mean value of r with respect to arc is the semi-major axis a,
and that the mean value of » with respect to 0 is the semi-minor
axis b,



CHAPTER XI

COMPLEX NUMBERS

1. Introduction. It may be helpful if we begin this chapter
by reminding the reader of the types of elements which he is
already accustomed to use in arithmetic. These are

(i) the infeger (positive, negative or zero);
(ii) the rational number, that is, the ratio of two integers;

(iii) the érrational number (such as ,/2,m,e) which cannot be
expressed as the ratio of integers.

It is now necessary to extend our scope and to devise a system
of numbers not included in any of these three classes.

In order to exhibit the need for the new numbers, we solve in
succession a series of quadratic equations, similar to look at, but
essentially distinet.

% x2—6z+5=0.

Following the usual ‘completing the square’ process, we have the
solution
x2— 6z = —5,

22—6x+9=—5+9,
=4,
(x—3)2 =d.

The important point at this stage is the existence of two integers,
namely +2 and —2, whose square is equal to 4. Hence we can
find ¢nfegral values of  to satisfy the equation:

2—3=+2 or z—3=-2,
80 that =5 or z=1,

The equation 2 — 62+ 5 = 0 can therefore be solved by taking 2
as one or other of the rational numbers (integers, in fact) 5 or 1.
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IT. 22—6z+7=0.
Proceeding as before, we have the solution
2 —6x =-1,
2—6x+9=—-T+409,
=2,
(z—-3)2 =2,

Now comes a break; for there is no rational number whose
square is 2, and so we cannot find a rational number z to satisfy
the given equation. We must therefore extend our idea of number
beyond the elementary realm of integers and rational numbers.
This is an advance which the reader absorbed, doubtless uncon-
sciously, many years ago, but it represents a step of fundamental
importance. The theory of the irrational numbers will be found in
text-books of analysis; for our purpose, knowledge of its existence
is sufficient. In particular, we regard as familiar the concept of the
irrational number, written as /2, whose value is 1:414 ..., with the
property that (2)? = 2.

Once the irrational numbers are admitted, the solution of
the equation follows:

z—-3=+4+J2 or z-3=-2,
so that x=3+2 or x2=3-2

The equation 2®—6x+7 = 0 can therefore be solved by taking
 as one or other of the irrational numbers 3+ /2 or 3— /2.

IIT. 22— 6x+10 =0.
As before, % — b = —10,
22—6x+9 =-—-10+9,
=-1,

(x—3)2 =—1.

Again comes the break; for there is no number, rational or
irrational, whose square is the NEGATIVE number —1. We have
therefore two choices, to accept defeat and say that the equation
has no solution, or to invent a new set of numbers from which a
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value of # can be selected. The second alternative is the purpose
of this chapter.

To be strictly logical, we should now proceed to define these new
numbers and then show how to frame the solution from among
them. But their definition is, naturally, somewhat complicated,
and it seems better to begin by merely postulating their ‘existence’;
we can then see what properties they will have to possess, and the
reasons for the definition will become more apparent.

Just as, in earlier days, we learned to write the symbol /2’ for
a number whose square is 2, so now we use the symbol (1) for
a ‘number’ (in some sense of the word) whose square is —1; but,
in practice, it is more convenient to have a single mark instead of
the five marks |/, (, —,1,), and so we write

i=J(~1)

as a convenient abbreviation.
We shall subject this symbol i to all the usual laws of algebra,
but first endow it further with the property that

2=—1

This will be its sole distinguishing feature—though, of course, that
feature is itself so overwhelming as to introduce us into an entirely
new number-world.

It may be noticed at once that the ‘number’ —i also has —1 for
its square, since, in accordance with the normal rules,

(=) = (= 1xif = (= 1Px () = (+ 1) x (1)

= =1

We round off this introduction by displaying the solution of the
above equation: - -
T—3=1 or z—3=—3,

so that =341 or z=23—g.

By selecting z from this extended range of ‘numbers’, we are
therefore able to find two solutions of the equation.

It may, perhaps, make this statement clearer if we verify how
3+1, say, does exactly suffice. By saying that 3+1 is a solution of
the equation 2°— 6z + 10 = 0, we mean that

(3+14)2—6(3+4)+10 = 0.

INTRODUCTION
The left-hand side is
9+6i+12—18—6i+10

= 1442

=1+(-1)

=0

= right-hand side,
so that the solution is verified.

We now investigate the elementary properties of our extended
number-system, and then, when the ideas are a little more
familiar, return to put the basis on a surer foundation.

EXAMPLES I
Solve after the manner of the text the following sets of equations:

1. 22—42+3 =0, 22—4dax+1 =0, a®—4z+5 =0.
2. 224+82+15=0, 22+8x+11=0, 22+4+8x+20=0.
3. 22—2x—-3 =0, 2*—22—4 =0, 22—2¢+10=0.

2. Definitions. The numbers of ordinary arithmetic (positive
or negative integers, rational numbers and irrational numbers) are
called real numbers.

If a, b are two real numbers, then numbers of the form

a+1b (F=-1)

are called complex numbers. When b = 0, such a number is real.
When ¢ = 0, the number
tb (b real)
is called a pure imaginary number.
Two numbers such as

a+ib, a—ib (a,b real)

are called conjugate complex numbers.
A single symbol, such as ¢, is often used for a complex number.
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It emo i,

then a is called the real part of ¢ and b the imaginary part. The
notations

a=%e, b=S¢
are often used.

The conjugate of a complex number ¢ is often denoted by ¢, so
that, if ¢ = a+ib, then & = a—ib. Clearly the conjugate of ¢ is ¢
itself.

If ¢ is real, then ¢ = .

The magnitude
+4(@*+6%) (a,b real)

is called the modulus of the complex number ¢=a +ib; it is often
denoted by the notations

lel, la+idb].
It follows that €] = el

Moreover, we have the relation

&= |cf?,
for ¢t = (a+1b) (a —1b)
=a?—i?? = a®—(—1)b?
=a?+b%
Finally, since c=a+th, ¢=a—ib,

we have the relations

dle = a = }(c+6),
Se=b= %(G—E).

Note. All the numbers now to be considered are actually
complex, of the form a+ib, even when b = 0. Correctly speaking
we should use the phrase ‘real complex number’ for a number
such as 2, and ‘pure imaginary complex number’ for 2;. But this
becomes tedious once it has been firmly grasped that all numbers
are complex anyway.
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EXAMPLES II

The following examples are designed to make the reader
familiar with the use of the symbol 3. Use normal algebra, except
that 12 = —1.

Express the following complex numbers in the form a+ib,
where a,b are both real:

1. (3+5i)+(7—2i). 2. (—2+3i)— (6—5i).
3. (4+5i)(6— 2i). 4. (2+7T8)(—1+20).
5. 3+2i41(5+1). 6. 4—3i+14(3+41).
7. (1+4)% 8. (2+1)5.
9. (2—i)2—(3+2i) 10. (1+4)(1+24)(1+3d).
Prove the following identities:

o v I
4 18 i 12. - 31 -1).

1 1 : 1o ln~ib

1B s—a-mitt HoaT o
15, 2+id _ (@p+ba)+ilag—bp)

a+ib a®+b?

3. Addition, subtraction, multiplication. Let
c=a+ib, w=u+iv (a,b,u,vreal)

be two given complex numbers. In virtue of the meaning which
we have given to i, we obtain expressions for their sum, difference
and product as follows:

(i) Sum c+w = (a+u)+i(b+v).

(ii) DIFFERENCE ¢—w = (a—u)+i(b—v).

cw = (a+1b)(u+1v)
= au+ tbu +iav +1%v
= (au—bv)+i(bu+av).

(iii) PropUCT

The awkward one of these is the product. At present it is best
not to remember the formula, but to be able to derive it when
required.
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EXAMPLES III
Express the following products in the form a + b (a, b real):
1. (2+38¢)(4+ 52). 2. (1+42)(2— 62).
3. (—1—14)(—3+4i). 4. (a+1b)(a—1b).
5. i(4+ 3i). 6. (cos 4 +1isin 4)(cos B+isin B).
7. (83—1)(8+1). 8. (24 33)%

4. Division. As before, let
c=a+ib, w=u+iv (a,b,u,v real).
Then the QuoTiENT is, by definition, the fraction
c_a+ib

w U+

It is customary to express such fractions in a form in which the
denominator is real. For this, multiply numerator and denomi-
nator by w=u—4v. Then

¢ (a+1id)(u—iv)

w  (u+iv)(u—1v)
_ (au+bv)+i(bu—av)
i u?+o?
_autbv  bu—av
S wre it

It is implicit that »,v are not both zero.

For example, (2+1)+(3—1)
_24i
3—1
_(@+0)(3+i)
(3—12)(3+1)
(.’i+517+‘i’= 6+5i—1
9—q2 9+1
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EXAMPLES IV
Express the following quotients in the form a+1ib (a, b real):

141 3+4i 51+ 6
l. m. 2. 4_‘1-—%- 3. 7‘. .

2-—-3i 5 3+6¢ cos 20 +isin 26
T d4i " 1-6¢ " cosf+isind

5. Equal complex numbers. To verify that, if two complex
numbers are equal, then their real parts are equal and their imaginary

parts are equal.
Let c=a+ib, r=p+ig

be two given complex numbers (a, b, p, ¢ all real), such that ¢ = r.
R a+ib = p+ig,
or a—p =i(g—0b).
Squaring each side, we have
(a—p)* = *(g—b)?
= —(g—b)*

But a—p,¢—b are real, so that their squares are positive or zero;
hence this relation cannot hold unless each side is zero. That is,

a=Dp, b=q’
as required.
CoroLrARY. If a,b are real and
a+ib =0,
then a=0, b=0.

EXAMPLES V

Find the sum, difference, product and quotient of each of the
following pairs of complex numbers:

1. 243:, 3-—05i. 2. —44+2, —3+Ti.
8.4, 2. 4, 3+, -—i.
5, 2431, 2-3i. 6. —3+44, —3—4i.
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Find, in the form a+1b (a,b real) the reciprocal of each of the

following complex numbers:
7. 3+ 4. 8. —b6+412:.
9. 6i. 10. —6—8u.

Solve the following quadratic equations, expressing your
answers in the form a +¢b:

11. 22+4x+13 = 0. 12, 22 —224+2=0.
13. 22462+ 10 = 0. 14, 42249 = 0.
15, 22—8x 425 = 0. 16. 22 +42+5= 0,

6. The complex number as a number-pair. A complex

number
c=a+ib

consists essentially of the pair of real numbers @, b linked by the
symbol ¢ to which we have given a specific property (i2 negative)
not enjoyed by any real number. Hence ¢ is of the nature of an
ordered pair of real numbers, the ordering being an important
feature since, for example, the two complex numbers 4+ 5; and
5+ 44 are quite distinct.

The concept of number-pair forms the foundation for the more
logical development promised at the end of § 1, for it is precisely
this concept which enables us to extend the range of numbers
required for the solution of the third quadratic equation
(#*—6x+ 10 = 0). We therefore make a fresh start, with a series
of definitions designed to exhibit the properties hitherto obtained
by the use of the fictitious ‘number’ <.

We define a complex number to be an ordered number-pair (of
real numbers), denoted by the symbol [a, b], subject to the follow-
ing rules of operation (chosen, of course, to fit in to the treatment
given at the start of this chapter):

(i) The symbols [a,b], [%,v] are equal if, and only if, the two
relations @ = u,b = v are satisfied;

(ii) The sum

[a,b]+ [u,v]

is the number-pair [a+w»,b+v];
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(iii) The product fa b1 fu.v]
is the number-pair [au — bv, bu +av].

Compare the formuls in § 3.

A number [a, 0], whose second component is zero, is called a
real complex number; a number [0,b], whose first component is
zero, is called a pure imaginary complex number. These terms are
usually abbreviated to real and pure imaginary numbers. (Compare
p. 162.)

In order to achieve correlation with the normal notation for real
numbers, and with tle customary notation based on the letter i
for pure imaginaries, we make the following conventions:

When we are working in a system of algebra requiring the use
of complex numbers,

(i) the symbol a will be used as an abbreviation for the number-
pair [a, 0],

(i) the symbol ib will be used as an abbreviation for the
number-pair [0, b].

It follows that the symbol @ +ib may be used for the number-
pair [a, 0]+ [0, b], or [a,b].

In particular, we write 1 for the unit [1, 0] of real numbers, and
ix 1 for the unit [0,1] of pure imaginary numbers; but no con-
fusion arises if we abbreviate ¢ x 1 to the symbol ¢ itself.

We do not propose to go into much greater detail, but the
reader may easily check that the complex numbers defined in this
way by number-pairs have all the properties tentatively proposed
for them in the earlier paragraphs of this chapter. We ought,
however, to verify explicitly that the square of the number-pair ¢
is the real number — 1. For this, we appeal directly to the defini-
tion of multiplication:

[a, b] x [%,v] = [au—bv, bu+av].
Writea=u=0,b=v=1. Then
[0,1]x[0,1] = [—1,0]
or, in terms of the abbreviated symbols,

txt=-—1,
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Finally, we remark that, although the ordinary language of real

numbers is retained without apparent change, the symbols in

complex algebra carry an entirely different meaning. For example,

the statement
2x2=4

remains true; but what we really mean is that

[2,0]%[2,0] =[2%x2-0x0,0x2+2x0]
= [4,0].

From now on, however, we shall revert to 4he normal symbolism
without square brackets, writing a complex number in the form
a+1b as before. It must always be remembered that number-
pairs are intended.

7. The Argand diagram. Abstractly viewed, a complex
number a+14b is a ‘number-pair’ [a,b] in which the first com-
ponent of the pair corresponds to the real part and the second
component to the imaginary. A number-pair is, however, also
capable of a familiar geometrical interpretation, when the two
numbers a,b in assigned order are taken to be the Cartesian
coordinates of a point in a plane. We therefore seek next to link
these two conceptions of number-pair
so that we can incorporate the ideas of y
analytical geometry into the develop- «Pix,y)
ment of complex algebra.

With a change of notation, denote a
complex number by the letter z, where

z=x+1y.

We do this to strengthen the implication
of the real and imaginary parts z and y
as the Cartesian coordinates of a point Fig. 93.
P(z,y) (Fig. 93).

There is then an exact correspondence between the complex
numbers z =2+ iy and the points P(z, y) of the plane:

(i) If zis given, then its real and imaginary parts are determined
and so P is known;

(ii) If P is given, then its coordinates are determined, and so z
is known.
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We say that P represents the complex number z. The diagram
in which the complex numbers are represented is called an Argand
diagram, and the plane in which it is drawn is called the complex
plane, or, when precision is required, the z-plane.

EXAMPLES VI
Mark on an Argand diagram the points which represent the
following complex numbers:
1. 3+ 4. 2. 5—1i. 3. 6.
4. 3. 5. 1+1. 6. —2—3i.
7. cos@+isin@ for 6= 0°,30°60°%...,330°% 360°
8. 2cos?}f+isinfd for 6 =0,45°90°...,315°% 360°.

8. Modulus and argument. CGiven the point P(z,y) repre-
senting the complex number

z=x+1y,
we may describe its position alternatively by means of polar
coordinates r, 8 (Fig. 94), where r is the distance OP, ESSENTIALLY
posITIVE and @ is the angle ZzOP which OP makes with the
z-axis, measured in the counter-clockwise sense from Oz. Thus r
is defined uniquely, but 6 is ambiguous by multiples of 27.
We know from elementary trigo-

nometry that Y
z=rcosf, y=rsinb,
whatever the quadrant in which P
P lies.
Squaring and adding these rela- >

tions, we have = ) - %
% ks ol
i e i Fig. 94.

so that, since r is positive,

r=+{@@*+y°).
Dividing the relations, we have

tan 6 = y/z,
or 6 = tan—1(y/x).

12 MII



170 COMPLEX NUMBERS

The choice of quadrant for f depends on the signs of BoTH ¥y
AND z; if z,y are +, +, the quadrant is the first; if z,y are —, +,

the second; if z,y are —, —, the third; if 2,y are +, —, the fourth,

The two numbers r = J(z®+y?),
0= ta.n-l(y/z),

with appropriate choice of the quadrant for 0, are called the
modulus and argument respectively of the complex number z. If
r, 0 are given, then

z = r(cos f+isin 0).

We have already (p. 162) explained the notation |z| =, and
proved the formula 2Z = |z |%

IrnustrATION 1. T0 find the modulus and argument of the complex
number —1+1,/3.
If the modulus is r, then

2= (124 (32 =1+3=4,
so that » = 2. The number is therefore
1. .48
2{ = § +1 '2_} )
so that, if 0 is the argument,

cosf = —4, sinB:‘?.

Hence 0 = §7, and so the number is

2{cos §= + isin §=}.

EXAMPLES VII
1. Plot in an Argand diagram the points which represent the
numbers 4+ 34, — 3+ 44, —4— 3i, 3 — 44, and verify that the points
are at the vertices of a square.

2. Plot in an Argand diagram the points which represent the
numbers 7+ 34, 61, —3 — 1,4 —4i, and verify that the points are at
the vertices of a square.

MODULUS AND ARGUMENT ¥73

3. Find the modulus and argument in degrees and minutes
of each of the complex numbers

J3—4, 344, —b+12%, 3, 6-8, -2

4. Prove that, if the point z in the complex plane lies on the
circle whose centre is the (complex) point @ and whose radius is
the real number %, then

|z—a| = k.

5. Find the locus in an Argand diagram of the point representing
the complex number z subject to the relation

l2+2| = |2 5i].

9. The representation in an Argand diagram of the sum
of two numbers. Suppose that

2 =241y, 2,=2,+1Y,

are two complex numbers represented in an Argand diagram by
the points

P(5,91), P2z Ys)

respectively (Fig. 95).
Their sum is the number

E=nth
= (& +,) + (Y +¥s)
represented by the point P(z,y), where Fig. 95.

Z=2,+%y Y=4htYs
By elementary analytical geometry, the lines P, P, and OP have
the same middle point (x—l';—'i*, !-"—'%—%), so that OF,PF, is a
parallelogram. Hence P (represenling z,+2,) is the fourth vertex
of the parallelogram of which OF,, OF, are adjacent sides.
In particular, OP is the modulus |2, +2,| of the sum of the two
numbers z,,2,.

I2-2
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10. The representation in an Argand diagram of the
difference of two numbers. To find the point representing the

difference
== z: = zl,

we proceed as follows:
The relation is equivalent to

2 =2+

so that OF, (Fig. 96) is the diagonal of the parallelogram of which
OP,, OP (where P represents z) are adjacent sides.

Hence OP is the line through O parallel to }ﬁ, the sense along
the lines being indicated by the arrows, where OP, P,F, are equal in
magnitude.

CoroLLARY. If Fy(2y, %), Po(2s, Ys) y
represent the two complex numbers
zf’x1+iy1,zgsm,+iy,, then the line
P, P, represents the difference z,—2,, R
in the sense that the length P, P, is the
modulus | za—2, | and the angle which
PP, makes with the w-awis is the
argument of zy—2;.

This corollary is very important Fig. 96
in geometrical applications.

[The reader familiar with the theory of vectors should compare
the results in the addition and subtraction of two vectors.]

P 3)

Rlx,)

O X

11. The product of two complex numbers. In dealing
with the multiplication of complex numbers, it is often more
convenient to express them in modulus-argument form. We
therefore write

zn=ry(cos Oy +isin f,), 23=ry(cos Oy +isin by).
Then 2,2 = 1,75(c0os 0, + i sin 6,) (cos 0, + i sin 6,)
= r,73{(cos 0, cos 8, —sin 6, sin 6,)
+i(sin 6, cos 0, + cos 6, sin 6,)}
= ry75{cos (6, + 0;) + i sin (0, + 6,)},
which is a complex number of modulus 7,7, and argument 0+ 0,.
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Hence

(i) the modulus of a product is the product of the moduli;

(ii) the argument of a product is the sum of the arguments.

We may obtain similarly the results for division:

(iii) the modulus of a quolient is the quotient of the moduli;

(iv) the argument of a quotient is the difference of the arguments.

12. The product in an Argand diagram. In the diagram
(Fig. 97), let P, P, P represent the two complex numbers 2,2,
and their product z=zz, respectively, and let U be the ‘unit’
point z = 1,

Then (§ 10) - p

£20P = 0, +0,,

where 6,, 6, are the arguments of z;,2,,
and so

LP,OP = L20P— L20P,

= (0;+65)— 0,
=8 .
= LUOF,.
Moreover, if r,, r, are the moduli of 2, z,, Fig. 97.
OP[OP, = (ry1y)[rs = 14/1
= OF,/0U.

Now in measuring the angle £F,0P or LUOP, we proceed, by
—— -
convention, from the radius vector OF, or OU, through an angle 0;,

in the counter-clockwise sense, to the vector 0P or 5};. It may be
that 6, itself does not lie between 0,, but nevertheless the fact
that the angles £ P,OP, LUOP, so described are equal ensures that
the Euclidean angles £F,0P, LUOP, of the triangles AF,0P,
AUOP, are also equal. Moreover, the sides about these equal
angles have been proved proportional, and so the triangles are
similar.

Hence follows the construction for P:

Let P, P, represent the two given mumbers zy,2,; let O be the
origin and U the unit point z = 1. Describe the triangle POF,
similar to the triangle P,OU, in such a sense that LP,0P = LUOPF,.
Then the point P represents the product z,z,.
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Cororrary. The effect of multiplying a complex number z by &
i8 o rotate the vector OP representing z through an angle }m in the
counter-clockwise sense. This follows at once if we put z, = ¢ in the
preceding work, so that P, in the diagram becomes the point (0, 1)
or, in polar coordinates, (1, }=).

Thus ¢ acts in the Argand diagram like an operator, turning the
radius vector through a right angle.

EXAMPLES VIII

1. Mark in an Argand diagram the points which represent
(@) 3+2i, (b) 2+4, (c) their product. Verify from your diagram
the theorem of the text.

2. Repeat Ex. 1 for the points
(a) 11 (b) 3_51."
(a) 2—1, (0) 2+1,

(¢) their product;
(¢) their product.

13. De Moivre’s theorem.
(i) To prove that, if n is a posilive integer, then
(cos 0+ isin 8)* = cosnb +isinnf.

We use a proof by induction. Suppose that the theorem is true
for a particular number ¥, a positive integer, so that

(cos 8+1isin 0)Y = cos N@+isin NG.
Then
(cos 044 sin 0)¥+1 = (cos N0+ isin N6)(cos 8 +isin )

= (cos N cos § —sin N@sin 0)
+i(cos NOsin 8 + sin N6 cos 0)
= cos (N +1) 0 +isin (N +1)4.

Hence if the theorem is true for any particular value N, it is true
for N+1,N+2,... and so on. But it is clearly true for N = 0, and
80 the theorem is established.

(ii) To prove that, if n i3 @ negative integer, then
(cos 8+ isin 6)* = cosnb +isinnb.

DE MOIVRE’S THEOREM
Then m is a positive integer, and so
(cos 0 +isin 0)* = (cos 8 +¢sin §)—™
. 1
g (cos @ +1sin 0)™

1

= Cosmb+isinmb (8 anove)

- cosmbf —isinmé
"~ (cosm8+isinm#b)(cosmf —isinmb)

cosml —isinmb
"~ cos®mO—i%sin®mb

4 cosmb —isinmb
~ cos?mb +sin®mb

= cosmf—isinmb
= cos (—nl)—isin (—nb)

= cosnf+1isinnd,
as required.

(iii) To prove that, if n is a rational fraction, then
(cos 0 +1sin 0)* = cosn(0+ 2kn) + ¢ sinn(0 + 2kn),
where k 13 an inieger, positive or negative.

Suppose that n=plg,

where p, ¢ are integers (¢ positive) without a common factor.
Consider the expression

(cos 04 1sin 0)'e,
and suppose that it cAN be expressed in the form
cos ¢ +ising.
cos 0 +isin @ = (cos ¢ +isin )2
= cosgp+isingd [by (i)).
Equating real and imaginary parts, we have

If so, then

cos 0 = cosgd, sin @ = singd.

1756
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These equalities hold simultaneously if, and only if,
qp = 0+ 2k,

where k is any integer, positive or negagive. Hence
¢ = - 0+ ) T,

so that a -

(6089+isin9)”“=cos(lﬂ+g’fw)+isin(lo+% )
g q g

Raising each side to the power p, by (i) or (ii) above, and then
writing p/q = n, we obtain the relation

(cos 0+ isin B)" = cosn(0+2kw) +i sin n(0+ 2k).

The expression on the right-hand side takes various values
according to the choice of k. That is to say, there are several
values for (cos 6+4sin 8)* when = is a rational fraction; the case
n = } is familiar, leading to two distinct square roots. We see by
elementary trigonometry that distinct values are obtained when %
assumes in succession the values 0,1,2,...,¢—1, where g is the
denominator in the expression of n as a proper fraction in its
lowest terms. Thereafter they repeat themselves, any block of
g consecutive values of k giving the whole set.

Summary. The formula
(cos 6 +2sin 8)* = cos n(0 + 2kx) +isinn(0 + 2kn)
18 true for all values of m, where n may be a positive or negative
integer or rational fraction. When n is an integer, k may be taken
as zero; when n is fractional, distinct values are obtained on the
right-hand side for k= 0,1,2,...,q—1, where q i3 the denominator
in the expression of n as a proper fraction in its lowest terms.

EXAMPLES 1X

1. Express %+£€ in modulus-argument form r(cos 6+ 7sin #)
and hence, with the help of your tables, find (i) its square, (ii) its

square roots, (iii) its cube roots, (iv) its fourth roots.
2. Repeat Ex. 1 for the number 4+ 3i.
3. Repeat Ex. 1 for the number 12— 5i.
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14. The nth roots of unity. In virtue of the formula
1=cos0+1sin0,

it follows from De Moivre's theorem that, if n is any integer
(assumed positive here) then an nth root of unity, that is

Y1=14n,

can be expressed in the form
cos (l ; 2k1r) +1isin (1 .2k1r)
n n

for k=0,1,2,...,n—1. Hence for any given positive inleger n,
there are n distinct roots of unity, namely

2k . .
€08 — + ¢ 8in —,
n
where k=0,1,2,...,n—1.

For example:
When n = 2, there are two square roots, namely
eos%+ i sin =
i TR
where k= 0,1. When k = 0, this gives cos0, or 1; when k= 1, it
gives cosm, or —1.
When n = 3, there are three cube roots, namely
cos &r +48in &
3 e
where k= 0,1,2. When k=0, this gives 1 itself. The values
k=1,2 give

e ;
cos%r-!-wm?ﬂsi(—l—ks‘ﬁ),
oos?+wm?5i;(-l—u/3).

These complex cube roots of unity are usually denoted by the
symbols w, w? either being the square of the other. They are also
connected by the relation

l+w+w?=0.
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EXAMPLES X
Use De Moivre’s theorem to express the following powers in
‘modulus-argument’ form r(cos 0 +4sin ):
1
2. (]-Ti)s'-

4. (J3—i)t 5. (1—i)t.

L (1+i) 3. (1+iy3)%

6. (J3+i)k
7. Find expressions for
@ 1B, @) B
analogous to the roots evaluated in the text.

15. Complex powers. The reader will remember that, when
seeking an interpretation for symbols such as

a% ‘o, avs, g

for real positive @ and positive integral n, he was guided by the
principle that the formula of multiplication

a? x a? = Pt
should hold for all values of p and g. This led to the interpretations
=1 a*=1/a* o= e, aV*=1[Ya.

We now consider the meanings which should be given to a® when
a,n are complex numbers, still retaining the wvalidity for the
formula of multiplication.

(i) When n is real and rational, the treatment is comparatively
simple, for we know that any complex number a can be expressed
in the form e

a=r(cos §+1isin 6),
and so, by De Moivre’s theorem,
a® = r*{cos n(0+ 2kn) + i sinn(0 + 2kx)}

where the values &k = 0,1, ..., g—1 (g being the denominator in the
expression of n as a proper fraction in its lowest terms) give
distinet values for @®. Thus @™ is, in general, a g-valued function.
(For example, if n = }, there are two square roots.)
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(ii) When n is complex, say
n=x+1y, (x,y real)
then we must interpret a® in such a way that
™t = qg¥ xa¥,
We have already dealt with the factor a® for real and rational values

of z, so that we are left to consider what meaning may be given to
the expression a’ when the power 4y is pure imaginary.

16. Pure imaginary powers, In the preceding paragraph we
reduced the interpretation of a™ to the case, which we now con-
sider, when » is pure imaginary. With a slight change of notation,
we write

n= Q:IE,
where # is real.

(i) When a is real and positive.

We note first that any real positive number a (other than zero)
can be expressed in the form

a=e log, a,
so that, if the laws of indices are to be preserved,
ar= (elos. a)n =enlog.a,
Writing nlog,a=izlog,a=ix’ (a2’ real),
we obtain the expression, as an imaginary power of e, in the form
aﬂ- = ew

which is found to be more amenable to treatment. Dropping the
dash, then, we consider what interpretation should be given to the
number iz

e®  (x real).

We take the hint from the expansion of p. 54, which, if valid
for pure imaginary numbers, would yield the relation
(iz)®  (iz)®  (ix)*

iz — ) et g b e
e 14 (3x) + sttt

72 gk 3 at  af
= (1—'2-]"*':!'—...)+i(x—ﬁ+a"'...)-

+ .
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Now (p. 50) we have the relations, valid for all real z,
coszT = l—z—=+£—4—...
2] 4| A
singi= x—m+ﬂ~— A
and so we are led to propose for consideration the relation
€ = cosx+isinz.

Before we can accept this as a valid interpretation for e,
however, we must satisfy ourselves that it obeys the index law

el x ¢V = ¢i=+y) (2,4 real).
Under the proposed interpretation, the left-hand side is
(cosz+isinz) x (cosy +1siny)
= (cosz cos y —sin zsiny) +i(sinz cos y + cos xsin y)
= cos (x+y)+isin(z+y),

and this is precisely the interpretation to be given to the right-
hand side also.

The interpretation is therefore consistent with the series
expansions and with the index law, and so we DEFINE the
interpretation of e (x real) to be given by the relation

el = cosx +isinz.

Note. The mere writing of iz in the expansion in series does
not of itself allow us to use the notation ¢/ under the index laws.
The step that the product of the expressions proposed for €', e
is indeed e'@+¥) js vital to the interpretation.

(ii) When a is any complex number.

We are now in a position to give an interpretation to the
expression a** for any complex number a. We have seen that a
may be written in the form

a=r(cos f+isinf) (r positive)
and, by what we have just done, we have the two relations
r = gkt  (ra0),

cos 0 +isin 0 = e,
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Hence @ = eloser x ¢if
= g% x e,

say, where u, or log,r, is a real number, positive or negative. For
interpretations consistent with the laws of indices, we must there-
fore take ai® = (ev) x (¢0)i

= gluz x g—0=

= ¢ (cos ux + 1 sin ux)

= e~9%{cos (zlog,r) +isin (zlog,r)}.

COROLLARY. Any (non-zero) complex mumber can be expressed in
the form e¥+iv, where u, v are real.

17. Multiplicity of values. There is one difficulty which we
have slurred over, as it should not be over-emphasized at the
present stage. An example will illustrate the point.

Let us consider what interpretation we are to give to the symbol

i,
Our first task is to express the number to be raised to the power i

(in this case, i itself) in the form re?, and this we do easily by

noticing that . _ (2k+4)m+isin(2k+ )7

= e‘mhﬁ

for any integer k, positive or negative. Hence the interpretation

il = [kttt
= e(2k+imixi
— e—(s’H’”"

gives an infinite succession of values, all of which, oddly enough,
are real.

In a full discussion, we should therefore be on our guard to
include many-valued powers. A safe way of doing this is to include
the factor e®*7¢ (which is just cos2ks+isin2km, or 1, for any
integer k) in the expression in exponential form of the number
whose power we seek. That is to say, in order to evaluate a™, we
write a in the form 0 = guHito2km)

and allow k to take integral values.
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It should be noticed that we established the interpretation

e®=cosx+isinx

under the conditions of De Moivre’s theorem, namely that « is a
real number, being a positive or negative integer or rational
fraction. When z is not integral, there is really an ambiguity of
interpretation, since

eiT — (e{)z
= gill+2km)z
= 08 (1 + 2kn) x4+ isin (1 + 2kn) z,

where distinet values are obtained for k= 0,1,...,¢—1 as usual,
g being the denominator when the fraction z is expressed in its

lowest terms. Our interpretation is therefore subject to the
convention k = 0.

IrvusTrRATION 2. To find an expression for
(143 3)4H,
We first write 1+4,/3 in the form

1+£,/352(;+i‘§)

d 2(cos"-’+ isinT
3 3
_— 28‘“’”’21‘”) (IC mtegral).
We next use the fact that

(L+iy3)H = (L+iy3)tx (1+iy3)H,

Now (14133)F = 24etitin+2em)
= 16e7i/3,
Also (14 (3)i = 2H x {oitin+2m)i
= 2k ¢ g—Umtkm)
Finally, 2 = glog.2,
givmg o4t = e“lo&ﬂ'
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so that, in all,
(1443)4+ = 1664mi/3 x gltloss2 x g—(in+kn)
= 16e—\dn+kn) y glhn+iloge2)i
= 16Ge—(n+km) {coa (%..,.H_ ’} 10g, 2) +isin (%‘n‘-i- % log, 2)}'

where k is any integer, positive, negative, or zero.

EXAMPLES XI
Find expressions for
1. (1+4)% 2. (1—1)*,
4, (1—i3)3+2, 5. (y3—i)HH,

3. (J3+i).
6. (14q)+H,

18. The logarithm of a complex number, to the base e.
We have seen (p. 181) that any (non-zero) complex number can

be expressed in the form
a= eu+'tv.

We DEFINE the logarithm of @ to be the complex number
u+iw (u,v real).

This is consistent with the treatment already given for real
numbers (v = 0) and, in virtue of the interpretation already given
to indices, it retains the property
log,a +log,b = log, (ab).
We have no{v, of course, released the restriction (p. 5) that a

must be positive in order to have a logarithm. It need not even
be real.

The ambiguous determination of v, as seen by the equivalent
formula
a = evtitet2km (L integral)

means that the logarithm is ambiguous to the extent of addilive
multiples of 2i.

Note. The relation (pp. 170, 180)
z = ref,
where r is the modulus and 6 the argument of z, gives the formula
logz = log|z|+iargz.
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NorarioN. The notation
Log,a
is often used to denote a value of the logarithm when ambiguity
may be present. Then the notation
log,a

denotes that determination of the logarithm whose imaginary
part lies between —# and =, and log,a is called the principal value
of Log, a.

This distinction, which is often of importance, will not, in fact,
be used much in this book, and we shall usually take the principal
value without further comment.

19. The sine and cosine. We have made no statements so
far about the formula
€T = cosx+isinz

except when = is real; naturally, because cosz, sinz are otherwise
undefined. Our next task is to define the trigonometric functions
of a complex variable z=x+ 1y (2, y real), and this we do by what
is in some ways a reversal of the process hitherto adopted. We
first observe that, for real z,

ei® = cosx+isinz,
e ® = cosz—1isinz,

so that cosz = §(e™* + ),
1

1 = — (pgi® _ p—iz

sinzx 21'(8 &%),

We now adopt these formule, and make them the basis of the
following more general definitions:
If z is @ complex number, then

cosz = }(e™ +e~%),
1

¥ = (pl8 — p—i8

sinz 2':(8 gt 1

It follows at once that these definitions give the normal functions
when z is real, and also that

et = cosz+isinz.
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We must, however, now make sure that they retain the NorMAL
properties of the trigonometric functions.
Firstly, we have

4(cos?z+8inz) = (¢%+ ¢~%)2 — (i —e~2)2
= (e 4 2+ ¢~20%) — (22 — 2 + £~212)
= 4,
so that  cos?z+sin?z = 1.
Again,
4(cos z, €O8 z, — 8in 2, 8in 2,)
= (et +ein) (e + e~%) + (¢ — e~44) (¢ —e~1%)

= g(eﬂsﬁm + e—t(z;-l—z.))

on reduction, so that

COS 2, €08 2, — 8in 2z, 8in z, = €08 (2, +2,).
Also
4i(sin 2, cOs 2, + CO8 2, 8in Z,)
= (ein — e~ (¢ 4 e~1%) 4 (ef% + e~4) (e — e~t1)

= 2(eftmte) — e Hatan))

so that sin 2, €08 z, + €Os 2, 8in 2, = sin (2; +2,).

These are the formule on which the theory of real angles is
based, and so the structure will stand for complex ‘angles’ also.
Further details are left to the reader.

Note. The functions |cosz|,|sinz| are not now subject to the
restriction of being less than unity. For example, the equation

cosz =2
is satisfied if e 4ot =4,
or ez _4ee4 1 =0,
so that e* = 2 +./3.
Thus iz = log (24 3)
or z = —1ilog(2+43).
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For reference we record the following formulz:
(i) coshiz = §(e*+e~%)
= 0082%;
(i) sinhiz = }(et—e—%)
= ¢sinz;
(iii) et = cos 2k +isin2kmr = 1  (k integral);
(iv) eW¥k+Dmi = gog (2k+ 1) 7 +isin (2k+1)m= —1;
(v) ek+dmi = oog (2k+ §)w+isin (2k+ ) 7 = 4.

20. The modulus of e#, Ifziscomplex, so that
z=x+1y (x,y real),
then € = e®HV = ¢TeW
= ¢*(cosy+isiny).

Hence the modulus of ¢* is e* and ils argument is y, the argument
being undetermined to the extent of multiples of 2a.

CoroLLaRY. An important corollary, found by putting = 0,
is that
le¥| =1,

when 4y is a pure imaginary.

21. The differentiation and integration of complex
numbers. We confine our attention to the only case which we
shall use, the complex functions of a REAL variable 2. The general
theory for a complex variable is much beyond the scope of this
book.

By a complex function of a real variable z, we shall mean a
function w(z) which is either given in the form

w(x) =u(z) + iv(z),

where u(z), »(z) are real functions of z, or can be reduced to that
form. For example, the function e can be reduced to

cosz+isinz,

DIFFERENTIATION AND INTEGRATION

We then use the following DEFINITIONS:

dw__du+.d_v
dz dz ' 'dz’

(ii) fwdx =J.uda:+ifvdx.

(@)
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Particular interest is attached to the function e°%, where ¢ may be

complex of the form a +1b. We have

‘%: (e*) = % (eta+iblz)

= % {e* (cos bz + i sin bx)}

= & e cosbe) + ifenesinbai],

Hence, by definition,

;_a: (e%*) = (@ e®® cos bx — be* sin bx)

+1(@ e sin bz + b e®® cos bx)
= ae® (cos bz + 1 sin bx) + b e3* (cos bx + ¢ sin bx)
= (a+1b) e ¢ih=

= (a+ib)elativiz

= ce™.
H the rul 4 (=) = ece=
ence the rule > =
holds whether ¢ is real or complex.

Similarly we may prove that the formula
I eﬂ dx - 1 iad
¢

holds whether ¢ is real or complex.

13-2
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Because of its importance, we ought perhaps to mention also
the differentiation and integration of 2°, where z is assumed to be
real but where ¢ may be complex. Since

2° = eclwz,
we have L.l (f) =-eoloea ¢ s (logz) (asabove)
dx U da

= ecloz:_f

z
==:!:".E
z
= ca®1,

in accordance with the similar rule for real functions.
It follows that

1
edp = — gotl 2
fa. dx =g x° (e —1)
whether ¢ is real or complex.

IrLusTrATION 3. To0 prove the rule

3 (@) 0@) = 4@) - (@) +/@) o gt}

when f(z), g(x) are complex functions of the real variable z.

Write J(@)=u(@)+iv(@)=u+v,
g(x) =p(x)+ig(x) =p +1q.
Then f@)g(x) = (up—vg) +i(ug +vp),
so that
£ V@)
= [(u'p—v'q) + (up’ —vq")] +i[(w'q + v'D) + (ug’ + vp")]
= [u'g+iv'gl+ [P +iqf]
=f'g+97.

Reversal of this formula leads to the rule for integration by parts.
Hence this method is also at our disposal for these functions.

The two illustrations which follow show how complex numbers
may be used to sum series and to evaluate integrals.

DIFFERENTIATION AND INTEGRATION 189

IrLusTRATION 4. To find the sum of the first n terms of the series

1+cosf.cosf+cos?.cos20+ ... +cos™1f.cos (n—1)6,
where 0 is a real angle.

Write
C=1+cosf.cosf+cos?f.cos20+...+cos™10.cos(n—1)6,
S=  cosf.sinf+cos?f.5in20+... + cos™10.sin (n—1)86.

Then
C+18 = 1+cos0e +cos? e + ... + cos™1 0 en—1i0,

This is a geometric progression, of n terms, with first term 1 and
ratio cos@e?. It may be proved, exactly as for real numbers, that
the sum for first term a and ratio r is

a(l—r)
1—r
.q 1—cost@eni®
80 that 0+$S_T—_GCTS_8_GF.
In order to find ‘real and imaginary parts’, multiply numerator
and denominator by 1—cosfe~®. The new denominator is
(1—cos8¢i) (1 —cosfe) = 1 —cos O(e? +e~) + cos? @
= 1—cos 0(2cosf)+cos?f = 1 —cos?d
= sin?f.

Thus
; 1
C+i8 = =y {(1 —cos™fen¥) (1 —cosfe-*)}

= Bixizﬁ‘ {1 — cos™ @ em¥? — cos 0 e~ + cosn 1 § en-1)i0},
Equating real parts, we have
C= s_'u% {1 —cos™ 0 cos nf — cos® -+ cos™H! 0 cos (n— 1) 0}
= 5y {sint0—cos O(cos mf—cos cos (n—1) 0}
= g (6020~ cosn 6(—sinOsin (n— 1) 0))
3 1+cos"Bsi.n(n—1)8.

sin 6

It is implicit in the working that sin @ is not zero. That case can
easily be given separate treatment.
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lirusTRATION 5. T'0 find the real integral

fx e cos xdx.
Write C=|ze*cosade,
8 E".xezsina:dx,
so that C+iS = f ze*e*dx
- f ze+iz dy.

Integrating by parts (p. 188), we have

> d 1
CHiS=-—"——eltiz g __ |0+
T i T w1 .dx

1
= —— gell+iiz_ (1+4)
i T
1 14 -
NO‘W 1—-':;;=1Ti2——-%(1‘-"‘l)’

e1+02 = ¢ (cos x + 1 sin z).
Hence

C+i8 = [§(1—4)z— }(1 —2i +142)]e (cos & + i sin z)
= [}z —jix +$i]e®(cosa +isinz).
Equating real parts, we have
C = je*{zcosz+ (x—1)sinz}.

EXAMPLES XII
Use the method of the two illustrations to find:

1. 14 cos@+cos20+...+cosnb.

2. sin f—xsin 20 +2%sin 30 —2%sin40+... (ton terms).
Find the integrals:

3. |z cosadz. 4, J.e"sin zdzx. 5. fe‘*sin.'h:dz.

6. f:ce”sin zdax. T fxsm 3xdzx. 8, f:ce‘"’cos Sxdzx.
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Finally, we give an illustration to show how the use of complex
numbers can help in dealing with the geometry of a plane curve.
We use for the curve the notation of the preceding chapter.

TrLusTrATION 6. Let P(z,y) be a point of a plane curve, and
let 8,4 denote as usual the length of the arc measured from a
fixed point and the angle between the tangent at P and the x-axis.
(It is assumed that x, y are real.)

Write o
dz dz  .dy
Then - £+$Z;
= cosy+isiny (p. 108)
=¢¥ (p. 180).
In particular, % =1,
We also have the relation
d*z . . d¢
ol P o
st~ % s
= ike¥ (p. 113).
This is equivalent to
&z Py .
W"‘%a‘i = me‘*,

so that, taking moduli on each side,

= () + (@)

Again, %—i%=cos¢——isin¢
E e_‘*,
de .dy\ [Pz By .
so that (d_a_"d_‘;) (?i—si-]-‘?is_ﬁ) = ix.
Equating imaginary parts, we obtain the formula
_dad’y dydiz

R s s
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REVISION EXAMPLES VII
‘Scholarship’ Level

1. Two complex numbers z,z’ are connected by the relation
2" = (2+2)/(2—2). Show that, as the point which represents z on
the Argand diagram describes the axis of y, from the negative end
to the positive end, the point which represents z’ describes com-
pletely the circle 22+ »* = 1 in the counter-clockwise sense.

2. Explain what is meant by the principal value of the logarithm
of a complex number z + iy as distinct from the general value.
Show that, considering only principal values, the real part of

(1 + 7)'ose (144)
is 2tlor.2g—47" cog ({7 log, 2).

3. Express tan (a +1b) in the form 4 +iB, where 4, B are real
when a, b are real,
Show that, if 2 +iy = tan }(£+47), then

$x = e78in £ —e~2gin 2£ + e Msin 3€— ...,

vf'hen 7 is positive; and that there is a like expansion with the
sign of n changed, valid when 7 is negative.

4. Prove that, if
sin (x4 1y) = cosec (u+iv),
where 2, %, %, v are real, then
cosh®vtanh?y = cos?u, cosh®ytanh?v» = cos?z.
5. Solve the equation
(1 —ai)*+4(1 +20) = 0,

giving the roots as trigonometrical functions of angles between
0 and .

6. Prove that, if 2 + iy = ¢cot (u +iv), then

a__ (=g . c
sin2x sinh2v  cosh 2v— cos 2’
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and show that, if z,y are coordinates of a point in a plane, then
for a given value of v the point lies on the circle

22+ 92 4 2cy coth 2v 4+ ¢* = 0.
Also verify that, if a,,a, denote the radii of the circles for the

values v,, v, of v, and d denotes the distance between their centres,

then ag F ag_dg

2a,a,
7. Obtain an expression for |cos (z+iy)|® in terms of trigono-

metric and hyperbolic functions of the real variables z,y.
Show that | cos (z+iz)| increases with z for all positive values

of z.

= cosh 2(v, — v,).

1tz
#2—1
in the form X +1Y, where 2, = 2, +1y;, 2 = ¥+1Ys.

Deduce that the points which represent three complex numbers
%y, %9, 23 in the Argand diagram cannot all lie on the same side of
the real axis if

8. Express

21+ 29t 23 = ZiZaty.
9. Prove that the roots of the equation
(=1 =—(z+1)",
where n is a positive integer, are

oot (2k+ D

o (=0,1,2,..,n-1).

Deduce, or prove otherwise, that

a1l (2k+1)w n-—1 s(2k+ N
’Eocot s 9 ,Eocosec o

10. Write down the complex numbers conjugate to z+iy and
to r(cos 8+1isin 0).

Prove that, if a quadratic equation with real coefficients has
one complex root, the other root is the conjugate complex number.
Deduce a similar result for a cubic equation with real coefficients.

Given that = 1+ 3i is one solution of the equation

at 41622+ 100 = 0,
find all the solutions.
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11. Express each of the complex numbers
= (14002, 2= 4(—1+i)y2

in the form r(cos 8+ sin 0), where » is positive.
Prove that 2§ = z,, and find the other cube roots of z, in the
form r(cos 6 + ¢ sin 8).

12. The complex number z = z+ iy = r(cos 6 +¢sin 6) is repre-
sented in the Argand diagram by the point (x,y). Prove that, if
three variable points z;,z,,2; are such that z; = Azy+(1—2A)z,
where A is a complex constant, then the triangle whose vertices
are z;,7,, 7%, is similar to the triangle with vertices at the points
0,1,A.

ABC is a triangle. On the sides BC,CA, AB triangles BCA’,
CAB’, ABC" are described similar to a given triangle DEF. Prove
that the median points of the triangles A BC, A'B'C" are coincident.

13. The complex numbers a,b, (1—k)a+kb are represented in
the Argand diagram by the points 4, B,C. Prove that the vector

AB represents b —a, and that

(i) when k is real, C lies on AB and divides 4B in the ratio
k:1-F;

(i) when k is not real, ABC is a triangle in which tha sides
AB AC are in the ratio 1: | k| and the angle of turn from 4B to
AC is 8, where k = | k| (cos 8 +¢sin 0).

The vertices of two triangles ABC and XYZ represent the
complex numbers @,b,¢ and z,y,z. Prove that a necessary and

sufficient condition for the triangles to be similar and similarly
situated is o

a b ¢|=0.
2 Yy =
14, [In this problem small letters stand for complex numbers
and capital letters for the corresponding points in the Argand
diagram.]
The circumcentre, centroid, and orthocentre of a triangle 4 BC
are 8, G, H respectively. Prove that

g=13%@a+b+c), 2s+h=a+b+ec.
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ABC is a triangle with its circumcentre at the origin. The

‘internal bisectors of the angles 4, B,C of the triangle meet the

circumcircle again at L,M,N respectively. Prove (by pure
geometry if you wish) that the incentre P of ABC is the ortho-
centre of LM N, and deduce that

p=l+m+n.

Prove also that the excentres Py, P,, Py of the triangle 4 BC are

given by
p=l-m—n, py=-l+m—n, p3=—l-m+n,
and that the circumcentre K of P, P, P, is given by
k=—({l+m+n).

Prove, finally, that KP, is perpendicular to BC.

15. Points 4,B in the Argand diagram represent complex
numbers a, b respectively; O is the origin, and P represents one of
the values of /(ab). Prove that, if 04 = OB = r, then also OP =r,
and OP is perpendicular to AB.

A,B,C lie on a circle with centre O, and represent complex
numbers a, b, ¢ respectively. Prove that the point D which repre-
sents —befa also lies on the circle, and that AD is perpendicular
to BC.

The perpendiculars from B,C to CA, AB meet the circle again
at B, F respectively. Prove that O4 is perpendicular to EF.

16. Prove by means of an Argand diagram, that
|2y +25| <2 |+ 2]

Find all the points in the complex plane which represent
numbers satisfying the equations

(i) 22—2z=3, (i) |z—2|=38, (iii) |z2—1|+[2—2]|=3.

17. Find the fifth rocts of unity, and hence solve the equation
(22 —1)5 = 3225,

18. Prove that, if «, B are the roots of the equation

—2t4+2=0,

(x+a)*—(z+p)" sinnb

then acf =cnng’
where cotf =xz+1.
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19. A point z==z+1y in the Argand diagram is such that
|z| =2,2z=1, and y>0. Determine the point and find the
distance between the point and 422

Show also that the points 2,z, §22, }2%, }24, §2° are the vertices
of a regular hexagon.

20. The points 2z;,2,,2; form an equilateral triangle in the
Argand diagram, and z; = 4+ 6i,2, = (1 —i)z;. Show that z; must
have one of two values, and determine these values.

What are the vertices of the regular hexagon of which z, is the
centre, and z, is one vertex?

21. A regular pentagon ABCDE is inscribed in the circle
22+ y? = 1, the vertex 4 being the point (1, 0). Obtain the complex
numbers  + iy of which the points 4, B, C, D, E form a representa-

tion in an Argand diagram.
22, Use De Moivre’s theorem to find all the roots of the equation
(22— 1) = (z—2)8
in the form a + b, where a, b are real numbers.

23. Mark on an Argand diagram the points /3 +1, 2+ 2{,/3, and
their product. What is the general relation between the positions
of the points a+ib and ({3 +1)(a+1b)?

A triangle ABC has its vertices at the points 0,2+ 2i3,
—1+1i,/3 respectively. A similar triangle A’B'C’ has its vertices
A’, B’ at the points 0, 8; respectively. Find the position of C".

24, Find all values of (5 — 12i)}, (2¢ — 2)}, expressing the answers
in the form a + b, where a, b are fractions or surds.

25. Prove that the triangle formed by the three points repre-
senting the complex numbers f,g,A is similar to the triangle
formed by the points representing the numbers u, v, w if

Jo+gw+hu = fuw+gu+ho.

26. By expressing 3444, 1+ 2 in the form r(cos @ +4sin 6), or
otherwise, evaluate
(3 + 44)%/(1 + 2¢)%°
in the form a - ib, obtaining each of the real numbers a, b correct
to two significant figures.
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27. Identify all the points in the z plane which satisfy the
following relations:

e |2—2
(1) 2242 = 22, (ii) IS <1,
i >2, @v) |z=1|+|2+1|<4.

28, Prove that three points 2,,2,,2, in the complex plane are
collinear if, and only if, the ratio

(23— 2)/(22—2)
is real.

29. Find the real and imaginary parts and the modulus for
each of the expressions

. a+ib (i) 1+cosa+isina

0 @ T+oosp+isnp’

30. Find the logarithms of —1,2—4, 107+,

31. The three points in an Argand diagram which correspond
to the roots of the equation

22 —3p22+3gz—r =10

are the vertices of a triangle ABC. Prove that the centroid of the
triangle is the point corresponding to p.

If the triangle A BC is equilateral, prove that p* = q.

32. Find the cube roots of 4— 3i.

33. If the vertices 4, B, C of an equilateral triangle represent the
numbers 2,2y, 2; respectively in an Argand diagram, state the
number represented by the mid-point M of 4B, and show that

5= etz £ il —2).

If 2, =2+2, 2z,=4+(2+23),
and if C is on the same side of 4B as the origin, find the number z,.
34. Ifz = cos @ +isin 6, express cos 0, sin #, cos nb, sin nf in terms

of z, where n is an integer.
Hence express sin? § in the form

A sin 0+ Bsin 36 + C'sin 50 + Dsin 76.
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35. Prove that

(1+sin8—ieos
1+4sin 0+ ¢ cos

6
g) = —cos 660 — i sin 66.

36. Prove that
1+ sin @+ cos 6\
(m = CO8 (i‘mr—nﬂ) = iSil](%’ﬂm‘ == nB).
37. Show that the equation
|z2—1-2i| =3

represents a circle in an Argand diagram.

If z lies on |2—1—2i| =3, what is the locus of the point
u=2z+4-3i?

Find the greatest and least values of |z2—4—6i| if z is subject
to the inequality |z—1—2i|<3.

38. Find the modulus of

3z+1
(3z—1)?
when |z| = 1.
39. Two complex numbers z,z, are connected by the relation

_ 242
et

Prove that, if z = ig, where ¢ is real, then the locus of 2z, in an
Argand diagram is a circle. Describe the variation in the ampli-
tude of 2, as ¢ increases from —co to +co.

40. If a,b are real and = is an integer, prove that
(a+1b)+ 1/ (a—1ib)
has n real values, and find those of
V(1+13)+ ¥ (1—1y3).
41, If z,y are real, separate
sec (x+1y)
into its real and imaginary parts.
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42, If a,b,¢,d are real, express each of a®+b% and ¢*+d? as a
product of linear factors.

Deduce that the product of two factors, each of which is a sum
of two squares, is itself a sum of two squares.

43. The intrinsic coordinates of a point on a plane curve are
5,4, and the cartesian coordinates are z,y. The complex coordinate
x +1y is denoted by z and the curvature by «. Prove that

2
% = e‘i“, % = $K Gw.
Hence, or otherwise, prove that

(e g

= (18"’+y"a)‘ ;A (m y _xf'yf)’

where dashes denote differentiations with respect to s.
Prove further that

¢ ]
2’ Yy ok |=x(23—K")

e e

B it x#

44, Any point P is taken on a given curve. The tangent at P
is drawn in the direction of increasing s, and a point @ is taken at a
constant distance [ along this tangent. In this way @ describes a
curve specified by X, ¥, 8,Z analogous to the specification z,y, s,z
for P. [Notation of previous problem.] Show that

0 B = ey,

(ii) the curvature K of the derived curve at @ is given by the
fostas K+ = x(L+24) + Tk,
where " = dr/ds.



CHAPTER XII
SYSTEMATIC INTEGRATION

Ar first sight the integration of functions seems to depend as
much upon luck as upon skill. This is largely because the teacher
or author must, in the early stages, select examples which are
known to ‘come out’. Nor is it easy to be sure, even with years of
experience, that any particular integral is capable of evaluation;
for example, zsinz can be integrated easily, whereas sinax/z
cannot be integrated at all in finite terms by means of functions
studied hitherto.

The purpose of this chapter is to explain how to set about the
processes of integration in an orderly way. This naturally involves
the recognition of a number of ‘types’, followed by a set of rules
for each of them. But first we make two general remarks.

(i) The rules will ensure that an integral of given type musT
come out; but it is always wise to examine any particular example
carefully to make sure that an easier method (such as substitution)
cannot be used instead.

(ii) It is probably true to say that more integrals remain
unsolved through faulty manipulation of algebra and trigonometry
than through difficulties inherent in the integration itself. The
reader is urged to acquire facility in the normal technique of these
subjects. For details a text-book should be consulted.

1. Polynomials. The first type presents no difficulty. If f(z)
is the polynomial

flx)=aga+a 2™+ ... +a,,

. e L
I . L

then

2. Rational functions. (Compare also p. 11.) A rational

function f(z) of the variable x is defined to be the ratio of two
polynomials, so that Plz)
flz) = @)
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for polynomials P(x),Q(x). If the degree of P(x) is not less thfn.n
that of Q(z), we can divide out, getting a polynomial (easily
integrated) together with a rational fraction in which the degree
of the numerator is less than that of the denominator.

We therefore confine our attention to the case in which the
degree of P(z) is less than that of Q(z). It is assumed, too, that all
coefficients are real.

It is a theorem of algebra that any (real) polynomial, and, in
particular, Q(x), can be expressed as a product of factors, of which
typical terms are (az+ Y™,

(a2 + 2hax + b)»,
where «, B, @, h, b are real constants, but where
h®<ab

so that the quadratic ax®+ 2ha +b cannot be further resolved into
real facters.

[We ought to add that, for a given polynomial, the difficulty of
factorization may be very great indeed.]

It is a further theorem of algebra that the rational function
may then be expressed in the form

4, A, A, }
et
E{(uz+ﬁ)m+(ax+ﬁ)m—1+ ox+p
B+ 0, Byz+ 0, B,z+C, }
+E{(ax=+2hz+b)“ (ax3+2hz+b)”‘1+'"+a:t”+2hn:+b :

where the first summation extends over all linear factors oz + 8,
and the second over all quadratic factors az®+ 2hx +b.
The integrals from the first summation are of the type

Adzx
(o +B)*’
y: |
3 (1—Fk) (o + )% (1)
which give 4
:Iog|ax+ﬂl (=1)

14
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The integrals from the second summation are of the type

J' Bx+0C

(ax®+ 2ha +b)P

and require more detailed consideration.

Note first that
J‘ ax+h
(ax®+ 2hx + b)P
1

Yi—p) @@+ oherbps P+
$log | ax®+ 2ha + 0 | (p=1),

and so, by writing
Bz +C=(Bla)(ax+h)+ (aC —LB)/a,
we can reduce our problem to the evaluation of integrals such as
g ve HEh rv.
(ax®+ 2hax +b)P"
Write a(ax®+ 2hx +b)= (ax +k)® +ab— 12,
and make the substitution (remembering that ab—A?2 is positive
by assumption) az+h = t(ab—H2).

ar-1dt J(ab—12)

o f (aa® + 2hz + )P =f {#(ab—1%)+ (ab —1Ap

= (ab— k"‘)"*f (241)p°
Our final problem is therefore to evaluate

L=[w

and for this we need a formula of reduction. On integration by
parts, we have
H=2p) .,
P t“-l- 1)1? (tﬁ + ]_)‘.'l+1

(@+1)—1
- @ 2w

dt

t
= @rip 2= L)
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t
Hence 2pl, - (2p-1)I, = @+
or, replacing p by p—1,

t
2Ap =11~ 2p=3) oo = G

By applying this formula successively, we make the evaluation of
I, depend on that of I, ;,T,,_,,..., and, ultimately, on I;. But
dt
241
= tan—1{,

I, =

and so the whole integration is effected.

3. Integrals involving y/(ax + b). Rational functions of z and
J(az 4 b) may be integrated readily by means of the substitution

t = J(ax+0b)
1
or o= (£2—0b).
The result is the integration of a rational function of ¢.

Note. The reader is unlikely to remember all the details to be
given in § 4 following. The methods should be thoroughly under-
stood, but it may well be found necessary to refer to the book for
details in actual examples. If desired, §§ 5, 6 and 7, which will be
of more immediate practical value, may be read next.

4. Integrals involving y(ax®+ 2hx + b). We first ta.ke. steps
to simplify the quadratic expression under the square root sign.
(i) Suppose that a is positive. Then
a(az®+ 2hx + b) = (ax+h)*+ab—h
Write ar+h =2";
224 pt (ab> 1)
24 2hx+b) =
ey ikt TP
where p® = ab— k2, ¢* = h*—ab respectively. )
(ii) Suppose that a is negative. Then —a is positive, so we write
—a(ax®+ 2hx +b) = W2 —ab— (ax+h)%.

14-2
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If 1*—ab is negative, the right side is necessarily negative, so that
ax®+2hz +b is also negative and (in real algebra) has no square
root. We therefore take h®—ab to be positive, and write

r2 = h®—ab;
thus, if ar+h =2,
as before, we have
—a(ax®+ 2hx +b) = r2— 2",
If, then, we have to evaluate a rational function of z and
J(@a®+ 2hz + b), we may first apply the transformation
ax+h =2,

The integrand becomes a rational function of 2’ and of a surd
which may assume one or other of the three forms

(i) Jz?+p? a>0,ab—h%>0,
(ii) J(z"*—¢?) a>0,ab—h2<0,
(iii) (r*—2") a<0,ab—h%<0.
We may now drop the dashes and treat z as the variable.
(i) The surd \J(2®+ p?).
Consider the transformation

2pt
1—¢*
The graph (Fig. 98) indicates (what
can also be proved algebraically) T
that all values of z are obtained by
allowing ¢ to vary continuously
from —1 to +1. We therefore
impose the restriction

—
—

rsint Fig. 98.

on the values of ¢ which we select.

_ 2p(1+¢2)
=g

14-¢%\2

We have dx .dt,
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Since f2< 1, we have, without ambiguity (assuming, as we may,
that p is positive), 1482
: V@ +0%) = +1 5P

Hence a rational function of z, /(2% + p?) is transformed into a
rational function of ¢, and may be integrated accordingly.

(ii) The surd /(z®—g?).

Consider the transformation

_ 41
et

The graph (Fig. 99) indicates (what can also be proved algel.Jra,i-
cally) that all values of  for which 2 > ¢ are obtained by allowing ¢
to vary continuously from +1 to +oo0.

I

!

1

|

!
|
1
1

+
1
|

+
|
!

Fig. 99.

[We can restrict ourselves to positive values of z, since a range
of integration which involved the two signs for z would have to
pass through the region —g <z <gq where |/(2?—¢?) is undefined.
We could, of course, equally restrict ourselves to negative values
of « if necessary.]

We may therefore impose the restriction

i>1.
—4qtdt
Now dx = ("tz‘i_qt—l)zs
412q’
2'—g* = @@=
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Since ¢>1, we have, without ambiguity (assuming, as we may,
that ¢ is positive),

J@*—¢%) = +t22f11-

Hence a rational function of z, /(22— g¢®) is transformed into a
rational function of ¢, and may be integrated accordingly.

(iii) The surd |(r*—=?). x

Consider the transformation

bR apiae it
_____ P B,

The graph (Fig. 100) indicates T
(what can also be proved alge-
braically) that all values of = for Fig. 100,

which 2%?<7? are obtained by
allowing ¢ to vary continuously from 0 to co. We therefore impose
the restriction 225

on the values of { which we select,

_ Artdt

5 (2+1)2
47242

2+ 1)2‘

We have
At

Since ¢> 0, we have, without ambiguity (assuming, as we may,
that # is positive),

J0o—af) = o

- 2+1

Hence a rational function of z, ,/(r?—2?) is transformed into a
rational function of ¢, and may be integrated accordingly.

Note. The work just completed proves that the integrations are
POSSIBLE; it does not necessarily give the easiest method. For
example, the quadratic surds may also be subjected to the
following substitutions:

(i) For J/(2*+p?), let 2 = ptan 6, or = psinh 6,
(ii) For |J(2®—g?), let = gsec 0, or = gcosh 0;

(iii) For (r?—=2?), let & = rsin 6.
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5. Integrals involving y/(ax?+2hx +b): alternative treatment.

Integrals of rational functions of z, ,/(a2?+ 2hz+b) may also be
treated by methods which, by leaving transformation until the last
stages, retain the identity of the surd. We begin by reducing such
a rational function to a more amenable form.

Since even powers of |(az?+2hz+b) are polynomials and odd
powers are polynomials multiplying the square root, we may
express any polynomial in z, |/(a2?+ 2hx +b) in the form

P +Q)(az?+ 2hx +D),

where P,Q are polynomials in . Hence any rational function,
being by definition the quotient of two polynomials, is

P +Q (ax®+ 2hx +b)
R + 8 (aa®+ 2hax +b)’

where P,Q, R,S are polynomials in z. Multiply numerator and
denominator by R — 8 |/(aa®+ 2hx + b), so that the new denominator
is the polynomial R?—S2(aa®+2hx+b) and the numerator
PR—Q8(a2®+ 2hz+b) + (QR — PS) |(ax®+ 2hz +b), and we obtain
the form

A + B J(ax®+ 2hz +b)
0 ?

where 4, B, C are polynomials in 2. We already know how to deal
with the rational function 4/C, so our problem reduces to the
i ion of
integration o BJ(aa® +2hx +b)

0 .

Tt is found (surprisingly, perhaps) more convenient to have the
surd on the denominator, so we multiply numerator and denomi-
nator by |(aa®+ 2hx +b), obtaining

U
V@@ + Zha +b)’

F
53 Jaz® +2hz +b)’

where F is a rational function of z.
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By § 2 above, the problems to which F gives rise involve as

typical te
s T am (m>0),

1
—hp (n21),

Ax+ B
(p2®+ 29z +r)"

We have therefore to consider the three types of integral:

(n>1, ¢<pr).

@ )J.m (m=0),

= dx
o I E= B (" + 2+ b)

(i) J‘ (Ax+ B)d=z
(pa®+ 2gz + )" | (aa® + 2hz + b)

(i) The evaluation of the integral

(n>1),

(n=1, ¢*<pr).

i fJ(M,erer) (m>0).

Preparing the ground for an integration by parts, we observe
the identity

al, g+ 2kl ,+bI, =f(m=+2hx+b)¢m¢¢

J(aa® + 2hz + b)

=fx"*,/(ax=+2hx+b)dz.

Now performing the integration, we have, on the right-hand side,

gm+l 1 [ am(ax+h)

m+ 1J(ax’+2kz:+b)—m+ 1) J(aa®+ 2hz +b)

dx

gmtl 1
=nrilee +2hz+b) = (@l + Bl ).

Equating the two sides, we have the recurrence relation
(m+2)al,, o+ (2m+3) kI, + (m+1)bI,
= 2™+ [(ax® + 2ha + b).
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This enables us, once I, I; have been determined, to calculate
I1,,1,,1,, ... successively, and so to evaluate I,, for any positive
integral value of m.

For I,, we must reduce the surd to one or other of the forms
enumerated earlier in this section, giving

J-J(?é:ﬁ = log {m + J(xz +p2)}

or J.;](_xfffg”) = log {x +(z*—¢%)}
dax :
or J‘W = sxn‘l (3'.'/ T).
For I,, we have to consider the integral
zdx
IIE_[J(m=+2Im+b)'
(ax+h)dx
Now al,+ 1, =Jm+—m
= |J(ax®+ 2hx +b),
so that I, = - {J(aa+ 2ho+b) — ML},

(ii) The evaluation of the inlegral

dx
(@— k)" y(a2®+ 2hz + b)"

We can reduce this type to the form of type (i) and evaluate
it at once by the substitution.

1
a:—k E,
]
2
Then ax“+2kx+b=a(k+%) +2h(k+%)+b

1
= ;& (a+2Bi+y),

where o= ak®+2kk+b, B=ak+h, y=a.
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The integral is therefore

%-%J(m‘2+2ﬁt+y)

__J' L
R B

which is of the first form

J‘ z™dx 50
Jor+2hasn ™20
(iii) T'he evaluation of the integral
I = J‘ (Az+ B)dz
") (p2® + 2qz + 1) |J(az® + 2ha + b)’
wheren>1, g2 < pr.

The general case is very difficult. It is, of course, possible to
avoid it by expressing the rational function as a sum of complex
partial fractions of the type 1/(z—k)?, where k is complex. This
reduces the integration to type (ii)

da
(z— k)" J(az® + 2hx +b)
already discussed. The final return to real form is an added point
of difficulty.

We begin with an algebraic lemma, designed to reduce two

quadratic expressions simullaneously to simpler form.

(% complex)

Levma. To establish the existence of a (real) transformation of
the type o ot 4B
t+1
which reduces the quadralic expressions

ax®+ 2hx+ b,

pat+2qx+r
(t+1)*
w24
(t+1)%

to the forms

simultaneously.
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Since (t+4 1) (aa®+ 2hx+b)
= a(at+ B)2+ 2h(axt+ B) (1 +1) +b(1 +1)?

under the transformation, we see that the coefficient of ¢ vanishes

on the right-hand side if «, B are chosen so that
axf+h(x+p)+b=0.

Similarly the coefficient of ¢ from pa2+ 2gx +r vanishes if
paf+q(a+B)+r=0.

Also «, B necessarily satisfy the equation in 6
af—0(a+pB)+0%2=0.

On eliminating the ratios af:x+p:1 between these three rela-
tions, we obtain the equation

at A b
P q L = 0,
1 -6 &

which is a quadratic in @ with (by definition) roots «, f. Hence
%, B may be found and the transformation determined. (If, ex-
ceptionally, a/h = p/q, the two quadratics differ only by a constant.
The substitution az + kb = af reduces the integral I,, to one or other
of the types discussed on p. 213.)

Moreover «, 8 are real. If not, they must be conjugate complex
numbers, since all coefficients are real. Suppose that

«=A+ip, B=A—iu (A p real).

Since paf+g(a+p)+r=0,

we have the relation
P(A*+p®)+2gA+r = 0.

Multiply by p (which is not zero, by the nature of the problem).
s P+ 2pgA+pr+put = 0,
or (PA+q)2+ (pr—g¥) + (pp)* = 0.
Since p, g, A, p are all real, the two squares are positive; and, by
hypothesis, pr —q% > 0. Hence the left-hand side is positive. We
are therefore led to a contradiction, and so the supposition that
«, B are not real is untenable.

Moreover, the condition pr —g¢* > 0shows that «, 8 are DIFFERENT
numbers.
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SvmmMARY. We can find two distinct real numbers, «,f, the
roots of the quadratic equation

a h b
P ¢ r (=0
1 -6 6
which enable us, by means of the transformation
t

to reduce the two quadratic forms
ax?+ 2hx+b = 0,
pri+2qx4+r=0 (g®<pr)

to the forms i 0
(E+1)*
w4+

n (t+1)2
simultaneously.

Let us now return to the integral. On substituting for z in the
expression Ax+ B, we obtain an expression of the form

0+D
t+1 "’
where C = Aa+ B, D = AB+ B; also
i
CL+D.L_—B—G!!
s t+1 "(t4+1)2

i (w B+0')" |J(ul®+v)
(E+1)2 " t41
2 f(n’.-—ﬁ) (Ct+ D) (t+1)2m-2ds.
(W' B+ o) J(ul+v)

The numerator, which is a polynomial in ¢, can be expressed in

the form P +Qt, where P,Q are polynomials in #2; and so, writing
u't?+9 =g, or ;
§—v

w

{2
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we obtain P and @ as polynomials in s. Hence the numerator can
be expressed as a polynomial in 8= (u't*+v'), together with ¢ times
another polynomial in («'t®+ '), the order of the whole numerator
being 2n—1 in #, which is less than that of the denominator.
Hence I, is found as a sum of integrals of the form

U= J‘ dt V= J‘ tdt
2= (u't’+v‘)",](ut2+v)’ k= (urts_l_v')k'J(“ts_'_.v)'
For the latter, put y? = ut®+v,
so that ydy = uldt;
hence V= 1 . ydy ;
u| [u ]
(£ w-0+v]y

= k-1 dy
{u' 2+ (wv' —u'v)}F’
which reduces the problem to the integration of a rational function.

Finally, consider
dt

U*Ef(u't’+u')k,/(ut=+v)'

. ’ ’ 1
Write u't24v =E,

) 1
2u'tdt = — 5 dz,

: =9
so that t=J( ,”),
uz
e e
uz

dz u'z u'z
Tien =f{_2u'z‘ /\/(1 —v’z)}'zk'J{u— (wv’—u’v)z}
e e
2) JI(1=v"2) fu— (w' —u'v)z}]’
But the integral is of the form
zk-1dz
J(a+ 2hz+b2?)’
whose evaluation we considered in the preceding section.
The whole integration may therefore be effected.
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6. Trigonometric functions. Since
- 2
cosa:-:l tan §x. . 2taniz
1+tan? }z 1+tan?3a’

trigonometric integrals may be reduced by means of the
substitution

t = tan {z.
1— 2t
Then = — = —
. S T 1+
2d¢
e ¥

Hence a rational function of sinz and cosz is transformed into a
rational function of ¢, and may be integrated by the methods of § 2.
For reduction formula for

fsin”‘ zcostaxdxy

and similar integrals, see Vol. 1, pp. 106-10.
The substitution ¢ = tan §z should not be applied blindly. For
example, if the integrand has period =, the alternative

t=tanx
may be better.

Thus, consider the integral

J‘ dz
Is|——M—.
(secx+ cosz)?
1 1
{sec (x+7)+cos(z+7))® (secx+cosz)?’
we may use the substitution
it =tana,

___J‘ sectxdx
-~ J (sec?z+1)2

Since

Now

[ &

I f (#+2)*
This is the integral of a rational function, and may be evaluated
according to the usual rules. Alternatively, the substitution
t = J2tan 6 makes the integral trigonometric again, but leads to
an easy solution.
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7. Exponential times polynomial in x. A polynomial is a
sum of multiples of powers of z, and so, in order to evaluate the

integral
f o f(2)dz,

where f(x) is a polynomial, we need only consider integrals of the

type
%, Ej‘e’%“dx (n=0).

Integrating by parts, we have the relation
U, = 2 ePTgh — E-"ef"' a™1dx,
p p
leading to the recurrence formula
1 n
", = 5 ei”’x"—§ %, (n=1)
which enables us to express u, in terms of

Uy = femdx g ers,
P

8. Exponential times polynomial in sines and cosines of
multiples of x. Consider the integration of a sum of terms of the

type
erTsina, xsinayx ... sina,z cosbyzcosb,x ... cos b, z,

involving m+n factors in sines and cosines. The use of the
formula such as

2 sin ux cos vx = sin (u +v) 2z +sin (v —v)z,
2 sin ux sin vx = cos (v —v)x —cos (u+v)z,

and so on, enables us to reduce the number of terms in a typical
product to m+n—1l,m+n—2,m+n—3,... successively, while
rctaining the same type of expression. Ultimately we reach one
or other of the forms

C E-"e’-“ cos qadz,

S= fe‘-"z sin qzdz,
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whose solution should now be familiar. We find

=g’ pooagegsingz),

1 :
=Pt \pangzr—geosgr).
WarnN1NG. ' The work of this chapter will enable the reader to
evaluate (ultimately) any integral that comes within its scope,
But there are many functions which cannot be integrated in terms
yet known to him. Some of these are very innocent to look at;

for example, '
fm—:—x de, f ' dz,

J‘ dx

J{(1-2%) (1 -k2a?)}"

Thorough familiarity with the rorms of the integrals that can be
evaluated should help in the avoidance of these pitfalls.

[For examples on the work of this chapter, see Revision
Examples VIII and IX, pp. 226, 227.]

CHAPTER XIII
INTEGRALS INVOLVING ‘INFINITY’

1. ‘Infinite’ limits of integration. It is often necessary to
evaluate an integral such as

[ECLE

under conditions where b tends to infinity; we then speak about
‘the integral from a to infinity’

= ]
I flz)d=.
a
Similarly we meet the integral
b
[} reas,
or, combining both possibilities,
2]
fla)de.
-0

Our problem is to discuss what is meant by such integrals, and
to show how to evaluate them. The general theory is difficult, so
we confine ourselves to the simplest cases. We also assume that
the function f(x) is continuous throughout the range of integration.

We define the integral to infinity

INCLE
by means of the relation
o N
[(teyia = tim [(rayaa.
a N—w,Ja

In the cases with which we shall be concerned, the indefinite
integral F(z) of f(x) is considered to be known, so that

ff(x)dm = F(N)—F(a).

15 51
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We can therefore evaluate the integral to infinity in the form

f ® fw)di = Jim V)~ F(a).

It may be added that it is often possible to evaluate the definite .

fntegral f “f(x)dz even when the indefinite integral f (@) de
a
cannot be found. A well-known example is J‘w El:—"f dx whose value
]
is §.
IrrusTrRATION 1. T0 evaluate
f * anda.
1
Consider the integral
N
J‘ atdz (n—1)
1

which, by elementary theory, is

1 N
—_— il
[ﬂc+  § ]1
Nn+l 1
) n+l n+l
If n+1 is PosITIVE, then N7+ increases indefinitely with N, so
that o
does not exist.

If n+1 is NEGATIVE, then N7+! tends to zero as N increases
indefinitely, so that

.. fNmHt ] 1
lim —_— e —_—,
zv-.-qo{n+1 n+1} n+1

2L 1
Hence J; andx = R (n<—1).
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IrLusTtrATION 2. T'0 evaluaie

@
J‘ xe~Tdzx.
0
We know that, on integrating by parts,
J'xe"“‘da: = —-:ce—‘"+fl e Tdx

= —geT—eT,

N N
s0 that j ze *ir= [—(a:+1)e"‘]
0 0
=—(N+1)eVN4+1.
Now (N+1)e ¥ = Nej;l = N'Evl—z A
I-I—N+'2—.|+...

and, for positive values of N, the denominator is certainly greater
than N2, so that (N +1)

N2
Thus (N+1)eN—>0
as N increases indefinitely. Hence

(N+1)e¥N<

J‘wa:e"“’da:= lim {— (N +1)e-N+1}
0 N—+>w

=0+1
=1,
IrrusTrRATION 3. To evaluate y
B0l e sy et e 1
—00 1 + xz. /
Consider the integral /w
A SR R T D T
—u 142
r
where M, N are large positive num- ____—" _ ,?r _________
bers. The value of this integral is . /
[tan“ :c]
-M

or tan—! N —tan—1(— M). Fig. 101.

I5-2
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Care must be exercised in selecting the correct angles from the

many-valued inverse tangents. The graph
y = tanlz,

shown in the diagram (Fig. 101), illustrates the ‘parallel’ curves
along which y must run, and the values selected must be confined
to one of them. The most natural choice is to work with the curve
through the origin 0. Then for large negative values of z, the
value tan—! (— M) just exceeds — }u; as x increases, tan—1z rises
continuously through, say, —}=, —}m, —}n,0,3n, 4= and so on,
approaching the value }= for the limit of tan—1 N.

T3 " o lai i Im {tan~H(— M)
=ir—(—4n)

= T.

Hence J.

ILLusTRATION 4. (Change of variable.) To evaluate

©_ Jde
J, wre

N
Consider the integral uy EJ; T

Make the substitution x = tan 6,

dx = sec?0d0.
2
Then fset;cfgﬂ f cos® 0d@

between appropriate limits.

When z = 0, we may conveniently take § = 0. As z increases,
0 also increases, assuming a value very near to }« for large values
of N. In the limit, we obtain the value . Hence

ri—f"coszadh!f"u 26)d6
o T+a = Jo i YR

= }u.

ILLusTrATION 5. (Formula of reduction.) To evaluate

= Fz’"e“‘dx,
o

where m i8 a positive integer, greater than zero.
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N
Lok R f mezdy
0
N N
. [—xme—“] +mJ am-le—2dz,
1] 1]

Nm Jiifes
NOW Nme_N = F — N2 Na H
14N+ Gr+37+-

and the denominator, being certainly greater than
Nmti(m 4+ 1)1,

greatly exceeds the numerator for large values of N, whatever m

may be, so that lim Nme-N = 0.
N—ow
Also ame =0
when z = 0, since m > 0.
N
Hence lim [—a:”‘e‘”] =0,
N—=w 0
and so, as N o0, Jy=ml, .

The formula of reduction enables us to make the value of J,
depend on that of J; for

------------------

-2}
Moreover, Jo = J; e*dx
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o0
Hence J. ame~*dy = ml
0
EXAMPLES I
Evaluate:
s o] (+] '
1. f g ) f - 3. f Pe=dz,
1 &2 2 3’\’-’3 0
o0 dx a dx 0
—— Ea . S =Tt Y | 0 —Z gj .
e 5 LTS 6 J;e sin zdzx

0
7. J. %%, stating for what values of @ the integration is possible.
0

2. ‘Infinite’ integrand. It may happen that, in evaluating
the function
[Fwra,

we find that the integrand f(z) tends to infinity—or, indeed, has
some other discontinuity—in the range of integration. Suppose,
for example, that f(z) increases without bound near z = ¢. If ¢ is
inside the interval (that is, not equal to @ or b) we ‘cut it out’ by
considering the sum

b
@+ [ 1w,

where €, are small positive constants, over ranges which just
miss ¢ on either side. We then define the value of the integral to be

—e b
fim f f@yde+lim [ fz)ds,

e—>0 7+0Jety

supposing that these limits exist.
When ¢ is at a or b the modification is obvious; only one limiting
value is then required.

ItLustraTiON 6. To determine the values of n for which the
integral .
dx
_’;F (n>0)

exists.
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Consider the integral

As € tends to zero, the term ¢~ also tends to zero if the exponent
1—n is positive; otherwise !~* increases indefinitely. Hence the

integral exists provided that

n<l,

1
and its value is then -l_——n{l -0}

gre -

l1—-n

The case n = 1 requires separate treatment. We then have

.rd_"f = [log:c]l = logl—loge,
e T €

so that (compare p. 4) the integral does not exist.
The required condition is therefore

n<l.

TrvusTrATION 7. To evaluate

P o alitasec
fl (x+3)J(z—1)"

This integral involves two infinities; the upper limit of integra-
tion is infinite, and the integrand is infinite when z = 1. The two
phenomena must be kept separate.

We consider the integral

N dx
£ =L+,(w+3mx—1)
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Write z—1=4¢,
dx = 2idt.
Then I= ﬂt_
(2+4)t

between appropriate limits.
Now. we have cut out the value z = 1,t= 0 by making the
lower limit 1+e. Thus ¢ is never zero, so that the factor ¢ may be

cancelled from numerator and denominator of the integrand.
Hence

oy oo
44
t
= i It
()]
between appropriate limits.

Consider the range of variation of f as z increases continuously
from 1+¢to N. We have

t=+J(z-1),

having committed ourselves to the positive square root by putting
J(@—1)=1¢ in the integrand during the substitution. Hence ¢
increases continuously from the small value |e to the large value
(N —1); and as it does so, tan~1(}#) increases continuously from
just above zero to just short of }=. Thus, in the limit,

I=3n-0

= }m.

TrrusTrATION 8. To evaluate

¢ da
LW-—“—)} (O<a<bh).

The denominator in the integrand becomes zero at z = ¢ and at
¢ = b, and so we must consider the integral

b—y dx

12 e FE—a)o=ay
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Make the substitution
x = acos?t+ bsin?i,
dz = 2(b—a)sintcostdt.
Then x—a = (b—a)sint,
b—z = (b—a)cos®t.

Consider the range of integration in the variable {. When z = a,
we have asin?t = bsin®f, so that sini = 0; and when 2 = b, we
have bcos?t{ = acos®f, so that cost=0. We must select as
starting-point: for ¢ a value for which sin¢ = 0 (corresponding to
x = a), and the obvious value is ¢ = 0. The relation
i—f = 2(b—a)sinicosi
shows that, at any rate for small values of ¢, the variables z,¢
increase together; and this process continues until #= =, at
which point z has the value . The range is therefore 0,}=. But
we have had to exclude these points themselves because of trouble
with the integrand, and so the range must run from just above
zero to just short of }=; say from €’ to 4= —»'. Thus

tn—7 2(b—a)sintcostds
¢ J{(b—a)®sin®tcos®t}

I =

Moreover the rosiTIve value of |J{(b —a)?sin®t cos®¢} in the interval
0,3m is (b—a)sintcost, so that
tn—7" 2(b—a)sin tcos tdt

I=1, ~G—a)smtoost -

We have excluded the end-points, so that sint and cost are not
zero in the range of integration; we may therefore cancel factors
in the numerator and denominator of the integrand, giving

fm—1
s f 24t
' 4

= 2((m—7)—<}.
Proceeding to the limit as €’,9’ tend to zero independently, we
have 1 =2(3n)

=m.
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REVISION EXAMPLES VIII

‘Advanced’ Level
1. Find the following integrals:

J‘ dx z2dx J' dz
@—-1)(z-3)" J(z-1)(x-3)" Jy{z—1)@3-2)}

(z2+1) z
P, sivor M o J@+2%+2)
oy 1
Show that J; atbsinz J(@®—1b2)

3. Evaluate the integral

b adx

a{(@—a)(b—2)}

cos™! (g) (b<a).

by means of the substitution 2 = a cos? 8 + bsin? 6.

Prove that the integrals

1
rz7(l —x)8dz, f 2%(1 —2)"da
0 0

are equal, and show that their common value is

7!81
16! "
4. Integrate
-y (z+a)(z+b)}, sinSz
(@*+1)(z—2)’ ) )
5. Integrate
x x 25
(1+2°)(1—2)" J@@+42z+5)" (a®+a?)*

Prove that, when a,b are positive,

@ cos?zdx B L
o a®cosz+b%sin®z  a(a+b)
6. Integrate :
(2z+3) 1 ze®
Bd+a22-22" zJ@+2-1) (z+1)7F
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7. Integrate
1
S2ED, J@+a+1), (gl

8. Find a reduction formula for
1
[[asapiae,
0

and evaluate the integral when n = 2.
9. By integration by parts, show that, if 0 <m <n, and

ar . . 3
I= Lla:"‘ﬁ;{a: (1—2) }dx,

1 et bl
then I= —mjoa:’“‘ p e {z(1 —2)"}da.
Deduce that I=0.

. (222 + 624+ 5)

verify that the result of changing the variable from y to z in the

[Fry
dx
; (x+2) (222 + 62+ 5)

dx =
1 (2 +2) (222 + 62+ 5)

.
18

Deduce that r log, 2.

REVISION EXAMPLES IX
‘Scholarship® Level

i - 7 cos nxdx
1. Show that, U, = 5 Tl e

then, provided that n#1,
2u, — 5u,_;+2u, o= 0.
Hence, or otherwise, show that, if » is a positive integer,
u, = w[(3.2%).
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2. Prove that

h’ da a0 *l
J; agcosﬂa_}_bsainze:%s J; logta.nﬂd3=0,

o
f sin® flog tan 0d0 = 1z,
0
3. (i) Prove that values of a,b can be chosen so that the
substitution abid

i
yields the result

J‘ dx _ (t+1)dt
(22— 62 +5) (52— 122 +8) | (B+1)J(2+4)
(ii) Find the indefinite integral of
t+1
(#+1){(2+4)

4. Evaluate j (sin~*z)*d, f '\/ (nz+ 1)

5. Prove that

J:'J(cos 22 —cos dx)da = },/6 —12log (2+3).

dx zidax
6. Evaluate J:x+,](l—m)’ Jju[(l—a:z)'

7. Evaluate

J’“’ ztan—lz i cos20de
o (L+22)2 " 4 a®cos?@+b2sin26’

Find I(l—-—-z)ijm

8. Evaluate k zﬂ_—-—+:2d:x+ I

Find sz‘”—:l—),, fxsansxdx.

o If o J"‘cos(n 1)z — cosm:dx’
l—cosz

show that I, is independent of », where n is a positive integer.
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Hence evaluate I,, and prove that

sin
4 (i) == 20
10. Evaluate

a zdx J‘*"3+2cos:c
L z+@—2%)" Jo (3 + cos z)?

11. Evaluate the integrals:

1sin—lx in dx
J-., (1+:c)=dm' J:, 2cos?z + 2 cos wsinz +sin® 2’
= dx
J.—m (e+1)(1+e)
0 22dx
12. Evaluate J; = 0+2¢

= dx
13. Evaluate J.o Er A E+ @A)

where a, b, ¢ are positive.

14. Prove that

(0<a<m).

- dx o il
L 2®+2xcosa+1 sina
Evaluate
dz ® (224 1)dx
o i+ 22%cosa+1’ Jo a*+22%cosa+1’

15. Prove that, when b>a>0,

sin 0d0 ..
J:, J(@+b*—2abcost) b’
sin f cos 0d0 2a
o y(a®+b%—2ab cos 6) ~ 36%
Make it clear at what points of your proofs you use the condition
b>a>0.

16. Evaluate the definite integrals:

Ls(xz—l) 1+2%)’ J:(1+x’)tan zdz.
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17. Evaluate
T ¢  1—rcosf
—s1—2rcosf+¢2
when (i) 0<r<1, (ii) r> 1.

Prove that, § being fixed, I tends to one limit as 7 1 through
values less than 1, and to a different limit as r— 1 through values
greater than 1.

Show, also, that neither limit is equal to the value of I when

dd (0<8<m)

r=1.

18. Show that, by proper choice of a new variable, the integra-
tion of any rational function of sinz and cosz can be reduced to
the integration of a rational algebraic function of that variable.

Integrate

sin 1
8in(r—a)’ sinzcosz+sinz+cosz—1"

(2*—1)
19. Integrate TR
Prove that

=] d$ &
.’.1 (x+°°8°‘)$/(3’3—1)=sina (0<a<m),

” zdx o
J; l1+cosasing  sine (O<a<in)

d

20. t
Faligran 1)@+

(b <a).
Evaluate

¢ T  gsinzdzx
L(a:—a)l (b—=)idz, J; J‘(l—aasmzx) la|<1.
Prove that
fo "f(sin 22) sin zdz = 2 J; " Neow 26 vos 52

21. Evaluate the integrals:

J: a/ (:—';2) o fi(l,:,x—g) dz, fi(”—i'—l) dz.
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22. Find the integrals:

x?dx .
A O dx.
J‘z“—z*‘—m’ Jﬂ(l-{»x)logx

dx
Evaluate J:(1+x)J(1+2x—x3)'
23. Prove that, if @ is positive, the value of the integral
n  1—qcosf
J.., 1—2acos 0+a®

is m—cot~'a or —cot—la, according as a<1 or a>1, where the
value of cot~! is taken between 0, 3.
What is the value of the integral when g = 1?%

24, Show that, if P,Q are polynomials in s,¢ (where s = sin 6,
¢ = cos 0), of which @ contains only even powers of both s and ¢,

then P
—do
I

can be expressed as a sum of integrals of the form le(s)ds,
fRz(c)dc, fRs{t)dt, where t=tan@ and each of the functions
R,, R,, R, is a rational function of its argument.

Apply this method to obtain
.« [(1+sin 6)(1+cosf) ¥ 1 -
@ J. " 1l+cos?d i 1+s‘m8d9

In case (ii) obtain the integral also by the substitution
z = tan 10,
and reconcile the results obtained by the two methods.
25. Show that the substitution
T
reduces the integral
J' Fiz, |(az+b),|(cz +d)}dz,

where F(z,y,2) is a rational function of z,y, 2, to the integral of a
rational function of ¢.
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Hence, or otherwise, find

(z+1)t

26. Find a reduction formula for

7 ol O
n ) (6+4cosz)"
in terms of I,,_,, I, _, (n>2), and use it to show that

L dx 1
J; (5+4cosz)? v ﬁ(%_st)'

da.

27. Find a reduction formula for
= da
J.
Evaluate the integral when # = 1 and when n = 2.
n
28. If Eip f sin? z cos? xdz;,
0

(q_ I)Ip,q—l (q22),

(P— I)Ip—s,q (_’P = 2):
and evaluate I, , 5 where « is any positive real number.

show that  (p+q)I,, ,= [

. ;
2. X I, = f a"e~*cogbrdr, J, = fwa:”e—"sin bz,
0 0

where 7 is a positive integer and a,b are positive, prove that
1,(a®+b2) = n(al,_,—bJ,_,),
Ju(@®+b%) = n(bl,_, +ad,_,).
Show that (@462 T = n)cos (n+ 1),
(a®+b2)in+) J = nlsin (n+ 1)a,
where tan« = bja and 0 <a<}m.

30. (i) Prove that, if
i dx
o= J; (a+btanz) ok

b

t'hen (a! g - bﬂ) Up — 2““1&-—1 i Up—g = m"—_’"
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(ii) Prove that, if » is an integer and m > 1, then

t im
(m?— 4n2)f sin™z cos 2nardz = m(m— l)f sin™—2 g cos 2na dz.
0 0

31. Find the reduction formula for
dx
(ax® + 2ha + b)n+1’
Prove that, if @ and ab—A? are positive and n is a poﬁti've
integer, then

0 dx _22-1 a J‘“" dx
f_m(m”+2kx+b)“+1_ 2n ‘ab—h?)_» (ax®+ 2hx +b)"

_1.3..(2m=1) mn
=T 2.4..2n (ab—R)

32, Show that
(z —p)ntidz 1
@R T b by~ E—apy) VN,
where ¢ = ap®+2hp +b,

yJ(ax®+ 2hx +b) = (ap+h)z+ (hp +b).
Deduce that, when a,b, h+(ab) are positive,

w© dz - 1
J‘o (a2 +2hz+b)t ~ {h+|(ab)} b’

= xdx - 1
L (ax®+2hx+b)t ~ {h+/(ab)}Ja’
33. Find a reduction formula for the integral

dx
f T+ (1 +2%)°
Prove that
o I l 1 2
-[o Tropyasay — 12l (1+42),
-mel_ﬁ(l-l-—x”) = }{2+y2log (1+2)}.

x6
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. 1
34. (i) Intecrate B T —
o Ik @9+ 0)

(ii) Find a formula of reduction for

f(l +a?)resdy,
35. (i) Evaluate

1 dz
f—l(a—x)\/(l—w") L

a"dx

i ~ JoJ(1—2xcosa+2?)’

prove that

by, — (20— 1) w,,_ycO8a+ (n—1) %, _, = 2sin ju
when n > 2, and evaluate Ug, Uy,
36. Obtain reduction formul for the integrals

oo g "
f el k. f ansin? e dz,
1 0
and evaluate the first integral for any positive integer n.

1 apdx
8% X F 8 o T+ T) (p,q real, p>qg—1),

prove that
(2p—q+2)L,+(2p—29+2)L,_, = 22.
Hence, or otherwise, prove that
28dx 1
. dx
38. N [T ST
6 L- ey
verify by differentiation that, when # is a positive integer or zero,
2n+ 1) b(k—1) L, o~ (2n+1)(2k—1) I, +2nI,

=[—x«ﬁ+nb
(222 =T k)ﬂ'l'l a.

Show further that I, can be integrated by the substitution
J(@?+1) = at.
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Hence, or otherwise, find

dz
o (@2+2)*(2*+3)"

39. Show that, if

5 ‘x 0
I = 7%1.10 ane~<cosxdr, J,= ;},J. zre*sinxdz,

“Jo
then o, =1, 5 2I,=-Jdpy
Hence, or otherwise, prove that

+ 17
1= 22ds e

40. Find a reduction formula for the integral
Shte
o cos®z’
and evaluate the integral for the cases n = 1, 2.
41, Prove that, if

(n>0),

dx
I =f(2x2+ )" y(a®+1)

z(z2+1)
then . (n+1) 1o —nl, = &W'
Hence evaluate the integral
dx
(2224 1)* J(zz-{- )’

42, Find a reduction formula for the integral

L= f,;‘ (@2 + 2ha:+b)
and use it to evaluate

i dax
J..J(xz+23:+2)

235
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APPENDIX

First Steps in Partial Differentiation

The functions which we have considered in this volume have
always involved a single variable. The work on functions of
several variables belongs to a later stage, but it may be convenient
to set down one or two of the most elementary properties—mainly

definitions and first applications.

Consider, as an illustration, the expression

u=atysz2

As z,y, z take various values, so also does . For example,
if z=1, y=-2, z2=238,
then u=—"T2;
if B —1, g=0, z=3,
then u=0;
if =2 y=-2, z=1,
then u = —128;
and so on.

We say that u is then a function of the three independent variables
z,y,2. To denote this functional dependence, we may use the

notation w(z,y,z)=aty?22

The function » no longer has a unique differential coefficient.
Each of the variables z,y,z is capable of its own independent
variation, and each of these variations produces a differential
coefficient of its own. More precisely, we use the notation

=the differential coefficient of » with respect to z only,
calculated on the assumption that ¥,z are constant;

=the differential coefficient of u with respect to y only,
calculated on the assumption that z,« are constant;

¥ Q¥ §I®

I

the differential coefficient of u with respect to z only,
calculated on the assumption that z,y are constant.
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Thus, if ‘!&Ex‘yazs,

then — = 4239322, % = 3aty222, %u = 2riyPa.

As another illustration, suppose that
u = cos (azx + by?)

is a function of the two variables z,y. Then
% I — % = = 9bysin (az + by?).

; ou ou ou
The functions % W E
are called the partial differential coefficients of u with respect to
x, 1,z respectively.

These partial differential coefficients are, in their turn, also
functions of the three variables z,y, 2, and have their own partial
differential coefficients. We write
2 (e %
ox \ox) ~ da®’

The ‘mixed’ coefficients are a little more awkward. We write
0 (3u)_ &u 2 (ﬁu) *u

“wwy’ u\&) wo

ox

? au)= 2u 3(@)= Pu
?y(ﬁz" Tyor y\m) oy’
o (owy_ Pu 0 (3_u)= Pu
e \ox)” tzox’ \oy)” oy
In practice, however, it may be proved that for ‘ordinary’
functions (a term which we do not attempt to make more precise)
interchange of the order of partial differentiation leaves the result

%,
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unaltered. Thus

Py Pu
oyoz  ozdy’
2u _ Pu
220x  oxoz’
Pu 2u
oxoy oyox’
For example, returning to our function
u=atys22,
we have the relations
Pu @
wy - (3z%y%2%) = 12234222,
u a
% = -@ (4z’y’z2) = 12x‘y’z’;
2u i
%- = "@(2&4?[32) = 6:::4yzz,
Pu a
azay o E (327‘_1]222) = 63‘?123;
u 2
e = 5 (12°2%) = Sadyle,
2u a
ol (22%3%z) = 82%y°2.

EXAMPLES 1

. 1 0u ou Pu Pu PBu Ru
Find W oy W Galy e G for each of the following

functions:
s I 2. xy 3. 2%+
4, e*cosy. 5. log (z+y). 6. log (zy).
7. 28siny, 8. e*sin z. 9. ztan—ly,

10. secz +secy. 11, e%gin?2y. 12, zev,

13. Prove that, if f(z,y) is any polynomial in z,y, then
2f *f |

dxdy oyox
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14. Prove that, if f(z,¥,2) is any polynomial in z,y,2, then
o L
oyoz ~ 2ty
TLLUSTRATION 1. The ‘homogeneous quadratic form’.
Let u=ax?+ by? + ¢z + 2fyz + 2gzx + 2hay.
Then fu = 2(ax+ hy + g2),
ox
ou
6—y = 2(hz+ by + fz),
ou
= = 2ozt fy+ez).

These expressions are probably familiar from analytical
geometry.

P(xy.2)

To show how the partial differential 7
Y

coefficients are linked with the idea of
gradient, we use an illustrative example.
Let OX,0Y be the axes for a system
of rectangular coordinates in a hori-
zontal plane. This is illustrated in the Olx30)
diagram (Fig. 102), where the reader '
may regard himself as looking ‘down’ CRRET T %
upon axes drawn in the usual position.
The straight line OZ is drawn vertically Fig. 102.
upwards.
Given a point P in space, let the vertical line through it meet
the plane X0Y in Q; draw QR perpendicular to OX. Denote by

,y,z the lengths (ﬁﬁ@? respectively; then the triplet z,y,2

may be used as coordinates for the point P in space, just as the

pair z,y is used for a point in a plane. If P is the point (z,y,2),

then @ is the point (z,y, 0) in the horizontal plane; the coordinate

z gives the height of P referred to the plane XOY as zero level.

(Of course, P may be below the plane, in which case z is negative.)
In particular, if «,y,z are connected by the relation

i f(xvy)s
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where We assume f(z,y) to be a single-valued function defined for
each pair of values of z,y, then, as z,y (and consequently z) vary
the point @ moves about the plane XOY, while P deseribes the
surface whose height at any point is equal to the corresponding
value of the function. We say that the surface represents the
function f(z, y).

For instance, it is an easy exampl
’ ple on the theorem of Pyth:
to show that the function i

z=+|(1-22—y?)

is.represented by the hemisphere of centre O and unit radius
lying above the plane XO7Y.

We now_:.a.asume, for convenience of language, that 0X is due
east and OY due north. We regard the surface

z=f(z,y)

as a hill, and P as the position of a climber on it.

Fig. 103.

Suppose that the climber is at the point P (Fig. 103) defined by
the v.a.lues z,y of the easterly and northerly coordinates, and that
he wishes to climb to the point P’ defined byz+h,y+k. , The crux
of the difference between functions of one variable and functions
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of two lies in the fact that, whereas for one variable motion along
the CURVE representing the function is defined all the way, for
two variables the SURFACE may be traversed by an innumerable
choice of paths. Moreover, each way of leaving P will demand a
gradient all of its own. The partial differential coefficients are the
bases of the mathematical expressions for such gradients corres-
ponding to the various paths.

From the mathematical point of view, the obvious way to pass
from P to P’ is firstly to move the distance & easterly, to B, and
then to move the distance k northerly. The climber thus describes
in succession the two arcs PB, BP' shown in the diagram.

Now suppose that P’ is very close to P, so that the arcs PB, BP’
are very small. The arc PB may be regarded as almost straight,
so that the ‘rise’ between P and B is proportional to the length &,
i 8z(easterly) = oh.

Similarly BP' is almost straight, so that the ‘rise’ between B and P’
is proportional to k, say

8z(northerly) = Bk.
If 5z is the total ‘rise’ between P, P’, then

8z = 8z(easterly) + dz(northerly)
= oh+ Bk.

If the climber had gone first northerly and then easterly,
following the course PD, DP’ in the diagram, then, for distances
so small that the paths may be regarded as straight, PBP'D is
approximately a parallelogram, and so, once again,

8z = ah+ Pk

for the same values of «, 8.

Two simple observations complete the illustration. Geometri-
cally, a, B are the gradients of those curves which are the sections
of the hill in the easterly and northerly directions respectively.
Analytically, we see by putting k = 0 that « is the ratio dz+h
calculated on the assumption that y is constant; thus

o=

e
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evaluated at P. Similarly we see by putting 4 = 0 that B is the
ratio 8z+ k calculated on the assumption that  is constant; thus

oz
P2
calculated at P.
Hence the partial differential coefficients Bi::’ % are identified as the
gradients of the surface z = f(z,y)

in the z- and y-directions respectively.

EXAMPLES II
1. Show that the function

R B )

with the z-axis measured vertically upwards, is represented by a
hemisphere.

Prove also that the gradients in the 2- and y-directions at the
point (z,y,2) are in the ratio(zx—1) : y, and that these gradients
are equal only for points on a certain vertical diametral plane.

2. Prove that the funection
z=a+ 492

with the z-axis measured vertically upwards, is represented by a
‘bowl-shaped’ surface whose horizontal sections are ellipses of
eccentricity $ 3.

Prove that the gradient in the z-direction at the point (1,2,17)
is 2, and that the gradient in the y-direction at the point (3,1,13)
is 8.

g Pmg >, T e

o’ oy’ Pzdx
(i) e**sin (by+c2), (i) xyze™, (iii) (y*+2%)log(az+b).
4, Prove that, if
u=ax®+by® + c2® + 2fyz + 2922 + 2hay,
Pu Pu Pu
@ ot
then a+b+c=0.

for each of the following functions:

and if =0,
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5. Prove that, if r=J(z*+y2+2%),
& = Br 1 a2t
then ==r WrA

By oy B¢ 2
Deduce that P +@§+E§ ==

Prove also that

5050050

Finally, there is a point of notation which the reader may
meet in physical applications. Consider, as an illustration, the
transformation -
z=rcosf, y=rsinb
between the Cartesian and the polar coordinates of a point. Four
variables are involved, of which two are independent—for
example, r and §. When we form the partial differential coeffi-
cient %, we naturally have in mind that @ is the other independent
variable, and the relation

xz=rcosd
- ox x
thus gives 5-0039—-;.
But it is possible to express z in terms of r and y, in the form
z= J(Tz i y’):

ox r r
and then - =9 s
These two values are quite different; they are, indeed, calculated
under the quite different hypotheses 8 = constant, y = constant
respectively.
To make sure what is intended, we often use the notation

c

to denote the partial differential coefficient of 2 with respect to r
when @ is the other independent variable (being kept constant
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during differentiation). With such notation, the two formuls
given above may be expressed in the form

) _z ANSWERS TO EXAMPLES
=
o CHAPTER VII
6\ r
5), T Examples I':
The following examples should serve to make the notation clear. 1. log(z +1). 2. }log (22 +1). 3. —}log(2-32).
x—1
i I 6. 125 +2logx— a5,
EXAMPLES III 4. Ja®+logx. 6. ilogx_i_l 12’ +2logx— %
Given the relations 2 = r cos 0, y = rsin §, establish the following 7. log2. 8. log2. 9. }log$.
i 10. }log5. 11. }log$. 12. }log2.
8x) x 6y) y
1. ) ==. 2. =) =% 3 e
orfg ol v 1. o 14. 2 cosec 2. 15. —cotz.
3. gxg) et 4. %) =z, 16. z+2zlogz. 17. " 1+mnz"tlogaz. 18. 2z[(1 + 22).
. : 19. zlogz—=2. 20. }(logz) 21. logsinz.
5 a_r) =§. 6 ?I) =g. 1—cosz
o)y, T W) T 22, jatlogz—}a®. 23. «}log(l_l_eosx).
39) Y 39) x
Ll =@ B geyiam g 1—cosa - 5
o)y rt %)y T 24, cos:r-l-glog(l_'_cosw). 25. log (¢®+ 6z +12).
.2 TR L .
9 ar), z 10. 3y), . Tl 26. log (2®— 3z +7).
11 ?f.) =5 12 3_3) L 217. %ta.n'l(x: 1)+log(a:3—2n:+]7).
3.'/ r x 2 3!' z fy.

28. —12tan-1(z+ 3)+log (x®+ 62+ 10).

29. 9tan-1 (?_gj) +§log (a? — 8 + 26).

30. —2tan! (%—5) +Zlog (2 + 10z + 34).

Examples I1:
1dy 2 3 1dy 2z
G AP AR R R
L Y"1z 1-2 % iz S g
ldy 1 622 1dy 2 2  8°
o gd—$=5+200tx+1_.2w3- 4, ydx‘-z+—1+m —1+ﬂ7‘.
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ldy 3 1 ldy 4z 1
5. aﬁ +cot:z: m+1~x s gﬁ—“_——xg—x-f-?tanx
1dy 4 3
7 g}ﬂ ;—IT—Scoecalx
8 E@_ - 2sinz Ty 1+ 22
"ydr  l4cosz l+z+a?
G ik 16
"ydr 1—-z 1422 1-32 1+42
Examples 111 :
r—3
1. ilog( ) 2. z+2log(x—1)—1/(z—1).
—9)2
3. logH. 4. Jx®+ 322+ +log (x—1).

5. §tan-1x+1logix:_+ll)). 6. {log(z+1)—3log (z+4)+=.
1 1 1

v ilog(x+1) 2(1:__1). 8. —m—%tan—lit.

9. 7y log (x—2)—Fslog (2®+ 4+ 9) — 211/51:8.1] (:1:‘7-52)'

10. log (x—2)— (:542) (x 22), 11. }log (a®— 234.

12, ¢ tan—1§x—5iglo =an s :

: g(a:"+4) Z@—1) I0@—1
(x—1)(xz—3)3

13. *IOg*—(x—_T-

14, 2+ $log (#—3) ~ 4log (a— 2)— } log (4—1).

-1 xr—3 -8 _;Ei-__ -——1-—
15. g3gtan ( 3 )+1391°E(xa_5x+13 13z

4 1
16. fglog (1 +;) —E.

1 b 3
17. —-Q—E-{--g%log(l+5). 18. 1z + &log (4= + 7).
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z+3
19. x—3log(m2+6x+25)_%tan—1( ; )

20. z+log (z%+1).
21. }logx+ ¢log (a®+4)—tan~13x.

z—2 -+ (#+3) 3
— 1 A
2. delo g(x+3) b= 2> eI aEo)
0 sz 2)—4lllog (2®+ 22+ 17
24, x_m §35 log (x+2) — £33 1og ( )
1
—nuitw_l (m: ).
Examples IV :
1, 2eie 2. 2ue®, 3. €+ bred?,
4, ¢®cosx—e”sinx. 5. efinZcosz. 6. —e%(l—z)%
P 8. e*sinx+ xe®sin @ + ze® cosx.
__e’(l+2a:—:uﬂ 10. e®sinz+ (1 + €*) cos 2.
0 — G : (1+¢)
11. €%%(3 cos 4z — 4 sin 4x). 12. e*(tanx+sec?x).
13. je*=. 14, —ie-52, 15. €.
16. —ie™. 17. (z—1)e%, 18, e*(a2—2x+ 2).
19, esoz, 20, jesin's, 21, etans.

22, }e*(sinz+ cosz).
23. 5%¢37(3 cos 4z + 4 sin 42).
24. }e*(1+2z).

Examples V:
1. al, = az"e®—nl,_,.
2. (a®4n?)I, = e**sin®z(asinz—ncosx)+n(n—1)I, ,.

3. (@*+b°n?)I,

= ¢2% cos" 1 bxr(a cos bz + nbsin bz) + n(n—1)b2 I, _,.

4, 120 — 4de. 5. ds(41ei™—24). 6. —2(1+e").

e
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'dxsdx

10.

1l 38

12,

13.

14,

15. —

16.
18.

. 2eotz,

. 2ginz--3sin®x, 2ae%* cosax,

. sz) 1)

ANSWERS TO EXAMFLES

REVISION EXAMPLES III

. (1) (1+2)*1{l+nlog(1+=)}.

3
d3z dzo

—2x
=@ (L)

(i) ?—::’-i—log (1+2).

3. (%)g 3.

1 -2

| - — 22

J@2+1)

4+2%
1

@+ Ja-a)’

(ii) secm, (iii)

__2_ l—2z 2z
2 (z+1) 1+t

1
(T+a) (1+22)F

e B :c_z’ — 3z(a®—2?)t,

zlog, 10’

5+3cosz’

4 cosec 4z,

2

Bty ol

2\ "2 (-2 (l+a)}
1 -1 4
T3a Tead (o ¥
tanz —cot z.
2%(3 + 2z)
rar

4 1 7

2sinz— Teindx+ 5sinfz,

1+sin 22"

~#(4 cos 22 — sin 2z),

1
2 J(x—22%)"

o 221
Velocity e”, acceleration —e”.

Tangent: ztant+y—asint = 0.

Normal: zcosi—ysint—acos 2t =

(4cosz+3sinz)®’ 1

0.

2
i:-ux’ +log (1 + 2%).

19.

21.

30.

31.

34.

35.

36.

37.

38.

39.

40.

41.

42,
43.

ANSWERS TO EXAMPLES

L 20. 383,

2z = 0,y = 1, minimum; 28. (Ja+Jb)’.
x = 1,y = 2, neither;

z = —2,y = 29, maximum.

Area: 2+ 3 cot 8+ 2tan 0; angle: tan! —

3J2

(=1, —1) minimum; (1,1) maximum; 24z — 25y +8 = 0.

(i) 2log (2z+3)—log(x—1).
(ii) }cos®z—cosz.
(iii) 2?sinz+ 2z cosx—2sina.
(i) }o+}sinda.

(ii) log (x—1)+}log (3z+1).
(iii) 3atlogz— ot

(i) $secdz—secz.

(i) (1422 tan—tz—}a.

(iii) log (4x—1)—log (x+1).

(i) 2log(2z—1)—2log (z+2).
(ii) }sin®z—}sinfz.

(ii) '-(n_ll)%ﬂ—_l{
(i) 3log(x—3)—3§log(3z—2).

(ii) sinz—x cosz.

(iii) 3a%0+ Jatsin 20+55a*sin46, where z =asinf.

(n—=1)logz+1}.

—ginz—cosecz, 3}e%(sinz—cosz), 2-24.
m 3
3ty
1
L 2 61 1), 2log2-%.
|1

#?sinz+ 2z cosz—2sinz, §log (1+ 3x)—log (1—3z).

17

249
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44,

46,

47,

48.

50.

51.
52.

53.

54,

55.

56.

57.

58.

- d2(1-2%)+}sin"lz,  i(sin'2)?

ANSWERS TO EXAMPLES
11 +22),  dx/(1+2)+flogfz+J(1+2?)},
1z (1 +2%)—flog{z+J(1+2?)}, 3(3—2).

®
m, e® cos x.
2log (14 4x), —cosz+%cos®z—}cos’z,
z+ 37log (x— 6)— 26 log (x — 5).

$log(x+1)—}log (2 —2+ 1)+3%‘ba.n—1 (%;—1),

zsin~lz+ /(1 —-22).

z—log(l—2z), —cosw+§cos®z—3cosbz, e*(z—1).
1
—E—tan—la:, itan*z—tanz+z, 1.

z—log(x+2), xztanz+logcosz, 3.
log (22 —x—3), 4sin*z—}sin’z, =-—2,

6
x—;—;ﬁ, 5  3log2.

im, 16log2—1F 1n3—1274 24,

i Thglogaeym. @) 1 jey2-9).

in i
(m+ n)f sin”z cos®zdx = (n— l)f sin™z cos® 2z dz, ¢, O.
0 0

eﬂz
prpe (@ cos cx + ¢ sin cx),

ax

i e
e A e H
58" 5 5 (@ cos 2bx + 2b sin 2bzx).

(i) 2(n+ 1)£(1+z’)"“d:c= 2nH 4 (20 + 1)J:(1+xz)"‘**dx,

-2%5+1%-10g(1 +42).

ANSWERS TO EXAMPLES
CHAPTER VIII

Examyples 11 :
28 b Z2nHl
1. x—§T+-5'i—...+(—1)"—-—(2n+l)!+
at ot a2
2. 1‘§T+4_1""+("1)"(2n_)1+

3. l—z+a?—a®+...+(—1)"a"+....

Examples V :
(33:)’ (32)® (3x)“
L lptetgrd gt et ot
3. 20— J(2ap+ 42+ ...+ T (o
(22)* | (22)° (2Pt
b ot i i | R )"(2n+1)1
5. 1—z+a?—2%+ ...+ (—1)"a"+....
6. 14224322 +...+(n+1)a+....
(42 (42 (da)
7. 1— B — e Y] +(=1)n (2n)!+....
(20)* (22 (2z)*
8- 1“-2x+'2_!— 3! T"*‘---O
0. 14z—Jae 4.+ (~ 1l nl(2” 3) gn
10. —3:1:—'}(32:)5—...—%(39:)“—
Examples VI:
1. 2005, 2. 2:995,
3. 2:0017. 4. 2-999.
5. 1-9996. 6. 0-3328.

251

17-2
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Examples VII :
1. 1680z*sin z + 134425 cos x — 3362° sin x — 3227 cos x + 28 sin 2.
2, a?sinz—8xcosz—12sinz.
3. €*%(122 cos 3z + 597 sin 3z).
4. 3%€%(92% + 5422 + 90z + 40).
5. 2%cos {inw+x}+ 3na’cos{(n—1) m+x}

+ 3n(n— 1)z cos {(n— 2) jr + 2}
+n(n—1) (n—2)cos {(n—3) j=+z}.
6. 2n—3¢22 {823 + 12na®+ 6n(n— 1)z +n(n—1) (n—2)}.
7. 25.10.9.8(1 — 22)5 (— 13222 + 552 — 5).
2. 3 121

e2]
.

(3z+1)* (81927 + 312z + 28).

Examples VIII:
o
5

tol —
thl (3L]
Ql (2,3
~al g,

1328 1
g2

2, z—}a2+ Jat—27+ ..

1x+— —+

REVISION EXAMPLES IV

1. (i) az(l+2logbx)es=londz,  (ij)

1+a%2?’
ab, a?b%
_— &) oy 2——z+2)
142 (14+2){22(1-2)}’ '’ (22—8zx—-2)%°

z = 1 maximum, z = — 2 minimum.
4. sec™ztan™ 1z {n+ (m+n)tan?z}.
840 tantz + 640 tan®z + 56,

z—1
5. (x—_m, tantzx.

10,

13,

12.

13.

14.

15.

16.

b
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4sin®zcosz, 12sin?z—16sin'z,
24sinz cosz — 64 sindxcosx, 256sintz— 240sinz+ 24,

z = 0 minimum, 2 = }r maximum,
1\»-2 1 4
n(a: +E) (1 -x—a) , msinztan?z(cosz+secx) 1,

—(-_—l)z:—n(f:—l)g when n> 2, 2+§ when n = 2,

2m-—-% when n = 1.

(ii) x’j%—n(n— 1)y = 0.

1 & 2*al  nl
EriE-1 0 @-gapn (I-ap

1)"nl Wl 1 1
()( Ml‘n., (=1) {(x 1)n+1 (:c+1)"+‘}'

(ii) sin (z+3nm), w@sin(@+jnr)+nsin{z+in-—1)a}.
(i) —2cosz.

cos®z—sin®z 1—2+222 e*—e®
(if) (cos x+sinz)?’ J1+a%) ’ e+e

3 3 T 1-22%2  e*(l—4z+2?)
I T » Ja=a2y (1+2°)

@ (= 1),.(”4'13)‘, (i) 2rsin (2 + Jnm).

=)
21

(iii) 2“3’*"{sm2x+nsm(2x+§n)+ sin (2z+7) + ...

v t8in (22 4+n.47)}.
k=0,1,2,
6z —8 sl g o tan'z _-i_
4327 2tanzsecizetsn T, iz
-3

2 tanz e
sec*xe A 2(&7—2)' (m-l-l)i'
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18. Velocity, $ak(l — 2sin kt); acceleration, —ak? cos kt.

13z
6k’

m™

a
t=6—'k, $=E('ﬂ+643). l=

b a
At rest when ¢ = " 2= (57 —6/3).

Total distance, g (m+64/3).
19. Velocity, e!,/2; acceleration, 2¢.
20. (i) v® = p*(a®sin® pt+ b2 cos? pt).

(ii) f = p*(a®cos® pt + b2 sin? pt).
21. Velocity, t*cost—4¢sin¢— 6 cost;

Minimum at ¢ = (4k+1)}=; Maximum at ¢ = (4k—1)3m.

22. Velocity, —ap(sin pt+sin 2pt);
Acceleration, —ap?(cos pt+ 2 cos 2pt);

B __3a _a 3a
Rl e i e
24. 3z—y =0at (1,3); 5x+y=0at (—1,5)

25. z—2y =0,

27. cos™! {M
2pq

29, Maximum, 32. (i) 0-857. (i) 30-2.

33. (i) 2-004. (i) 0-515, 34. 8:03.

85. 1:532. 39. 2—Ja?+ Jad—at ...

40. —Ja?—Fat,

43. a2y ™ — (22— 1—n)y"+) 4 (z— 1 —2n)ytn 4 ny*-1) = Q,

44. ¢; = b, cy=2ab, c;= 3a2b—b3,

45. y=o, Y =0, y' =cota, 45028°

46. 14 2x+ 222+ 82%+..., 0-9930,

47. 0-06285.

a
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49. y'=1, y'=1, y'"' =2, Y =3
50. """ = 2+ 8y%+ 6y,

y'v = 16y + 403 + 2445,

y" = 16+ 136y%+ 240y* + 120y°,

z+ Jab + 5t

52, —3e™, }(tan'lz)?, e%(2?—2x+2).
53. 1—}a.
54, Jatlogx—}a?, logtan iz, ilog( ) i tan—lx,

B
PR

; . x
55. sinx—§sin’», log (m) +
2
x{(logz)® — 3(log )+ 6 log 2 — 6}, 7 tan—1 (/5 tan }z).
56. 12z +8sin 2z +sindz, 2*{9(logx)®—6logx+2},
log (1 5

57. 4logz—2log (1+2)—log (1 +2%)—2tan—'z,
2log2—-1, }tan—14.

58. 3log (}%f;) sin1 (¢ —1),

ztanxz+logcosz, %tandz—tanz4z.

—1 —
6(1—3z)*

aﬁ
loga’

)+ 2tan—lz— 2z,

59, itan2zx—2, (1+a?)tan'z—z, tan~!(sinz).
60. 75, §m, B(e*—1).
6L () 108 (r55), loget+2e42) +tani@e+ 1)

62. }sin 3z —§sin? 3z, T, tan—1 (/5 tan }z),

—z8cosx+ 3x2sinx + 6xcosxr— Gsinz,
(1—22)y—4a®+ Az + B.
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64. 3na?, (%a,0).

ANSWERS TO EXAMPLES

65. xsecf+y—sinf—£secé = 0.
a (2ac+ 3b)

2 = i
67. £wa?b. 68. 3" (@c+20) "

69. y = 24 3z—2% (1,4), (—1,0); i%.
71. jx—1}sin2z, }cos*z—cosz, a?sinx+2xcosz—2sinz.

72. 4a?, $ma®(2,2-1).
75. 38a2, fsal.

]
12820 0); 32\/;"“8.

.

_ZL_.&)
8 67

73. &8,
77. 2858 a2,

32,2
£ I
79. (%, 0); 105 ™

105 = 10

80. 4a2, (a,%a); (3a,0), $mpa’.

83. =1, L=1r, L=3% IL=4m

8ma
84. ’/ (W .

85. §na?, Lmad.

86. —land 0, Oand 1, 2and3, 2-88.

87. 2:426. 88. —1-844.
89. — sin ju. 90. z—3a?+3ad — Hat+ ...
CHAPTER IX
Ezamples I :
1. 3cosh 3z. 2. 4cosh 2z sinh 22.
3. tanha +xsech?z. 4, 4cosh (22 + 1)sinh (2z+ 1).
5. coshz cosz—sinhzsinz.
6. 2sechxsina cosz—sechz tanh z sin®z.
7. 3(1+x)%cosh? 3z + 9(1 + z)® cosh? 3z sinh 3z.
8. 2z tanh? 4z + 822 tanh 4x sech? 4z,
9. cothz. 105 1.
11. cosh aesinb 2, 12, e-tsnb%(] —asech?z).

ANSWERS TO EXAMPLES

13. }cosh 4. 14, }sinh 22— Ja.

15. }sinh 2z + }z. 16. xcoshz—sinha.

17. }e® 4+ . 18. §cosh 4z + } cosh 2z.

19. }xsinh 2z —}cosh 2x—}a2  20. sinha 4+ }sinh32.

21. x—tanhz. 22, z?sinhx— 2z coshz + 2sinhz.

23. e+ fe0e, 24, }tanh 2.

Examples 11 :

1. cosh-lz+—2 . ,__2“—

i R 7= e
1 +1

ol 1= oy g

T 3 6. g o
x|J(1+2?) J(@®—1)cosh~1z

2z 2cosh—z

s g (e -, —=: _—

M b e I

9 -1
" J(@*+1) (sinh—12)¥

10. cosh-1{z (z>2).
11, 1sinh—13z.
13. cosh-1 (&21) (@>1).  14. sinh- (“’—;rl)

2x—1

15. ‘}coah—l( ) (x>32).

CHAPTER X
Examples 11 :
1. 22—y%=a 2. 22—y? =al.

3. 22—y =a? 4. 22+ =a

5. 4(x—2a)*—2Tay2=0. 6. 2= %c(3t+-l—), Y= §c(§+t3).

&
18

12. jcosh—1$x (x>})

257
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Examples 111 :

—

b

o =

13

15.

17

20

22

24,

[=2]

l. z=a(2 +3t2), = — 2aid,
1 1 .
2. x= 2 (a®—b*) cos?t, y = =3 (a®—b%) sin®L.

3. # = 2asec?®!, y=—2atandi.

REVISION EXAMPLES V

. Tangent, zsiny—y cosyh— 2aysiny = 0;
normal, 2 cos i+ ysin— 2ais cos i — 2asiny = 0,
o ikt 2 i
. t =sinh (J2) 3. JA(H-A)'
- (1:&)’
. & =—2asin2t—2asint, ¥ = 2acos2{+ 2acost;
speed, 4a cos }f (numerical value).
i 10. $+3%cosh 26+ } cosh48.
1+¢
. 21m(:csinh§—acosh:f+a). 14, 8a.
a a
22, 16. 1, (0,2).
1
. (b%/2a). 18. =
13ta 13ta
. Tl 21. T'
. {201+ 22+ 2228, (—1,-1).
Trmad. 26. —3J3 at z=1/2
REVISION EXAMPLES VI
+ frra(®@) = il (@) + daf((z) + 2(1 + 22%) f ().
o 1
- el i I (On= 5180, PPyt
&Y ”§0(2n+1)!(2ﬂ 1)2 (2n—3)2... 3%

13.

16.

18,

19.

ANSWERS TO EXAMPLES

f(x), f'(z), f"(x) continuous everywhere in the range;
f""(x) has a discontinuity at z = 1;

Maximum.
1 17. 0-55.
n(n—1)
Ynio+a ylyn+l+ny2yn+2_ly3yn—1+"' +?!n+1y1} = 0.
. & 2 rm
1+ 3z +a%—dat—% /325 —g%af + ... + by KGR

2-%¢2¥8 008 (a: —-%) + arbitrary polynomial of degree n— 1.

21. 1-8, 4-5 (radians).
23. r*¥ = a*sin k0.
1 1
26. —ﬁ + m.
dady_d's dy
97 dy dyldz d’y di di? dtt dt
“dx difdi’ & (da:" f
)
d*zdy dzd’y
de _de|dy dPx  dP dt di di*
dy  atf dt’ dy* dy\®
(@)

28. }{b+(3a%+b2)}. 29. Equality when -1 =y,

30. (ii) Minimum. 35, 3m.

37. §m.

38. z = —1im, = —0-65, maximum;
z = —}in, = —1-19, minimum;
x=—%}m, y=0,inflexion;

x = ogm, y = 1-19, maximum;
z = 5, y = 0-65, minimum;
z = §in, y = 0-73, maximum;
T = %3”1 y= 0'44, minimum.

18-2

259
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40. (1,2), (%,3-%); J2-1.

41. (i) Maximum, y = §(J2—1); minimum, y = —3(y2+1).
(ii) Inflexions, (1,0), {—2+43, —1(3—43)},
and {—2—3, —}(3+y8)}

) P
42, A4 —W.

dn d*n
. d_y__ tana_l_d_f ﬂ_ @
“dw l—ﬁtan o cos —@sin i
df o o d§ o
5,5
49. -
50. z = 0, maximum, x = —16;

z = %, minimum, « = 4%%,
51. 3acostsint (numerical value of).
52. (0,0), (2,2).
63. 3, 242.
56. Minimum.

224 22+ 2 3 S
58, frlog (mm) +§tanYx+ 1)+ tan~ (- 1),

aﬁ.z—e:-z_bi (@ cos bx + b sin bx),

32®— 3z J(2?— 1)+ } cosh1z.
60. () %, A an arbitrary constant.

61. a®(x+ 3sina), where cosa =—4 (Ir<a<w).

62. (i) ¥5logsinz—% 2 cos z(3 cosec®z + 4 cosec® z + 8 cosec z)

— 3 cosect x — % cosec? z.

2. b51 a+bx £+ b3 b2 o b 1
(u)ajog T @bz 2a%a® 3a%2® ' 4alz' baxd

x
63. iat./(1+1*)+ Jasinh-1¢.

64,

65.

68.

71.
72.
76.

71.

79.
8l.

84,

85.

86.

87.

88.

89.

ANSWERS TO EXAMPLES 261

(i) n=4k,A=1;n=4k+1,A=n;

n=4k+2,2=—-1;n=4k+3,A = —n.
(i) (3+3m)a2.
(tan—12z)®— 2z tan— z+x tan—1zlog (1 +22)

+log (1 +2?%) —} {log (1 +=22)}2.

d(x) = (1+2) (3 +=).
f(z) = (1+2)% g(z) = 3(1+2)%
A=%B=%C=§ D=4

A=+4,B=%}C=—-4%,D=4.
a?l, = a(l —2?)"sinh ax + 2nx(1 — 22)"-1 cosh azx
—2n(2n—-1)1, ;+4n(n—-1)I,_, (n>2).
5= gfﬁ~120¢a.
e
cos? 1z {psinP1x— (p+q+ k2 + pk?)sin?H g
+E3(p+q+1)sin?+3 2},
K2(m—1) L, — (14 52) (m— 2) Iy + (m—3) L,,_¢ = 0.
Volume 57%a?, area &tna?.

x = a(costcos 3t+ 3 sin ¢sin 3t),
y = a(costsin 3t — 3 sin ¢ cos 3t).

1 T | 1
Atp=g
P(— 8af®, - Bat);

Normal, 4#*z+ y + 6at + 32at® = 0;
Inflexion at origin.
Normal, 2z + 3ty — 3at* — 2at® = 0;
Centre of curvature, (— 3at*—at?, 4ai® + $at);
Radius }at(4 + 96*)L,
Envelope, z = —f'(1), y=f(t)—f'(t);
p=1"(t) 1+,
Envelope, z = asin#(3 — 2sin2#),

y = acosi(3 —2cost).
Tangent, xsin¢—y cost+ cos 2t = 0;
Normal, zcost+ysint—2sin 2t = 0.
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90. Tangent, #(3+ )z —2y—1* = 0;
Normal, 2z +#(3+*)y—1t3(2+¢) = 0.

92. m(ab—cdk). 93. 18qb,
1 x
94. E-G-E. 90. %.J3.
98. 2—1m. 102. 2csinh%; wc(2a+csinhg—:).
103. &tnal. 105. Volume, 272a%h; area 4= ah.
42 2 a?
106. % ;r—alog(l +42). 107. f+§..
108 -l—iff<a 2 if f> 109, &
. a(a.”—fzj ) f(fz—_ai'j a. . 5.

CHAPTER XI
Examples I:

1. 1and 3; 2+3; 244,
2. —5and —3; —4+,/5; —4+ 2.
3. —land 3;1+,5; 14+3i. '

Ezxamples I1 :
1.10+3¢. 2. —8+48i. 3.34+22. 4. —16—3i. b5.2+7i.
6. 0+0:. 7.0+ 24, 8.2+11i. 9, —2—16i. 10. — 1040,

Ezamples 111 :
1. —7+422. 2. 26+ 2,
3. T—1. 4. a®+b%
5. —3+4i. 6. cos (4 + B)+isin (4 + B).
7. 10. 8. —46+4 9.
Examples IV :
148 2. 3% +250. 3. 5-8i.
4. -4, 5. —37+%3. 6. cos @+1isin 8,

ANSWERS TO EXAMPLES 263

Ezamples V :
1. 5—2i, —1+8i, 21—, —g5+3%1.

2., —7+9%, —1-5i, —2—34i, 33 +3d.

3. 442, 4—2i, 8i, — 2. 4, 3+1, 3+3i, 2—31, —2+ 30,
5. 4, 61, 13, —5+15 7. 6. —6, 8i, 25,—3% — %4 1.
7. 35— 35t 8. —1is—1eui.
& -3 10. —&+51.
11. —2+3s. 12. 144,
13. —3+1. 14. +3i.
15. 4+ 34 16. —2+1.
Examples VII:

3. 2, —30°% 5,53°7’; 13,112° 36'; 3,0°% 10,—53°7'; 2, —90°
5. Straight line, 4x+ 10y —21 = 0.

Examples VIII:
L (a) (3,2); (B) (2,1); (c) (4,7).
2. (i) (a) (1,0); (&) (3, —5); (c) (3, —5).
(ii) (@) (2, —1); () (2,1); () (5,0).

Ezxamples I1X :
1. (i) —0-5+0-866i.
(ii) + (0-866+ 0-5i).
(iii) 0940+ 0-342i, —0-766 + 0-643i, — 0-174—0-9854.
(iv) +(0-966+ 0-259i), + (0-259— 0-966¢).
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2. (i) 7+24s. Examples XII :
(i) +(2:121+0-7073). 1. 1 —cos 0+ cosnf —cos (n+1) 9.
(i) 1-671+0-364i, — 1-151 +1-265i, — 0-520— 1-629;, | 2(1 —ooe )
(iv) +(1-476+0-239i), + (0-239— 1-476i). 9. sin 0+ (—1)* gz {xsinnf+sin (n+ 1) B}.
3. (i) 119—120i. MR LR
3. cosz+xsinz.
(ii) +(3-535+ 0-708i). .
(iii) 2331+ 0-308i, — 1-432+ 1-865i, —0-899— 21733 b g
g : iy K 5. g5e'%(4sin 3z — 3 cos 3x).
(iv) +(1:890+0-1875), + (0-187— 1-8904). o N ey el e e L b
Examples X : 7. §sin 3z — }x cos 3z.
1. 4(cosz+isin). 8. —35we%(4 cos 3x — 3sin 3x) — ghze~%%(7 cos 3z — 24 sin 3z).
2, —= (cosﬁf—fisin——) :
42 4 4 REVISION EXAMPLES VII
3. 64(cos 27 +4sin 27). 3. sina cosa —sinh b coshb

= cos?a +sinh?b’ e cosa+sinh?b”

4. 2i{cosl(12k—1)+esin1(12k-1 }
a8 18 ) 5. —tan - (4k—1), k=1,...n.

w A
5. %[cosﬂ(sk—l)+zsm§z(8k-l)}. 7. cos®*z+sinh?y.
Tor L m g £ (@3 +y3) s + (23 + y3) 2y — (2, +25)
6. 2t {0032—4(l2k+1)+asm52(12k+ 1)}. (21 + 1) (@3 +3) — 2(2, By — 1Y) + 1
2 2 2 23
. & . ;.2 __ @+ ya+ @+ 93y + i+ ) .
Gy cos%rizmn—;-, ws%iisingg. * (@ +y7) (@3 +v3) — 2(2, 20— Y1) + 1

10. z—1y,r(cos §—isinf); + 1+ 3i.

SR, THnye: 11. 2, = 2(cos}w +isin}n),z, = 8(cos}m +isinin);

Examples X1 : 2(cos iy m +isin i} n), 2(cos {3 m +isinign).
1. e~tm+2km foos (3 log 2) + 4 sin (} log 2)). 16. (i) (—1,0), (3,0);
2. —2e(n—m {sin (}log 2) +i cos (3 log 2)}. ‘ (ii) circle, centre (2, 0), radius 3;
3. e~t@mHkm {oos (} log 2) +isin (} log 2)}. (iii) ellipse, foci (1,0), (2,0), eccentricity 3.
4. —8e~@Wk—im (003 (log 4) + i sin (log 4)}. 17. 1,0, 0* ? w* where w = cos 27 +isinn;
5. 2e~tkm=2m {cos (}log 2 — 4mr) +i sin (3 log 2— 1) z=3}1+4cot tkn), k= 1,2, 3,4,
6. —de~tnHm {005 (}log 2) +i sin (}log 2)). 19. (1,43), distance 2.
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20.

21.
22,

23.

24,

26,
27,

29.

30.
32.
33.

37.

38.

ANSWERS TO EXAMPLES
2= T+2J3+i(4+3J3) or 7—2/3+i(4—33).
Vertices (4 + 4sin }kw + 6 cos kmr, 6+ 6sin Jkm — 4 cos L),
k=0,1,...;8:
cosﬁkrr-i—zsm 2km, E=0,1,.

4 —5cosglkmr — 3isinkr
5—4cosihm

(y3+1)(a+1ib) and a+ib subtend an angle }= at the origin,
and the distance of ({/3+1)(a+ib) from the origin is
twice that of a+ib from the origin. C'is at +2,3+2i.

+(3—2i); 1414, J2cosiinm+iy2sinifn,

J2cosifm+12sinign

—2300—21004.

(i) (1) 1): (1’ i 1),
(ii) all points with >0,

(k =0,1,2,3, 4)'

(iii) interior of circle, centre (—%, 0), radius §,

(iv) interior of ellipse, foci ( + 1,0), eccentricity }.
1
. =Y
(I) %9 61 J5'

b2—a?,

W) 2 at+ b a.3+bz’ L
(i) cosfacosf(a—pB) cosiasini(a—p) |ecosia
cos 38 ’ cos 8 * |eosdB|’

im, §log, 6 —itan—1}, (z+1y)log, 10.
1-67—0-36i, —0-52+41-63i, —1-15—1-274,
3z +25); (2+243)i.

el LlecDedoms D), L{r-ad)
'§z+z’2iz_z’2 +z"'2£ zn)’?

o (sin70 —7sin 50 + 21 sin 30~ 35in ).

Circle, centre (5, — 1), radius 3; 8, 2.

/(10 +6y)
|10-6y] °

ANSWERS TO EXAMPLES
39. Amplitude increases from —= to .
40, 2t cos}m, —2%cosin, —2tcosn.

oosmcoshy+wmxsmhy
cos*x +sinh?y

42, (a+1b) (a—1b), (c+1id) (c—1id).

41.

CHAPTER XIII

Ezamples I: :
g 2. J2. 3 2 4. }m.
6. §n. 6. }. 7. —1lja (a<O).

REVISION EXAMPLES VIII

" —3)9
1 iglog:Tf; x+'}log%_—1)—; cos~! (2—xz).

(x—3)° 2 St
2. z+log —_— ; (2®+ 22+ 2)—sinh1 (x4 1).

3. }(a+0b)m.
4. z+}log{(x—2)% (22 +1)}—{ tan"1x;
S(x+b)i+3(a—0b) (x+Db)!; §cosPx—cosxz— 4} cos®x.

1+
5. }Iog(1 2)2 $tan1lz;

J(@®+ 42+ 5)—2log {x + 2+ J(a® + 42+ B)};
$(a®+2?) —a?log (a®+ %) — Ja*/(a® + 22).

(x—=1)10 2
6. 3lo ga:’( +2) ( J2) e*[(x+1).
241

(@—3)°

7. 5‘610gx5( +2)s, gsinh—l( e )+i(2x+l)\{(a:3+z+1);

z{(logx)?—2log z + 2}.

il 1 on4; 87 124 log (1+42).

8 Uy = Guratnaty - 4s

REVISION EXAMPLES IX

_1{ ty3 } 2431 {J(F+4)+43}

Ml
S Al Ty NCEEN

267
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4, ﬁ-;-""—‘{—3—1; 2log (24 43) — &m.
J5+1
6. 1 J5 1,3 5
¥ 1 V2+J(1+2)

- 4 2a(a,+b) V2

8. jm; —x/(x®—

8 B—VT+a)

9, I. =2n,

10.

13,
12.

13.
14,

16.

17.

18.

19.

20.

21.

22.

a—\/-—210g (1+42); ‘116 [7 tan-—1 (‘/2) +,j2}

1—}n; §m; —aed/(1—e2).
(5 —log 3).

T
2a(a®—b2) (a2 —c?)’

Ymsec o, mrsecia.
J2log s dm— flog2 -4

2tan—! [(?) tan§} +38,r<l1,

—2tan—1{(ri l)t n8}+3 e b

Limits n+8,r<1; —7w+8,7>1; I = § when r = 1.

xcosa+sinalogsin (x—a);

g 2+1

P ]og = J7 v where ¢ = tan }a.

log {z+;+\/(x“+ 1 +x‘2)} -

3 lo, {
Ja—o% ¢ J@*+1)
2+-Elog 3; log(2+4/3)—%3; J3—}n.

% log ‘{73 tan—! (j;) e*(xlogz—1); —

128 ’2q

4,/2

1); 3o — §(22® — 3x) sin 2z — F; (222 —

J(1=8%)+ (@ + bz)] 3b-a)r

1) cos 2z.

l1+a

l1—-a

23.

24,

25.

26.

27.

28.

31.

33.

34,

35.

36,

38.

40.

41.

42,
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.
1482 1

v2+s,
%1 g2+t2 "lz

Jy2-¢

differing by a constant.

tan— 1( 0) —tan—lc+—-log*—

2\{2
2
1+ tan 6’

+log {z+ (22— 1)}

tan f —secf= —

STHEST
4sinz
n—1)L,—5(2n—3) I, 1+ (n—2)1, 3= ~G+icoszy .
(n—2)u, g—(n—1)u, =0, n>2;
= ‘%‘n’, u2 = 1-
1, Sl
o+ 2) (a+4)

If the given integral is u,,,,, then
ax+h
2ﬂ(ﬂrb ha)‘uﬂ_'_l (2% 1)0’!.6 m

2(n+ 1)Uy p0— (204 1)Uy +nu, =

3
(i) f5y/3log %%

2n(2n—1 2n(2n — 2)
(i) u,— —(_a,"‘_) Up—q+ s ) p Un—2

1 2nx
= et 2\ . = pax(] 4 g2)n-1,
ae (1+4+2%) 2 e?*(1 + )

log (1 + cosec }a), uy = ugcosa— 1+ 2sin fa.

n(n—1) L e
& Teatamal)

mlJ(a®—1); uy =
Uy = Ny_q, U = N5 U+
L2 s ()
'6-—'?13&11 (4 .
(n—1)u, = (n—2)u,_o+ 20272 u, = log(1+4/2), %, = 1.

2(8x*+ 822+ 3) (22 + 1}
3(222+ 1)

Formula: see p. 208.
= }log {&+ 1+ (22 + 2z + 2)} + §(222 — 5z + 7) J(2® + 22 + 2).
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APPENDIX
Examples I :

1. 4a3y3, 3xty2, 122298, 122392, 122392, 62ty
2. ¥3, 2ay, 0, 2y, 2y, 2.
3. 2z, 29, 2, 0, 0, 2.

4. e*cosy, —e®siny, e*cosy, —esiny, —eTsiny, —eTcos .

Ty 1 1 1
e+y z+y’  @+y)*  @+y  @+y?  @ty)r
AT | 1

6‘ o e i N e i et
z’ y; 50 0, 0, yg'

7. 32?sin*y, 22%siny cosy, 6xsin?y, 622siny cos Y,
622siny cos y, 22%(cos?y —sin%y).
8. ye™sinz + €™ cosx, xe™ sinz,
Y% sin x + 2ye™ cos x — eV sin z,
€™ sin x + xye® 8in 2 + xe™ cos z,
€V sin & + xye®¥ sin x + xe cos x, 22e?V gin 2.
9. tan—1y, = S : - o
1+y™ 7 149 1442 (1492
10. secxtanz, secytany, secztan®z +sec?z, 0, 0,
secy tan®y 4 secdy.

11. e?sin®2y, 4¢%sin 2y cos 2y, e®sin? 2y, 4e%sin 2y cos 2y,
4e”sin 2y cos 2y, 8e® cos® 2y — 8e*sin? 2y,

12, ev’ xeys 0, ey, e‘ll’ xev,

Ezamples 11 :
3. (i) ae™sin (by +cz), —b2e®sin (by + c2), ac ¢ cos (by +¢2);
(ii) yze™ —2z2yze~=", 0, ye—=' — 222 ye ',

(iii) a(y®+2%)
az+b

, 2log (az+b), .

INDEX

Approximations, 55-62
Area of closed curve, 128
Argand diagram, 168, 171-4

Cauchy’s form of remainder, 47
Centre of gravity of semicircular
are, 133
Complex numbers, 158-91
Argand diagram, 168, 171-4
argument, 169
conjugate complex numbers, 161
De Moivre'’s theorem, 174
differentiation and integration,
186
logarithm, 183
modulus, 162, 169
number-pair, 166
powers, 178
pure imaginary, 161
quotient, 164
roots of unity, 177
gine and cosine, 184
sum, difference, product, 163
Convergence of series, 42
Coordinates, intrinsic, 111
pedal, 111
Coshz, 84
Curvature, 113
circle of, 119
Newton’s formula, 117
Curves, 100-33
angle ‘behind’ radius vector, 109
gradient angle, 107
length, 103
parametric form, 116
sense of description, 101

De Moivre's theorem, 174
Differentiation, logarithmie, 10
partial, 236

Envelopes, 123

Evolutes, 126

Expansion in series, 41-3
Exponential function, 18-20, 21-7

Formula of reduction, 200-16
for infinite integrals, 220

Gradient angle i, 107

Hyperbolic functions, 84-99
inverse, 96-9

Integrals involving ‘infinity’, 217-
25

Integration, systematic, 200-16
involving surds, 203, 207
polynomials, 200
rational functions, 201

Intrinsic coordinates, 111

Irrational number, 158

Lagrange’s form of remainder, 47
Leibniz’s theorem, 62
Length of curve, 102-6
Logarithm, 1-18, 27

complex numbers, 183

in differentiation, 10

series for, 53

Magclaurin’s series, 49
Modulus, 162, 169
of e*, 186

Newton’s approximation, 56
Newton’s formula, 117

Pappus, second theorem of, 132
Partial differentiation, 236
Pedal coordinates, 111

Pedal curve, 112

Powers, complex, 178

Rational functions, 11
integration of, 11, 200
number, 1568

Remainder
Cauchy’s form, 47

ge’s form, 47

Roots of unity, 177
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Series, binomial, 51 Sine and cosine of complex num- {
convergence, 42 bers, 184 |
exponential, 54 Sinh z, 84
logarithmie, 53
Maclaurin’s, 49 )
oscillating, 43 Taylor’s series, 38-62 s
for sinz, 38, 50 Taylor’s theorem, 44
for sinh z, coshz, 86 Trigonometric funections, integra-
sum to infinity, 42 tion of, 214

Taylor's, 38-62
for (1 +z)-1, 40
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