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PREFACE

This volume continues for two or more variables the work under-
taken for one in the preceding volumes. Though it seems wise to
relax standards somewhat, the aim is still reasonable rigour; for

example, the formula J:[ f(r, 6) rdrd6 for a double integral in

polar coordinates and the formulaJ.J‘f f(r, 0, @) r? sin Odrd0d¢ for

a triple integral in spherical polar coordinates are derived by
methods intended to provide a convincing proof without recourse
to the usual ‘small elements’ of apparently approximately rele-
vant values. I hope that those who pass from this book to the
greater exactitude of analysis will be able to do so with some
appreciation of the nature of analytical argument.

I have allowed myself the pleasure of a chapter on the sketching
of curves, which is rather out of fashion at the moment. There is
no better field for developing that interplay of intuition and logic
which is half the thrill of mathematics, and a revival, kept
within bounds, is to be desired. As far as I know, the treatment
(though foreshadowed by Salmon) has not been developed in
such detail in text-books at this level.

I must again express my thanks to Dr Edmonds and Dr Cassels
for their valuable help, and to pupils who have assisted me in
the checking of answers. My gratitude is also due to the staff of
the Cambridge University Press for their care and attention.

E.AM.

QuEENs’ COLLEGE, CAMBRIDGE
March, 1954

Opportunity has been taken while re-printing to make a few
changes and corrections. These are usually slight, but where use is
being made of this and the earlier printings together, attention
should be drawn to pages 92, 154, 176, 179.

E. A M
November, 1059



INTRODUCTORY NOTE

COORDINATE SYSTEMS IN SPACE OF
THREE DIMENSIONS

The object of this note is to explain briefly how some of the common
coordinate systems are defined in space of three dimensions. For
subsequent developments, reference must, of course, be made to
a text-book of analytical solid geometry.

Let O be a point fixed in space, and Oz a fixed line through it
(fig. 104). For convenience of reference, we shall allude to Oz as the

N”:/—’P’- il  f

Fig. 104,

‘upward vertical’. Through O draw the plane perpendicular to Oz;
for reference, we call this plane ‘horizontal’,

In the horizontal plane through O take two perpendicular lines
Oz, Oy, forming a pair of coordinate axes there in the normal sense
of plane Cartesian geometry. (In the diagram, the axis Ox appears
to occupy its usual position in the plane—straight across the page.)
The three mutually perpendicular lines Oz, Oy, Oz form a set of
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Cartesian axes in space, and the position of a point P may be deter-
mined by coordinates relative to them, exactly as in the familiar
case of two dimensions:

Through P draw lines PL, PM, PN perpendicular to the planes
y0z, z0z, 20y respectively. The values of PL, PM, PN, with appro-
priate signs, fix the position of P precisely, and the values

r= E}) y Y= EP s B= N—f)
are called the CARTESIAN COORDINATES of P for that set of axes.
It is customary to fix the positive senses along the axes by the
‘right-handed corkscrew” rule: a corkserew, turning from positive
Oy to positive Oz, is driven along positive Oz; turning from positive
0z to positive Oz, along positive Oy; turning from positive Oz to
positive Oy, along positive Oz.

Two other systems in common use may be described by com-
pleting the ‘box’ of which the coordinate planes y0z, z0z, 20y form
three faces while P is the vertex opposite to O. The lines PL, PM,
PN appear as edges, and the vertices opposite L, M, N are called
L', M', N' respectively.

Consider first CYLINDRICAL COORDINATES, in which the point N
in the plane 20y, hitherto identified by its Cartesian coordinates
z,y, is identified alternatively by its polar coordinates referred to
O as pole and Oz as initial line. If we write

p=0N, ¢=_r20N, z=NP,
then p, ¢, z are called the cylindrical coordinates of P.

The angle ¢ may also be thought of as the angle described in the
positive sense (as determined by a right-handed corkscrew) when
a plane rotates about Oz, from the position 20z into the position
20P,

It is customary to take p as positive, though there are times when
the unrestricted sign proves more convenient.

Consider next SPHERICAL POLAR COORDINATES, in which the
position of P is determined as follows:

(i) it lies in a plane (namely, 20P) making an angle ¢ with a
fixed plane (namely, 20z) after rotation about a fixed axis (namely,
0z);

(ii) it lies, in that plane, on a line through the origin O making
an angle 6 with the fixed axis;

(iii) it is at a distance r from O,

COORDINATE SYSTEMS 3
Thus, in the diagram (fig. 104)
¢= LxO_jf, 6= Lza{”, r = OP.

It is customary to take r as positive, though (as for p) the un-
restricted sign is sometimes more convenient.
The relations between the sets of coordinates are clear from the

diagram. Thus 2= poosd, y=psing;
r=rsinfcos¢, y=rsinfsing, z=rcosl;
p=@+y?), r=J@*+y*+2%;
¢ = tanl(yfa), 0 = tan~1 (pf2).

z2

P

.
e %
y x

Fig. 105.

An alternative form of diagram (fig. 105) may help to make the
‘spherical’ nature of the coordinates r, 6, ¢ somewhat clearer.
A sphere, of centre O and radius r, cuts the plane 20y in the ‘hori-
zontal’ circle shown and cuts the plane zOP in a circle of which the
‘upper’ semicircle is indicated. The ‘turning’ which defines the
angles ¢, 6 may be identified easily.




CHAPTER X1V
PARTIAL DIFFERENTIATION

In the earlier volumes of this book, attention was directed mainly
towards the properties of functions of a single variable; we must
now examine functions of several. There are, of course, many of
these properties which develop by natural extension; but the
increased scope afforded by the additional variables introduces
difficulties of which the functions readily avail themselves. A
searching study, even of quite elementary features, would quickly
lead us beyond the limits of the present work, and must be found
elsewhere. The intention is to present a picture, accurate as far
as it goes, of how the theory extends, so that the reader will be
able, on the one hand, to make use of his knowledge, and, on the
other, to see later what is involved when he comes to a fuller
examination of the details,

We should, however, state at once that it Seems necessary in one
or two places to relax the standard of rigour at which we aimed for
a single independent variable, The language of ‘small elements’,
‘negligible quantities’ and so on will be adopted more freely when
clarity in the picture might otherwise be sacrificed.

One other point deserves mention. It is now reasonable to assume
a greater maturity of outlook and experience than could be expected
for the first volumes; in particular, the reader should have some
familiarity with more advanced topics such as determinants and
coordinate solid geometry. The subject-matter of other branches of
mathematics normally studied about the level implied by this
volume will usually be incorporated without further reference.

1. The use of geometrical language. Suppose that
f(z,9,2,...)

is a function of the independent variables
A e

We shall often picture the numbers z, #,%, ... as the coordinates of
a point referred to ordinary rectangular Cartesian axes. (Since this
will seldom be done except for two variables z, y or three variables

GEOMETRICAL LANGUAGE,; CONTINUITY 5

,7,2, ideas involving space of more than three dimensions will
arise only in their most elementary form.) Thus our analytical ideas
may appear clothed in geometrical language.

For example, the function

(1/xy),
is defined for all non-zero values of z,y, and we may speak of it as
‘defined for all points of the (z,y)-plane except on the axes of
coordinates’; also, the function
1
PSR

is defined for all values of z,y, 2 not simultaneously zero, and we
may speak of it as ‘defined for all points of space except the
origin’,

Again, we shall meet functions defined only for limited ranges of
values of the variables. Thus, in a theory of real variables, the

funection J—at—gi— gt

is ‘defined for all points in the region enclosed by the sphere
x?+9y%+42%2 = 1°, and the function

V@ +y2— 4a)

is ‘defined for all points outside the circle 22+ y® = 42’. We shall
use such language without further explanation when it seems to
arise naturally.

2. Continuity. A function f(z) of a single independent variable
 is continuous at a point x = « if the difference between f(z), f(c)
remains small for all values of z sufficiently near to «; and this
informal statement of the principle of continuity suggests at once
the basis for its extension. For the sake of exposition, consider the
case when the number of independent variables is three.

e flz,y,2)

be a given function of the three independent variables z, Y, 2,
defined for all points in a region of space which includes the po%nt
P(a, B, 7). The function f(=, y, 2) is said to be continuous at the p.omt
(@, 8,7) if, given any positive number ¢, we can find a positive
humber 7 (depending on €) such that the difference

|.f(xsy’ z) _f(a:ﬂ’Y)l
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remains less than e for all points (z, ¥, z) whose distance from («, £, y)
is less than #; that is, if

] f(x,y,z)—f(a.ﬂ:')’) | <€
i{@—a)+y—BP+ -y} <n.

A slight modification is sometimes useful. We have interpreted
‘near («, ,7)’ as ‘lying within a sphere of radius 7’; but the sphere
may, if we wish, be replaced by a cubical box of edges 27, giving the
alternative inequalities

|le—a|<7, |y=Bl<n, |z=7|<n.
As may be expected, the sum, difference and product of two con-

tinuous functions can be shown to be continuous; so also is their
quotient at any point where the denominator does not vanish.

whenever

To illustrate the implications of this concept of continuity, let
us consider a function of two variables «, . The expression

e ol
2% +y?
is defined for all values of z, ¥ not both zero, and we take the func-

tion f(z,y) based on it, but defined also to have the value zero when
& == Ehus
x%y>

f@,y) = Py
=il (x=9=0).

(z,y not both zero),

The function is obviously continuous away from the origin, and
we now discuss the continuity forz = y = 0.

Take a given positive number ¢, and draw the circle of centre
the origin and radius 7. Let Q(x,y) be any point, other than the
origin, inside the circle. In terms of polar coordinates, we may write

& =rcosl, y=rsinb,
where O<r<y.
in? 2
Then firig) = risin igcos 0
= r2gin? @ cos® 4,
the cancellation being justified since r > 0. But

r<17, sin?dcostf<l,

CONTINUITY 7
and so, for all points (z, ) within the circle,

fle,y) <™
In particular, if we take 5 = /e, then

| flz,9) | <e.

Hence the function is continuous at the origin, being numerically
less than € at all points within a distance e of it.

As a second example, consider the function defined by the
relations -
flz,9) S (z,y not both zero)
=0 (z=y=0)

To investigate continuity at the origin, take a given positive
number ¢, and draw a circle of centre the origin and radius k. Let
Q(x,y) be any point, other than the origin, inside the circle. In
terms of polar coordinates we have, as before,

fla,y) =

= sin @ cos .

But it is ¥oT now possible to ensure that this value shall be less
than e for all points within the circle; for the function sin 6 cos 8,
or {sin 20, takes all values between —} and } as 0 varies, so that,
for given small ¢, there will certainly be points inside any circle
(however small its radius) for which f(z,y) exceeds €. For example,
f(z,y) = } at all points except the origin on the line y = z, however
close to the origin these points may be. In other words, the number
7 of the definition cannot be obtained, and the function is discon-
tinuous.
It may be remarked that the formula

flz,y) = sinf cos &

72sin @ cos @
ra

shows that the function is, so to speak, ‘ continuous for approach to
the origin along either of the axes’, its value for points of either
axis being zero; but for approach along any other line there is a
discontinuity, namely, a break from the value sin @ cos 6, at points
other than the origin, to zero at the origin. Thus it is continuous as

& function of # when y is fixed at zero, and vice versa; but not
otherwise,
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EXAMPLES I

Investigate the continuity at the origin of the following functions,
given that, in each case, the value of the function at the origin
itself is zero.

ay’ 1
l.- x2+y2c 2- W.
ik 2.2
g okt OB
ity g

3. Differentiation; introductory example. We have already
studied in considerable detail the variation of functions of a single
variable. For more than one variable the picture is naturally more
complicated, for the values of the function are then affected by
changes in each of the variables, and the whole variation arises as
a combination of several effccts, each making its own contribution
to the total.

Some idea of what is involved may be gathered by considering
how the volume of a given quantity of gas depends on its tem-
perature and pressure jointly. It is well known that (under suitable
conditions) the volume », the temperature ¢, and the pressure p are
connected by the formula

pv = Rt,

where R is a numerical constant. Thus

Rt
v=—.

P

If ¢, p undergo small changes to values £+ 8¢, p + dp, the volume
varies to a value v+ dv, where

R(t+ dt)
p+op’

v+dv =

and so, by direct subtraction,
y < (P 0t—1dp)
p(p+dp)

Qur concern is, of course, with small variations, and we assume
that d¢, dp are so small that their squares and their product are

DIFFERENTIATION; EXAMPLE 9

negligible in comparison with p. By the binomial theorem we have
the approximate relation

-1
._..1..._=_1(1+§2)

p+dp p\ P
-1(-%)
p p
R
so that dv =F(p3t—t8p) (1—%) :

Neglecting squares and products of small quantities we obtain the
formula of variation

R
ov =F‘(fp6‘t-t8p)

approximately.

The significance of this formula is that it gives an expression for
dv which is linear in the increments &t, p of the independent
variables.

There are two special cases which deserve attention:

(i) Variation at constant pressure. In an experiment under
conditions of constant pressure, the value of the increment dp is
actually zero, and so the formula reduces to the relation

o = B dt,
P
. ! v R
leading to the relation -

This is, of course, the differential coefficient, with respect to ¢, of the
function v= Ri/p, calculated on the assumption that p is constant.

(ii) Variation at constant temperature. For constant temperature,
the value of d¢ is zero, so that (approximately)

Rt
o = —?Jp,
or i
ay U et

and this is again the differential coefficient, with respect to p, of
the function v= Rt[p, calculated this time on the assumption that
t is constant.

2 M I
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4. Notation. Suppose that

w Ef(x, y’ z)
is a function of three independent variables z, 7, z. On differentiating
w with respect to x, on the assumplion that y, z are treated as constants
during the process, we obtain a differential coefficient which it is
customary to write in the form
cw
'a—x_ -
Sw ow
oy’ o
to ¥ (on the assumption that z, z are treated as constants) and with
respect to z (on the assumption that , y are treated as constants).
These coefficients are called the PARTIAL DIFFERENTIAL CO-
EFFICIENTS of w with respect to z, v, z respectively. Other notations
in common use are R

Similarly the symbols denote differentiations with respect

and W, W

» W,

e
For special purposes, we shall occasionally use the symbols 15, f,, f..
The partial differential coefficient of f(z,y,z) with respect to x
is the limit, if it exists,
. fle+h,y2)—f(z,y,z
P LY - f(z,9,2)
>0

¥, z remaining constant; with similar formulae for f, f..

IrvustrATION 1. If w = %P2,

ow ow ow
— ARl — Dy 2.2 e Dok
then P dayt22, 3 Sty % 2x%y32.

IrnusTraTION 2. If 2 = e®®sinby,
0z

then e @ e sin by, %=be¢“cosby.
EXAMPLES II
Evaluate g—;, ai; for each of the following functions:
15, oty 2. atfys. 3. zsiny.
4. cosay. 5. e%cos2y. A
T. % 8 (l+a)Pe=v, 9. y./z.

INCREMENT 1

Evaluate %’;, 6%;’ = for each of the following functions:
10. ady4/z2, 11. a*+ 98 +22

12. e*siny cosz, 13. sinz siny sinz,

14. (14z)%eva, 15. ztan—lyz,

5. The increment of a function of several variables. We
now apply the ideas illustrated in § 3 to functions in general. For
conciseness we restrict the statement to functions of two variables,
but the extension may easily be completed when required.

o 2=f(z,y)
be a given function of two independent variables z, y. Suppose
that z, y receive small increments to the values 4+ dz, y+dy and
that z consequently assumes the value z + dz, where
240z = f(x + dx,y + dy),
so that 0z = f(x+ 0z, y + 8y) — f (=, y).
It follows, by inserting and cancelling the term f(z, y + dy), thav

0z = {f(a+ 0z, y +8y) —f(x,y +8y)} +{f (@, y + Oy) —f(=. y)}-
Now the two functions f(z+ dz,y + dy), f(z, y + éy) differ only in
respect of z, the second variable retaining its value y+ dy in each.
Considered together, they are effectively functions of the single
variablez, as if the variable y were reduced temporarily to the status
of a parameter. We therefore apply the mean-value theorem for
a single variable (Vol. I, p. 61) and obtain the relation

fl@+ 0z, y+8y) —f(2,y +8y) = dxfz(2+ 0,02,y +dy),
where 0, lies between 0, 1, and where the suffix z is inserted at the
symbol of differentiation f’ to imply that f is differentiated with
respect to  only, the second variable meanwhile remaining con-

stant (at value y + dy).
In the same way, and with similar notation,

S @,y +0y) =[x, y) = yfy(x,y +6:0y),
where 6, lies between 0, 1, and where the suffix y is inserted at the
symbol of differentiation f’ to imply that f is differentiated with
respect to y only, the first variable meanwhile remaining constant
(at value z). Thus, in all,

0z = dxfy(x+ 6,0z, y + 0y) + Sy f, (=, y + 05 6y).
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[Note. For a function w of three variables z, ¥, z, we should obtain
similarly the relation

ow = 8xf (x+0,0x,y+ by, 2+ 02)
+3yfﬂ($:y+023y»z+3z)
+8zf (2, ¥, 2+ 050z),

and so on.]
For example, if  z = f(,y)=2%2,
tth f;(x:y) = 3xzy2:

f ;(I, y) = 21’3?! ’
so that S+ 6,8z, y+8y) = 3(x+6,8x)2 (y+ dy)?,
Fo(@.y+0,8y) = 22°(y + 0,6y).
What we have proved is that, if
dz= (z +0x)® (y + 0y)* — 232,
then there exist numbers 6;, #,, each between 0, 1, such that
0z = 3(x+0,0x)® (y + 8y)? 0z + 22%(y + 0, 8y) Sy.

This is as far as we can go with exactitude, but an approximate
discussion, when dz, dy are regarded as very small, is of importance
for two reasons: first, that it is a case which often ocecurs in applica-
tions; secondly, that the approximation sets the stage for an
extension of the idea of differentials already used (Vol. I, p. 42) for

functions of a single variable.
We now make the assumption that the two partial differentia

coefficients fal@.y), [fy(29)

are continuous functions; we do not want our approximations to be
disturbed by ‘jumps’ in these values. Under this assumption, the
difference between the products

Sxfa(x+0,02,y+38y), Oyf,(@,y+0,0y)
and oxf (. y), Oyf,(x.y)
will be very small indeed. We write
Jo(®+0,02,y+0y) —fo(x,y) = &,
Fo@,y+0,8y)—f (2, y) = €

GEOMETRICAL INTERPRETATION; CARTESIAN 13
where ¢,, €, both tend to zero as 0z, 8y tend to zero simultaneously.
. 02 = {fila,y) + &) 2+ {f1(,9) + 2} Oy

The APPROXIMATION then assumes the form
= fal@,y) 0z + (@, y) Oy,
or, in more suggestive notation,

oz 0z
0 = _35:8:6+8_y3y'

An important feature of this approximation is that the partial
¢ (0
differential coefficients B?T;E fal,y), BT;E [,(@,y) are evaluated at
the point (x,y) itself.

6. Geometrical interpretation: Cartesian coordinates.
Let Oz, Oy be the axes for a system of rectangular Cartesian
coordinates in a horizontal plane. This is illustrated in the diagram

P(x,y,2)

{ -

/ Q (x,3,0)

Fig. 106.

(fig. 106), where the reader may regard himself as looking ‘down’
upon axes drawn in the usual position. Draw a straight line Oz
vertically upwards.

Given a point P in space, let the vertical line through it meet the
plane 20y in Q, and d.ra.w QR perpendicular to Oz. Denote by
z, y, z the lengths O.R RQ QP respectively; then the triplet 2, y, 2
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may be used as coordinates for the point P in space, just as the pair
x, y is used for a point in a plane. If P is the point (z,y,z2), then
@ is the point (2,y, 0) in the horizontal plane.

The coordinate z gives the height of P referred to 20y as zero
level. In particular, if #, ¥, 2z are connected by a relation

= f (x, y),
where we assume f(z,y) to be a single-valued function defined for
each pair of values of @, y, then, as 2, y (and consequently z) vary,
the point @ moves about the plane 20y, while P describes the

2|

Fig. 107.

surface whose height at any point is equal to the corresponding
value of the function. We say that thissurface represents the function
Iz, y).

For instance, it is an easy example on the theorem of Pythagoras
to show that the function

z=+J(1—22=y?)

is represented by the hemisphere of centre O and unit radius lying
above the plane 20y. €3

We now assume, for convenience of language, that Oz is due
east and 5;; due north. We shall also regard the surface z = f(z,y)
as a ‘hill’ and P as the position of a ‘climber’ moving about on it.

Suppose that the climber is at the point P (fig. 107) defined by
the values z, y of the easterly and northerly coordinates, and that

GEOMETRICAL INTERPRETATION; CARTESIAN 15

he wishes to climb to the point P’ defined by x+ dx, y+ dy. The
whole crux of the difference between functions of one variable and
functions of two lies in the fact that, whereas for one variable the
motion along the curve which represents the function is defined all
the way, for two variables the surface may be traversed by an
innumerable choice of paths. Moreover, each way of leaving P will
demand a gradient all of its own. The partial differential coefficients
correspond to selective choices from the available paths.

One way of passing from P to P’ which can easily be described in
mathematical terms is, first, to move the distance dz easterly to
B, and then to move the distance dy northerly. The climber thus
describes in succession the two arcs PB, BP’ of the diagram.

Let us now suppose that P’ is very close to P, so that the arcs
PB, BP' are very small. The arc PB may be regarded as almost
straight, and so the ‘rise’ between P and B is proportional to the

length dxz; say 3z (easterly) = adz.

Similarly, BP' is almost straight, and so the ‘rise’ between B and
P' ig proportional to dy; say
0z (northerly) = #dy.
If 8y is the total ‘rise’ between P, P’, then
8z = &z (easterly) - dz (northerly)
= adz+ foy.

We add that, if the climber had gone first northerly and then
easterly, following the course PD, DP' in the diagram, then, for
distances so small that the paths may be regarded as straight,
PBP'D is (in normal cases) a parallelogram, and so

0z = 8y +adx
for the same values of a and .

Two simple observations now complete the illustration. Geo-
melrically, o, B are the gradients of those curves which are the
sections of the hill in the easterly and northerly directions respec-
tively. Analytically, we see, by putting 8y = 0, that « is the ratio
0z : 8z calculated on the assumption that y is constant; thus

oz

and, similarly, =—.
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4

Hence the partial differential coefficients % ' 3
the gradients of the surface z = f(z,y)
in the x- and y-directions respectively.

are identified as

EXAMPLES III

1. Show that the function

z=1-2x—2%*—y3?
is represented by an ‘inverted’ hemisphere.

Prove also that the gradients in the z- and y-directions at the
point (z, y,z) are in the ratio (z— 1) : , and that these gradients are
equal only for points on a certain diametral plane.

2. Prove that the gradient at the point (z,y,2) of the surface

z=1—a— 47
for motion in the plane y=max, has the value
22 (1+ dm?) /(1 +m?).

7. Geometrical interpretation: polar coordinates. Re-
ferring again to§ 6, the position of the point @ in the horizontal plane
may be described alternatively by means of polar coordinates r, 8.
When thisis done, the height z appears as a function of , @ in the form

z = g(r,0).

The path from P to P’ then falls naturally into the two parts PB
‘radially’ and BP’ ‘round a circle’ (fig. 108). The gradients are
quite different from those described in § 6.

If @, @' in the plane have coordinates r, @ and r + dr, 6 + 86, where
dr, 86 are regarded as small, the lengths of Q4, AQ’ do not differ
greatly from dr, r 0 respectively. Also PB, BP’ are almost straight
lines.

As before, we indicate the ‘rises’ by the notation

0z (radial) =‘rise’ from P to B,
dz (circular) = ‘rise’ from B to P’.
Denoting by a’, #’ the gradients up PB, BP’, we have the relations
6z(radial) = oa'QA = a'dr,
0z (circular) = f’AQ’ = f'ré0,

GEOMETRICAL INTERPRETATION; POLAR 1%
so that the total ‘rise’ 8z is given by the formula
0z = o' 6r+ f'r 0.
Since g—i ; g—; are the limiting values of 8z+dr (@ constant) and

8z + 80 (r constant) respectively, we have the formulae

¢z -
= ey
or

0 .
%= P

Fig. 108.
Hence the values of the gradients are
oz :
Pt radially,
1020 s .
and +30° circularly’.
IrrustrATION 3. Suppose that the height at the point (z,%) is 2,
where z = aa®+ by
The gradient for motion in the z-direction is
oz
B_z = 20:31,
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and the gradient for motion in the y-direction is

= 2by.

For ‘radial’ and ‘circular’ directions, however, we transform
to polar coordinates, so that
z = r%(a cos® 0 + bsin?0).
The gradient for motion radially is

B 2r(a cos? 0+ bsin®0)

or
=2 (aa+ by);
and the gradient for motion in the ‘circular’ direction is
13—2:?{—2& cos @ sin @ + 2bsin & cos 0)
_ _2(a-b)ry
s el

These four gradients are usually quite distinet.

EXAMPLES IV

Evaluate — R azf r the surfaces:
oz’ oy’ or’
1. z=22y. 2. zm=ad—pp,

8. Plane Cartesian and polar coordinates. Suppose that, in
a given plane, P is a point which (for convenience) we take in the
first quadrant (fig. 109). The Cartesian coordinates x, y and the
polar coordinates , & are connected by the relations
r=J(@*+y?), 0=rtan~(y[x),
z = rcosd, y = rsind.
Thus 7 is a function of the two variables z, y, where
r=J@*+y°).
or @
Hence 5= T
= _—y—- -—
oy J@+Y%)

|9
sie w8

CARTESIAN AND POLAR COORDINATES 19

Similarly 6 = tan~! (y/z),
cd —y
go that i a—:‘Li-—y;”
26-3 . g
oy ar+y?
The partial differential coefficients of x, 7 are simpler, namely
ox O Y
E-—-CDSB—;, '-8;-31110—;,
oz : oy
and @——rsm8=—y, é—é—rcosﬂr- %
o
=
T
¥
(i
o} x x
Fig. 109,
Br ox
[It is important to observe that relations such as —— =1 o

do not hold.]

These partial differentiations may be illustrated graphically.
Consider, for example, variation with respect to z, in which y
remains constant (fig. 110).

If P moves to a near point P’ in such a way that y is constant, the
line PP’ is parallel to the z-axis. Let the circle with centre O and
radius OP cut OP’ in U. Then, if 8z, dr, 0 are the increments in
%, r, 0, we have the relations

8z = PP', é&r=UP', 80=—LPOP,

the latter being negative since @ increases in the counter-clockwise
sense,
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The arc PU cuts the radius OP’ at right angles, and, if P’ is very
close to P, we may regard the arc PU as almost straight. Then
PUP' is a right-angled triangle, in which ZUP'P = 0+ 60. Hence

g—; = cos UP'P = cos (+80)

approximately. In the limit, as x—0, the quotient dr+Jdx tends
to the value Q’ and 86 tends to zero. Hence

oz’
or o
5z = 08 gi= <
agreeing with the calculated result.
¥
P 8x P
i
T U
250 -~
)
(0] X
Fig. 110.

Again, the length of the arc UP is r( — 80), or —r 80, Also we have
the approximate relation

UprP

pp = sin VPP,
#oq .
or —'% = SIn (0'*'6\0),
v 1
or 3—3-:=—;sm(0+80).
In the limit, as dz— 0, we have the relation
o0 1
— = ——sinf
ox r
s
=—

again agreeing with the caleulated result.
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To illustrate partial differentiation with respect to r, let us con-
gider the coefficient 2—: (fig. 111). This requires a variation from P

to P’ in which 6 remains constant, so that P’ lies along the radius
OP. It is then an easy matter in elementary trigonometry to derive,
for increments dz, dr, the relation

ox :
- cos 0,
so that, as dr—0, &= = cosf = E.
or T
y r
o,
P 0‘ U
8x
[
0 M 7. R
Fig. 111

Finally, consider, for partial differentiation with respect to 6,

the coefficient g—; This requires a variation from P to P’ in which

r remains constant, so that P’ lieson the circle of centre O and radius
OP (fig. 112). Draw PM, P'M' perpendicular to the axis 0X, and
PU perpendicular to P’ M’. Then the increments 86, dz are given
by the relations 30 = LPOP’,

—dx=MM,

the minus sign arising since 8z is negative. The length of PP’ is
730, and the radius OP is at right angles to the arc PP’

For the interpretation, we suppose that P’ is very near to P,
80 that PP’ is almost a straight line. Then

LUPP' = }m— LUPO = }m—0.
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up )
But pp = 008 UeE,
—dx .
so that —o0 = sin @
approximately. Hence in the limit, as 660,
g—; = —rsind,
as calculated.
P
ro@
P
(—9x)
@ M X
Fig. 112,
EXAMPLES V
Tlustrate graphically the relations
or o0 z
1- = Si.n 6. —_—
oy oy e
ey _y oy
3. e 4. a—e—rcosa.

9. Connected ‘independent’ variables. It often happens that
a function 2=f(z,)

is given in terms of two variables z, y, but that those variables are
in fact related, each being a function of a single variable ¢ (which
might, in a special case, be  or y). Then z is a function of ¢, say

z=F(1).

[For example, the point (x,y) might be restricted to lie on a
curve, such as the parabola z = af?, y = 2at.]

CONNECTED ‘INDEPENDENT’ VARIABLES 23
To find an expression for the differential coefficient
02 oty
Z=F0),
: ) o ., of of
assuming the existence and continuity of the coefficients 5" 3y’ and
dz dy
the existence of — PR T

Suppose that ¢ receives an inerement u, as a result of which z, ¥
become x+h, ¥+ k. Then

F(t+u)—F@) _flx+h,y+k)—f(z,y)
u ¥ u

= {f(x+h,?!+k)—f(m»y"‘k)}‘i'{f(%y‘i'k) _f(x:y)}
U

¢/ hf (x4 601k, y + k) + kf (2, y + 0, k)
u 3

as for the similar argument on p. 11. Hence

Berd=FO 2y oy 0,0y + 1)+ 51y y+0,0).
dv dy
Now proceed to the limit, letting u tend to zero. Since — RN T

exist, A _ dj ' Iﬁ d,y
us0® 8 U dt’
also A, k both tend to zero with u. Hence, by the usual theorems on
sums and products of limits (Vol. I, p. 25) and the continuity of
a
éf— ; ?—c , the relation becomes
@’ oy

F d:
)+ 2,

dF _ofdx  of dy
At Owdi oydt”
This relation is also written in the form
dz _ 0z dm+ oz dy
dt  oxdt oy dt’
where it is understood that z is expressed in terms of ¢ on the left
and of z, y on the right.

or, on rewriting,
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IrLusTRATION 4. Suppose that z is the square of the distance of
a point P(z,y) on the ellipse
a? P
PO
from the focus (ae, 0). Then
2 = (x—ae)®+y2

1

The variables z, y are not independent, but can be expressed in
terms of a parameter ¢ in the form

x = acost, ¥y = bsint.

Then ?—z = 2(x—ae) = 2a(cost—e),

ox

oz s

% = 2y = 2bsint,

dr . dy

E = —asint, m = bcost.
Hence, by the formula,

g—: = — 2a%(cost—e)sint+ 2b%sint cost

= 2a%sgint—2(a®—0b%sint cosi
= 2a%sini—2a’*sinf cost.
For example, the value of z is & maximum or minimum when

dz .
5™ 0; that is, when aitidis 6,
or cost = 1fe.

The latter solution is impossible (since e <1), and so the only turning
values occur when sin¢ = 0; that is, when P is at an end of the major
axis.

IrLusTraTION 5. Suppose that

z=f(x,y),

where x, y are linear functions of the variable ¢; say,
z=a+pt, y=>b+qt

&= do tedy

dt  dxdt oy di

g
“Pa Ty

Then
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EXAMPLES VI

Evaluate F'(f) by the rule given in this section, and verify your
answer by calculating F(t) explicitly and then differentiating it, for
each of the following examples:

L flz,y) = %% z =, y =i
2. flx,y) = zev; & = cost, gy =sint,
3. flx,y) = 22+y? x=cosi, y=sint.
4. fle,y) =zte™; z=1{ y=2L

10. The chain rule. The work of the preceding paragraph may
be generalized. Suppose that the two* variables z, y are each
functions of the three* variables £, 9, {; say (£, 9, £), ¥(£, 9, £). Then
a given function w(x,y) of the variables z, y¥ can be expressed in
terms of £, 9, { as a function p(£, 5, {). We obtain an expression for
the partial differential coefficient

op
éz’
in terms of the partial differential coefficients of w, z, ¥.

When £, 9,  receive increments 6%, 87, d§, the variables z, ¥

become z + 8z, y + Jy respectively, and w(z, y) becomes

w(x + 0z, y + 0y).
The increment in w (or p) is (compare p. 11)
w(x + 0z, y + dy) —w(x, )
= Szwy(x+ 0, 0%,y +8y) + Syw,(x, y +0,0y). (1)

Moreover, z, y are themselves functions of &, #, ¢, so that the
corresponding increments are

dx=z(E+ 08,9+, §+88)—2(£,9,8)
= OExy(E+ 1 6, + O, £+ 60)
+ (&, 9+ Podn, £+ 68)
+ 082y (€, 7, L+ $560), (2

with a similar expression in y.
* The numbers, two, three, are only chosen for illustration and may be any
Positive integers.
3 M 111
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On substituting from equation (2), and the corresponding equa-
tion with y, into equation (1), we obtain as the coefficient of 6% in
the increment of w the expression

+wy (@, y +0,0y) y(E+ Yy 88, 9+ 89, £+ 80),
where the number i, replaces the ¢, of equation (2).

Now restrict our attention to those cases in which the partial
differential coefficients are continuous. Then (p. 13)

0
wy(x+0,02,y+0y) = w(x,y)+6 = %4‘51,

’ ’ cw
wv(x’y'i'esay) i wy(x!y)+€$ - 'a‘g"!'ezs

(E+P185, 0+ 89, §+80) = E M ) + Ay = ag"')‘l’

oy
-é-g'-f"/lg,

where A;, A, tend to zero as 8%, 87, 6 tend to zero; so that dz, dy also
tend to zero, and hence €, €, also. Thus the increment in w (or, to
be more exact, in p, which is the same as w but with £, 3, { as the
independent variables) is §p, where

= (Gats @)

dwdxr owdy
Gara )

ow ox a-w oy
+ (G s+ 30 %
plus terms which vanish with 8Z, 7, 8¢.
Hence we have the relations, forming the chain rule,
dp _ow Bz ow oy
of ox ok ay e’
9 _ow Bx ow Sy
oy ox 31] ay oy’
%  dwds, owy
o oxodf oyaL

?IE(§+%[’13§:77+3% £+48) = yé(g: s g)‘l'AS o
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More generally:

If wisa funclion of the m variables x, ¥y, ..., @, which are themselves

functions of the n variables &, &, ..., &ns and zf w when expressed in
terms of £, &, ..., £, 18 @ function p, then

op _ ™ [op ox;

3{;’, j=1 Ba:j BJ_E‘

TLLUSTRATION 6. Let  w=ay®?,

(8= 1.2, ..., )

where z=cosfsing, y=sinfsing, z=cosg.
Then
dw Owdr 2wdy Oowoz

20 ~dz00 oy 00" 5
= —y%3sin @ sin ¢ + 22y2® cos O sin ¢ + 3xy*22.0
= —sin30 sin® ¢ cos® @ + 2 cos? @ sin § sin® ¢ cos®
= (2—3sin?0)sin @ sin® § cos® ¢;
ow owox Bway ow 22
8¢ aa:8¢ 8ya¢ 0z 0¢
= 4223 cos 0 cos ¢ + 2ayz®sin O cos P — 3xy?2*sin @
= sin®6 cos @ sin? ¢ cos® ¢ + 2sin®0 cos O sin® P cos* P
— 3sin?6 cos 0 sin® ¢ cos? ¢
= 3sin®0 cos O sin? @ cos® P(cos? ¢ —sin® ¢).

EXAMPLES VII

1. Given that w = Yz,
where z=cosfsing, y=sinfsing, z=-cosg,
dw ow
evaluate W %
2. Given that w = ut—2?,
where u=x+y+z v=2Yz,
ow ow ow
evaluate %’ o %
3. Given that w = e%cosv,
where u=2x+y, v=%—Y,
cw ow
evaluate E’ 'a'go

32
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4. Given that w = z?logyz,
where r=ul+v?, y=u+v, z=u—0,
ow ow
evaluate o B

11. Differentials. We now transfer our attention from the
approximate theory of small increments to a more exact theory
based on the concept of differentials.

Suppose that z2=f(z,y)

is a function of the two independent variables z, ¥, and that these
variables receive increments 8z, dy not necessarily small. Since we

know what is meant by the partial differential coefficients -g—z : g—;
(see §4), we may form the function
oz oz

which, for given increments, has a definite value. Tt is called the
DIFFERENTIAL of z for the increments oz, 8y, and is denoted by the
symbol dz, so that, as a matter of definition,

0z 0z
dz = a—z(?::+53}

In particular, we require meanings for the differentials of z, y
themselves. If we regard x as a function of the two independent

dy.

variables #, y, then o o
=l 5=0
so that dx =1.0x+0.dy
= O
Similarly dy = dy.

Thus the differentials of the two functions z, y for the increments
dz, dy are just dz, dy respectively. Hence for given increments
dz, dy the differentials dx, dy, dz are connected by the (exact)
relation 32

— dy.
£ i
Returning for a moment to the geometrical illustration of §6

(pp. 13-16), we can give an intuitive interpretation of the differ-
entials, though a precise statement would be hard at present. The

dz = a—zdx+
oz

DIFFERENTIALS 29

surface (fig. 107) z = f(x, y) meets the vertical lines BA, P'Q’ at the
points B, P’; suppose that the ‘tangent plane’ at P meets them in
B, P'. The sections of the tangent plane in the easterly and northerly
directions really are straight lines, and their gradients are exactly

oz oz
ox’ oy
calculated at P. Hence the rise from P to P’ is precisely

oz oz

% dz + 5 oy,
or, by definition, the differential dz. Thus the differential dz is the
increment in z when the surface z = f(x,y) is replaced by the tangent
plane to it at P. For small increments, the two values are approxi-
mately equal.

12. The differential of a function of two DEPENDENT
variables, in the form dz = S ds+ i dy.
ox oy

With the notation of §9 (p. 22), multiply the relation proved

there, namely dz & d_x+ 2 dy
dt  oxdt oydt’
by the differential d¢. Then

dz ozdx , 0Ozdy
a?dt = aadt-ﬁ-'a;a—t dt,
Now z (on the left), z, y are functions of the single variable ¢,
and we know (Vol. I, p. 43) that their differentials dz, dz, dy are

defined* by the relations
dz dx dy

dz = d——tdt, dx = Eidt’ dy = di

where —, -, — are differential coefficients with respect to ¢.

dt,

Hence the relation assumes the simple form

0z oz
dz = adx+ gédy,

giving the connexion between the differentials dz, dy, dz.
* It should be clearly understood that we are appealing directly to the defini-

tions. We are not merely cancelling d¢, though the notation dz/d for a differential
coefficient may create an optical illusion to that effect.
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The significance of this result will be appreciated on referring to
§11 (p. 28), where precisely this formula appears under the hypo-
thesis that the variables , y are independent. The work of the two
paragraphs thus unites to obtain the important theorem that, if zis
a function of the two variables z, y, then the relation

ez oz

dz = ad+ad

is true both when the variables x, y on the right are independent, and
when they are dependent.

13. Digressiononimplicitfunctions. A detailed study of the
properties of implicit funetions is diffieult, and cannot be attempted
here. The present paragraph seeks to illustrate, mainly by example,
the ideas which the reader should have at the back of his mind in
the work which follows.

Consider the relation ay%2°—1 = 0.

It can be used in three ways: i
(i) to express z as a function of y, z in the form
x =y 25
(ii) to express y as a function of z, x in the form
y =zt Y,

(iii) to express z as a function of #, y in the form

z= a:‘iy-*

These three functional relations are implicit in the given equation,
and we have, in fact, been able to make them explicit by direct
solution.

There are, of course, many implicit relations for which direct
solution is (in practice, if not in theory) quite impossible; for
example %8 —gin (x+y +2) =
In any event, there are often advantages in keeping the equation
in its implicit form, without direct solution, and so the corre-
sponding rules for partial differentiation must be formulated.

Returning to the example xy®:® = 1, we obtain the differential
relations corresponding to the solutions (i), (ii), (iii) in the forms

dx = — 3y—*%25dy— 5y—%2%dz,
dy = =3z 8xtdz—}zSa—tda,

dz = —o-tytda—Jo-tytdy,
respectively.
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Multiply the first equation on the left by 2~ and on the right by

its equivalent y%z%; then
xtdy = — 3y ldy—5z1dz.

Multiply the second equation on the left by 3y—! and on the right

by its equivalent 3z52%; then
3yldy = — 5z 'dz—x1da.

Multiply the third equation on the left by 52~ and on the right by

its equivalent 2ty?; then
bzldz = —a~tdx—3y~ldy.

It is immediately obvious that the three differential relations
just obtained are identical. Indeed, they could have been obtained
at once by writing down the differential du of the function

u = Y328 —
in the form  du = y3%5da + 3xy® dy + 5xy2tdz,
and noting that du = 0 since u has the constant value zero.

This example illustrates a technique which we shall adopt
without further comment. Suppose that, say, three variables
%, y, z are connected implicitly by a functional relation

u(z, Y,2) =
Then we obtain the same relation between the differentials dz, dy, dz
whether we find it directly by equating du to zero or by first
expressing « as a function of y, z (or y of 2, ; or z of 2, y).

14, Differentials of functionally related variables. Suppose
that three variables z, y, z are connected by some relation, so that
either may be expressed as a function of the two others. Regarding
z as a function of y, z, we have

ox ox

dx = % —dy+= % dz;
regarding y as a function of z, z, we have
_oy, Oy,
dy = é;dz + é; dn:,
regarding z as a function of z, y, we have
0z az

(As we have just explained, these tkree forms of the relation are
in fact identical, the ratios da: dy : dz being the same in each.)
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An alternative notation for the partial differential coefficients
is sometimes found useful as giving greater precision. We write,
for example, o

.

to denote the result of differentiating 2 partially with respect to y
when the other mdependent variable is z. Wlth such notation, the
three relations given above are

ox ox
dz = ay) dy +a ) dz,
oy ey
dy =22 ) o m)sdx
oz oz
dz = Bm) dx+ay)wdy.
[Thus if the implicit relation is
x’+ya+z= =1,

ox y oz
> = Rl a),,

a_y) wes a_y)
)y ¥ %

AT TR
=
The three ways of looking at the functional relation, and con-
sequent three ways of looking at the differential relation, all result
in a linear equation among the differentials dz, dy, dz; and it is often
convenient to express this linear relation with symmetric notation
udx+vdy+wdz = 0,
(where the symbols u, v, w denote certain functions of the variables
z, 9, z) leaving unspecified at this stage which of the variables are
to be regarded as independent and which as dependent.
With this notation, the partial differential coefficients are

a_“’) . B
T IRE ™ SR

3_y) A, ay) el
al, o & v’

e

v
a_z) gl 3_2) i
ox), w ey, w

Il

z
x
%
¥

DIFFERENTIALS OF RELATED VARIABLES 33

This leads to another observation. Consider, for example, the
coefficient 82:)
oY/ s

It is calculated by differentiation on the assumption that z (the
other independent variable) is constant, and this assumption may
be stated in the equivalent form that Jdz is zero. But then the
differential relation udz + vdy +wdz = 0 becomes simply

wdr+vdy =0,
and it follows, since
or\ v
that o e
al *a-?})s-— =Y.

In other words, the partial differential coefficient g%;)

constant, is equal to the ratio dx+dy of the diﬁeremgak dz, dy when
dz i3 equated to zero.
These ideas may be extended to any number of variables, and
the resulting theorems are important in practice:
(i) If z is a function of the variables ,,,, ...,%,, then

, where z is kept

0z 0z 0z
d2=a;dxl+a—%d$2+...+§x'—“dxn
n oz
= ¥ — da,,
zl:ax., .

whether the variables ,, 2,, ..., %, are independent or not.

(ii) If there is a functional relation between = variables
Y1, Yas ---» Yp, then their differentials are correspondingly connected
by a linear relation of the form

u’ldyl'l"uzdys'l' "‘+undyn =0,
or iuid‘yi =0,
1

where u,, u,, ..., %, are functions of the n variables.
Further, if we regard, say, ¥, as a function of the remaining
variables s, ¥s, - .., Y, then the partial differential coefficient

oYy
oY
(calculated with ¥y, ¥y, ---» ¥, all constant) is equal to the ratio
dy, +dy,
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calculated with dy; = dy, = ... = dy, = 0; so that
O Uy
W’

IrrustrATION 7. Three variables z, y, z are such that each may be
regarded as a function of the other two. T'o prove that

e 2] = l,l
oY/ \ex/,

E‘y) oz Ex) 1
and that (& x(a ,,(a_y % 1,
where, for example, (g—;) means that x 18 expressed as a function of y, z,

and then z kept constant in the differentiation.
A relation between z, ¥, z implies a linear relation between their
differentials. Thus functions @, b, ¢ of the variables exist such that

adx+bdy+cdz = 0.

Hence (?) =dx+dy when dz=0
oY/ 2
= —bfa,
and (i)_y) =dy+dx when dz=0
oz/,
= —alb,
o et () @) -1
In the same wa; (a_y) =—c/b
¥ 5.) =—¢lbs
x
oz
(5:;:)” = _alc:
=<,
(), = -0
oY) (02) [ox\ _
i @.6&).6.-

IrrusTRATION 8. Four variables u,t, p,v have the propertly that each
one of them can be expressed as a function of any two of the others.

To prove that o i o\ {2v
(E)p ~ (ﬁ)ﬁ(@),(éz),’
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where, for example, (Z_:;) means that w is expressed as a function
D

of t, p, and then p kept constant in the differentiation.

A relation between three variables implies a linear relation
between their differentials. Since u, {, p are related, functions
a, b, ¢ of the variables exist such that

adu+bdt+cdp = 0.
Thus (2—1:) =du+dt when dp=0
M —bla.

There is also a relation between u, ¢, v, and functions A4, B, C of the
variables therefore exist such that

Adu+Bdi+Cdv = 0.

Thus (%—?:) =du=dt when dv=0
" =—BA,
ou
- (T) g e T T
cv/,
- =G4

This accounts for the first three partial differential coefficients in
the relation which we have to prove. There remains (g;) , for
b
which we need the relation between dv, d¢, dp. This is found by
eliminating du between the two differential relations, giving

bdt+edp _ o Bdt+0dv’
a A

or aCdv+ (aB—bA)dt—cAdp = 0.
Hence (a—v) =dv+di when dp=20
»

ot
bA—aB bA B
P I Y

80 th&tp (%t) = a—:“)
p v
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EXAMPLES VIII

1. Prove that, if u, y are each functions of the two variables
z, t, and if u is expressed (by elimination of ¢) as a function of z, y,

h
4 ).~/ 3).

Illustrate this result by considering the cases
i) w=a2+id y=uoi,;
(ii) = = e®cost, y = e®sint.

2. Each of the variables u, v, w is a function of the two variables
z,y. By elimination of z, y, the variable u is expressed as a function
of v, w. Prove that

tudv oudv
du\ zdy oyox
a_w),“awaw tweov'
ox oy oy ox

Illustrate this result by considering the cases
(i) wu=a2+y% v=2—9% w=_2ay.
(i) u=a®+9® v=z+y, w=a -ay+y’

15. Small increments. The example which follows is
typical of many:

TLLUSTRATION 9. The sides b, ¢ and the angle A of a triangle ABC

are given by b=4in., c¢=5in, A = 30°

A number of children (not knowing these figures) make measurements,

with a maximum error of 29, in length and 3 %, in angle. To find the

greatest consequent error in their estimates of the area of the iriangle.
The area z is given by the formula

z = }bcsin 4.

When dealing with products, it is often convenient to begin by
taking logarithms, so we write

u=logz = log}+logb+loge+logsin A,

SMALL INCREMENTS 37

Suppose that the errors are 8b, ¢, 84, leading to an error 8z in 2z or
du in logz. Then we have the approximate formulae

du
ou = o= 0z,
ou on on
ou = %8b+"é-c' 8c+-é—j&1,
so that lr)‘z = lab +lac+c?SA3A.
z b ¢ sin A

Now the coefficients 1/b, 1/¢, cos 4/sin A are all positive (an im-
portant point) and so the greatest error arises when 8b, dc, 64 are
all posilive and at their greatest values. But we then have
éb = 2b/100, de = 2¢/100, 84 = 34/100, so that

15, -1(2b) 1(2)  ocosA (34
2% =3\100) "¢ \100) T sn4 \100
_i+3AcotA
100 100 °

Now the angle 4 is measured (as in all work for calculus) in radians,
so that 4 = {7; also cot 4 = /3. Hence

ly,_ 4,73 _8+mys
z 100" 200 200 °*
847 43)2
th - Bha B
so that 0z 200

The greatest percentage error in the estimate of z is thus
$(8+73)% =61 %
approximately. The corresponding error in actual value is

g 63
o —_——
4 x4 x5 xsin30 X 100"

or 0-34 sq.in.

EXAMPLES IX
Repeat the work of this illustration (with appropriate modifica-
tions) for the following sets of measurements:
1, b=2, o=8, A= 45
% b=4, ¢= b A= 150%
8. b=2, o=38, A=185°
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16. Partial differential coefficients of higher order. If

' S z=f(x,y),
) then az ; Hz are also functions of the two variables z, y, and possess

their own d1fferentia] coefficients. We use notation such as
| &t
I ox\oz) 0a?’
'] 2 (B"z) 32

oz \322) = 5%

d (0z\ _ &% 0 §)= 0%
i (o) =2t 3 () "
3 (@) =322
oy ~ oy*’
and so on.
For example, if z = (ax+by)?,
then g— = 3a(ax+by)?,
8
32 o O+
B (az + 9'):
82
ax—ay‘ 6ab(ax +by) = ayax,
W = 6b%ax + by).

Before going further, we give a proof (under the simplest con-
ditions only) that the order in which partial differentiations are
performed is irrelevant. In other words, we prove that, in ‘ normal’

PR % %
dxdy oyox’
[The proof which follows may be omitted at a first reading.]
Let z=f(2,y)

be a given function of the two variables z, y, and consider the
expression

E=f@+h,y+k)—flx+hy)—f(xy+k)+/(y)

COEFFICIENTS OF HIGHER ORDER 39
First we express & in the form
E={fx+h,y+k)—flx+h,y)}—{f(z,y + &) —f(,9)},
and then write  w(z)=f(z,y+k)—/(z,y),
where y is regarded as constant. Thus
E=u(x+h)—u(z),
and we may apply the mean-value theorem (Vol. I, p. 61) for the
function u(x) of the single variable 2. Hence
E=hu'(x+0,h),

where 8, lies between 0, 1, the differentiation of u being performed
on the assumption that y is constant. Thus, by definition of u,

E=h{f (z+0,h,y+k)—fi(z+6,h,y)}
Now write v(y) =fi(x+0:h,y),
where 2+ 6, h is now regarded as constant. Then

E=h{v(y +k)—v(y)}

and we may apply the mean-value theorem for the function »(y) of
the single variable y. Hence

E=hlev'(y +6,k),
where 0, lies between 0, 1, the differentiation of v being performed
on the assumption that « is constant. Thus, by definition of »,
E =hkfy,(x+0,h,y+0yk),
the differentiations of f(z,y) being performed first with respect to

z and then with respect to y.
In the same way, we could have written ¥ in the form

EE{f(x+h’y+k) _f(xly+k)}_{f(z+h’ ?/) _f(ms y)}
and so obtained the formula
E=khfz,(x+03h,y+0,k),
where 6,, 6, lie between 0, 1 and the differentiations of f(x,y) are
performed first with respect to y and then with respect to z.

Henoe  po (@ 0,0, y+04k) = fi @+ 04h,y +0,k).

Now let h,k—0 independently. On the assumption that the
two second-order partial differential coefficients are both con-
tinuous, we reach, as the limiting form of the equation, the formula

&2f Y &2f
oyox oxdy’
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Finally, we remark that, once this result is established, we can
easily prove more general results such as

Ay ) P
0x%0y oOxdydx Oyox>’

and so on.

EXAMPLES X
0% 0% 0% 0% 0%z

Evaluate 5% 3%y’ % 3220y Swoy for each of the following
functions:
1 iyt 2. &Py, 3. eTsiny.
4. zlogy. 5. x?siny. 6. zev.
7. 2fy. 8. ytanlz, 8. 2P

IrrusTtrATION 10. To0 prove that, if

2 = a(y[e) + Y (y[x),
Baz 0% 0%
a:3+ Z”yax;y“* zay’

where ¢(y/x), Yr(y[x) are functions of the variable y|z.
Let ¢, " be written to denote ¢'(y/z), ¥'(y/x), the differential
coefficients of ¢, y with respect to the variable y/x. (In other words,

if ¢ is written for y/a, then ¢’ is %%i with g/« written for ¢ after

differentiation.)

then 0,

Then 2 B} = ' 2 w/e)
A
ay{iﬁ(y/&‘)} ¢ (y/x)
- ¢ /mn
with similar results for . Thus, by the definition of z,
By 8y VY
oz z2’
az ) x¢f ¢.I
- 'z
#+L.

ILLUSTRATION: CHANGE OF VARIABLE

0z 02
Hence xa-;+y§3} = zd.
Differentiate with respect to z, y respectively. Then
L TP
Yo Tty ~ P 125,
= ¢—9'ylz;
a: 0% e 0% + az 8¢
awdy "V oy “oy
= ¢
Multiply these equations by #, ¥ and add. Then
0% 0% 82z az 0z
e
Voan Yy T et Tt g = =,
or, using the previous result,
0% 82z aaz
2t 2 =0,

IrrnustraTION 11. (Change of variable.) To prove that, if

L
ot oyt

then the function z must be of the form

z=f+y)+gz-y),
where f, g are arbitrary functions of their arguments.
Write 5 =z+Yy,

N =x—9.
0z 020 8281)
ox agax oy ox

0z Oz
“ETa

0z 020 Bzaq

oy~ oEdy ondy
0z 0z

=-3—£ a"’.

Then

and

M I
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It follows that the ‘operation’

ox
on a function of #, ¥ is equivalent to the ‘operation’
I
%t
on the same function expressed in terms of £, 9; and that
2
%y
is equivalent to 5%—%
2
Thus % = E%(gi:: ) (by definition)
0 [0z oz o 02
=5 (8_§+§]) (rep]acmg E)
(DGR )
90z 02\ O (cz oz
- a‘g(a‘g*%) o (55*%)
c% e

=3—§”+28§T;+W‘;
and, by similar argument,
0% o% % o
T T

Hence the given relation
o 0%
s
B’z
i ivalent to =0,
is equiv B
o [0z
ne 3 ar) =
so that g—; is independent of £ and therefore a function of % only; say
0z
= = u(y).
By )
Integrating, 2= f'u('r,r) dn+ A4,

ILLUSTRATION: USE OF OPERATORS 43

where A is constant with respect to 7, but may involve &,

Writing fu(ﬂ)dv = g(7)
and 4 = f(&),
we have the relation z=f(E)+9(n),
or,in termsof ¢, y, z=f(x+y)+g(x—y).

TLLusTRATION 12, (Change of variable by the use of operators.)

Given that R
L/ B0

9:2 3 y2 axﬁ ayz
with u, v as independent variables.

This example is typical of many, and is given in detail. (The
beginner may also like to solve it by straightforward partial
differentiations.) We assume throughout that the context makes
it clear when ¢ is being regarded as a function of z, y and when it is
being regarded as a function of u, v.

By the chain rule of §10 (p. 25)

a¢ dpou dpdw
= oz o

= %2 (22)+ %2 (2y);

895 B¢8u+3¢81)
cucy ovoy

to express

and

=2 o)+ 2 ).

Hence ara? +1r/a;S 2(x3—y2)a—¢+4xy%¢

94,98 . 9,99.

+2va

and yr??5 a = doy = gﬁ+2(gﬁ—x“)gvﬁ¢'

o
= 20@—2152”—‘5.

ou

4-2
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We may regard the symbol

as an OPERATOR in the sense that, when it ‘operates’ on the function
¢ (expressed in terms of z, y), the result is

e
)
What we have just proved is that the operators
0 0 0

aa:+y"y’ ya_x@:
acting on any function of 2, y, are equivalent to the operators
2uai+ 2‘0%, 2v%—2u%
operating on that function when expressed in terms of u, v,
[The next steps may be abbreviated with experience, but are
given in full for clarity.]
In particular,

(rz+15) (5 +5)

(2u%+2va ) (2u8¢ PS),

since the functions xa¢+y25, 8¢+2v3—¢ and the operators

0 2 G ¢
( =+Y> ) (Zu i 20 5) are respectively equivalent.

Consider the left-hand side.

[This step should be noted carefully, as it is often calculated
wrongly.]

This is equal to

(earv) (£50) + (e2aro) ()
o 5 (:5)
“’ay(cw)
i)

JLLUSTRATION: USE OF OPERATORS

.Y

o*p
+o{eay%)
*$
=)
o' ¢
+1uze+a)
ST T N )
Hence we have the equa.tlon

e et ST L

or, finally,

= 4(u’ai+2uv o g +v283¢+u_£5 —?—5)

ou? oucv
Now consider similarly the relation

(v5-=5) (= -+5)
5(271—@-—2118”)(2@8—— %}.

3 T ot

ou ou
The left-hand side is

v5 (o)

or Y\Y s
~(rzmt2)
~s{eatyt )

i

+xlx$9:).

45
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Hence 8¢D 3¢3:!: a¢ay
PP, BB 2 o i "% 30

. il A -
yaxz ‘“yaxay” oy “ox yay

ot} - e¢
= = (—rsind) + == (rcos )
SRR T Z 7

aur oo Vo “ou oyl o gto
ox oy’
Adding this to the similar equation obtained above, we have . L "
2 Hence 4 9: =y P 2xy——a ¢ +xza_f_ %_ya‘p_
20 hle qS %) 2402 8”¢ 6295 ov cx® oxdy oy " ox Oy
(a®+y ) -a—y-—,; = 4(u+1?) g 8295 ¢ o6 ¢ o
Adding, 'zttt ("’”yg)( )
But  wtet= @y (2ap) = 2+
1 qui 024 2 0% i ¢ 8295)
so that P (axa ays) s 4(8@0’ +3‘v’) @ oy
¢ ¢ % 1 E‘¢ 10%
29-" 2 . so that 2 f a;: a:f trae
IrLusTRATION 13. The ea:presswn 8y2 in polar coordinates. @
The expression L TrLusTRATION 14. Homogeneous functions. A function of three
o + o’é variables f(z, y, z) is said to be homogeneous of degree n if it possesses
ox® " oy* the property

fluz, uy, uz) =urf(z,y,2)

is of great importance in mathematical physics, and it is important for some mumber . Typicsl examplesare

to be able to transform it to pola,r coordinates in accordance with

thy al formulae 22+ 42+ 22

e usual form % =rcos, y=rsind. —a:-—%:jﬁ (n=1),
We use the method of the preceding illustration, now expressing etz (p = 0),
the argument with more normal brevity. 1

By the chain rule of § 10 (p. 25), e g o Ml

% _dgdx 2pdy
or wor oyor

Another example is Jz+Jy+42 (n=1),

where it is assumed (for real functions) that z, y, z are positive,

og op . and that u also is positive.
T e oy oy We prove the following theorem:
o _ 0, 0 e 1(@,,2)
so that el | e .
or = "o Yoy i8 a function homogeneous of degree nin x, Y, 2, then
o¢ 95) 2 of _
o ’a( ) ( )( & Vay) az“*yay“ o=
» Bzg: e 3¢ o g 0° q:_i_ 9 82¢ + 2822 i _¢ Suppose that z, y, z are temporarily fixed. Then
"o o oy Yoy Jluz, uy, uz)
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is a function of the single variable u. Write
uw=§ uw=9, uw={

Then, in accordance with the rule for differentiation (compare
Illustration 5 on p. 24),

d%f(ux, uy, uz)

_YEnDE YERD Y ELX
VTRl o oy du o  du
TEML Bf(E,v,D LA E .8

= /3 oy og

But, by definition,
fluz, uy, uz) =u"f(2,y,2),

so that (,y, 2 still being fixed) we also have the relation

d
= [ luw, wy, uz) = nunf (2, y, 2).
Hence, equating values of d—% Sluz, uy, uz),

a L k4 a 2
HE10, FEND, FEID gy,

In particular, this result is true for u = 1; and then £, 9, { are
respectively equal to z, ¥y z. Hence

R (xé : 2) yaf(wé;;, 2) U (93 N8 w6,
or, more briefly, Ta o Tt g'; + z% = nf.

This result may be extended. By differentiating with respect to
x, ¥, z respectively, we obtain the relations

oY of o%f o%f aJ"
o T Vioy ‘o "oz’
e AR 0 e AR

B 8y+ ay2+ “ayaz E}y'

i P TP Y e
8z8x+y6y8z 2" "%

IMPLICIT FUNCTIONS OF A SINGLE VARIABLE 49
Multiply by =z, ¥, z in turn and add, first transferring the terms in
g o o to the right-hand side. Then

oz’ 0y’ 0z
I IR DO e 2o
Bt e st s e e e T M ey
(n—l){xaf+yg‘;+zg');}
=n(n—1)f.

17. Implicit functions of a single variable. A function y of
a variable 2 is often defined, not directly in the form y = f(x), but
implicitly by means of an equat.ion

fla,y) =
The differential coefficients d!a/: d:f; of y with respect to  may
then be calculated as follows: ;
Since x, y are both functions of z, we have, by the chain rule,
the relation a af 8f dy
de~ oz ' dydz’
so that, since f is always zero,
o= AU
8:-: oy dz’
of
dy oz
Hence - —g ;
oy

Moreover, applying the same treatment to Bf a'; respectively,

& (@) L R
dx\ox)  0a?  Caxoydax’
(ef ) & o dy
dx\dy) — owdy oytdx’
8o that, on differentiating the relation
0-L L
= By 3
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with respect to z,

(L8 (2L Z )i, B2,

axa+ﬂyﬁ cxdy oy? dx) dx  oydx®
&f o, & dy & (dy\?* of d%

= preiy axaydm+8y“( ) '{-Bg,ra'l_':}.'é o

(Bf o Bf of & (of\20%f

o T oM

d?y _ P Bx oy dxcy
dz® ¢
)

IrrusTtrATION 15. T'0 find expressions foe' - g;z when

Hence

a?+y2—-1=0.
Differentiating, we have

m+y%=

Ei_gf z

so that < ~

Differentiating again,

1+(@j‘+ ho,

d._,;z

or y3+2:3+y3 ay =0.
d2y 1

Hence - —373.

EXAMPLES XI

Find expressions for —= dy &y . in each of the following cases:
dz’ da?
1. y*—4dazx+a®=0. 2. ax®+fy:—1=0,
3. 2+ =ad. 4. zyt+yat =1,

18. The tangent to the curve f(#,y)=0. Let (p,q) be
a given point lying on the curve whose equation is

f(xa y) ==

TANGENT TO THE CURVE f(z, y)=0 51

The gradient at the point is = dy where

iz’
of
dy o=
=~ "o
oy

(p. 49), the differential coefficients being evaluated when z = p
y = ¢. Hence the equation of the tangent is

af
y=g= _af(x )s
oy

or [g’; (p.q)(m-pH[g—J;](p,q) (y—q) =

the square brackets being inserted to imply evaluation with
r=p,¥=4q.

IrvustraTION 16. T'0 find the equation of the tangent to the ellipse

a? g
at the point (p, q).
of 2= of 2
We have a— = _2 —y' b’ "
210 2q
so that [ == I: =t
(p, @) a? ay (p, @) b*

Hence the equation of the tangent is
2 2
Le-p)+50-0=0,

P 9 _

or, aincepﬂlaz_!_qalbﬂ = l.l g +b2 =

19. Exact differentials. We are now familiar with the formula

x, y; but the converse problem often arises and requires an answer:
To determine whether, when two functions f(x,y), g(x,y) are given,
there exists a function z of z, y whose differential is given by the relation

dz =f((6, y)dv""l'g(”»y) dy'

— dy for the differential of a function z of two variables
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If z does exist, then, necessarily,

g% =f(z: Y): é_a; = g(x,y),

and these two partial differential coefficients satisfy (for normal
conditions) the relation (p. 38)

By
oy \ox) ox\oy/"
Hence a NECESSARY condition for the existence of the function z is that

0 0
The condition is also SUFFICIENT:
If two functions f=f(x,y), g=g(x, y) are such that
o _%
oy oz’
then there exists a function z of x, y such that
dz = fdx+gdy.

[This proof may be omitted at a first reading.]
Take the function f(x, y) and integrate it on the assumption that
y is to be kept constant; this gives a function

F(z,y) ij e )f{x,y) dz.

In the same way, integration of g(z,#) on the assumption that z is
to be kept constant gives the function

G(z,y) = f g(, y)dy.

(z const.)

The functions F, G satisfy the relations (Vol. I, pp. 86-7)
oF
==
% _
ay iz gl

12 mo ; A og
so that, in virtue of the given relation p =50 We have
2F 2@

dyox ~ oxoy’

EXACT DIFFERENTIAL 53

If we assume that F is a function of ‘normal’ type for which
L S then

dyon  oady’ 2F o6
2udy ~ ooy’
BF—-G)

E zay

Hence (compare pp. 42-3) the difference F — G is of the form
F—-G=u(z)—v(y),
where u(z), v(y) are functions of z, ¥ only. It follows that
F(z,y)+v(y) =G, y) +u(),

and we take either of these expressions as the function z whose
differential we require, namely,

z=F(x,y)+o(y) =Gz, y) +u(@).
With this choice of z, we have

0z ¢oF
=
&_ow0_
oy oy
0z 0z
so that fdx+gdy=a—xdx+a—ydy
=

DernirioN. When the condition
2 .9 = 2 o0}

is satisfied, the expression
Jle,y)dz+g(z,y)dy
i3 called an EXACT DIFFERENTIAL.
IrLustraTioN 17. The steps of the proof may be grasped more
clearly by reference to a particular example, say
32%(x + y) da + (2®+ 3y) dy.
Integrating the first part with respect to , on the assumption
that y is constant, we have
F(z,y)= ="+ 2%,
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and integrating the second part with respect to y, on the assumption
that z is constant, we have

G(x,y) =23y + §y>.

What, in essence, we have to do is to add to F(z,y) a function
of y, and to G(x,y) a function of z, so as to yield (if possible) the
same function z. This we do by taking

z=jat+ 2y + 32

Then dz = (323 + 32%) dx + (2% + 3y) dy,
as required.
The point of the proof given above is that, since

) )
'35(33 +3y) = s (322 + 32%y),

functions u(x), v(y) must exist such that
F(x,y)+v(y)=G(2,y) +u(2).

When they have been determined, either side of this identity gives
a function z.

20. Integrating factor. Although there is not, in general,
a function z whose differential dz is equal to the given expression

fdz+gdy,
it nevertheless happens in several important instances that a
function £

w=uz,y)
exists with the property that the product

u(fdz+gdy)

is an exact differential. The function u(z,y) is then called an
INTEGRATING FACTOR of the given expression.
The condition given in the preceding paragraph becomes

5. = 0

Y
or ﬂay'l'f@_p’a:t'i'gaws
o Jop  (of g
o ot a)

INTEGRATING FACTOR 55

This equation, which we may expect to be of help in deriving z,
is unfortunately somewhat awkward to handle; but in practice
what we often want is a solution in which yx is a function of x only,
in which case the working becomes more manageable:

If u is a function of # only, then

o _
dy
au . : g : o Gl
and 3p 18 the ordinary differential coefficient i Then
du _ (of o9
g I‘x i ﬂ('é'y"_ ax) ]
f_%
so that o = gy—-a::f-dx
P~ g

If it happens that the coefficient of da is a function of z only, the
function x(x) can be found; for then

The Ilustration which follows shows how an integrating factor
may be found—though an experienced mathematician will usually
‘spot’ the solution in such a direct example without going through
the routine process.

IuLusTrRATION 18. To find the current y at time t in an electric
circuit with self-inductance L and resistance R under an eleciro-
motive force E cos pt, where L, R, E, p are constants.

It is known that y satisfies the differential equation

dy
LEE + Ry = E cos pt,
or, on multiplying by the differential dt,
Ldy+ Rydt = E cos ptdt.

We seek to find whether the left-hand side is an exact differential.
If s0,

0 2
50 = 5, (o),

or 0=2R,
which is not true in general.
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We next try to find an integrating factor 4, by means of which
the equation will become
puLdy +pRydt = pk cos ptdt.

The right-hand side can be integrated (perhaps with difficulty, of
course) if x4 is a function of ¢ only. Let us therefore try to make the
left-hand side an exact differential on that assumption. We must
have

3 (uL) = 5 (Ro),

or, since g is a function of ¢ only,

ap
Lﬁ 5 A"'-R’
de R
or - = Idt.
Hence log 4 = Rt/L,
or b= eML’

no constant being introduced since any one particular value of z
will suffice.
The equation is therefore

LeRL gy + Ry e®Ldt = E eRVL cos ptdt,
or Ld(yeBiL) = E ¢BL cos pitdt,

or ye®L — (E|L) f eRIL oo pidt + C,

where C' is an arbitrary constant. Evaluating the integral by parts
in the usual way, we easily reach the solution

EeML
BE !
e K2+ L2p*

The current y at time ¢ is therefore given by the formula

{R cos pt + Lpsin pt} + C.

E ;
y = m{RWBP‘*’LﬁNﬂPt} -+ Ce_m“‘:',

where C'is a constant whose value, for a given problem, depends on
the initial conditions.
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21. Taylor’s theorem for several variables. In Vol. IT, p. 44,
we discussed Taylor’s theorem for functions of a single variable.
In enunciating the extension we have to use two points of notation
which we shall explain almost immediately:

TayLor’s THEOREM: To prove that, if f(2, ¥, 2) is a function of the
three variables x, y, z, then a number 0, lying between 0, 1, can be
found such that

f@+hy+j,z+k)
ﬂf(x’yiz)

+ (i +ge) f0.9.9

ka+'a+kisf(m z)
+2—[ s J@ % Y

---------------------------------------

1 0 i) gys-1
+(n_1)!( itz ) fx,9.2)
0 0 :
ok).
+u[(ha +Ja ) flx+6h,y+ 65,2+ 6Fk)

Tt is assumed that the function and all its partial differential co-
efficients exist and are continuous for the ranges of values to be

considered.
[For the ‘shape’ of this expression, note the analogy with the
binomial theorem.]

NorarioN. By the expression
(h a +3;;+k ) [z, y,2)
we mean the result of operating p times in succession on the function
f(x,y,z) by the operator h%-{- 3] -8% + ka—az ; for example, whenp = 1,2
we have respectively
Ll
e ’g;,+kﬂa'f+2 ka% 2k L +2kga

5 MIm
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In the term

] a
( +Jay ) flx+6h,y+0j,z+0k),

it is understood that, AFTER the n operations, the variables z, y, z
are replaced by x + 0k, y + 0, z+ Ok.

Suppose that z, y, z have definitely assigned values. Form the
function F(f) of the variable ¢ by means of the relation

F(t)y=f(x+th,y+tj,z+1tk).
If, for convenience, we write
w=z+th, v=y+itj, w=z+ik,
then (z, y, z being temporarily constant)

dF _ 3f du of dv__of dw
@t " oudt ovdt owdt

& o o

(Compare also p. 48.) Thus the operation
d

dt
on the function F(t) is equivalent to the operation

g1y 0

on the function f(u,»,w). Applying the same rule to %{’ which is

a function of ¢, and to its alternative expression % - o 2T 3 av g;’;,
which is a function of u, v, w, we obtain the eqmva.lence

d? 90, .90 9)\2
an ("’a “au"""%) ’
and so on.
Now, by Maclaurin’s theorem (Vol. IT, p. 49), 6 exists (0< 8 < 1)

such that

F(t) = FO)+tF'(0) 4 ...+ — F"H)(O)+ — T ),

( )

TAYLOR'S THEOREM 59
and g0, using the relations just obtained,

flu, v, )

= f(u,v, w)y

------------------------------------------

in-1 9 .9 9 \n1
—"_(hﬁ+'76—v+k570) flu,v,%),

i 5 o\n
5 (hg‘h?g‘v"'k%) Su,v,w)y,

where, on the right-hand side, the suffix 0 indicates replacement of ¢
by zero in f and its differential coefficients, while the suffix ¢
indicates replacement by 0¢, AFTER DIFFERENTIATION in all cases;

thus
2 9 )
(hﬁt?%-l-k%) flu,v,w),
means kaf(x )+'af kaf
20 2 Ys 2 J@ (,y,2)+ % (,y,2),
I, a\»
means (h ? +Jay+k ) flx+hot,y+30t, z+ kOt),

the values z+h#, y+;Ot, z+ k6t being inserted in the partial
differential coefficients ArTER differentiation by the current vari-
ables 2,7, 2.
Putting ¢ = 1, we obtain the theorem.
IrrustraTION 19. Taylor’s theorem for the function xyz. If
f (x y’ Z) — xyz;

8 .
then (h By Bz) flx,y,2) = hyz + jza + kay

and ( aa +'78y ) f(@,y,2) = 2jkx + 2khy + 2hj=.
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Hence
(i) a number @ exists such that

(x+h)(y+7)(z+k)
= Iyz
+hyz+jzx+ kay
+ ¥2jk(x + Oh) + 2kh(y + 67) + 2hj(z + Ok)},
so that, on expanding and cancelling like terms from each side,

hjk = 3hjk0,
and 6=1;
(ii) a number ¢ exists such that

(x+h)(y+j)(z+k)
= 2yz+h(y + ¢j) (2 + k) +j(z + pk) (x + ¢h) + k(x + k) (y + £)),
so that, on expanding and cancelling like terms from each side,
Jkx + khy + hjz + hjk = 2¢(jkz + khy + hjz) + 3¢*hjk.
Taking the general case, in which %, j, k are not zero, divide by hjk;

then AR
2 — — — — —_— —3
3¢+ (26 1)(h+j+k) 1=0,

Itis an interesting exercise in elementary algebra, which we leave
to the reader, to prove that, if the expression
z Y. 2
Bt g *E
does not lie between — 1, — 2, then there is precisely one value of ¢
between 0, 1; but that, if the expression does lie between —1, —2,

then there are two such values of ¢. In either case, the theorem is
verified.

REVISION EXAMPLES X
‘ Scholarship’ Level
1. Prove that, if z is a function of u, v, where
u=xy, V=x+Y
(so that z may also be regarded as a function of z, y), then

2 _ aaz o8 ey 0% 62z
0a? 8u5 Y oute T or"
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2. If the independent variables z, y in the function f(z, y) are
changed to £, 7, where
E=z+y, 1=2-9,
so that the function f(z, y) becomes g(£, 3), prove that
oF o _ P
axﬁ ay2 ag aﬂ
Deduce, or prove otherwise, that, if the independent variables
z, y are changed to %, v, where
z+y =log(u+v), z—y=Ilog(u—yv),
so that the function f(z, y) becomes h(u,v), then
*f o (u2—v) (8% B’h)
2 ot ou? ov?
3. (i) Prove that, in general,

o A e e )
22

(ii) Prove that, if f is a function of  and

is not equal to (z®— y*)

u = (2?+y?) tan“g,

then ‘ mg —y gf (@2 +9y?) g‘[

e (aax"“y" )( 2{1 ygf)_z(za”’z)(df bt

@ u’ i
4, If r=uv, Yy=u+v,
ox o u  oyou
prove that a‘;a—x—mua—u@.
If z is a function of #, ¥y which satisfies the equation % =0,

prove that

0% 0% g R 0z oz
(u—v) (u-a;i+v%§)—(u —v)au (u+v)(au 3 ) 0.
[A permissible method of proving the second part of the question
is to assume that z is of the form f(x) +g(y).]
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5. If E=ay, 9==z+y,
find 3 gg when 7 is constant, and - g; a‘: when £ is constant.

o2 [ z+y x
Prove that m(e’) gl e (z—y)”] 2%,
6. If u = e*(xcosy —ysiny),
% c*u

prove that =5 +a_y= =0,

e (E:}z_;:+%e;‘) =¥ {(x+1)2+y2.

If w=e*(rcosy—ysiny), v=e*(zsiny+ycosy),

prove that

oz _e®{(x+1)cosy—ysiny}
ou (+1)2+92 4
where z is considered as a function of the independent variables u, .

7. Variables z, y are defined in terms of u, v by the equations
x = ccoshu cosv, y = csinhwusinv,
Write down the values of

LS .
ow ouw v o
and prove that

%(x+y)3+%(x+y)3 = 4¢(x+y)sinh % cosv,
aﬂ 27)2 ai 2 2 2 2
B-Ei(x+y) +5’(a:+y) = 4¢%(cosh?u — cos?v),

8. The function u(x,y) is defined by the formula
U = e*(xcosy —ysiny).
Find a function v(z, y) satisfying the conditions
o O - der o
ox oy’ oy o=’
{ %(0,0) = 0.

Show that u+ i is expressible in the form F(z), with z = z+ 1y,
and find the function F.

REVISION EXAMPLES X
9. (i) Prove that the equation
f & o AT

Er R R e
: . z+y+z
is satisfied by I= Py e L
(ii) Given that
x = e¥~""cos 2uy, y = e“~*sin 2uv,
ox %y oy ox
prove that = BT
Prove that, if fis a function of z,y, then
of _ of o
== Z{uz—vy)az+2(uy+vz)ay,

g—£= —2(uy+vz)g’—;+2(ux—vy)%-

Hence prove that (aﬁ) ke ( a{,)

(&) +6)
is the same for all functions f.

10. Given that
x =ccoshu cosv, y=csinhusino,
where ¢ is constant, find expressions for
o= o
ou' ov'
Given that f is a function of u, », prove that

+1g—csmh(u—w)(f f)

‘o)
i e 2f a=f)
Zut T c?(cosh?® u — cos®v) (a A5
. u
11. Given that =z = Fre Yoo

and that f is a function of #,y, show that

@) (o) = e o) (4 21

63
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12. (i) Given that 16. Prove that, if
u=2a+y? v=ad+y’

Ly v 3 r=u+v+w, Yy=vwtwu+uv, z=uUvW,
prove that, if « is considered as a function of u, v,

and if z is a function of z,y so that w is a function of u, v, then

LIPS, e s N
ou  2z(z—-y) ov 3z(z-y) ow zl"

Prove that o o o = i = = ’
ou o 1 w—p—q+w) wu-p—gw+u) w—p—gu+v)
dy oy | Gayle—y) h Mo gty
= where P=a A %

(ii) The variables «, y, @ are connected by the implicit relation 17. Show that, if z,y are functions of §,7, and if

2®+y?— 2wy cos @ = sin?d. _(2%\*, (°¥\* _Oxdx oyoy , _(0x\® (Oy\®
e=\=) +|=2), b=m—+m5, b= + .
Prove that @ = + (sin—'z—sin~'y), and deduce that e, ot cEon ooy o o
? gyt
oxdy ofoy oy og’
13, Tf sin@ S sinh ¢ - b Lok, then, for any differentiable function U(z, ),
z Y HBU oUd dUcy
a3y o _ oy T T ook
prove that bt et SR R S
o0 op’ op o0 iU _ Vo U
The function u(z, y) transforms by means of the above relations R Yo i
into v(0, ¢). Prove that (@)24— (31 " Prove also that bai!_h U i ?E_aa_U
(@)3_{_ (a_u)*_ o6 895) 8’U+89U__1_E ok 61,}__1_2 ot oy
ox dy] ~ (cos@+cosh )2’ 2Ty HeE\ H J Hy\ H J)°
14. The identical relation 18. A function f(z,y), when expressed in terms of the new
fut—2? u?—y? ut—22) =0 variables u, v defined by the equations
defines u as a function of 2, y,z. Prove that x=3}u+v), y*=uw,
£%+l%+§% - _1. becomes g(u,v). Prove that
S : o 107 e 0 2 1)
16. Prove that, if oy & (%i yowcy oy yoy)'
; -x=rsmﬁcosg'ﬂ, IEHOESN ¥ €530, 19. Prove that, if f(z,y) is a function of 2®+y? only, it satisfies
and 1f r is a given function of @, ¢, so that z may be regarded as a the identical relation
function of z,y, then o _, 9
Y3z = xay.

U in80+rsinfo0s8) % + % sin g+ raint oo
oo oz 0¢ By changing to polar coordinates, or otherwise, prove con-
versely that, if f(2, y) satisfies this relation identically, then it must

sin¢ cos @ cos $ = 0. be a function of 2%+ y* only.

T30
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20. Prove that, if #,y, z are functions of two variables u, v given
by the relations

z=f(u,v), y=guv), z= h(u,v),
then (suffixes denoting partial differentiation)

oz
(fug' _.fngu) 2z = NyGy— hvgm

fu fo fwgs"szgugv +.fw9'=:
Vu0o=10 55 =| 9u 05 Guu0i—20uGufs i |-
by hy by — 2k guget+ hegi
21. The function y of two variables 6, z is defined implicitly by
the equation y = 0+z24(v).
If u is a function of y and F(u) a function of u, prove that

-"—[F(u) -3—"‘] - {rwd).

= ]
and, genera.]ly, t.ha.t. 3 s

oy du

i W[{sé(y)}”a—e]-

22. Prove that, if
z=rcosf, y=rsind,

and if ¢ is any function of r, 8, then

a9 _2¢ 3¢ sin g
L iy

and obtain a corresponding expression for gg.
Prove that, if ¢ = r"sinnf,
g o
then =t Byf 0.

23. Prove that, if
U"f(xly): U —r"U,
where 12 = 22+ 92, then z%+y% =0,
U, U, 02U 22U nt
==t ata)
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Hence, or otherwise, prove that, if the equation
O o
2% oy
is satisfied by u = V(x,y), where ¥ (z,y) is a homogeneous function
of degree n, then the equation is satisfied also by u = r—22V(z, ).

=0

24. Four variables u,, u,, 43, 4, are such that any three are
independent and each may be expressed as a function of the other

three. If u,, denotes =—, the rate of change of u, with respect to u,

ouy
Oy’
when u,, u, are kept fixed, and if u;; (i +j) has a similar meaning,
show that
UggUgyUgg = — 1,  Uyalgy = UyyUgy.
25. The variables z, y, z satisfy the two equations

f(msy:z) =0, g(zy,2)=0

By eliminating z between these equations, it is possible to obtain
a relation connecting «, y¥ which defines y as a function of . Show

that
‘_i;/ T _fzgs_fsgz.
dx fygt_fsgy

26. Given that z, y are functions of u, v defined by
fl,y,u,v) =0, g(zy,u,v)=

find g—z in terms of partial derivatives of f, g with respect to z, y, u, v.

If 22+ y2—25uv = 0,
ur+vy—1=0,
prove that g_: = + ¢ when u = v = 1, and give the reason for the
ambiguity in sign.

27. If f(z,y) is a function of 2, y, where z, y are functions of ¢
defined by the relations

'M(&', t) = 0: ”(ys t) =0,

and if f(z,y), when expressed as a function of ¢, takes the form
g(t), prove that
dg  [of wdu of BuB-v} du v

at = \oxdy ot Toyozat)| amay”
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28. (i) If U = xYz,
where z, y, z are connected by the relations

yz+zx+ay=a, x+y+z==b (a,b constants),

prove that du = (x—y)(x—2).

(ii) If £, 9 are functions of z, y such that
£ =¢%cosy, 7 =e*siny,

and if x, y are functions of r, 6 such that
x =e'cosf, y=esing,

where 7 is a function of @, prove that

dr
d§ @—ta.n( +H)
dr 1+%tan(y+0)

z=F(z,y)

29. The equation
is obtained by eliminating » between the equations
y=flu,z), z=g(u,z).
ofoF _ofog of o9

Prove th: Gy
Je e Mom udz aon’
ofoF _ o
oudy ou

30. Prove that, if  is a function of z, ¥ which is transformed into
a function of r, @ by the relations
z =rtcos}l, y=rtsin}h,

: ou ou ou
- O =ty
IO ou ou
2 =p——
(&) "ay Y
02w ou 10% 2u 0%
(@) 4( oty am) =5t
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z=recosd, y=rsind,

31. Given that
o0 ¢8 020
ﬁ_‘ﬂd a_x 3 a_y ) é'a":'_a'"y ’

2n, =M
and prove that a:n at; s (21'1;‘%1).‘ain (200~ ).
32. If z, y are connected with r, & by the relations
zcosf—ysinf = zsinf+ycosld =r,
00 or o8 or
i w & W
in terms of , 6.
Show that, if V is a function of , y,
BﬂV_‘_ﬂ [B*V 13V+li
ox® " oy 2\0r* ror r?of?)’
33. The variables z, y are changed to r,#, where
xz =rsecl, y=rtand.

Show that
2u o%u o 12w cos?Ad%u sinf cosfou

B R or rar BT 2

34. Given that u,v are functions of the two variables z,y,
2

express( : 3y2) (uv)in terms of the partial differential coefficients

of u and ».
If w is a function, with third-order differential coefficients, satis-

fying the relation % + g;—: = 0, and if
w=(+y2+ax+by+c)u,
R ¢2\2
show that (ﬁ & 5y_a) w =0,
35. Four variables z, y, r, § are connected by the two relations
x =rcosf, y=rsind.

A symbol like (gr) indicates that r is expressed as a function of z,y
and that y is kept constant during the differentiation of r with

respect to . Verify the relations
o (3),- &),

0 (3),8),
o 2 (@), (),

(), ),
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IMustrate (iii), (iv) geometrically, taking (z,), (r, ) as Cartesian
and polar coordinates of a point in a plane.

36. If A is the area of a triangle ABC, calculate %é when the

independent variables are
(i) @,b,C; (i) a,B,C; (iii) a,b,c.
Illustrate your results geometrically.

37. If the circumradius R, and the area A, of a triangle 4BC
are regarded as functions of b, ¢, 4, prove that

oR . ,0R0R
0R6A G©ORcA

5554‘555 = %RBiD.A.

38. If (x,y) are the Cartesian coordinates of a point and (r,6)

its polar coordinates, define what you mean by -g; ; g%.'

Find their values, and illustrate by a diagram.

TGy

ox? oyt \oxoy) °

39. If u = f(r), where

x=rcosf, y=rsind,
u 0w _df 1df

Prove that

prove that 8x3+w b
40. If z = 2'f(y/z),
0z 0z
prove that z—+ ya—y = rz,
% 0% 0%
= _— —_— = -—
x Bw‘+2xyax8y+y23ya rir—1)z.
41, If u = f(aa®+ 2hay + by?),
v = g(ax®+ 2hay + by?),
of o o o
prove that 8'_7; (u a—z) = (u 52!-’-') &
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42. A function f of two independent variables 7,6 is trans-
formed into a function g of variables u, s by means of the relations

rcos@ = 1/u, tanf =s.

og

of o9 o og 2) 4
Prove that —=mﬁ+(l+8)aa.

"o~ You
Prove also that, if f satisfies the equation

B rsinoZL =0,

cos&araa pw

then W (s plu),
where ¢ is some function of u.
43. If z,y are the coordinates of any point and

z=rcosf, y=rsind,

findd ol o (a—“) , (a—‘g) .
a6 r const. ox y const.

Verify the second result geometrically.

0% 0%

Prove that @+§§§ =0,

44, The variables z, ¥, z are connected by the relation
2+ 9y +22—3ayz = 0,
and P(x, y,2) =2y
Determine the value of g—z at (1,1,1),

(i) when the independent variables are z, ¥,

(ii) when they are z,z,
and explain geometrically the difference between the meanings of
¢

% in the two cases.

45, Each of u, v, w is a function of the three variables z, y, 2.
Whenever z, y receive small increments which satisfy the equation
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dy—zdz = 0, the corresponding increments du, dv satisfy the
equation dv—wdu = 0. Prove that
v ou (Bv au)
w—) =0,

W2

ox oz \oy
ov ou
a—w-a-; = (),

Find the most general functions %, », w for which % is a function
of z only, v of ¥ only, and w of z only.
46. If ¢(x,y) is a differentiable function of z, ¥, and if
. PRI [
= cosutocoshe’ /= cosu+cosho’
show that, for a certain form of the function f(v),
9. .0 o¢ inh 029
2 +yay = mnfuooshvau—l-cosusm.hv 3
and find the form of f(v) in this case.

47. If u = z/y, v = 2y, prove that
2 2
2 3f_2( afJH,,;,'f?"f “a-u)’

aa:“ 3?/3 o
2 _ P & o
o i 2(2“”%, au)

48. The area A of a triangle is found from measurements of the
side @ and the angles B, C. Prove that the error A in the calculated
value of the area due to small errors da, 6B, 8C is given approxi-
ey oy 0A_,8a ¢ 8B b o0

A a asinB gsinC"

49. The side b of a triangle ABC is calculated from measure-
ments of the side @ and the angles B, C. There may be an error not
exceeding % (in either direction) in the measurement of @ and an
error not exceeding « in either or both of B, C, where h, o are small.

Show that, if B+ C <}, the greatest error in b is approximately

b{é+aootB].
a

Find the greatest possible error in b when B+ C' > }r, and explain
the difference in the two cases.
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50. If f(z, y)=azy +bx+cy+d,
g, y)=a'zy+bz+cy+d,
o[£ _2®)
prove that E{g} i

where p(y) is a quadratic function of  (not containing ).

Hence or otherwise prove that f(z,y)/g(z,y) is a function of the
product X ¥, where X is an appropriate function of z only and ¥
a funetion of y only.

51. A function y of z is defined by the equation f(z,y) =0

Expresadz gmtermsofp,q,r 8, t, where

I SR . A §

T & dzoy oycx’ oy?
If the same equation is regarded as defining z as a function
of y, prove that dw Ly
.ps @i S dz2’

52. Show that, if x = pcos @, y = psin g, then
@y @V _2v 19V 127
%® of O plp pPogT
Hence show that

tant?, stan?,  (pr4a9)) tan1]

are all solutions of the equation
2V oV oV

wHptwm—
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CHAPTER XV
MAXIMA AND MINIMA

1. The general conditions. Suppose that

u=f(z,y,2)

is a function of the three variables z, y, z (not necessarily indepen-
dent). The function u is said to have a MAXIMUM at a point P,
for which z =a, y = b, z =¢, if its value at P exceeds that at
neighbouring points, and a mMiNxmvum if the value is less. As for
functions of one variable, maxima and minima are local properties.

The argument for several variables is naturally more complicated
than for one only, and the treatment which follows is of necessity
more sketchy.

We begin by finding necessary conditions, assuming first that the
three variables z, y, z are independent,

Suppose that the function

u=f(z,y,2)

has a maximum value when z = a, y = b, z = ¢. Tts value is then
greater than that at any near point; in particular, at all those near
points for which y = b, z = ¢. Thus the function

J(z,b,¢)

of the single variable z is greater for # = a than for any other near
value, so that this function has a maximum at z = a. Its differential
coefficient with respect to z (while y, z remain constant at b, ¢
respectively) is therefore zero when z = a. Hence

of
a—x—O
when z = a, y = b, z = ¢. Similarly
e Fa
@_m a_o

for those values.
The presence of a minimum may also be treated in the same way.
Hence a set of necessary conditions for the function

u=f(x,,2) (,y,z independent)
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to have @ maximum or a minimum value forx = a,y = b,z = cis that

% = 0: g_.; =0,
forz=a,y=>b,z=c.

Since these conditions must hold at each maximum or minimum,
they enable us to locate such turning points. But the conditions are
not sufficient; moreover, they do not, of course, distinguish between
maxima and minima. Detailed analysis is beyond the scope of
this book, but common sense will often provide the answer for
particular problems.

The three conditions may be gathered into a single differential
form. For the differential of the function u is

&
5 =0

g g 8 e
d‘u='a'§dx + @dy-i- azdz,

which vanishes at a maximum or minimum. Hence the differential

%dy-t- g‘£ dz vanishes when w has a maximum or mini-

mum value, for arbitrary values of the differentials dx, dy, dz.
Expressed in this form, the condition du = 0 for a maximum

or a minimum may be applied whether z, y, z are independent or not.

For if they are not independent, the conditions of dependence

enable us to reduce the number of variables until those which

remain are indéependent, and the condition du = 0 then follows.
Note. If z, y, z are not independent, the condition

du=0
for a maximum or minimum is still equivalent to
ou ou ou

. ou ou ou
but it does NoT follow now that % %
the treatment to be adopted, see § 3.

vanish separately. For

IrLusTRATION 1. To find the greatest distance of a point onthe surface
ax®+by? +c2®+ 2fyz + 2g2x + 2hay = 1
(assumed to be an ‘ellipsoid’) from the plane z = 0.
(The surface may be pictured as a somewhat distorted sphere

with its centre at the origin.)
6-2
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The distance of the point (z,y,2) on the surface from the plane

z = 0 is simply the coordinate z, and, at a point of maximum (or
minimum) distance the two partial differential coefficients % h Ez
ox’ oy

must vanish.
Differentiate the equation of the surface partially with respect to

z, and then put 5_3:: = 0. Thus

ax+hy+gz = 0.
Similarly, hx +by+fz= 0.

These two equations, together with the equation of the surface,
determine the points of greatest distance; the z coordinates give
the actual distances.

In order to find z, we eliminate z, ¥ as follows:

Multiply the two equations of condition by =, y respectively, and
subtract from the equation of the surface; divide the resulting
equation by z. Thus ,

Eliminating z:y:1 determinantally between the three linear

equations, we have a b gz
h b fz =0’
1
9‘ f Gz—;
or, after division by z,
a kg %k 0
R b f & h b 0l — 0.
g f ¢ gy =
Expanding,
(ﬂbc+2f9k—af’—ba’—ch’)—z—1,(ab—h=) =0,
ab—h?

From the shape of the surface, this gives the greatest distance,
whose value is therefore

~/ (abc - 2fgha—b ;f;:s_ bg®— chz) E
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2.* To distinguish between maxima and minima. Though
detailed consideration would carry us much too far, the general
picture may be exhibited of a method to distinguish systematically
between maxima and minima.

For, say, three independent variables, suppose that the function

u=f(z,y,2)

has a turning value at the point (a,b,¢). It will be a convenience
of notation to express the conditions in the form

ou ou ou
=0, m=0, ==

If £, 5, ¢ are small, the value of the function at the near point
@+ELAMOAOB  farLbimetd),
where, by Taylor’s theorem (p. 57),

fla+&b+7,e+&)—f(a,b,c)

0.

= (1 +tz) fwnd)
0 2
+%(€%+ﬂ%+§&) f(@,9,2)
+iees

the differential coefficients being evaluated at z =a, y = b, z =c.
Taking £, 9, { to be so small that powers and products of degree
greater than 2 may be neglected, and remembering that

0% ok _2a 5
% o o
we obtain a relation which we may write in the form
fla+&b+n,c+8)—f(a,b,c)

1(0%,, @, O, O ot o
’5[Wg’*'W"”’ﬁg’”abac”g”acaagg*zaaabg”}'

where £, 9, { are variables, depending on the point selected near to

(a,b,c), and where the coefficients -g%: , ... are constants.

* This paragraph may be postponed, if desired.
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For a maxmvum this expression must be negative for all sets of
values of §, 7, {; for a MuNIMUM it must be positive. This condition
is both necessary and sufficient. If, however, the expression varies

in sign, being positive for some values of §, 7, { and negative for
others, the function % has neither maximum nor minimum.

The simpler cases of genuine maxima or minima can be settled
by definite algebraic tests:

(i) For convenience, write the expression with the notation
E=AZ+ By*+ 082+ 2Fyl + 2GCE + 2HEy,

and form the determinant whose rows are the coefficients of 2£, 27,
o0E °E ¢E

2¢ in the partial differential coefficients — AT 4 respectively,
namely, 4 H @
H B Fl
g Fr o
Write down also the ‘leading diagonal’ determinants of 2,1 rows,
nagelsy 4 H|, A
H B

Then it is known that a necessary and sufficient condition for E to

be always positive, for all values of &, 4, &, is that these three deler-
manants should all be positive.

Consider, for example, the expression

3E24+ 292 + 2034 298 — 4LE — 48,
The determinants are
3 -2 -2

-2 2 1|=1,

3 -2
-2 2
and 3.

Since they are all positive, the expression is poaltlve for all £, 9, &.

(ii) The test for & to be always negative is that — & should be
always positive.

UNDETERMINED MULTIPLIERS 79
Thus the function f(z,y) of two independent variables has a
MAXIMUM at the point (a,bd) if
o ?_j:
=
82_{
o
i i (O i A 5 s
ca*ob® \oadb
of _ of
i e
) o
Eo g 0,
By (2
prE (Ba 7 R
(Note the direction of the last inequality.)
(iii) The method can be extended, in an obvious way, to any
number of variables. For the expression
AE2 4 By? + CE2 + D2+ 2F 9l + 2GLE + 2HEn + 2Ubr+ 2V + 2Wr,
the determinants are

and @ MINIMUM if

AR @ U| |ABG@| |AH| A
HB'FV,HBF,HB"
@ Fow| |leFo
UV W D

3. Lagrange’s method of undetermined multipliers. The
method now to be explained may be grasped more readily if we
begin with an illustration:

ILLUSTRATION 2.* T'o find the lengths of the axes of the conic in which
Qe g ax? + by® + c2® + 2fyz + 292z + 2hay = 1
meels the plane lz+my+nz=0.

* The reader who has not yet reached the theory of quad.rles may simply
regard the problem as the determination of the maximum and minimum values

of the function a?®+y®+2% where the variables «, y, z are subject to the two
equations quoted in the enunciation.
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The squares of the lengths of the axes are the maxima and minima

of the function w=at+yt+ 2%

At such points, du = 0, so that
zdx+ydy+2zdz = 0.
Since the point (z,y,z) lies on the quadric, the differentials satisfy
the equation
(ax+hy +g2) dx + (hz + by +fz) dy + (92 + fy +cz) dz = 0;
and, since it lies on the plane,
ldz+mdy+ndz = 0.

Multiply these three equations among the differentials by 1, A,
respectively, and add. Then choose A, x so that the coefficients of
dz, dy both vanish; that is, so that

z+Alaz+hy +gz)+pl = 0,
y + Alhx + by + fz) + pm = 0.
Then [z+ Alge + fy + ez) + un]dz = 0.

Now the three variables z, y, z are subject to two conditions,
namely, the equation of the quadric and the equation of the plane;
their three differentials are therefore subject to two linear con-
ditions, so that one differential may be given an arbitrarily assigned
value. In particular, dz may be assigned arbitrarily—it need not
be zero. Hence the coefficient of dz in the equation last written must

be zero, so that 24 gz +fy + cz) + pm = 0.

To summarize, the five equations
ax® + by? + c22 + 2fyz + 292z + 2hay = 1,
le+my+nz =0,
z+Alax+hy+gz)+pul =0,
y+A(he + by +fz) +pm = 0,
2+ Age+fy+ez)+un =0

serve to determine the five unknowns consisting of (i) the three
variables z, y, z, evaluated at a turning point, (ii) the two multipliers
A, p. The sacrifice involved in increasing the number of unknowns
is amply repaid in symmetry.

UNDETERMINED MULTIPLIERS 81

In problems of this type, where the equations of condition are
homogeneous polynomials in z, ¥, 2, a good first move is to multiply
the equations involving A, # by z, y, z respectively, and then to add
them. This gives

(2 +y2+2°)
+ A(ax? + by? + c2® + 2fyz + 2gzx + 2hay)
+p(lx +my +nz) = 0,

so that w+A(1)+ x(0) =0,

or u+A=0,

or = —U.

Hence x—ulax+hy +gz)+pl = 0,
or (a—z)x+ky+gz—i—tl =0,
Similadly, ha:+(b—£)y+fz—§m =0,

1\ p
gx+fy+ (c—i—‘) fr e 0.

Also le+my+nz=0.

Eliminate the ratios z:y:2:—u/u between these four equations.
Then

1
1
h b-—-a f m e
1
g f U—a n
l m n 0

This is, on expansion, a quadratic equation in %, and therefore inu,
whose roots determine the maximum and minimum values of u.
The lengths of the axes may thus be found.

The next illustration will help to consolidate what has been done,
and also to expand certain details.
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IrvustraTioN 3. To find the maxima and minima, for NON-ZERO
values of x, y, z, of the function

u=2yz,

under the condition z+y+z=1.

At a turning value, du = 0, so that

yzdx +zxdy +xydz = 0.
By the equation of condition,
dx+dy+dz =0,

Multiply these two equations among the differentials by 1, A
respectively, and add. Then choose A so that the coefficient of da

vanishes; that is, so that P Y

Then [zz+A]dy + [xy+A]dz = 0.

Now the three variables z, y, z are subject to one condition; their
three differentials are therefore subject to one linear condition, so
that fwo differentials may be given any arbitrarily assigned values.
In particular, dy, dz may be assigned arbitrarily. Hence the
coefficients of dy, dz in the equation last written must both be zero,
so that

zz+A =0,
2y+A =0,
To summarize, the four equations
z+y+z=1,
yz+A =0,
zZ+A=0,
zy+A =0,

determine the four unknowns z, ¥, 2, A.
Multiply the last three equations by z, ¥, 2, and add. Then

Sayz+Alz+y+2) =0,

or Su+A=0,
or A = —3u.
Thus yz = 3u,

v zx = 3u,

xy=3uo
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Multiply corresponding sides of these three equations; then
22y2? = 2748,
or u? = 27u8,

Now u is not zero, under the conditions of the problem (z, ¥, 2
non-zero). Hence iy

We may extend this illustration to show how to settle whether
such points are maxima or minima.
It is easy to prove that there is only one such point, namely,

r=y=z=4§
Consider, then, a near point
e=%}+p, y=14+e9 z=1}+r,
where p, ¢, r are small. Since z+y+2z = 1, we have

p+g+r=0.
Now U = xYyz

=@l3+p) G+ G+
= g7 +¥(p+g+r)+i(ar+rp+pq) +pgr.

Suppose that p, ¢, r are so small that the product pgr may be
neglected. Then

u =g+ p+a+r)? - P+ +r2)}
=y — (22 + % +1%).

Hence u has its locally greatest value at (}, §, 4), and the value 5 is
therefore a mazimum.

We now apply these ideas more generally.
To locate the mazima or minima of the function

W= (B, g 005 T,)
of the n variables x,,®,, ..., , subject to the m relations (m < n)
¢1(x1! Lgy ...,2:,,) = 0:
¢2(3’1’ 3, "':37;) - 0:-

........................

¢m(31: Zgyeuesy) =0,
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At a turning value, du = 0, so that

of of of
3z, =—dx, + axda:+ +a da, = 0.

By the equations of condition,

0y 0, 0br .. _
—a;ldﬂfl-‘-"a—x';dma-l-..-’{'axﬂdxﬂ = 0,

Multiply these m+1 equations among the differentials by
1,2, A, ..., A, respectively, and add. Then choose the multipliers
A in such a way that the coefficients of dx,, dx,, ..., dz,, all vanish;

that is, so that
il Y2, A2
oy T ax

a
Then [a o +4, a¢‘ FunuF Ay a¢”‘;| LEINPE
L2 oz, L1
of 5 % 3¢m
+[E+A 15, F +)t,,. =0.

Now the n variables z,, ..., z, are subject f,o m conditions; their
n differentials are therefore subject to m linear conditions, so that
n—m differentials may be given arbitrarily assigned values. In
particular, dz,, ., d2,, s, ..., dz, may be assigned arbitrarily. Hence
the coefficients of dx,,,,, ...,dz, in the equation last written must
be zero, so that
of

axm+!.

=2 oy +.ot A, O =0,

3 axm+l

aﬂ{ +Algf‘+ +A,,.a¢'"

In all, then, we have the m+n equatlons

Dilh Ty oo X)) =00 (=1, ...,m),

i?f +Alg¢l+ +;Lma¢m 0 (j - 1:“'""')
Ly
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to determine the m+n unknowns #,...,%,, A;,...,A,. This can,
in general, be effected, and the value of u ascertained.

Note. The method breaks down if all the determinants formed by
taking m columns of the ‘matrix’

94, 99 961
By o T
99y O, 0y
o, ' T o’
B Opm P
%, Oy’ o,

should vanish. The equations of condition are not then independent.
But the reader is unlikely to be troubled by this case, at any rate for
the present.
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Unaversity Level
1. Find the maximum and minimum values of

z+y—1
a4+ 2%+ 27

p\E  (@\E  (y\k
2. Ha= (5) + ('—I) +(E) , where p,q, k are constants, prove
that z has a stationary value when p, z, y, ¢ are in geometrical
progression.
3. The variable z is determined as a function of z, y by the
squatien a3+ +28—6ayz+3 = 0.

: 0% 02 0%
Find the values of — 3 5%’ 3ady
that these values of z, ¥, z make the function

2%+ 22y

when 2 = y =z = 1, and prove

a minimum.

4, Find the minimum value of
22+ 92 + (ax + by +c)2.
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5. Find all the stationary values of the function

a2
% e
Yy a

of the variables z, y; discuss how their nature depends on the value

of the parameter a. Consider in particular the points at which

T=y=1a.

6. Find the greatest volume of a rectangular parallelepiped
which can be placed inside an ellipsoid of semi-axes a, b, ¢ with its
edges parallel to the axes.

[The edges 2z, 2y, 2z of the box are subject to the condition

a? gy 22
atpta=1l

7. Find the maximum and minimum values, for real values of

2, y, 2, of the quantity 22+ y?+ 2% subject to the conditions that
lx+my+nz=0,
ax®+by’+c® =1,
where a, b, ¢ are positive and [, m, n are real.
Verify that the values determined are real and positive.
8. Find the maximum and minimum values of the function
u=zd+5+28,
where @, y, z are connected by the relations
r+y+z=a,
2?4+ y2+22 = al,
9. If ax+by+cz=1 (a,b,c positive)
show that the values of z, y, z for which
1 1.1

_+_+_
ey 2z

is stationary are given by
ax® = by = 22,

Show that this is a true maximum or minimum if 2yz > 0,

10. Use Lagrange’s method of undetermined multipliers to
show that the triangle of maximum area which can be inscribed in
a given circle is equilateral.
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11. The sum of the twelve edges of a rectangular block is k; the
sum of the areas of the six faces is j5%%. Prove that, when the excess
of the volume of the block over that of a cube, whose edge is equal
to the least edge of the block, is greatest, the least edge is J5k;
and find the other edges.

12. Find the greatest and least distances from the origin of a
point on the surface

-+

where a, b, ¢ are fixed positive numbers and p is a fixed even integer
greater than 2.
[The square of the distance is 22+ 2+ 22.]

13. Prove that, if «, f#, y are positive, there exists a shape of
triangle for which the maximum value of
sin* 4 sinf B sin” ¢
is attained; and that for this triangle
RO Lot PSR L i
By v
14. Find the stationary values of
Y2+ 422 — dyz— 222 — 22y
subject to _ 202+ 3y +622 = 1.

v(e+h+7)
0=T-

, tan®

15. Show that, if z, y, z are connected by the relations
22+ttt =1,
lz+my+nz =0,
and a, b, ¢ are not all equal, then the extreme values of the function
V=aa®+ by +cz®
are the roots of the equation

za ml nﬂ
W=a b Tt . %
16. On the surface given by
2?4+ yP+22—224+2y+ 6249 =0,

find the stationary points of the function a2+ y2+ 22 — yz — 2z — xy,
and investigate their nature.
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17. The variables z, y, z are connected by the relations

P2,9,2) =0, Y(z,y,2)=0.

Prove that a necessary condition for f(z,y,z) to have a stationary
value at (, ¥, 2,) is that

ox oy

op o9 op
% W
oy o oy
@ oy o
should vanish at (z,, ¥, 2,), where f, ¢, Y are assumed to be

differentiable.
Prove that, if

then there are three points (z,y,2) at which 2®+%%+2® has a
stationary value, and show that they are minima.

. il k.
=

z+y+e=—ayz=1,

18, If flz,y)=2%— 3y + 18y,
where 3%y —y*—6x =0,
prove that the values of z, ¥ which make f(z,y) a maximum or
minimum are = y = =+ 4/3.
19. Investigate the character at the points (—5,4,4), (1,1,1)
of the function 22+ ¥% + 2%, where
z+y+z=3, aB+yP+22=23.

20. Determine the minimum value of
az?+by? +cz?,
where a, b, ¢ are positive constants and the variables are restricted
by the relationship z+y+2z = 1.
Hence, or otherwise, determine the minimum value of
pr+-qyt 422+ 2y2 4 220 4 20y

subject to the same restriction, where p, ¢, r are constants, greater
than unity.
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21. Show that the minimum value of
(a2 + b%y® 4 c%?) [a%y %2,
where az?®+ by®+ ¢2? = 1, with a, b, ¢ positive, is given by
*=mrar LR T wro
where u is the positive root of the equation
ud — (be + ca+ ab) u — 2abe = 0.
22. If r denotes the distance from the origin to a point on the
curve in which the plane Iz + my + nz = 0 meets the surface
(22 + 3% +2%)? = a%® + b2 + %2,
prove that the non-zero maximum and minimum values of 72 are
roots of the equation
2 2 n?
FoAtpoatasae

0.

23. If m, n, p are given positive numbers, find positive numbers
, y, z, whose sum is a constant 4, such that the function amynz»
is a maximum,
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clearly reveal a discontinuity from which the pairs
=2 = 2-
{ % Al {u 1
v=1 v=09
(formed by keeping to the FIRST expressions) would not suffer.

We can therefore express u, v uniquely as continuous functions
of z, y by using EITHER the relations

CHAPTER XVI
JACOBIANS

1. Introductory example. Suppose that two variables z, y
are expressed as functions of u, v in the form

x = ut+ 20, {u= Rl e
Yy =utv. vl L R
Then , v can also be expressed in terms of z, y; for e = {u AT RS
ik gk 5 v =y—1+(z—2y+1).
KT Bl A There is, however, one condition under which this uniqueness of
u—1p=2-2y+1, expression breaks down. If the values z, y are chosen so that
or u=1%(x—2y+1), z—2y+1=0,
and so v=y—-1F J(z—2y+1).

we obtain without ambiguity the solution

The given relations express , y uniquely as functions of u, v; but
there are fwo sets of relations to express u, v as functions of z, y,

namely, EITHER {u =1+J(z-2y+1),
v=y—1-y(@—2y+1),

OR, alternatively, { =1-J(xz-2y+1),
v=y—1+J(x—2y+1).

If, as is natural, we now make the assumption that u, v are to be
continuous, then in any particular problem we must keep to one or
other of these two alternatives and not move between them. For
example, if we choose the FIrsT pair of expressions when z = 6,
y = 3, we have {u=1+4(6—6+1) =2,

v=3-1—J(6—6+1)=1;

and if we then proceeded to take the seconD for the near values
z = 6-21, y = 3, we should have

u=1 ov=y-1
and we can, for values of z, y near to those so chosen, take either
of the alternative forms of expression while retaining continuity.
For example, if 2 = 7, y = 4, then either of the pairs
w=14(T—8+1) w=1—y(7-8+1)
{u=4—1—4(7—-8+1) {v=4—1+J(7—8+1)
gives ' u=1 wv=3.
Moreover, the near values z = 6:9801, y = 3-99 give, for the first
alternative,
%=1+ ,(6-9801—7-98+1) = 1+ 4/(0-0001) = 1-01,
{v =399 —1— J(6:9801 —7-98 + 1) = 2:99—0-01 = 2:98,
and, for the second,
w=1-001 =099,
{v = 2:99+40-01 = 3.
Each of the alternatives (1-01, 2-98) and (0-99, 3) maintains con-

{u =1-y(621-6+1) =1-11=-01, tinuity with the pair (1, 3).
v=3-1+(621—6+1)=2+1-1= 31, :
R v ) We may give a geometrical formulation of what we have just
e pairs {u =2 2 {'u =—01 indicated, taking z, y as the coordinates of a point in a plane
v=1 v= 31 (fig. 113) in which the line —2y + 1 = 0 is drawn.

7-2
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Consider, say, the solution
{u =1+./(z—2y+1),
v =y—1—J(x—2y+1).
‘When we have decided on these formulae, the expressions for u, v
in terms of z, y are unique and continuous. It is implicit, though,
that  — 2y + 1 is to be positive, so that the point (z, ) always lies

¥

ey ,

Fig. 113.

‘below’ the line  — 2y + 1 = 0. If, then, (2, ) moves continuously
along any curve in the ‘lower’ part of the plane, » and » vary con-
tinuously. But it is possible to move over to the alternative formulae
{u =1-,/(z—2y+1),
v=y—1+,J(z—2y+1)

at any point where the path of the point (z, ¥) meets the line
z—2y+1 = 0. For either choice, the values of %, v are continuous
over the ‘lower’ part of the plane, even at the line.

To summarize: suppose that, at any one point (z,,%;) in the
‘lower’ part of the (z, y)-plane, the choice of solution

{“ = 1+(2; -2y, +1),

v =y —1—y(z; -2y, +1)

has been made. The values of u, v at any other point (z,, y,) can be
obtained by allowing u, v to vary continuously with changes in z, y
such that the point (z, ¥) moves by a continuous curve (in the ‘lower’
part) from (2, %,) to (25, ¥,). If the points (2y, ), (5, ¥,) are joined by
a curve not meeting the line 2 — 2y + 1 = 0, the values at (z,, y,) are

U= l+1/(25.—2y.+1), v=y,—1—\{(.‘t,—2y,+1).
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If, however, the points are joined by a curve meeting the line, a
change can be made if desired as the point (z, ¥), moving along the
continuous curve, meets the line. Once the decision has been made,
the formulae to be used for », v remain unique and must be kept.

The only ambiguity in the choice of functions lies at the line
z—2y+1 =0, and it is worthy of explicit remark that u, v are
genuinely two-valued functions of z, y there. If the point (;,,)
lies ox that line, then each of the pairs of values

{“= 1+ V(2 —2y,+ 1) ey {'“= 1— (23— 2y, +1)
v=yy—1—4(2— 29 +1) V=Y 1+ (2~ 2yy+1)
may be obtained at (,, y,) while retaining continuity as the point

(x,y) moves along a continuous curve from (z,y;) to (2, ¥,).

We now turn our attention to the differentials of the given
functions Pl Ul Vi it
namely, dr = 2udu+2dv, dy = du+dv.
Solving these for du, dv by the usual process of elimination, we
have the relations 1) i = 2y,
2(u—1)dv = —dz+ 2udy,

leading to the partial differential coefficients

gpoacy RAPSTEE Niy
% 2m-1) 3y u-1’
ov 1 ov %

- 2m-1) 9y wu-1'
There is, however, one case where this analysis breaks down.

When
%=1,

the relations for du, dv give simply the equations
0= dx—2dy,
0 =—dz+2dy

which do not involve du, dv at all, and the coefficients o on N &

%: 'a_y'; a'_'x) @
do not exist. Moreover, this relation » = 1 is exactly equivalent to

the earlier relation 2—2+1=0.
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In other words, the differential coefficients aﬂ, z, g” : g;da not exist

at precisely those poinis (namely, those for which x—2y+1 = 0)
where the expression of u, v in terms of x, y is not single-valued.

It may be worth while to comment that the variables z, y are
related at the ‘doubtful’ points for which » = 1, by the expression

z—2y+1=0;
and that the differentials dz, dy are then connected by the relation
dz—2dy = 0.

Finally, let us generalize the functions to exhibit a clearer view
of what is involved. Write

T =f(ﬂ-, v), ¥ =g(u,v),
where f(u,v), g(u,v) are single-valued functions when the point

(u,v) lies within a certain region of the (u, v)-plane. The differential
ou Su v w

coefficients — % %y’ 3 Oy may, in general, be calculated by an
appeal to the differentials of the given relations in the form
'f du+ g{,dv,
dy = % du + agdv,
for elimination of dv, du in turn gives the equations
ofeg_ofeg og . _of
R L L £
ofog_of og g,  of
(aa—a@) 3+ 3,
and the partial differential coefficients follow, ExcrpT for values
of u, v such that .ai?;g_?-figﬂo
dudv 0vou
The left-hand side of this equation is the determinant
4
ou ov
% oy
ou o
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of the coefficients of du, dv in the equations for dz, dy, and is of
great importance. It is the function whose vanishing in the par-

ticular case # = u®+ 2v, y = u+v gave the relation u = 1 to locate

the points where g, ?:u,, g”, g; did not exist. With generalizations

to larger numbers of vana.bles, this determinant must now be
studied more closely.

EXAMPLE I
Consider similarly the relations

& =rcosf, y=rsind,
and show that
(i) the equations can be solved to give r, @ uniquely (to within
multiples of 2 for 0) in terms of z, y except when r = 0, the value of
0 being then arbitrary;

4 oxdy exdy
) o o0 %05~ °
when r = 0;
oy . . or or of 86
(iii) the partial differential coefficients — = W % By not

exist when » = 0.

2. The Jacobian defined. Taking, first, the case of three
variables as an illustration, suppose that

fa,v,w), glu,v,w), hlu,v,w)

are three functions of the variables u, », w. The determinant

¥y
ou ov ow
sol w2
Tl ou ov ow
ohooh o
cu ov ow

is called the Jacobian of the three functions, and is often denoted by
¢ .
he notation o 3,9, 1)

o(u,v,w)’
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A similar definition provides us with the Jacobian
ol i o)
Oy, Ugy +vs Uy)

of the n functions #;,,,...,, of the n variables u,,u,,...,u,, in

the form
oy oy .
ou; Oug ... Ou,
J= a_x._’. % % ;
Ouy Oug . .

------------------------

We shall, in fact, usually deal with the general number n, as the
restriction to the number 3 affords no real simplification.

ILLusTRATION 1. The variables z, y, z are expressed as functions of
the variables r, 0, ¢ by means of the relations

=rsinfcosd, y=rsinfsing, z=rcosh.

T'o evaluate the Jacobian 25 9:%)

0(r,0,¢)
By definition
@:_c or oz
or 00 2¢
e _| oy o
o(r,0,¢) or of of
0z 0z 0Oz
or 90 3¢
sinf cos¢ rcosfcosp —rsinfsing
=| sinfsing rcosfsing rsinfcosgd |.
cos @ —rsinf 0

Hence, by elementary expansion of the determinant,

3(2:, Y z) .
m = r2gin @.
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EXAMPLES II

i i o(z,y)

1. If x = rcosf, y = rsin @, evaluate 3. 0)°
o(@.y)
o(u, @)
o(z,y)
o(r,6)"

4 Hu=22+y2+22 v = (2+y+2)% w=yz+zx+ay, evaluate
o(u, v, w)
a(xlylz) p
5. If u=e¢'sinfcosg, v=e'sinfsing, w=e'cosl, evaluate

o(u, v, w)
o(t,0,¢)"

2. Ifz = e¥cos @, y = e¥sin @, evaluate

8. If & = rcosh @, y = rsinh d, evaluate

3. The chain rule for Jacobians. To prove that, if x,, ,, ..., %,
are functions of uy, Uy, ...,u,, which are themselves functions of

g],s gsn paey gn’ M
Oy, By, <003 By) Oy, Wy, .., y) _ o(2, %, ,a:,,_)
a(u].: Ugs +evs un) a(gls gz: sy gn) a(gl’ gs: a8y gn)
The proof rests on the formula for the product of two determin-
ants, namely, that
A g e Oy by by .o by Ciy Cig -+ Cn
Qg Gag oo Ogy || bax Bag v o | _|Cn Caz o Can

------------------------------------------

B R e Wy gy R Cl " Ous  ses, O
where Cy = ﬁaa by
A=1
[The reader may confine his attention to the case n = 3 if that is
more familiar.]
If we write ox; ou,

a;m—Lt, bywm=t,
if a,u’ i 35_.,
80 that the two determinants to be multiplied are simply

(@ Zgsoons®y) . Oty g, 0025 U)
a("’b u,, '"a'u‘n)’ a(gli gss Ty ‘gn) ’
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then c.“ = E

8(1'1,:33, n)

a(gls gs, gt gn)

Hence the product determinant is , a8 we were to
prove.
ILLusTRATION 2. To verify the chain rule, in the form
o(u,v)d(z,y) _ o(u,v)
o(x,y) e(r,0)  a(r,0)’
for the relations u=22+y2 v=_2xy,

z =rcosf, y=rsind.

We have Au,v 2z 2
Bzw, y; ~| oy 23; S
= 4r2cos 20,
and Ax,y) | cos 6  sinf
3r,0) | —rsind rcosd
=,
Thus g::,’ v; %((T-, g; 473 cos 20.
Now u = r2cos? 0 +r2sin? 0
=1,
v = 2rcosf.rsind
= r25in 20.
Thus 8(u,v) _ 2r 0
3(r.0) " | 2rsin20 2%cos20 l
= 4% cos 20.
The formula is therefore verified.

4. The ‘reciprocal’ theorem. T'o prove that

O(y, Ugy ovy Uy) " o i s )
s, gy <25 00) Oy, Ugy ooy Uy)

THE ‘RECIPROCAL’ THEOREM 929

In the preceding paragraph, identify £;,£s, ....&x With
Ty, Ly, +++3 Tp- Then
8(2‘.‘1, Lgs eevs wﬂ) a(u.‘u Ugy «2+y u’n)
a(u].’ uﬂ! b ] uﬂ) a(xl’ zs' *r mﬁ)
3 0(23, Tgs ++» T)
Oy, @as 25 Ty)

QL S R
il
T 10 Dok 8
0001
=1,

and the result follows.

ILLUSTRATION 3. The variables r, 6, ¢ are functions of x, y, 2
according to the relations

#=rsinfcosp, y=rsinfsing, z=rcosd.

o(r,0,9)
o(z,y,2)

The expression of 7, 8, ¢ directly in terms of z, y, z is awkward;
the subsequent differentiations are worse. We therefore use the
result (p. 96)

To evaluate the Jacobian

o, 9:2) _ 5.
o) " oo
aAr0,¢) 1

and find at once that

o(x,y,2z) rsinf’

ReMArk. The importance of Jacobians centres in many ways
round two fundamental properties which we are now to investigate.
First, they give a test to determine whether given functions are
independent or connected by some ‘functional relation’—the
phrase being used in the sense that, for example, the functions
x = sin®u+cos?v, y = cos®u+sin’y
are connected by the ‘functional relation’

z+y =2,
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Secondly, they give an indication of the ‘magnification’ between
corresponding (small) figures in, say, the (u, v)-plane and the (z, y)-
plane or the (u,v,w)-space and the (x,y, z)-space. The analogy of
the relation
du = d—“&x
dx

between lengths du, dx suggests itself at once.

The second of these properties will assume importance later
(p. 132) when we come to study multiple integrals.

5. Dependent functions. T'o prove that, if there is a functional
relation commecting the n funciions z,,x,, ...,x, of the n variables
Uy, Ug, +vvy Uy, then the Jacobian

J= a(xla ﬂ?a, SRy mn)

Oty Ugy oery W)
has zero value everywhere, ; 4

Suppose that the functions z,,,, ...,%, are connected by the
relation f@y, @y ..r2,) = 0.

Differentiate with respect to u,, u,, ..., , respectively. Then

Yo, Fom, | o,
Oz, 0u,  Omgouy, - Om,0u,
of Oxy  Of oy of oz,

Bxlau rabet - Naag T
iﬁu of oy, 0w,

o, 0u,, | dxyou, oz, ou,

Now it is a familiar theorem in elimination that, if there are n
AR, a & +agdy+...+a,, =0,
b€y +by8a+... +0,E, =0,

---------------------------------

91£1+ eggg'l' ...+ e,,g,, = 0
among the n variables £, &,, ..., £,, then
G ay ... G,
bl bs wew bﬂ — 0’

---------------------
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provided that £,,£,,...,£, are not themselves all zero. Applying
this to the n equations obtained above, so as to eliminate

g il g
axll axsi it ) axn!

we have the required relation (interchanging rows and columns in

the definition) oz, Omy .. 0%,
Ouy Ouy oo OUy
ox, ox o,
J=| 2 2 == |'="0,
Ouy Oy Outy
o 0y .. O,
Otty, Oty Oty
provided that ozl L are not all zero; and the proviso is

ox,’ 0xy’ "~ O,
excluded by notmg tha.t if it held the given function f(z,, z,, ..., 2,)
would be independent of each of the functions 2, %,, ..., #,—a case
of little interest.

We state without proof the converse result:

If n functions of n variables have zero Jacobian everywhere, then
there is a relation connecting them.

ILLusTRATION 4. T'o examine whether the three functions

z+y+2z, 22+y*+2%, yzizztay
are related.
The Jacobian of the functions is

1 i1 1
J=| 22 2y 2 |,
y+z z+x x+y
and it is easy to prove that J = 0, so that the functions are related.

(In fact,
@+y+2)'— (@ +y* +2%) - 2yz+ 2w +2y)=0.)

EXAMPLES III
1. Verify that ozy) _ 0 for the functions
o(u, v)

z=sin?u+cos®v, y = cos®u+sin’v.
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2. Determine whether the functions

By +28, wyz, x+y+z
are related.

3. Determine whether the functions

B+t +28-8xyz, z+y+z, 22+yt4at
are related.

4, Determine whether there are values of the constant a for
which the functions

B+yP+22taxyz, x+y+z, 2+yPP+2-yr—zw—ay
are related.

6. Ratio of areas under transformation. (Approximate
theory.) The work now to be given is of fundamental importance,
and exhibits one of the most characteristic features of Jacobian
theory. Detailed discussion is difficult at the present stage, but
the principles should be followed closely.

Suppose that the relations

w =f($s :'l): W= g(:v, y)
define u, v as single-valued functions* of the variables z, y. Take
(z,y) as coordinates in one plane and (u,v) as coordinates in
another.

To each point P in the (z,y)-plane corresponds a point P’ in the
(u,v)-plane, and to any figure in the (z,y)-plane corresponds a
figure in the (u,v)-plane. Our purpose is to prove that, if 4 is the
area of a small figure round the point (x,,y,), and if A’ is the area of
the corresponding small figure round (u,,v,), then, approximately,

0(uy, vy)
4 =t ) o(21,91) #r
the sign being adjusted to make the right-hand side positive.
To do this we break the area 4 up into a number of small triangles;
the figure A’ is then broken correspondingly into a number of small
figures which are also triangles (with sides approximately straight).

* It is understood that the relations can be solved to give z, y as single-valued
functions of u, v, possibly for restricted ranges of values of the variables; for
example, the relations u=2* v=y* can be solved uniquely in the form z=./u,
y=4/v for points in the positive quadrants. See also the Note at the end of the
next paragraph (p. 108).
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Once the theorem is established for a small triangle, the general
theorem will follow by addition (since all signs are adjusted to be
positive), so we confine our attention to triangles.
Let us take, then, a small triangle with vertices P, (xy,¥,),

Py (23, 93), By (%5, ys), where

Ty =1+h, Yo=Ytk

g =a+h', Yp=y+k.
It is known that the area of the triangle P, P, F; is 4, where

7 oy 1
2A=%|2 Yy 1],
Zg yg 1
the sign being adjusted to make A positive. Thus
aa ¥a)) o8

2=+ | 2,+h y,+k 1

z,+h g +k 1

h k

A

after reduction by subtracting the first row from each of the others.
In the (u, v)-plane we have a triangle P; Py P;, the coordinates of

whose vertices are given by the relations

U =f(z,91), . vy = g(21, %),

Uy = f(25,Ys) = @y +h,yy +K),  v9=9(2s,Ys) = g(,+ Dy, + k),

Uy = f(y, ys) = f(@,+h, 41+ k), v =g(25,Ys) = 9@+, 4, +F).

Expanding by Taylor’s theorem, we obtain the approzimate

=+

relations
u,=u1+h%+k%—, v,=1¢~1+ih;;39'1+.fx::g1
Uy = Uy + A af+k’aa‘5 vy =v,+h' ag+k'§;
1 1

Hence, by a reduction similar to that adopted for 4, the area of the
triangle P'Q'R’ is A’, where, approximately,

f+kf kag %

+k=
53 s oYy’ Y ’

. of ;39 ) o
+k B’ h 3x1+k %,




104 JACOBIANS

and so, using the well-known theorem on the product of two deter-
minants (or verifying by direct calculation), we have the formula

9 &
o bk J ox, O,
vor g w
% O
o(f.9)
= izA ¥
(@1, 91)
Hence 4 =34 200
a(xl;yl)
Remembering that

w=f(2,9), v=9@y,1),

we obtain the formula for a small area in the vicinity of a point
(%1, %), in the form

' a(uls v‘.l)
A'=+4 3
a(xls yl)
the sign being adjusted to make the right-hand side positive.

7. Ratio of volumes under transformation. (Approximate
theory.) The formula of the preceding paragraph may be extended
readily to three variables. Suppose that the relations

u =f(3?:.%z): ¥= g(xay:z): w= h(z!y’z)
define u, v, w as single-valued functions of the variables z, y, z. Take
(%, 9,2) as coordinates in one three-dimensional space and (u, v, w)
as coordinates in another. We prove that, if V is the volume of a
small figure round the point (2,,Y,,%,), and if V' is the volume of the
corresponding small figure round (u,, v,, w,), then, approximately,
a("’l: V1, wl)
ik (24,91, %)
the sign being adjusted to make the right-hand side positive.
Breaking the volume into small tetrahedra analogous to the
triangles of § 6, we consider a particular one, of vertices (z,, ¥;,2,),

(29, Y2r 22)s (%3, Y31 23), (%4, Y4» 24), Where

Zg=Ty+P, Ya=Urtq 2Zp=2+T1,
Ty=2+P", Ys=4+q, zg=2z+7,
Ty=2+D", Yo=n+q, z=z+r".

RATIO OF VOLUMES 105
The volume V is given by the formula

T Yo

8V = + Ty Ya 2y
T3 Ys %3

Ty Yy 2

Lo R

-4 Pr ql '

” "

e g
on subtracting the first row from each of the others in turn.
Aftertransformation weobtaina tetrahedronof vertices (u,, v;, w;),

where uy = f(2y ¥1,21), vy = gl 4y, 2), wy = b2y, 41,%),
U =f@14+ 291+, +7), V= g(@+ 2,91+ 0,2 +7),
wy = h(2,+ 2,41 +9, 2, +7), :
ete., and so, using Taylor’s theorem, we have the approximate

bt et

3

relations 2 ?
uz_ul"'pail'l'qa; f
og 89

Yy - U1+_pa +qayl
1

Wy = w1+?%+q%+?‘aaz—’:., ete.

Hence, approx:ima.tely, the value of 6V’ is

of of of % ag ag oh ak , o
P x4 5t + 5
331 g 0y azl p " ay,_ 0z’ ? +q a?/l 0z,

af p 39 oq ag Bh oh oh
/4 + ~— — g 0D
4 3371 7 By g # a"*"1-'-q a.'l1+r 0z’ # a9’1-!-g ay1+r 02y

of e f » 0 ag , oh oh ok

P ot ot oy Pa-:“ay, 2 P ot oy, o
) b
--1:6175(;;‘1{——31917)1),
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&1y, vy, %)

so that Vi=4% .
(2, ¥1,21)

Note. The formulae
a(uls 'JI) a(uls Y wl)
A=+A—*>2, V=2V——"—""—7
* 8@y, 91)’ (21, 41, %1)
imply that the Jacobians
O(ug,vy)  O(uy, vy, wy)
0(@y,91)" 0@, %1:21)
do not vanish. We have seen in §1 (p. 90), that this vanishing is
associated with points where the ‘inverse’ of the given trans-
formation is not determined uniquely; but we do not propose to
go more fully into the phenomenon.

REVISION EXAMPLES XII
University Level

1. Evaluate aa((a 24 4 ; in terms of A, z, where

xz y’ 1 x’ + yﬂ
BIATEEA Y a+p b+p
2. If a, b, ¢, d are constants such that ad —be+0, and if

z=a3+y%, w=af+by, y=ci+dy,

=1,

show that gfz_ _Bﬁ_ gz ﬂ
ox* Owoy | | 08* ooy {3(«5, 7)\2
% % o2z o2 [lo=y) ”

dyox oy ok ot
3. Six related variables f, g, u, v, #, y are such that any two of
u, v, , y can be taken as independent variables and the others are

differentiable functions of these two. The partial derivative of f
with respect to # when y is constant is denoted by (2f/cx),, and so

, and
" 600
“@. .
v z
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State without proof the formula for (@:) in terms of (Bf ) i (Qf) i
v v u

ox ou o
(6_1_&) . (@) , and show that
v

ox/,’ \ox
a(f, 9) _ o(f, g) o(u,v)
o(z,y)  0o(u,v)0(z,y)
Hence, or otherwise, show that

(@), &), -5
e (&)~ &).6),

4. Show that, if u, v are functions of z, y such that z, y are
expressible uniquely as functions of u, v, then

dudz ovéx udy Wiy _

mou " ou owon
with other similar equations.
1t ou ou
B(u,v) | 0z oy
J= = "
a(x: y) v ov
oz oy
o(J,v) _ ,oJ
prove that i J =
: 0 (low\ 0 (10w
and that a(ja—z') +%(ji€) = 0,

5. When v is eliminated between the equations

Yy =f(x:'v)s 2= g(xa ﬂ),
the equation z=¢(,y)
is obtained. Prove that

opof _ofeg_of og
v ovox Oxov
Verify this result when
Y = xcosv—asiny,
z=xsinv+acosy,
a being a constant.
6. Each of the variables 2, ¥, z is a function of the variables

u, v. A partial derivative such as g% is formed on the assumption
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that v is kept constant. The symbol (g-z) implies that « is expressed
v
as a function of u, y and y is kept constant during differentiation.

The symbol 3§ ,y; is defined by the relation

® 9
dz,y) | ou Ou
6(u, ) B_x ag

Prove the relations (—) B(:, z; / ay’

(i_y) = o(y,2) [o(z,2)
oz), o(u,v)/ o(u,v)

7. If z, y are defined as functions of z by the equations
f(xs y,2) =0, g(z,y,2) = 0,

dz _3(f,9) |3(f.9)

show that dz  o(y,2)] e,y)’
where af Bg
Afg)_| oy

A.2) | of o |
oz o

Find ZL: in this way when the defining equations are
2+ 22—2-y+2=0,
zy+yi—w+y—1=0.

8. If z, y, z are functions of u, v with continuous first-order
partial derivatives, show that

o(Y,2) 7., % 9(z, %)

o(z,y)
o(u, v) o(u,v) el

W+ 3w,0)

where

o(y, 2) _
o(u,v)

e L
R AR

Findia-z-int.ermsofu,vif
ox

z=ud+v, y=u+od, z=e"
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CHAPTER XVII
MULTIPLE INTEGRALS

The ideas already explained for the integrals of functions of a single
variable may now be extended to ‘multiple integrals’ of functions of
several. The aim of this chapter is to give a clear picture of what is
involved, but it must be recognized that the treatment is introdue

tory. Once the general processes are understood, a detailed investi-
gation may be found in a text-book of analysis; until the processes
are understood, the necessity for the details can hardly be grasped.

We begin by the extension to functions of Two variables.

1. Double integrais. Let
fla,y)

be a function of the two variables z, y, defined for values of z, y in
the region R of the (z, y)-plane (fig. 114) bounded by a simple closed
curve C (without ‘crossings’).

g

Fig. 114.

Divide the region R, in any manner, into a large number of small
elements, of which a typical member has area w;, and let M, m,;
be the greatest and least values of f(z, y) in w;;. Form the two sums

S.u — m’*m‘j,

8" = Em.ij 0)“,
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summed for all the elements w,;. We call Sy, s;; the upper and lower
sums respectively for this particular subdivision.

Now suppose, analogously to integration for a single variable,
that the number of elements w,; is increased indefinitely, the size
of each being diminished indefinitely. In favourable cases, S;; tends
to a limiting value 8 which is independent of the method of sub-
division, and s;; tends similarly to a limiting value s.

The function f(, y) is said to be integrable over the region R if

8 =s.

The common limit is then called the DOUBLE INTEGRAL of f(z,¥)
over R.

In what follows we shall assume the integrability without further
discussion, restricting our choice of functions to that end.

The actual evaluation, which is our main purpose, is made simpler
by noticing that, if (§;,7;) is any point in the element of area w;;,
then, by definition of M, m

My=f (& N3) =My,
so that IM 04> Zf (8 1;) 0y = Zmy; 04
On proceeding to the limit, the two outside sums assume the same
alue, to which
i Ef (& %) Wyy

must therefore tend also. Hence the greatest and least values My;, m;
may be replaced in the definition by the value of f(x,y) at any point
in the element of area w,;.

TrrustraTION 1. To find the moment of inertia of a uniform
rectangular lamina, of sides 2a, 2b and density p, aboul a line through
the centre parallel to the sides of length 2b.

Take axes, as shown in the diagram (fig. 115), through the
centre and parallel to the sides. Divide the rectangle into a large
number of small elements of which a typical member has area w,
and let P(z;,y;) be a point inside ;. The moment of inertia about
the axis Oy is defined to be the limit (if it exists) of the sum

PEi 0y

taken over all the elements as their number increases indefinitely
while the size of each decreases indefinitely.

We have said nothing so far about the method of subdivision,
but obviously an orderly system must be used if the calculation is
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to be at all manageable. The obvious way here is to divide by lines
parallel to the axes (fig. 116). We therefore begin the calculation by
considering the elements in a certain strip parallel to Oy (denoted
by darker lines in the diagram), later completing the summation
by adding the results obtained in all such strips.

y
b
(6] a x
Fig. 116.
5
P B LD TR A P e o T L=
AN WYy PRV U N O N
. O R A o 9,5 2 o O
t'—l—' !_I-l— o e prils
BB U S S
L e L Y ey
Dt o maoaly o et
e e e e
Fig. 116.

Suppose, then, that the strip parallel to Oy has a fived width
which we may call éz;, and that a typical element in it has height
dy;; then wy; = dx,8y;. Suppose, too, that a typical point inside this
element has 2-coordinate 2;, taken to be the same for each element
of the strip. The required sum is

> Ej:xﬁé‘xit?w-

To sum the elements in the strip, we make the summation with
respect to j, keeping z; and dz; constant. By the definition of simple
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integration with respect to the variable y, this summation leads in
the limit to the expression
b

pXaidx;| dy
i -b

b
=pX xiazi[y]
i —=b
= 2bp 3, 2} 6z,
i

To sum over all the strips, we now let éx; become indefinitely
small and proceed to the limit, This gives

obo| a2de
—-a

2 2bp[§xs:|“_a
— $a%p.

If M is the mass of the lamina, so that M = 4pab, then the moment
of inertia about Oy is 1 Ma?

ILLUSTRATION 2. T'o find the moment of inertia of a uniform lamina
of density p, bounded by the ellipse
a® gy
atE=l
about the axis Oy.
The moment of inertia is, by definition,
PEaiwy,
as before (p. 110).

For the method of subdivision, we again proceed by drawing
lines parallel to the axes, and then summing “up’ a typical strip
between the lines

A N S
as indicated in the diagram (fig. 117). The line z = z; meets the
ellipse in two points whose coordinates are

T ]

The strip is divided into a number of rectangular elements by
the lines ¥ = const., save that there are ‘end-effects’ at the curved
boundary. It is easy to arrange the subdivision in such a way that
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there is only ome irregular element at each end of the strip—for
example, the arc of the ellipse may be divided into a number of
equal sections and the lines parallel to the axes drawn through the
points of division.

The sum pPEa}wy

may now be considered under two headings:
(i) the sum for all those elements w; which are complete
rectangles;

(ii) the sum for the remaining elements, at the boundary of
the ellipse.

y

Fig. 117.

We first prove (what the beginner may prefer to regard as obvious)
that the sum (ii) tends to zero as the subdivision approaches its
limit.

The value of z is certainly less than a?, and the area w;; of an
element is certainly less than its ‘height’ dy, times the length ds;
of the element of arc bounding it (fig. 118). Thus the sum is less
. Spatds,dy
Hence, if 7 (which will tend to zero) is the greatest ‘height’ of any
rectangle in the whole subdivision, so that dy; <7, the sum is
less than paySas,,

or Pa"]P »
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where P is the perimeter of the ellipse. In the limit, as 5 tends to
zero, this sum also tends to zero, and so the sum (ii) is zero in the
limit.

Since the ‘end-effect’ is zero, we may neglect it at once, and
regard the strip of elements as running from precisely the value

x5 / :
—bJ(l—Eﬁ) to +b//(1-;;). Summing up the strip, we then

have tha sum +bv/(1—zfa®)

S o J'
AR —byv(1—z8a")

m 8s i

2

>

Summing now for all the strips, we obtain the limit
@ x
2pr x’J(l——, da.
i a
If x = asin @, this is

¥
2pba® sin?@ cos @ cos §d8
—ir

g
= jpa®h| sin?20d6

—gn
i
B }pasbj (1—cos 40) d6
—4n
= }mpa’b.
Since the mass of the lamina is
M = mpab,

Fig. 118,
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the value of the moment of inertia is
1 Ma2,
2. Notation. The method just illustrated for evaluating
double integrals carries within itself the suggestion for the notation

to be adopted. For Cartesian coordinates, where the subdivision
is by rectangles, the integral is the limit of the expression

Zf (2, y:) oz, 3.'!5

(evaluating the function, for convenience, at the corner (z;,7;) of
the rectangle), and is written in the form

[[ 1@ dsa.
We have just proved that the value of

f f 2dudy

over the rectangle | 2| <a, |y |<bis

g%,

and that its value over the interior of the ellipse b2x2 +a2y? = a%b?is
}ma®b.

The value of f dzdy

over the region R bounded by a simple closed curve is equal to the
area of R.

The preceding illustrations show how, in practice, a double
integral is usually evaluated by considering it as a repeated integral
with respect to the two variables in succession (in either order).

3. Triple integrals. The work in space follows by natural
extension from that in a plane. Let

f@,9,2)
be a function of the three variables z, y, z, defined for values of
&, ¥, z in the region R enclosed by a simple closed surface F.
Divide the region R, in any manner, into a large number of small
elements, of which a typical member has volume 7., and let M,
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mg;, be the greatest and least values of f(z, y,2) in 7. Form the
e it Sije=Z My iz

ai'd'k = Em“k'rﬁk,

summed for all the elements 7. If S;; tends to a limiting value §
and s;; to a limiting value s (independently of the method of sub-
division) as the number of elements 7,5, increases indefinitely, the
size of each decreasing indefinitely, and if, further, S = s, then we
say that the function f(x,y,z) is integrable over the region R. The
common limit is then called the TRIPLE INTEGRAL of f(z, 7, z) over R.

As in the case of double integrals, we may for actual evaluation
take the value of the function at a point (£;,7;, {;) inside 7., and
proceed to calculate the limiting value of the sum

Ef(gb ﬂj} gk) Tﬂk‘

When the coordinates are Cartesian, the method of subdivision
is naturally into ‘boxes’ of volume dz; 8y, dz;, and the limiting value
of the sum 5 (@4, Uy 21) 028y, 02
is denoted by the symbol

ﬂ‘ flz,y,2)dzdydz.

The method of evaluation usually consists in considering the
triple integral as a repeated infegral with respect to the variables in
succession, taken in whatever order appears likely to be most
convenient.

IrnustrATION 3. To find the volume enclosed by the ellipsoid
whose equaltion i8 at oy 2B

Divide the ellipsoid into small ‘boxes’ by planes parallel to the
axes of coordinates. A typical box, situated at the point (z;,v;, z;)
has volume dz,;dy;dz, (with small corrections, which are negligible
for sufficiently fine subdivision, at the surface itself*) and the total
volume is the limit of the sum

Zéx, by, 02,

To begin with, keep x;, y; fixed, and integrate with respect to z
up the ‘tube’ of cross-section d;, dy,. This gives, for the volume of
the tube, the formula

Zox;8y;| de,

* Compare the more detailed treatment on p. 113 for an analogous problem.
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between appropriate limits, or

2oz, 8y5{z].
Now, when z = z;, y = ¥;, the value of z varies along the tube from
imatel,
(approximately) Ny J ( [ x_f i ?jj)
a* b?

2 2
4 wo(-55)

and so the volume of the tube is (approximately)

2ch(1—§i—g—z) 8,8y,

The totality of these tubes may be located by their sections in
the (z,)-plane z = 0, which they cut in small rectangles, covering
the ellipse :n’ y

l;a21

in that plane. In order to add all the tubes, we first keep, say,
x,; constant and sum for all values of y within the ellipse, giving

2028;1:{.]‘ J (1 —z—z—g—:) dy

between appropriate limits of integration, namely,

() =)

To effect this integration, write
b J (1 -—:%) =i,

% i (et —y?) dy;

so that the integral is

the substitution = asin@

then gives bf acosf.acosfdl
_an
b 2
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Hence the volume is 2028:1:‘3— x b1 o :
2b a?
or, in the limit,
a 2 2 aB
ﬂch‘_a (1 —a—a) dx = ﬂ'bc [2@ — § C?z}

mabe.

Cle

EXAMPLES I

[It is most important that the reader should, at this stage, ‘

develop the faculty of, as it were, following the integration mentally
up the filaments and then seeing the filaments move to cover the
whole figure. The Illustrations in § 4 show how the calculations are
effected in practice, discarding the language of summation and
proceeding straight to integration; the examples now given should
be written out in detail like the above models until the picture of
the process is completely clear. The later work should then be easy
to follow.] '

1. Find the moment of inertia, about the y-axis, of a uniform
lamina of density p bounded by the straight lines

y=1l+z, y=1-2, y=0.
2. Find the mass of a lamina, lying in the positive quadrant,

bounded by the axes and the circle #2+%2 = 1, given that the
density at any point is k(1 +2?). [Consider Zk(1 +237) dx;dy;.]

3. Follow the method given in Illustration 3 (p. 116) to prove
that the volume of a sphere of radius a is §ma®.

4. Find the mass of a sphere of unit radius, given that the density
at distance r from the centre is £(1 +72).

[Consider Zk(1 + a3 + yj + 2}) 02, 8y;0z.]

4. The evaluation in practice of multiple integrals. We
now give some typical examples to show how multiple integrals
are evaluated in normal practice. The picture is that of summation
of elements; the language is that of definite integration.

Istydmdy

over the area in the first quadrant bounded by the straight line x = 1,
the circle 2® +y? = 8, and the parabola y = .

(i) To evaluate
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For a given value of , the value of ¥ “up’ the line & = const.
varies from 422 to + /(8 —2?) (fig. 119). Hence

I =fxdx[§y’]:_ﬂ
= %J‘ zdx(8— 2t —}xf)

=%j(8¢—xs—ix5)d:c.

-—'l’f_‘/(_f:_._x?‘

P

Fig. 119.

Now the range of values for z is (as the diagram indicates) from
z = 1 to the value of z when the circle meets the parabola, namely,
z = 2. Hence

5 %f:(s:c—-x’—ix“)dm
=i -1t ot | = 40334
(ii) To evaluate I Eff xedxdy

over the rectangle bounded by the ines x =1, z=2,y=1,y=1F,
where k> 1 (fig. 120).
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Keeping z constant, first integrate with respect to y, from y = 1
toy = k. Since

. .
J. zedy (x constant)
1

[T - een

y

0 1 2 x
Fig. 120
we have I= 1(e"""—e"—')d:t:
bl
=lez"——e"—ez+e
k

5. The double integral as a volume. We have seen (p. 13)
how the function f(x,y) is ‘represented’ by the surface whose

equation 18 2 = f(z,y),

where z is the ‘height’ of the surface ‘above’ the point (z,y) in the
plane z = 0. The definition of the double integral

[[ 9 dzay

by means of the sums ZM;w,, Zmy oy
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shows at once that it may be used to evaluate the volume, ‘above’
the region R, contained between the surface z = f(z,%) and the

b
plane z = 0. (Compare the integralf f(z)dz as the area, ‘above’

the interval (a,b), contained betwee; the curve y = f(z) and the
line y = 0.) In fact, M;;w,; is the volume of a cylinder, standing on
the area wy;, of height equal to or greater than f(z;, Y;); and mwy;
is the volume of a cylinder, standing on the area @y, of height equal
to or less than f(x;, ;). The whole volume, obtained by summing
these cylinders and proceeding to the limit, is thus

[[160way.

ItLustraTION 4. T0 find the volume of the ‘box’ whose base is
the plane z = 0, whose sides are the planes x = =1,z =1, y = — 2,
y = 2 and whose ‘top’ is the surface given by the equation

22+ 5y%+2 = 80.
f f (80— 22— By?) durdy

over the rectanglex = + 1,y = + 2.
Integrating first with respect to z, we have

f[SOx —dat— By“x]::i: dy
2

= {e0-3-s)— (- 80+ 4+ 5y ay

The volume is

=", asoy-10)dy

L]
e 2 e ik

= 584.

6. ‘Elements of area.” Double integrals. In the definition
of a double integral as a limit of summation, we dealt with the
argument in terms of Cartesian coordinates, so that the element
of area w; was naturally chosen as a rectangle dx,dy;. The next
problem is to consider what form of element should be taken when
polar coordinates are used instead.

9 M Im
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Suppose -that the function to be integrated, over a region R
bounded by a simple closed curve C, is expressed in terms of polar
coordinates in the form 7,6

Dividing the region into elements of area w;; and taking the value
of the function at a point r;, 0, inside w,;, we reach as before the

summation (1, 0) gy

Fig. 121.

The value of the integral is the limit of this sum as the number of
elements is increased indefinitely, the size of each decreasing
indefinitely; it is assumed, as usual, that this limit isindependent of
the method of subdivision and of proceeding to the limit. What
we have to do now is to find the most convenient shape for the
element w;; and then to obtain a corresponding expression for
its area.

The curves r constant are concentric circles whose centres are
at the pole O, and the curves @ constant are straight lines through O.
‘We are therefore led to consider an element, such as that shaded
in the diagram (fig. 121), bounded by arcs of circles of radii r;, 7, + dr;
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and by segments of straight lines inclined at angles &;, 6+ 86, to
the initial line Oz. Subdivision into elements of this type will
obviously be convenient for work in polar coordinates, provided
that the expression for the area assumes a reasonably simple form.

Now the area of a sector (fig. 122) of angle 86, and radius 7, + dr;

is known to be Hro+ 812 80,.
(It bears the ratio 6, : 2 to the area of a complete circle of radius
r;+0r;.) Hence the area of the element, being the difference of two
sectors, of radii r;+ dr;, 7, respectively, is
H{(r+ 0ry)® — 13} 80; = r,0r,80,+ }(dr,)* 80,
The summation required for the integration is thus
Ef(?'t, 01) Ty 81“ 35,
+ 3Zf(r;, 6;) (0r;)* 86,
where we have temporarily used the ‘corner’ (r;, 6;) of the element
w;; a8 the point at which the function is

evaluated. e 518
Consider the second summation - 30;
U=3Zf(r;, 0;) (dr;)® 395- Fig. 122.
We prove* that it tends to zero with dr;, 86,;.
It is assumed that the given function is bounded throughout the
region R (fig. 121); suppose that it is numerically less than a certain

constant K. Then, U < $K3(6r280,,

numerically.

Suppose next that, when the subdivision is made, all the elements
dr, are less than a certain number p, which itself is to shrink to zero
for the limit. Then, numerically,

U < }KpEdr,80;,

where we have succeeded in making the summation linear in ér,.
Suppose further that the region R is bounded in extent, so that
all points of it lie within a certain distance D of the pole O (fig. 123).
For summation along a fixed sector 86, the value of dr; certainly
cannot exceed 2D, the diameter of a circle containing the whole

region R. Hence U<KPD288,,
numerically.

* The proof of this point may be omitted at a first reading.
9-2
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Finally, the whole region R is covered as the radius vector 6;
swings from 8 = 0 to @ = 2 (or less), so that, by summation of 46,

U<2nKpD,
numerically.
. Since K, D are bounded, the right-hand side tends to zero with
p, and so U tends to zero also.
Returning to the summation

Zf(ry, 0;) 407,00,
+3Zf(ry, 0,) (Or,)? 865,

ety St

|
I
|
|
I
]
|
[
[
I
|
|
.5

Fig. 123.

we are now able to ignore the second expression, since it vanishes
in the limit. Hence the value of the integral is the limit of the sum

Zf (ry, 0;) ry0r,60,,

namely, .U flr,@)rdrd8.

This is therefore the formula for the integration of the function
(r, ) over the region E.

In actual practice, the formula just obtained is usually reached
by directing the approximation to the element of area itself rather
than to the second summation which we have just considered. Thus
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the elements are conceived as approximate rectangles of which two
adjacent sides are of length r,80;, dr;, giving an approximate area

7;00,8r;

in agreement with our formula. As a mnemonic this treatment is
useful, but it seems more satisfactory to trace the fate of the total
‘correction term’ and to see that it does really vanish.

At any rate, the formula for the double integral of a function
f(r,0) over a region R assumes a value which is the limit of the

summation Zf(ry, 0;) r;0r,80,,

written in the form J' f(r,0)rdrde.

IuvustrATION 5. T'0 find the moment of inertia of a uniform lamina
in the form of a cardioid r = a(l + cos8),
about aline through the origin perpendicular
to its plane.

The moment of inertia is, by definition,

pZriduwy,
or, in the limit,

of[ eyraras,

taken over the interior of the cardioid Fig. 124.
(fig. 124), where p is the density.

Keeping @ constant, integrate first with respect to r from r=
to r = a(1+ cos ). The result is

pf do[1r4] = }a‘p"‘( 1+ cosB)tdf.

Now the whole cardioid is traced as # moves from zero, through
m, to 2. Thus we have the expression

ia,‘p (1+4cosB+ 6 cos? @ + 4 cos® 6 + cos* 0) db,

2 T em
where f cos0df = J‘ cos®0d6 = 0,
0 0

2r 2
J' 008t 00 = 7, f cost0d0 = 3.
0 0
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Hence the moment of inertia is

I = la%(2m + 67 + §m) = 23ma’p.
Also the mass is, similarly,

M= p'”‘ rdrd0d =Pfd9[§"'2]
- Jatp j :" (1+c0s0)2d6 = Ja*p(2m+m)

= 3ma’p.
Hence I = 33 Ma®,

Note. It may be helpful to use this Illustration to clear up a
point which sometimes confuses the beginner. The sum

pErf 8?" 86’

is really being interpreted in two ways:
(i) we derive it first in the form
pEny.ri0r;00;
as the integral of the function pr? for elements of area r;dr;06; over
the interior of the cardioid r = a(1+ cos6);

(ii) we treat it next as the sum of terms pr} for elements of area
8r,06;, as if the variables r;, 0; were RECTANGULAR CARTESIAN
COORDINATES. (It was in this way, though not explicitly stated, that
we reconciled the sum pE13r,56,

with the formula pEriwy
leading to the integral pJ' I rdrdo.)

The region of integration with &, r as Cartesian coordinates is that
between @ = 0 and @ = 27 lying ‘under’ the curve » = a(1 4+ cos6)
—just like the area between z =0 and x = 27 lying under the
curve y = a(l+cosz). This region is indicated in the diagram
(fig. 125).

In other words, we may say that the algebra involved in the
summation pEr8r,80,

for 0<r<a(l+cosf), 0<6< 27 has two ‘geometrical’ interpreta-
tions:
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(i) in polar coordinates r, 6, the integral of pr? over the interior
of the cardioid r = a(l +cos#), in accordance with our original
derivation;

(ii) in Cartesian coordinates @, r (compare z, y), the integral of
pr® (compare py®) over the area bounded by the straight lines
r=0,0 =0, 0 = 27 and the ‘cosine’ curve r = a(l 4+ cos ). (Com-
pare the area bounded by y =0, =0, 2 = 27 and the curve

y = a(l+cosz).)
%; é
27

4
Fig. 125.

7. ‘Elements of volume.’ Triple integrals.

(i) CYLINDRICAL COORDINATES (p. 2). When a function to be
integrated throughout a given volume is expressed in terms of
cylindrical coordinates in the form

f (P: ¢’ Z),
the summation Zf(ps Py 2a) Tigue

is easily effected by taking the elements of volume as ‘slices’,
z = constant, standing on elements of area like those used (p. 122)
in a plane for polar coordinates. By immediate extension we

obtain the formula
Zf(Pis D3> %) P Ops 0P Oz

leading to the limit f J' f 7o, ,2) pdpddz.

As an example, we obtain a formula which we shall use almost
immediately afterwards. (Several other methods of calculation
are available.)
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ILLusTRATION 6. T'o prove that the volume of a ‘sector’ of a sphere
of radius a bounded by a cone of vertical angle o, with its vertex at the
centre of the sphere, is 27a®(1 — cos ).

Take the axis of the cone as the z-axis and the centre O of the
sphere as origin for a system of cylindrical coordinates p, ¢, z. The
volume is to be caleulated from the formula

y =ijptzpd¢dz.

Fig. 126.

Keeping p, ¢ fixed integrate with respect to z up a ‘filament’
such as QP in the diagram (fig. 126). If this line meets the plane
z = 0in N, the length ON is p. Then, since P is on the sphere,

NP = (a®—p),
and, from the triangle ONQ, in which ZOQN =a,

NQ@Q = pcota.
Hence the volume, being

o]

is ” pdpdd{(a®—p*)t—pcota}.
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The double integral is to be taken over the circle of radius asin e
in the plane z = 0 (shown dotted in the diagram), which is the pro-
jection on that plane of the circle in which the cone meets the sphere.
Keeping p fixed, integrate with respect to ¢ from 0 to 27, giving

asina
V=2n J- plla®—p?)t —peotaldp.
0

By elementary integration, we have
V = 2] — }(a—p?)t - }p* cot o
= 27a3{( — } cos® a — § sin®a cot @) + }}
= fma’(1 — cos® a —sin®a cos a)
= 2ma®(1 —cosa).
(ii) SPHERICAL POLAR COORDINATES (p. 2). The evaluation of
e S Zf(ry, 05, b Tage z

for spherical polar coordinates is more awk-
ward. The surfaces r constant are spheres, the
surfaces # constant are cones, the surfaces ¢
constant are planes, and it is natural to use
them to define the elements 7;;. We shall
therefore proceed as follows.*

(@) Calculate the volume of the part of a
sphere of radius » between two cones of
vertical angles @, 6 + 6.

(b) Calculate the difference of the volumes o
obtained in this way from two spheres of radii Fig. 127.

r, r+0r; the figure may be visualized as the
‘ring’ obtained by rotating the area shaded in the diagram (fig. 127)
about the axis Oz.

(¢) Calculate the volume of the element of this ring contained
between the planes ¢, ¢ + 6¢.

We take these calculations in turn.

(a) Using the formula obtained in the preceding Illustration 6,
we have, for the volume between the two cones,

#mr3{[1 — cos (6 + 80)] — [1 —cos 6]}
= §mr3{cos 0 — cos (6 + 80)}.

* But the timorous reader may proceed straight to the ‘mnemonic’ method
given on p. 132. ’
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But, by the mean-value theorem (Vol. I, p. 61), we have the
o cos (6+80) = cos O—sin @' 86,
where 6’ lies between ¢ and 6 + 6. Hence the volume is
£mr3sin 6’ 60.

(b) Since 6, é0 are now being kept constant, the volume of the
‘ring’ contained between spheres of radii r, r+dr is

&n{(r + dr)® —r3}sin 0’ 66
= 27{r28r +r(r)®+ §(0r)} sin &’ 86.
(¢) The fraction of the ring cut off between the two planes is
d¢/27, and so, in all, we have
Ture = {r20r +r(0r)2+ §(0r)%} sin 8’ 66 8¢,

Inserting suffixes, we may express the summation for the
integral in the form
I+U+7V,

where I=2f(ry, 0;, pp) r30r;5in 0006, 8¢,
U =Xf(r;, 0;, $z) 7:(Jr;)%sin 3} 60, L
V=1Zf(ry, 05, ¢) (8r()* sin 0;00,; 0.
The calculation, so far, is exact.
We prove that U (and similarly, by implication, V) tends to
zero in the limiting process:
It is assumed that the given function is bounded throughout the

volume of integration; suppose that it is numerically less than a
certain constant K. Then

U < KZry(0r,)*sin 6;60,0¢,
numerically.

Suppose next that, when the subdivision is made, all the elements

dr; are less than a certain number p, which itself is to shrink to zero
for the limit. Then

U < KpZir 0r;sin 086,85,

numerically, where the summation now involves &r; linearly.
Suppose further that the volume of integration is bounded in
extent, so that all points of it lie within a certain distance D of the
origin 0. For summation along a fixed filament near the line at the
position 0;, ¢, the value of Zr;dr; is certainly less than DZér,
numerically, or, at the worst, 2D*—since the sum Zér; along the
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filament cannot exceed the length 2D of the diameter of the sphere
containing the whole volume of integration. Hence

U < 2KpD*%sin 0;30,0¢,
numerically.
Moreover, sin 6; is numerically not greater than unity. Hence
U < 2KpD*380;8¢;
numerically.

Keeping 8¢, constant, the sum 86, cannot exceed 7, as the radius
vector 6 constant swings from @ = 0 to 6 = 7. Thus

U < 2nKpD?Zé¢,.

Finally, the whole volume is covered as the plane ¢, rotates
from ¢ = 0 to ¢ = 27 (or less), so that

U < 2xKpD?2m,

U< 4n*KpD?
numerically.
Since K, D are bounded, the right-hand side tends to zero with
p, so that U tends to zero.
It follows at once that V tends to zero also.
The summation giving the integral is therefore obtained from
the expression

I= 3% f(ry,0; ¢;)ridrsin0;00,0¢,,
(imit)

or, replacing 0, by 0; in f(r;, 6;, ¢,)—as is legitimate since (p. 116)
any point in the element of volume 7, may be chosen at which to
evaluate the function—we have

I= 3 f("oa;,¢k)"§3"i5me;wja¢k-
(limit)

This limiting sum is, by definition, the integral denoted by the
notation

I=Ijjf(r,0,q5)r”sin9drd0d¢.
The formula r2gin @drdfde

for the ‘element of volume’ is usually recaptured by using as a
mnemonic the figure shown in the diagram (fig. 128), which illu-
strates the surface of a sphere of radius r on which the two ‘circles
of latitude’ 6, @ + 6 and the two ‘circles of longitude’ ¢, ¢ + d¢ are
drawn. These delineate the shaded area, which may be regarded
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as a small ‘rectangle’ of sides » 86 (down the longitude) and r sin 8 8¢
(across the latitude). The element of area on the sphere is thus

rsin 0804¢,
and multiplication by the ‘height’ r gives the volume

728in 88r 80 8¢
of the element,

Fig. 128.

8. The elements by Jacobians; change of variables. We
proved in the preceding chapter (§§ 5, 6) that, for a transformation

u=flz,y), v=gy)
between two planes in which z, y and u, v are taken as Cartesian

coordinates, a small area A4 in the (x,y)-plane is transformed into
a small area 4’ in the (u,v)-plane, where

o(z,y)

with the similar relation

R % )

Flow ¥ o(z,y,2)
for volumes.
Taking first the case of a plane, consider the evaluation of the

integral

[[Pe.9)dsay
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over a region R. This is effected by means of the summation

ZF (£ my) 0y
Under the transformation

u =f(2‘:, y), v=g(z7y),
the function F(z,y) will become a certain function G(u,v) of u, v;
and evaluation at the point (;,%;) will correspond to evaluation at
a point (A, x;) of the (u, v)-plane. The mesh of lines cutting out the
elements w,; of the region R in the (, y)-plane will give rise to a mesh
of lines cutting out the elements Q,; of a region 8 in the (u, v)-plane.
By definition, the integral of the function G(u,v) over the region S
is just ZG(A;py;) Qy, but this is Nor equal to the summation
ZF(&;,m;) wy over R. For, though each G(A;, ;) is equal to the
corresponding F(£;,7;), the element Q,; is the multiple + oy, 2)

o(x, y)
(evaluated at the point in question) of the corresponding element

wy. To make the sums equal, we must therefore reduce €2;; in the

: y o(x,
ratio + 1 giz—;g, or (p. 98) + BE:,?);' Thus
AL
ZF(E, )0y = 360, 1) 355 0,

so that, in the limit, the relation for the double integrals is

4 o(z,y)

f f R Resyicncy f f s oo o(u, v)

Finally, although we have given this explanation in terms of

rectangular Cartesian coordinates, the summations themselves

are independent of their geometrical interpretation, provided that

the correct range of the variables u, v is taken. Compare the
explanation given for the Illustration 5 on p. 126.

In particular, if u, v are the polar coordinates r, & given by the

relation

dudv.

z =rcosf, y=rsind,

then o(x,y)
a(r,0)

cosf@ —rsind

¥ =1y
sinf rcosf

so that the formula of transformation is

J:[ F(z,y)dzdy =J]l G(r,0)rdrdd

over appropriate ranges of values for r, 6.




134 MULTIPLE INTEGRALS

(Compare p. 124 for the ‘element of area’, rdrdf.)
Similar considerations apply to volumes. In particular, for
cylindrical coordinates p, ¢, z, where

x=pcosgd, y=psing, z=z2,

we have cos¢p —psing 0
o, 9,2 _|
= | sin co8 0(=p,
T O L

and the formula of transformation is

f f Fis,g, 2 dedyde = J' f G, ¢, 2) pdpdidz;
and for spherical polar coordinates r, 6, ¢, where

x=rsinfcosp, y=rsinfsing, z=rcosh,

we have
sinf cos¢p rcosfcos¢g —rsindsing
a(x:ysz)_ ; L] - A =
50r.0,9) ~ sinfsing rcosfsing rsind cosgd

cos @ —7sind 0
sinf cos¢ cosfcosgp —sing
= r2ginf| sinfsing cosfsing cosg
cos —sinfd 0
= r2gin f{cos & cos & + sin @ sin G}
on expanding in terms of the last row. Hence

o(z,v,2)
o(r, 0, 9)

- f J‘ 'f P,y 4 dbilipdess I f G(r, 6, $) r*sin Odrd0dg.

(Compare p. 131 for the ‘element of volume’, r2sin fdrdfdg.)
The formulae

[ e = [l 222

'U F(z,y,z)dxdydz fff&'(u v, W)

= r’giné,

dudv,

o(x,y,2)
a( ' ! )

dudvdw
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enable us to make a transformation from variables z, y, z to new
variables u, v, w. They are analogous to the formula

J‘F(m) dx =fF(u)§du
for a single variable.
The Illustration which follows shows how such transformations
may be used to simplify the evaluation of multiple integrals.

IrvustraTION 7. To show that the triple integral

S | Ve S R

2
taken throughout the volume common to the ellipsoid a"'zs £ A1

and the part of the cone a?x®+ 2y = 22, for which z is positive, has
the value 7/of.
We can convert the ellipsoid into a sphere by the substitution

r=\ogw; §=>00, z=recw,

Since a 0 0
a(x: y! Z) - 0 b 0 = abc
o(u, v, w) ’
Q0 &
we require the integral

J,UE':? J(u?+0® +w?) abedudvdw

throughout the volume common to the sphere u?+4%+w? = 1 and
the part of the cone a?au?®+ f*%* = c*w?, for which w is positive.
Transform now to spherical polars by the substitution

w=rsinfcosg, v=rsinfsing, w=rcosd.
We have

J'J‘J‘(rssma)d dideg = -—J‘J‘J‘secag tan 0drd6dg.

Keeping 6, ¢ constant, integrate with respect to 7 from r = 0 to

r=1, giVing ab

= f sec?0 tan 0d0dg.

c

Now for points on the bounding cone, we have
a%a®sin® 0 cos? ¢ + A2 sin? 0 sin? ¢ = ¢ cos? .
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:
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Keeping ¢ constant, integrate with respect to 6 from 6 = 0 to

0 = A, where "
¢

a?a? cos® ¢ + f2h?sin? ¢’

24@5[ 89] __J'ta,nmags

o2
26’ afa® cos® ¢ + % sin? ¢ i

The cone is traced out by the rotation of ¢ from 0 to 2. Since
(as will appear at once) we are to divide numerator and denominator
by cos®$ to complete the integration, we avoid crossing the
‘infinite” values of tan ¢ which will arise by using symmetry in the
four quadrants and evaluating

ab [i7 i
*22 ), ata? cos® ¢ + f1°h* sin2¢d¢’

or, putting tan ¢ = ¢,

tan2A =

4

(-]
b f P+ ﬁ‘lb”t’

ke
- 7 ﬂZ[ ’(a)]o
-]

REVISION EXAMPLES XIII

University Level
1. Show that the polar equation of the circle of unit radius which
passes through the origin and has the initial line as diameter is
r = 2cos0.
Integrate the function 1— (1/r) over the area of this circle.
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2. A thin lamina covers the positive quadrant of the circle
2% +y® = a® and has density pay at the point (z,y). Find its centre
of mass.

3. Integrate sin (z+y) over the square 0<z <7, 0<y<m; and
xze™ over the rectangle 0 <z <a, 0<y<b.

4. Evaluate foyda:dy

extended over (i) the triangle of sides =0, y = 0, z+y = 3a;
(ii) the triangle of sides y =0, y = 2+a, x+y = 3a; (iii) the
quadrilateral of sides =0, y=0, y=ax+a, 2+y = 3a and
vertices (0, 0), (0, a), (a, 2a), (3a,0).

5. Show that the value of
J‘ J‘ dedydz
v (zzy)t

is four times the volume in the (u,v,w) space which corresponds
to V, where z=udvw, y=wtw, z=wwuwd

6. Evaluate j ydxdy

over the positive quadrant of the ellipse z2/a® + 42/b% = 1.

7. Calculate the volume of the solid bounded by the surface
z=2zyand the planesz =0,y =0, z+y =1,z =0,

8. Evaluate the double integral

ff (x+y)dxdy
taken over the area bounded by the curves zy = 1, 2% = 1, and
the line z = 2.

9. A plate has a plane triangular base and its thickness at any
point is proportional to the sum of the perpendicular distances of
the point (measured in the plane of the base) from the three sides
of the triangle. Prove that its mean thickness is equal to the
thickness at the centroid of the triangle.

10. Evaluate the integral
f (x+y+a)dedy

taken over the circular area a2+ 3% < a2

10 M III
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11. Evaluate the integral

[[zaean

2 2
where z = z—z—l-% and the region of integration is the elliptic area

ST
atpsh

12, If D is the interior of the closed curve whose equation, in
ordinary polar coordinates, is r = 2a(1 + cos 0), evaluate the double

g ffD (e +y?)} dudy,

where # = rcos@, y = rsinf.

13. A bounded function f(z,y) is defined in a certain simple
closed region R of the z, y plane. Explain briefly what is meant
by the double integral

I =J.J.Rf(a:, y) dzdy.

The variables z, y are expressed in terms of two new independent
variables u, v so that f(x,y) = F(u,v) and R becomes a region S of
the u, v plane. State, without proof, the expression for I as a double
integral over S.

If R is the region bounded by the four parabolas y® = ax, y? = Az,
22 = by, 22 = By, where 0 <a< 4, 0<b < B, find new variables u, v
such that § is a rectangle, and hence show that the area of R is

#(4 —a)(B-0).

14. A solid sphere is bounded by the surface 22+ y2+22 = a2,
and a cylindrical hole is drilled through the sphere, the boundary of
the hole being part of the surface 22+ y2—bx = 0, where 0 <b<a.
Express the volume ¥V of material removed as a double integral
taken over a suitable region of the zy-plane, and derive the formula

V= 4'” (a®—r2)rdrds,
where this double integral is taken over the region defined by

0<0<im, 0<r<bceosd.
Find V when b = a.
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15. Show that
1
[[zures+9masay - [ wondu,
0
where the double integral is taken over the area
20, y=20, 2*+y<l.
Evaluate the integral

J' J' zy(b% + aty®)} dudy

over the area >0, y >0, b%®+ a%% < a2,

16. Ifz, y, z are the perpendicular distances of a point from the
sides of an equilateral triangle of side 2a, prove that the mean value,
with respect to area, of zyz taken over the interior of the triangle
is g5a® 3.

17. A uniform solid of density p is in the form of an anchor
ring, generated by rotating a circle of radius @ about a line ¢ in its
plane and distant (> a) from the centre of the circle. Show that
the moment of inertia of the ring about g is 272pa®(I® + }a?).

18. Evaluate the integral
.”. (ax® 4 by? + c2®) dedydz,

taken throughout the spherical volume 22+ 2 +22< 1.

19. Prove that
(i) the area of a plane sector extending from the origin to a
curve = f(u), y = P(u) is
1 Y
| do ay |au
du du
(ii) the volume of a cone extending from the origin to a surface
z = f(u,v), y = §(u,v),z = Yr(u,v) is

z oy
TR
5.”. ou ou ou |dudv.
ox oy oz
v v ow

10-2
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20. Express the integral

da v
_[ dy” f,9) dz}
0 v'/ia
in polar coordinates.

Evaluate the integral when
f (x ) = _xﬁ__yﬂ
YI=amT g2

21. Give an account of triple integrals sufficient to enable you
to find the moment of inertia of the ellipsoid
at s
QET T
about the axisy =2z = 0.
22, Prove that the volume in the positive octant which lies
inside the surface y?+ 22 = 4ax and outside the surface y* = 4k%ax
(where k< 1) and between the planesx =0,z =cis

ac®{cos1k—k /(1 —£k*)}.
23. If r,, r, are the distances of the point (z,y) from the foci
(£¢,0) of the ellipse 22/a®+y2/b® = 1, show, by means of the
transformation z + ¢y = c cosh (u+1v) or otherwise, that

ﬂ (1 +l) ity o=
f1 | 7

the integral being taken over the interior of the ellipse.

24. By transforming to polar coordinates, show that the
integral of the function (2®+ y?)?/(2y)?, taken over the area common
to the circles 22+ 42 = az, 2+ y® = by (where a >0, b>0), is ab.

Verify the result by transforming to variables », v given by the
relations uz = vy = 2%+ 3%

25. A uniform plane lamina, of density p per unit area, is formed
by the area common to the ellipse z%/a®+y?/b* = 1 and the parabola
2ay® = 3b%. Find the moment of inertia of the lamina about the

axis z = 0.

26. Show that the value of
J e(‘!l—t).i'(llﬂ) dxdy

over the triangle bounded by the three linesz = 0,y = 0,2 +y =1
is equal to (e?—1)/4e.
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27. Prove that the quadric 1+ 2z = a%?+ b%?® meets the sphere
2*4+y2+22 =1 in a curve the polar coordinates (r,8,¢) of any
point of which satisfy the equations
(a®—1)+ (b2—1)tan®¢

a?+b*tan®¢ ;
and prove that the volume common to the sphere and the cone

joining the origin to this curve is 277/3ab. It is assumed that a, b are
each greater than unity.

28. Prove that the moment of inertia of a uniform lamina in the
form of a limagon 7 = a + b cos @ (where a > b) about a line through
the origin perpendicular to its plane is

(8a* + 24a%® + 3b%) M
8(2a2+ b%) 5
where M is the mass of the lamina.

r=1, ocosl=

29. Show that the volume common to the sphere 22 4 32 + 22 = 2
and the ellipsoid 22%sin®a + 2y® cos® o + 2% = 7%, where 0 <a < }, is

$73(3m + 20 cosec 2a).
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CHAPTER XVIII
THE SKETCHING OF CURVES

It is useful to be able to indicate by a rough sketch the general
shape of a curve of given equation

f(xxy) =0,

and the aim of the present chapter is to show, by means of particular
examples, how to set about the problem. Details of the theory must
be sought in a text-book on plane curves.

We saw in Volume I (p. 59) what features are most helpful
when the equation can be reduced to the simple form

y = g(),

where g(z) is a function of # only. In the more general cases, with
which we are now concerned, symmetry, gradient, concavity and
so on—especially, perhaps, symmetry—form valuable guides, but
more detailed analysis becomes necessary.

The following examples illustrate curves which the reader should
be able to draw freely with little trouble, and they will be used
without further explanation when required later. They are all of
the form y = Aa™, where # is a rational number, and so can be
sketched by methods already given.

EXAMPLES I
Sketch the curves given by the equations:

1. y=24 2, y=a®
B =8 4. y=iat
B, P=uob 6. y=uz5
o) = by 8. =
9 yl=2b 10. ¢% = a8,
11. 33 =22 12, 35 = 2%,

We confine our attention to curves for which the function
flz,y) is a polynomaal in x, y. Such a curve is said to be ALgEBRAIC.
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1. Towards a general method. Though our interest is centred
in curves whose equation f(z,y) = 0 cannot be solved for y in terms
of z, the general method may be illustrated by an example in which,
exceptionally, the solution can be effected. This particular curve
has what is called a ‘singular point’ at the origin, and we shall have
to show later how such points may be located more generally.
Apart from this, our treatment follows a standard process involving
three stages:

(i) examination of the curve near the origin (or, if necessary,
at other singular points);
(ii) examination of the curve at ‘distant’ points;

(iii) use of symmetry, special points (for example, points where
the curve crosses the axes), ideas of continuity, and so on, to
complete the curve.

IurusTrATION 1. T'0 skeich the curve
y? = 2%+ 4ad.
The solution for y in terms of « is immediate, giving the two
possibilities g =+2(l+4a), y=—a(1+4)

The curve is symmetrical about the z-axis; the positive sign corre-
sponds to points ‘above’ the axis and the negative to points
‘below’. It will therefore be sufficient to consider the former,

namely, y = %(1+ )b,

(i) Small values of x. When z is small, an approximation to the
value of y may be obtained by means of the binomial theorem. Thus

y=2(l1+2x+...)
a4 22t 4 ...,
The first approximation y=x

shows that the curve lies very close to the line y = x, which is a
tangent at the origin. The next approximation
y=x+ 222

then shows that the value of y for the curve near the origin exceeds
the value of y for the tangent. Hence the curve lies above the
tangent, as the diagram (fig. 129) indicates.
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Fig. 131.
Fig. 129, .

2

Fig. 132.
Fig. 130,

|
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(i) Large values of z. When z is large we again use the binomial
theorem, but this time to express y in descending powers of . Thus

1\%
= 95} et
y=2x (1+4x)

= 2x5(1+8—1x+...)

= 28 +jat + ...
The first approximation  y=22%,
or y=2x Jz,

shows that, for large values, 2 is necessarily positive, and the curve
behaves very like the simpler curve y2 = 4a® shown (for the
‘upper’ half) in the diagram (fig. 130).

(iii) Intermediate values. We have now, using symmetry, reached
the stage indicated in fig. 131, and our problem is to ‘join up’ the
arcs to complete the whole curve. The shape is made clear by noting
that the curve meets the 2-axis where 2%(1 + 4z) = 0, that is, in the
origin and in the point (— £, 0); and the y-axis where 32 = 0, that is,
in the origin only. We therefore obtain the form given in the
diagram (fig. 132).

[It must be admitted that the final steps involve an appeal to
a certain amount of intuition, and it is an intuition which the
reader should develop. There is no other reasonable way of joining
the arcs, given that the axes may not be crossed except at the point

( = i: 0)']
EXAMPLES II
Sketch the curves given by the equations:
1. y?=2a2—28, 2. ¥ =2a%—4ah,
3. 2% =g+ 498, 4, 2% =y — 4yt
6. y*—2zxy+a®=0. 6. y*+day—4dat =0,
2. The method for small values of 8. We now seek a method*

of ‘successive approximation’ to be used when simpler devices,
such as the binomial theorem of the preceding illustration, are not

* We attempt to give a general method applicable to the many and varied
complications. This one method, when correctly grasped, can be applied very
widely, and seems to require a minimum amount of specialized information.
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available. We give a number of examples to show the characteristic
features which arise most frequently. In exposition, the first
example will be given in detail, but after that less will be said in
explanation as the process becomes more familiar.

The basic property, on which the method depends, will be seen
by returning for a moment to the preceding Illustration I (i)
(p. 143), where we obtained the successive approximations (for
small z)

y=z,
y=x+ 22,

The first approximation is linear, corresponding to the tangent
y = z; the next approximation is obtained by adding to the first
a term of higher degree. This is what we seek to do in the examples
which follow, where each approximation is obtained from its
predecessor by bringing in further powers of .

IrrusTrATION 2. To skeich the curve
2x—y+a+3zy—y=0
for small values of z.

Near the origin the terms of lowest degree are most important,
and we have the first approximation

2z —y=0
or , y==22.
The next approximation is therefore of the form
y=2x+ Az (n>1),

where 4, n are constants to be determined, and where = is greater
than 1 since the term A" has to be small compared with 2z. Sub-
stituting this approximation in the equation of the curve, we have
the relation

— Aa™ + 22 4 3x(2x + Aa™) — (22 + Aan)3=0.

We are concerned with small values of , so that terms of lowest
degree are most important. In particular, in each of the expressions
in brackets, namely, 2x+ Aa™, where n> 1, the term Az™ is neg-
ligible compared with 2 and may therefore be omitted; as a point
of technique, we always imply such omissions by dots, thus:

— Az + 2%+ 3z(22+...) — (22 +...)3=0,
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We then see that the final bracket, with terms in 22, may be neglected
entirely in the presence of earlier terms in 22. We therefore have

. e
he position —Aan 4 Ta24 ... =0,

All the other terms have been omitted by comparison with these;
indeed, the comparison has been with the term 722, which is of
lower degree than anything left out.

The essential point of the process now arises, namely, that, by
choosing the particular values 4 = 7, n = 2, we reach a relation

y

Fig. 133.

in which the left-hand side has no terms involving z to the power
2 or less, so that it approximates very closely to the (zero) value
on the right. In other words, the values 4 = 7, n = 2 yield the
imati

approximation g2+ Ta?
fitting the given equation of the curve to a high degree of accuracy.

It follows that the curve at the origin lies very close to the line
y = 2z, which is the tangent there; also, since 72 is positive, the
value of y for the curve exceeds the value of y for the tangent.
Hence the curve lies ‘above’ the tangent (fig. 133).
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IrvustraTION 3. (Double point.) To sketch the curve
222 — By +yt+ 2y +yP+at =0

for small values of .
The terms of lowest degree give the approximation
222 — 3y + 42 =0
or (y—2) (y—22)=0.

There are therefore two possibilities: the curve may behave very
like the straight line y = «, or very like the straight line y = 2z.
The curve has a DOUBLE POINT (fig. 134) at the origin, with these

lines as the tangents.
We take the two cases in turn:
(i) When Y=z,

the next approximation is
y=x+Aa® (n>1).

Experience shows that, when the terms of lowest degree factorize,
the approximation should be inserted in the factorized form of
equation. Thus, the equation is

(2z—y) (x—y) + 2%y +y*+a* = 0,
and the corresponding relation is
(x—Azx") (— Aa™) + 2} (x+ Aa™) + (v + Aa")P + 28 =0,

Omitting terms involving powers of # which (remembering that
n > 1) are seen as negligible, we obtain the relation

(—...)(—dz™) +2¥(z+...)+ (@ +...08 +...=0,
or — Azt 4 2234 . =0,
For closest approximation we cancel the terms of lowest degree,
taking A=2 n=19
Hence the second approximation to the value of y is
y=z+ 2%,
showing that the curve lies ‘above’ the tangent.

(ii) When y=2z,
the next approximation is
y==2x+ Az",
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(It is convenient to use the same letters 4, n, though, of course,
they now have fresh values.)

Substituting and omitting obviously negligible terms, we have
the relation

(—dz™) (—z—...)+222x+...)+ 2z +...)° +...=0,
or Axntl 41023 +...=0.
For closest approximation, we have
A=-10, n=2,

giving y=2x— 1022,
so that the curve lies ‘below’ the tangent.

The shape of the curve near the origin in indicated in fig. 134,

)y &
0
A
b
4
)
0
Fig. 134.

Trr.uSTRATION 4. (Cusp.) To sketch the curve
da®—day + Y2+ 1622y + 4y°+ 2t = 0
for small values of .

(The characteristic features of this equation are that the terms
of lowest degree are gquadratic, forming the square of a linear
function which is not a factor of the cubic terms; that is, 2z —y is
not a factor of 16z%y + 433.)

The terms of lowest degree give the approximation

42® — day + 42 =0
or (y — 2x)%=0,
so that y=2z,
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The next approximation is

y=2x+ Az (n>1).

Substituting and omitting obviously negligible terms, we have
A2t 162320+ ...) + 4(2x + ...)3 4 ... =0,

or A% 4 6408+ ... =0,
For closest approximation, we choose 4, n so that

A2464=0, 2n=3,
or A=1%8)(-1), n=4}

Fig. 135.

At first sight the presence of ,/(—1) seems alarming, but it is

essential to the argument. For the approximation is
y=2+8y(—1)at,
or y=2x + 8z ./(— ).

It follows that, for small values, x is necessarily negative; and
also that the curve lies on either side of the tangent y = 2z, one
‘branch’ being ‘above’ it and the other ‘below’, as in the diagram
(fig. 135). .

At such a point, the curve is said to have a cuse.

IrrusTrATION 5. (Tacnode.) To sketch the curve

do® — dwy + Yt + 203 — 2%y + 2yt — Pt — 1220 49t = 0
Jfor small values of .
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(The characteristic features of this equation are that the terms
of lowest degree are quadratic, forming the square of a linear func-
tion which is also a factor of the cubic terms; that is, 22—y is a
factor of 2a% — 2%y + 2z — P = (22 —y) (22 +92).)

Bearing in mind the remark on p. 149, we use the ‘factorized’
form of equation

(22 —y)*+ (22 —y) (2 +y?) — 1224+ ¢ = 0.
As in the preceding example, we consider the approximation
y=2x+ Az (n>1).
Substituting and omitting obviously negligible terms, we have
A% — Ao+ (2v+...)% — 1220 + (22 +...)4 =0,

or A% — 5 Az 4 4ot ... =0,
We have retained all terms which might conceivably be wanted;
the others are seen at once to be negligible by comparison with
their immediate neighbours. _

It is now clear that the value n = 2 involves all three terms, so
that we have, for closest approximation,

A*-54+4=0, n=2.
Thus A=1or4, n=2.
We therefore have the two approximations
y=2x+22
y==2x + 422,

The curve thus consists of two touching branches, each lying
‘above’ the tangent on either side of the origin (fig. 136).

At such a point, the curve is said to have a TaAcNODE.

We conclude this paragraph with an example, not involving any

essentially new principle, to demonstrate the slight modification
necessary when the tangent at the origin is the y-axis:

IrrusTrRATION 6. T'o sketch the curve
Pirt—-yt+ys=0
for small values of .

The approximation 22==0 suggests that we interchange the roles
of 2, y and attempt to express  in increasing powers of y. We thus
make the approximation

z=Ai» (n>1).

TACNODE 153
y

Fig. 136.

Fig. 137.

(Note that » is greater than 1, not 0; the first approximation was
xz=0.y.)
On substituting and omitting obviously negligible terms, we have

A%y —gyt 4. =0,
or A% — gyt =0,

1z M IT1
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For closest approximation, we choose 4, n so that
Av=1, 2m=4,
or A= +1, n=2.
Hence we have the two approximations
zogp, we—1p,
leading to the form (a tacnode) shown in the diagram (fig. 137).
GENERALISATION. A point P on a curve given by an equation of
degree k in z,y is called a MULTIPLE POINT, of multiplicity p, if an
arbitrary line through P meets it in only k —p points other than P.
It follows at once that, if P is the origin, the equation contains

no terms of degree less than p and at least one term of degree p.
(Compare Illustrations 3, 4, 5, where & = 4, p = 2.)

EXAMPLES III

Use the method of this section to obtain the approximationsnear

the origin for the curves given in Examples II (p. 146).

3. The method for large values of #. Very similar methods
may also be applied to study the form of a curve at large distances
from the origin. Referring again to the preliminary Illustration 1 (ii)
(p. 146), we recall that we were able there to express y in decreasing
powers of ; we had the successive approximations

y==20t, y=2ak4 fod.

In the more general case, we obtain our first approximation
from the terms of highest degree in the equation f(x,y) = 0. The
subsequent improvements are obtained just as in the case of small
values of z. The Illustrations which follow exemplify a number of
typical curves.

(Note. The calculations will of themselves justify the use of the
terms of highest degree for the first approximation; when z, y are
both large these terms have obvious importance. But it is possible
for, say, « to remain finite while ¥ becomes large, as in the familiar
example of the rectangular hyperbola zy = 1. We hold this case
back for some time (pp. 172-3).)

IrvusTrATION 7. T'0 sketch the curve
228 — 2% — 2ay% + 9 — 22% — 22y + 22+ 8y = 0
Jfor large values of .
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When z is very large, only the terms of highest degree are sig-
nificant, so we have the first approximation

223 — 2%y — 222 + 8 =0
or (x—y) (22—y) (x+y)=0.

We therefore consider in turn three approximations to the value
of y, given by y=2, y=2x, y=—2. For convenience, we shall
complete the calculations for all three cases before commenting
on the geometrical interpretations.

(i) For y=z, the next approximation is

y=x+ BaP,
where p is less than 1. Substituting this value in the equation
(z—y) (22 —y) (x+y)— 222~ 22y + 22+ 8y = 0,
where the terms of highest degree are expressed in factorized form,
we have — Baw(%— Ba?) (22 + Ba?)
— 222 — 2z(x + Ba®)
+ 22 + 8(2 + Ba?) =0,

We are now interested in the larger powers of z, so that we may
omit terms of lesser degree. Remembering that p < 1, we thus have

—Bz?P(z—...) (22 +...)— 2% — 2z(2+...) +...=0
or —2BaPt2 — 422+ ., =0,

each omission’ (indicated by dots) being justified on comparison
with neighbouring terms.
For closest approximation we choose B, p so that these terms

va.msh,gwmg B=—2, P=0-

Hence the approximation is
y=x—2,

(ii) For y=2x, the next approximation is
y=2x+Bx? (p<l)

(for fresh values of B, p), so that, on substituting and keeping terms
of highest degree,

(—2z—...)(—Ba?) (3x+...)— 22— 202z + ...) +...=0
or 3BxPt2—6a%+...=0,
so that B=2 p=0.

II-2
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Hence the approximation is
Y= 2x+ 2.

(iii) For y= —a, the next approximation is

y=—z+Bz? (p<l),
so that, as before,

(22—...)(8x—...) (B2?)— 222 — 22(—2+...) +...=0
or 6BaP+2 40,22+ ...2=0.

Strictly speaking, B is essentially non-zero, so we ought to con-
tinue the approximation by retaining further terms. But com-
parison with the two preceding approximations shows us that the
vanishing of the coefficient of 22 is, in a sense, ‘accidental’. We are
about to examine all three cases further, so, for uniformity of
treatment, we pause here and keep the approximation in the form

y=—z.

We have therefore reached the three approximations

y=x—2,
y=2x+2,
y=—z.

Experience shows that the next approximations are best ob-
tained by replacing the terms of highest degree (x —y) (22 —y) (2 + )
in the given equation by the corresponding product

(@—y—2)(2x—-y+2)(x+y)
and making the consequential adjustments. Now we have, by
direct multiplication, the identity

(@®—y—2)(22-y+2)(z+y)

=(z—y) (22—y) (z+y)— 22° - 20y — da - 4,
so that the equation of the curve is expressible in the form
(x—y—2)(2x—y+2)(x+y)+6x+12y = 0.
Consider the three approximations in turn:
(i) Let y=x—2+ Cat,

where ¢ is now less than 0. On substituting and keeping only terms
of highest degree, we have

(=Cax9) (z+...)(2z—...)+ 6z +12(x—...)=0,
or — 20292+ 182+ ... =0,

LARGE VALUES OF ¥ 157
so that, for closest approximation,

C=9, g=-1
9
Hence yaw—2+§.
(ii) Let y=2x+2+Ca? (g<0).
Then (—z—...)(—Cx% 3z+...)+6x+12(2x+...)=0,
or 3Cx9t2 4 3024 ...=0,
so that =-10, g=-1.
Hence yﬁ2x+2—l£.
(iii) Let y=—z+Cx? (g<0),

where we know from the earlier work that ¢ must be less than zero
although, in this particular case, the constant term is absent.
As before,

(22—...)(3z—...) (Ca?) + 62+ 12( -z +...)==0,

or 6Cx1t2 — 6z +...=0,
so that O=1, g=-1.
Hence y=—x+£.

To summarize, we have obtained the three approximations
9
I=T= 2+ 5 ’
10
=2r4+2—-—
y=2x+ Y
1
=—g4-,
z

The geometrical significance may be appreciated most readily
by referring to the sketch (not drawn to scale) in the diagram
(fig. 138).

When 2 is large, y is very nearly equal to one or other of the
expressions ¢ — 2, 2z + 2, —z, and so the curve (for large values of z)
lies very near to the three straight lines

y=z-2,
Yy =2x+2,

Yy =—z.
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Straight lines which the curve approaches in this way are called
AsyMPTOTES of the curve.

The further approximations then show that, if z is large and
positive, the curve lies ‘above’ the asymptote y = 2—2, ‘below’
the asymptote y = 22+ 2, and ‘above’ the asymptote y = —a; if
z is large and negative, the curve lies ‘below’ y = x—2, ‘above’
y = 2x+2, and ‘below’ ¥ = — 2. These features should be checked
by reference to the diagram.

Fig. 138.

IrrustrATION 8. (Parallel asymplotes.) To sketch the curve
a8+ 2%y —2y® — Y + Bay + 64> — 192 — 11y +6 = 0

for large values of .
The terms of highest degree give the approximation

2+ 2y —ay?—y3=0
or (z—y) (z+y)*=0.
We therefore have two approximations
y=z,
y=—=x,

of which the second may be expected to present fresh features; we
begin with the normal case y==z. ‘

PARALLEL ASYMPTOTES 159
Taking the equation of the curve in the form
(z—y) (+y)*+ 6oy + 65— 192 — 11y + 6 = 0,
we make the approximation

y=z+B (p<l),

so that

(—Bx?) (2z+...)2 + 6x(x+...)+6(z+...)2—...=0,
or —4BaP+2 4 12224 .., =0,
Hence B=38, p=0,

and the approximation is y=2z+3.
Suppose next that
y=—z+Bz? (p<l).

We notice that the terms of degree one less than the highest
(that is, the quadratic terms) also contain z+y as a factor—a
point that should always be investigated when repeated factors
occur—and so we write the given equation in the form

(z—y) (z+y)*+6y(x+y)—192—11y+6 = 0.

Application of the routine process of substitution needs care.
At first sight, we have

(2x—...) (B%?*?) +6(—2+...) (Ba?)—...=0,
or 2B%%r+l _ gBaptl 4, =0,

so that p = 0. But a glance at the equation then shows that the
terms — 19z — 11y are also involved, and we therefore incorporate
them in the relation

(22— ...) (B%*) + 6(—z+...) (Ba?) — 192 — 11 (=2 +...) +...=0,

where the terms now omitted are all negligible by comparison with
their immediate neighbours. Thus

2B%z?0+1 — 6 By — 8x 4 ... =0,

and we take p=0,
2B*-6B-8 =0,
or B=-1, +4,
giving the two approximations
y=—z-1,
y=—zx+4,
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We have obtained in all an asymptote

y=2x+3
and two parallel asymptotes
y=—-z-1,
y=—x+4.

For the next approximation, we begin as before (p. 156), with the
identity (obtained by direct multiplication of the three expressions
derived from the approximations already obtained)

(y—2—3)(y+a+1) (y+z—4)
=(y—2) (y+2)*— 6oy — 6y®+ 13z + 5y + 12,
so that the equation of the curve is
(y—z—=3)(y+x+1)(y+x—4)+6(x+y)—18 = 0.
(Note that we have again exhibited the factor 2 +y in the term of

highest remaining degree.)
The approximation
y=x+3+Cx? (g<0)

gives Cxt(2z+...)(2x+...) +6(2x +...)— ...=0,
or 40ze+2 4122+ ... =0,
so that C=—3, q=—l,

and the approximation is
3
y—x+3—5‘.
The approximation
y=-—z—1+022 (¢<0)
gives (—2x+...)(C29)(—6+...)+6(—1+...)—18=0,
or 10029+t —24 + ... =0,
so that C=18 gq=-1,
and the approximation is
--*-—:):—l-i-E
y= b5z’
The approximation
y=—z+4+0x2 (g<0)
gives (—2x—...)(5+...) (C29) +6(4 +...)— 18=0,
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or — 10022t 64 ...=0,
and the approximation is

3

We have thus obtained three asymptotes, of which two are
parallel; the further approximations show that (i) when x is large
and positive the curve lies ‘below’y = #+3and ‘above’y = —z—1
and y = —2+4; (ii) when z is large and negative the curve lies
‘above’ y = 2+ 3 and ‘below’ y = —2—1 and y = —x+4. These

Fig. 139.

properties should be checked by reference to the diagram (fig. 139)

which exhibits the main features of the curve but is not drawn to
scale. (Note as ‘guides’ that the curve meets the y-axis in the
points (0,1), (0, 2), (0, 3), that it crosses the asymptote y = 2+ 3 at
the point (0, 3), and that it does not meet the parallel asymptotes.)
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EXAMPLES IV
Use this method to find the asymptotes of the following curves:
1. 222—3ay+y*+32z—2y—1=0.
22—yt +22—2y+1=0.
. (@+y) (z—y) (2x—y) + 422 — 22y + 22— 2y +2+T =0,
. (z+y)(x—y)P+at—ay—3y = 0.
. (=) (@+y)P+ 42t + day +1 = 0.

IrvusTRATION 9. (Parabolic asymptotes; also, completing the
skeich.) To skeich the curve

2®—a%y —ay?+y*— 2+ 3wy = 0,
The terms of highest degree are
(y+2)(y—=)?,

so that, for large values of z, we have to consider the two approxi-
mations y=—z,

= B S

Y=z,
The first of these follows standard pattern, and we may deal with
it quickly. The equation is
(y+2) (y—=)*—a%+3xy = 0,
so that the approximation
y=—x+Ba? (p<l)

gives (Ba?) (—22+...)2—22+ 32(—2z+...)==0,
or 4Bart2_da? 4 | =0,
so that p=0, B=1,
and there is therefore an asymptote
y=—x+1,

The given equation, in the form
y+z-1)(y—2)+y+y) =0,
leads from the approximation

y=—z+1+C22 (g<0)
to the relation

(C2?) (= 2z + .2+ (=2 +...) (1 +...)=0,
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or 40zt — g+ ... =0,
so that we take g=-1, C=1}
o) 1
giving y_—:c+l+a.

Thus the curve lies ‘above’ the asymptote when z is positive and
‘below’ when z is negative.

The approximation Y=z
introduces new features, so we treat it with more detail. Writing
y=w+ Ba?,
M
o X
Fig. 140.

we have the relation
(2z+...) (Ba?)?— 2+ 3z(x +...)=0,

or 2B%* P14 222 4 ... =0,

so that p=% B=zti (i=4J(-1)).

Thus y=z+ (),

which shows that 2 must be negative on this branch when numerie-
ally large.

The curve this time does not approach any straight line. On the
other hand, it behaves like the two branches
y=2+yJ(-2), y=2-J(-2),
which, when considered together, appear as the two ‘arms’ of the
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Before commenting further, we proceed to the next approxima-
tion, writing the equation of the curve in the form

(y+2) {(y—2)* +2} — 22* + 22y = 0,
or (y+2) (y—z+iy2) (y—2—i Ja)+ 22(y —2) = 0.
The approximation
y=a+ijz+Cat (g<})

gives (22 +...) (28 Yoz +...) (C2?) + 22(3 Yo +...)=0
or 4iCae+ 4+ 22k 4 . =0,

so that g=0, C=-4.

Hence y=x+iJr—13,

with a similar result when i is replaced by —i. Thus a very close
approximation to the curve for large values of z is found in the
parabola (y—z+3$)>2+z=0,

which is called the AsymMPTOTIC PARABOLA Of the curve.

The earlier parabola, (y—)2+x = 0, gives a good idea of the
general appearance of the curve, and is usually found sufficient in
practice. When more accurate ‘placing’ is required, the asymptotic
parabola must be used.

This completes the investigation of the curve for large values
of z. In order to sketch the whole curve, we now look at the small
values. The terms of lowest degree give z=0 and y=14x, so we
examine each of them in turn.

For =0, we proceed in ascending powers of y and consider
(compare p. 152) the approximation

z=Ay® (n>1).
Substituting in the equation (arranged now in terms of ascending
o 2(3y —2) +a%—aty — 2y +y° = 0,
we have Ay 3y —...)+ ... +y2=0,
retaining terms of lowest degree in . Thus

3AyrH 484 =0,

so that, for best approximation, we have

n=2 A=-4
Hence = — 3y,
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showing that, near the origin, the curve lies to the left of the

tangent z = 0.
Similarly, if y=lrx+d4a™ (n>1),
then  z(34a™)+a2®—a2¥(dx+...)—2(jz+...)2 +(Jx+...)8=0
or 34zn+ 4 31848 4 . =0,
so that n=2 A=-18
Thus y=}z— 382

showing that, near the origin, the curve lies ‘below’ the tangent
y = §a.

N

Fig. 141.

We have therefore reached the position given in the diagram
(fig. 141).

For the rest of the curve we must revert to more general con-
siderations. Unfortunately we receive no help from symmetry, but
we are able to calculate the coordinates of the points where the
curve crosses the axes and the linear asymptote.

When z = 0, we havey = 0 only; wheny = 0, wehavez = 0,0, 1;
when x+y = 1, we have z = 1, y = 0. Hence the curve does not
meet the y-axis except at the origin, and it cuts the z-axis and
the asymptote where they cross at the point (1, 0). Thus we obtain
the form in the diagram (fig. 142), which, however, is not drawn
to scale.



166 THE SKETCHING OF CURVES

y

Fig. 142

EXAMPLES V

Find the asymptotic parabola of the curves:

1. 2(2y—=)(y+x)2+ 9y = 0.

2. ¥? = da®(z+y).

3. z(y+3z)2=y2+9.
TrvusTrATION 10. (Loop and inflexion.) To sketch the curve

-y +a¥x+y) = 0.
For large values of z, we have
(@—y) (2" + 2% + 2 + 2y® + y*) =0,
and the only real approximation is
y=x.

(The presence of terms not resoluble into real linear factors may
indicate the presence of a loop. But this is not necessarily the case.)

Writing y=xz+Bx? (p<1),
we have (— Bz?) (52t +...) +2%(2z + ...) =0,
or —5BxP+4+ 228 .. =0,
so that B=§ p=-1
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We therefore have the approximation

2
y=z+g,

showing that the line y = z is an asymptote, and also that the curve
lies ‘above’ it when « is positive and ‘below’ it when z is negative,

When z is small, we have the two approximations 2220, 2 4 y =0,
which we consider in turn.

If =A™ (n>1),
then — Y5+ A%y +...)=0,
or —yS+ Atytntly | =0,
so that n=2 A=+1,
We therefore have the two approximations

z=y?,
i

indicating the presence of a tacnode (p. 153),

A y=—z+Aa™ (n>1),
then 25— (—2+...)5 +a(da™) =0,
or 2054+ Aant2 4 || =0,
so that - n=3 A4d=-2

We therefore have the approximation
Y= —2— 223,

Thus the curve lies ‘below’ the tangent ¥ = — 2 when z is positive
and ‘above’ when z is negative.

When the curve crosses the tangent in this way, the curve is
said to have an INFLEXTON at the point.

This particular curve has both a tacnode (tangent z = 0) and an
inflexion (tangent z +y = 0) at the origin.

We have so far reached the state indicated in the diagram
(fig. 143), and our problem is to combine these arcs into a single
curve.

We note that, since replacing z, y by — &, —y does not affect the
equation, the curve is symmetrical about the origin. Also it meets
the axes in the origin only, the asymptote & = y in the origin only,
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and the line +y = 0 in the origin only. Thus the curve does not
cross any of the lines shown in the diagram, and so its form is that
indicated in fig. 144. The arcs within the area bounded by the lines
z =0, z+y = 0 join up by means of loops.

4. To locate the multiple points of the curve f(x, y)=0.
Suppose that the point (k, k), initially unknown, is a multiple point
of the curve

.f (x’ y) =0.

Referred to axes through that point parallel to the given axes, the
equation assumes the form

f@ +h,y +k) =0,
where f(h, k) is, of course, zero. Expanding by Taylor’s theorem
(p. 87), we have
il
Fh k) + (m oy a_k) PB4 =0,
of(h, k) , of(hk) , *f(h,k)
ah T Y T otaRe
By hypothesis, the new origin is a multiple point of the curve and
so the coefficients of 2’, ¥’ both vanish. Thus
Y1) _, Y E) _
ch R §
In other words, the multiple points, if any, are those whose coordinates
satisfy simulineously the three equations

or 24 ... =0.

f(xsy) =0,
oy o Yy _
Totlce, Tolloo

IrvusTraTION 11. T'0 find the multiple points of the curve

Y +a?+ 2oy —6y2—2z+ 14y —11 = 0.
The multiple points are those for which, on differentiating partially
with respect to z, ¥ in turn,

22+ 2y—2 =0,
3y +2x—12y+14 = 0.
Substituting for 2z in the second equation, we have
3y*—14y+16 = 0,

or (v—2)(3y—8) =0.

Fig. 143.

Fig. 144.

169

M I
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Thus y=2 or §,

so that, from the equation 2z +2y—-2 =0,
z=-1 or -3.

Thus possible multiple points are (—1,2), (—$,§). But it is easy
to check that the solutionz = — 1, y = 2 satisfies the given equation
whereas the solution z = —3%, ¥ = § does not. Hence there is a
multiple point at the point (—1, 2).

5. Some rules for finding the asymptotes in simple cases.
The method which we have given enables us to find the asymptotes
of a curve f(z,y) = 0 with reasonable ease, and also (what is often
very important) to estimate how the curve lies in relation to them.
There are, however, one or two rules available in simple cases.

The equation of the curve is

J@ y)=u,(@,y) +up_y(2,9)+... = 0,

where u,(z,y) is a polynomial homogeneous of degree k in z,y.
We begin the process of finding the asymptotes by factorizing the
polynomial %,(z, ¥) in the form

Uy (2, ) = (Y — by 2) (y — ka) ... (y — K, 2)
and we restrict ourselves to the case when the constantsk,, k,, ..., k

ey g

are real and distinet. With these restrictions, we can formulate the
following rules:
(i) THE ‘PARTIAL FRACTIONS’ RULE FOR ASYMPTOTES. If

un-—l(m’ y)lun(xs y),
when expressed in partial fractions, assumes the form

un—l(x! 1}) al aﬂ Ct,,'
= + ot
Un(%,y) Y-k y—kya y—knz
(where it is assumed also that u,_,(z,¥), u,(x,y) do not have common
factors), then the equations of the asymptotes are
y—k¢z+a‘=0 (£= 1,2,.--,?@).
The given equation, after division by u,(z, ) is
1 e '1&_1(3, y) o un-—2(x: ?/)
U (2,)  up(@,y)

CRINE... u"‘g(x’y)+...=0.
y—k,x  u,(z,y)

+...=0,

%y

or l+y—klx
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Substitute the approximation
y=kx+Bx? (p<l)
in this form of the equation. Then
4 gt GoRy s BB Wﬁn‘ﬁ
U,,_o(Z, Ity 2+ BaP)
U, (x, by + BaP)

+...=0,

Since p<1, and since none of k,—k,, ...,k —k, is zero, the sig-
nificant terms for large values of « are

= SR
l4+gs+.=0,

so that, for closest approximation, we take
p= 0, B= — 0.
Hence y=kz—a,
eading to the asymptote
y—kx+o, =0;
and similarly for &y, kg, ..., k,.
(ii) THE ‘TERMS OF HIGHEST DEGREE’ RULE FOR ASYMPTOTES.
If f(x,y) can be expressed in the form
Y=k +oy) (Y —keT+0y) ... (¥ —kp 2 + %) +0,9(%,9) = 0,
where, after the product of the n linear forms y — k;x + a;, the rest of the
equation consists of terms of degree n— 2 at most, then, provided that
ky, ky, ..., k,, are all different, the lines
y—kz+oy =0,
y—kyx+a, =0,
y—k,z+a,=0
are asymptotes of the curve f(z,y) = 0.
Consider the approximation
y=k,z+Bx? (p<l).
On substituting, we have
(Bx? + o) {(ky— ko) x+ .} oo {(Ry=Kp) @+ o} + 0y o2, By +...) =0,
or
(‘Bxp +d1) {(ki—k’) wee (k].—kﬂ)x“_l'i' ...}+v”__'(£, k]c’.ﬂ"‘ ...)&0.

12-2
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The terms of highest degree are (with p <1)

(kg —ky) ... (by—K,) BaPtn=L 4 (ky—ky) ... (by—k,) oy 2™ 1+ ... =0,
and so (since &, ks, ..., k, are distinct) we have for closest approxi-
mation the relations RNy
so that the approximation is

y=kyz—ay,
leading to the asymptote

y—lkz+o; =0;
and similarly for &y, &5, ..., k,.
TrnusTtrATION 12. T0 examine the asymplotes of the curve
P —6xyt+ 1122y — 6 + 22+ 92— 22 +3 = 0,
We have u,(2, y) = (y —2) (y — 22) (y — 3x),
Una(2,7) =22 49,

ﬂ‘ﬂ—l(xr y) - z? i yg
u,(2,y)  (y—2) (y—22)(y—3)
iy § ok
Ty-2x y—22 y-3z
Hence the asymptotes are

so that

y— x+1=0,
y—2z—-6=0,

Moreover, we have the identity
(y—2+1)(y—22—5) (y—3z+5)
=y — 6ay® + 1122y — 6y + 2% + 2 + 30z — 25y — 25,
so that the equation of the curve may be expressed in the form
(y—z+1) (y— 22— 5) (y — 32+ 5) — 322 + 25y + 28 = 0,

corresponding to the ‘terms of highest degree’ rule just enunciated.
(iii) ASYMPTOTES PARALLEL T0 THE AXES. If the equation of a
given curve is expressed in terms of descending powers of y in the form

YU @)+ YT M0,y (@) F ... +10,(2) = O,
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where w,(x),w, (%), ..., w,(x) are polynomials in =z of degree

r,r+1,...,n, then, PROVIDED THAT THEY ARE ALL DISTINCT, the

r straight lines wil=) =0

are asymptotes of the curve; and similarly with z, y interchanged.
On division by y", the equation assumes the form

w,(2) +w'+;(“’) PR Y

ynr
which, for large values of y, approaches closely to the form
wE) = 0.
IuLusTraTION 13. To find the asymptotes of the curve
2% -3y + 2t + 22+ —y = 0.
Since uy(, y) =ay?,

there are no asymptotes except those parallel to the axes. The
coefficient of the highest power of y (namely y?) is

x?—3x+2,
and the coefficient of the highest power of z (namely, 2?) is
y2+ 1.
The latter expression does not give rise to real asymptotes, and so
the asymptotes are 2—1=0,
z—-2=0.

6. The radius of curvature at a multiple point. The method
given earlier (Vol. II, p. 114) for calculating curvature can be
adapted to meet the case where the curve has a multiple point.
For we have shown how to obtain, for each branch, an approxi-
mation to the equation of the curve in the form

y=mx+Az" (n>1).
Hence we have, for this branch, the approximate relations
% =m+ndz"1,
g—%an(n— 1) Azn—2,
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At the origin, % is zero if »>2 and meaningless (‘infinite’) if
n < 2. We may therefore confine ourselves to the normal case n = 2,
when
ay\ _.. &Y\ _
Rl - o
The curvature « is given by the formula
a*y
da?
K=
(@)
dz
so that gd

K= Trmt
IrrusTrATION 14. To find the radii of curvature of the branches
at the origin of the curves
(i) 22%—3Bay+y*+a2y+yP+at=0,
(i) a?+at—yi+y®=0.
(i) We obtained (p. 149) the approximations
y=x+ 222,
y==2x— 1022,
For the first, y'=1+4a, y"=4, so that

TEST
and, for the second, 3’ =2 — 20z, y"= — 20, so that
—20
K= m = —% \/5.
(ii) We obtained (p. 152) the approximations
zay,
z= —y3,

Interchanging the roles of z, ¥y we have

dx
d_y=i2ya
d*x 2,

d_y==
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d”:v)
Lo il
so that K= l ( dz) 2}
1+ |5
dy/ o

= +2,

7. The sketching of curves from their polar equations.
We now outline very briefly a few of the considerations to be kept
in mind when sketching a curve of given polar equation F(r, 8) = 0,
where r may be positive or negative and where @ may take any
positive or negative value (not necessarily restricted to an interval
of 2). We confine our attention to examples in which the equation
may be solved to give r as a single-valued function of ¢ in the form

r=Ff(0).

It seems harder to give a systematic
treatment for polar coordinates than for
Cartesians, and there is much scope for
ingenuity. A routine first step may well
be to construct a table of values of » for
particular values of #; for example, if
f(0)involvesthe trigonometric functions,
it is useful to put 6 = 0,}w, }w, im, 7 and
80 on.

The formulae which we obtained in
Volume II, Chapter X, may be used,
and one or two of the results are re-
peated here for convenience.

Let P be the point (r, 8) of the curve. The direction of the tangent
at P is determined by the angle ¢ ‘behind’ the radius OP; if a radius
vector centred on P is imagined to rotate about P from the position
PO until it is first in line with the tangent at P, the angle of rotation
is denoted by ¢, and it is proved that

Fig. 145.

dg
ta.ngﬁ = TE;.

This relation defines ¢ uniquely, since it lies between the values
0, .
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For the curvature «, we obtained the formula

dr\® d? dr\2\}
- el S R S
e= o) — a1+ (@)
the square root implied in the denominator being positive. Now
(Vol. 11, p. 114) the sign of « is the same as the sign of % when % is the
parameter defining the curve; and (Vol. 1, p. 54) the concavity is
da*y

‘upwards’ or ‘downwards’ according as Jat is positive or negative.

In the present work, the parameter is 6, and the relationship
connecting the coneavity with the sign of the above formula for « is
more complex. It remains true, however, that the curve has an

2
inflexion where k = 0, that is, where r”+2(%) —r% =0,

Note that the expression on the left assumes a simpler form on
replacing r by its reciprocal % = 1/r. Then

dr | _Ndwvilln o R B
d6 ~ T widf’ d6: T  wd6® w*\dod)’
so that the expression is, on substituting and simplifying,

e

In particular, the points of inflexion satisfy the equation
d*u

d—az+u = 0,

provided that the expression (1) changes sign for such a value of 6.
Singularities

The location of singularities is, of course, very helpful. The origin
will certainly be a multiple point if the equation f(f) = 0 has more
than one (significantly) distinet solution. Suppose, more generally,
that there is a singularity at the point (p,«), where p = f(a).
Since r is a single-valued function of 6, this can happen only if
EITHER the value of r corresponding to a value a+2m, a+4m,
a + 6, ... of 6 is also p, or if the value of r corresponding to a value
a+m, a+3m atbn, ... of @is —p. For example, if f(£) is a trigo-
nometrical function of 6, it is often (but not always) sufficient to
consider the points, if any, expressed in the alternative forms
(p,a), (—p, o+ ); and these are found by solving the equation

f@) +f(e+m) = 0.
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Thus, for the curve r = sin @ + cos 20,
we should consider the equation
{sin @ + cos 20} + {sin (6 + 7) + cos (20 + 27)} = 0

or cos20 = 0,
Lo ¥ S7' By
giving 0-—-;, I, —4—, _I’ “ee

and singularities at the two points

(T o e [
) g MR LT 2 4)“("?&"4‘)‘
Asympiotes

The identification of the (linear) asymptotes is a fairly simple
process, but the justification of the method seems less easy. For

convenience, we write 1/r = u, 1/f(6) = g(f), so that the equation
of the curve assumes the form

u = g(0).

For large values of r, its reciprocal » is small, and so we begin by
finding the solutions, if any, of the equation g(0) = 0. Let 6 =
be such a solution, where ) 0

Take an associated system of Cartesian coordinates in which the
positive z,y axes are the radii @ = 0, {7 respectively. Let £ be a
value of @ near to «, and let Q(b, #) be the corresponding point of
the curve (fig. 146), so that

1
;=9 (8).
The line through @ in the direction « is given by the equation

zsina—ycosa = bsin (e —f)
_sin(z—f)
9(8)

Now suppose that § approaches the value a, and suppose that,
as it does so, !

i S0C@=0) _ o

f—ra g(ﬂ )
Then the line takes up the limiting position given by the equation

zsina—ycosa = h.
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The distance of the point @ (b cos 8, bsin §) from this line, being
+ (beos B sina—bsin f cosa—h)
= + {bsin (a— )~ 1}

sin (@ —f) }
=+ —h
'{ 9(p)
tends to zero as / tends to «. Thus the line whose equation is
zsina—ycosa = ];fu sm;a(cﬁ) A)
y
4
7
/
Q /’
7/
/
7
//
, 4

Fig. 146.

is an asymptote of the curve, being approached ever more closely
by the point @ of the curve as £ tends to «.

In accordance with the usual rule for the limiting value of the
ratio of two functions each of which tends to zero, we have the

relation e it (z—f) __cos(a— )
pva  9(F) 9'(B)  |pma
.
g'(@)
Thus, in normal cases, the equation of the asymptote is

7@’

rsina—ycosa =
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IrrusTrATION 15. T'0 find the asympiotes of the curve
r(cos@—sinf) = 1+cos @ +siné.

e, cos@—sinf

1+cos@+sind"
The asymptotes are obtained from the equation
cosf —sinf = 0,

If 1/r = u, then

so that 0 =im, §m, ...
If 6 = }m, then, since
"0) = —sinf—cosf  (cosf—sinf)?
9 = T FcosG+sin0)  (1+cosf+sinb)’
we have g (dm)=—2/(1+4/2),
and so the equation of the asymptote is
z Yy 1442
EET R
or z—y=42+1.

The value 6 = §m gives 2—y = —,/2+1, and other values of &
give repetitions of these two asymptotes.

IivusTrATION 16. T0 find the asymptotes of the curve
7 y/{cos O(cos @ —sin 6)} = 1.
If 1/r = u, then u = J/{cos®(cosf—sin0)}.
The asymptofes are obtained from the equations
cosf =0, cosf@—sinf =0,

so that O0=4¢m 3m, ...; O=1}nmin, ...
If @ = }m, then

: sin (37— f) : cos f A
ﬁlihr J{Gosﬂ(cosﬂ sin f)} ﬁl_l,x?,J{cosﬁ—sinﬁ} P

Similarly for @ = §x. Thus one asymptote is the line
z=0.

If 6 = }n, then
ST B(eosh—sinf)
pin J{cos fB(cos f— mﬂ)} p—~in +/{c08 f(cos f—sin )}

i, i) -
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Similarly for § = 7. Thus the other asymptote is the line
z—y =0,

(We could not use the formula involving g'(c), since g’(37), g’ (i)
are both ‘infinite’. The answer would have been correct, but the
justification might not.)

Note. It may be remarked that, in general, if the equation of
the curve occurs in the form

TG(Q) T F(B)s
then g(0) = %,

(6 < &0 _OF @)
Fo) @op -
Hence the asymptotes oceur when 6 = a, where
G(a) = 0,
@' ()
F(a)’
and the equation for the asymptote is

so that g'(x) =

—F(a)

G'(a)

This is the form often given, and it can be useful; but it needs care.
Thus the curve 1

"= HcosG(cos 6 —sin 0))
just discussed leads us, with
F(0) =1, G(0)= J{cosb(cosl—sinf)},
into theoretical difficulties. On the other hand, with
F(0) = J{cosO(cosf—sinb)}, G(6) = cosb(cosf—sinf),

we avoid these difficulties, at the expense, perhaps, of some mental
confusion about the apparently arbitrary selections possible for
F(6) and G(0).

zsina—ycosa =

Finally, it should be remembered that the curve
r = f(0)

may have a circular asymptote if f(0) tends to a finite limit as 8 tends
to infinity. Thus, if ,l_i,m £0) =,
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then the curve (of ‘spiral’ shape) approaches asymptotically the

circle s
For example if r = tanh @,
o — g0
then, since limtanhf =lim ——— =1,
> o> € +e7°
the asymptotic circle is r=1,

REVISION EXAMPLES XIV

‘Scholarship’ Level
1. The equation of a curve is
2P —a?+yt =0,
(i) Find the equations of the tangents at the origin.
(ii) Find the equations of the real asymptotes.
(iii) Show that the numerical value of y is always less than
that of .
(iv) Show that the numerical value of y is always less than unity
(v) Sketch the curve.

2. The equation of a curve is
(@®+ ) = 2*(1 +47).
(i) Discuss the symmetry of the curve with respect to the
origin and the axes.
(ii) Determine the coordinates of the points at which the
tangents are parallel to the z-axis.
(iii) Prove that the curve has no real asymptotes.
(iv) Find the points of intersection of the curve with the axes,
and show that z is always numerically not greater than 1.
(v) Sketch the curve.
3. Find the asymptotes of the curve
d—ayt—y =0,
and prove that the origin is a point of inflexion.
4. Find the tangents at the origin and theasymptotestothe curve
z(a?—y?) = y(z+2y).
Prove that each asymptote meets the curve at a finite point
which lies on the straight line

13248y = 6.
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5. Trace the curve

' Bt+ay+ai—y2 =0,

Draw the tangents to the curve at the origin and find the equation
of the real asymptote.

6. Find the asymptote of the curve

@~y = ay(z+y).

There are two other tangents to this curve which are parallel

to the asymptote. Find their equations and the coordinates of

their points of contact.
Trace the curve.

7. Sketch roughly the curve

by* = 2(z—y) (z—3y);
find its asymptotes and indicate them on your sketch.
Show that each asymptote meets the curve in a single finite
point and that the three points so obtained are collinear.

8. Find the asymptotes of the curve
(27+y— 1)3 - $°+‘y’,
and prove that they meet the curve only at infinity.

Prove also that there is no point on the curve for values of z
between A and 1, where A is the real root of the equation

3A34+3A2—-3A+1=0.
Give a sketch showing the general form of the curve.

9. Find the equation of the straight line which is asymptotic to
the curve 2z —y)+y% = 0.
Prove also the following facts and give a sketch of the curve:
(i) the origin is a cusp;
(ii) no part of the curve lies between z = 0 and z = 4;
(iii) the curve consists of two infinite branches, one lying in the
first quadrant and the other in the second and third quadrants.

10. Trace the curve
(@—y?)— 4yt +y = 0.
11. Find the asymptotes of the curve
y—2)(y+2)-(y—2) (dy—2)+2y—2=0.

Investigate on which side of each asymptote the curve lies, and
trace the curve.
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12. Find the asymptotes of the curve
(z+y) (z—2y) (x—y)*+ Bay(lz—y) +2* +y* = 0.

Determine on which side the curve approaches each of the ends
of the parallel asymptotes.

13. Find the asymptotes of the curve
28+ 222+ 2 = ay?— 2xy + .

Show that there are values which y¥ — never takes, and sketch
the curve.

14. Find the asymptotes of the curve
228 — oy —ay® + 6y3 —da —day + 15y — 62+ 9y +1 = 0.

Give a rough sketch of the curve, indicating clearly on which
side of the asymptotes the curve lies.

15. Give a rough sketch of the curve
23—y — 222+ By +y* -3y = 0,

and indicate clearly on which sides of the asymptotes the various
branches of the curve lie.

16. Trace the curve
2zy?+ 22—+ 2)y— (22— b2 +2) = 0.
Prove that at no finite real point of the curve is the tangent

~ parallel to the z-axis.

17. Determine the asymptotes of the curve

(y—1)*(y*—4a*) = 3ay.
Investigate on which sides of the asymptotes corresponding
branches of the curve lie, and trace the curve,

18. Trace the curve
y3(a® + 2°) = 2(2® — 4z + 2%)2,
19. Show that x—y = 3 is an asymptote of
(@—y+1)(z—y—2)(z+y) = 8z—1,
find the other asymptotes, and sketch the curve.
20. Find the asymptotes of the curve

2z +y) =x+4y,
and trace the curve.
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21. Trace the curve
28— arty — by + 95 = 0.
What modification occurs when a? = 521

22. Trace the curve
(22— 922 —adz = 0.

23. Find the asymptotes of the curve
@t 4+ 323y + 2022 + 22y + 3z 4y = 0;

determine on which side or sides the curve approaches each
asymptote, and where it cuts the asymptotes.

24. Trace the curve
y*— 3%y +da(z?—y?) = 0,
finding its asymptotes and the curvatures at the points where
z = 0 meets it.
25. Find the equation of the tangent at the point (1,2) to the
curve given by zy(@+y) = 22+ 42+ 1,

and determine the point at which it intersects the curve. Find the
asymptotes and trace the curve.

26. The lines whose equations are 2 =y, x = —y, = 2y are
the asymptotes of a cubic curve which touches the axis of z at
the origin and which passes through the point (0,5). What is the
equation of the curve?

27. Sketch the curve a2—y2 =43,

Find (i) the position of the centre of curvature of either branch of
the curve at the origin, and (ii) the area of the loop.

28. Sketch the curve azy = 23433,
and find (i) the radii of curvature at the origin of coordinates,
(ii) the area of the loop.

20. Investigate the curvature at the point (1, 2) of the curve

(¥—2)* = a(@—1)2.
30. Trace the curve
4(2? + 24 — 2ay)* = 2%(a®+ 2?),

and find the radii of curvature of the two branches at the origin,
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31. Find the asymptotes of the curve

2Py +ay® = a®— 4y?,
and trace it.
Find the cubic which has 2+ y = 1 as an asymptote and touches
both axes at the origin, the radii of curvature there being 1 and 2
units in length.

32. Find the asymptotes of the curve
adx
a®—2

g
and find the radius of curvature at the origin.
Sketch the curve.
33. Find the curvature at the origin of each of the branches of
the curve P —aty — a4y = day— 28,
and trace the curve.

34. Find the radii of curvature at the origin of the curve
2% + ay — 3y? + 22° — a2y + 4y* = 0.
35. Evaluate J‘ : J{(b—2)/(x—a)}dx (a<b)
by means of the substitution = asin® @ + b cos®, or otherwise.
Make a rough drawing of the curve
2%+ 3xy® — 3a(x2—y?) = 0,
and show that the area of its loop is 3a2.
36. Find the coordinates of the node of the curve
(@+y+1)y+(@+y+1)>+y® =0,
and the area of the loop at the node.
37. Make a rough sketch of the curve
z(x?+y2— 3a?) = 243,

and prove that the area between the curve and its asymptote is
3ma®.

38. Sketch roughly the curve
y3(a?+2%) = 2%(a®—2?),
and find the area of one of its loops.

13 M 111
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39. Trace the curve
(& +9)* = 16aay?,
and find the areas of its loops.
Prove that the smallest circle that will completely circumscribe
the curve has radius 3 /3 a.

40. Trace the curve 3 =a%x—a)
for @ = 1,0,—1. Find the area enclosed by the loop in the case
a=-—1.

41. Trace the curve

16032 = b%2(a — 2x),

where a, b are positive, and find the area enclosed by the loop.

If 16a* = 3b% show that the perimeter of the loop is §b.
43 —2z)

2 =
42, Trace the curve y it

and find the area of the loop.

43. Trace the curve
2®+ 9y —3axy = 0,

and find the area of the loop.
44, Give a rough sketch of the curve
x°+y° = bax?y?,

Find the area of the loop of the curve.

45. Sketch the curve whose equation in polar coordinates is
r = 14 cos 26,
Prove that the length of the curve corresponding to 0< 6 < 27 is
8+74§10g (24 y3).
46. Sketch the curve whose polar equation is #2 = a2(1+ 3 cos 0)
and find the area it encloses.

47. Trace the curve r = a(2cos 6 — 1), find the areas of its loops,
and show that their sum is 37a2.

48. Trace the curve r = a(cosf+cos26), and show that the
curve crosses itself at the points where r = }a y2, 6 = + }7.

Prove that the area of that portion of the largest loop that is not
common to the other loops is $a® y2.
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49. Trace the curve r = 2+ 3 cos 20, and find the areas of the
loops.

50. Trace the curve r = a(sin @ — cos 260), and find the area of the
loop which passes through the point (2a, }).

51. SBketch the curve
7(1—2cosf) = 3acos 26,
and find the equations of its asymptotes.
52. Trace the curve
rcosf+acos20 = 0.

Show that the area of the loop is %2 — }7), and that the area
enclosed between the curve and its asymptote is a%(2 + ).

53. Determine the asymptotes of the curve rcos 30 = a, and
sketch the curve.

54. Sketch the curve r(cos @ +sin 0) = asin 26, and find the area
of the loop of the curve.

55. Trace the curve rcos @ = asin 36, and prove that the area
of a loop is }a%(9 y3—4n).

132
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ANSWERS TO EXAMPLES

CHAPTER X1V

Examples 1:

1. Continuous. 2,3,4. Discontinuous,
Examples 11 :

1. 2zy5, 5a%yt, 2. 3a%y?, —2a%y-S.

3. siny, xcosy. 4, —ysinzy, —xsinaxy.

5. e*cos2y, —2e%sin2y. 6. €7, eV,

el

8. 3(l+z)PeW—y(l+z)Pe, —x(l+x)e v,

9. ylJz, Jz.

10. 3a%yiz—2, 4a8yz~2, — 2222, 11. 4a8, 342, 22,
12. e®siny cosz, e®cosy cosz, —eTsiny sinz.

13. cosz siny sinz, sinx cosy sinz, sinx siny cosz,

14. 3(1+z)%ev®, 2(1+2)% e, y(1 + )% eV,

w2 zy
T 14y%? 1+y%%

15, tan—lyz

Ezxamples IV :
1. 2y, 2z, 2rsin 20, 2r cos 26.

2. 3a%, — 32, 3(23—3®)[r, — Bay(z+y)/r.

Examples VI:
1. 168, 2. (cos?t—sint) esint,
8. 0 4. 203(2+31%) 2.
Examples VII:

1. cos 20 sin®@ cos ¢, sin @ cos @ sin ¢(2 cos?® p —sin? @),
2. 2(x+y+z)—2xy%?, ete.
3. e*+¥{cos (x—y) —sin (x—y)}, e**¥{cos (x—y) +sin (z—y)}.

2 2)3
4. Gu(u?+v?)tlog (u?—v?) + 2“2:—:;)— g
20(u? + v2)
6‘!)(%’ + ”s)z log ('Ms —_ 1)2) -_ W 2
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Examples IX :
1. 6-49%. 2, 17:6%. 3. 1119
Examples X :

1. 22, 4oy, 222, 4y, 4.
6xy, 122%°, 1222, 24xy®, 362y
e®siny, e*cosy, —e®siny, e*cosy, —e®siny.
0,y —ay=2, 0, —y2,
2siny, 2xcosy, —a%siny, 2cosy, —2wsiny.
0, —e ¥, xe v, 0, eV, 7. 0, —y3, 2zy7%, 0, 2y~3,
2y 1 5 2z 0

(1+a2)?" (1+a?)’ ° (1+a?)?"
(22 + 4+ 2) y2 €%, (222 + 4a) y €%, 2227,

(22% + B + 4) y e®, (22° 4 4x) €%,

OB O S S b

Ezxamples X1 :

o B S R |
¥ ¥ o P
ad 203z

T

o _2oy+y Gylz+y) (@ +ay+y’)

t o 2ay+a? 2%z + 2y)® '

REVISION EXAMPLES X
8. v(z,y)=ce%(xsiny+ycosy), F(z)=ze
26. _fugﬂ_fﬂ'gli.
J20y—1y0s
36. }bsinC, bsinC, Jacot A.
44, (i) 2, ) L.
45, u=ax+b, v=acy+d, w=cz. 46. Asinhwv.

49. b[g+(cotB+200tA)a}.

50. p(y)=(ay+b)(c'y+d)—(a'y+b') (cy +d).
Take y=elP'd with similar form for X.
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REVISION EXAMPLES XI
1. Max. }at (2,1); min.—§ at (—§, —3).
3. 8,4, 8, 4, c2l(a®+b2+1).
6. Max.at (A,A)if A2>a?; min, at (A,A)if A2<a?;no stationary
value at A2 = g2,
6. §«3abe.
Roots of Z(br2—1) (er2—1) = 0.
8. Min ga® at points such as (— }a, 3a, }a).
[(a,0,0), (0,a,0), (0,0,a) are not genuine points.]
11. 5k, ik.
12. Greatest is (Za?2/e-2)#-2/2, Least is the least of a, b, .
14. 1, }, —-3.
16. Max. 27 at (2, —1, —4); min. 3 at (0, — 1, —2).
19. Neither max. nor min. at (-5, 4, 4); min. at {1, 1; 1),
abe (p—-1)(g-1)(r—1)
% fereatab' 1t SE-ne-1)
z -3 A

23- —=y--=~=__‘
m n p m+n+p

e

CHAPTER XVI
Ezamples 11 :

120y 2, e, S50 4. 0. 5. e¥sind.

Examples I11 ;
2. No. 3. Yes. 4, a=-3.

REVISION EXAMPLES XII
1 A
T 4V{—@+ ) (@+p) 0 +) O+
" 2(x+2y+1)(z+1)
3 z+y+2
8. 2ve¥+v/(1+ 3uw).

CHAPTER XVII
Examples I:

L gp. 2. fynk. 4. 3Enk.
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REVISION EXAMPLES XIII

1. m—4. 2. (F%a,5a). 3. 0; (e®*—1—ab)/b.
4, 2lq%, %at, $3at. 6. F4a'hh 7. %4
8. log2+2%. 10. ma®, 11. }mabe.

12, 2942t 13. u=yifz, v = 2%y.

14. 2(3m—4)a%/9. 156. gmats. 18. m(a+b+c).
8
20. J‘“delrmmam f(rcoso,rsino)rdr]; &(37—10) a2,
in 0

45 43)

21, ,mabe(b®+c?). 25. ﬁa’bp(ﬂ+—a§- -

CHAPTER XVIII

Examples 111:
L y=taz(l-4). 2. y=+a(1-227.
3. z=+y(1+2y). 4 z=+y(1-22).

b. y=2x—42%or y = §2%
6. y=—4dx—2%ory=a®,

Ezxamples IV :

1. 22—y+1=0,2—y+1=0.
z—y=02+y+2=0.
2+y+4=0,2—y+2=0,22—y—§=0.
z2+y+3=0,2—y+§=0,z2—y—1=0.
2—y+2=0,z+y=0,2+y+2=0."

o

Examples V:
L 2(y+z—1)2+8z=0. 2. (2x+})’=g
3. (y+38z+3)* =9z,

REVISION EXAMPLES XIV
1. () z+y=0, (i) y+1=0.

2. (i) (0,0), (i = ¢}3) (iv) (0,0), (+1,0).
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14,
15.
16.
LS
20.
21.

22,
23.

24,

25,
26.
21.
28.
3L

32.
33.

34.

ANSWERS TO EXAMPLES
z=0,z+y=0.
Tangents y = 0, 2+ 2y = 0;
Asymptotes 2+2 = 0,z2+y—4 =0, 2—y—3 = 0.
z=1,
z—y=4§a; x—y—a=0 at (0,—a) and z—y+3a=0
at (—3a, 4a).
z=2,z—y+3=0,2—3y—1=0.

z=l,y=1lz+y=0. 9 z—y+1=0.
10.
11,
12,
13.

Asymptotes are z+y+ 1 = 0.
2—y+1=0,2—y+i=0,2+y—5=0.
z+y—34=0,2-2y+2=0,2—y—2=0,2—y+3 =0.
z=0,z—y+2=0,2+y=0;
% — is not between — 2,0 or 2,4,
z+y+1=0,2—-2y—3=0, 22+3y = 0.
Asymptotes are x—1 =0, 2+y—2 = 0, 2—y+1 =0,
Asymptotesarex =0,y =}, z+y—% = 0.
y—1=0,y+2x=0. 19, 2—y+2=0,z2+y=0.
z+y=0,2+2=0,
Asymptote is x+y = 0. If a® = b2, the line z+y = 0 is
part of the locus.
Asymptotes z +y = 0.
& = 0, cutting at (0,0); 4y = 0, cutting at (0,0), (1, —1),
z+2y = 0, cutting at (0,0), (§, —5).
Asymptotes y =4a, +3/3x—3y+4a=0; curvature
— & v2a~! each branch at origin and a! at (0, 4a).
6z+y = 8, (1}, —5); asymptotesz = 1,y = L,z +y+2 = 0.
(@2 —y?) (x—2y) = 2b%.
(2: _2)1 ("‘23 _2);'I§5"
b 20. 142, —}42.
z2+4=0,y—1=0,2+y—3=0;
day = 223+ 922y + Bay® + 8.
z=+a,y=0;}a.
$ for y=0; —J5486 for y=2z. The asymptote is
«+y = —3, and asymptotic parabola (y—z+})? = 2.
5.2, S5 /13 35. n(b—a).

30. 2a, 3a.

36.
38.
40.
42,

47,
49,
50.
53.
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(—1,0); . 37. The asymptote is z = 0.
(3r—1)a2. 39, 4mal.

& 41. Lab.

343, 43. 3ad

Sa2, 46. a?fm+2J2—sin1(3 y2)}.
a®(m—3$ 43), a®(2m + § J3).

12 tan-1 (y5) +§ v5; &lm — Y- tan~1 (5) — 3 5.

(A + &5 ¥3) a2 5l. 243+y =ay3.
3x+a=0,z+y3=3%a. 54 }a¥(m-2).
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INDEX

Algebraic curve, 142
Asymptotes, 158, 170

circular, 180

parabolic, 162

parallel, 158

in polars, 177
Asymptotic parabola, 164

Chain rule, 25
for Jacobians, 97
Change of variable, 41
by operators, 43, 46
Coefficients, partial, 10
of higher order, 38

2z
b S BN

spherical polar, 2, 129
Curve, algebraic, 142
multiple point, radius of eurvature,
173
tangent, 50
See also Sketching of curves
Cusp, 150

Differential, 28, 31
exact, 51
Differentiation, partial
introductory example, 8
notation, 10

‘Element of area,’ 121
‘Element of volume,’ 127

Geometrical interpretation, 4
of differentiation, Cartesian, 13
of differentiation, polar, 16

oz 00
of;, FrUR 18

Homogeneous functions, 47

Implicit functions, 30, 49

Increment
for several variables, 11
small, 36

Inflexion, 167

Integrals, multiple, 109
double, 109

evaluation in practice, 118
as repeated integrals, 116
triple, 115

Integrating factor, 54

Jacobian
chain rule, 97
definition, 95
of dependent functions, 100
introductory example, 90
for ratio of areas, 102, 133
for ratio of volumes, 104, 134
‘reciprocal’ theorem, 98

to distinguish, 77
general conditions, 74
undetermined multipliers, 79
Moment of inertia, 110
of cardioid, 125
Multiple point of curve, 154
to locate, 168; in polars, 176
radius of curvature, 173

Operator, 43, 46
Parabola, asymptotic, 164

Bketching of curves
asymptotes, 158, 170
circular, 180
parabolie, 162
in polars, 177
cusp, 150
general method, 143
inflexion, 167
large values of z, 154
location of multiple points, 168; in
polars, 176
from polar equation, 175
small values of z, 146
tacnode, 151, 164

Tangent, 50
Taylor’s theorem, 57

Volume
in eylindrical coordinates, 127
of sector of sphere, 128
in spherical polar coordinates, 129
See also Integrals, multiple (triple)
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