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PREFACE

I HAVE endeavoured in the present work to exhibit a
comprehensive view of the Differential Calculus on the
method of Limits. In the more elementary portions I have
entered into considerable detail in the explanations with the
hope that a reader who is without the assistance of a tutor
may be enabled to acquire a competent acquaintance with
the subject. To the different Chapters will be found ap-
pended Examples sufficiently numerous to render another
book unnecessary. These examples have been selected
almost exclusively from the College and University Ex-
amination Papers; the greater part of them will be found
to present no very serious difficulty to the student, although
a few may require peculiar analytical skill.

I have frequently given more than one investigation of
a theorem, because I believe that the student derives ad-
vantage from viewing the same proposition under different
aspects, and that, in order to succeed in the examinations
which he may have to undergo, he should be prepared for
a considerable variety in the order of arranging the several
branches of the subject, and for a corresponding variety in
the mode of demonstration.

In the composition of the first edition of this work, while
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trusting mainly to independent knowledge and judgment, I
derived assistance from the labours of well known authors on
the subject, especially Cournot, De Morgan, Moigno, Navier,
and Schlomilch. In the subsequent editions a considerabie
amount of fresh matter has been introduced, and this rests
almost exclusively on my own authority; increased experience
as a teacher naturally gave stronger confidence to the writer.
Thus the work now contains on the whole much that is
original in substance, and much that is new in form.

The present edition has been carefully revised and some-
what enlarged. Ihave examined with attention and interest
treatises on the Differential Calculus recently published by
eminent mathematicians, in order to discover if the methods
of explaining and developing the principles of the subject
had gained any real improvement during the last twenty
years. I have not however found reason for concluding that
I could with advantage make any essential change in this
elementary work. ' s

I have much reason to be grateful for the approbation
bestowed by teachers and students on this volume, the
first of a long series relating to various branches of mathe-
matics. My thanks are especially due to Professor Battaglini
of Naples for the honour which he has conferred on me by
translating my treatises on the Differential and the Integral
Calculus into Italian. .
1. TODHUNTER.

Sr Jorn’s CoLLEGE,
April, 1871.
Since the foregoing Preface to the fifth edition was

printed the work has obtained increased favour both at home
and abroad, and translations of it have appeared in Russia
and in India. An elementary treatise on Laplace’s Functions,
Lamé’s Functions, and Bessel’s Functions, designed as a sequel
to the volumes on the Differential and Integral Calculus, has
since been published.

January, 1878.
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DIFFERENTIAL CALCULUS.

CHAPTER L
DEFINITIONS. LIMIT. INFINITE.

1. SuPPosE two quantities which are susceptible of
change so connected that if we alter one of them there is
a consequent alteration in the other, this second quantity
is called a function of the first. Thus if # be a symbol te
which we can assign different numerical values, such ex-
fressions as &', 3% log @, and sin «, are all functions of .

f a function of  is supposed equal to another quantity,
as for example sinz=y, then both quantities are called
variables, one of them being the fnd%;ndent variable and
the other the dependent variable. independent vari-
able is a quantity to which we may suppose any value
arbitrarily assigned; a dependent variable is a quantity the
value of which is determined as soon as that of some in-
dependent variable is known. Frequently when we are
considering two or more variables it is in our power to fix
upon whichever we please as the independent variable, but
having once made our choice we must admit no change
in this respect throughout our operations; at least such
a change would require certain precautions and transfor-
mations.

2. We generally denote functions by such symbols as
F (), f (), ¢ (), ¥ («), and the like, the variable being
denoted by 2. Such an equation as y=¢ (x) implies that
the dependent variable y is so connected with the independent
variable @, that the value of y becomes known as soon as
that of « is given, and that if any change be made in the
numerical value assigned to @, the consequent change in y
can be found.

T.D.C. ? _ B



2 DEFINITIONS,

3. The student has probably already had occasion to
consider the meaning of the terms “variable quantity” and
“function” which we have here introduced. In treatises on
the conic sections, for example, the equation. y=2 ¥az occurs,
where # is a general symbol to which different numerical
values may be assigned, and a is a symbol to which we
suppose some invariable numerical value -assigned, and which
is therefore called a “constant.” For every value given to =
we can deduce the corresponding numerical value of y. In
the equation y=2 #az, since the value of y depends upon
that of a as well as that of , we may say that y is a function
of ¢ and . Hence such symbols may be used as F'(a, x)
to denote a function of both @ and = ; and such an equation
a8 y=¢ (w, 2, ) indicates that y is a function of the three
quantities denoted by the symbols #, 2, and ¢
. 4. In the equation y=2+ax, if we know that a is to be
a constant quantity throughout any investigation on which
we may be engaged, we shall frequently not require to be
reminded of this constant, and shall continue te speak of y

as a function of . So the equation y= &,b' « (@'—2") may be

rell)resented by y=¢ (x), where we express only that sym-
bol « which throughout our investigations will be considered’
variable,

5. If the equation connecting the variables # and y be
such that y alone occurs on one side, and on the other side
some expression involving 2z and not y, we say that y is
an explicit function of z. When an equation connecting
and y is not of this form, we say that y is an ¥mplicit function
of . Thus if y=aa’+bx+c, we have y an explicit function
of . If ay*—2bxy+ca*+9g=0 we have y an smplicit func-
* tion of . The words smplicit function assume that y really
is a],({"umtio’n of  in the sense in which we have used the
word function. This assumption may be seen to be true in
the example given, for we can by the solution of a quadratic
equation exhibit y as a function of 2; or rather we can infer
that y must be one of two explicit functions of «, namely
cither ZtV(E'—-a0) Z—ag} ba—y{(B'—ac) @~ag}

a L a
shall return to this point hereafter, in Art. 58, .
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6. Explicit functions may be divided into algebraical and
transcendental. The former are those in which the only
operations indicated are addition, subtraction, multiplication,
division, and the raising of a quantity to a known power
or the extraction of a known root; the latter are those which
involve other operations, as exponential functions, logarithmic
functions, and trigonometrical functions. We suppose here
that the number of the operations indicated is finite; for as
we shall see hereafter a transcendental function may be equi-
valent to an infinite series of algebraical functions.

To the independent variable in an equation we may
suppose any value assigned, either positive or negative, as
great as we please or as small as we please. If we suppose
a series of different values assigned to @, beginning with
gome negative value numerically very large and gradually
increasing algebraically up to some large positive value,
the series of values we obtain for y may present to us very
different results. For example, if y=2* then the values
of y will form a series beginning with a negative value
numerically large, and increasing algebraically up to a large
positive value. If y =4 the values of y are always positive, -
and form a series first decreasing and then again increasing.
If y=4/(a®—«%), then the values of y are unreal for every
value of # not contained between —a and +a.

7. We proceed to another example more important for
our purpose. Suppose =13z’ and consider the series of

values which y assumes when to  are assigned different
posttive values. When =0, y =0, and when « has any
_positive value, y is a positive proper fraction. If we
put v in ‘the form 1_1_-11:5’ we see that as @ increases
so does y, but y being a proper fraction can never be so

great as unity. The difference of y from unity is i _Il_ pti

this. fraction diminishes as = increases, and can be made
smaller than any ‘assigned fraction, however small, by
gwing a sufficiently great value to . Thus if we wish

. . . . 1 .
.y to differ from upnity by a quantity less than 100,000
B2
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make 2=100,000, and the required result is obtained. If
we wish y to differ from unity by a quantity less than

Woclﬁbﬁ’ make z=1,000,000, and the required result is

obtained. Under these circumstances we say “the limit of
y when @ increases indefinitely is unity.”

8. The importance of the notion of a limst cannot be
over-estimated ; in fact the whole of the Differential Calculus
consists in tracing the consequences which follow from that
notion. The student has probably already fallen upon cases
in which the word lim:t has been used, to which it will be
useful to recur. For example, the sum of the geometrical pro-

gression 1+4+3+4+... continued to n terms is 2—2—5—_“'

and hence he has deduced the result that the Limst of the
series when the number of terms is indefinitely increased
is 2.

9. A very important example of a Limit occursin works
- on Trigonometry. It is there shewn that if 6 denote the

circular measure of an angle, the fraction il—l;—e will, if @ be

diminished indefinitely, approach as near as we please to
unity. In other words the limit of 81—;—0, as @ continually
diminishes, is unity. We shall express this by saying “ the
limit of %2, when 6=0, is unity;” that is, we use the
words “when 6=0"™ as an abbreviation for “when 8 s
continually diminished towards zero,” or for “when 6 1s
diminished without limat.”

10. The proposition “the limit of _s1_0n_0 , When 6=0, is unity”

is sometimes expressed thus, 8130

=1, when 6=0," or

“sin 0 =6, when 6=0" It must however be most carefully
remembered, that such expressions are only abbreviations and
cannot be understood absolutely. In like manner the result
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obtained in Art. 7, namely that the limit of i_‘_-:?v when z -
increases indefinitely is unity, would be sometimes expressed

I :w equals unity,” Here both
parts of the sentence are abbreviations: “when = is infinite”

can only be considered as meaning “when & is increased

thus, “when z is infinite

. < m « ® - C o«
without limit,” and Tra equals unity” means strictly T

can be made to differ from unity by as small a quantity
as we please.” '

11. In the example y=wf_ - let us now ascribe to »
negative values. Put —z for z; thus y =—2_. Now sup-

z—1"

pose 2z to change gradually from 0 to 1; the numerator of y
18 positive and continually increasing, while the denominator
is negative and numerically continually diminishing. The
value of y then is negative and numerically continually in-
creases, and by taking 2 sufficiently near to unity we may
make y as great as we please ; that is, as  approaches unity
. y has no finite limit. For the sake of shortness, this is some-
times expressed thus, “y is infinite, when £ = 1;” but it must
not bg forgotten that this last phrase s an abbreviation, and
must be considered to mean: “by taking 2 sufficiently near
to unity ¥ can be made to exceed any assigned magnitude,
however great.” We shall not proceed further with the ex-
ample ; the reader will see that when 2 is greater than unity
¥ is positive, that y continually diminishes as z increases, and
approaches the limit unity when z increases indefinitely.

12. The student has already seen an example of the same
kind as that brought forward in the last Article, for he has
probably been accustomed to say, “the tangent of an angle
of 90° 1s infinity.” On reflexion he will see that the only
way in which a meaning can be given to this statement is
to consider it an abbreviation of the following: “as we
increase an angle ually up to 90°, the tangent of the
angle increases, and by taking the angle near enough to 90°
we may make the tangent as great as we please.” We can
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form no distinct conception of an infinite magnitude, and the
- word can only be used in Mathematics as an abbreviation
in the manner of the examples here given. .

If to z the independent variable be ascribed values begin-
ning with zero and increasing without limit, this is sometimes
expressed for abbreviation by saying that « increases from
zero to infinity.: .

13. The meaning of the word “limit,” or its equivalent
“limiting value,” will be understood from its use in the
. preceding Articles. The following may be given as a defini-
tion: “The limit of a function for an assigned' value of
the independent variable, is that value from which the
function can be made to differ as little as we please, by
making the independent variable approach its assigned
value.” ‘ . :

. sin 6 -

14. In the example “the limit of —5 =1 when §=0," it

is obvious that -8310—0 is never equal to 1 so long as @ has

any value different from zero, and if we actually make
6=0, we render the expression —s%—q unmeaning. In other
words, although E%g approaches as pearly as we please to
the limit unity ¢ never actually attains that limif. Some-
times in the definition of a limit the words “that value
which the function never actually attains” have been in-
troduced. But it is more convenient to omit them; for if

we-take any function of z, say E%T’ and ascribe to z any

value, say 1, we can determine the actual value of the
function, which in this case would be }. According to the
definition we have given in the preceding Article we may
X
z+1
The same -holds for any finite value of any function, and
generally according to the definition of a Limit laid down
in Art. 13, any actual value of a function may be considered
as a imiting value, .

if we please call } the limit of

when « approaches unity:
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@/ .

we proceed to demonstrate, is very important. When
. L4

tncreases indefinitely the expression (l +:—c) approaches @

certain limit which lies between 2 and 3.

In the first place suppose & a positive whole number,=m
say; we shall prove that the above expression continually in-
oreases with m, but can never reach the value 3. Assuming
the Binomial Theorem for positive integral exponents, we have

15. Limit of (1 + l)a The following theorem, which

1\™ 1 m(m—-1)/1\' m(m—1)(m-—2) _l)‘
(1+17i)_1+mm+ 1.2 (m)+ 1.2.3 (m +
-+m'(m-fl)(m—2)...{m—(m—m l)"‘
. st 1.2...m (m !
which may be written
’ 1 1 2 ‘
1-— (1-2)1-%
1\" 1 m ( m)( m)
(H'E) L Vil v T s e e S
1—1) (1-3).,.(1—1'—“—1‘)'
+ m m) m )
1.2...m
Similarly
1 1 2
1-— 1-— 1-—-
1 \m+1 1, m+1 ( 'm+1)( m+1)
(1"'1_4-7») yt=—gz+ 1.2.3 +
1 2 m
+(1—m-j-l)(1_m+1)"-°(1—m+l) (2
’ 1.2...(m+1) =(2).

" Now in the last two series we see that their first and
second terms are equal, but the third term in (2) is greater
than the third term in (1); also the fourth term in (2) is

eiter than the fourth term in (1), and so on; moreover
in (2) there is one term more than in (1). Hence

14+ 2 )""is greater th "
( +1+m). .vlsAgrcreaert an 1+E) .
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Therefore if we put m successively equal to 2, 3, 4, &c. the
expression (1 +7—:‘—) continually increases.

. . 1 2 © 3 . :
But since 1—;,1—;, 1—"—{,...a.re all positive and

all less than unity it follows that the series in (1) ‘cannot be
greater than

1 1 1 1 ” 1
titietiestizsat ~tiz @
however great m may be.

But the series in (3) is less than the following series,
which forms a geometrical progression, beginning at the

second term,

1. 1. 1.1 1
1+'i'+'§+’2—g+"2-,+...+—27,:i,
that is, the series in (3) is less than
(- AT 1-L1 '
- j 2" 1
Y : 1+ or 3——s3.
1 : 1-1 2
: 3 | .
Hence (1 +i is less than 3, however great m may be,
m .

Since then the expression (l + ;:—z) continually increases

with m, but at the same time cannot exceed 3, there must
be some “limit” towards which it approaches as m is in~
creased indefinitely. We shall use the symbol e to denote
this limit, and shall hereafter shew how to calculate its
approximate value: we say approzimate, for it will prove
to be an incommensurable number. See Art, 115,

16. 'We might perhaps leave it to the student to convince
himself that the limiting value of (1 + i) must be the same

whether we attribute to  a succession of integral or of

Jractional values increasing without limit. But 1t may be
formally shewn thus. Whatever fractional value be ascribed
to  there must be two consecutive integers, say m and m + 1,
between which such fractional value lies, Suppose then
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1 +_:—1!-: greater than 1 +% and less than 1 +5;, where n is put
for m + 1. ' .
Then . (1 + 1) lies between (1 + 1) and (1 + l) .

z n m
Suppose z=m +a=n—8, so that a and B are proper frac-
tions, then

L] . L] ' mta
(l + 1) lies between (l-+ 1) and (l + l) ,
&, . n m
that is, between

{fr Y o 21

If = be now supposed to increase without limit, so also do

m and . The limit of (1+ +) and of (1+%) is ¢, and as
1- g and 1 +1£n have unity for their limit it follows that the
Timit of (1+(1c)'ise.‘

17. We may shew that the limit of (1 +alr) is also ¢
when z is megative and increases without limit. For put
z=—2 then we have to find the limit of (1-3)  when #
increases without limit. '

Now (1 - 1—)-'= (z — l) = (__z ) ’
z z z—1
g+l
= (I_-i;y) » Where y=2z—-1,
Y
¥t
-0+ 91
Let now z increase numerically without limit, then z, and
v
consequently y, do the same. The limit of (l + ;) is e, and

that of 1 +; is unity, and therefore the limit of (1 - -E) ise
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18. Since the limit of (1 + ;—:)’ when « increases indefi-

. X
nitely is ¢, e see, by putting - =, that the limit of (1+ £)*
when ¢ is diminished mdeﬁmtely is also e Hence we can

deduce the limit when £=0 of (I +az) , Where a is any
constant quantity, For

X 1)a

(1+ as)'= {(1 + 'az)-} X

Now as z diminishes without limit, so also does az, therefore
the limit of (14 a2)™is ¢,
and © the limit of (1+as)" is e"
19, Since  log,(142)'=Llog, (1+2),
a being any base, we have, by diminishing 2 indefinitely,
the timit, of B0+ 2) _ e Kmit, of log, (1.+2),

=log,e;
and, putting ¢ for a,

the limit of log._(_l_-l—_i)_ =1.

20. From the equation
+ log,(1+2)
=,

log,(1+2)

we deduce, by assuming 1+ 2 =4’

1
log, (1+2)"=_

i
Now suppose 2 to diminish mthout limit, and therefore also v.
We bave then

the limit of when v=0

= limit of log, (1 + :z)7 when z=0
= log,e. :
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a’—1

'i‘hérefore the hm1t of

when v=0
=1
log, &
: = log, a.
Suppose a=¢,
therefore p=log,.a,
: v —1

and the limit of when v=0is B

v

91, The following results will be found in works on
Trigonometry. If the variable x diminish indefinitely

the limit of 3"'—‘;—“" =1,

sl
Sin "X
=1,

the limit of

1
x=1.

the limit of 22

22. A few general remarks may be made at the close
of this Introductory Chapter. It frequently happens that
a-person commencing this subject is discouraged at the outset
because he cannot discover or imagine any practical appli-
cation of the somewhat abstruse points to which his attention
is directed. =From what he remembers of the early portions
of those branches of mathematics with which he 1s already
acquainted, he-is led to expect that almost as soon as he -
begins the Differential Calculus, he will be able to compre-
hend its general scope, and to make use of it in solving
algebraical and geometrical examples;- and being disap-
pointed in this expectation, he is apt to imagine as a reason
for it, that he has not correctly understood the elementary
principles of the subject. It may, therefore, be of some
service to assure him, that the difficulty of which he com-
plains is probably owing much more to the nature of the
subject than to his own want of comprebension. The student
must, of course, leave'to his teacher the task of arranging
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the different portions of the subject he is studying, and of
selecting the definitions necessary to be understood ; and in
reading a work on the Differential Calculus, he must be
satisfied at first with reflecting upon the meaning of the
definitions, and examining whetier the deductions drawn by
the writer from those definitions are correct. There are
innumerable applications of the elementary principles of the
Differential Calculus, as will be seen m the apter on
Expansions and those following it, but we shall at first
confine ourselves merely to the logical exercise of tracing the
consequences of certain definitions,

A difficulty of a more serious kind which is connected with
the notion of a limit, appears to embarrass many students
of this subject, namely, a suspicion that the methods em-
ployed are. only approximative, and therefore a doubt as to
whether the results are absolutely true. This objection is
certainly very natural, but at the same time by no means
easy to meet, on account of the inability of the reader to
point out any definite place at which his uncertainty com-
mences. In such a case all he can do is, to fix his attention
very carefully on some part of the .subject, as the theory
of expansions for example, where specific important formule
are -obtained. He must examine the demonstrations, and if
he can find no flaw in them, he must allow that results
absolutely true and free from all approximation can be le-
gitimatei/y derived by the doctrine of Limits.

93. The demonstration in Arts. 15, 16 of the Pproposition
that (1 +:1;) tends to some fixed limit as 2 increases in-

definitely, has been given in several elementary works on
the Differential Calculus, and it is accordingly retained here.
But the following method, in which the Binomial Theorem
is not assumed, is worthy of notice.

We shall first establish two inequalities.

If B and A are positive quantities, and A greater than
unity, ' :
(14 B)* is greater than 1+2A8............ (1).
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If B and p are positive quantities, and uB less than umty,
_ 1
14 B)* is less th cenennenennens (2).
To establish these inequalities we shall use the known
theorem that the arithmetical mean of any number of posi-
tive quantities is greater than the geometrical mean; see
Algebra, Cha.pter LL

Let A= E’ where p and g are positive mtegers. Take p
quantities, ¢ of which are equal to 1 +I§) B, and p — g equal to
q+q (l +: p B)

unity. Then their arithmetical mean is )

that is 1+ 8; their geometrical mean is (1 +2 8)?. The

former is the greater; and therefore (1+ ,B)g’: is greater than
1 +1§’ B. Thus (1) is established.
Let ”':;’ and pﬁ=;, where 7, ¢ and ¢ are positive in-
tegers; thus B=§. Take s+ ¢ vquantities, & of which are
equal to 1 +£, and ¢ equal to 1~ ;—'. Then their arithmeti-
s(1+’—')+t(1 —f)
8, |2
s+t
. N, A\ .
trical mean is {(1 + ;) (1 - 5)} . The former is the greater;
s ¢
therefore (1 +§) (I—;—') is less than unity; and therefore

cal mean is , that is unity; their geome-

1+7) s less than ——. Thus (2) is established.
\"' s - 17
V ¢
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In (1) put B= —!—, and raise both sides to the power 4;

My
then - ‘
LV, _ Ly,
(l+)—.7y) is greater th@ (1 +§) H
that is, if & be greater than v,

(1 + 8) is greater than (1 +7) ..... (3)

From (3) we see that (1 + 1) continually increases as z
increases. It does not, however pass beyond a certain finite
limit ; for in (2) write IE for B, and raise both sides to the

power ¢ ; then

(1"+ -1—)"’ is less than ——t—=s if o be greater than 1.
atd (1 - 1)7 . :
v

i «

Hence, if we put ¢y =2, we find that (1 +.-a1—9) can never
exceed 4. By ascribing to y greater values we shall obtain
a closer limit for (1 +%) . If we put y=6 we see that

] [
(1 +%‘) must be less than (g) , and therefore less than 3.
Since then the limit of (1 -I-é)’, as & becomes indefinitely

great, must lie between (1 +l). and (7%—1)' where n has

any positive value, we may, by ascribing successive inte
values to n, easily approximate to the numerical value of the

limit.
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CHAPTER 1L

DEFINITION OF A DIFFERENTIAL COEFFICIENT.
DIFFERENTIAL COEFFICIENT OF A SUM, PRODUCT, AND
QUOTIENT.

- 24, 'WE shall now.lay down the fundamental definition
of the Differential Calculus, and deduce from it various

inferences. i

DEFINITION. Let ¢ (x) denote any function of =, and
¢ (z+£) the same function of =+ A; then the limiting

value of M , when k is made indefinitely small,

is called the differential coefficient of ¢ () with respect to ,

This definition assumes that the above fraction really has
a Wimit. Strictly speaking, we should use an enunciation of

this form—« Ifi(w—-l--}—‘])::m have a limit when % is made

indeﬁnitely small, that limit is called the differential coefficient
of ¢ (x) with respect to #.” We shall shew, however, that
the limit does exist in functions of every kind, by examining
them in detail in this and the following two Chapters. We
give two examples for the purpose of illustrating the defini-
tion.

Suppose ¢ (@) =a*;
therefore ¢ (@ +h) = (z+h);
therefore ¢+ }2 —¢(@) _(a+ ’;‘)’ —a

2
_ 2a:hk+ R _ 2w+,

and the limit of 22+ % when 4 =0, is 22 ; therefore 22 is the
differential coefficient of &* with respect to z.
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Again, suppose ¢ (z) =3
therefore ¢ (x+h)= 3—4-%-0-7’
$@+h)-¢@__ _ a_
therefore A =T GFs R’
The limit pfthis when A=0is

-2
(6 + x)!’
which is therefore the differential coefficient of
respect to .

a
b+=x

with

25. We now give the notation which usually accompanies
the definition in Art. 24.

Let ¢ (x) =y, then ¢ (z+ k) — ¢ () is the difference of the
two values of the dependent variable y corresponding to the
two values,  and &+ A4, of the independent variable, This
difference may be conveniently denoted by the symbol Ay,
where A may be taken as an abbreviation of the word
difference. 'We have thus

Ay=¢ (a+h) - ¢ (a).

Agreeably with this notation, 2 may be denoted by Az, so that
Ay _d(+h) - )
Az h )

It may appear a superfluity of notation to use both % and
Az to denote the same thing, but in finding the limit of the
right-hand side we shall sometimes have to perform several
analytical transformations, and thus a single letter is more
convenient. On the left-hand side Az is recommended by
considerations of symmetry.

We say then, according to the definition in Art. 24, that

the limit of 3, when A is diminished indefinitely, is the
differential coefficient of y or j (@) with respect to @ This
limit is denoted by the symbol 2.
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26. The symbol j—; we consider as a whole, and we do

not assign a separate meaning to dy and dz. As, however,
2 is o real fraction in which Ay snd Az have definite
meanings, the student will very possibly suspect that some

meanings may be given to dy and dz which will enable him
to regard 2 as a fraction. This suspicion will probably be
strengthened as he proceeds in the subject and finds that in
many cases Jg possesses the properties of an algebraical

fraction. We remark that there are indeed methods of
treating the Differential Calculus in which meanings are
given to dy and dz, and we shall recur to them hereafter

(see Chap. XXvIL), but at present we define the symbol Z—Z

as above, and only leave to the reader the task of examining
whether we are consistent with ourselves in the inferences
we proceed to draw and express by means of our definitions
and symbols.

The following notation is also frequently used. If ¢ ()
denote any function of z, then ¢'(x) denotes the differential
coefficient of ¢ () with respect to .

The operation of finding the differential coefficient of
a function is called “differentiating” that function.

27. Differential coefficient of a sum of Functions.

Let y and 2z denote two functions of , and « their sum,
‘Suppose that 3, 7, v, denote the values these functions
assume when « is changed into # + k. Then

u=y+2,
uw=y+7,
therefore UW—u=y —y+2 -2
that is Au= Ay + Az.
Divide by k or Az, then
Au_Ag  As
Az Az ' Az’

T.D,C C
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Now let £ diminish without limit, and we have
du _dy + % dz
_ : dz  dz” dz’
Hence the differential coefficient of the sum of two functions is
the sum of the differential coefficients of the functions.
Similarly, if u=y—2z
du dy dz

28. The results of Art. 27 may be extended to the case
of any number of functions connected by the signs of addition
or subtraction. For example, let

v=w+y+2
then, as before, Au=Aw+ Ay + Az ;
Au_Aw Ay,
therefore As—2z T As Ax ;
therefore, proceeding to the limit,
du__dw dz

day

&= de Yt

29. Differential coefficient of the product of two Functions.
Let ¢ (x) and 4~ () denote two functions of z, and let.

u=¢(2) ¥ ().
Change  into z + h, and let u+ Au denote the new product,
then u+Qu=¢ (@+k)Yy (x+h),

therefore Au=¢(x+ k)Y (x+ k) — () ¥ ()
={¢ (w+71) ¢ @}V (@+E) +¢ (@) ¥ @+E) ¥ @)}
BBl oy DY) o

therefore

Suppose now % dlmmlshed indefinitely ; then the limit of
2EHN =) i the differential coefficient of $(c) with
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 respect to a, or ¢'(2); the Limit of ‘M‘I)‘i@ is the
tti}ilgelrhgxittia;lfti;e(lfii-%t i:f‘n[:lzagv;) witb respect to x, or ¥'();
therefore 3—2 =¢' (@)Y (@) + ¥ (2) ¢ ().

Hence the differential coefficient of the product of two functions
18 found by multiplying each factor by the differential coefficient
of the other factor and adding the resulting products.

Divide each side of the last result by u or ¢ (z) Y (z); thus
Ldu_¢@ , ¥(@)
uvdz ¢ (@) ¥ (@)

80. An equation similar to that just obtained holds for the
product of any number of functions. For example, let

u = wyz,
w, y, # being all functions of «.

Assume v =Wy,
therefore u=1vg2;
then, by Art. 29,

also v & wds T yds’
1du 1dw 1dy 1ldz

therefore ;Tx—w%+§%+;%,
d d d; dz

therefore £=yz£+wzd—%+wy7ix°'

Proceeding in this manner we have as a rule: The differen-.
tial coefficient of the product of any number of functions us
found by multiplying the differential coefficient of each factor
by all the other factors and adding the products thus Jormed, -

c2
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31. Differential coefficient of a quotient.
Let ¢ () and 4 (x) denote two functions of , and let
¢ (@)

TV
Suppose = changed into x+ 4, and let » + Au denote the
new value of the quotient. Then
_P(=z+4)
C Y@+’
Ap=2EtR ¥ @)~ @) ¥ (@+h)
VY @+h) ¥ (@)

_p@t+th)—¢@}¥ (@) —{Y@+h)—y () }4’(‘”)

V(+h) ¥ (@)

(x+h z z + k) —
o, Herhodld g verlodE),,
therefore —

Az V(@ +h) ¥ ()
Let 2 dimim'sh without limit, then
_P@ V@) -y (=) @)
dw @)}

Hence we have this rule: 70 find the differential coefficvent
of a quotient; multiply the denominator by the differential
coefficient of the numerator and the numerator by the differential
coefficient of the denominator ; subtract the second product from
the first and divide the result by the square of the denominator.

32. The result of Art, 31 may also be obtained thus:

u+Au

therefore

Since u= ;7;—83
therefore ¢ (x) =ur(x);

therefore, by Art. 29,
¢'(@) =7 ¥ () +uy’ (@);
therefore -\p( ) —=¢'(x) — ﬂz— '1"' (),

(=) ¥ (=) 1l’() (@)
therefore da: ¢w¢?«[r(w)}w¢x
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33. Differentiation of a constant.

If y=c where c is a constant, then %=0. For to say
that y is equal to a constant is the same thing as saying that
y cannot vary ; hence Ay =0, therefore

Ay
A.=0

whatever be the value of Az ; therefore

Hence, making ¢ (x) = a constant ¢ in Art. 29, we have
deyr(x ,
C?PT()_ = c\lr (w).

This may of course be obtained directly thus:

Let u=cy(z),
then u+Au=cy(z+h);
therefore 2—: =c wﬁ}w ’
therefore % =y ().
So by putting ¢ (x) = ¢ in Art. 31, we obtain
40 __o¥@
¥@ @)
dr

which likewise may be found independently.

34. We have now defined a differential coefficient and
have shewn how the differential coefficient of a compound
function can be found as soon as we know the differential
coefficients of the component functions. Before we proceed
to the rules for determining the differential coefficient of any
known algebraical expression, we shall give some geometrical
illustrations which will assist in forming a conception of the
meaning of a differential coefficient and afford some hints as
to the applications which can be made of the doctrine of
limits.
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35. Suppose we have given the equation y=¢ (), and
that we attribute to the independent variable 2 all possible
values between — o and + « and notice the corresponding
values of y. Geometry gives us the means of representing
distinctly this succession of values. We can take x for an

abscissa measured from a ,
fixed origin along a certain

axis, and y for the corre-

sponding ordinate measured N

along an axis at right angles , 7 _
to the first. The values of M -

y corresponding to those of
z in the equation y=¢ ()
will belong to a curve , .
AMN, the form of which © ) @
will indicate the series of
values we are considering. It is necessary to have always -
present in our mind not merely any particular value of
and- the corresponding value of y, but the whole series of
corresponding values of these two variables.

36. Among the properties which the function ¢ (z), or the
line which represents it, possesses, the most remarkable, that
in fact which is the object of the differential calculus and the
consideration of which is perpetually occurring in all applica-
tions of this calculus, is the degree of rapidity with which the
Junction varies when the variable begins to vary from any
assigned value. The degree of rapidity of increase of the
function when the variable is made to increase may differ not
only in different functions but also in the same function
according to the value attributed to the variable from which
the increase is supposed to commence. Suppose we give to &
a particular value denoted by OP, to which corresponds a
determinate value of y or ¢ (x) represented by MP. Let x,
starting from the value assigned, increase by a quantity which
we denote by Az, and which is represented by P¢. The
function y will vary in consequence by a certain quantity
which we denote by Ay, so that

y+Ay=¢(z+Ax),
therefore Ay=¢ (z+ Az) — ¢ (2).
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The new value of the ordinate is represented in the figure
by NQ, and NR represents Ay. The fraction g—z represents

the ratio of the increase of the function to the increase of
the variable, and is equal to the trigonometrical tangent
of the angle NMR formed by the secant /N with the axis

of a.

37. It is evident that this fraction is a natural measure of
the degree of rapidity with which the function y increases
when the independent variable x increases; for the greater
this fraction is, the greater will be the increase of the func-
tion y corresponding to the given increase Az of the variable.

But it is important to observe that the value of %—‘Z will

depend not only on the value given to z, but also on the:
magnitude of the increment Az, except in the case in which
the curve becomes a straight line. -

If then we left this increment arbitrary, it would be im-

possible to assign to the fraction %‘% any definite value, and
it is thus necessary to adopt some convention which will

remove this uncertainty.

38. Suppose that after giving to Az a certain value, to
which will correspond a certain value for Ay and a certain
direction for the secant MN, we make the value of Az
gradually diminish and become ultimately zero. The value
of Ay will also gradually diminish and become ultimately
zero. The point N will move along the curve towards M, and
we shall find n every example we consider, that the straight line
MN will approach towards some limiting position MT. This
1. in fact equivalent to the assertion made in Art. 24, that
by examining every case in detail we could shew that every
function has a differential coefficient. The limiting position
which the secant assumes when N coincides with M is called
the tangent to the curve at the point M, and thus %’ is the
trigonometrical tangent of the inclination to the axis of
of the tangent line to the curve. '



24 EXAMPLE OF A DIFFERENTIAL COEFFICIENT.

39. The limit of the fraction -AA_g, when A is diminished

indefinitely, may be considered as affording a precise measure
of the rapidity with which the function increases when the
independent variable increases, for there remains no longer

anything arbitrary‘in the expression. The limit Z—Z does not

depend on the value assigned to Az nor upon the form of
the curve at any finite distance from the point whose co-or-
dinates are #'and y; it depends only on the direction of the
curve at this point, that is to say, on the inclination of the
tangent line to the axis of .

40. As an example of the preceding, we will determine
the differential coefficient of 4/(a*—2*), and point out its
geometrical application. ‘

Let y= V(a —1"),
then  y+Ay=v{a'—(z+4)";
therefore Ay =y{a’— (:c +B)) - V(@ =2,

—(z4+h)

A\/{a —(x+h)}+«/(a. -z’
— (2zh + 1%

Ve T+ V@ =)

Ay _ 2z +h )
Az~ Via'— (z+ BT +V(@ ="
The limit of this when 4 is made indefinitely small is

therefore

- .
V@ —a)’
dy__ __ = _
therefore &= IE =

It will be seen that we have in the above example used an
algebraical artifice, namely, that of multiplying both numera-
tor and denominator of a fraction by v{a -—(a:+h) 1+ 4 (@*—°),

in order to obtain % in a form the limit of which can be
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easily seen. In treating any example without the aid of
general rules, we should frequently find our success depen-
dent upon our readiness in effecting such transformations; but
the next two Chapters will explain methods of making the
problem of ascertaining any differential coefficient depend
upon the knowledge of those of a few standard functions.

‘41, From analytical geometry we know that the equation
y = #/(a" — ") represents a circle, and it is also known from
the principles of that subject that the tangent at the point
(x, y) of a circle is inclined to the axis of x at an angle
whose trigonometrical tangent is _ma:_a:‘) . Also in the
case of a circle the straight line which we have defined as the .
tangent is the same straight line as that which fulfils the con-
dition of “touching the circle,” given in Fuclid, Book 111

42. In the Chapters on the geometrical application of the
Differential Calculus we shall recur to the subject of tangents.
We have given the above example here that the student may
at this early period acquire the conviction that important uses
may be made of a differential coefficient.

43. The following is another geometrical application. The
area OAMP, see the diagram to Art. 35, must be some func-
tion of z, since it is a definite quantity when we assign a
definite value to @, and varies when x varies. Denote this
function by %, and PQ by Az; then

u+4 Au=area 04ANQ,
therefore Au = area MNQP;
therefore Awu lies between MP. PQ and NQ.PQ,
that is, between yAz and (y+Ay) Ax;

therefore g lies between y and y + Ay.

Hence, diminishing Az, and therefore Ay, without limit, we
have 2
w

&= Y
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CHAPTER IIIL

DIFFERENTIAL COEFFICIENTS OF SIMPLE FUNCTIONS.
_ 44 Differential coefficient of =* where n is a positive
wnteger.
Let y =2", therefore
y+Ay=(z+k)",
therefore Ay=(@@+h)"—2"

=na:""k+n(?—;l)x""h'+_.. +i;

therefore _A__y = ng™" + (n 1) 2 Ch4 ..+ A

Ax 1.2
Diminish 4 without limit, and we have
dy _
=

45. The same result may also be obtained by means of.
Art. 30. For let

U=YYgYu

where the n quantities y,, ¥,, ... ¥,, are all functions of z;
we have then

1du 1dy+1dy,+ +1dy,,

ude” g, dz” g, do Ya dz
If now y,=a, we have
Ay, = Az,

t.hereforé é—y-‘ =1,

therefore

BEk
I
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Put then y,, ¥, ... 7., all equal to «; thus u becomes z",
and we obtain

l1du_mn
udz 2z’
therefore %: nx™.

46. If n be not a positive integer, we may by assuming
the truth of the Binomial Theorem for fractional exponents

proceed as in Art. 44 to determine ((—l]% . But in that case we

shall require to assume that “if we have a series containing
an infinite number of terms and each term becomes ulti-
- ‘ma.tely indefinitely small, the sum of the terms becomes sa
too.” To avoid this assumption we adopt another mode.

47. Differential coefficient of a* the exponent n being un-
restricted. . -
S 19
Let y=2a" therefore e n"" "’“ﬁ s Uake Sl B
y+ Ay=(z+ k)", '
Ay (@+h)"-2"

therefore As= A
z + k\*
) -
=gt

h .
Now whatever be the value of n, positive or negative, whole

or fractional, it may be supposed p g, where P, ¢, 7, are

positive integers.
Let z+h =2,
@
therefore . h=x(z-1),
Ay 22" =1
and Ap= =" ——.

As h diminishes 1ndeﬁn1tely z approaches the limit 1, and we

have to find in that case the limit of 11




28 DIFFERENTIAL COEFFICIENT OF A POWER.

Suppose v—z , then

e
=1 27 -1 ¥i=1_ -

7-1 0 z2=1 v —1 v @—1)
¥—1-—(v1—1)
ACE

YT L1 (v"‘+v"’+ +1)
(W + v+ 1)
This last result is obtained by dividing both numerator and

denominator of the preceding fraction by v—1. Let now »
approach the limit 1, then the limit of the last fraction is

P—q
r

é_y=1_)_____qw""=m 1
dx r

therefore

48. Differential coefficient of «*.  Second method.
Let y=2", therefore
y+Aay=(z+h),

Ay _(z+h)"—2a"
Az~ h

z oY
= E{(l"':?) —1}.
- Assume 2 =z and (1+ 2)"~—1=1, then 2z and v are quantities

which diminish indefinitely with . Thus

Ay _ v
A—m—w"‘ P

" From the above assumptions
(1+2)*=1+v,
therefore log,(1 + v) =n log,(1 + 2).

therefore
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From Art. 19 the expressions

log,(1+ 2) and log, (14 v)
z v

both tend to the limit unity. Hence we may assume

log,(l + ) — 14y

log,(l+z)=1+8
2z )

where each of the quantities ¢ and & has zero for its limit.
Hence

v_1+3 log,(1+9v)
2= Ty Tog,(1+2)
1439

=n from above;

—
+
2

therefore the limit of Yis n, and
ay _
d—'x = nz™
49. Differential coefficient of a”.
Let y=a", therefore
: y+Ay=a""=a%"
Ay Ld -1

therefore 22=-% %

Now, by Art. 20, the limit of ——— ?-

h » When h is indefinitely

diminished is log,a; therefore

.

Y _ e
el log,a.
Next let y =a*; then
=(a)";
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hence by the rule just proved -

———-(a')’log,a
=a*clog,a.
Hence if y =¢~,
DY _ oo
d—é—ce",
o dy_
dn=

50. Differential coefficient of log, .
Let y =log,x, therefore
y+Ay =log, (x+ &),

therefore Ay =log, ( + &) —log, 2
F + h
= log,
log, 2% x + k
Ay —*=*
therefore A= _'h_ .

Assume % = a2, therefore
Ay_1 log, (1 + z)
Az = 2

By Art. 19 the limit of 1—"&-£+—"') wheu # diminishes

indefinitely is log, e, therefore
dy _1 log, e
dz o ™°°

=1
==

Hence if y=1log,z




SINE. COSINE. TANGENT. 31
51. Differential coefficient of sin .
Let y =sina, therefore
y+Ay=sin (z+ &),

therefore Ay=sin (z + ) —sinz
= 2 cos (w + g) sin g, by Trigonometry,
Ay K sin 2
therefore A= 008 (a: + 5) T .
2
sin k
Now when % is indefinitely diminished, the Limit of "7;'%
is unity by Art. 9, therefore 2
dy
a; = Co8 &.

52. Differential coefficient of cos .
Let y = cos z, therefore
y+ Ay =cos (z+ k),

therefore Ay = cos (x + k) — cosw
. R\ . &
-——2sm(a:+§)sm§,
_ sin h
Ay . h) 2
therefore Ap= (a; + 3 T,
2
therefore : Z‘% = —sinz.

53. Differential coefficient of tan a.
Let y =tana, therefore
y + Ay =tan (z + &),
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therefore Ay =tan (x + k) — tan

_sin(x+4%) sinz
“cos(z+h) cosz

_sn(@+h-2) _ sin k
cos(@+h)cosz cos (x+ k) cosz’
Ay sink 1
therefore Az~ "k cos @+ k) cos @ ’
therefore dy_ _L_
de  cos'z’

54. Differential coefficient of cot .
By proceeding as in the last Example, we find that 1f

y = cot x,
dy__ 1
dz~  sin’z’

53. Differential coefficrent of sec a.
Let y=sec, therefore
y+Ay=sec(z+h),
therefore =~ Ay =sec (z+4)—secs

_ 1 _ 1 _cosz—cos(z+h)
“cos(z+h) cosz cosxcos (w+k)

2 sin (x+g’) sin-g.

= TCos zcos (x+h)

. k . A
él/_ sm(w-}-§) smé
Dz cos @ cos (x + h) h

2

therefore

)

dy sinz
tberefgre de = cosm"
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56. Differential coefficient of cosec z.

\{i,et y =cosecz ; proceed as in the last example, and we
fin
dy  cosx

dez  sin's’
~ 57. Since tanz, cotz, secz, and cosec x are all fractional
forms, we may deduce the differential coefficient of each of

these functions by Art. 31 from those of sin & and cos .
Thus, let

sin 2
y=tanm= e’
coszdsina; sinzdcosw
dy de T dw
therefore = — , Art. 31,
cos’z +gin* 2
_W’ Arts, 51 and 52,
.
" cos’z’

Similarly we may proceed with cot z, secz, and cosec .

Since versx=1—cosz, the differential coefficient of versz
by Arts, 27 and 33

= — differential coefficient of coso:

= gin &.

T.D.C. D
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CHAPTER 1IV.

'DIFFERENTIAL COEFFICIENTS OF THE INVERSE TRIGONOME-
TRICAL FUNCTIONS AND OF COMPLEX FUNCTIONS.,

58. LET y=¢ (x), so that y is a known function of «; it
follows from this that @ must be some function of g, although
we may not be able to express that function in any simple
form. The best mode for the reader to convince himself of
this will be to recur to algebraical geometry and suppose
and y to be the co-ordinates of a point in a curve the equation
to which is y=¢ (). For every value of & there will be
generally one or more values of y, positive or negative, as
the case may be. So for any value of y there will be
generally one or more definite values of &, which, as they
really exist, may be made the subjects of our investigations,
even although our present powers of mathematical expres-
sion may not always furnish us with simple modes of repre-
senting them.

59. A simple example will be given in the equation

Yy=2"=20+1 . cirrrrrreaennnnnen. ).
Solve this equation with respect to «, and we have
z=1¢% y* ........................ (2).

Here (2) shews that if any value be assigned to y we must
have for & one of two definite values.

Now in (1), @ being the independent variable and y the
dependent variable, we have by Arts. 28, 33, and 44,

%= 2L =D vrerereerrrerareresrns (3).
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In equation'(2) we may treat y as the independent variable
and « as the dependent variable, and we find, by Art. 47,

@ -3
=% D 1 AT 4)
From (2) z—1=+4}
1 _
therefore g b 2
” dz 1 .
Hence, from (4), &y =3 o) (5)
Comparing (5) with (3), we see that
: dy dr
Foher Tl

The theorem which holds in this simple case we shall now
prove to be universally true.

60. To prove % X Z =1,

Let _ Y= () cevvrnnniiniiiniinnn, 1,
since from this it follows that @ must be some function of y,
suppose ' LV () I 2.

Let 2 in (1) be changed into @ + Az, in consequence of which
y becomes y + Ay, then

Y+AYy=¢ @+ AZ) cecurieirnnnnnnns (8).

Now in (2) it may happen that a has more than one value
for any assigned value of y, but if the value of y in (2) be
the same as that in (1), then among the values which # can

have, one must be the value we supposed assigned to x in (1)..

Hence we may suppose z and y in (2) to have the same
values as the same symbols respectively had in (1). In.equa-
tion (2) change v into y+ Ay, where y has the same value
as in (1) and (8), and Ay the same value as in (3). Then
among the values which the dependent variable is suscepti-
ble of in (2), one must be « + Az, the symbols having the same
values as in (3),

D2
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Hence z+Az=Y Y+ Ay) cvvennnnnen. (4).
From (1) and (3)

Ay_d@+An)-¢() 5

= Ry e (5)-
From (2) and (4) :

Az 4 (y+Ay)—¥ () @

Ay Ay e .
In (5) and (6) the same symbols have the same values, and
since in that case A A—?/ =1, we have

pt+Az)-¢(@) YEH+AN-¥G)_,
Ax Ay ’

Now diminish Az and Ay without Limit, and we have
¢ (@) x¥'(y)=1;

or, as it may be written,
dy dz -1
da * dy
61. The demonstration given in the last Article may
appear laborious. In reviewing it, the student will perceive
that this arises from the necessity of proving that the =, y,
Az, and Ay, which occur in (5), have the same numerical
values as the quantities denoted by the same symbols respec-
tively in (6). This point is sometimes assumed, and 1t is
. . o Ay Az _
considered sufficient to say “since X ay= 1 always, we
have, by proceeding to the limit, ZZ g_w_ 1,” but it would
appear necessary at least that the a.ssumption should be
noticed.

62. Suppose z=¢ (z),
y=v0)

'so that y is a function of 2, and # a function of «. It follows
that if we substitute for ¢ its value in ¥ (), we make y an
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explicit function of #, and consequently y must have a dlf-
ferential coeﬂiment with respect to 2. For. exam ﬁle, if z=
and y=2° we have by substitution y =2z’ ow ths is
a function of # of which we know the dlﬁ'erentla.l coefficient,
by Art. 44. Hence 3——1: 62’. Butif z=cosxz and y=a", we
find y=a%3%, a function of  which we have not yet seen
how to differentiate. Hence the necessity and use of the rule
demonstrated in the next Article. |

63. Differential coefficient of a function of a function.
Let 2=P(F) ceerrnrenieriieniiinnns (1),

and Y= (2) cevrreiiniianeninnnne (2),

so that y is a function of ; required the differential coeffi-
cient of y with respect to .

Let « be changed into x+ Az, in consequence of which
z becomes z + Az, and suppose in consequence of this change
in 2z, that y becomes y + Ay ; thus

2+A2=¢ @+ AZ) weerrrrinrnnennn. (3),
Y+ Ay=P(z+A2) i (4).

Now suppose that by putting for z its value in (2), we obtain
Y=F(&) eevrrrirniinnnnnninnnene ),

where F(z) denotes some function of #. From the mode
in which equation (5) is obtained it follows that we may
suppose x and y to have respectively the same values in (5)
as w (1) and (2), and also that
Y+Ay=F(z+Az) .cccovvuennennen. (8),
where Az and Ay are the same quantities as kave already
occurred tn’ (3) and (4).
From these equations we deduce
Ay F(z+Az)—Flz)
A= Aw ftom

%Z ~¥ L)V fom (3) and @),

(6) and (6),

_é (w+Aa:)

> $ @) grom ) and 3),
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where the same symbols denote throughout the same quan-
tities. ‘Hence, since

Az~ Az © Az’
we have
Fl+82)—F(@) (@+82) -4 () ¢(@+Az)-¢ (@)
Az Az Ax :
Now let Az, Az, and Ay, diminish without limit, and we
obtain F@=¥@¢ (@)
or, as it may be written,
dy _dy dz
dz~ dz dz”

Hence the differential coefficient of y with respect to z is
equal to the product of the differential coefficient of y with
Tespect to z, and of the differential coefficient of z with respect
to «.

64. We may make a remark on the demonstration of the
last Article similar to that in Art. 61. It is often considered

. Ay Ay Az .
sufficient to say tha “Zkial: = AZ X An by the properties of
. . . .. dy dydz,

fractions, and therefore, by taking the limit, d_;/: = ZZ (TZ .

65. Differential coefficient of sin”'x.
- Let y =sin™ @, therefore

siny=uxz,
therefore d=_ cosy, Art, 51
. d y ) . ¢
therefore ay =—1—-, Art. 60.
dr  cosy
Since sin y==, cosy=+4/(1 —2%); the proper sign to be
taken will of course gepend on the value of y; we may there-
fore put
dy___ 1
do N(1-2)’

remembering that the radical must have a negative sign if
cos y be negative.
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66. Differential coefficient of cos™ .
Let y =cos™x, therefore

cosy =u,
therefore F siny, Art. 52,
therefore %y_= - ——1—- , Art. 60,
T  siny
-1 _
_ Vi —=)
See the preceding Article.

67. Differential coefficient of tan™ =z and cot™a.
Let y=tan™x, therefore

x=tan y,
therefore —gﬁ = —1—,— , Art.53,
ly ~ cos'y
therefore Z—Z =cos’y, Art. 60,
-1
T 1+tan'y
=1
T 1+dt
Similarly, if y=cot™z,
dy___1
dz~ 1+

68. " Differential coefficient of sec™x and cosec™z.
Let y=sec™, therefore

r=sgecy,
therefore g‘f = 51—.3,1, Art. 55,
Yy cos’y :
2
therefore —gl =35 , Art. 60.
xz  siny
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But sec,y = , therefore cos y = ‘%, and sin y = v ("’;—' 1) ,
- see Art. 65, thus :

dy _ 1

de i (@*=1)"
Similarly, if y = cosec™'z,

dy___ 1

dz = x/(d*—1)"

69. In the manner given in the preceding Articles the
differential coefficients of the inverse trigonometrical functions
are usually determined. They may however be found without
using Art. 60.

For example, suppose

. y=tan™z,
therefore  y+Ay=tan™(z+ k),
therefore Ay =tan™ (x+ &) —tanz

k .
=tan™ To@Th’ by Trigonometry, .

h
i
ey oy 31
a )
- 1 tan 14z (x4 k)
1+a'+ah’ h '
l+z(x+4).

Now let % diminish without limit, then
o )3

1+ @+ h)

Ay 1
therefore =%

the limit of

=1, Art. 21,

therefore oy 1 .
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70. Again, suppose y = sin~'z,
therefore y -+ Ay=sin™ (x +4),
therefore Ay =sin™ (z + k) — sin™'=
—sin{(@ -+ B) ¥ (1= o) — 2 /{1 - 2+ B},
' by Trigonometry,

therefore —Z = sin” [(z 4+ %) V(1 = x;) —x{1—(@+k)}]

put (z+h)y(1 —a) —z /{1 = (z+h)?} =2 for abbreviation,

A sin'z sin7'z 2z
then Ay _sin's_sin”z z

Now 2o @+HY0=d)—ovii= (o4 ]

b

__(@+h)(1-2)—2'{1-(z+R)7}

T h[@+h) V(-2 + 2N (1- (@ +A)Y]
_ 2@ +h .
TEEIVI=) + el =G AT

thus the limit of%,whenh=0,is —5° «/(1 5

sin” zxs 1, Art. 21; therefore

and the hm1t of
dy 1
=va-a)°

71. Differential coefficient of vers™z.
Let y=vers™x, therefore

‘ vers y =z,
therefore l1—-cosy=u,
therefore do_ sin
dy ¥
dy 1 1 1
therefore G =Sy ~ Vi —oow'y) ~ VI= (1=}

1
V=)’
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72. Differential coefficient of 2".
Let y = 2", where v and 2 are both functions of 2. .
Ta.ke the loga.nthms of both members of the equatlon
hence
log,y = v log,z.
Now since these two functions of # are always equal, their
differential coefficients with respect to 2 must be so.

dlog.y _dlog,y dy
And & = 4y s Art. 63,
' _ldy
—-g p Art. 50.
Also the differential coefficient of v log,z
_dv dlog,z
—d—:ilog,z+v prat Art. 29,

dv vdz
—Z—”log.z+;% Art. 63
ldy dv v dz
!7 dz ‘d.’B log,z +- dﬂ,
dy (dv v dz)

therefore

and (—l—-—z dwlog,z+ T

78. If we compare Arts. 29...31 with Art. 72 we may
deduce a general rule for the differential coefficient of a
composite function. Differentiate in order each component
function, treating all the others as if they were constant;
then add the results thus obtained.

It is advisable to call the attention of the student explicitly
to three different cases which beginners are apt to confound.

1) If y=2° where z is a function of # and a 73 a constant,
then by Arts 47 and 63
dy — a1 dz
—d—x- = az 'd—x B
(2) Ify=a'where z is a function of z and a ts a constant,
then by Arts. 49 and 63
25 loga g
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3 If ‘y = 2" where both 2 and v are functions of a, then
by Art. 72 . P ; i
v v
z%=z'(zw—log,z +; 85).

. T4 Differential coefficient of «". Third method. For
the other methods see Arts. 47 and 48.

The differential coefficient of z* is sometimes found thus:

First prove as in Art. 44 or 45 that if » be a positive
integer, the differential coefficient of z* is nz™".

If then n be fractional and positive, suppose it =§ where
p and g are positive integers.

Let y=a"=a,
therefore Y =ar,
Hence taking the differential coefficients of both sides

d
o =

dy px™ p !
therefore ;E=g—yq—.;=§.~%
=£w:ﬁ1=nx"".
q

The rule is thus established so long as n is positive.
If n be negative suppose it =—m, so that m is positive,
Let y =a™, therefore
1o
y
therefore 1=yax™
Differentiate both sides, and we have

0=2" %+ yma™?, Arts. 29 and 83,

therefore ay _ _ "%’./ = — ™

= nx",
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Hence the rule for differentiating «* is universally esta-
blished.
75. We shall now give some examples of the preceding
rules for finding differential coefficients.
(1) Let y=sinaz.
Put ax =z; therefore y =sinz,
dy _dy ds

and . Iz dz do’ Art. 63.

' dy _
But 7y =c08z, Art. 51,
and K Z—: =a, Art. 33,
therefore dy =@ COSZ =@ COS ax.
. dx

(2) Let y =sin (log ).
By log = without any base specified, we mean log,.

therefore y=sinz,
. Gy _dyds
and d_w_dz dw) A.l't. 63.
But ' gg =cos z, Art. 51,
z
dz 1
'd—w" = ;; ) Art. 50,
therefore dy _cosz _ cos (loga) .
de x x
(8) y=log (sinx).
Put sinz =4z,
therefore y=logsz,
dy _dy dz
and = T Art. 63,

1 cos
=;cosz=i—_—=cotw.
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a+ bz
a—bx

(4) y=log

a+br_

a—bx
b(a--bx)+b(a+ bx)

' (@ —bx)*
2ab

“la—ta)*’
dy 1 2b  2db
dz z (a—bz) a'—b2"
This example may also be solved by putting

Put .

therefore ] %Z—-= , Art. 31,

therefore

y =log (a + bx) — log (a — bx),

A

dy b b _ 2ab
therefpr dz a+bx a—bzx @ —-ba
(5 y=cos“4—,,3w'.
&
Put %3ﬁ=z,
therefore y=cosz,
dy_(ﬁ/ dz
and dz = dz dz
: dy 1
NOW ‘ 5——m, Art.66,
_ 1 _ —a® .
'\/ 1_(4—3x')’ ~ W ("~ 92 + 242"~ 16)
-}
. —
&=,

3("—4).
me——y

&

45
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therefore j—%=— 7 (z°-9x‘ai 217 =1 6).3(::;‘ 4) |
_ -3 (z"—4) . 3
T af{@-1) @'-4)71 2@ -1’
4-32*

In differentiating & Ve made use of the rule for

finding the differential coefficient of a fraction. By putting
the expression in the form

4.3
2 x’
that is, 4x - 827,

we obtain for the differential coefficient
— 1207+ 8z, Art. 47,

3 (ai‘— ) , a8 above.

or

It may be observed that cases of this kind frequently occur
in which we may adopt more than one method. The student
will find it very useful in rendering him familiar with the
rules, to obtain his results, if possible, by different methods.

_w{ox (z— 8a)}
(6) Y= 4/(00—4«1) *
Tt is often convenient to take the logarithms of both sides of

an equation before differentiating. Thus, from the above,
we have

logy =14 {log a + log & + log (x — 3a) — log (x — 4a)}.
Take the differential coefficient of each member of the equa-
tion, therefore
lay 11, 1 _ 1
yde 2l x—3a «—4a
' _ o —8az+12a*
2z (z — 3a) (x — 4a)’
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dy _ Wa.(z'—8az+124")
dz 2 {z(z—3a)}} (z — 4a)}

=tan?Z
(7) y=tan™_.

therefore

Put :—: =z, therefore y=tanz,

dy 1 dz
therefore ik yrw e
_ 11 a
S S
1+_’a q+w'
a
' _ _,3aa: s
(8) Let y=tan a@—5) 31;)

2__ .8
Put Sza — =z; therefore y=tan™z,

\

Saa’ "”’), Art. 31

a (o' — 32")
. dy_dydz_ 1 dz
and &l s~ T+ P da
dz _8(a"—2") (a"— 32") + 6z (
Now dz— . a(a’—32")?
_8(a"+2a%" + ")

T a(@-3)
And by reduction we find that
1 _ a*(a’— 32"’
T @

, dy  3a
Therefore il g B

In fact we bave from Trigonometry

- Sa’z—2°

_137
a(@—3F) S g

3a
dz

dy
and therefore the value of -2 ought to be TS

47
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It is obvious that other self-verifying examples may be
constructed on the model of this example.

e cosx
=tan [ € CO8%
(%) y=tao” (1 +e‘sinw) :
e cosz
Put Tresma
thus y=tan'z,
dy 1 dz
therefore 'd—w = m{ EE .
Now dz _ (¢"cosz—¢"sinz) (1+€”sinz)—e” cosz (¢° cosz+¢”sin z)
dz (1+¢sina)?
_€*(cosz—sinz—¢)
(1+¢sinz)*
1 (1+¢"sing)’
and 1427 1+42¢sinz+é*’
: dy _ ¢ (cos z—sinz—¢”)
therefore de 1+2¢sinz+e*

(10) y=sinztan™za”log.

dy 4. s sin za®log =
d—;—cosztan za logw+——m—
3 -1
+sin:ctan"wa’logalogz+§£ai-rﬂ-’ Art. 30,

76. The differential coefficients of the simple functions are
here collected for the sake of reference.

= L ——
y—%". d—;—ﬂx" .
dy 1
y=log.z. dz zlog,a’
y=a" gg=a'log.a.
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&
-1
=Co0sec —.
y a

@
— -1
=vers™ =,
Y a

T.D.C. -

B _Lows?,
%:—ésin-z.
Ay _1 oar®
de a’
Y __1osec®
dr= a
sin =
dy_1_ a
dz a Lz’
cos'~
: a
dy 1 08~
dz~ a4,z
sin® =
dy 1
de (@ =)
dy _ 1
dz  J{a"— o)
dy __a
dz o+
dy__ _a
dx &+
dy _ a
de zf(c"—a)
dy _ a
de aN/@-a)
dy 1
dz (2az = o)

49
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.

EXAMPLES.
' dy ¢

y=cyx. a—-w—m.
_a== dy__a
y=— P2
14z (_i;_y_l—?:c—ar‘
Y=ixa" == q+a)y °
y=wlogm: %=l+logz.
= log cotan dy ___ 2
y = log cotan dz= " smiz’
I y__ o
y= V(a2_af) . dZ (an_zx)i'
g=—2_. @y __ 3

(1-a?t dz (12"}
y=e (1. Y o (180,

y=(x—3) 6™+ dwe" + 2 +3.
W o—5) &+ 4 (E+1) 1,

. y=Qx-5)e*+4(x+1)e+ 1L

B s {(@-2) ¢ +a+2)
. y=(;—z:)“. . %—n(n) {1+log%}.
z" . dy _ na™

. 3/=(1+w)-- p (l+w"ﬂ




13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS. ‘51

_e€—¢"
y—ez+3—s°

y=log (¢ + e™).

y=a'(a+x)®(b—=x)"

dy _
o

dy

2”=

4 -

(€+e)*

e—e”
Frer

gfﬁ (20b — (63— 58) 2 — 9%} % (a +2)* (b — )"

y=@+a)" ¢ +)"

Y — (a+2)"™ B+ ) m (b-+0) +n (a+2).

_ 1 1
Y= @rar orar
tan’ 2

y=—73" —tan z+ .

1
Y= rv1=2)"

= (@’ + &’) tan

y=J(a+5+£,).

..lw

y =log {log (a + ba")}.

(X
y=log tan (Z + 5) :
y= 5 gin .

_Na+2)
Na+Nz’

y= J(l+w)

%__M(b+w)+n(a+w) v
= (a + w)mx (b + m)nﬂ .

dy _ v
d—;—tan‘a;.

dy _ z—4(1-2"

dz J(l—a){l+2x4(1—a")}"
%=2wta,n"§+a. v
dy 1  bx+2 v
de 2@ +bz+c)’

dy_ nba )
dz~ (a+ bz") log (a+bx") "

ay__1 v
dx  cosx

ZZ ¢ (2 (a +a) sinz +cosa). ¥
dy va (W —a) (
dz~ 2vzy(a+2)(Wa+vaz)

,dy 1 v

dz” Ji—-o)(1—-a)"
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~ 80.
. 3L
- 32.

.33

. 34,
35.
36.

. 3T

y 38.

- ¥

EXAMPLES OF DIFFERENTIAL COEFFICIENTS,

y= ~/ {(1+:c’)'} dy (1;2&,?)?(1——7%

__x dy_e"(l—m)—l
—e'-—l J—x_ (ez_'l)g"-
L= +ax+2
. y=¢€ &= Iy
dy ¢
i~ - )‘{(w —8) ™ 4 dwe* + 2+ 3).

i+ +y(-2)  dy .

y=l°g~/(1+w)—«/(1—w)' do™ " FVI=2)"

y= {w+«/(l—m')}". n{w+4(1 xﬁ)}w—l 4/(1 a") :w

V(-2
=2 1 dy_ _ ny
y—{1+V(1—z’)}' Rty =t
== { z }"'
Y= J0—=) T+va==2))
'JZL{' z }"1+nv(1-x’)
dz \1+¥/(1-2)) (-2t
1
P _‘\./(G'-;"; dy— zy
y=a > d—zf(az_w,)glogsa.
y=tana;‘. | il{__._secallogaai
dx x* ¢

y=log{v(14c") + ¥/ (1—2")}. dr = ;1.; {1 TV 1—.;5‘)} )
y=(2at +a) y(ad+od).

7r N
y—:c+logcos(z--z)f 7=




39.
40.
41.
42,
§3.

44,

46.

47.

48.
49.
50.

51.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS.

_ N+ +Ja-a)  dy_ z{H 1

JAi+)—=J(1-2) dz &

V(1=4a)

53

o

. o dy sin™ v’
. 1 Y _ 1
y=zsm . dfn_ w+~/(1 ="
- 4 dy- o 4, tanz
y=tanztan™ . dx-—seca:ta.n z+1+w"
y = sin na (sin )" % =n (sin £)""sin (n+1) 2. i’
_ (sin nax)™ dy _ mn (sin nz)™™ cos (mx —~ mv) v
(cos ma)™” dx. (cos mx)™*
y = ¢¥*" cos . %=—e‘“"'(2a’:ccosm+rsinm). v
_x—sin"'x
T (sinx)®
dy sin @ {1 —A_/(_ll-w—"j} -8(x— sin”éc) cos
%9 _ vi — 2
dx (sinz)*
x
y=log a+bta.n2 ) dy _ ab v
a—btanZ = a* cos? = — b* sin’ =
2 2 p
y=2a" d—i=af(l+logac). ¥
1
—a® dy _ " (1-log2) Y
y=a- =~ @
ey Y _ s (S0 log & } v
- dy _
y—e"- d—w—e"e’.

- dy _
y=é". %_e"w'(l+logw).
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56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS.

y=a" g—i= z"{i+logw+(loga:)’},
I . %=xae’1+a;clogm.
= EeTrerre

ymir 2l Wi

) dy _—{secJ(1—2)}
y=tapJ(1—w)- do~ 2 i-=)
dy 1

= dy n
y=tan”(ntana). dx  cos’z +nisin‘x’
= sec? @ ¢_’l;y_= 1
y=re J@=a) dz J@=a)
—ratant, /T e Pt /2.
z—a\t . dy _ 202"
y=tan Zrlog (22 re) do= T —at"
y =sin™,/(sin ). dy_ §./(1+ coseca).
— tan 2T ‘ dy_ 2
y=tntiTa: dz 1+a*°
— gip1 %% dy a (b—ca’) 1
y=sm btcxr” dx ,,/{b’-i—(?bc az)w_‘_c 4} bt o
T d: wsin™
y=+N(1—2")sin"'z—z. l—_ﬁ)
z sin™@ dy sinaz
log /(1 — dy _ .
Ji—=z Hlogv (1 —2). F i rye
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67. y=tan™{z+4/(1-2")}. %=24(1—:{:’(')1{_12:/?1—‘”’)} -

6s. y=sin"7‘$a+:,). %':‘Z’tf;’a'«/(a’—;’sec*a)' ‘
69. y=sin® x/ (%3 %ﬁ' (b’f;/’()b:/—(—afz ol v
70. y=tan'.’\/(%—::.%;). - %=%. ‘
nogealitoe gooden
moe RN SR
7. y=cbs“%. Z—%=—;?i—; |
74. y=sec"2w,—l_i. %=—.\/(l-—af‘) v
75. y=tan"—————*/(_l+:')—l. %=2(liw. v
76. y=log%+2tm*§% Z—Z—f_:_/i‘ v
77. Hu=}logygl+ﬁli—:/l—3tan“2:y—v-;—l,

where ' y=w,

du 1

shew that = m o



56 EXAMPLES OF DIFFERENTIAL COEFFICIENTS,

.n+l1 .
s1n 2 wsm—2—
78. Given sinz-}sin2z+...+sinnr=

sing |
deduce, by taking the differential coefficients of both sides,
the sum of

cosx+2 cos2z+ ... +n cos na.

+ n——+1E!in:ftiiingln"'l:z:—l(sin—ﬂ-'-la:)2
Result. 2 2 2 2 2

. 4 & :
sin’ =

2

| 79. Having given (see Plane Trigonometry, Chap. XX1IL.)
ey 1.

)i
v

‘ e sina:sin(£+w) sin(2—7r+a:)... sin(@—_——lvr+w)=smmx
v m m n

_277{—_1—";

where m is a positive integer, shew that

cot z + cot (—75 +a:)+ +cot;(m—1
m m

7r+a:)=mootmac.

80. From the preceding result deduce that

cosec* z + cosec* (% + w) + ... + cosec? (ﬁ;—l T+ z\)

= m® cosec’ mz.
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CHAPTER V.

SUCCESSIVE DIFFERENTIATION.

77. 1IN the preceding Chapters we have shewn how from
any given function of a variable another function may be
deduced, called the differential coefficient of the first. This
second function, by the same rules, has ifs differential co-
efficient, which is called the second dzﬁerentml coefficient of the

original function.
Thus, if y=2", we have %=nx"“. The differential co-

efficient of nz™? with respect to « is n (n —1) 2™, which is
therefore the second differential coefficient of y or 2" with
respect to @ The second differential coefficient of y with

respect to & is denoted by %{g, whic.:h is to be considered as
di@
an abbreviation for rra

2
What we said ofd—y in Art. 26, we now say of %,

that it is to be looked upon as a whole symbol, not admitting
of decompoasition into a numerator d*y and a denominator da’.

As % will be generally a function of @ it will have dts

differential coefficient with respect to #. This is called the
third differential coefficient of y with respect to «, and is

a2 a’y
denoted by i—g , as an abbreviation for —;wﬁ

This process and notation may be carried on to any extent.
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The successive differential coefficients of a function are
often conveniently denoted by accents on the function.
Thus, if ¢ (z) be any function of 2, then ¢’ (z), ¢”(z), ¢” (),

¢ (X)) venee denote the first, second, third, fourth,

differential coefficients of ¢(x) with respect to .

......

78. In some cases the n** differential coefficient of a
function admits of a simple algebraical expression. For

example, suppose

y=sinx;
therefore z—':= cos z =sin (:c + g) .
&y d sin (w+—) or
d-?— 7o =cos(a3+ )

80 i
and generally % =sin (a; + "—'”) .
So also, if y =sinaz,

_y'="' H
) asm(aa:+ 2).

In like manner, if

y=cCosz,

d“y nm .

d?w-‘”“(“?)'
and if = CO8 a2, ﬂy:a"cos(aw+—wf)
y » dat 2/
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79. Suppose y=d;

therefore % = a” log a,
5 ey

and g_%/ = a” (log )"

Similarly, if  y=es, T —gres

If y=logx,

%’% =27,

and %{ = .Lﬂ—=laf:_l)_’:l s

where | n —1 stands for 1.2.3 ... (n —1).

80. Differential.coefficient of the product of two functions.

Suppose u=1yz,
where y and 2 ate functions of #; we have
du__ dz qy
& st dn®

Differentiating both sides of the equation with respect to
x, we have .
dw_ d’%  dyd:z  dyds  d%
@Vt d @®
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Similarly
d’u _ dz dydz _dydz _dydz d'ydz d'y
TGt e B e It g T a”
d'z dydz  ,dyds d'
Y@ B it &t
So far, then, as we have proceeded, the numerical coeffi-

cients follow the same law as those of the Binomial Theorem.

We may prove by the method of Induction that such will
always be the case. - For assume

du_ d'z dy &z nn—1)dyd "z
@V "™ I et
_"_ n(m—1)...n—r+1) dyd" 7z
Iz da’ da™"
n(n—1)...(n—r)d™*y & +. +d"y (1)
[r+1 da™ dz™ da*® )
Differentiate both sides with respect to : then
e ds cly dz dyd=z d’y d* "'z
PR PR FY EA FY E A F o E
nn—1)... n—r+1) (dyd ™2 + dry d™z }
[ da’ da™ " da'™ da™
nn—=1)...(n—7) (dy &7z + d™y d""”z}

+ | r+ 1 dzrﬂ dwn—r dzrﬂ dxn—r—l
d"y dz d“"‘ @)
+ T dm,,ﬂ ......... .
Rearranging the terms, we have

& d™ dy &
=y ) EZ

+

(n+1)n... (n+l—r) d'y &7z

+ lL"'_l dwrﬂ. dﬁ"-'
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Now the series (8) follows the same law as (1). Hence
if for any value of = the formula in (1) is true, it is true
also for the next greater value of n. But we have proved
that it holds when n=3; therefore it holds when n=4,
therefore when n=5, and so on ; that is, it is universally true.

This theorem is called after the name of its discoverer,
Leibnitz. .

81. If uw=e"cosbz; we have by Arts. 78 and 80,

du_ " - 'rr) n(n—1) . 5. 2

—..—e“{a' cos br+nda cos(bw+—2- +-———1. g @ {/ cos(ba:+—2 )
' . nar\)

+ ...... +b OOS(Z’£+ ?)J’.

We may also find another form for this n»® differential
coefficient as follows: .

%:e"(acosbw—b sin bz) ;

assume a =17 cos ¢,

. b=rsin ¢,
so that r=(a®+5},
thus Z—: =re** cos (br+ ¢),

where 7 and ¢ are constant quantities.
. d'u .
Similarly =T {a cos (bx+ ¢) — b sin (bo + ¢)}
_ = 7"¢* cos (bx + 2¢),
and generally
: d"e* cos b
dwn
82. The following is an important example of Art. 80.
Let u=¢e"y;

= r"¢** cos (bx + ngb).

then, remembering that %—g= a"e**, we have
oy, nn=1) &y dy
na et 1 8 gt +£_—,,}....(l).

u "
d7=e‘“{ay+
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If now the expression

(a + ‘%)”y

be expanded by the Binomial Theorem, and the symbols

@ @&)» (@)s-
replaced by

dy dy & .
d%' d_:g’ 3‘—0;',/,.._.respect1vely,

the result will be the same as the series in parentheses in (1).

Hence, we may write

%:e“(a+(—%})”y....,,, ............... (2),

as a convenient abbreviated method of stating the equation (1).

83. The following theorem is sometimes of use in the
higher branches of mathematics. |

If n be any positive integer
q:‘_u_d_'m;_nd""( ) nn—1) & ud’z,)
Yder” o T "de\"dw) T 1.2 dﬂ”( da
o d
-mww&pnﬁﬁwwmm

This theorem may he readily established by Induction. !
For it is obviously true when n=1, and if we assume it to
be true for a specific value of = we can shew that it will be |
true when % is changed into n+1. Assume that (1) is true
and differentiate both sides; thus |

d*u dgid"_u_d""uv_n___ ) nn—1) d&** u(_I’i)
Yt dr s da da!‘(“ﬁw 1.2 dz""( a2

oo +ew%@%) .......... @)
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Also since the theorem is supposed to hold for the value n
dv

we have from (1), by changing » into o

D e ey
—.............+(—l)“ug;f, ......... (3).

Now suppose the right-hand members of (2) and (3) written
so that the first term of (3) is immediately under the second
term of (2), the second term of (3) under the third term of (2),
and so on. Then by subtracting we have

' d™uw d" [ dv\ K (n+Dnd? s dv
VT T ‘(““)@(“d;) + 1 sz-x(“d?)
dz™°
This shews that if the theorem is true for a specific value

of n it is also true when 7 is changed into n+ 1. Therefore
since it is true when n=1 it is universally true.

= rirneneee + (= 1)

EXAMPLES.

&
dy _ cosz _ (1 + sex)
1. Ify=ta.nx+seco:, ;i_a?—(l—-'__a?' = &ZV;SK -~

s 38sinz—sin 3w

2. Let y=sin’e=—""77—,

then %’?,=zsin(w+%r)—¥sin (3w+7}2:'-r). '
3. Ify=a'logx, g—;%= L—E v
4. Ify=2a’loga, c_l‘_3{ = % . v

5. Ify=(2"+a") ta.n"g, %=(a,ia;,),. .
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4,
6. If y=e"cosz, g;y,+4y=0.

e &y 3
7. Ify—\/(;:a), %g—m.

8 IFy=letv@-1F -1 %Y+ _ny=o.

dw
=a dy _ln—t
9. Ify=2a""loguz, Y=,
~1-® dry 2(=1)n
R T U = (e
1. Ifu,=( "+ (cii:‘.=n=u.—4n(n—1)u,.g.
dy _24z—-1
B = 2V* __:Z:
1% Hy=et d~ 2zix &ve,
= dy 24
13. Ify’—l_w, E_x,‘_(l_z)‘
14. Ify’:Sch‘)xj . y+%=3y'.
15. If y* (1+2°)=(1—2+2")?, dy _]Lx"':f
(1 +a%

6. Ty=325, Z=Tg

17. If y=2a"sina,

Zx" |n {smw+1wsm(w+ )+n(nL

ax+d dY (—)L{b+ac b—ac}

l)a:'sin(a:+2%r)

n(n—1)(n—2) 2

+T sin (:c+ )+} .

18. If Y =tan*®
a a

then %=' ad =cos’g,

(a:—c)'“ - ($+C nt1| -
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dy_ 2 y. ydy
hence T =g 08y sm o
Ll 2ydy
a

8,
Shew that d_y g (3_1/

2 1]
. -1
and generally that % = lﬁ“_l oS {"a +(n—1) %} cos"{-.
Now ta.n"——— —tan” g g— 0 suppose ;
thus cos {%y +(n—1) %} =sin (%‘7! + l’%) =sin (n7r — nf)
=(—-1)""sinnd; and cos os"d = ____a" =3
@+
therefore Z_.z;; =g (—1)*" ———M=—-—" sin nf.
(@ +2°)*
19. Since
2% #4141 (£
d ta: a_ a & )_ld" tan (a)
dz _a2+w:n dac"(a,“+w” -a dxu+l .

Hence, shew that

ﬂ( 1 \_(—l)’[_'r_zsin(n+l)9
dz* a,"+;z’/— a(a’-{-w’,l:! ’

where tan0=2.
€

T.D.C.

H]
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The n* differential coefficient of pe with respect to =

is sometimes obtained thus:

1 1 1 1 )
@+ 2a4(—1) {m—w(—l)‘ﬂav(- 1)}’
therefore

L"L( 1 )_=(—1)"L[ 1 1
dz" \a'+ &’ 2a~/(—_1) .{x—aV(—l)}"" {a;+a4/(—1)}"“]'
Now assume x=r cosfd, a=r sin 6, so that

P=a+4* and ta.n0=;1:_.

Then {z+as/(—1)}*" ="' {cosf +,./(~ 1) sin 6"
=7""{cos (n+1) 6 + 4/(— 1) sin (n+ 1) 6}
by De Moivre’s Theorem.

Hence
1 _24(—1)sin(n+1) 0
z—a ~/ ) PRIV ) T"*‘
and we.obtain the same result as before for the proposed n®
differential coefficient.

w§?=wdn(§j’> +,,dﬂgi”§”ﬁ) . Art. 80.

Hence, by means of the preceding Example, shew that

ar (a z ) (—1)"L_cos(n+1)0

n ntl
da* \a' + &' (@+a)*

‘We may also proceed in the second manner indicated for
the-preceding Example, starting with

20.

@ 1 1 1
a'+w’=§{w+a~/(—1) +a:-cu/(—1)}'
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1
21. Find the 4*® diﬂ'erentiql coefficient of e,,_l_ 1 and of e 2%,

Results
e +11e¥ +116¥ 46
(€—1)
a* (@a”)
dz'l

1
and e~ {1627"~14427°+ 8002 7* —1202"").

22.

= {&°" + 2naxc™ + 1 (n — 1) ) o,
where c=loga. Art. 80.
23. If y=sin (msin™ &), shew that
dy
1-2" a?—a;da-;—m’y.

Apply Leibnitz’s theorem, Art. 80, and deduce
dwﬂy . duy
. (1 —.’l:’) dx!ﬂt (2n+1) dwuﬂ + (n "m') dz*"
24. If y=a cos (log ) + b sin (log z), shew that

ig+wzg+y 0,

and that a,"gz:ﬂ + (2n+ 1)

F2
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CHAPTER VL
EXPANSION OF FUNCTIONS IN SERIES,

84. IN the Binomial Theorem, we are furnished with a
series proceeding according to powers of A, which is equi-
valent to the expression (z+ 4)*. Other series have also
presented themselves in Algebra and Trigonometry, such as
the expansion of ¢” in powers of « and of log (1 +) in powers
of @. Inthe previous Articles of this book, we have, however,
not assumed the knowledge of any expansions, except the Bi-
nomial Theorem in the case of a positive integral exponent; but
we are now about to investigate the expansion of f(x + h)
in powers of 2, where f(x) denotes any function of z, and it
will appear that all the isolated examples which the student
may have seen hitherto, are but cases of this general theorem.

85. Before we offer a strict demonstration of the theorem
in question, we shall notiee the method which it was usual to
adopt in treatises on the Differential Calculus not based on
the doctrine of limits. Such treatises commenced with an
unsatisfactory demonstration of the proposition that £(x+ k)
could generally be expanded in a series proceeding according
to ascending integral positive powers of 4; it remained then
to determine the coefficients of the different powers of %, and
that was accomplished in the manner given in the next two
Articles, '

86. We have first to establish the following theorem,
If f(x+ %) be any function of 2+ %, we obtain the same
result whether we differentiate it with respect to x, consider-
ing A constant, or differentiate it with respect to A, consider-
ing & constant.
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For put cth=z -
In the first case -
df @+ k) _df(s) dz
dz = dz “dr
=f"(z), since Z—:=l.

In the second case,

I

dh

fSIZ. To expand f(z+h) in a series of ascending pqwérs
0

Assume (Art. 85) that

Sf@+h)y=A,+ Ah+ AR+ AR +......... n,
where 4,, 4,, A4, ..., do not contain A.
Then
df(x+%) dA dA A4, ..dA
R sl JEN 3 7 puet SR da;+h -d—mﬁ-i- ...... @),
and LEXD) _ g 2 Ah b 38AP oo B)

By Art. 86, the series (2) and (3) must be equal. Hence,
equating the ‘coefficients of like powers of h, we have

.._dAO
4,=20,
4194, 1 &4,

..............................

And by putting 2=0 in (1), we find
4,=f ().
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. Hence, substituting the values of 4,, 4,,... in (1), we have
4 h’ 1" h’ 4
F@t B =f@+I @)+ s f” @+ es f @+ e (B,

the general term being

R0

b
This result is called Taylor’s Theorem.

88. There are numerous objections to the method of the
preceding Articles, and especially the use of an infinite series,
without ascertaining that it is convergent, is inadmissible; we
proceed then to a rigorous investigation.

89. Let y=F (), and suppose Az and Ay to represent
the simultaneous increments of # and y; then the fraction
Ry, since it has for its limit the differential coeficient F" (2),
will ulttimately when Ax 1s taken small enough have the same
stgn as this limit, and therefore will be positive if the dif-
ferential coefficient be positive, and negative if the differential
coefficient be negative. In the former case, the quantities
Ay and Az being of the same sign, the function y will increase
or diminish according as « increases or diminishes. In the
latter case, Ay and Az being of contrary sigus, y will increase
if « diminishes and will diminish if 2 increases.

The above supposes that there really is a finite limit to

which 2—1 tends ; in other words we assume that F” (z) is not

infinite. The limitation that the functions with which we are
concerned are not to become ¢nfinite is one which ought to be
understood in most theorems in mathematics, even if it is not
formally enunciated. In the present subject however it is
usual to state this limitation expressly at the more important
stages of the investigations.

It may be observed that we may sometimes obtain useful
information respecting the sign of a function by examining
the differential coefficient of the function. For example,

suppose y =(z— 1) €"+ 1, then Z—Z =gc°; a8 % is positive
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for all positive values of z, it follows by the present Article
that y is always increasing so long as x is positive; but
y =0 when &= 0; therefore y s positive for all positive values
of . '

Similarly we can shew that = —1log (1 + ) is positive for
all positive values of .

90. A function of a variable is said to be continuous be-
tween certain values of the variable when it fulfils the follow-
ing conditions: the function must have a single finite valuo
for every value of the variable, and the function must change
gradually as the variable passes from one value to the other,
so that corresponding to an indefinitely small change in the
variable there must be an indefinitely small change in the
function.

91. Suppose ¢ (z) a function which vanishes wher 2=a
and when =25, and is continuous between those values.
Suppose also that ¢’ (x) is continuous between those values.
Then ¢’ (x) will vanish for some value of & between a and b.

For ¢' (x) cannot be always positive between those values,
for then ¢ (z) would be constantly increasing as the variable
increased from the lower value to the higher (Art. 89), which
is inconsistent with the supposition that ¢ () vanishes at the
two specified values. Similarly ¢’ (x) cannot be always nega-~
tive. Hence ¢’ (z) must change from positive to negative or
from negative to positive between the assigned values; and
since it is continuous it cannot become infinite and must
therefore pass through the value zero.

If a denote some. constant quantity, such expressions. as
S’ (a), f” (@), ... may occur in our investigations, the meaning
to be attached to them being that £ (z) is to be differentiated
once, twice, ... with respect to @, and in the result = changed
into a.

We can now demonstrate Taylor's Theorem. The proof
which we give in the next Article is due to Mr Homersham
Cox ; it was published by him in the 6th volumo of the
Cambridge and Dublin Mathematical Journal, and subse-
quently 1n his Manual of the Differential Calculus. '



72 : TAYLOR'S THEOREM.

92, Su}g)ose f{a+«) and its differential coefficients up to

the (n41)® to be continuous between the values 0 and 4 of
the variable #. The expression

' , z* ., .. "R
fla+a)~f(a) - 2f"(a) 2 (@) ---—L—_,;f (a)—lm---(l),

vanishes when z=% if R=

2 n
G (et @[50 [0}
Suppose R, to have this value which we observe is inde-
pendent of . :

The expression (1) also vanishes when = 0.

Hence, by Art. 91 the differential coefficient of (1) with
respect to # must vanish for some value of # between 0 and 4 ;
suppose z, that value, then

fa+z)—f (a)—af" (@)—...—

vanishes when #=«,. But (3) also vanishes when z=0;
hence there is some value of # between 0 and #, for which
the differential coefficient of (3) vanishes.

Continuing this process to =+ 1 differentiations of (1) we
find that f**(a + z) — R is zero for some value of z between
0 and 4; let this value of «# be 6k, where 6 is some proper
fraction, therefore

xn—l

- f"(a)-_—x—wR ......... (3),

==

R=f*(a+0R).
Substitute this value of R in (2) and we have
f@+R=f @+ @)+ o @ + et @)
hﬂ+1

|n+1

We may now put # for a in this equation, sit¥ there has
been no restriction in the value of a, except that all the quan-
tities are to be finite, thus we obtain

+ JF™ (a+6h).
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F@+k)=f @+ (@) + ’é—f @)+ ot @

+& £ 4 68)..(4).

If the function f™(z .t l9},) be 'such that by making » suffi-
w1/ (@+0k) can be made as small

as we please, then by carrying on the series
4 h’ ” h‘ 773
@+ @+ [ @+ @+

to as many terms as we please, we obtain a result differing as
little as we please from f (z+ £). Under these circumstances
then we may assert the truth of Taylor's Theorem.

93. Taylor's Theorem is so called from .its discoverer
Dr Brook Taylor; it was first published in 1715. The
theorem contained in equation (4) of Art. 92 is called
Lagrange's Theorem on the limits of Taylor's Theorem. It
gives us an expression for the difference between 1{(w+h)
and the first n+1 terms of its expansion by Taylor'’s Theorem,
or as it is called “the remainder after n+ 1 terms.”

94. To the expression f*" (z - k) which occurs in Art. 92,
we must assign the following meaning. “Let f () be dif-
ferentiated n +1 times with respect to «, and in the final
result change # into 2+ 6A.” ‘We do not know anything, of
6, except that it lies between 0 and 1; it will generally be
a function of # and h, and hence, to differentiate f(z+ 6k)
with respect to «, is not the same thing as to differentiate
J () with respect to # and then to change # into &+ 6h.

95. Maclaurin's Theorem.
In the equation

ciently great the term

f(a;-i-h)=f(a:)+’!;}“"(a:)+£f"(aa)+...+%,;E
+ h* - fu+l(w +0h),

[n+1
put =0, we have then e -
FBY=FO +FF©0)+ ... +’-‘—Lw—(0—)+—,;‘_—__ﬁf"" (Oh).
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We may, if we please, change h into z, and since the
quantities £(0), f"(0), ...... f"(0), do not contain # or %, no
change is made in any of them: ‘hence

@) =fO) +af () +.. +””'f“h(°’ L,if‘"(%)-

When the last term, by taking n large enough, can be
made as small as we please, we have for () an infinite series
proceeding according to powers of 2. This series is usually
called Maclaurin's, having been published by him in 1742;
though, as it had been given a few years previously by Stir-
ling, it sometimes bears the name of the latter.

96. Assuming that any function of # can be expanded in
a series of positive integral E[ wers of @, the following method
has been given for proving Maclaurin’s Theorem.

Let fx)=4,+Ax+A2 +...... +A4a+......
where 4, A, A,...do not contain .
Differentiate successively, then
f@=4+24x+....+nd "+ ...
S@)=24,+234x+....+n(n—1) 42" +......
S @)=234,+...4n(n-1)(n—-2) 4,2 +......

Now suppose =0 in each of these equationé, we have
4,=1(0),
=f ) .
4=7-7"0)

A’ 1 2 3fl’l (0

Substitute the values of Ao, Al, and we obtain
f@=0)+af O+ @f" O+ + 57O+
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97. The demonstration given of equation (4) in Art. 92,
which equation involves Taylor’s Theorem, and may even
speaking loosely be called Taylor's Theorem, will probably
disappoint the reader. Though he may be unable to discover
any flaw in the reasoning, he will complain of the artificial
and tentative character of the whole, and he will urge the
same objection with respect to Cauchy’s method of proof
-which we shall presently give. Without denying the justice
of these objections, we may reply that the highly general
character of the theorem may be some excuse for the com-
plexity and indirect nature of the investigation. But with
respect particularly to the dissatisfaction felt in being com-
pelled to assent to a number of propositions without knowing
beforehand the general course which the demonstration might
be expected to take, we may remind the student that he must
not while engaged in-the elements of a subject expect to be
able, as it were, to rediscover the theorems for himself. Instead
of asking, “what suggested this or that step?” he must
frequently be contented with the simpler question, “is the
reasoning correct ?” To this of course-he has already, perhaps
unconsciously, been accustomed; for example, if a complicated
construction occurred in Euclid, he merely confined himself, at
least for some time, to an examination of the consistency of
the construction, and the truth of the- deductions from it,
without attempting to retrace the steps by which Euclid
arrived at his construction. .

98. On account of the importance of Taylor's Theorem
we shall add another demonstration; this demonstratlon is
due in substance to Cauchy.

Let F(z) and f(x) be two functions of z which remain
continuous, as also their differential coefficients, between the
values a and a+ % of the variable . Suppose also that be-
tween these same values the derived function f* (z) does not

f_g"-}’lg_—%;“—)) shall be equal

to the value of (w) , when in the latter « has some value

vanish. Then the fraction

included between the specified values; tha.t i, 0 denoting
some proper fraction, we shall have
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F(a+h)—F(a) _F'(a+06h)
fla+h)—fla) f'(a+6h)
F(a+h)—F(a)
Let R=—Fp—0r——~;
Sfla+h)—f(a)
then since f'(x) is continuous and does not vanish between
the values @ and a+A of , it retains the same sign; and
thus £ (x) continually increases or continually decreases: see

Art. 89. Hence f(a + k) —f(a) cannot be zero, and we may
therefore multiply by it; so that '

F(a+h)—F(@)—~R{f(a+k)~f(a)}=0.
Let ¢ (x) denote the function
Fa+h)—F@)—R{f(a+h)—f(a)}:

then ¢ () is continuous while « lies between @ and a + k;
and so also is the differential coefficient ¢'(z), that is
— F'(z)+ BRf' (x). Moreover ¢ (z) vanishes, by hypothesis,
when x=a; and ¢ (x) obviously vanishes when z=a +A.
Hence, by Art. 91, 1t follows that ¢’ (x) must vanish for some
value of = between a and a+ % ; this value may be denoted
by a + 6h, where 0 is some proper fraction. Thus

— F (a+6h) + Bf (a+6h)=0;

and, by hypothesis, f’(a + 6h) is not zero, so that we may
divide by 1t: therefore

R

__F'(a+6R)
T f(a+6h)°
Thus the required result is obtained.

99. The result of the preceding Article has been obtained

on the assumption that the functions are continuous and that -

_ f' () does not vanish between the values a and a+ & of the

* variable @. The result however is true if the functions are

continuous and either of the two F”(x) and f'(x) does not

vanish. For if F'(x) does not vanish we may prove as in
the preceding Article that

f@+h)—f@) _ f(a+0h)
Flath—F(@) F(at0h)’
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and from this it follows of course that
F(a+h)—F(a) F’'(a+6h)
flat+th)—f(@) f@+6h)’
The reader who wishes to see the application of this
result to the establishment of Taylor's Theorem, may pass
on to Art. 106 at once, and then return to the consideration

of the omitted Articles, in which we shall give another proof
of the result, and also some geometrical illustrations.

100. The enunciation of Art. 98 being supposed, we may
arrange the proof thus:

Divide % into a number of equal parts, and let a denote
one of these parts. Consider the fractions
Fla+ a)—F(a) Fla+2a)—F(a+a) F(a+3a)—F(a+ 2a)
fa+a)=f(a)’ fla+20)~f(a+a)’ fla+3a)—f(a+2a)’
Fa+h)—F(a+h—a) )
“FaE R = flathoa) T .

Form a new fraction by adding together all the nume-
rators in (1) for a new numera.tor and all the denominators
in (1) for a new denominator. We thus obtain

Fla+h-F() )
f(a_'_ h) —-f(a) ........................... .

Since the denominators which occur in (1) have by hypo-
thesis all the same sign, we know from algebra that the
fraction (2) [les in value between the greatest and least of

those tn (1). Now
Fla+a) — F(a)
Fla+a)—F(a) _ a
Sfla+a)—fla) f(0'+°l)—f(a) ’

F (a)
7@

that B diminishes without limit when a does so.
Similarly,
Fla+21)—Fla+a) F'(a+ a)
Ffatm—fa+® flata

if then we put this fraction equal to + 8, we know
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Fla+32) —Fl{a+2a) F'(a+2a)
Fa+s)—sla+z)~ f(a+2a)
Fla+h—-Fla+h—a) F’(a+h—a)
fla+h)~fla+h—a) f (@+h—s a)
where v, §, ... p, all diminish without limit when « does so.
Since the fraction in (2) always lies between the greatest
and least of the series
F'(a)+lg F'(a+a) F'(a+ 23)
F@T? Flava™ Fa+e

+8,

+3,

it must lie between the greatest and least limits towards
which these tend; that is, it must lie between the greatest and

F'(2)

least values which o) can assume between @ and a4 A

But as 7 éwg , in passing from its greatest to its least value

passes through all intermediate values, there must be some
proper fraction 6, such that

F(a+h) —F(a) _F'(a+0h)
fla+h)=fla) f(a+06h)
101. Suppose f(x) =x—a: therefore f'(z) =1.

The conditions required to be satisfied by f(x) in the
enunciation of Art. 98 are satisfied. And as f(a+ k) =4,
and f(a) =0,

we have Fla+hk)— F(a) =hF'(a+ OR).

This simple case of Art. 98 might of course be proved in
the same manner as the general proposition was established.

102. The result of Art. 101 may be applied to shew
that an expression ¢ndependent of « is the only one of which
the differential coefficient with respect to # is always zero.
For suppose F'(z) a function, such that F”(z) is always zero;
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t.hén, from the last equation in Art. 101 it follows, whatever
be the value of a and a + 4, that F(a+ k) — F(a) =0,

therefore F(a + k) =F(a).

Hence the function F (z) has always the same value whatever
be the value of the variable; that is, it is constant with
respect to @, or in other words does not depend on .

From this it follows, that two functions which have the
same differential coefficient with respect to any variable can
only differ by a constant. For the differential coefficient
of the difference of these functions being always zero, it
follows from what we have just proved that this difference
is a constant.

103. The result of ‘Art. 101 admits of the following simple
geometrical verification,

We have already shewn, Art. 43, that if » represent the
area contained between the

axes of «# and g, the ordi- e
nate y, and any curve, then =’
du_
de 7
o . A Zz

Let u=F(x), and therefore
y = F'(=) is the equation to the curve; let O =a, MN=h;

then area OAPM= F(a),
area OAQN=F(a + k),
therefore area PQNM = F (a + k) — F (a).

Now it is obvious that a point R must eXist between Pand @,
such that, drawing the ordinate EL,

the rectangle BL . MN=the area PQNM.
But RL=F" (a+ 6k),

where 6 is some proper fraction ; therefore
LF' (a+6k) = F (a+ k) — F(a).
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104. The following is another geometrical illustration of
Art. 101.

If y=F(z) be the equation to a curve, then F' () is the
trigonometrical tangent of the

angle between the axis of J
and the tangent to the curve
at the point («, ). See Art. 38, : )/
Let OM=a, MN=h, 2
ten  TerD=F@ >

is the tangent of the inclination of the chord P to the axis
of z. Hence Art. 101 amounts to asserting that at some
point R between P and @ the tangent RT to the curve 1is
parallel to PQ.

We call this an <llustration. When, however, the student
has sufficiently considered the nature of the tangent to a
curve, it may amount to a progf of the proposition in
question.

105. The following is an tllustration of the general pro-
position in Art. 98.

Let there be two curves APQ and apg. Let F (z) denote
the area contained between
the first curve, the axes of =
and 7y, and an ordinate to
the abscissa «; then y=F"(x)
is the equation to this curve.
Let f(z) denote a similar area
with respect to the second
curve; then y=f" (z) is the
equation to this curve.

Let OM=a, MN=h.
Then . F(a+ k) — F(a) =area PUNQ,

S(a+ k) — f(a) = area pMNg.
Hence the equation
F(a+%2)—F(a) _F (a+06h)

fl@a+h)—f@) = fla+6h) .
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amounts to the assertion that there must exist some pomt R
between P and @, such that

area PYNQ _ RL

areapMNg ~ rL "’

" 106. Suppose now that F(z) and f(z) and all their dif-
ferential coefficients up to the (n+ 1)*® inclusive, are con-
tinuous between the values @ and a+ A of the variable x;
moreover suppose that one of the two F”(x) and f’ (x) does
not vanish between the same values, also one of the two
F" (z) and f”(x), and so on up to F*"(z) and f*" ().
_ Then, by Art. 99,
Fla+h)~F(a) F'(a+6k)
F@rR—f@ ~fa+om’

F'(a+0k)—F'(a) F"(a+6,k)

F @6k —f (@) " f a+6p)’
F”(a+0,k)—F" (a) _F" (a+6,%)
f@+0h)~f"(@ — f"(a+6h)’
F*(a+0,k)—F"(a) _F™ (a+0h)

F @8R —f (@ o (ath)
where 6,, 0, ...... 6., 6, are all proper fractions.

Let us now suppose that F'(z), F" (z), ... F" (2), f’ (2),
S (@), ... f*(x) all vanish when z=a; then from the above

equatlons
F(a+h)—F(a) ___F“" (a + 6R)
fla+h) —f@) JF™(a+6h)"

107. -If we take f(z) = (z — a)"** we find that the requi-
site conditions are all satisfied; that is, f(z) and its diffe-
rential coefficients are cont.muous, and the differential coeffi-
cients do not vanish, between the values @ and a4 A of the
variable; also all the differential coefficients up to the n®
inclusive vanish when #=a. And

@) =|ntl, f@)=0, fla+h)=r"
Suppose then that F (z) and all its differential coefficients
are continuous between the values @ and a + A of the varia-

T.D. C. G
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ble, and that all the differential coefficients up to the n* in-
clusive vanish when x=a; we have by Art. 106,

hn-l'l

F(a+h)—F(a) =—|n+1F"" (a+ 6R).

Suppose a =0 and F'(a) =0, then

F()= % F (0R).

108. _dpplication io Taylor's Theorem.

Let ¢ (x+ %) be a function which is to be expanded in
o series of ascending positive integral powers of 4. Let

¢(w+h)—¢<w)-h¢'(w>—§¢"(w)—...-i,: # (@) = F(R).

Then F'(k) and its differential coefficients with respect to &,
up to the #* inclusive, vanish when A=0. Also

F*™ (B = ¢™ (a + &),
Hence, by the last equation of Art. 107,
@) =gy ™ O) = 7 o+ )
and therefore
b@+N = (@) +hd @) +1o ¢ @) + .o @

kw’-l
+ [nil ™ (z + OF).

Froni this Taylor's Theorem follows whenever the func-
tion is such that, by sufficiently increasing =z, the term

hl'.'l - -
g ¥+ o)

can be made as small as we please.
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109. The following proof of Taylor's Theorem deserves
notice, as it depends only on the equation which is proved
geometrically in Art. 103. Let

- -(-a¢ @ -5 ¢ @ - - Ty
be called (), then F” () =— ("'l‘—n"’) $™(@).
Now, by Art. 103, F'(x) =F(z) +—(—:v—z) Fi{z+6(z-2)
Also F(z)=0,

and Fla40(@—s)=-TCD gt g

[»
thorefore ¢ (2) — (2) — (s —2) ¢’ (o) = =2 '—sz) ¢ (@) —

(z—a:)" )
e SRty
=0_”_£z_l__.ﬂ£2—¢"“{z+0(w—z)}.
Put A for z—z, then
$@th)=$ (@ +i8 @+ 5 @+t 0

[ Sk
T

110. The result of the preceding Article gives us an
expression for the remainder after n+1 terms of the expansion
of ¢ (x+h), differing in form from that we found before. If
we assume § =1— 6,, the remainder becomes '

¢ (w+ h—6R).

1—-0)"A"
CP g ot 01, |
111. In the proofs given of Taylor's Theorem, we have
supposed all the functions that occur to be continuous. If
the function we wish to ean.nd, or any of its differential :
coefficients up to the (n+1)" inclusive, be infinite for values,

G2
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of the variable lying between certain values, the demonstration
given of the theorem

is no longer valid. It is usual to speak of the cases where an
infinite value enters as “instances of the failure of Taylor’s
Theorem.” The phrase is connected with the imperfect mode
of demonstration given in Arts. 86 and 87, in which it was
not settled beforehand when the theorem supposed to be
demonstrated was really true and when it was not. For ex-

ample, suppose
f@=N(x—a),

5o that F@+h)=v(z—a+h)

Then it would be said that f(z + %) can always be expanded
in a series of whole positive powers of k, except when z = a.

When z=a, f'(z), f"{x),... all become infinite, and
JS (@ + &) becomes /. ’

112. It was usual in that system of treating the Differen-
tial Calculus referred to in Art. 85, to express, or imply,
two propositions with respect to the “failure of Taylor’s
Theorem.”

(1) If the true expansion of f(a+4) in powers of h
contain only integral positive powers of A, then none of the
quantities £ (a), f' (a), f” (@), ... can be infinite.

(2) If the true expansion of f(a+4A) in powers of %A
involve negative or fractional Jpowers of h, then some one of
the quantities f(a), f' (), f” (@), ... is infinite, as well as
all which succeed it.

By the true expansion of f(a %) is meant the expansion
obtained by some legitimate algebraical process, applicable to
the example in question, as the Binomial Theorem for example.
The proof of the above two propositions was given thus.

Suppose f(a+h)=A4d,+A4h*+ AP+ A0+ ......
to be.the true expansion, 4, 4, ..., not containing . Then

to obtain f’ (a), f"(a), ... we may differentiate f(a+ k)
sugcessively with respect to 4, and put A =0 in the result.
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If then q, B, v,...... be all positive integers, we shall never
have negative powers of % introduced by successive differen-
tiation of f(a+4). Hence, by putting A=0, we introduce
no nfinite values.

But if any one of the exponents a, B, v, ... be negative,
JS(a+h) and all its differential coefficients contain negative
powers of %, and therefore f(a), f' (@), f” (a), ... are all infinite.

If none of the exponents be negative, but one or more of
them be positive fractions, suppose that y is the smallest of
such fractions, and that it lies between the integers -n and
n+1. Then f(a + %) and all its differential coefficients up to
the n™ inclusive are free from negative powers of h; but
J""*(a+ %) and all the subsequent differential coefficients con-
tain negative powers of .. Hence /™" (a) is the first differen-
tial coefficient that becomes infinite, and all the following
differential coefficients are infinite.

113. It will be of use hereafter to remark that if for a finite
value of the variable any function becomes infinite, so also
does the differential coefficient of the function. In proof of
this, it is sufficient to notice the different cases that may arise.
An Algebraical function can only become infinite, for a finite
value of the variable, by having the form of a fraction the
denominator of which vanishes. Now when we differentiate
a fraction we never remove the denominator, so that the
differential coefficient also has a vanishing denominator, and
therefore becomes infinite. Similarly, the second, third, ...
differential coefficients are also infinite. :

kS
The transcendental functions log2 and a®, which both
become infinite when =0, have their differential coefficients,

1
namely i and — l%f;? a%, also infinite when 2 =0.

The trigonometrical functions, such as tanz and secz,
which can become infinite, are fractional forms, and fall under
the observations already made.

The proposition is not necessarily true for functions which
become infinite for an infinite value of the variable, as may be
seen in the case of log «, which is infinite when z is infinite,

while its differential coefficient ;} vanishes.
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MISCELLANEOUS EXAMPLES.

a0+ b dy 1
L Hy=tan™pr, T TE
—ztanl [/ S
2 Ify== z’ dz z 1+

W@+ a) + (@B
3. Ify_lOgJ(w"-l-a’)—V(w!‘i'b‘)’

dy _ 2x

de N(@+a) V@ +5)

4 Ty=v1=7 o) etn e dy ze e J(1-a)—=
) V(1= a:')+a: /A=Y Wil—-a")+z}*"

_ (sinz i','"' ‘ dy y(wcosa: —sin z) ex
. Ify_(w) ’ dz sin’z log G

6. 1/@=(312)" . £ O={elog}+ b—T}(Z)“.

7. Ky=Ye-oE@-a) Y- o

8 If x=acosf+bsinf, and y=asinf—>bcosh, then

e ‘-l'i/ - d_“z @y, is independent of 4.

9. Ifeo"y log() then

a 1
d”,,z+(2n+1)wz:—c; +2n' da:"/

10. Shew that (z—2) ¢*+ x + 2 is positive for all positive
values of 2.

Y- -7
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CHAPTER VIL
EXAMPLES OF EXPANSION OF FUNCTIONS.

114. WE shall first apply the formul® of the preceding
Chapter to expand certain functions.
Required the expansion of (1 +)", m not being assumed
to be a positive integer.
¥ f@=(+a"
we have f'(z)=m(1+2)™,
£ @ =mm—1){1+2)""
@ =m(m=1) .. (n—n+1)(1+2)",
_ S @) =mm—1)... m—n)(l+2)""";
hence fO)=1, FO0)=m f'0)=m(@m-1),...
Therefore, by Art. 95,

m—1)

(1 +Z)'_=1+ma;+’_n'(_l_2-_ ... +m(m—1)...(m—n+]_)x.

L=

1

+&m(m—l) cer (m— 5) (1 + 62,

If x be less tha,ﬁ 1 the last term can be made as small as
we please by sufficiently increasing n, and in that case the
infinite series

1+m+’—"-("'F_i) 2t ...

can,.by taking a sufficient number of terms, be brought as
near as we please to (1+2a)™
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115. Let . S(x) =a"
By Arts. 95 and 79, we have

«* "
a®=1 +mloga+E2- (log a)* + ...+|—; (log a)*

g (log a)n-l—l
+ [n+1 :
Hence,. changing a to e, and remembering that loge=1,

o a* gl
1
E=1+z+ +| ot o gt
L PN

The term _—{n-fl may be made as small as we please by

sufficiently increasing n. Hence we obtain an infinite series
for ¢*, namely,

€= 1+w+$’+r;

Put #=1, and we have

i
=141
o= b+ ' 5L
This series may be used for calculating the approximate
value of ¢, and we may shew from it that e must be an #n-
commensurable number. See Plane Trigonometry, Chap. X.
It is found that e=2-718281828....

+t

116. Let , J(x) =sina.
By Arts. 95 and 78,
2 o
slnr =2 -E+E— ......
z* . (e, 2™ n+1
+E sin (?)-‘-lf"’l sm(—-2—'rr+0:z:\
o, ot
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In Arts. 115 and 116, the student will see that the last
term can be made as small as we please, whatever be the
value of z, if n be taken large enough.

117; Let, f(:c) =log(1+x);
therefore S (@)= a.nd f0)=1,

F@=-7 j and £ (0 =1,

n _(_1)“—1‘k'_lan n —(—1) 7'1_ .
Vi (x)“w df"(0)=(-1) l___l;

---------------------------

therefore, by Art. 95,

'— 2 2P (_l)u-l n
(_l)n n+1

(n +1) (1 +6z)"""
In this series, if we suppose z positive and not greater

n+l
than unity, then, as ( I _f a ) cannot be grea.ter than unity,
(__ l)n—l x!l
n

the error we commit, if we stop at the term , 18

:_ T that is, the error can be made as
small as we please by increasing n sufficiently.

not greater than

If we change the sign of z, we have

2 ) 3 L3 ntl
. 10g(1—w)=—$—§—§‘—-u—fn"_— (n+1) (1—-917 )
which does not give a very convenient form to the remainder.
But by Art. 110, we may also write i

s _ x! wl wﬂ (l —_ 0)“ m’ﬁ'l
log(l—a:) -——1’——2—7-3——'...:'———(?0—5{,.—,-,

n
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where 6 is between 0 and 1;

now (1—6)ra™ 92—9-1:)" x
(1— )™~ _(1—03: ‘1-6x’
" . x—0x z — Oz\*
If = be less thau unity, so also is 1=’ and (1785:)

can be made as small as we please by taking n large enough.
Hence, if n be taken large enough, the remainder can be
made as small as we please.

118. 1In the preceding Examples, we have been able to
write down the general term of the series, and the remainder
after n+ 1 terms. But if f(x) be a complicated function, the
expression for /™ (x) will be generally too unwieldy for us to
employ. It is, therefore, not unusual to propose such ques-
tions as “expand ¢” log (1 + «), by Maclaurin’s Theorem, as
far ag-the term involving «°.” Here we are not required to,
ascertain the general term, or the remainder, or to shew when,
for the purpose of numerical computation, the remainder may
be neglected. We proceed thus:

S (x) =e*log (1 + ),

therefore J(0)=0.
By Art. 80,

' ' _3__.
Sf(@)=¢ log(1+w)+1+¢.
therefore F0)=1;

" x* 2 ? e’
f (w) =€ lOg(1+$) +ﬁ;—' (“1 ¥ z)’
therefore J'0)=1;

"t ' 4 3 ° 36’ 28’
S (@)=¢ log(1+a:)+1_:m-— A+ T+
therefore " 0)=2; .

46 6e” 8¢” 6¢e*

f"(:c) =e"'log(1+z) + 1+2;_ (1 +$)’+ (1 +w)8f;(1 '_'_x)"
therefore ST (0)=0; '

5¢° 106"  20¢°  30¢® . 24¢°
f'(a:) =e‘log(1 +$)+'1—+—;; - (l+a:)’ + (lft“")_a —,(1+$)‘ + (!.+£)5,

therefore S fO)=9.
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2 22 97
|:2- + E + -1;5‘ + ...

This may be verified by multiplying the expansion for ¢*
by that for log (1 + x). '

Hence elog(l+a)=x+

119. Methods of expansion of more or less rigour are
often adopted in s ciifacases of which we will proceed to
give examples. We do not lay any stress upon them as
exact investigations, but they may serve as exercises in dif-
ferentiation.

Exp;a.nd tan™x in powers of . . »
Assume tan'z=A + dg+ A2+ ...+ A2+ oo @) 4, Ll
Diﬁ'e_zrentia.te bo_th sides with respect to z, hj .
then %:E’ =A +24z+...+n4a"" +............ (2)- ; '., TA -

1 : - poe ol
g L T I — o
by simple division, or by the binomial theorem. : “‘“ Bt

Equating coefficients of like powers of & in (2) and (8), f«ct- - -
we have :

foe S0 Gu b oo ‘/
A -

A,=1, 4,=0, 4,=—1}, A,=0,... L
[T O S R
and putting =0 in (1), we get 4,=0; therefore . .. ui\\ L
3 5 )
ST i -
tan"x =2 3+5 7+...

4

This example may also be easily treated by the rigorous
method already used in - Arts. 114...117. It appears from
Example 18, page 65, that the n® differential coefficient of
tan™'z with respect to z is

)i :1)._:;)—;1 sin (1_@; -n ta.n"w) .
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Hence we have

3
. T é_ T w1 s N
tan"'z =2 3ty ( 1)*'sin B

+ (_ l)n‘r’.ﬂ ey sin> {(n _|-2]) T —_— (‘n + 1) ta.n'lez} .
(n4+1)(1+ 62"

And if  be numerically less than 1, the last term can be
made as small as we please by suﬁiclently increasing = ; so
that the infinite series
2 & o
T — §+ g—"i."‘-..
can by taking a sufficient number of terms be brought as near
as we please to tan™z,

120. Expand sin™ in powers of .

Assume sin"z=4, +Aa:+Aw’+ -+ 42" LT (1)
Differentiate both sides; thus
1 * ' n;l
W=A1+2A’$+ 3Asx ot nd 2+ ... (2).
1 13 iy 1:3:5
But =1+ dat kg ot e 3),

by the Binomial Theorem.

Hence, comparing the coefficients in (2) and (3), we de-
termine 4,, 4., ..., and putting =0 in (1) we get 4, = 0
Substltutmg in (1) we have

gin” pla 182,
lz=2 33 tga 5T

It should be remarked that there are two considerations
which limit the generality of this investigation. We take

1
v(i-a)
radical ought stnctly to have the double sign: see Art. 65.
And we take sin'z to vanish with z, whereas we know, by
Trigonometry, that sin™ 2 might be any multiple of = when
2 vanishes,

as the differential coefﬁclent of sin™ z, whereas the
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Similar remarks apply to the expansxom in the next two
Articles,

121. Expand ¢**=™ in powers of x.

Put . CITT = g v (1),
then Z—f:;e"*n-'w j(Ta-_x?) ...................... @),
Z%F - : fx’ Z“i" ’;); ............ ®);
;.]1ereforé (1 - ) @—w%=ay vervenenennns (4).
Assume y=A4,+A4z+ 42"+ AZ+ ...+ A2+ ...(5); —
therefore gk% =4, +24z+...+nd " +. ... Y
f’{ 24, +»...+n(n-1)A,.x~j'+... Cl- ¥y

Substitute these values of y, d , and Z;,, n (4), then equate

the coefficients of like powers of  on both sides, and we
obtain

\ a+n?
AMG = mAﬂ .................... (6).

Equation (6) will enable us to determine 4,, 4,, 4,, ...
soon as we know 4, and 4,.

But 4, is the value of y or ¢***™= when =0, and

H dy sin—1z a =-—0-
A4, is the value of 70 e Ji=a)" when & =0;
therefore 4,=1, and 4,=a. _AA 7 et

Hence, by (6), Ao

a“/\l +/5 ':‘ z .‘\3

a’
- 1.277° @, »O\L/%,_-Jg.\,j-srf”éé‘l-'E‘r
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P4+1 *+1)a -
4,=241 4 @4D)

' 23 3 "
x:res;;njadrb=1+az+g.i+a<a’+l) z.+a’(al+ 2%) -
2 L3 4
a@+1]) (@+8) ,
. +————-—-|_5‘ a:'+....

2
Since e**=1+ qsin"'z +E"§ (8in2)" + ...

we have, by equating the coefficients of @ in this series, and
in the result just found,
‘ 1 at' 1.3 2°
sin"z =2+ 3 + 7135
as already found.
Also equating the coefficients of a*, we have
' 2’ P X O 0 X
*345.6° 7545678
And equating the coeﬂiments of a® we have

(sin":c)‘=a:’+lli:3’( )z’+||:3’ 5'(1+;,+1)a:’ ‘

x*4- ...

(sin’ m)'—.a: +

+...

“122. Expand sin (m sin™) in powers of z.
Putting y for the function, we may shew that

Proceeding as in Art. 121, we find that
(n+1) (n+2)A4,,, = (n*—m") 4,; and thus

sin(msin":c)=7Tn:c+m(1|Em')a_:’+m(1’_ &(3'—m’)“"+“"

Simila.rly cos (m sin™z) _
mt (=), m(2"— m) (4
-5 T
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123. Expa.nd -—z—— in powers of .

We shall first shew that no odd power of & except the first
can occur in the expansion. Denote the function by ¢ (z).
-z

Then ¢'(-’B)—¢(—-’”)=q- 1= 71

_ = ze' z(1—¢€)
SFoiticeT oo
This shews tha.t no odd power of z except the first can occur
in ¢ (2); for every odd power of # which occurs in ¢ (z) must
also occur in ¢ (z) — ¢ (— ).
We have ¢ (2) (¢°— 1) =z; therefore €'¢ (z) =z + ¢ (2).
Differentiate successively with respect-to =; thus
@) +¢ @) =1+¢(),
& {¢" (@) + 24 (2) + ¢ (2)} = ¢" (),
& {¢” () +3¢" (2) + 3¢' (@) + ¢ ()} = ¢" (),
e {¢" (@) + 44" (@) + 64" (z) + 44 (2) + ¢ (2)} = ¢"" (),

and so on.

=—2

Put # =0 in these equations; thus
$(0)=1,
2¢'(0) + ¢(0) =0,
36" (0) + 3¢ (0) + ¢ (0) =0,
447(0) + 64" (0) + 46 (0) + 6 (0) =0,

and so on.
Hence we find in succession

FO==5 $"O) =5, $"0)=0, $”(0) == 5.
It is usual to denote the expa.nsxon thus:

Ba .

p o 1=l §w+L— l._ a:‘ L’a!'-i-...,

the coefficients B,, B,, B,, B, ... are called the numbers of
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Bernoulli, having been first noticed by James Bernoulli. It
will be found that

1 1 1 5
.Bl=—6', B.'—ga, B,—4—2‘., B7=%’ .B,=é—6,...
EXAMPLES.

ol
.

If (3 —a) —4we” —z— 3 be expanded by Maclaurin’s
Theorem, the first term is — _|_5 .

2. Expand log (1+ €) in powers of «.
, Result. log2+§+;—:—
‘8. Expand e*“*# in powers of .

wl

72

4
Result. 1+m'+%+

+ ...

2 3
4, e"seca:=1+m+af+—'?-+...

1+¢€ nx n(n+1)a:'
5. ( 2') =1+ 4o T
6. J(1+4x+12z’)=1+2w+4w'+...

” 2 __
7. (e=+e'*)'=2"{1+l—f‘_z’+3i&3§z‘+...}.

+ ..

g n(Bn—2)a' n{15(n—1)"+1}2°
8. (cosx)* =1 |_2+ L 5
+ ...
22 162° 16 x 17a°
9. —logcosz—@+E+_E+T
) & 4z* 81z°
10, e =ell— =402 L
PG (6 }
. . . h z R
1L sin™ (2 + k) =sin"z+ o + N 2

1+2a’li 3w (3+22%) &'
Fu—iB T T a—ar At
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12. log(l w+w’)=~w+x’+2z Z—%‘"'
L

al

%

2
5d®

DO b=t
@

13. log{z++(d +a:)]=loga+:—:—

N
.p.
(<4

14. log(1+sinw)f=w—%’+i..
@ 2 72
15. eun-u 1+m+*——?;—24...

16. For what values of = does Taylors Theorem fail, if %~ A ~
7
(w—a)——(i—b-)- , and which is the first differential .!)
(-0’ % j
coefficient that becomes infinite ?

17. Shew that
e
tan" (o+ ) = tan™ar+ hsin'd — - sin'd sin 20

ﬂsm30—’is ‘9 sin 40 + ...

. where 0=;'-'-- tan™x.  See Example 18 of Chapter v.

18. By putting b =—x in Example 17, shew that e
20 o 30 o} :
'%'_0=sinocosa+00502sm20+cos03sm30 b e

cos* @ sin 46
4

19. By putting h=—2— l in Example 17, shew that

w sinfd , sin20 sm30 gin 40
+:".cos 0+4cos‘0+

2 cosa 2 cos*d

20. By putting k=- 4/(1 +2°) in Example 17, shew that
1 . 1. 1. 1.
3 (m—0) =sinf+ g sin 20+§ sin 30+zsm 46+ ...

7. D.C H
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CHAPTER VIIL

SUCCESSIVE DIFFERENTIATION. DIFFERENTIATION OF A
FUNCTION OF TWO VARIABLES.

124. WE have, in Art. 77, defined the second differential
coefficient of a function to be the differential coefficient of the
differential coefficient of that function. The differential
coefficient of the second differential coefficient has been called
the third differential coefficient, and so on. We are now
about to give another view of these successive differential
coefficients.

125. Let | y=r(=),
y+Ay=s(z+h),
therefore Ay =f(z+ k) —f(z).

In the right-hand member of the last equation change  into
« + h and subtract the original value; we thus obtain

S@+2h) —f@+8)—{f(@+k)-f(),
or S @+ 2k) — 2f (x + &) + f ().

This result, agreeably to our previous notation, may be
denoted by A(Ay), which we abbreviate into A’y. Hence

A'y = f(x+ 2k) — 2f (x + &) + f ().
Similarly A (A%y) or A% will be equal to '
S (@ +38k)—2f (x+2k)+f(x+h)
—{f(@+2k)—2f (x+ k) + f (=)},
that is, A% =f (x+ 3%) — 8f (x + 2h) + 3f (& + k) — f ().
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126 By pursuing the method of the last Article we find
expressions for Ay, A%, ... We shall not for our purpose
require the gene expression for A%. It will, however, be
easy for the reader to shew, by an inductlve proof that

A"y =7 (&+nh) — nf [+ (n—1) A} +"(C2_‘ D fla+(n=2) A} ...
...... tnf(@+ B) T f (@),
is T¥
’Aw)’ R

127. To shew that the limit Of
We have, by Art. 125,
A'y=f(v+ 2h) - 2f (x+ h) + f ().
But, by Art. 92,
F@+2h) =F (@) +9hf" () + E 2/ @+ e 20,

S e+h) =f(2)+kf (2) + Ef" () +l_f"'(-’v+ 0.h),
6 and 6, being proper fra.ctlons. Hence
By =" (@) + {4f " (@ + 208) - [ (= + ,4)}.

Divide both sides by R, that is (Az)’, and theun let A be
diminished indefinitely. Hence we obtain

the limit of (A.z: ,-—f ()
. dy
( AI)’ 18 555 dz’
128. The result of the last Article may be generalized by
the inductive method of proof. Assume
Ay =Ff" (@) +F (@) . - (1)

where ¥ (z) is a function of  and h; whlch remains finite
when A is made =0. From (1) we have

A™y =Kz +h) + Y @ + k) — (B (@) + B (@)
= @+ k) = @) + 5 Y (@4 B) = ¥ (@)}

H2

that is, the limit of —Z%;
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Now, by Art. 92,
P+ R)=7"(0) + (@) + o e on),
¥ (@ + k) =y (x) + 2y (z + 6,4),
therefore

A™y = B ™ (2) + B (3 S (@ + OR) + ¥ (= + 6,%)}
="M () + AW () e, (2).

Equation (2) shews us that, granting the truth of (1), we
can deduce for A*'y a value of the same form as that we
assumed for A"y. But Art. 127 gives for A an expression
of the assumed form ; hence A’ has the same form, and so
also has A'y, and generally A"y.

From equation (1), by dividing both sides by A* and then
diminishing % indefinitely, we have

the limit of (%= f(@);

Aty is d'y
(Az)"  da*’ ]

129. Hitherto we have only considered functions of one |
independent variable; that is, we have supposed in the equa-
tion ;Z= S (), although quantities denoted by such symbols
a8 g, b, ... might occur in f(z), yet they were not susceptible
of any change. Suppose now we have the equation

u=a'+ xy + y’ ’
and let y denote some constant quantity and z a variable,
we have
du

d—m=2w+ya

that s, the limit of

From the same equation, if  be a constant quantity and y
a variable, we obtain
du

@=2y+w.

Of course we cannot simultaneously consider « both con-
stant and variable ; but there will be no inconsistency if on
one occasion and for one purpose we consider & constant,
and on another occasion and for another purpose we consider
it variable. _ .
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130. If « and y denote quantities such that either of
them may be considered to change without affecting the other,
they are called independent variables, and any quantity v, the
value of which depends on the values of z and ¥ is called a
“ function of the independent variables « and y;

Z—:, %ﬁ, %, ..., denote the successive differential co-

efficients of v, taken on the supposition that x alone varies ;

Zu, Z’u d;;f , denote the successive differential co-

emclents of u, taken on the supposition that y alone varies.

131. If u be a function of the independent variables «
and y, then g—: will also be generally a function of « and y.

Hence we may have occasion for its differential coefficient
with respect to  or y. The former is denoted by

a’u
d’? ’
as already stated ; the latter is denoted by
du
L&
dy ’
d'u

which is abbreviated into d e

Again, both Tu and J__ will be generally functions

of both « and v. These may require to be differentiated with
respect to z or y. Hence we use such symbols as

du du oand 2% u
dyda*’ dzdydz’ dy'ds’
the meaning of which may be gathered from the preceding
du
remarks. For example, Todyds implies the performance

of three operations: we are to differentiate % with respect
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to z, supposing y constant; the resulting function is to be
differentiated with respect to y, supposing = constant; this
last result is to be differentiated with respect to «, supposing
y constant.

132. In considering the equation y = f(z), where we have
one independent variable, the student could be referred to
analytical geometry of two dimensions for illustrations of the
" nature of a dependent variable and of a differential coeffi-
cient. See Arts. 35...43. In like manmer, if he is acquainted
with the elements of analytical geometry of three dimensions,
he will be assisted in the present Chapter of the Differential
Calculus. For instance, the equation

g=ax+by+c
represents a plane ; # and y are two independent variables, of
which z is a function. Here

dz » dz

E—z == a, J—y- = b’
and all the higher differential coefficients ds s
» dw’ ’ d zs § oty
vanish.
Again, LN A Gl oy Vo) R (1),

is the equation to a sphere. If we pass from a point on
the sphere, whose co-ordinates are « and y, to a point whose
co-ordinates are z + Az and y, we vary z without varying y.
If in this case the value of the third co-ordinate be 2z + Az,

we have
24+ Az=[{r'—y'— (®+ A2)%} .cceuunnnens (2).
From (1) and (2) we can of course find %Z:; and its limit,

which we denote by Z-‘—Z , will be m .
The process is the same as if we had given
z=/(a"- "),
where a is a constant ; from which we deduce
dz -z
=~ J@ =2
and finally put »*— 3 for a'.
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On the other hand, if we pass from the point (z, y) to
a point having .2 and y + Ay for its co-ordinates, we zave,

a8 before,
z4+Ae=J{r" =" (y+ 89 e, (8).

Now, in (2) and (3) we have used Az; but we do not
- mean that the value attacked to the symbol 18 the same in both
cases. If there were any risk of error by confounding them,
we could use A’s in (3), or something similar. But in fact
L . . dz
we only use (3) to assist us in forming a conception of ‘—i&;
and since we look on % and g—; as whole symbols not admit-

ting of decomposition, the question can never occur, “Is the

. . dz ,,
dz in 7 the same as the dz in d—g/ ?

133. When u is a function of two in(gependent variables,

. . . du du dv du
the differential coefficients az’ ‘73/-’ T’ dx_d_g} s +e.  are
often called “partial differential coefficients.” Each of these
differential coefficients is obtained by one or more operations,
every operation being conducted on the supposition that only

one of the possible variables & and y is actually variable.

Let us suppose for example that u=tan™ g; then

du__y du___ =

dao-a:‘+3]"’ ‘ dy— ws_*_yn

du___ 2y Pu_ 2wy

(@ +y) dy' (@ +y)"
and so on.

By differentiating %—: with respect to ¥ we obtain

ddu«
& d-y
Ay @+
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and by differentiating %‘ with respect to z we obtain

e

dy_ 2~y

. ﬁz_(z'+y’"

Thus we see that in this example
ade gdv

-d;‘T£=£Z ............................... (1),

or, a3 we may write it,
d'u d'u

We shall prove in the next Article that this result is
universally true. Of the two modes of writing the result
given in (1) and (2) the second is the more commodious, but
1t has the disadvantage of making the theorem which we |
have to prove appear obvious to the student, becaunse it sug- ‘
gests to him that he is merely comparing two fractions. But |
as we have already remarked, a symbol for a differential ‘
coefficient is defined as a whole, and is not to be decomposed
into a numerator and a denominator. See Arts. 26 and 77.

134. If u be any function of the independent variablas x

and
Y e
%'-:_dl/
dy T dx
Let u= ¢ (z, y); change z into &+ h, then by Art. 92,

$@th ) =d( s +hi s Myt on,y);

we may therefore write p
¢(x+h,y)-¢(z,y)=hd—:+h'v.....; ....... ),

where v is a certain function of # and y, which rema.ins finite
when 4A=0. In (1) write y +% for y; then the left-hand
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member becomes ¢(a:+k y+k)—¢@y+k); by Art. 92
d——

Z: becomes 3:+k—jyﬁ+ k'8, where 8 remains finite when

k=0; and v becomes v+ ka, where a is a quantity which re-

mains finite when % =0, for it tends to il as its limit. Thus

ay
du
du . %d
$@+h yrk) =@ y+h)=hg +he—g=+ MR
SRRy T R @).

Subtract (1) from (2) ; thus

¢p@th y+k)—p@+h y)—d(@y+k)+o(@ )

e

-y ﬁ+ Wka-+ hieB,
Divide by k%, and then suppose A and % to diminish inde-

finitely ; therefore

ad

T= the limit when 4 and % vanish of
$thy+k) - ¢(a>+hhl.:/) p@y+k)+d(@y)

In a similar way, by first changing y into y + &, and after-
du
d5
wards  into  + h, we can prove that 7;— is also equal to

the above limit.

d@ %

do " d
Hence -E‘;/— = zzl .
d'135 The object of the preceding Article is to prove that
u

du
dydz da;d g
quantities is equa.l to the limit of a certain expression. It is

this is done by shewing that each of these
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comparatively unimportant what that expression is, but it is
of some interest to notice the analogy of the result to those
in Arts. 127 and 128. S

Proofs of the proposition in the preceding Article have
sometimes been given which appear simpler than that here
adopted, but they are deficient in strictness. In particular
an assumption has sometimes been made which deserves to
be noticed. The followinf is substantially a proof that has

a5 |

been given. To obta.in-(;;f involves, according to the defi-
nition of the symbol, the following operations. (1) In the

function w we put z+ A for «, subtract the original value
from the new value, and then divide by 2. (2) We find the
limit of the result when A=0. (3) We now put y+ & for g,
subtract the original value from the new value, and then
divide by % (4) We find the limit of the result when %= 0.
All this is immediately derived from first principles; the
next step however is the assumption that we may perform
the third of the above operations before the second instead of
after it. 'With this assumption the required result is readily
obtained ; for from the first operation we get

¢(w+ﬁ,yz‘¢(w, 9.

)

then from the third we get
4>(w+h,!/+k)—¢(¢+’hlzc/)—¢(w,y+k)+¢(w, 9
: 5 ,

2l

- and according to our assumption, the limit of this is 7?—”

g

And by a similar assumption it is found that T;ch is also
equal to the same limit. '

One more remark must be made to guard against a possible
error. In the proof of Art.134 we have used v for $¢" (z +6h, 3) ;
in this expression all that is known of € is that it is a
proper fraction, and it must not be assumed to be a function
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of « only. Thus when y is changed into y+ % the value of
© will generally change. This does not affect the preceding
proof, because it was not necessary there actually to find the

" value of %; but the assumption that @ does not change

when y changes has rendered some proofs unsound which
have been given of the proposition in Art. 134.

136. The important (fm'ncipla proved in Art. 134 is
enunciated thus: “The order of independent differentiations
is indifferent ;” or it is referred to as the principle of the
* convertibility of independent differentiations.” It may be
extended to any number of differentiations; so that if a
Jumetion of two independent variables, z and y, is to be dif-
Serentiated m times with respect to , and n times with respect
to y, the result will be the same in whatever order the dzf{‘-
Serentiations be performed. In proof of this we have only
to apply the theorem of Art. 134 repeatedly in the manner
shewn 1n the following example. )

du d’u
To prove that Iy dz = &z dy’ 3
d d'u
du___dyde o definition,

dyds  dy
d'u
d——
a_a.._dg;.?, by Art. 134,

d’u .
= Zydody’ by definition,

AT

" dydz’ T dy’
d

=az Py byArt.l34,
d®u



108 EXAMPLES OF INDEPENDENT DIFFERENTIATIONS.

157. If u be a function of the three independent variables,
«, y, 2, we have in a similar manner

du _ du
dydz  dzdy’
du _ du
drdz dzdx’
du _ du
dedy  dydx’
d*u du & u

dzdyds dedzdy  dedzdy’
and so on,

EXAMPLES.

oy d’u d'u
1. If u—;,—_—z,, find de alldd'—y—gz-.

2. Verify in the following cases the equation
du _ du
dxdy dydx’
u=z8ny+y sina,
u=z logy,
u=2a’,
- ¥
% logtanmf
_ay-bx
il ol

w=ylog (1 + ).
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3. If u=Aa"y* + Bafyf + Cary’ +..

where a+a—ﬁ+ﬁ' 'y+'y— w=mn,
du ‘du
shew that da: +y Jl— = nat.

In this example % is called a Iwmoge'neous ﬁmctton of n
dimensions.

4. If w be a homogeneous function of n dimensions,
shew that

du d*u du d*u d*u

w

waa—f-i-ydmdy_(n‘l)d_x’ dxdy+yd’ (n —1)(-!;'
5. If u be a homogeneous function of n dimensions,
shew that §oben

d*u d*u e

#M+2wy +y’d,—n(n—1)u.

6. Verify the theorems in Examples 8 and 4 in the follow-
ing cases
u=(z+y)},

w="_
z+y

‘ u= '+ 9.
7. If u=a's* 4"y’ 4wy, shew that

du 2
- m—6¢yz +8yz.

- 8. If u=e", shew that

dx(%;;d = (1 +3wyz+ y’z’)ety‘-
9. If u»=y~/(a, —a') + z ¥/ (a® — ), shew that

du du -

du \* at
+V(a —ac’N(a :l/') (dxdy) =~/(a:_ a) ‘\/(a',—y’).

vl e AL
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=tan? —
10. If 4= tan T 259’ shew that

du__ 1 ds _  15zy
dzdy  (1+a+y)0 dody’  (1+2"+y"

1. If u=azy/(a"—y") ¥/ (' - %) +y¥/(a"—2") /(@' — )
+ s (o = 2) ¥(@'— 3") — e,
shew that 2

— V@ =) V(e ) (e ) = et ) T

V@ - ==

12. If u=log (&*+ 3+ 2" = 8zyz), shew that
1 ds ldududu _ _,

6dzdyd: 8dedyds °’
du du  du 3
PR PR P
du  d'u  du d'u d'u d'u
d7+¢—i?+zl?+2dxdy+2dydz+2d7dz
-9
(x+y+2)*.

'y + &u + du 360
dr'dy d? " d*dy*dz " dtdy’ds  (z+y+ 8’
Fu Pu Pu__ B
dz® dy’ dzt (:c+y+z)"’

d’u +_.d’u‘ + Pu 12
d’dydz * dxedy’dz dzdydz'_(w+y+z)°"
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CHAPTER IX.

LAGRANGE'S THEOREM AND LAPLACE'S THEOREM,

138. SUPPOSE Y22+ 0P (Y) eerreirnieniniinnnnnnns (1),

where 2 and « are independent, and .t is required to expand
F(y) according to ascending powers of x. Put u for f(y),
- then, by Maclaurin's theorem, we have

_ du, o d'u, 2 d'u,
vt et e tga T

where u,, %—", %, ... denote the values of u, %, %:,
when « is put = 0 after differentiation. 'We proceed to trans-
form these differential coefficients of u with respect to « into
a more convenient form in order to ascertain their values
when =0. We shall first shew that

4 {F(v) o= 4 {F ) %’c} ............... @,

supposing that v is any function of the independent quantities
« and z, and F'(v) any function of v,

To establish (2) we need only observe that the left-hand
member is
dv dv

: d*
LOFFAZIOF =~
and the right-hand member is

. dvd &
FOZ o+ FO 5

and these two expressions are equal by Art. 134.
From (1) we have

L ) +ad 0) 2,
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therefore
Also
therefore
Hence

" Also
therefofe

Hence

Again

LAGRANGE'S THEOREM.

dy__¢@®
de 1—ad'(y)’
dy

v pon O
a=1+ad ()G

dy _ 1
& T-a @)
Bp0) Y

du dudyanddu du dy
dz dydx dz dydz’

-
@

{ }

(07 FY since u=r)

S = %l& S MM B

-Zhpwro o,
OFa

TGS} by @)

"5}

¢ 7 } by Art. 134,

{m } by (2),

{7 dz}by ®

i

©

It

—A
@

S
I

ﬁ‘l%

7

"6~

dz
&
@
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Suppose, according to this law, that
dv _ d* nd
=g PO )
d a » i
then =G PO 4

a n d '
- ,_,dw{m a%‘}, by Art. 134,
d® nd
- Forg) e,
_ a» -—ﬂm du
which shews us that the expression for % follows the same

dz*
du du

to hold for e and D it holds universally.

In ‘2::’ we are to make =0 after the differentiation has
au

been performed; but when we transform T by the above

law as that for dl‘ Hence, since the law has been proved

formula, into an expression involving only differential co-
efficients taken with respect to 2z, we may put & =0 before the
differentiation, since # 18 to be considered as a constant in
differentiating with respect to 2z When =0, |

y=¢,
b ) =9 (2),
therefore %=d‘£‘+®= S (2),
Do yf@ e
Tz fporr e}

eeecosesssvssesencee XYY Y XY

T.D.C. 1
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and thus . g _
F@ =1 @)+ @7 @)+ 5 {FETS @)}
+f5 s @)

;i; ...... +§§::,{m’f'(z)}+...

This result is called Lagrange’s Theorem.
139. Suppose y=TF{z+2¢(y)};
required the expansion of f(y) in powers of .
Let ¢ stand for £+ z¢(y) ; then
dy dFdt_dF N
- n= G+ e Y,
‘ ' dF
hortore W POE
erefore N/
- 1-2¢'(y) 7
) )
also E—'&‘EE—EE{I-Fa:(ﬁ@)Z;},
aF
therefore dy_ dé T
1-2¢'(y)

dz
| dy . d
Hence E=60)3.-

From this, in the same way as in Art. 138, we deduce

that Py J
% 1 QU
&= {W‘ z} '
where u=f(y).

If we make #=0 in the equation
y=.‘F.{.z-‘l-m¢ ®h




_LAPLACE'S THEOREM.. “113

we deduce y=F(2),
$()=¢ F ),
du _ df (¥ ()}
ds dz °’
and ﬁnal%y, _ ) - e
ror=frenepren Y0 8 2 eman LR |
et S FEN LD 4

This is called Laplace’s Theorem.

140. Lagrange’s Theorem may of course be deduced from
Laplace’s, by gutting F(z) =2. But Laplace’s theorem may

also be deduced from Lagrange’s, thus:

. In the equation y=F{z+w¢(y)"} e terr e (1),
put 2+ (y) =Y,
then . y=F(y),
thus ‘ Y=24+ap{FY)}eeeniirrnannnnnn. (2),
and f (y) becomes f{F(y")}. )

Thus we are required to expand f{F(y)} in powers of z,
by means of equation (2). But this is precisely what La-
grange’s Theorem effects, the complex functions f{F(y)} and-
¢ g”(y')} taking the place of the simple functions f(y’) and
¢ ) _

141. It must be remembered, that in quoting Maclaurin’s
Theorem, which serves as the foundation for those of Lagrange
and Laplace, we ought strictly to have used it in the form
given in Art. 95, with an expression for the remainder
after n+1 terms. That expression for the remainder however,
becomes so complicated in this case, that we have not referred
to it. The investigation of Lagrange’s and Laplace’s Theo-
rems must be confessed to be imperfect, since the tests of the
convergence of these series, which alone can justify our use of
them as arithmetical equivalents for the functions they profess
to represent, are of too difficult a character for an elementary
work. The advanced student may consult’ Moigno's Legons

12




116 ' BURMANN'S THEOREM.

de Calcul Différentiel, 18me Legon, and Liouville's Journal
de Mathématiques, tom. X1. p. 129 and 813, -

142. If w=a+ y¢ (z), we have by Lagrange’s Theorem
f@=f@+sp@r @f+; L {Ferr o}

a :
+§EE‘ {m'f (.'c)} +...
where in the coefficients of the different powers of y, we are

to make &= a after the differentiations have been performed.

Let 3/'.0: %‘—;—=1}r(z), so that @ =a is a root of ¥ (z)=0;

then
S e o

+ ..

where, in the coefficients of the different powers of 4 (z) after
the differentiations, « is to be made = a. This seriés for £ (z)
in powers of Y (x) is called Burmann’s Theorem.

143. Let 4 () denote the inverse function of Y~ (z), so that
if u =1 (x) we have ¥ (u) ==, and therefore Yr{y*(u)} =u.
If we write ¥ for & in Burmann’s Theorem, we have

ey f'(2) (@—a)] , o & [f' () (z—a)"
Fi @)= sl +o [LEESE a] *L‘éd‘w‘[f' w—@)}'a‘]
& & [f'@) @—a)

+|ﬂ?[ W @F ]*

No change is made in the quantities in the square brackets,
for they do not contain & when the operations indicated are
completely performed.

If f(u) =u, we have
v =[55G ]
A
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-and'if @ =0, 8o that ¥ (x) vanishes with ,

V)= "‘[«p (:c)] Ed‘i [{11'7;) ]

z' & o ]
NE d“" W@F
EXAMPLES.
~ 1. Given y =2+ z¢’, expand y in powers of z.
Here ¢y =¢,
f)= y,
a '
therefore PR {m' 'f (z)} 7= =n""¢"
Thus y= 2+ 26"+ — 23"+ 3™ +.. +En e +...

ERSF)

2. Giveny=z+x y’; 1', expand y in powers of z.

Here . ¢(3/)‘ =‘1/-’—;1, |
S @/)'=‘y;
thesefore £ (IS (9} = 35 d ==

21
EAXZ

% (z'— D'+

z* 1 d
+|n ?d"“@a

Hence 'y=z+z§ (z"-1) +
l).+.l' -

3. Given :cy—-logy 0, expand y in powers of . From
the given equation
y=6";
therefore yz = xe”,
say Yy =ae.
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If then we put 2= 0 in the result of the first Example, we
deduce

, o N A .
y=z+w'+E3+...+En + e
restore y for ' and divide by #; then

1
y= 1+a:+L"’:3+ +L“;1 T
L = . -
4. If Y=1rva=a)" expand y* in ascending pQWem
of x.
. x
Since Y= VA=)’
we have yy(l—-a)=z-y;
therefore Pl—a)=a—22y+3 eeeeeninnnens (1),
2. ¥
and y=gt+tag®

We must then put y=2 +"£—z,

w0 that ¢ (4) =, and f(5) ="

. .un @ n A, et
Thus y*=¢ +m2 Pl +'L"_'_2'dzﬂ(z Y +...(2),

and after the differentiations are performed, we must put

; for z.

The quadratic equation (1) which we have employed gives
two values for y, namely Eﬁm
have obtamed in (2) applies to the value with the upper sign.

s the series which we

@
For 1+~/(1—a:’) = ; and if the n™ power of

this be expanded in ascending powers of z the first term is
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obv:ibusly (;)‘: whereas the first term of the expansion with

the lower sign would be (;)., that is (;) .

@ 1-J1-a) .
Vi~ & thu

[t (e () e
RAEDIED) (;)"’L...

Now y=

1.2.3

Let 2* = 4¢; thus we obtain b swerihls, 2Ve nv*M“““f(“:sLj\‘/)
{ Vglt 4t)}—1+nt+n(n+3)t’
n(n+4) (n+5)
=333 't

Change the sign of n; thus we obta.m the expansion m
powers of ¢ of {M} that is of {i__2_t_'__}“'

— V(1 —42)
that is of {1—4-—{%—_“)} .

Hence {th/(l—“)} =1- nt+”(n_3)t'

2
_n(n—4)(@n-23)
T.2.3 ‘Tt

Hitherto we have put no restriction on the value of n;
but let us now suppose that n is a positive integer.

If we expand {1+ 4(1—4%)}" and {1—4/(1—4t)}]* by the
Binomial Theorem, we see that the sum of the two expresuons

will be a rational function of ¢ which will be of the degree 3
if » be even, and of the degree 1}1 if n he odd.
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By adding the expansions we have found above we obtain

{l+ V(11— 4t)}" {1 — /(11— 4t)}'
—ee + —_—
2¢
- n (n 3) n(n—4)(n—5)
1—nt+ - 12.3 &+ .

and by what we have just shewn the series on the right hand
extendsto'—'+ltermsifnbeeven,a.ndto '3;"—1 terms if n
be odd, so that the remaining terms in the two expansions
must dlsa.ppear, that is, the terms arising from one expan-
sion are cancelled by similar terms arising from the other.

Tu the same manner as we deduced the expansion of y* from

the equation y= we may deduce the expansion

z
1+/(1-2)
of any other function of y; for example take logy. Thus

logy=logz+a: 2+ .. +E21,$,—_,(z"")+ ......

where after the differentiations are performed we must put

g for 2. Therefore

er-va (3 (456510
@ 1- «/(l—a:‘) .

Let «* = 4¢, and we shall obtain
1—-y/(1—49) 5.6.7
log———"=t+3 t'+—t’+2 3 4t‘+ ......

The expansions which this example has furnished are of
some importance in mathematics,

5. If w—ye' expand sin (z +y) in powers of .
" 'We have given y = 26, Suppose then y =z 4 z¢™?, so that
B @)= mdF ) = bt oy

The general term glven by Lagrange’s Theorem is

E&— {e cos (2 + £)},
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which becomes
2y e
[ O™+ oo fat o= (-1 4},
where cot ¢ = n, by a process similar to that in Art. §1.
Putting 2 =0 in this, we have for the required expansion
sin (a + y)=sina+xcosa+...

ﬂz:': (= 1) (147 co8 {a— (n—1) cottn} 4 ..

6. Given a—y+z logy=0, find siny in powers of .
7. Given y=2 + xy’¢”, expand y™¢™ in powers of 2.

8. Given y =2+ # sin y, expand sin y and sin 2y in powers
of 2.

9. Qiven y=1log (z+  cos y), expand ¢ in powers of 2.
10. From the equation zy*+ 2zy* + 3xy‘+ 2y+1=0 de-

termine y in ascending powers of z.

Rosult gl gl f 1895

1
~3~32%" 3% "1096 %

11. If y= 6487 6,0 the first four terms of the
expa.nslon of ooslogy in powers of a. o

Result 1l _o_tf 4 .

12. If g*+ W+ ny =2z, shew that one value of y is

z_m (g)’ + 2m’:— n (g:)' - 5m® —,5mn (.:z_:)‘ ..
n n\n n n n n
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CHAPTER X,

LIMITING VALUES OF FUNCTIONS WHICH ASSUME AN
INDETERMINATE FORM.

144, IN the statement, the limit of El—x-ol—o =1 when 6
diminjshes indefinitely, we have an example of a fraction
which approaches a finite limit when the numerator and de-
nominator each tend to the limit zero. ~The object of this
Chapter is to find the limit of any fraction of which the
numerator and denominator ultimately vanish, and also the
limiting value of some other sndeterminate forms.

| 145, Form .
T 8@
Suppose . @

such a fraction that both numerator and denominator vanish
when z=a; it is required to find the limit towards which
the above fraction tends as  approaches the limit a. '
We have proved in Art. 92 that : '
$(a+R) = ¢ (0)=hp @+6h),
¥ (a+h) = (a) =hy'(a +6,3).
If then ¢ (a) =0 and Y (a) =0, we have, by division,
¢@+h)_ ¢'(a+0h)
Y@+h) ¥ (a+6h)
Let A diminish indefinitely; then
¢ (a)

thelimitwhenz=dof%z)) ism. .
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146. Suppose that not only -
¢ (a)=0, and Y (a) = 0 ‘
but also ' ¢'(a) =0, ¢"(a) =0, ¢'(a)=0
and ¥ (@) =0, ¥"(2)=0, ..4"(a) =0.
By Art. 92,
$@+N =4O -M @) ..~ #a )—L_¢*'<a+ o),

V(a+h) =y (@) -hy'(a)... l_\lf‘(a) l_l g (a0,

Hence, by dmsmn we have

$(a+h) _ ¢™(a+6h)
Y@+h) y™a+6h)’

" Diminish & indefinitely, and we have

thehmltwhen:c aofgg—m) \t::gi -

147. In Art. 145, if

¥@=0,
and ¢’ (a) = some finite quantity,
we have the limit when 2= a of $2 ; is infinity :
if ¢'(@)=0, ’
and ¥’ (a) = some finite quantity,

we have the limit when =a of ¢ (@) is zero.

¥ (@)

And in the same manner, we may shew that if the first
of the differential coefficients ¢' (@), ¢" (a), ... which does not
vanish, is of a lower order than the first which does not vanish

of the series ¥ (a), ¥ (a), ..., the limit of ¢ (2) when #=a,

¥ (@
is infinity ; if of a higher order the limit is zero)
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These results may also be obtained without the use of
Taylor’s Theorem.
¢ (a) = 0 and ¥ (a) =0, we have

(@+h)~¢(a)
$@+h) _¢@a+h)—¢ () _ L—T—é—

Y@th) ¥ @th—¥(@) «p<a+h)— @

Now diminish h indefinitely, and we have

the limit when @ =a of $§z; i;%
If ¢/ (a) = 0 and ¥ (a) =0, we have in the same way

the limit when z=a of %%:—) i,:g;

Hence, the limit when @ =a of 5—((5)) is P ((‘;_))

This process may be extended, giving the same result as
in Art. 146.

148. Form

Let ¢ () and 4»(:0) be functions which both become infinite
when & =a; it i8 required to find the limit of the fraction

¢ (2)

¥v@)° 1
20 ¥l

¥ (@)
¢(w)

and the fraction on the right-hand side takes the form (—)
when #=a; hence, by the previous rules its limit is

v@
"l (s@)' ¥
@) °'{ @} "

e @'Y @
6@ _($@]'¥ (@
Hence @ {w)} §a)’

, $(0) _ #a)
therefore Y@ V@
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149. From the last Article it would appear that the limit
of a fraction which tends to the form %, may be found by

considering the ratio of the differential coefficient of the
numerator to the differential coefficient of the denominator.
But, by Art. 113, when for a finite value of the variable a
functionlfbecomes infinite, so does its differential coefficient.
Hence, i

:;:((a)) takes the form —

¢ @

1lf( a)

and thus the result of Art. 148 would appear to be of no
practical value. It may, however, happen that the limit of

the fraction ¢ (2) ; is more easy to settle than that of + $@)

takes the same form, -

¥z ) v)°
For example !2&2
3:
when @ = 0, takes the form 2
1
$@_ = __
Here V@) -—_ 1 ==z,
z
the limit of which is 0.

Hence, the limit of l_o%c , when #=0, i8 0.
@
150. The demonstration in Art. 148, which is that usually
given, is satisfactory only in the case in which ¢ (@ ; really

has a finite limit. For we divided both sides of an equation
by this limit which tacitly assumes that the limit is not zero
or infinite,

But the demonstration may be completed thus:
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" Supposé the limit of ‘tE:; is really zero; then the limit
of 1"—(%?—(1) is really finite, namely, unity. Hence, it has

been proved that

i it of 2@ 4@,
that is 1+ the limit of v@ 1+ ¥@

.. o 9@ ¢(a)
therefore the limit of m = V@

' If the limit of i{:} be really infinity, then the limit of
%g)l is really zero, and therefore, as just shewﬁ, the limit of -
¥ (@) . T 15 B
$@ will be zero. Hence, the limit of V@) will be infinity.
Combining then this Article with Art. 148, we can assert
that if ¢ (z) and 4 (x) both become infinite when z=a, the

limit of 11’((3 will be the same as the limit of “t, E:; .

151. The two Articles 148 and 150 may be replaced by
the following mode of exhibiting the proposition.

Suppose ¢ (a) =», and ¥ (a) = .

1 _ 1 __o;
Then ‘#—(;)—Oa.nd‘k(a)—o,
1 V' (a + 6h)

$@+h) _Faih)_[ylavonr .

T Yerh T T garay 4100
Farh Tpla+ony

¢ (a + Oh)
¢ (a+06h) _ ¢(a+6h) v (a+06h)
¥ (a+6k) (a+6h) $ath)’

Vv@+h)

therefore
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¢(z) has a finite limit when z=ga, the limit of the

secon fa.ctor on the right-band s1de of the equation is unity.
Hence

?_(g)_ ¢ (=)
thehm:ltof\l’() tbehmttof\lr().

Bu tifM-tendstOOOroo as z approaches a, it will in

general ﬁmsh by approaching the limit in such a manner that
the second factor will in the first case be less than unity,

and in the second case greater. Hence, t--—= ¢ (2) becomes zero

V(=)

or infinity at the same time that 3:(( )) does.

152. In the preceding rules for finding the limit of a

function which takes the form g or % when z = a, we have
made no supposition as to-the magnitude of a. Hence the
rules are often applied to the case in which a is infinite. But

for a direct demonstration of this case we may proceed thus.
Suppose the limit of M required, when @ =cc ; it being

known that then either ¢ (a:) =0and ¥ (z) =0, or ¢ (z) =
and ¥ (x) = .

Put = l, then
¥y

4@ f&),

v@ " "’(,,)
Now as y tends to zero, we have, by preceding rules,
1 ../1
#()

the limit of = ( ; = the limit of y’

e

. ‘@)
= the limit of $ (:) .

-&(\
l@

= the limit of
%’

&=
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153. For example, required the value of
1

—— when z =0.
cot x

Differentiating both numerator and denomma.tor, we find
the required limit is the same as that of
1
T sm z
——oro
— sin*@
The same result may be obtained by writing the proposed
fraction in the form ; thus

1 .

z tanz 1 sinz
= or .

cot @ @ cosx® @

, that is, umty

The . limit of —_ m 1, and the limit ostn_:_vm 1; therefore the

limit of the proposed fraction is 1.
As another example we may find the limit of z when « is

L e
infinite, n being positive.
?  The limit of Z = the limit of 2
Pl P
= the limitof ’M}A“L_"

Proceeding thus, we shall, if n be a positive integer, arrive at

the fraction %, the limit of which is 0. If » be a fraction,
we shall arrive at a fraction having ¢®in the denominator and
some negative power of # in the numerator, which also has 0
for its limit.

Hence the limit of%.,when & = o, is zero,
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154. A remark should be made for the purpose of pre-
venting a misconception of some of the results of this Chapter.
Suppose ¢ (x) and Y- (z) both to vanish when z=a, and that
¢'(a) = 0 while ¥~'(a) is finite. We say then, that when z=aq,

the limit of % = the limit of %% ,

meaning that each side of the equation vanishes. It does not
Jollow necessarily that L

$(@) , #lz) has unity for its limit.

v@) V@
For example, let ¢(z)=2", Y (z)=sina,
then: - ¢(x) =22, N (x)=cosz.

When « approaches the limit zero, we can infer that, since

4{%:; approaches zero, so also does%. But it is obviously
not true that the limit of
@ | 2 LT T
sinz  cosa 2 sin x ¥

the limit is in fact 4

155. It should be observed that there are examples which
may be solved by means of the Differential Calculus, but
which can also be solved, and Bometimes more simply, by
common algebraical transformations. For instance,

(z—a)t
(a* - a?t
when z =a takes the form gi Put z=a+ A, and the fraction
becomes ’
3 s

Heat k)l . @atht
and the limit, when k=0, is 0.
T.D.C. K



130 INDETERMINATE FORMS:
Aguin, suppose we have to find the limit of

VX - % Ve—14y(z—1)
Vo T gl * V@ —=1)
\/‘i D as @ :ﬁ;i-(')}ches unity; put £ =1+ £, and the fraction becomes
S reha W41 = 1+yh
Nt V(F+2h)
Multiply both numerator and denominator by
VE+1)+1=h
and we get 4
2./ or 2 :
VhJh+2){(J(h+1)+1-Jh} T J(h+2){J(R+1)+1-JR}
andthelimitofthis,whenb=0,is;-;§. '

156. There are cases in which not only ¢(z) and (=)
vanish, but all their differential coefficients, and where, con-

$(=)
Y@ *

For suppose ¢(x) =a™, where u stands for a%’ a and n buing

sequently, we are npt able to ascertain the limit of

positive numbers, and a greater than unity: we have

o -2

" . (n] 1
#'@)=nloga.a {287 1L,

and so on.

Put ‘1;= 2, and let ¢ stand for 2";

n log a.2™
a‘ »

then ¢'(2)=
nlogafnloga.z™" —(n +1) ™}

a

#'(0) =




. INDETERMINATE FORMS. 131

also the value =0 corresponds to z=c0. But it is easy to
see that every expression of the form

zﬂ

a‘ H

where a, m, n, are Posmve numbers, and @ greater tha.n umtf
is zero when z is infinite. For if we apply to this exam e‘
the rule for finding tha value of a fraction which assumes

form ———a.nd differentiate » times success;vely, 7 being the

integer next above m, we have

the limit of——the limit of“k( K

where £ is some constant, and - (z) a function of 2 which is
infinite when ¢ is infinite. Consequently, all the differential
coeflicients of ¢ (#) vanish when 2=0. ‘

If then we have
¢ (@) =a™,

V¥ (@) =5,
where v stands for%, and b is ‘a positive number greater
than unity, and » also positive, the differential coefficients of
all orders of the two terms of the fraction ¢(m)) will vanish

when =0, and the limit cannot be found by this method.
In the case of »=n, the fraction becomes

a -%
| G)s
this, when =0, will be 0 or w0, according as a is ter or
less than b. e g

157. The fraction

e

®
takes the form when =0, Put a:= = and we have < the ‘

ey’
limit of which, when y is infinite, is 0, by Art, 153 ;
K2
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3 . .
e 1 %, . o ‘ ‘
2 2 X & is of course infinite when &= 0.
3
Hence, %: is 0 or o when x approaches the limit O,
acoording as we suppose @ negative or positive.
158. Form 0 x o,

Suppose ¢(x) and yr(x) tWO functions of z, such that
¢(a)=0, and Yr(a)=o0; it is reqmred to find the limit of
¢ () ¥ (x) as = approaches a.

b ¥@ =22,

: &
and as the fraction on the ﬂghtl(la)rxd side takes the form
g when z=a, its limiting value may be found by rules
already given. :
‘For example, let ¢(z)=1log (2 = —) and 1[r(a:) tan

Here ¢ () ¥ () takes the form 0 x when. z=a.

log(.?——
Then log 2i—§>tanlr—w= . ).
a, 2 e
cot —
‘ 2a
The limit of this when = = a, is found by making #=a in
i1
-5.2_9‘
a
A
2° . 7w

e e 2
which glves‘ ‘ o
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Again, | o (oga),
where m and n are positive, takes the form 0 x w0, when =0
Here —a;:-— takes the form g
(log ) R
when 2=0; its limit is the same as that of
m xn-l .
n 1

which does not assist us, ‘
If we assume g =¢7, then 2™ (log )" becomes
(=) ;:/T, ;
the value of this, when y is ,is 0. See Art. 153.
The result in this case should be carefully noticed, as it is
frequently wanted in mathematical investigations. ‘
159. Forms 0°, ©°, 1%,

Let ¢ (x) and 4 () be two functions of , such that when
« = a, the expression
{p (@)}

assumes one of the forms 0°, 0 *, 1°; it is required to find the
limiting value of this expression.

Since ¢ (z) = elosd ),
we have {¢ () }¥=) = ghlaogd(a),

Now ¥ (x)log ¢ (z) in each of the proposed ‘cases takes
the form 0 x o, and its limiting value can be found by
Art. 158, and thus the value of {¢ (x)}¥* becomes known.

For example, 2%, when = 0, takes the form 0°;
x® = ¢*1oe% ;
and xlogz =0, when 2= 0, (Art. 158);
therefore, a” =1, when x=0.
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sin .
Again, (i) ’takes the form 0 ® when 2=0; also

1\snz
(_) = e-dn:los.f.
2, .

Now, sinzlo’ga:=%‘f.zlogz;

when =0, we have

zlogz =0, (Art. 158),

therefore sinz logz =0, when z =0,

1 singe
therefore (5) =1, when =0.

E
Again, ( - g)u % takes the form 1°, when z=a.

The above expression = ¢™"% % (-9
= e' when z =a, (Art. 158).

160. Form o — .

Let ¢ (x) and ¥ (2) be two functions of # which become |
infinite when & =a, then ‘

$ @~V ()

assumes the form o — o ; it is required to find the value of
the expression.

Put y=6@) -¥ @),
then Y = ehl*)-¥ia)
e—¥in

= P2
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Thus e* takes the form % when z=a, and its value may be

mvestigated by Art. 145.
Or we may proceed thus,

then y is infinite unless the limit of %— is unity; if the

limit of ;I:(( ? is unity,

since y=

it takes the form (6)

For example, suppose y=tanz—secz;

then y takes the form o — oo when x=§.

: sec &
Also y=ta.n:c(l—tanm)

—1—cosecz
cotz
, and its limiting value is
0 g

cosec x cot
— cosec’ x

F(a)
&

this takes the form

or 0.

161. The limit of when # =, supposing F'(z) to

be then infinite, will be the same as that of Fl(z) , or F'(x).
See Art. 151.
But, =F'(z + Ok).

If @ be made to increase indefinitely the limit of the
second member of the equation is F” ().

F(o+h) - F(2)
I
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F (w)

Hence the limit when 2= o0 of

= the limit when =00 Ofw'

If for simplicity we make %=1, we have
the Jimit of 2 = the limit of {F (z-+ 1) - F (&)}

1
162. The limit of {¥ («)}* when z is infinite, is the same
log F (x)
asthat of ¢ # .
But, by Art. 161, supposing F'(z) to become infinite with z,
the limit of log.:'( 2) ; is the same as the limit of

log ' (2 +1) — log F'(2),
Fz+1
or of o log - (Fx(m) ).
\ 1
Hence the limit when @= o of {F (z)}*
_ .o JF(z+1)
= the limit of @)

Suppose, for example, that we require the limit when x is
l .

infinite of {g}
By the theorem just proved the required limit
= the limit of @+ )™ L

[l &

= the limit of (a: + 1)
®

= the limit of (1 + :1”)
=e by Art. 16.

163. A few remarks may be made on indeterminate frac
tions involving more than one variable.
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A function of two variables may take the form (6)’ either

when one of the variables remains undetermined and the
other has a particular value, or when both receive particular
values,
As an example of the first case, suppose
o= ¢ (*—a") .
y(@—a)+ (z—a)"’

if we make 2=a we have z= g , Whatever y may be. But

by removing the factor @ — a from the numerator and deno-
minator of z, we have
pol (x+a) )
Yy+z—a
Hence, when = a, we have
2ca

g=—
y
This case is very simple, and wheuever it occurs the ap-
plication of the preceding rules will give the limiting value -
towards which z approaches as @ approaches its limit.
As an example of the second case, suppose
' _c(x—a)
T y=b

This.fraction takes the form g when #=a and y =}, and

is really indeterminate. For suppose y —b=m (z —a), then
c
g==

m

Hence the value of 2 is indeterminate, for « and y being
independent m may have any value we please.

*

2

164. It may happen that the values which such a function
assumes, although infinite in number, are confined within
certain limits. For example, suppose

_5@—@’—@
ENCED TR
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Assume y—b=m(z—a);
th;arefore z= fm = e
"."H m+%

Here the greatest value of  is When m = 1, and z always
lies between ;—: and — % .

165. We give two more examples.

‘ _(ez=a)"+ec(y—=b)"
Ist.’ Let *= o aF ¥oly=b)’

1his takes the form g when z=a and y =b.

Put x—a=h and y—b=k;
h™ 4 ck®
therefore g= ok’

If now we assume k= 4A", we have
o= B*+cA"h
TR 4 c AR’

and, according to the different h}ypotheses we make respecting
a, m, D, ..., we shall obtain for z finite, infinite, or zero
values.

0rl Lot 5o @=9 @ =(0=g)a"+ =)y

i B CENICEPI )

If x=a, and y=a, this takes the fOl'mg. Put ¢ + 4 and

a + k for x and y respectively ; we shall have
o (h=—k)a*+k(@+h)"—h(a+k)"
- (h— k) kh ‘

~ If we expand (a + k)* and (a + k)", and make some
reductions, we obtain

z="—(?;212a“"+2—@-:—.1;—.%———ma"‘(h+k)+...
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Hence, putting & and % each zero, we have

nin—-1) .,
1.2 "

This result may also be found by examining the limit
towards which 2z tends as « approaches y, and then the limit
towards which this result tends as y approaches a.

The next Article must be omittéd until the student has
read Chapter X1

166. Gererally; if 2 =f (2 y; , 4nd both humerator and
denominatot of ¢ vanish for certain values of z and ¥, the
value of z is really indeterminate, and in fact depends upon
the arbitraty relation we thoose to establish between z and y.
Suppose that #=a, y=5, are the values which make z assume

o’ and dssumé that y =+ (z), where ¢ (z) is any
function the value of which is b when z=a.

Thus the numersator and denominator of z become func-
tions of @ only; and by previous rilles for ascertaining the

value of a fraction which takes the form g, we have

@
(%5 +(F)v@ ’

@ being put =a and y =5 after the differentiations are per-
formed. This value is indeterminate, since 4'() is a function
which is quite arbitrary.

But if (%) and (‘g) both vanish,

. d d .
or if ( Jgf}.) and (75—) both vanish,
then the value of z becomes determinate.

the form
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The value of ¢ is also determinate if
(& ("”)
.(gj (dy)
B-o -0 §)-o (§)-o

then proceeding to a second differentiation we have

"’")+2(% ¥ @+ (75) ¥ @

(fw' +2(da:dy)"r()+(i?) W @y

which is generally mdetermlnate{ since Y (x) is an arbitrary
function,

Example 1. Suppose
log x+logy
x+ 23/ 3!

(df) —=1, when =1,

, (Art. 176),

g=1, béli

252 E
Il
W |-
N
g
E|
&
B
L]
|
[

1+ (@) (w)
therefore =115 7 T4 99 @)’

which is really indeterminate, and may assume any value
between + o and — .

Example 2. Suppose
(a: i+ y -1
(a:' @=1)—y+1°

Here 2 takes the form 0 9 $hen z =1 and y=1.
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"Also then . (g; =0 and (‘%').;0.
Hence 2 has a determinate value, namely, —

_(z+
Example 8. Suppose =T e

Here, when 2= 0 and y =0, we have

@ - @0 (&)
and g 12y (T)+({;§»} (@)} 11 ::1; g:g}.

_+ u)’
S1ye

Here the value of z is indeterminate ; but 1t w111 be found
that it is confined between the limits 0 and 2, as may be

shewn by writing the fraction just given in the form 1 +i—+—ug,

say.

remembering tha.t T is never greater than unity.

167. In solving examples on this Chapter there are
various considerations which will abbreviate the labour of the
operations, as will be seen in the following case.

Find the value of log (1 +2+4") +log (1—2+2")
sec & — Cos &

when & =0.

The proposed expression takes the form g when 2=0. If
we proceed in the ordinary way, we shall find after reduction
that the differential coefficient of the numerator is

2z + 4a°
1+a + 2"’
and that the differential coefficient of the denominator is
sin @
cos’x

.+ sin 2.
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Thus we obtain again the form -g, and we may continue in

the ordinary way the process of evaluation. We may how-
ever obtain the result more easily by arranging the fraction
we have now to evaluate thus:

2 (14 22") cos* % 2
(1+2'+4a") (1+cos’a) " sina’
Here the first factor is not indeterminate when x=0; its
value is then unity. The second factor takes the form g,

and its limiting value is known to be unity. Thus unity is
the required limiting value of the original expression.

Or the original expression may be evaluated in the follow-
ing manner. It may be put in the form

cos z log (1 + &* + )
sin’z :

Now cosz=1 when 2 =0; we need not then pay any atten-
tion to this factor, but consider that we have to evaluate

log (1 + o* + &)
sin'z
when #=0; and we may proceed in the usual way to dif-
ferentiate the numerator and denominator. Or if we are
allowed to use the results of the expansions of functions we
have
log (1 +2* +4*) =ax‘+m‘—§(x‘ +a')+§ (' + 2% — ...

sin’e - Zt..y
Ztizt-..
at—at+...

_1+3s—...
1"'*”""000

=1 when & =0.
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EXAMPLES,
Find the limits of the following functions:
1. :-:—gfl, s when 2= 1. Result 1. r
2 z-1 ‘ when =1, ‘ Rewl; -1- \
C a1’ : : 7 J
3. e;i;: , x=0. Result 2.
4. e';: m;:m R =0, Result 2. /
- 1 ﬂ
5. m(s;:“a:’ z=0. Re‘auh—%.
, ) B
a* -5 a
6. - z=0. Result log 5
7. 2oz 2=0 Result 2.
« —sinz 1
8. X 2 ’ x=0 Result é.
9. ‘ slansw , © x =0 Reault "'g:
& — - sin 2%
2
10, IL_%_’fwljﬁ%, z=1 Result — 1.
11. -1%5—10—:—“-’, xz=1 Result —1. (0 —C
12, ﬁ':%;%t"_, z=0. Result 2. %
. o ' - ° o
18. sin2z+ 28" ¢ —2s8n & z=0. Result 4  °

cos & — cos’ x
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14 ztanx—;secz. zug. Result - 1.
x—2)c"+x+2 _ 1
15. (3.—1)' » =0, Result—é.
x4 82® — To* — 27c — 18
Sy i T U Result 10
1
_$=—3. Resultib.
— 4 B
1. m/(3x12a;)! :cJa:, _— Result:—(l)
-1+ (-1t . 3
18, —————~, =1 =2
@-1-z+1 e Besult —3
3 _ _nt
19. E-Tl(}f”l)—l) z=1 " Result 0.
m sin & — sin ma om
20. 2 (008 = —cosma)”’ xz=0. Result-?’—.
o 2 .
21. 1 —cos ma’ x=0. Result"—z,
" gin (& + @) —sin (a=)
22, oos (a + ) —cos(a—a)’ =0, Result — cot a.
23. % . q:ﬁo. Result 2.
' _ -
24., (o w:w',)-'-a = » T=a. : R“"'Z“'_;ml'
W (@-5) +viea—a) Vit
a .
‘»,~/m—,,/a+\/(a:—a) - 1
25. V@ —a) R z=a. .  Result Jea"
2 + cos 2 — sin & m—22\' w 1
26. \‘/(a:sin2x+wcos_a—:)—(2sin2x)"w_-2-' Result—-z.
27. 2sinz, @=w.  Resula.




28.

29

30.

31.
32.
33..
34.

36.
37.

38.

39.
40.

41.

42,

EXAMPLES OF INDETERMINATE FORMS. ‘145

(a,‘l—‘ -1a, ..

. (g+ 1)',

m® sin nx — n” sin mz
tan nz — tan mz  ’

(e,

1

-

R

= f_'

ctﬁ’
(cos ma)z,
(cos ma),
(cos ma®,

«* (cot z)* +sin

x ¢

(*—e™)'— 22" (" +¢™)

. &
1-y/(1-2)
V(1+a)—

- (sin @),

2 —sginx—cosx
log sin 2z
T.D.C.

s

Vita)

=00,
= Q.

(1) z=0.
(2) m=n. :
(2) Result n™™ (n cos nz — sin nz) cos’ na.

r=0,

x=0,

z =0,

’ £
Result 1,/ —

0X 03
%0

Result log a.
Mlt e

(1) Result 1.

o}
Result 1. /|

\

\C\

¢
Result, e‘L ( C:\

Result o .
ARasult 1. /%
Resulte™ T, /
Resuli 0.
Result 2.

Result — 3.
Result 1.
Result1. O

Result — 3 «/3 R

L N
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43.

44,

45.
46.

47,

48.

49.

50.

51,

55,

-EXAMPLES OF INDETERMINATE FORMS,

a.  Result -4—(-.‘.
x

Result 2.
mw

Result *.
e

Result 0.

Result .

=0,

. T (=2 =
A(a wﬁ.cot{2¢(a+z)}, @
‘ (l—z)ta.nz;f,‘ =1
a :
', xz=1
=7, z=0
T
800—2-
g T —ar z=t
1

(da™+ Ba™' ...+ Mz + N)*, x=®.  Resultl,
'ilo 2z + b+ 2 y/(ax + bz + 2")
vz 8 b+ 2 (a) ’

Reals 3 (W(a+8) — Va.

Vi -k o

cos 8 — cos af

e _ g9 ? z=a.
8'+10g (1;)
_—_.L_, x=0.

tanx —

ésinz — e* {sin a + +/2 (x — a) cos (a

Result — 1.

sin afes”

2a

Result

Result — 4.

—im}

Tr=a.

€—¢e(x+1l—a)

1 1 1

(af'+a;’:...+a.;)", .

(x+sinx — 4 sin §x)*
(B+cosz—4cosix)®’

x=0.

Result 2 cos a.
Result a,a,...a,

128
Result -8—1- .
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2]

56. {loga;}’ r=wx. Result 1.
o
: ] gt |
57, Qgm + A=) z=1. Result 1.
sin® (z —1) ‘
58. Shew that when z is infinite 7 8 infinite or zero, o9

according as m is greater or less than #; a and & being
both greater than unity.

59. Shew that when z is infinite
z — &’ log (l +- ) %

60. If us/(xc) = ta"ajx+l {jc N/(l+?)},shew

that u=g—ad‘—ld—;————whenw 0; and that u=0

o 0010

a.ndd—z=0whenz=w.

L2
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CHAPTER XI.

DIFFERENTIAL COEFFICIENT OF A FUNCTION OF FUNCTIONS
AND OF IMPLICIT FUNCTIONS.

168. SUPPOSE u a function of y and ¢, and y and 2 them-
selves functions of =; it is required to find Z—g . ' This of course

might be obtained by substituting in u for y and z their values
in terms of @, by which substitution u becomes an explicit

function of z, and % can be found by previous methods.
du
dz

without requiring the substitution for y and z. To this rule
we proceed. '

169. Suppose u=¢(y, 2),

where y and 2 are both functions of . Let @ become z + Az,
and in consequence let ¥, z, and u, become respectively y + Ay,
z+ Az, and v+ Au. Then

Au=¢ (y+Ay, 2 +A2)— ¢ (y, 2) _
=¢(y+A4y. 2+ 82)— Py, 2 +A2)+ (3, 2 +82) —~ $(y, 2);

: Au _d(y+ Ay, z+A2)—P(y, 2+ Az) Ay
therefore A Ay As

LB 58— b(y4) As
Az Az’

Now let Az and consequently Ay, Az, and Aw, diminish
without limit ; then

But it is often’ convenient to have a rule which gives
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the limit of %—: is g:,
. . Ay . dl
the limit of‘—ﬁ i8 5
. . Az . dz
the limit ofA—w is 5.
The limit of ¢y 2+ AA'?, —9 (3.2 is the differential

coefficient of ¢ (y, 2) or u, with respect to z, taken on the.
supposition that z is the only variable ; and may therefore be

denoted by % .
The limit of $(Y+ A% 2+82) —¢(y, 6 +42) L 1y e,

Ay
did not change, be the differential coefficient of ¢ (y, z + Az);
with respect to y. But as Az diminishes without limit with
Ay, the limit is the differential coefficient of ¢ (y, 2), with
respect to y, taken on the supposition that y s the only
variabls.
‘We have then finally
du _dudy  dudz

&z~ dydstds &z

du

170. In this result dy denotes, as stated, “the differential

coefficient of u, taken with respect to y, supposing y alone to
vary.” It is not impossible that the reader may be inclined
to say, “But y and z being both functions of =, if y varies,
z must vary too, how then can I make the supposition that

. y alone varies?” His own further reflexion will probably

remove the difficulty, if such it be. Should he however be
unable to satisfy himself, it may be suggested to him that
we do not make the supposition that y alone varies as a
Jinal supposition. We allow for the variation of both y and
z, but it is convenient for our purpose to consider these varia-
tions one at a time. - '

It is usual to write (dl—‘) and (d_u) , instead of du and du ,

‘\dy. dz dy~ dz

the brackets serving to remind us of the suppositions to be
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made in finding the values of these differential coefficients.
Hence the above equation should be written

du _ du) dy du) dz -

=™ (dy dxt (E; de*
Of course the brackets may be omitted, and indeed frequently
are omitted, provided we can feel certain of remembering the
conditions which they are designed to express. The beginner
will do well to use them, although as he advances in the
subject he may be able to dispense with them.

171. For example, let u=2"+3"+ 2y,

‘z=sinax,
y=¢;

du

then (@) = 3y’+ 2z,

dy _
prinkdl

: ‘k—cosz'
dz !

therefore g—:’:_ (3y*+2) €+ (22+y) cosz
= (3¢ +sinz) ¢ + (2sin 2 + €*) cos
=3¢" + ¢’ (sin ¢ + cos z) + sin 2z ;

and this value is of course precisely what we obtain if we
substitute in u for y and 2 their values in terms of z, thus

" obtaining u =€ + ¢" sin z + sin’ , and then differentiate with

respect to x.
172. An important case of the general proposition is
obtained by supposing 2= so that %= 1. We have then

(3843,
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Here we cannot dispense with the brackets or some equi-
valent notation, (g ) denoting what would be the differential
coefficient of u with respect to if y were not a function
of «, and g; denoting the actual differential coeﬂ"lclent of u
with respect to x, when y 15 a function of .

178. For example, let u = tan™ (zy),

y=e;
du\ _ g
then (d_x) ———'—'——'1 T x,y,,
i) __s
(&) =5y
Y _ .
dn= ¢
du _ez+y
therefore & 1T dy
_e(l+2)
- 1+w'teu ’

which of course is what we obtain if we differentiate tan™ (e®)
with respect to .

174. Suppose u=¢ (v, y, 2) where v, y, 2, are each func-
tions of z. We have, as before,
=p(w+Av,y+ Ay, 2+ A2)—P (v, y, 2)
=¢(v+Av, y+ Ay, 2+ A2) =& (v, y+ Ay, z + A2)
+¢ (v, y+Ay, 2+ A2) —¢ (v, ¥, 2+ Az)
+o(ny e+82)— (v, 9 2);
Au_¢ (v+Av, y+ Ay, 2+ Az) — ¢ (v, y+ Ay, 2+ Az) Av
Az _ Av Az
¢, y+Ay, 2+ A02)—¢ (v, 9 z+Az) Ay
+ Ay Az
¢ (v.y, 2+ Az)—¢ (v, ¥ z) Az
Az Az’
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Proceeding to the limit, we obtain

du  (du\dv  (du\dy du) dz

7z (Ezv) dz+(dy)¢h:+($ &
The process may be extended to the case in which u involves
more than three functions of a.

175. Examples may occur more complicated in appear-
ance, but essentially involving the same principles as those
“of the preceding Articles. Suppose for instance

u=¢([y, 2 ),
v=v(y, 2 2),
y=f(),

z=F (),

g0 that u could, by performing the requisite substitutions, be
made an explicit function of z: it is required to express the
differential coefficient of u with respect to z, without pre-
viously making these substitutions.

z-@e+ @2+ @z @)
32 @@z (@)

Bof o) E=F@.

Henco %= (%) [(2) ' @) + () F 0+ (Z)}
+( ) @+ (Z)F @+ (3):

176. The same suppositions being made as in Art. 169,
s . d’u
it is required to express = ‘We have
du du) dy d_u) dz
dx (dy dx (dz dx’
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Now (3;;‘) 18 itself & function of y and z. If we denote it

by v its differential coefficient with respect to = will be

G2 @E

which may be written
d'u\ dy d’u\ dz
(Ey") dxt (m) dz

The differential coefficient of g—;l with respect to z is %
Proceeding in the same way with the term

du\ dz

)%
and remembering, (Art. 134), that

(@) -G

we have
] 2
() D Go e @&
(@S
dz d*z

If 2 = x, we have ¢Tm=l" d—;:O; thus

du (d’u) dy)’+2 ( d'u )dy+ d’u) + du) dy
da? \dy* (d:c dy dx/ dz (d.z"' (dy dx'’
177. Hitherto in this Chapter we have given methods
which, although .often convenient, are not absolutely neces-
sary, as in all cases, by effecting the required substitutions,
we may obtain an explicit function of z, and differentiate it
by known rules. But the case we now consider is-one in
which a new method is frequently tndispensable.

Let ¢ (z, y) =0 be an equation connecting the variables =

and y: it is required to find % If the given equation can
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be solved s0 as to give y in terms of 2, say y = (), then the
differential coefficient of y with respect to # can be found by

previous rules. If z can be expressed in terms of y, we can

. dx dy . de_dy o
determine s and theg 7, fince (—5 Xao= 1. But as it is

often diﬁicullt, and sometimes impossible, to solve the given
equation, it i3 necessary to investigate a rule for finding gz
which does not require this operation.

Put u for ¢ (2, y). From the given equation y is some
definite function of = ; hence

(B2

is, bﬁArt. 172, the differential coefficient of » with respect to
. But »1is always zero, and therefore so also is its differential
coefficient with respect to . Hence

0= (3) i+ (%)
du
therefore % =— gg’:—) .
(&)

178. This important result may also be obtained thus,
which is in effect combining into one Article portions of the

preceding pages. Let
¢ (@ y)=0.

Suppose z to become z + Az and y to become y+Ay, so that

- $ (z+42, y+Ag) =0.

Hence ¢ (x+ Az, y+Ay) — ¢ (2, y) =0,

and ¢ (z+Az, y+Ay) - (x+Az, y) + ¢ (2 + Az, y) — b (z, y)=0.

Divide by Az, and we have

b (a+ Az, y+0y)~$(@+A2,3) Ay , $tAny)~d@y) _,
Ay Az Az ’

This equation, being always true, remains so when Az and

Ay are diminished indefinitely.
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The limit of ¢ (x+ A¢, '/) - ¢ (xt .'/)
Ax

is the differential coefficient of ¢ (2, y) with respect to z,

Jormed on the supposition that = alone varies, and if we put »

for ¢ (x, y), this limit may be denoted by (g_:) .

The limit of $@+Azny+ Ag) —¢@+Aazy) would, if

, when Az diminishes,

Az remained constant, be the ydiﬁ'erential coefficient of
¢ (x+ Az, y) with respect to y, formed on the supposition that
y alone varies. But as Az diminishes without limit when
Ay does so, the limit is the differential coefficient of » with
respect to y, formed on the supposition that y alone varies.

It may be denoted by (Z—Z) .

. By . d '
The limit of —A—Z is ag Hence finally
du\ dy . (du
() 2+ (@)=o
179. For example, suppose a’y* + b%* — a’’ = 0.
Here u=a'y’ + b’z — a't’,
(@) = 2b%,
dx 2
du\
| () =2
therefore a'y % +bz=0,
dy b
S e iiiereeseececsniisnsene 1.
therefore o pem (1
Since y= ?—l,\/(a’—a:’) from the given equation, we obtain
directly ‘
R . S @
dz  ay(a'—2')

When in (1) we substitute the value of y in terms of ,
the result agrees with (2).
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In this case we can verify our new rule, by comparing its
results with those previously found. In ~more complex
examples, such as

&’ — ax’y + by’ —y° =0,
we can find Z—y‘; only by the new method ;
putting u for o® — a2’y + b2’y — 3, we have

(‘;—:) = 5.* — 3az’y + 2bay’,

(%) =— az® + 2baly — 5y*;
dz/ 5zt —3azy+2bzy

= Thyf—2by +axt

180. We shall now investigate the second differential
coefficient of an implicit function. .

From the equation

therefore

uor ¢y =0,
@
we have deduced , %——-%w— ..................... 1);
(dy)

2,
it is required to find Z—;Z

We observe that ( ) being a function of both z and y,
its differential coefficient with respect to  must be found by
Art. 172, If we put v for (Z—Z), the required differential
coefficient will be

dv) dy + (_ig)
(dy dx (d:c '

Similarly, denoting ( y) by w, we have for its differential

coefficient with respect to z,

() e 2).



OF AN IMPLICIT FUNCTION. 157
Hence, from (1),

iy D0 BT

N (33

the latter symbol denoting that u is to be differentiated twice
with respect to «, on the supposition that x alone varies; also

3)~ (dree)
(dy - (dydw '
the latter symbol-denoting that u is to be differentiated with

respect to x, supposing x alone fo vary, and the result with
respect to g, supposing y alone to vary. Similarly

(;l::) (di'dy)
- @)-@)
Hence, sx;bstituting in (2), we have

o BlifG (G225

If we substltute in (3) the value of == dy glven by (1), we

have, since (Zj_’z;) =(d_f%'§) by»AIA't. 134,

oy, (&) (@)~ ey () )+ () &)

@)

v (4).
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181. This result may also be found :from Art. 176, by

supposing =0 always, and therefore g;? =0; or indepen-
dently thus. :
From u=0
. du\ dy u\
it follows that ( @) s (E) =0 cieerreneennanns (D).
Denote this result for the sake of shortness by
v=0.
dv\ dy dv) _
Hence (d_g/) st (2-5: =0 .eiiinienenienenns 2,
which result, expressed in terms of u, is
d*u d*u i’l d*u dy)’ du) dy _ .
(%,)H (dx——dy)d”+ (@,) (d—z + (@ =0...3);

dy . . . . ., dy
as - is already knowa, this equation will furnish T
Equation (1) is frequently called the “first derived equa-
. tion,” or “the differential equation of the first order;” and
equation (3) is called “the second derived equation,” or the
“differential equation of the second order;” the equation w =0

being called the “ primitive equation.”

182. Should the reader succeed in correctly deducing for
" himself the important equation (3) of the last Article, he may
omit the next two Articles, as it seems unnecessary to direct
his attention to difficulties he might have felt, or mistakes he
might have made. If however he has failed in his attempts,
he may compare his process with the following.

In (1), put p for Z——Z, so that v stands for

| (&)2+ (%)
e (3)= () + () () + (@)

-G GO
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Thus (2) becomes

{(%) p (d‘u) (d_Z) (dfzw)} P

. («f ;y) p+ (dy)

@) (BB @)

But (%) p+ (dp) =%, thatis 39, (Art. 172), and with

this simplification we obtain the reqmred result.

A very common mistake is to omit the brackets in
(dz)P'*' (Z‘:), and thus (g—g) is written % , and there

remains a superfluous term, namely Zz , or as it has perhaps

been written by the student, d%'

183. In Art. 182 we proceeded very strictly according to
the literal requirements of the rule involved in equation (2) of
Art. 181. We might have reasoned thus.

We have merely to express symbolically the fact, that the
differential coefficient of

du\dy | (du
(dy) dx + (370)
with respect to @ is zero.

Now the differential coefficient of (dy) with respect to x

. d*u du\ dy
’ (my) + (@) o’

. . . dy .4y
and the differential coefficient of 7 with respect to « is Ta
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Hence the differential coefficient of (g—;) % 18
{(%) + (%:) %} % + (.%) %{‘ ........... Q).
Also the differential coefficient of (g——:) is
((g%w) % + (%) ...................... 2).

Collecting the terms in (1) and (2), we have

d*u d*u dy d’w\ (dy\' , (dw\ d'y _
' (d.v") +2 (da: dy) 2t (dy’) (dz) + (dy) @=%

184, It is not necessary to proceed further with the
successive differential coefficients of implicit functions, as the
equations become too complicated to be often used. The
reader may, as an exercise, obtain the following result from
equation (3) of Art. 181, by either of the methods we have
used in Arts. 182 and 183:

(52)+2 i) (e (2 + () (&

() (54 S0 (8 o

‘We may observe that it is often found convenient to use a
certain abbreviated notation for partial differential coefficients.
Thus if ¢(,y) be any function of z and y, any partial differential
coefficient of the function may be indicated by the letter ¢,
with accents above corresponding to the number of differen-
tiations with respect to «, and with accents below correspond-
ing to the number of differentiations with respect to 4. For

example, ¢"” will indicate (d’Ld(;ﬁ) , and ¢’ will indicate
(d'¢ (z,9)

——W) , and 8o on.

We méy also use y for d—%, and y" for f—g , and so on.
Thus with the present notation the equations (1) and (3) of
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Art. 181, and the equation which may be obtained from (3)
will be expressed respectively as follows:
$+oy =0,
¢ +20,y + 6.9+ by =0,
$"+34"y+34,y"+9,9°+3(p/ + .9y +dy" =0.

185. Supppse the two equations
Sf@y 2= 0:
F(z, g, 2)=
exist stmultaneously, in which « is the independent variable

and y and z dependent variables. From the two given equa-
tions we may eliminate z, and thus find an equation connect-

ing y and . Hence gx may be determined. Again, from
the two given equations we may eliminate y, and thus find
an equation connecting z and , whence cT:v may be deter-

mined. In cases where the elimination is tedious or imprac-
ticable we may proceed thus.

Let u denote f(z,y, z) ahd v denote F (z, y,2). Since y
and z are functions of z, the differential coefficient of % with
respect to @ is, by Arts. 172 and 174,

du du\ dy | (du\ dz
. (dx) + (dy) + (dz) ;
and since » always =0, we have

0= (d“) (‘Z) ZZ + (%‘) SR .

Similarly, 0= ( )I'Z (d—:) d; ............... @);

HDH-@E .
7 @)-3 E :)

T,.D.C. M

from which we ﬁnd

(@)
o_ (@
dz (




o @E-@G
B @

186. By differentiating equations (1), (2) of the last Article
with respect to @, we obtain

(E5) 425 a2+ (2 2
() B () (2 + () 5 () o

EOEAEAEAL e
2 (Fn) 2 e+ (@) & + @) §;+("”)%—°-

From these equations we can deduce I’F and %, which

may also be found by differentiating equations (3) and (4) of
the preceding Article.

187. Suppose we have n equatlons connecting n + 1 vari-
ables @, , 2, ...... t. Let the equations be

I"'l (m, Yy 2y ennens t)=0, say u, =0,
F, (@ y 2...cc. {)=0, say u,=0,
F. (29, 2 .e0ne. t)=0, say u,=0.

From these equations all the variables but .one may be
considered functions of that one. If z be the independent
variable, we have by differentiation, as in Art. 185,

0= (@) + (@) 2+ @)z (@) B

o= (3)+ () B+ () -+ (3 %

@000000c0s0ss00cessecss00see LX)




SIMULTANEOUS EQUATIONS. 163

C o (du, du,) dy du,\ dt
! 0—(%)4‘(@)%-’- ......... +(E)d—5,
from which » equations we can determine the n quantities
dy dz dt
To? Do e o

188, Suppose ¢ (z, y, 2) =0 to be the only equation con-
necting three variables, so that z may be considered an im-
plicit function of the two independent variables z and y: it
is required to find dz and dz .

dx dy

By 3—2 is meant the differential coefficient of z with respeét

to «, supposing y constant, and by % the differential coefficient

of z with respect to y supposing « constant. Theoretically
we may from the given equation find the value of z in terms
of # and y*and then effect the differentiation by common
rules; (see Art. 131). But to avoid the difficulty of solving
the given equation we adopt another method. Suppose y
constant, 8o that we have two variables & and 2, and let %
stand for ¢ (z, y, 2), then by Art. 178

(g—:)+(g—:) g—:=o .................. ;

where (Z—:_:) stands for the differential coefficient of u taken

on the supposition that # alone varies, and (g—:) for the_ dif-

ferential coefficient of » taken on the supposition that 2 alone
varies. Similarly

du du)\ dz
== 5] 5-=0....... Gevesenntranns 2).
(dy) + (dz) dy 0 ' )
Equations (1) and (2) determine p P and &
. d% d*z :
‘We may determine o and & by the method of Art. 180,

M2
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or by that of Art. 181. If we adopt the latter method, the
two equations we obtain are

()20 % () 8+ ()

()~ () 5 () () + (@) 5o

We can obtain an equation for finding J‘—l% by differen-

tiating (1) with respect to y, or by differentiating (2) with
respect to . 'We thus deduce

(df:'y) + (di’:i.‘v) dy + (ddz’dt;/) Z:zc + (Lfl::) Z;zy Z::
du\ d'z
. (@) ge=

189. Suppose we have two equations connecting four
variables; for example,

S, x,y, 2)=0, say u, =0,
F(v,xy,2)=0, say u,=0;

from these equations v and 2z may be considered functions
of the independent variables # and y. If we eliminate v we

obtain an equation connecting z, #, and y, so that Z_i and ?
may be obtained by the preceding Article; and similarly
if we eliminate z we may find Zii and {13 . Or we may pro-
ceed thus: from the equation u, =0 we deduce, by Art. 174,

du, du)\ dv | (du)\ dz

(@)@ 2+ @) %=
and from the equation u,=0 we deduce

du, du,) dv du) dz

@)+ (@) o (@) =0

from which dv ds

dmanddxcanbefound
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" Similarly, from u, =0 and u, = 0 we deduce

@)+ @5+ @) 5

du, du dv | (du) dz _
wd (G @) @)F0
from which % and 2 can be found.
y  dy

In such equations as those in the present Article it is

very common to write g'—f, ‘Zz, -@, ..., to denote (—ZZ‘,
ly’ dv’ dy dy

du, du,
av’ dy’

190. If values of  and y which satisfy an equation u =0
du du
involving # and y, also make ( da:) and ( dy) vanish, then
' (@)
‘-izl— , which =— dx- , assumes the indeterminate form 9
de’ du 0
(dy)
If we apply the method of Art. 145, we have
du d’u) d'u )
— + —_—
the limit of <32 (@ )— the Limit of (ii% ,
@) (@) + (&) 2
dy da dy dy’) dz
the numerator and denominator of the second fraction being
respectively the differential coefficient of (d) and of (du)
with respect to z.

dy
dxz

‘We have then N
2, 2,
%=_<%)+(d%%)% o
w --------------------- .
(T=e5) + (T}) 2



166 EVALUATION OF DIFFERENTIAL COEFFICIENTS
. . . . /d* d'u '
In this expression we must substitute in ( ) , ———) ,
» P ~ dz (dz dy.
and (ﬁ) » the values of z and y under consideration, and thus

we obtain a quadratic for finding % This quaﬂratic is

ZD 2(dzdy Ly )_o .......... @;

equation (2) agrees with equation (3) of Art. 181, remem-
du
bering that by hypotbesis (7-) =0.
ring that by hypothesis ( dy
191. Should the values of = and y we .are considering in

addition to making w=0, (g-:) =0, (‘Z/") 0, also make

(d:;)=0» (Z’;) 0, (Zz%) =0, then the value of %

given in equation (1) of the preceding Article also takes the
form % Hence, applying again the rule for finding the

limit of such a fraction, we have

%=_ g;ﬁ) dac’dy dz ( )( ) (;4".(1)_

(d?&;—y) (dxdy (dy) ) dy*) do*
Since ( Tod ) and E) y,,) vanish, we obtam from (1)

%‘f) dy) (dxdy‘)( 0+ (dx’dy &t dx") =0...@),

where in all the differential coefficients of ¥ we must sub-
stitute the values of @ and y under consideration, giving a

cubic equation to determine % Compare Art. 184.
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It must be observed that th’ig m'ethod is liable to an
objection. We assume that dmd_:l; g;,y and %" % vanish

because in each case one factor vanishes; if however 3—3 be

d'uil’_g

tnfintte, it does not follow necessarily that Tody 2 and

‘%: %’ vanish. See Art, 380.

192. Example. y‘+ 3a’y’—4a'ry—a's*=0, or u=0,

Here (—u =—4a’y — 2a'z,
(% =4y" + 6a’y — 4a’z;
dy da’y+2d'z  _  2d'y+a'w
therefore dz~ 4 + 6a’y— 4o’z 2 + 3a'y—2a'z"
" Here 2=0, y=0, satisfy u =0, and make 3—% assume the
form g .
Differentiate both numerator and denominator, and we have
d .. 2a* % +a
Z‘% = the limit of -
(64" + 3a") ‘7;! -2
%Y 41
= 1?'”— ultimately.
3% _9
dzx
Hence, %(3%—2)=2%+1;
‘ ‘ AN _ 4B 10
therefore . 8 (E) —4 o 1=0;
dy 2447

therefore =8
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Again, suppose ay®— b’y + ‘=0 to be the given equation.

Then d“) 4 — 2bay,
' du

&y =3ay’ — bz’;

dy_4a'— 2bmy

therefore o= 17— 3an 3ay

This value of % takes the form 5 when « and y vanish.

Hence, differentiating the numerator and denominator, we
have 2
— by —2bz &Y

dy 125" — 2by — 2bz ==

)

2bx — 6ay %
when z and y are made = 0.
Again, we have the form (6) . Hence, diﬁ'erentiating again,

dy
dy 24 — 4b —— - 2lw 3?

. ea(-’/) —6ay>Y, y’

da*
z and y being made each =0. Thus assuming that a}%

and y Z—:g vanish, we have

@l ()} - 0,

from which % =

or =i,\/b

193. It may be noticed that equation (2) of Art. 190
differs from equation (3) of Art. 181 only in the omission of



WHEN INDETERMINATE IN FORM. 169

2
the term (%) g—g . This term would not occur if % were

8,
a constant ‘quantity, for then Z—a;,y- would be zero. Hence

equation (2) of Art. 190 may be derived by differentiating
the equation
) du dy

dy) dx~
with respect to # and treating g—z as if it were a constant.

Similarly, equation (2) of Art. 191 may be deduced from
equation (2) of Art. 190 by differentiating with respect to =

andtreatmggwasqutwereawnmm

194. If in equation (2) of Art. 190 we have ( 7 y’) =0,
then

y__ (@
= 25y

as one value of Z_Z; The other value of % will be infinite,

for we know from Algebra that if we have a quadratic
equation and the coefficient of the highest power of the un-
known quantity gradually diminishes without limit, then
one of the roots simultaneously increases w1thout limit. See
Algebra, Chapter XXI1.

195. The value of 3—5, when the values =0, y =0, make
it assume an indeterminate form, may often be more simply
found thus. We have only to seck the limit of % asz and y
diminish without limit ; this is obvious from the meaning of
iy , or from Art. 145; it will be seen too if we refer to the

dx
geometrical illustration of Art. 38.

Example. y'+3a’y — dd’zy — a’s* = 0.
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y L] 2 y .
Hence, y’(;) +3a'(£> —4a'2 —a'=0.
]
If now g have any finite limit, the term y* (%) will vanish

~when y=0, and we have for finding the ultimate value of g

the equation

3a’ (*Z-:).— 4o’ (‘:ﬁ) —a'=0,
or 3(%)’—4(%)—1%;
the;'efore '*:i = 3.33_’\/1 .

If "é have an infinite value, then Z bas a value zero:
putting the given equation in the form

¥ +3a"— 4a’§ -a (5).= 0,

we see that —=0 ultimately would not satisfy it. Hence ¢

z
has not an infinite value.
Again, suppose  .ay’—ba'y +2'=0;

therefore a (%):— b (%) +2=0:
;vvhen « vanishes, we have i‘/ {a (‘%)’— b} =0;

therefore Y=o ultimately, or y_ + ,\/ 4 .
. @ P a
Again, suppose &'+ aa’y + oy’ —y'=0;

¥ \'- . (Y=
the‘refore z+az+ba) y(m) =0.
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The fintte limiting values of % are given by

a¥1p(?)=
a;:-'-b(z) =0
therefore ¥ =0, or y__2.
@ x b

And since the given equation may be put in the form

3
o(&) +a(Z +5(2)-s-0,
.we see that ;—:= 0 ultimately satisfies 1t ;

therefore 3 = oo ultimately for another value.

Hence the limits ofya.re 0, o —5, or ©.

This method is free from the difficulty which is pointed
out at the end of Art. 191.

If we wish to ascertain by the method of the present Article
the value of Z—g at a point for which #=a, y =0, we may put
a+a for z and b+y' for y in the equation which connects
« and . We shall then have to find the value of Zx’ when

a'=0 and '=0; and this may be ascertained by the method
shewn in the precedmg Examples.

EXAMPLES.
_ 2% — o ' .
1. Ifu= )/ (m), where 2 and y are functions of z,
find 5.

2. If u=sin™ ; , where z and y are functions of z, find :%:
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10.

11

12,

EXAMPLES OF DIFFERENTIAL COEFFICIENTS.

" dy___my
Ifye”—ax"‘, Zg—x(1+n—y)'

If o —yr=0,  A_Y-yley

dx o'—axyloga’

It (a+)" ('~ o) + (@ +a)y*=0, fnd 2

2 (oy) i, fnd &
If sin (zy) = ma, find s

. d’y 2ad°ry
id 3 = — e e ———
Given y*+ 2" — 3axy =0, shew that =" G —aa)

. d, a:
Given o'+ 2aa’y = a3, find Z—Z and %3{ ,
the third derived equation.

and write dowr.

I y=¢ @y, ) and ¥ (&, 9, 1) =0, find %,

Result —=

du
dy’

Result % {x’ (=) — g—z)} = (Z—TZ-’-) x ().

If u=¢ (2, y), and u=y (), find

Tf u=a + v/(secay), find %,
independent, (2) when z+y=a.

(1) when « and y are

If o + o/ (secay) =0, find Z—Z

Result dy _ _ _yn(secay) tan @y + 2a” ya" " loga .
dz~  x/(sec zy) tanay + 2a” " loga log =




13.

14.

15.

16.

17.

18.

19.

20.
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If 2+ 2ax’y — ay® = 0, shew that dy = 0, or +4/2,
dx ‘

when =0 and y=0.

If &'~ ay®+ 2axy’ + 3ax’y =0, shew that g‘%=0, or—1,

or 3, whenm 0 and y=0.

If ax+my ‘ay® =0, shew tha %=1 when z=0
and y=0. ‘

If 2" = (o~ /) (b-+3)', shew that X = 4
whena:—Oa.nd y=-—2,

b
‘\/(“' — b:)’

‘If (4" =) (& —1) (z—§)=2@+x'—2x)’,

find % when # and y vanish, and when z=1, y=1.

Results ,\/ (139) and :iiﬁ@ .

If *—y* + 3y —22*= 0, find %‘Z when 2= 0.

3
Result 1, 2, or —5
du

Find 2 if w+at+g' 44" =0,

log(xy)+——a,

log (—) +zz=0%

du y’( z—y) , &'(@z—1)

Result u Tx(@ty)  m@s+l)
i y’ d’z d% d'z
If?"'l?""l()ﬁddx’dd’ da;--
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CHAPTER XII.

CHANGE OF THE INDEPENDENT VARIABLE.

196, IN Art. 60 we have shewn that

d 1
ch':a; ........................... (l),
dy
and in Art. 63 we have shewn that
dy dy dz
d—z=ag a——z ......................... (2);

and we now proceed to some extensions of these formule.

Given @ and g, both functions of a third variable g, it |
is required to express the successive differential coefficients
of y with respect to , in terms of those of ¥ and z with ‘

respect to 2.

We have %=% Z—i by (2), .
dy |
Z |
day 9
H dy dd: d dz ds b
ence il e Pl A o y (2), ‘
ds

RIS
Mg
|
|
BhE:

(]

3}{
15
&
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dy de _d'z dy
. de* de d2* dz

dz

d'y de _d'» dy
. d% _d dF dz de* dz de
Again, Z5=7 _) " dx
(dz

@ FYE @ EFEE-F2)
()

(Lyde_Tad)de_du(dyde_dady
=dzdz dz* dz/] d» dz* \dz* a2 dz

&)
dy dy

Similarly we might express Er daf g eeeane

B8

This process is called “ cha,ngmg the independent variable
from x to z;” since in 2y the mdependent variable is x,

— —— —— -

but in the expression d the independent va-

riable is 2.

197, Suppose in the preceding Article we put z=y.

dy d' as a’y _
We have = 1, dz' =0, = 0,.ceen
de dz d*z

_d& &=
d"dy @A
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dy 1 .
and thus o —3—5 ,

dy
d*z

" @)
oy ()
) [}
= ()

198. The formule of Art. 197 may also be obtained
directly thus:

dy_1.
d:c_d_g’
dy
dy_d 1
therefore e Sl @
. dy
a1 d
—dyg'dm
dy
d*z d*z
__dy dy__ df
_—zwh);.z’v——— ég)ﬂ’
(dy (dy
d*x d'z
&y 4 I dIF dy
2~ d=z T oy 3" d
@ 7@
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5@ )

= T

@)

&'z dz d’w)‘

_ dy® dy -3 d_]/’ .
T - —uﬁ——dz .
(@) |
This process is called changing the tndependent variable
Jrom @ to y.

199. With respect to the use of the preceding Articles
we must observe that, as is the case with some other parts
of - the  Differential Calculus, the student is here acquiring
materials which will be available in some of his following
subjects. Expressions which present themselves can some-
times be much simplified by transforming them in the manner
above indicated ; of this examples will be seen at the end
of this Chapter.

200. The following is an important special case.
ary

Change the independent variable in a" T from z to ¢,
where z =¢.
d(  dy\_d s ,.dY\de
We have (= ) = 7 (=" 29 %
n, 1,
= nw“"j—ﬁ +a* Zw":/‘ x
n, n+1
d n dﬂy " d'!/ _ n+1ﬁ
therefore 5 (a: d—?‘) —nat =" o
This result may for the sake of abbreviation be thus ex-
pressed, P & o _
(d—t—n " d;’-/,=w"" dx"z ................. (1).

T.D.C. N
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Put n=1; then

(1) tme
dt = dx d.c“
dy _dyds_ dy
But & " do =%
'd'y_ d dy
therefore Z’ %, = (E b 1) EE ....... rereeesecacee (2).

Put n=2in (1); then
d Py _
(Z-2)= 2=
or from (2),

s d? ch - 2) (dt l) cevepnenpesens (8).
Proceeding thus we deduce

x.% { —(n— 1)}{ ~ (- 2)} {%—1}‘2......(4).

201. It is often useful in geometrical applications of the
Differential Calculus to have expressions for d_y and ﬂ in

dw dx*
terms of 6, supposing
a:=rcosﬂ}
g=rsin @) veernenserans (1).

Since y is by supposition some function of z, it follows
from (1) that an equation subsists between » and 6, so that
r may be considered some funetion of 6.

dy
dy 0 sm0d0+rcoso

Now a.. -—1__ from (]),
. cos@ - —rsin 6
dé dé

. adr
smoa—o-l-r cos @ 46

dy_ad a0
d?—do—a_o_r_ izl
CcoSs de r sin
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The numerator of this fraction is
%—rsine) (cosog%—rsino)
- coso%—2sin0%—rcosﬁ)(sip8%+rm0)

. d'r

and the denominator is
; dr AN
-(coseaa—rsmﬂ).
o(ar\' _d'r
det ™ [

Hence we obtain - ey .
o dr A
(cos 6 76~ Tein 0) ‘

202. Let u be a function of the indepencient variables
z and y, say u=/ (2, y); and supgose « and y functions
of two new independent variables 7, 6, so that

z=UF,(r0),
du du

y="F,(r,0)
It is required to find the values of o and v in terms of

differential coefficients of u taken with respect to the new
variables.

If for  and y we substitute their values in terms of »
and 6, we make u an explicit function of » and 6. Now, by
Art. 169, .

du dudzx dudy

&~ dzdr tdydr
du_duds  dudy
d0  dxdf " dydo

. du du
From these equations i and dy can be found.

203. If the equations which connect @, ¥, r, 0, instead of *
those in Art. 202, are given in the form

r=F (z y),
0==F; (‘t’ ¥)
N2
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we may use the formula
du_dudr  dudf
dz  dr dz ' df dz’
du _dudr + du df
dy drdy didy’
204. If the equations which connect z, y, r, 6, are given
in the form
F@ynrnd=0. ... 1),

Fo(@ gy, 1, 0)=0.ceeniinnanninnnnnns @),

doe dz dy dy
dr’ do’ dr’ do’
required by the formuls of Art. 202, by successively eliminat-
ing y and « from (1) and (2), obtain explicitly the values of
and y in terms of r and 6. Or, by Art. 189, we may find

we may, in order to find the values of

g—g and % from the equations
() ()5 (%o
(@)+ (@) %+ (&) =

. . . dx dy
and use two similar equations for I and I

205. Example, u=f(z, y),

& =1rcosb,
y=rsinf;
de . dy _
here a—o———rsme, 36="°08 6,
fd_x=cos0 ‘gg=8in0.

dr ’ dr
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Hence, by Art. 202,

du du . . du
‘—i;—cosﬂd—x.;.slnod_y’
du  du .
dg=—rem d—£+rcos0@,
du de 1. .du

therefore d;':coso(; ~Lein 08_9’ ] .
d—u—sinﬂ‘!}-‘+lc080‘y .......... v
dy— dr r de’

If we proceed according to Art. 203, we must put the
equations between @, y, r, 6, in the form

r=v(@+3"), e=tan"£;
here =M@+ r  de Ty
ey ¥ #_ = _a
BT G Frg
du _adu du
therefore oo 5
i TR ¢) R
du_ydu  wdu
dy rdr " #do’

Since ;’=cos0 and :/ =sinf, the formule (1) and (2)
agree.

In this branch of the subject beginners are liable to mis-
takes from not paying sufficient attention to the precise
meaning of the symbols. Generally speaking mathematical
notation is so deﬁite that the meaning of any symbol can
be settled without regard to the context; but sometimes in-
stead of using a complex symbol to express our meaning
without any possibility of mistake we use a symbol which
in itself may be ambiguous, but which is rendered perfectly
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definite by means of the connexion in which it occurs, Thus,
for example, as we have stated in Art. 170, the brackets
expressive of differentiation under certain conditions are
sometimes omitted, that is, they dre left to be suggested by
the context.

In the present tase the meaning of the symbols %, g—z,

g—:, %'-; which occur in Arts. 202 and 203 must be carefully
observed. We might use a more complex notation, as for
exam(i)le the following ; let 4~ (x, ) be any function of  and
y; and let  (r, 6) be the form which Y (z, ) takes when for
z and y we substitute their values in terms of # and 6; then

S0 (e, ot g

and this is the equation which i Art. 202 is exptessed more

briefly thus,
du du do dudy
dr dedr " dy dr’

The beginner however must remember that the second
form is an abbreviation of the first form, and he.should recur
to the first form if he has any doubt of the meaning of the
symbols du du du
¥ de’ dy’ dr’

It is however with respect to the symbols g—f, g‘:{ ,
Z—%, -g% which occur in Art. 202, and the symbols % , g.
%, %, which occur in Art. 208, that mistakes are most

frequently made. For example, beginners sometimes imagine
that the 57 of Axt, 202 and the 97 of Azt, 203 are connerted

d:
by the formula g—: X j—; =1. This formula however is quite
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inapplicable here ; for it implies that there is a single equa-
tion involving & and » and no other variable, which is not
the case here.

In Art. 202 we suppose that x and y are expressed s

functions of » and 6 ; and d—f means the differential coefficient

d
of  when » varies but @ does not vary: and as r varies y will
also vary, so that on the whole r, , and y vary, and 6 does
not vary. In Art. 203 we suppose that » and 6 are expressed

as functions of # and y; and d—% means the differential co-

efficient of » when # varies but y does not vary: and as «
varies 6 will also vary, so that on the whole z, 7, and 6 vary,
and y does not vaty.

Thus the Z—f of Art. 202 and the % of Art: 203 are formed

on different suppositions as to the quantities which vary and
the quantities which do not vary.

In the example of the present Article we find that the %’
of Art. 202 =cos 6, and the % of Art. 203 = §= cos@; and

the product of the two is not unity.

206. Suppose u a function of the three independent vari-
ables z, g, 2, and that these are connected by three equations
with three new independent variables 6, ¢, »: it is required

to express %, f—il—z-;, g'—:, in terms of differential coefficients

of u taken with respect to the new variables.

We have, by Art. 174,
du _du d0  du dp  du dr
d:—@ﬂ’faw;’fd—rd—ﬁ]
du _dudf  du dp  dudr
dy~dody™dp dy " dr dy
du_dudo  dudp , du dr
dz d0dz  dpdz  dr dx
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But by means of the three equations between z, 7, =z,
6, ¢, r, we can determine the values of
do b o dp dp dp dr dr dr
de’ dy’ dz’ dx’ dy’ dz’ dx’ dy’ dz’
, . du du du
and hence the above equations express ’
du du o du
a8’ ag’ ** ar-
Also by solving the above equations we can express

du du du . du du du .
a8’ dp’ @’ in terms of —, Zy’ and E;,whlchca.nalso

terms of

be found by the equations

di _dudo dudy, duds
d0 de d0 " dy d6 " ds df
du dudx dudy  dudz
%—%JJ;'F@ d¢+¢72-:d_¢ ........... (2).
du_dude dudy  duds
dr dxdr dy dr " dz dr

207. Suppose, to exemplify the above, we put

z=rsinfcosd, y=rsinfsinp, z=rcosé.
Hence, to apply equations (2) of Art. 206, we have

Z—‘g=rcosecos¢, %—=rcos€sin¢, %=—r8in9,
Z-%=—rsin03in¢, %=r-sinﬂcos é, %:0,
%f—.=sin0003¢, %=sinesin¢, ;—l-i=0080;
therefore

gz-; =rcos€cos¢3—g+rcosﬂsin¢%—rsin0%
3—;=—rsin08in¢§—:+rsinﬂcos¢% evene (1)
%=sinﬂcos¢3—:+sin05in¢%+ 00903—: ‘

(—Z—Z;,.&lld d_z’ m
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If we employ equations (1) of Art. 206, we must put
the relations between @, ¥, and z, in the form
r=N@+94 + ),
o=t L),
‘ 2

qb=ta.n"'z;
____z____Z
- therefore v e R sin 0 cos ¢,
g§—§=sinesin¢,
%=;=0080,
dd _ z @ _cosfcosd
d:v m’+y’+z'«/(m’+y”j~ r ’

y cosesmc;b
3_ w“+y +2° V(w +9) r ’
d0 V(x’+y’) _sind
Z +3 +2 r
db___¥ sing
dx '+ rsin 0’
d¢p @ _ cos¢

b

dy &+ rsin@’
dé
&Y

therefore
du cosOcoscﬁdu sing du
d”:z“smo"“‘ﬁd v a0 rsin6d¢|
du du cosﬁsmqbdu cosp du
2.;/- ¢ r d3+rsin0d¢ £ @
d odu Mdu J
2= %™ "y db

which will be found consistent with (1).
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For exercise we give the results arising from differentiating
equations (2) of the preceding investigation.
d'v _sin2¢ (. ,ed’it_'_cos'et_i’u_ 1 du
dody~ 2 | VdRT TR deT Pein 0 4
sin20 d'z sin’ddu cosd ( 1 ) @}

YW T AT
+cos2¢{l d'u +cot0 u _ 1 @}
rdpdr ' o dpdf +sin*fdg)’

dv  sin20 5 {d’u 1 d*u ldu}

dzds 3 ar ¥ de rdr
+cqs20cos¢ d'u la_iu}
r dédr  rdb
+sin¢ 1 d'u  cosf d‘u}
r (rdfdp sinfdrdp
=sm2§cos<[>A+cos2zcos¢B+su;¢ 0, say;
d'v _8in20sin ¢ cos 26 sin ¢ cosd .
dydz 2 4+ r B- - O

du A sin'@1d% | du\  sin20/1du  du ), |
=G Gt )Y (rap dede)

d'u !
d? = |

Pt @t Gdet e o T B
sin2g ( du  cotd d'u 1 du

T Tr {d¢dr+ r d6d¢_rsin’0¢_i$}

st 1Sy de, oo d |
r

ren0dp Tdr v df
—cos’p L — 81n2¢M+sm ¢N,say;
r r

co' {sin' od'u cosd d'v sin20 d*w  cos’d du sin20 du}

du_ ., sin 2¢ cos’ ¢
a-?—ﬁm ¢L+ r M—I— o N.
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By addition we have

Pu du du_du 1du 1 d%  2du  cotfdu
ittty trar T 7 @

208. The following example for two independent variables
is analogous to that in Art. 200 for one independent variable.

If 2 =¢' and y = ¢ it is required to change the independent
variables from « and y to 6 and ¢ in the éxpression

Cadhw ., du n(n~1) ., d

:c"z;.-%-n:c ydx""dy+ B "y dz""dy’+'"

Let this expression be denoted by v,, and let v,,, denote
what it becomes when n is changed into n+ 1; we shall
prove that

_dv, , dv,

v“‘— do +(i_¢ —m},,..; ..... boeveors (1).

dv, _dv,dz_ dv,

a8 " dwdd” " I’

v, _dv,dy _  dv,

dp " dyds~ Yy ,

Now take any term in the expression represented by v, and
perform the following operations : differentiate the term with
respect to x and afterwards multiply by « ; differentiate the
term with respect to y and afterwards multiply by y; then

add the two results. Take for example the (r + 1)*® term
which is

For

and

nn—-1)..(n—r+1) .., du

I MY “ar
and by performing the operations we obtain
n ﬂ—l) ..-(7!'—1'-!-1) ntl-r r d”ﬂu ner, vl d"lu
[r {‘” V&= ay v Y Gy

+ ﬂu’b”-,y' } “%} .
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Hence we infer that = Z:v + y * is equal to nv, together

with two series; and by uniting hke terms in the two series
we obtain a single series of which the general term is

m+l)nn—1)...(n+1—=r+1) .. d*tu
Lr_ z“‘ y' dw.l'.’l"l'dy
Therefore ZZ;‘ +y ?" =nv, + V3

and thus (1)is proved ; we may write (1) for abbreviation thus,

”m={2dp+£—n} Vg eorrnrrnnnrannns (2)-

Put n=11in (2); then
_(d , d d du  du
sl il bR g

~{io 2=} 3~ o+ =} i)

as we may write it ; again put n=2 in (2); then

el e -

Proceeding in this way we obtain
d d d d d d d dl
e {igt dg=o-0) A it

EXAMPLES.
1. Change the independent variable from « to y in the equation

du  du
’ z'dz’+ ZTu=0 supposmgy=loga:.
Result

dy,+u=0
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dy  2x dy y _as
Transformdz’,+1+m 2T i > =0 into an equa-
tion in which @ is the mdependent variable, where
0 =tan™a. d%y
Result ‘79-, + y= 0.

Transform dag + - ! dy+ y =0, into an equation in which

tis the mdependent variable where " = 4¢.
d’y gg

Result taatag ty= 0.

dy_ ¥ - ¢
Ifd_a?_(e‘+e")" and ]DgV(l—t’)’

dy dy _
(t—t‘)at—,'+(l—3ta)-a;—ty.

If x=cost, then

shew that

Q= m’);l?—w-~=0 becomes —;Z 0.

Transform {1 " (ﬁ) , by assuming ::::ifeo,’
U —
(@)

If x=1rcosf, y=rsinb, shew that

-

If a=a(1~cos?) and y=a (nt+sini), express

ncost+1
s1n t

2,
Z}! in terms of ¢ Result —
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10.

11,

13.

14.

BXAMPLES OF THE CHANGE

Suppose « to be a function of » and
r=zlt+al+zl+ 02t
then if '
d'u  d'u d' d*w
d7:+¢1m dx,+....,.+—"—0,
shew that
d'v n—1du
ar t @ =0.
Given z=acos¢, y=>bsin, express
dy\"| ¢
@
7 in terms of ¢.

dm".
Resu

g3 (@ sin' & + b cos’ )t
3 .

dy e —e* dy an’y
Transform —5 da:" +2e"+o”' Zo T E e
equatlon in which ¢ shall he the independent variable,
having given z =log 4/(tan ¢), .
Yy

Result =3 78 +n'y=0.
Change the 1ndependent variable from y to  in

3
z—y,—titanyd ,+2ta.n'y:§ =0, supposing tany = x.

=0 into an

24 du _
Result (1+ ) +2z(1+m’)d£, 25-=0.

dy dy) . .. Sy
Transform ot ((Tz into an expression in which y is

the independent variable.

3,
Given & =t + ¢, transform %—: into an expression m

which « is the independent variable.
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15. If ge=u—esinu, and ta.n \/ )tan , Shew
l+e 2
dz (1-ent
“{+ecos)}”

t
16. If (a, - ) dz—%(—l—z—-z=0, and 2’+y'=aq", shew

that

that w’ ZZ? —2=0.
17. Transform
(a+ba)' 4 9914 (a+ba:) / | By=F(a),
by assuming a+bx=éet.

'18. Ifz be a function of the two independent variables =
and y, and 2 and y be connected with two new vari-

ables r and @ by means of two equations, shew how to-

(—i—’f d’ and d’s in te f th
express a2’ mj a;, TS O e new
. variables,

For instance, if 2= cos 6, y =rsin 0, shew that

2
31’__‘4_.}._300526 C'sin 26,
’
%:A—Bcos20+osin29,
d’z = Bsin20+Ccos20;
dzdy d’ 2
1d*2 1dz
where A+B—dr“A ~B= ,«’W—i—;;i;’
O= 1 d*z 1dz
T rdrdd #do°

19. If x, 9, 2, and § 7, & be co-ordinates of the same point
Preferred to two different rectangular systems, shew
that

&' &'¢
ity Y

d'd) d’d’ d'¢ d'¢
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20.

21.

22.

23.

24.

25.

EXAMPLES.

3 .

If m%_z(%) 4.3%-;0, a,1>1d z = y¢', shew that
' é:z dz 0
yd‘y'+.d—= g

Given u= (43 'z ) (% ds) and (‘jf) +(d§)'=1,
shew that u (%) = (75) + (d—:-',{)'- (d—'f)';

Transform %.05 — sec 6 cosec 0 6T *tan’ 0 = 0, into an

equation in which @ shall be the independent variable,
having given z =log (sec6).

Result d—ag +n'% =0,
If y=¢"* and & =sin 6, shew ‘tha.t

)
% ,0{3sm00080—s1n0 -2}
d'u . du du
Expressd,+2dwd+dy,mtermsofds IR R

where s=¢€"+¢", a.ndt e°+e’.
A% d*s d*vw | du  ,du
Resultada 28tdsdt+t’_c{_t’+ zHta:
If 2=ae’cos ¢, and y=ae’ sin ¢, shew that
A% d*u dv d'w  du
AT A i L
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CHAPTER XIIL
MAXIMA AND MINIMA OF A FUNCTION OF ONE VARIABLE.

209. SUPPOSE ¢ (x) to denote a certain function of z,
and that while the variable # changes gradually from one
definite value to another, ¢ (x) changes in such a manner
that it is sometimes increasing and sometimes decreasing.
There must then be certain values of «, for which ¢ (z) begins
to decrease, having previously been increasing, or begins to
increase, having previously been decreasing. In the former
case, ¢ (z) has a greater value for the particular value of =
than 1t has for adjacent values of x, and is said to have
a maximum value. In the latter case, ¢ (x) has a less value
for the particular value of z than it has for adjacent values
of «, and is said to have a minimum value. Hence, these
terms maximum and minimum are not used to denote the
arithmetically greatest and least values which a function can
assume ; for it appears from the above ‘explanation that a
function may have several maxima and minima values, and
that some particular minimum may be greater than some
particular maximum.

210. DerFINITION. If as @ increases or decreases from
the value @ through a finite interval, however small, ¢ (x)
is always less than ¢ (a), then ¢ (a) is called a maximum
value of ¢ (z); if ¢ (x) is always greater than ¢ (a), then
¢ (a) is called a mintmum value of ¢ ().

211. Rule for discovering maxima and minima values.

Let ¢ (x) denote any function of =. By Art. 92, we
have

b (e +h) = @)+ (@) + 1 ¢ (w4 OB)

T.D.C, (o)
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If ¢ (x) be not zero we can give such a value to 4 that
the sign of ‘

1@+ % ¢ @ o)
shall for that value of k, and all inferior values of %, be the
same as the sign of hd' (), because gcﬁ” (x+ 6k) can always
be made less than ¢'(z) by taking & small enough. . In this

case )
4 ¢ (@+h)—¢ ()
and ¢ (@—h)—¢ (@)

have different signs, and therefore ¢ («) has neither a maxi-
. mum nor minimum value, .

Hence, as the first condition for the existence of a maxi-
mum or minimum value of ¢ (x), we must have

L I (1)
Let a be a value of « deduced from equation (1), so that
¢ (@) =0.

‘We have now, by Art. 92,
¢ (a+4)=¢ (a) +le2 ¢ (a) +f—_§ & (a+ Oh).

Suppose ¢”(a) not zero; then by giving to & some value
sufficiently small, the sign of

h’ " ks "
G ¥@+4" (@t oD
2

will be the same as that of |§_¢H (a), or of ¢”(a), for that
value of % and all inferior values;
therefore ¢@+h)—¢(a)
and $ (@~1)—$(a)
have the same signs. '

If then ¢"(a) be positive ¢ (a) is a minimum value of
¢ (@) ; if ¢”(a) be negative ¢ (a) is a maximum value of ¢ (z)-
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If ¢” (a) vanish as well as ¢’ (a) then, by Art. 92,
) ' ’. rnr \ h‘ W
¢<a+h>=¢(a)+é¢‘ (@) + 39" (a+Oh).

By reasoning similar to that used before, we may shew
that unless ¢”’ (@) also vanish ¢ (a) can be neither a maximum
nor minimum value of ¢ («); but that if ¢ (a) vanish and
¢""(a) be positive ¢ (a) is a minimum value, and if ¢ (a)
vanish and ¢"”(a) be negative ¢ () is & maximum value.

Since this process may be continued until we arrive at
a differential coefficient which does not vanish when z=a,
we have the following result. In order that ¢ («) may have
a maximum' or minimum value when # =a, it is necessary
that this value of & should make an odd number of the suc-
cessive differential coefficients of ¢ () vanish, beginning with
the first ; when this condition is satisfied ¢ (a) is a maximum
value if the next differential coefficient be negative and a
minimum value if it be positive.

212. It is to be observed that in the above demonstration
we have used 6 to denote a fraction less than unity, and it
is not to be assumed that the same fraction is denoted when-
ever the symbol is used. Also we have supposed as usual
that none of the functions ¢'(a), ¢” (), ... are infinite. We
shall shew hereafter, that maxima and minima values
may occur when ¢’(z) =, as well as when ¢'(z) =0: see
Art. 214,

218. Suppose that when = =a, the function ¢ (z) has a
maximum or minimum value, and that ¢*(a) is the first
differential coefficient that does mot vanish, n being even.
By Art. 92, since ¢'(a), ¢”(a), ... all vanish up to ¢"*(a)
inclusive, we have - . ‘

/ —_ LY T et
#@+h =17 800 + L™ kO,
/ y — }""-1 » h- n+1
@R = @)+ ¢ e O,

where 0 and 6, are proper fractions. -

From these values of ¢'(a + %) and ¢'(a —%) we see that
¢'(z) changes sign as' @ passes through the value a. If we.
suppose @ to vncrease and pass through the value a, then

02
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@' (x) changes from positive to negatlve if t (a) be negative,
that is, if ¢ (a) be a maximum ; and ¢'(z) changes from nega-
tive to positive if ¢"(a) be posmve, that is, if ¢ (a) be a
minimum. This suggests another form for the definition
of maxima and minima values and for the mvestxgatlon
of the conditions of their existence which we give in the
next Article.

214. DErINITION. If a8 @ varies through any finite in-
terval, however small, ¢ () increase until z=a and then
decrease, ¢ (a) is called a maximum value of $(@); if ¢ ()
decrease until # =a and then increase, ¢ (a) i i called a mini-
‘mum value.

By Art. 89, if the differential coefficient of a function
be positive that function increases with the variable, and if
the differential coefficient be negative the function decreases
as the variable increases.  Hence, as z increases ¢ (x) must
change from positive to negative when z=ga, if ¢ (a) be a
maximum, and from negative to positive if ¢ (a) be a minimum.
But a function can only change its sign by passing through zero
or infinity. Hence, we must find the values of = that make

¢ (z)=0,
or ¢ (@)=0;
and if as x passes through any one of these values ¢'(x)
changes its sign, we have for that value of # a maximum
or minimum value of ¢ (x), according as, when z increases, the
change is from positive to negative or from negative to positive.
Example (1). Suppose ¢ (z) =2’ — 92 + 242~ 7,
then ¢ (z) =38 (a*— 6z +8),
¢"(z)=6(z—3).
If we put ¢'(z) =0, we obtain =2, or 2 =4;
when , x=2, ¢’ () is negative,
when x =4, ¢’ (x) is positive.
Therefore when « =2, ¢ () has a maximum value, and
when & =4, ¢ () has a minimum- value.
Example (2). Let ¢ (z) ="+ e¢™+2cos;
therefore ¢ () =¢"—e*—2sina,
¢'(x)=e"+e"—2cosx,
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¢”/(w) =e.—e-'+28in x,
¢ (@) =e"+ e +2cos .

If =0, we have ¢'(z)=0, ¢"(z)=0, " (2)=0, and
¢"” () =4. Hence, ¢ () is a minimum when z =0.
It may be easily shewn that =0 is the only value of a
. for which ¢’ (z) vanishes; for
z o
=14+ —+

EE]
= 1—w+E —|%+ cen
2sinw=2{z—l§+l—_5- - },
therefore  ¢'(z) =4 {g +&7’ +la£% + }

All the terms in ¢’ (z) being of the same sign, ¢’ (x) can never
vanish except when = 0.

+ ...,

Example (3). Suppose % =z (z—1)" (x—3)% for what

values of z will » be a maximum or minimum? In this
Example the method of Art. 214 is preferable. When x is
negative Il: is positive; when 2 is positive and less than
., du. . du "
unity, 7 8 negative. Hence = changes from positive to
negative as  passes through the value 0, and @ =0 makes u
a maximum. When z=1, Z—Z vanishes ; it does not how-
ever change its sign, but continues negative until # =3, and
after that it is positive. Hence, when =1, » has neither a
maximum ‘nor minimum value, but has a minimum value
when 2 = 3,

Suppose that in the Example last given we merely wish
to ascertain if # =0 gives a maximum or minimum value to u,
and that we are required to proceed according to the method
of Art. 211: we have
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du ,
dx

‘0%-:= (@ 1) (@ — 8+ 22 (2 — 1) (- 3+ 3z (2 — 1)* (z—3)";

=z (@—1)(z— 3)"

2,
when « =0 the first term in g—i—f is negative, and the other two

terms vanish since they both have = as a factor. Hence we
need not have expressed them, but might have put
2,
% = (#—1)" (x — 8)° + terms vanishing when z = 0. |
This remark should be carefully noticed, because in Exam-
ples like the above we are saved the trouble of writing down
superfluous terms.

Example (4). The following Example will introduce. the
reader to considerations by which the process for finding
maxima and minima values may sometimes be abbreviated.

Through a given point P a
straight line is drawn, meeting B
the axes Ox and Oy at 4 and B
respectively: find the least length
this straight line can have.

Let OM=a, MP=0, PAO=6. (s  R——
b

sin @’
a

cos @’

i’ut U= —.b— F— , and we have to find the least value of u.
sin @ ' cosd

Then P4 =

du beosf  asinf

Now dd~ " sin’0 " cos’d’
du . /b
therefore 70 vanishes only when tan 6 = P

From the figure it appears that by making @ either as
small as we please, or as nearly equal to a right angle as
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we please, the straight line 4B may be made as great as we
please. Also, as 6 varies from 0 to g, there must be some

value of @ which gives to the straight line 4B the least length
it can have, and this least length of 4B will satisfy the defi-

nition of a mintmum length. And as % for a value of @ be-
tween 0 and g can never change its sign except when

tan 0 = J C—I: , this must be the value of @ that gives the least
length we are seeking. -
This value of 8 gives for the least length the value
(st +89)%

In this Examplo it is asy to see from the value of 2o,

that it does change sign from negative to positive when 6
increases and passes through the value assigned ; but in more
complicated questions it 1s often advisable to shew in the
manner above exemplified, that a maximum or minimum
must necessarily exist, and then we are saved the trouble of
examining if the differential coefficient of the function changes
sign when it vanishes.

215. If u be a function of & we have shewn that % =0
is the equation from which we are to find values of « which
make ¥ a maximum or a minimum. If then between two
assigned values of z there exists no value which makes %
vanish, we conclude that there is no maximum or minimum
value of u between those assigned values of «; so that u
either continually increases or continually decreases as «
changes from the less to the greater of the assigned values,
This principle has already been noticed in Art. 89, but its
importance and its natural connexion with the subject of the
present Chapter lead us to draw attention to it again.

For example, suppose
u=2x —tan™ & — log {x + ¥/ (1 + %)} ;
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du_, 1 _ 1
dr ° 142 J1+d)

Hence %: is positive and cannot vanish for any value of x

then

lying between any assigned positive value and positive in-
finity. We conclude that » continually increases as & changes
from zero to positive infinity.

216. Maxima and minima values of an tmplicit function.

Let ¢ (x, y) =0 be an equation connecting  and y ; it is
required to find the maxima or minima values of . From
the given equation we know that y must be some function
of «, and if the equation admits of solution we can express
vy explicitly in terms of z, and then find the maxima or minima
values of y by the foregoing Articles.

But instead of solving the given equation we may proceed
thus: by Art. 177,
du)
@

du) »

(@

where u stands for ¢ (z, y). But the values of  which make
¥ & maximum or minimum must, by Art. 211, be found by

solving the equation % =0. Hence

d

()
and this equation, combined with w=0, will determine the
values of #, which may make y a maximum or minimum.

To determine whether such a value of = does make y a
maximum or minimum, we must, by Art. 211, examine the

dy _

dx T

value of % By Art. 180, since (g-;) =0, we have
» du
dy (Ja‘_‘")
dy
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Hence we have this rule: To find the maxima or minima
values of g, which is an implicit function of = determined by
% =0, we must find values of & and y which satisfy w=0

(d’u)
and (%) =0. If when these values are substituted in Z‘:’j )
. @
the fraction is positive, we have obtained a maximum value
of y; if the fraction be negative, we have a minimum value
of y.

Example. If & —8axy+ Y =0.cccuuuenn.... veeen(1),
find the maxima or minima values of y.
dy_ay-o,
Here o= = az’
therefore Ay =2 =0..cocorniininiinnnnnnss (2).

Combining (1) with (2), we have
a*—2a'2*=0;
therefore x=0,
or r=a :/2.‘

The corresponding values of y are

y=0,
y=a/4
=)
| , (@
If we substitute the values x=a ¥/2, y =a ¥4, in ———
(@)
that is, in — __Sz we obtain -2 Hence there i
2 ST —a) e nce there is a

maximum value of y. The values =0, y =0, which make
the numerator of g—z vanish, also make its denominator vanish ;

thus dy

dop 2SSUTES an indeterminate form, and we must discover
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its real value. Forming the derived equations from the
given equation, we have -

) %Y 4o (W d_y -
(v"— am)d,+2 (d) —2a—" +22=0,

—ax) % 2y )
(v ax)dm, (6y ) +2(d$ +2=0.
When we put =0, y=0, in these, the ﬁrst equation gives

dy _ . . _2
=0 and the second equation gives E’ 32" Hence,

when =0, and y=0, we have y a minimum,

217. If the values of # and y found from =0 and

du
( da:) 0, ma.ke ) m’

make y a maximum or minimum, it will be necessary that
8,

i——g should also vanish. This can be tested by making use

of the value of g 4
d'y &y

a formula for T similar to that for P Just. referred to, we

4

can ascertain whether (i—} is positive or negative for the

a.msh, then in order that they may

given by Art. 184; and by obtaining

specific values of 2 and y. On account however of the
4

. d*y dly . .
complexity of the general formul® for T and Zoi0 1t 18
preferable to determine them in any example directly by the
z-tthold of Art. 184, rather than to quote the results of that

icle

218. Suppose u=¢ (z, y) and ¥ (=, y) 0; 80 that y is
a function of = by the second equation, and therefore from
the first equation « is a function of #; required the maxima
and minima values of . We may proceed theoretically thus:
by solving the equation +r(z, y) =0, obtain y as a function
of ; substitute this value of y in ¢ (m, ) ; then u becomes a
function of @ only, and its maxima and minima values can
be found by previous rules. But we may avoid the difficulty
of solving the equation Y (2, ) = 0, thus.
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By Art. 172, we have

du  (du dw\ dy
dz (d:c) + (dy) dz"
Also, putting v for 1[r (z, y), we have, by Art. 177,

(@)

§3=_T,
“ (&)

therefore

du dv)
du (du (Et—/) (a—k-v
dz” (t-l—a:) T (v '
&)
Hence, the values of # and y that render # a maximum
or minimum must be sought among those that satisfy simul-

taneously P D 7
&) G)E-
and Y (z, ) or v=0.

3,
The value of g?u must then be found by Art. 176, and

we must examine whether the specific values of # and y
render this positive or negative, in order to determine whether
% is a minimum or a maximum.

Example. we=a? +3,
while (®—a) '+ (@y—08)'—c'=0, or v=0.
du du
. Here (35) =2, ( dy) 2y,
d
(dl) 2 (@—a), (Zg)=2(y—b).
Hence z(y-0 —y(x—a)=0;

therefore ay = ba.
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Substitute the value of ¥ in v =0, and we have
¢ $

m’(1+b) 2x(a+§-)+a’+b’=o';
a

ac
i ‘\/( as + bw) c
Upon examination it will be found, that if we take the
upper sign in the value of # we obtain a maximum value
for u, and if we take the lower sign, a minimum. This
example is a solution of the geometrical question, *“ To find
the points in the circumference of a given circle which are at
a maximum or minimum distance from a given point.”

therefore x=a

219. The process for finding the maxima and minima
values of an implicit function may be extended to the case
in which one variable is connected with more than one other
variable, the whole number of equations being one less than
the whole number of variables. Suppose, for example, we
have three equations,

F(x, y,2u) =0,

F(x, y, 2, u)=0,

F (z,y, 2 u)=0;
u bemg the variable of which we wish to find the maximum
or minimum value.

From the given equations it follows that we may consider
v, #, and u functions of the independent variable z. Hence
dF  dF dy, dF ds  dF du
dz " dy dz” dz dz " du dr
dF, dF,dy , dF, dz dF, du
.......... 1).
G it st ds " )
dF, dI,dy  dF,dz +tlF du
da:+dydw+dz &t du dz™

=0

From these equations we can eliminate % and %, and

the value of Z—: which we then obtain must be put equal
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to zero. Or, more simply, we may put du_ 0 in these equa-
tions, and then eliminate gz and d—i from the resulting equa-
tions which are

dF  dF dz/ dF dz _

Ay ds T A A

dF, dF,dy  dF, dz 9
,dw+dyd‘c+dzda: 1130 TSP (2.

dF, dF,dy  dF,dz
Tty dot G dn
The equation obtained by eliminating g and Z—a-;’ com-
bined with the equations F'= 0, F,=0, F,=0, will determine
x, ¥, ¢ and w,

By differentiating equations (1) again, we can obtain Z’—Ti,

and by the sign which the values of =, y, 2, u, already found,
give to this quantlty, we determine wheth.er ¥ is a maximum
or minimum.

220. Suppose we have a function of n variables, the
variables being connected by n — 1 equations, and we require
the maximum or minimum value of the function. For ex-
ample, suppose threé equations :

F(z!y’z’“)=0: -F;(x,.%z:u)=0: I’;(w,;%%u)=0,

and that we wish to find the maximum or minimum of
f(z, 9, 2,u). In this case, to the equations (1) of the pre-

ceding Article, in which du must not be supposed zero, we

dz
must add
df df dy  df dz df du

do "t dyde T de do T duda™

From these four equations we must eliminate %, Z—Z,
and%. ~The resulting equation combined with the given
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equations F =0, ¥, =0, F,=0, will determine z, y, 2, and u.
We should then form the second differential coefficient of
I (e, y, 2, u) with respect to . This will involve 3;"{, fl:,,

and d?’ which must be found by differentiating equa-

tions (1): by the sign of this second differential coefficient
of f(x, y, 2, w) we shall settle whether the function is a
maximum or & minimum.

221. In Art. 214 we obtained as the condition for ¢ ()
having a maximum or minimum value, that ¢'(z) must
change sign, and, hence that ¢'(x) must be zero or infinite.
The cases in which ¢ (z) is infinite occur but rarely, and in
the Articles following . Art. 214 we have always considered ¢’ ()
to vanish when ¢ (z) is a maximum or minimum. We shall
here add one proposition which shews that according to the first
view given of maxima and minima values (Arts. 209...213),
& maximum or minimum may exist when the differential
coefficient of the function considered becomes infinite.

Suppose that ¢ (x) is such a function of « that when 2 =a
we have some of the differential coefficients of ¢ (z) infinite,
so that ¢ (a+4%) cannot be expanded in powers of %2 by
Taylor's Theorem.
uppose that by some unexceptionable algebraical process
we find '

¢ (@ + k) - ¢ (a) = A%° + Br® + CK" +
where a, 8,1, ..., are not necessarily posmve mtegers If
any one of these exponents be a fraction in its lowest terms
with an even denominator, then ¢ (a —4)— ¢ (a) will be
impossible, and the consideration of maxima and minima
values becomes inapplicable. If none of the exponents be
of this form, then ¢ (& — &) — t (@) will be a possible quantity.
Now there may be cases in which, by taking & small enough,
the sign of AA" determines the sign of ¢ (a +4) —¢ (a); for
example, this happens if the number of terms in ¢ (a+4) — ¢ (@)
is fimte, and the exponents a, B, v, ..., all positive, and «
the least, Let us suppose such a case, and let a be & proper
fraction with an even numerator; then ¢ (a+ %) —¢(a) and
¢ (a—h) — ¢ (a) are both positive if A be positive, and nega-
tive if 4 be negative, when % is taken small enough. - Hence
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¢ (a) in the former case is a minimum value of ¢ (x) and
in the latter a maximum value. .

Also, since a is & proper fraction,
39 @+ ) i4 infinite when h=0,
-therefore . ‘,”v(“’) is infinite when @ =a.
Hence ¢ (2) may be a maximum or a minimum when &' (z)
is infinite. ' '
Example. Suppose - ‘
$@=c+(@-a)+@-a);
therefore ¢ (a+h) =c+it+At,
' - ¢@=q
$ath)—¢(a)=h+ Al
Hence ¢ (a+%) and ¢ (a— h) are both necessarily greater
than ¢ (a). Hence ¢ (a) is a minimum value of ¢ (z), and
it is obvious that.¢’ («) is infinite when & = a.
222. On certain cases of Geometrical Maxima and Minima.

‘We occasionally meet in Geometry cases of maxima or
minima values for which the ordinary analytical process
appears to fail, though from geometrical considerations it is
obvious that maxima or minima do exist. The following
problem will introduce the difficulty which it is proposed to
explain. “Find the maximum and minimum perpendicular
from the focus on the tangent to an ellipse, the perpendicular
being expressed in terms of the radius vector.”

The equation which gives the perpendicular in terms of
the radius vectoris
‘ g __ bz’
P =27

2
=(2—:—b_—1-§; , which must = 0.

Now this can enly be satisfied by =4 o, which values
are nat admissible, whereas we know from Geometry that p

.
H

therefore pg—f
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has & maximum value=a(l+e¢), and & minimum value
=a(l—e).

The reason we do not find these values by the above usual
analytical process is this. In the ordinary theory of maxima
and minima the function is considered to be expressed in
terms of an independent variable which may assume all possi-
ble values. But in the example above is not an independent
variable ; its values are limited to those found by ascribing
all possidle values to @ in the equation ’

e a(l—é)
“1+ecos@’

Since r is thus a function of §, we may consider p
which is a function of » to be also a function of . Hence

%:%3—2, and this may be made =0 if we can make
dr

a0=° This we can do, and thus p has a maximum or
minimum value at the same time as r has.

Similar remarks apply to other examples. Thus generally,
if y=¢ (), where @ is not susceptible of all possible values,
it may be impossible to make g—:} =0, and thus there may be,
apparently, no maximum or minimum value of y. But in this
case, if @ can be expressed in terms of some variable § which

can assume all possible values, we must put g——z= 0, which

makes g—g =0, and thus we determine simultaneous maxima

or minima values of & and .

Example. To find the maximum and minimum length
of the straight line drawn to a circle from a given external
point.

Take the axis of # passing through the centre of the circle
and the given external point, the former being the origin. Let
a=the radius of the circle, ¢ =the distance of the given
point (4 say) from the centre; and let = be the abscissa of a
point £ on the circumference ; then 4P*=¢'+qa" ~2cz.
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The differential coefficient of this expression with respect
to  is — 2¢, which cannot vanish. But if we put z=a cos¥,

we have '
AP =c'4 a* — 2ac cos 0,
d. AP .
v B 2acsin 0 ;

and =0, =, give the minimum and maximum values
respectively of AP§.-l

In this Example the difficulty would not appear if we had
80 chosen our axes that = should not be a maximum simul-
taneously with 4P. Calling b the ordinate of 4, ¢ the abscissa
of A4, and a the radius of the circle, we shall have

AP =a’ +b* + ¢ — 2b /(d" — &) — 2cx,
which has its minimum and maximum values, when
' ac
T+
Another solution of the problem is given in Art. 218.

The following is an analogous case. Find those conjugate
diameters in an ellipse of which the sum is a maximum or
minimum. Let » and 7 be any two conjugate diameters,
and u=r+7, then » is to be a maximum or minimum,
while 7* 4+ 7* =’ + b* = ¢*, say;

&xr =

thus Cu=r4+(E—1Y),
du _ (=T
dr~ T N@E=rY

. 2
If % be put =0, we get r* =(—:, and therefore r"=% .

This gives us the equal conjugate diameters, the sum of which
we know to be a maximum. 1f we express r, and therefore 7/,
in terms of some variable which can take all possible values,
as for example ¢ the inclination of ~ to the axis major, we

o du dudr

shall get an additional result. For 76~ 3r 33’ and there-
o ar du _ dr _

fore, if 37# =0, we have also P 0. But T 0 makes r a

maximum or minimum, and thus we obtain the two principal
T.D.C P
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ares, whose sum is a minimum. By a different method, we
might have obtained at first the minimum value of r 417,
For since r+9?*=a'+ b, and r'sinf=abd,

2ab

sin 6’

where 6 is the angle between r and . Differentiate with

2ab cos 8 w .
“om'd = 0, therefore 6 =35 this

gives the minimum value as before ; %Q= 0 would give us a

we have (r+7)Y=ad"+b+
respect to 6, and we get —

second result, which would be the maximum.,

The foregoing Article has been derived from the third
volume of the Cambridge Mathematical Journal, page 237.
The following problem will furnish an exercise. Find the
maximum or minimum length of the straight line drawn from
the end of the minor axis of an ellipse to meet the curve.
If z, y, be co-ordinates of the point where a straight line
drawn from the end of the minor axis meets the curve, the
length of the straight line can be expressed either as a func-
tion of z or of y; thus two solutions can be obtained and
compared.

In the solution of some of the examples on maxima and
minima the following results will be required: they may be
established by means of the Integral Calculus.

The volume of a right cylinder is found by multiplying
the area of its base by its altitude.

The convex surface of a right cylinder is found by multi-
Plying the perimeter of its base by its altitude.

The volume of a right cone is one-third of the product of
its base and altitude,

The convex surface of a right cone on a circular base is
oue-half the product of its slant side and the perimeter of
its base,

If r be the radius of a sphere its volume is ‘—113?— and its

surface is 4mr’,
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EXAMPLES OF MAXIMA AND MINIMA.

Shew that 2* — 52* + 54* — 1 is a maximum when z=1;
& minimum when =38 ; neither when 2=0.

Shew that o’ — 32* + 32 4 7 is neither a maximum nor
a minimum when z=1. '
If %= =o' — 3:v'+6w+7 shew that it has neither a
maximum nor a minimum value.
If u=2"-92'+ 152 — 3, find its maximum and mini-
mum value.
A maximum when 2=1; a minimum when z = 5.
u=(z—1)*(x+2)%
maximum when #=—4§; a minimum when z=1;
neither when 2=—2.

u=(1+ah 7-2)
A maximum when 2 =1; a minimum when & =0,
and when 2=1.

u = 82" — 125a° + 2160z,

A maximum when # =—4, and when =3 ;
& minimum when @ =— 8, and when z=4.

_l—z+a
Tltz-a
_&=Tx46
T xz—10 °
A maximum when « =4 ; a minimum when z =16.

I (o1 (02 (@~ )" find when u is a

maximum or minimum,
A maximum when 2=0; & minimum when x=2.

If -‘?—'f (®—1) (®—2)* (z—3)°, find when % is a maxi-
mum or minimum.
A maximum when z=1; a minimum when #=3.
P2

A minimum when z =§.
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u=a (a+2)" (a— )"
Ama.ximumwhenw=g,a.ndwhenm=—a,
andaminimumivhenw=—g.

Gk

U=
a—2"

o

A minimum when 2 =

u=b+c(x—a)l

A minimum when z=a.

’
A minimum when & =——; a5’ and a maximum when

A minimum when =0, and a maximum when z=1a.
u = (mx + na)™"* — (m + n)"*z"a"

A minimum when z=a.

Shew that -1—+—t-E— is a maximum when &z = cos 2.

Shew that a,; is & maximum when z=e.

o™
Shew tha.t tan 3 is & maximum when z=.

Shew that sin z (1 + cos z) is a maximum when =3

If zy (y—a) =2a% shew that y has & minimum value
when & =a.
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If 34’y +xy®+ 4az®=0, shew that when z= -3:;—1 , ¥ has

3,
a maximum value, namely — 3a, the value of % being

8
then—gz.
If '+ 2aa"y — ay’ =0, shew that when z =+ a, y=—a

and is & minimum. Also, when y=—89£,  is both

4a /6
5

If 22° +8ay* —a’y* =0, shew that » = a. 5! makes y a
minimum, and=a.5%

a maximum and minimum, and js = +

Find the maximum and minimum value of y, when
y'—4c'yz+a'=0.
 =c¥3 makes y = ¢ /(27) a maximum.
@=—c4/3 makes y=— ¢4/(27) a minimum,

A person being in a boat 8 miles from the nearest point
of the beach, wishes to reach in thé shortest time a
place 5 miles from that point along the shore: sup-
posing he can walk 5 miles an hour, but row only at
the rate of 4 miles an hour, required the place where
he must land.

One mile from the place to be reached.

The sides of a rectangle are a and b: shew that the
greatest rectangle that can be drawn so as to have its
sides passing through the corners of the given rect-

a+d
v2 '

If a rectangular piece of pasteboard, the sides of which
"are @ and b, have a square cut out at each corner, find
the side of the square that the remainder may form a
box of maximum content.

The side _atb=y(@—ab+¥)
= 5 .

angle is a square, each side of which is
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30. A Norman window consists of a rectangle surmounted by
a semicircle. Given the perimeter, required the height
and breadth of the window when the quantity of light
admitted is a maximum.

The radius of the semicircle must equal the height
of the rectangle.

31. Shew that thealtitude of the greatest equilateral triangle
that can be circumscribed about a given triangle, is

{a*+ 8" — 2ab cos (3= + C)}4.

32. A straight line is drawn through the given point P,

meeting the axes Ox and Oy at 4 and B respectively
(see the figure on page 198); find the position of the
straight line,

(1) When 4B is a minimum.

(2) When 04 + OB is a minimum.

(3) When 04 x OB is a minimum.

(4) When OA4 + OB + AB is a minimum.

(5) When OA x OB x AB is a minimum,

(6) When 04"+ OB" is a minimum.

Let 6 denote the angle P40, then we must have
(1) tanf= (%)*,
b\4
(2) tanf= (-) ,

a,
® tan=2,
_b+4/(2ab)
(4) tane_—_a+4/(2a,b)’
(5) 2atan®d—btan’@+atand—2b=0,

b nfl
(6) tanf= (a) .
33. Having given an angle of a triangle and the opposite
side, prove that the area will be a maximum when the
given angle is equidistant from the other angles.
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Having given an angle of a quadrilateral and the two
opposite sides, prove that the area will be a maxi-
mum when the given angle is equidistant from the
other angles. ‘

It follows from the preceding Example that the two
sides which contain the given angle must be equal in
order to ensure a maximum area ; for if they were not
equal the area of the quadrilateral would be increased

o by changing these two sides into two equal sides.

Find the least ellipse which can be described about a
given parallelogram, and shew that its area is to that
of the parallelogram as 7 is to 2.

The least tangent to an ellipse intercepted by the axes
is divided at the point of contact into two parts, which
are equal to the semiaxes respectively.

Find the area and position of the greatest triangle that
can be placed in a given parabolic segment, having the
chord of the segment for its base.

Find the least triangle which can be described about a
given ellipse, having a side parallel to the major axis
and having the other sides equal.

The height is three times the semi-minor axis.

Prove that of all circular sectors described with the
same perimeter, the sector of greatest area is that in
which the circular arc is double the radius.

A chord PSp is drawn through the focus § of an ellipse,
and the points P, p, are joined with the other focus A :
determine when the area PHp is a maximum,

Let e be the eccentricity of the ellipse and 6 the
angle between the chord PSp and the major axis of
the ellipse. If 2¢* is greater than 1 the maximum is

determined by cos*§ =2 — ;1,, and 0=g gives a mini-
mum ; if 2¢* is not greater than 1 the maximum is

T . .
when 0 = 7 and there is no minimum,
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Find the length of the shortest normal chord in a para-
bola, and prove that it intersects the curve nearer the
vertex than any other normal chord.

If 4a be the latus rectum of the parabola the re-
quired length is 6a /3.

Two ships are sailing uniformly with velocities », v along
straight lines inclined at an angle 8: shew that if a, b
be their distances at one time from the point of inter-
section of the courses, the least distance of the ships

(av — bu) sin 0

(u*+ 9" —2uvcos )}

is equal to

Of all the straight lines drawn from the vertex of a given
ellipse to the circumference of the circumseribing circle,
determine that for which the portion intercepted be-
tween the two curves is a maximum.

If 6 be the inclination of the straight line to the
major axis of the ellipse, and e the eccentricity of the
ellipse,

2¢'cos’@ =3 —¢"— y/{(1—¢) (9—¢)].

If an ellipse be described to touch a given semicircle and
its diameter symmetrically, its area when a maximum

will be %, r being the radius of the circle.

An ellipse is inscribed in an isosceles triangle, and has
one of its axes coincident in direction with the'straight
line bisecting the vertical angle of the triangle : shew
that this axis is two-thirds of the height of the tri-
angle when the area of the ellipse is & maximum.

Find what sector must be taken out of a given circle, in
order that the remainder may form the curved surface
of a cone of maximum volume.

2m (v/3 — &/2)

The angle of the sector must be NE]

Two focal chords are drawn in an ellipse at right angles,
find when their sum is a maximum, and when a
minimum.
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[In the following problems the cones and cylinders are su
posed to be right cones and cylinders on circular bases.j)_

48. Determine the greatest cylinder that can be inscribed in
a given cone.

If b be the height of the cone, and a the radius of

its base, the volume of the cylinder is ;TI wa’d.
49.  Determine the cylinder of greatest convex surface that
can be inscribed in the same cone.

The surface = WTM .
50. Determine the cylinder, so that its whole surface shall be

a maximum.
. . ab
The radius of the cylinder = TG—a)’ but by the

nature of the problem this must be less than a; this
leads to the condition that & must be greater than 2¢ in
order to ensure a maximum. If 5 be not greater than
2a the whole surface of the cylinder continuallyincreases
as its radius increases, and there is no mazimum.

51. Determine the greatest cylinder that can be inscribed in
a given sphere, .

If r be the radius of the sphere the height of the
2r -
;/g .
52. Determine the cylinder inscribed in a given sphere which
has the greatest convex surface.

cylinder is

Height =7 /2.

53. Determine the ¢ylinder so that its whole surface shall be
a maximum.
1

Height =r {2 (- 75)}*

54. Determine the greatest cone that can be inscribed in a
given sphere. Height =47.
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Determine the cone of the greatest convex surface that
can be inscribed in a given sphere.
Height = 4.

Determine the cone so that its whole surface shall be
& maximum.

Helght = (23 i 17)

Given the volume of a cylinder, ﬁnd its height and
radius when the sum of the areas of its convex surface
and one end is a minimum.

The height is equal to the radius.
Of all cones described about a given sphere, find that of
minimum volume,

The sine of the semivertical angle must be }.

A series of cones have their slant sides of the same
length : find that which has the greatest volume.

The tangent of the semivertical angle = /2.
Find the position of the chord which passes through a

given point within a parabola, and cuts off from the
parabola the least possible area.

'Find a point in an ellipse from which, if perpendiculars

be drawn to two given con_]ugate dlameters, the sum
of their squares will be a maximum.

Prove that ¢ { [ (@)} is necessarily either a maximum or

minimum when f(%) is a maximum. And so also
when f (z) is a minimum.
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_CHAPTER XIV,

EXPANSION OF A FUNCTION OF TWO INDEPENDENT
VARIABLES.

228. LET u=¢ (z,y) be a function of two independent
variables, and suppose ¢ (z+ 4, y+k) is to be expanded in
ascending powers of %z and k.- Put

h=ak!, k=adk
then d@+h y+k)=¢ @+ ok, y+ak);
the last expression may be considered a function of a, and
denoted by f(a). By Maclaurin’s theorem,
2
F@=£0)+f'0).a+s"(0). é Foeenn
we shall now shew how the differential coefficients of f(a)
may be conveniently expressed. Suppose
ztak=a, y+dk'=y;
then f(a) stands for ¢ («/, ') and since both ' and %’ con-
tain @, we have by Art. 169,
(=30 & y) d' | db (&, ) dy’
== @t &
_p 3, y) . dé,y)
=K o Tk dy

Also, by Art. 63,
do (@, y) _dé (2, y) do
de dv' dx’

d”’
but i 1 ;
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therefore i f;;i ¥) = dé g;’ ¥) .
.. dp (@, y) _dé (', y).
Similarly dy - dy
. , d¢ (@, y) | ,.dd (2, y)
h 3] = h + k ’
enc J(@) dz dy

which, for shortness, may be written

w28 df
VAORLS 225 7
Similarly,
s =T e 2L,
" — uﬂ 277 d'f Y dff dtf

The law of the formation of the successive differential
coefficients of f(a) is thus obvious. When a=0, f(a) be-
comes u; hence we have

f(0)=“:

ey _ g Gt | 1, du

" . /’d’u ,,d’u ."’@
£10) = W et P

Restore 4 for ok, and % for ak’; then

du , , du
+hy+k)=ut+h5+k
$p@+hy+h)=uthp +ky,
1 (,,d% d’u d'u
1 (,,d% .. A% d*u Pu
+B{h T'+3hk._l’dy+3hk’—7—”’+k'7f}

L R .
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224. If we wish the series for ¢ (2 + 4, y+ %) to close
after a finite number of terms, we can put the expansion
for f(«) under the form

F@=f©) +f(0).a+f"(0): l_+ <+fH0). l_

+f"(0a).!:;

and from this the required form for ¢ (w+h, y+%) can be
obtained. For example, if n=3,

d du
d@+h y+k)= u+h(h“+kdy
. d'u d*u

a A d™ d®
I_{h'dw,+3hk ’ +3hlc’dm7d +k‘dy,}
where v stands for ¢ (z+ 04, y + 6k).

225, In the formula established in Art, 223, put =0,
and y=0; then

& (h, &) =u, +h'2a;’+k‘2"°
d', d*u, d'u,
2 0 (J
+ (G o +’°’dy'}
Foeiernnnnees
; g
where u,, % , %", (‘—Zi:—;—?, ceeees stand for the values of
du du d'u ' .
U T T T when in these expressions we put

=0, and y=0. Ifwe cha.nge k and k into z and y respec-
’(wely in the above formula, we have

d d
p@y) =uta+y g

L (3 8% | ogy St }
+|3{""dw’+2 dwdy+'1/’dy



222 EXPANSION OF A FUNCTION. )
« and y being each put equal to zero in u, and its differential
coefficients after the differentiations have been performed.

In this manner the formula of Maclaurin is extended to
the expansion of functions of two variables.

226. The expression for the nth differential coefficient
of f(a), in Art. 223, is

ﬁ’.%{-}- ﬂh"-‘k’ d'.f + n (” _ 1) km—ik" d.-f .+ k" %f

g AR PR - B
which, for abbreviation, may be written
N ATAN

provided we interpret this expression thus: (h"%+k' %).
is to be expanded by the Binomial Theorem as if 4’ é—da; were
one term and k’di the other term: when the expansion is

effected, every such term as (h’ %)H (k’ d—%)' J which occurs

is to be replaced by A"™7k" d:ci'{i‘y" If we adopt this mode
of abbreviation the result of Art. 223 may be written

$@thy+i)=u+(b ‘%M%) u+é(h%+k%)'u
[ 5 [
Feenene +|_—n11(héiz+k%) u+é(ﬁ%+k%)q

where u = ¢ (z, y), and v=¢ (z + Oh, y + Ok).
By Art. 110 the last term of the expansion may, if we
please, be replaced by -
d ,d )" v

1 wp @
=109 (hdz+kdy
The methods here given for the expansion of a function
of two independent variables may be readily extended to
the expansion of a function of more than two independent
variables, :
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MISCELLANEOUS EXAMPLES.

Shew that if # and ¢ are positive
LI

c+ a; x c+x
decreases as z increases,

2 log

Shew that if z and ¢ are positive
@ otax
+e)
increases as x increases,
d’s du

If u= (:v—3)e"+4ze'+:c+3 shew that 7 I’ and u

are positive for all positive values of . SeeEx.10,p.86.
Shew that for positive values of o the expression

e (x—2)+ e (x+2)

(€-1)°
diminishes as x increases, and that its greatest value
.1
s Z.

Demonstrate the following approximate expression when
 is small,

(1+:v)"—e{ 2+11a;’ m’}

24 16
H -
Evaluate gm:-c)—e when 2 =0.

Besult. —2 .

2

Shew that when « is infinite
1, 1\
x (1+5) —~ ex log(l+5) =0.
Find the value when # is infinite of
1\* 1
8.1:'(1+5) —Sex'log(1+a-c).
Result. ¢.
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10.
1L

12.

13.

14.

MISCELLANEOUS EXAMPLES,

l—r-—tan"m

Evaluate m when =1,

log (cot ;)

Evaluate =
cot x + log @

when =0,

sec” z ar
Evaluate —;ﬁﬁ' when z = E .

tan nz — tan ma

Bvaluate o e — )

(1) when =0, '(2) when n=m.
In the equation f(x+Z)—f(x)=hf'(x+ Ok), shew
that if f"(x) is not zero the limiting value of 6 as h is

indefinitely diminished is %: also shew that if £7(z)

is the first of the differential coefficients £ (z), f"'(),...
which is not zero, the limiting value of 6 as A is in-
definitely diminished is

'Lf
1 !
ok

In the equation f(z+ k) —f(2)=Af (x+ Ok) shew
" that if @ be the same for all values of %, it must equal

%and S () must be constant.

Change the independent variable from 2z to 2 in the
equation ,

N5 d, . d,
2 Ezy,-+zd-%—1=(logz)’{z d—g+z&%},
where z =¢"%,

Result, %+t&nzgz-l.




16.

17.

18.

19.

20.

MISCELLANEOUS EXAMPLES, 225

Transform the expression

du\* | (du\', (du\'| ( du  du du]™
@+ @)+ @} o+ gzl
into one in which 7, 6, ¢ shall be the independent
variables, having given
x=rginbcosp, y=rsinfsing, z=1cosé.
If o, y and & # be co-ordinates of the same point

referred to two systems of rectangular co-ordinates,
shew that

dédg ﬂ);i’iﬁ... _‘l’i‘.)'

dz* dy* (da: dy/  dE dn* (df dy/*

Shew that 2*+ xsinz+4cosx is a minimum when
x=0.

CQ is the perpendicular from the centre C of an ellipse
on the tangent at a point P: find the maximum value

of PQ.
Result. a —Db.
A straight line drawn from the extremity of the minor
axis of an ellipse cuts the major axis at @ and the

curve at P} from P the ordinate PN is drawn to the
major axis: find when the area PQN is a maximum.

Result. PN=2 (y17-1).

T.D.C. Q



CHAPTER XYV.

MAXIMA AND MINIMA VALUES OF A FUNCTION OF TWO
INDEPENDENT VARIABLES.

227. DEFINITION. A function ¢ (z, y) of two mdepen-
dent variables is said to bave a masimum value when
¢ (x+h, y+k) is less than ¢ (z, y) for all values of % and .

sitive or negative, comprised between zero and certain

ite limits however small. The function is said to have a
minimum value when ¢ (2 + 4, y + k) is greater than ¢ (z, y)
for all such values of 4 and k.

228. Ta investigate the canditions that a function of two

independent variables may have a mazimum or mintmum
value.

Let v=0 (z, 9),

v=¢ (x+6h y+0k);
then, by Art. 226,

¢(z+h,y+k)—u+hic+kd“ R,
dv dv d'v
here B e Tpr e Lo+ Tl
" El %
Now, if & g;+kdu be not zero, by taking h and k suf-

ficiently small, we can always make R less than A Zu + k du

and hence the 31gn of ¢ (@+h y+k)—¢(x y) will depend on
that of A 5= e L k d , and will therefore change by changing

that of % and %; it is impossible then that ¢ (x, y) can have
a maximum or minimum value unless

du
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Since the quantities & and % are independent, we must have
du du

— 0, — 0,
dz dy
Find values of z and y from these equations, say w=a,
d'u du  du

y =b; let the values of & Tdy dg when these values

are assigned to  and y, be denoted by 4, B, C, respectively.
We have then hy Art. 226,

¢+ hb+k) - (s b)=[1—3{Ah’+2Bhlc+ CF} + B,

=L (%Y gy PV ' d_'l’}
where R, &{h @*3""@'.13,*3""’@“"@' )

« being made =a, and y=2>, after the differentiations have
been performed. '

If A, B, and C do not all vanish, the sign of
d@a+hd+k)—¢(abd)

will, when % and % are taken small enough, depend on that of
|
AR+ 2Bl + CF, or of & {(A%+ ) +A0_.B‘}.

If AC—B* be negative, it will be possible, by ascribing
a suitable value to ]%, to make the last expression vanish and

change its sign; and then ¢ (g, b) is neither a maximum nor L

minimum value of ¢ (z, y). Hence generally we must have {{™¢

AC— B positive as a condition for the existence of a maxi- oo e e

mum or minimum. In this case 4 and C will have the same ¥ & !

sign, and A4%*+ 2Bhk + Ck' will have the same sign as 4 or

C; and if that sign be positive, ¢ (a, b) is a minimum value

of ¢ (=, y), if negative, ¢ (a, b) is & maximum value. ,
We say that generally A C— B* must be positive; because, o[mg(o}t;“ °

in fact, there may be a maximum or minimum value when Cewd:fxo

AC— B*=0, as we shall now proceed to shew.

229. To tnvestigate the additional conditions for the ex-
tstence of a maximum or minimum when AC— B*=0.

If AC—B*=0, then o g
AW + 2Bk + 0k’=Z(AZ+B) .
Q2
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hence ¢ (@ + %, b + k) — ¢ (a, b) is always of the same sign as
A, when A and k are taken small enough, except when %ig

equal fo-—’-%; and then the sign is as yet unknown and
further investigation is required. Let P, @, S T stand for

the values of 4
Pu  du Pu  du
a2’ dz'dy’ dxdy'’ dy
respectively, when o =a and y=5; and let
4, 4,
R,=é{h‘%+4h’k%%+m+k‘g—;}},
@ being made =a and y =b after the differentiations.

Suppose % 18 equal to — % » then Ah*+ 2Bhk + Ck* vanishes,

- and
& (a+h, b+E) - ¢ (a; B) =é (PR*+ 3QK% + 38hE*+ TW'} + R,

Hence if % and & be taken small enough the sign of
d(a+h b+k)—¢(ab)
will be the same as the sign of
PR + 3 QR + 3ShE* + TK?,
and will therefore change by changing the sigit of h and k;
it is impossible then that ¢ (a, ) can be a maximum or mini-
mum value unless
Ph® + 3 Q% + 3ShK* + TR

. h B
vanishes when % {8 equal to -3

Suppose this condition to be satisfied, then the sign of ‘
b(a+hbth)—h(a0),

wlwné 8 egualto—-g, is the same as the sign of R,; and

k

when l{:is not equalto—g, and % and % are taken small
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enough, the sign of ¢ (a+h, b+ k) — ¢ (a, b) is the same as
the sign of A. But in order that ¢ (a, ) may be a maxi.
mum or minimum value the sign of ¢ (a+4, b+ k) — ¢ (a, b)
must be invariable when % and % are taken small enough.

Hence we have the condition that the sign of R, when % 18

equal to —% , and % and % are taken small enough, must be

the same as the sign of A.

If these two additional conditions are satisfied ¢ (a, ) is a
maximum value if 4 be negstive, and 4 minimum value if 4
be positive.

230. If A=0, B=0, and =0, we mugt proceed thus:

bla+h b+k)—¢(a,b) =é{Ph’+ 3Qr°k + 38k’ + T’} + R,
dn d%
where P, Q, S, T, stand for the values of 77 W, ......

when z =a and y =9, and
L fpd, g A dY
R’—li{h dw‘+v4hkﬂ“’o_t§+ e+ k Jy—‘} ,
« being made =a, and y =}, after the differentiations. ’
Hence, that ¢ (a, b)) may be a maximum or minimum, it ;. +
is necessary that P, @, § 7, should all vanish. Also, R, .

must be of invariable sign ; but the conditions to ensure this
are 0o complica.ted to find investigation here.

231. The following is another method of investigating
the conditions that a function of two independent variahles
may admit of a maximum or minimum value.

Let u=¢ (z, y), where « and y are independent : required
the maxima and minima values of .

If y, instead of being independent of #, were equal to
some function of @, say v (z), then « would be a function
of one variable #. 'We should then have '

)+ ()0
du

%= () +1 () ¥ @+ () e+ (5) ve

Cta
2 e -
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In order that » may be a maximum of minimum, we must
have, by Art. 211,

dy
=%
thetefots (g—g) + (%) (@) =0.

Hence, since ¥ is really independeﬂt of x, this equation must
hold whatever be the fundtion ' (2) ;

therefore (g—g) =0, (g-l-‘) =0

In order that « may be & maximum, the values of £ and y
derived frot the last equations must make (%; negative,
whatever ¥’ (2) may be; hence, denoting by 4, B, C, the

.. (A% d'u &'u .

values which (d—x’)’ (d%) , and (J:?) , respectively assume
for the values of  and y under considerdtion, we require that
| A+2BY (#) + Ol @)

should be always negative, whatever ¥ (x) may be. Hence
as in Art. 228, 4 must be megative, and generally AC— B*
must be positive. Similarly, that v may be a minimum we
must have A positite, and generally A C — B* positive. '

The preceding method may be rendered more symmetrical
by supposing both z and y funttions of a third variable ¢.

Putting for shortness Dz for “%’, and Dy for %‘—: , we have
£ () 8
. %ﬁ‘ - (Z—;‘) (Day + 2 (d%) DaDy + (%.‘) Dy
BB

Hence we must have

)0 (@)=
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Also for values of « and y found from these equations,

d*u e, of U (d* .
(d7) (Da)* +2 ( dx——dy) DaDy+ ((Tf) (Dy)
must preserve an invariable'sign, whatever be the signs and

values of Dz and Dy. From this we deduce the same results
as in the preceding Article.

282. There is no theoretical difficulty in finding the maxi-
mum or minimum value of an ¢mplicit function of two inde-
pendent variables, nor in finding the maximum or minimum
value of a variable which is connected with any number of
other variables by equations, when the whole number of equa-
tions is two less than the whole number of variables. For
example, suppose we have two equations

Sfi@ y 2u)=0, f(z,y 2 u)=0........ (1),

involving four variables , ¥, 2, , and we wish to find the
maximum or minimum value of . We may eliminate one
of the three variables @, 7, z between the two equations;
suppose we eliminate z; then we obtain one equation con-
necting z, y, and % ; from this we find « in terms of = and y,
and proceed in the ordinary way to investigate the maximum
or minimum value of ». Or if we wish to avoid the elimina-
tion we may adopt the following method : consider « and y
as the independent variables and differentiate the given
equations (1); thus

&, df de 3 du_

de ' dz dr ' du dz

%J'GZ %J’%%ﬂ, @
P AN .

From these equations we can eliminate Z—g and k, and

d
du du . .. J
find o and z-y; then for a maximum or minimum value of »
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the values of % and - - must be zero. Thus, more simply,
du

we may put %=0 and dy=0 in equations (2), and then

du
d

eliminate 3—:} and % ; the two resulting equations combined

with (1) will determine the values of @, y, z and », which may
correspond to a maximum or minimum value of . And by
differentiating equations (2) with respect to # and y we can

find Z_Z, d—‘i% , and %: , and so settle whether u is really

a maximum or minimum.

Practically the solution of problems of this class is facili-
tated by the method of indeterminate multipliers, which is
explained in the following Chapter. '

233, The student will find it advantageous to illustrate
this Chapter by means of the Geometry of Three Dimensions.
If z= ¢ (x, y) be the equation to a surface, to find the maxima
and minima values of #z amounts to finding those points on
the surface which are at a greater or a less distance from the
plane of (z, y) than adjacent points. The conditions Z—:}: 0,
% =0, make the tangent plane at any one of the points
in question parallel to the plane of (z, ). The interpretation
.of the case in which B*— 4C=0 will be seen from what is
stated in Art. 235.

The method given in Art. 231 admits of clear geometrical
illustration. If, for example, there be a point on the given
surface which is at a maximum distance from the plane of

(, y), then in passing from that point to an adjacent point,
along any curve whatever lying on the surface, we must ap-
proach nearer to the plane of (z,3). Now, by combining the
equation 2= ¢ (z, y) with y =+ (), we obtain a curve lying
on the given surface, and by giving every variety of form to
¥ (x) we may obtain as many curves as we please. Hence
we see that if we put y =+ (), and leave the form of the
function + (2) arbitrary, we do not really break the restric-
tion that « and y are to be independent.

and
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234. A function u of two variables may have a maximum

or minimum value for values of # and y which render %
du .

and > indeterminate or infinitg, Such exceptional cases must

be examined specially, as there is no general theory appli-
cable to them. For example, suppose

u= (2 +"
du_ 2 du_ %
dz 3@y @ 3E+ )
Here, when 2 and y vanish g—: and %—‘ become indeter-

minate. If we put y =ax, we have
du _ 2 du _ 22
de  gad (1 +a¥)§ ’ dy 5;‘ (1+ a’)! :

Hence Z—: and gl‘ are infinite when =0, and y =0. But

u is really a mintmum then, for it vanishes only when  and
y vanish and is never negative,

235.  On a case of maxima or minima values of a function
of two vndependent variables.

If u denote a function of two independent variables = and g,
the values of & and y that make » a maximum or minimum
are found from the two equations

di_o du_

dz

If these equations are satisfied by a single relation between
« and y, we cannot determine a finite number of values of =
and y, that render » a maximum or minimum. This case we
propose to examine.

Suppose u=¢ (7 B e m,
du du
d—5= U.M; @:V.M ..................... (2),

where U, V, M are functions of z and .
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If M=0 ceneiiiiiieeriineenseeenanen (3),

du du
both -~ o and — &
From equations (2) we deduce
d’u M au_ .. dM

@—U = M%—U-——When(?:)lssatxsﬁed

d'u aM av_., dM . .
e =V. y+M.7y——V.—when (3) is satisfied,
d'u dM d V dM '

d'u dM’ dU .
Tyde =U.—- =p.¢ o when (3) is satisfied.

di' Z dd’Zw always; hence, when (3) is satisfied,

( ou M M
dz d dr Ay’

i
If then A4, B, Cdenotetheva.luesof(fl;: dc.id 5 d‘fi—’;
when (8) is satisfied, we have
AC=DB ...couvvevveriiiivnnennnnnn, (4).

Now suppose that from M =0, we find y in terms of z,
say y =+ (z), and substitute in u; we thus make % a function
of  only. On this hypothesis

- (2)+ (8)2

dy
=U.M+V. ML, by (@),

vanish.

But

)UV

=0, since M =0 by hypothesis.
Hence, this substitution of y(z) for y has reduced u to
a constant, since % vanishes without our assigning any parti-
cular value to z.
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Let us now return to e&luations (1) and (2). Change in
¢ (, y) the variables « and y to 4+ h and y + % respectively.
Calling «' the new value of u, we get

' ds  ,du R (duw 2k du Fd'u
u—u+h%+k@+g{—;+—}; M+P3?}+R'

Let us now assign to « and y any values consistent with
(8), leaving however the ratio of k to A quite arbitrary, and
examine whether %' becomes less or greater than « when k

L]
and A are sufficiently diminished. The coefficient of ’%in
the above value of «/, is

dn 2%k d'u ¥ du 2k ,, ¥
d?+rm+’?gy—,or44+7;3+z;a

Now by (4) this

y (4) Lk B),

= ( tra)

and is therefore necessarily positive if 4 be positive, and
necessarily negative if 4 be negative, whatever be the ratio of
k to h, except for that particular value of the ratio which makes
the expression vanish. Hence the conclusion will be this: if
we assign to « and y values consistent with M =0, then when
h and k are sufficiently diminished, «’ is certainly less than »
if % be negative, and certainly greater than u if Z’—éj be
positive, ezcepting only when k has to h one particular ratio.
This latter case would require further examination, had we
not already shewn that by a certain supposition u 18 reduced to
a constant, so that when % has to A tﬁe one particular ratio,
«/ is ultimately neither greater than u nor less than u, but
equal to it.

The whole theory may be illustrated geometrically; for
example, if

gf=a'—2'—y' + (zcosa+ysina) .......... (1),

find maxima or minima values of 2;



236 MAXIMA AND MINIMA VALUES

zdi=—w+ (@ cosa + ysin a) cos ¢

dz

= (y cos 2 — & sin a) sin q,

dz .
z@=v(ycosa—.wsma) casa;
therefore, when YCosx—@BNa=0.0.0verinyrrnenyseo(2),
dz dz .
o and & both vanish.

Under these circumstances # besomes = + a.

Now equation (1) represents a cylinder having its axis
parallel to the plane of (z, y). Equation (2) represents a
plane which passes through the axis of the cylinder, and
which cuts the surface in two parallel straight lines. Along
the upper straight line we have z=a. All points in this
straight line are at the same distance from the plane of (z, y),
and at a greater distance than any points not in this straight
line. This straight line is in fact a rdge in the surface.

Another example may be seen in the equation

2'=2a /(2" +y") — (" + 3.

This surface is that formed by the revolution of  circle about
a tangent line which is the axis of 2. The highest point of
the circle will by revolution generate a circle, all the points
of which are at the same distance from the plane of (z, ),
and at a greater distance than any adjacent points of the
surface.

EXAMPLES.
1. Let =a ‘+‘£+‘i’
. Le u=x +zy+y zty’
du 2 di a

P 2a:+y—-%,, d—;=2y+w———;

a a
therefore 2:c+y—;,=o, 2y+a:-?==0;
therefore Qz+y)r'=a’'=(2y+2)y";
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therefore 2(@—9) =y (y—2);
therefore 2@—-y) (@ +ay+y’) =2y (y—
either then r=y,
or 2a* + 3zy + 2y* = 0.
The latter leads to an impossible result ; the former gives
a
r=y= T
Also %‘ =24 i':: s
du =1,
dz dy dy
2a
A
therefore ZZ; fy’:’ ( df Zy) is positive  when @ and y have

3,
the assigned values, and g};’ﬁ is positive ; hence u i then a

minimum.

2. Let  u=cosazcosqa-+sinasinacos (y—4),
dos . :
o = sina cosa+coszsina cos (y = B),
du .. .
(.ly.=—smasmmsm@]—,3)-

Hence g_z_;_ vanishes when y= 8, and then % becomes

sin (« — &), and vanishes when z=a,

d'u . . '
Also a3 = —coszcos a—sin sin a cos (y ~ B),

df—zy=—coswsinasin@/—ﬂ),

%’:=—sinasinmoos (y-#).
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The first expression becomes — 1, the second becomes O,

and the third becomes — sin*q, when the a.sslgned values of
d'v d'u d'u

« and y are substituted. Hence d.v‘ dy? ( ) is positive,

and % is o maximum. .

3. Suppose u=e""" (a2’ +by"),

d
=30 (a — az’ = by)
du s
(—737=2y (b—aa’~by') e

Here %=0, and:;—u=0, give as one pair of values z =0,
y=0. And these values make
d*u d'u d'u
w'—‘-ml, Ew—dy-o, dy'_2b

therefore » has then a minimum value,

Another pair of values is given by

x=0,
and b—ar’—by' =0,
that is, z=0,and y=41.
With these values we have
d*u du d'u _ “
d_;,=2(a, b)c > my-—o, E?-——4b9 .

Hence, if a is less than 4, we have a maximum value of w,
and if a is greater than 4, we bhave neither a maximum nor
a minimum,

There is only one other solution, namely, that found by
combining
y=0,and a—a2’'—by'=0
therefore y=0,and z=1+1.
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Here we should find that if @ is less than 5, there is
neither a maximum nor a minimum, and if @ is greater than
b, there is a maximum value of w.

If in this example a =5, we arrive at the angmalous case
considered in Art. 235. ‘

4. Let u=sina +sin y +cos (z+y),

%=cosw=sin(w+y),

“du .
dy—oosy-sm (x+ ).

If %: and % vanish, we must have

cos & = cos ¥ = sin (z + ).

These equations admit of numerous solutions. For ex-
ample,

if 608 & = (08 ¥,
we have « =y, as one solution.
Hence we have cos z =sin 2z
=2sipzcos z;
therefore, either cos z =0, or sinz=4.
- If we take the first, and put x=y= g, we have neither
a maximum nor g minjmum ; if we put
r= y = -;- N
we obtain a minimum,
- If we take sin @ = 4, and put
™
&= y = g N

we obtain a maximum value for «.
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5. To find a point such that the sum of the straight lines
joining it with the angular points of a given triangle shall be
a minimum.

Let ABC be the given triangle; let BC=a, 04 =2,
AB=¢. Take any point P c
and draw PJ perpendicular
to AB; let AM=x, PM=y.

Also let AP=wu, BP=v,
CP=w; the angle APM =0,

BPM='¢, CPM =1y p
Then w'=a'+y’
= (c—2)"+y, A — M B

w'=(bcosd —z)'+ (bsin4d — g)"
For a minimum value of %+ v+ w we must have

d
%ﬂugﬂuﬁ-_«o.,..a ...... veeeeens (1),

and _+—‘+—”0 ...... lesdesbosnannes (2).

NOW £=;=Sln 0‘,

Hence, from (1) and (2),
gin @ =sin ¢ + sin ¢,
co8 @ = — cos ¢ — cos Y
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Square and add ; thus
1=2+2cos (Y —¢),
therefore cos (Y — ¢) = — } =cos 120"

Thus the angle CPB must be 120" Similarly it may be
shewn that APB and APC must each be 120°. Hence we
have the following result: describe on the sides of the

iven triangle segments of circles each containing an angle
of 120°, and their common point of intersection is the point
requrred

It is obvious that there must be a point for which the
proposed sum is a minimum, and therefore we need not exa-
mine the criteria depending on the second differential coeffi-
cients.

If the given triangle has an angle equal to 120°, then that
angular point is the point required ; if it has an angle greater
than 120°, the method fails to give the solution. It may
however be shewn that when the triangle has an angle
greater than 120°, the vertex of the obtuse angle is the point
required.

For suppose the point P inside the triangle and very near
to the angle B of the triangle; let PB=r, PBA —-a,
PB(C=¢; then

u=(c"—2crcosa+r), v=r,
w = 4/(a® — 2ar cos y+ 7).

Thus neglecting squares and higher powers of * we have
approximately

u+v+w=a+c+r—r(cosa-+cosy)

a+tvy a=9 -

=a+c+r—2rcos—— 5 008 5.
Now 2 cos ;7 is less than unity if B is greater than
120°, and thus a+c+r—-2rcosa;7cosa;”isgreater

than a+.c And it is obvious that if P be outside the tri-
angle the sum of its distances from 4, B, and O is greater

T.D.C. R
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than a+c. Therefore in passing from B to any adjacent
point either inside or outside the triangle the sum of the dis-
tances is increased; and therefore at the point B the sum is
a minimum.

dv dv

0 .
The values of o and & take the form 5 at the point

.B; and this is the reason that the solution failed to indicate
.the point B. We have already remarked in Art, 234 that a
maximum or minimum value may exist corresponding to
such indeterminate values of the differential coefficients,

6. Find the mazimum and minimum value of

(ke + ky — a) (hz + ky — b) .

1+a"+y
Let » denote the expression, and let v denote
, 1+a"+y;
then u=v" (b +ky-a) (hx+ky—0b);
du _h(2ho+2ky —a—b) 2z (hz+ky —a) (ko +ky —b)
dx . v v !
du _k(2hz+2ky—a—0b) 2y (hx+ky—a) (hx+ky--b)
dy v v )
Put du_ 0, and du_ 0; thus we deduce
‘ dx . dy &
z_ Y
-} =% =T suppose.
. . du du
Substitute 7h for # and 7k for y in =0 or &= 0; we

shall obtain after reduction the following quadratic equation
inr: -

f(h'+la)(a4b) +2r (B + ¥ —ab) — (a+8)=0;

thus the values of r are possible, and one is positive and the
other is negative, '

I
|
|




EXAMPLES OF MAXIMA AND MINIMA. 243

If we differentiate the values of du and du and after dif-
dx ay’
ferentiation use the relations which arise from % =0 and
g§= 0, we shall find
Y
' d_ h(ky—a-b) 2Wr—a-3%
dz* v T
du_ k@2hr—a-b) 2'r—a-1b
dy’ v B v ’
d' _ b
dedy v '

Hence the sign of AC — B is the same as the sign of

. (2K'r —a—b) (2R*r
,’
and is therefore the same as the sign of

(@+0b)*—2r (B*+ &) (@ +b).

Now it may be shewn that if a +b be not zero and a be
not equal to b, the sign of the last ex%'ession is positive
for bath the values which r can have. For suppose a+b

oo a+b . .
positive ; then we have to shew that TR r is positive,
. a+b ‘
that is, we have to shew that YY) is greater than the

—a—>b) — R,

positive root of the quadratic in ». Substitute the positive
quantity -2——7#]?— for r in the expression which forms the
left-hand member of the quadratic; we shall obtain a positive
result if a and b are unequal ; this shews that 5‘%%
than the positive root of the quadratic (Algebra, Art. 339),
Similarly we may establish the result if ¢ + b is negative.

Hence the necessary conditions for a maximum or mini-
mum are fulfilled.

18 greater

R2
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Since .4C — B* is positive 4 and C have the same sign,
and that sign is the same as the sign of 4+ C, and therefore
the same as the sign of ,

a+b—(R+&)r
r ’ -

If a +b is positive this expression is positive or negative
according as r is positive or negative; if a +b is negative
it is positive or negative according as r i8 negative or posi-
tive. Thus we can discriminate between the maximum and
minimum value of .

Two particular cases which have been excepted above
remain to be noticed.

I. Suppose a=b. Here we shall have
2 207 (b + by — ) (b= (f + by — ),

Z—;=2v"(hw+kyfa) (ko -y (b + ky —a)}.

If we suppose kx+ ky—a =0 we arrive at the case dis-
cussed in Art. 235, in which there is not strictly a maxi-

mum or minimum. If we take the other factors in g—: and
Z——ua.nd put

hv—ax (hx+ky—a)=0 and kv—y (hx+ky—a) =0,
we shall obtain

these values will be found to make % a maximum.

The quadratic equation for r, when a=1>, has for its roots
a 1
TSR O T
the former value leads to values of & and y which satisfy
ki +ky —a=0; the latter leads to the values
IA w R — é ’ y= — k
w’ a’
II. Suppose a+b5=0. The original investigation be-
comes inapplicable ; it may be shewn that the only values of
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du du
« and y which make T and — ay vanish are =0, y=0; and

these give a minimum value to .

7. Find the maximum value of 2°y* (6 —z —y).
- Result. Maximum when v =38, y=2.

8. TIf u= (2ax—2') (2by —y*), find its maximum or mini-
: mum value.
Result. x=a, y=>5, make u a maximum.
9. If u=a'+y'— 22" + 4oy — 29, shew that when =0, and
y =0, u is neither A maximum nor minimum ; when
« =142, and y= F 4/2, » is a minimum.

10. If u=y"'— 8y® +18y’— 8y + 2® — 82" — 3z, then 3 + 4 y/2
i8 a maximum value of » and — 6 — 4 4/2 is a minimum
value of u.

11. If u=2"+ay+y'—ax—Dby, then }(ad—a'~?) is a
minimum value of u.

12. Divide a number n into three parts, :i, y, and 2, such
that ?21 +%+ %ﬁ shall be a maximum or minimum,
and determine which it is.

Result. Z =2 =% a maximum.
13 Ifu= a:’+y' + 3azy, then a® is a maximum value of u.

14. Find the maximum or minimum of & (&' + y ) — 3axy.

15. Find the maximum or minimum of ﬂ'l'—yi
1—azx—by
x ¥y _ li;\/(l+a +b’)
Result. S=5= P

with the upper sign there is a maximum, with the
lower a minimum,

16. If u=y{lc—x)(c—3) (w-;y—c)} shew that it is a

maximum when & = y= 3
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17.

18.

19.

20.

21.

23.
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a+bx+cy _b.
Shew that T+ @+ is & maximum when z= 2
¢
y=g-
Shew that ae**"2# has neither & maximum nor a mini-

mum.

Find the minimum value of x+y+¢, subJect to the
condition

=1,

818
NI

b
-+
¥
Result. Whenv 'x/b %—a;/a+~/b+q/c

Find the minimum value of &* {z subject to the same
condition as in the precedmg xample.

Result. When 25 —-ql;—?—"—;f—p+g+r.

Having given the three sides of a triangle, find a point

within it, such that, if perpendiculars be drawn from

it to the sides, theu' continued product shall be a

maximum. Shew that straight lines joining this point

with the corners of the given triangle wx%l divide it
into three equal triangles.

Find the maximum value of zyz subject to the con-

dition
s, 7,
b‘ I abc
Resulto '3__4_3 .
Determine a point within a triangle, such that the sum
of the squares on the distances from the three sides is
& minimum.

Result. If p, g, v, be the perpendiculars on the sides
a b, respectlvely, then

tErI =~ ——
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25.

26.
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Determine a point within a triangle such that the sum
of the squares on the distances from the three angles
is a minlmum, ,

Result. The centre of gravity of the triangle.

Through a point within a triangle three straight
lines are dpra\vn parallel to the sides dividing the
triangle into three parallelograms and three triangles :
shew that the sum of these triangles is least when the
straight lines are drawn through the centre of gravity
of the triangle.

A triangular space is to be diminished by fencing off
the corners, each fence being circular and having the
nearest corner as centre: shew how to leave the
greatest possible central space with a given length of
fence.

Result. The radii of the circular fences are equal.

Given the sum of the three edges of a rectangular
parallelepiped, find its form that its surface may be
& maximum.

28. In a given sphere inscribe a rectangular parallelepiped

29.

30.

whose volume is & maximum. Also one whose surface
is a maximum, -
Result. A cube.

Of all triangles of the same perimeter find that which
will generate the greatest double cone by revolving
about a side.

Result. The fixed side must be two-thirds of each of
the other sides of the triangle.

A rectangular parallelepiped is so constructed that a
plane which passes through three of its corners, but
through no edge, contains a point whose distances
from the three faces adjacent to one of the other
corners are given. Shew that the shortest diagonal
which such a parallelepiped can have, is (at+ bt HE
where a, b, ¢ are the given distances.



(248 )

CHAPTER XVL

MAXIMA AND MINIMA VALUES OF A FUNCTION OF SEVERAL
VARIABLES.

236. LET u=¢ (,y,2) be a function of three independent
variables, of which we require the maxima and minima values.
By an investigation similar to that in Art. 224,

de+h y+tlz+l)—d (2,9, 2)

du du ,du
=’l%+k@+l£
BRdu Bdu Pdu d*u d*u du
+§E’-'.id—y’+§(_i7+kldydz+hldzdz+kkdwdy

+R;

where R is a function involving powers and products of %, &, {
of the third degree, which may be expressed for abbrevia-

tion by
1(,d ,d ,d\
v denoting ¢ (x+ 6k, y+ 0k, z+0l).

If we make , %, { small enough, the sign of
d@+h y+k 2 +D-¢ (@9 2

will in general depend upon that of the terms involving only
the first powers of %, k, {; hence, to ensure a maximum or
minimum, we must have

d du

du u
h‘Tv-i'k(—i!—/-l-ld—z—O,
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and therefore, since &, %, ! are independent,
du du du

dx =0, c_l:y=0’ dz =0.
Let values of @, y, 2 be found from these equations, and
3,
when these values are substituted in d’u , ﬁ: s ooy let
dr*’ dy
d’u d*u d*u
=4 =B =G
d*u , duv _ o, d'u — 0
a4 w&l mH=C

The sign of
p@+h y+k 2+1) -6 (2 9, 2)

can, with the values of z, ¥, 2 Just found, be made to depend
on that of

AR+ B+ CP+ 24Kl + 2Bhl+2Chk ......... (1).

Hence, that # may have a maximum or minimum value,
the expression (1) must retain the same sign, whatever be the

signs and values of %, k, I comprised between zero and fixed
finite limits. If we put

. h=sl, k=t
it follows tha.t.

As+ B+ C+24't+2Bs+2C'st ............ @),

must be of invariable sign, whatever be the signs and values
of s and ¢ Multiply (2) by 4, and rearrange the terms; then

(4s+ B+ Cty'+ (4B—C") ¢+3 (44 —B (')t + AC—~B*
.................. 3),

must retain an invariable sign. _
Hence, (AB—~C*)#4+2(44'-B' (') t+ AC— B" must
be incapable of becoming negative ; therefore '
AB — 0" must be positive, and............ (4),
(44— B'C')" less than (4B—C”) (AC—-B")...... (5);

(4) and (5) are the conditions that must be satisfied in order
that » may be a maximum or minimum. Conversely, if they
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are satisfied, ¥ is a maximum or minimum ; for then (3) is
uvecessarily positive, therefore (2) has always the same sign as
A4, and u i1s a maximum if 4 be negative, and a minimum if
4 be positive.

Hence. the necessary and sufficient conditions for the
existence of a maximum or miniroum value of a function % of
three independent variables, are, that the values of =, y, 2

drawn from p
% du du
d—:c = 0: a._y‘ =0, a; =0,
2, 2
should make z—;: %}: - (d;;i:;y) positive,
du d'u du  du \*
and (W B Tady & dz) less than

{(i'_t.l; d’u__ d'u )’} d'w d'u d*u )’
ac dy' (d:vdy dz’dz'_(d:cdz )
It follows of course from these conditions, that
]
f—; %: - (divLZz) must be pesitive,

and thus g—x,u , Z—;: ) % must all have the same sign, and u

is a maximum if that sign be negative, and a minimum if it
be positive.
om the conditions (4) and (5), we should conjecture by
the principle of symmetry, that BC — 4" will also be positive
if (4) and (5) hold. This is easily verified, for from (5) we
find that
A{ABC+24'B(C - AA*—-BB" - CC"}

is positive, and therefore, since 4 and B have the same sign,
by (4)
d B{ABC+24'B' ("~ AA"~ BB*- C(C"}
is positive, and therefore
(BB’ — A'(C")* is less than (BC'— A™) (BA~C™),
from which it follows that BC — 4" is positive.
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- ry? .
237. Example. Let'u—(a' T GTy) GrAGEED)’
du _ yz (ay — ) __ t(ay—2a)
dz (@+a)(@+y)'@+2)(e+d) x(@+a)(@+y)’
Qs du _ u(xz—y")
S T e e
du u (by — 2°)

dz " 2 (y+2) (z+0)
Hence, if ay—a*=0, @z —4*=0, and dy—2"=0, u may be
a maximum or minimum : these equations give

—_—= == -

a = Yy 2 s
N 4

therefore each of these fractions = «/ (g.‘g .3 . g) or \/ 2

Call this 7 ; then

g=ar, y=ar=ar’, z=yr =ar’

Proceeding to the second differential coefficients of u, we
have 7
% 22w
d?~  z(a+a) (@+y) + &e,
the terms included in the &c. being such as vanish when the
specific values are assigned to «, ¥, 2.

2u _ 2
ar(l+r)}  ar(@Q+n*
Similarly B, O, ... can be found, and we shall finally arrive

at the result that % is a maximum,

Hence A==

' 238. Suppose it required to determine the maxima gnd
minima values of a function ¢ (z, y, 2, ...) of m variables,
these variables being connected by » equations, of which the

general form is
F (9,2 ..)=0. rreennnn. @).

The m variables involved in ¢ are of course not all inde-
pendent, since by means of the given equations n of them
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may be expressed in terms of the remaining m —n. The
simplest theoretical method of investigating the maxima and
minima values of ¢ would be to express by means of the
given equations the values of n of the variables in terms
of the rest, and to substitute these values in ¢; thus ¢
would become a function of m —n independent variables,
and we might proceed to ascertain its maxima and minima
values in the manner already given for functions of one, two,
or three independent variables. But this method would be
often impracticable on account of the difficulty of solving the
given equations, and the following method is therefore
adopted.

Suppose z, ¥, #... all functions of some new variable ¢, of
which consequently ¢ becomes a function. Put for shortness

de_ o 4y _ dz _
-Zt-_Dw’ ’dt—-.Dy, "%—DZ,...
d$ _dd d¢ dé
then E_d—zpz-*- d_yDy+ %-Dz+ ..... eeennn(2).
From the n given equations (1) we deduce
dF, dF, dF,
22 Dot g Dy+ gt Dak =0

dF, ar, dF,

w0ty Dyt g et =0 L (3).
a dﬁ; ........ dl{: ........... ) J
JDZ-I- d—y-Dy-l-_J; Dz+...=0

By solving the linear equations (3) we can express n of
the quantities Dz, Dy, Dz...- in terms of the remaining
m — n. Substitute these values in (2), then only m — n of the
quantities Dz, Dy, Dz ... remain, and we have a result
which may be written

%‘f:X.Dw+Y.Dy+Z.Dz...+Q.Dq ...... (1),

where X, Y, Z, ... do not involve any of the quantities
Dx, Dy, Dz, ... Since, consistently with the given equa-
tions, we may consider the m —n quantities Dz, Dy, Dz, ...
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to be quite arbitrary, it follows, in the same manner as in
Art. 232, that if ¢ i3 to be a maximum or minimum, we
must have-

X=0, Y=0, Z=0,...... @=0...... (5)-

From these m — n equations, combined with the n given
equations, we can find the values of the variables for which

¢ may be a maximum or minimum. To determine whether
3

¢ 3 a maximum or minimum we must express %%’ From
(4), with the use of (5), we have

&g _dX Y

. d
& " de DO

Da:Dy-}-i” DaDs+..

"~ 'We should then examine whether the above expression
retains an invariable sign, when the specific values of the
variables =, y, 2, ... are used, whatever be the arbitrary
values assigned to Dz, Dy, Dz, .... If it does, then ¢ is
a maximum if that sign be negative, and a minimum 1f it
be positive.

239. The practxcal solution of any example avcordmg to
the above theory is facilitated by making use of indeterminate
multipliers. Multiply the first of equations (3) by A,, the
second by A, ... the 2 by A,, the values of A,,
being at present undetermined. Add the results to (2), ‘then
we may write

22? {"’M. +x,ilf=+x.—d+ }Dz
dé FL dF,
NONT ST -
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If we equate the coefficients of n of the quantities De,
Dy,... to zero, we shall arrive at n equations for determining
Ay Ay, oo Ay Substitute these values of A, A,, ... A, in the
d¢
dt
we must therefore equate to zero the coefficients of the re-
maining m —n of the quantities Dz, Dy,... Hence we have
the rule: “Equate to zero the coefficients of every one of the
quantities Dx, Dy, ... in (6); the m equations thus found,
‘together with the » given equations, will enable us to elimi-
nate the n quantities A, A, ... A, and to find the values of
the quantities z, y, 2...”

240. The concluding part of the theory in Art. 238, in

2
which we are directed to examine the sign of %??, frequently
becomes in practice excessively complicated. In fact the
examples of this method are generally such as allow us to
predict that a maximum or minimum must exist, and to dis-
pense with the second part of the investigation.

remaining terms of (6), and takes the form given in (4);

EXAMPLES,

1. Find the maximum or minimum value of
a'+y'+2,
subject to the conditions
aw-}-by+cz—l=0,} )
Cotbytda—1mo, [ T .
Putting ¢ for 2* + y* + 2%, we have

‘i—lg =2 D + 2y Dy + 22 Dz,

Also from equations (1), .
aDz+bDy+cDz= 0,} @)
a’_Dz+b'_Dy+c’Dz=0, ---------------- . .
Hence, multiplying equations (2) by A, and A, respectively,
Wwe may put
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d
% = (a+Ma+2g) Dot 2y +23 +05) Dy
: + (22 + 10+ Ac) De.
Therefore 2z+Ma + M0 =0,
QY HADHAY =0, } v (3).
2z + A c+ A =0,

Multiply equations (3) by @, b, ¢, respectively and add ; then
we have, by (1),

247, (6" + 8 + ")+, (aa"+ B0 + cc’) =0....0u0en(4).
Similarly,
24+N,(a®+8"+¢") +2, (aa'+ bb' + c¢) =0......... ().

Equations (4) and (5) determine A, and A,, and then by (3)
we find , y, 2. Also multiplying (3) by «, y, 2, respectively
and adding, we have

26+, + A, =0,

which finds ¢. This is the solution of the following question
in Geometry of Three Dimensions: “In the line of inter-
section of two given Pla.nes to find the nearest point to the
origin of co-ordinates.” From the nature of the question it
is evident there must be a minimum value of ¢. .

. 2. Determine the greatest quadrilateral which can be
formed with the four given sides a, B, ¢, & taken in this
order.

Let « denote the angle between a and B, y the angle between
v and & The area of the figure is % (a8 sin z+ 43 siny),
therefore we may put

¢ (@ y)=cBsinz+qdsing ............ (1).

If we draw a diagonal of the figure from the intersection
of B and  to the intersection of a and 8, we have from the
two different values which can be found for the length of this
diagonal, o' + 8*~ 208 cosz =" + &' —2y8 cos y.

Thus  o'+8'~228cosd— 4"~ 8"+ 2y cos y =0......(2).
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From (1) and (2),

:i_i? =afB coszDx+ 48 cos yDy............... (3),
0=apf sin 2Dz —qdsin yDy............... 4),
dp 8in  cos y|
therefore 7= af {cos x+—m— ) Dx..u.n.a.u.. (5).
Hence, since the coefficient of :-Dz must vanish,
sin (z +y) =0.

"Therefore +y must be zero, or some multiple of o ; the
only solution applicable to the present question is

Hence cosy=—cosz: subst1tutmg this value of cosy in
equation (2), we have

_a+p -8
COS @ = _W .
Simceby (5) G228 S::n(; +9) D

we have, neglecting such terms as vanish, by (5),

d’¢ _ a3 cos (z+y)
df~ sing Dz (D= + Dy),

which, by means of (4) and (6), becomes
B (1 4+ 9B Dy
g (1+55) @ar
2
Hence, since % is negative, we have found a maximum

value of ¢, namely, when the sum of two opposite angles of
the figure is equal to two right angles.

Thus the quadrilateral must be capable of bemg inscribed
in a circle.

It may now be shewn that when all the sides of a recti-
lineal figure are given the area is greatest when the fi
can be inscribed in a circle, For let PQ, @R, RS, ST repre-
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sent any four consecutive sides. Then, by what we have
just seen, P, @, B, 8§ must lie on the circumference of a
circle: for otherwise the area could be increased, by leaving
the rest of the figure unchanged, and shifting PQ, QR, RS
until the points P, @, R, 8 did lie on the circumference of a
circle. Similarly @, R, S, T' must lie on the circumference of
acircle. And this circle vs the same as the former circle, for
it 18 the circle described round the triangle QRS. In this man-
ner we shew that when the area is greatest the figure must
have all its angular points on the circumference of a circle.

Suppose an indefinitely large number of consecutive sides
of the figure to become indefinitely small: then the cor-
responding portion of the boundary of the greatest area be-
comes an arc of the circle of which the remaining sides are
chords. Hence we obtain the following general result: if an
area is to be bounded by given straight rods and strings, the
area is greatest when the strings are all arcs of the same
circle, and the straight rods all chords of that circle.

The following problem is analogous to that which we have
been considering. Required to determine the greatest area
which can be inclosed by a quadrilateral three of whose sides
are given.

Let a, b, ¢ denote the lengths of the three given sides,
taken in order of contiguity. Let @ denote the angle between
the sides b and ¢, and ¢ the angle between the side @ and
that diagonal which passes through the angle between ¢ and
b. Then the area of the figure is

%bcsin0+%a~/(b’+ '—2bccosf)sing. .

This is a function of the two independent variables 8 and ¢ ;
but we can obtain the result which we require without going
through the usual process for finding the maximum value of
a function of two independent variables. For we see that

to ensure the greatest area ¢ must be a right angle. In a’

Yooy Wl

et

similar manner we might shew that the angle between the .

side ¢ and that diagonal which passes through the angle
between b and ¢ must also be a right angle, Hence the qua-

drilateral figure must be capable of being inscribed in a circle .

of which the side not given must be the diameter.
T.D.C. N
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It may now be shewn that when all the sides of a recti-
lineal figure are given except one, the area is greatest when
the figure can be inscribed in a circle of which the side not
given is the diameter.

For let QR represent the side not given, and PQ .an adja-
cent side. Then the whole figure must be capable of being
inscribed in a circle: for otherwise the area could be increased
without changing the length of any side. And the angle
QPR must be a right angle: for otherwise we might leave
PQ and PR unchanged, and by changing QR replace the
triangle PQR bﬁ' a larger triangle. Andsince QPR is a right

angle, QR is a eter of the circle surrounding the figure.
3. Find the maximum and minimum value of »* when
w=a"2' + b+ i (1),
while 4y +2 =1, (2),
and le+my+nz=0....... c..ccvvrnnenn.. (3).

From (1), (2), and (3), we deduce

0=acDz+byDy+c'2Dz ........... ......... 4),
0= zDz + yDy + 2Dz...................... (5),
0= [Dx 4+mDy + nDs...................... (6).

Multiply (5) by A, and (6) by A, and add to (4); then
equate.to zero the coefficients of Dz, Dy, Dz; thus

AZHAE AL =0.cverniierinnnn, (),
Py +Ay+Am=0.0c....clee ennnn... (8),
CZ+NZHAN =0.eeerninnnnnnnnn., (9)

Multiply (7) by «, (8) by 7, and (9) by 2, and add; then
by (3) sad 6), ~
@2 + b + ¢ + A, = 0.

Hence A =—u'
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Therefore, from (7), (8), and (9),

= Ml
Am
y= 'T 5l
—_ x?n
Tut=c’
and thus, from equation (3),
ll 2 2
u’—?-'-u'ﬂ: b’+u’n d’= 0.

Tlus equation is a quadratic in «', from which two values
of «* can be determined, one of which will be a maximum
and the other a minimum. It is obvious that a maximum
and a minimum value of ' must exist, for #, ¥, 2, cannot all
vanish smultaneously, and no one of them can be g'rea.ter than
unity; hence %' must lie between the limits 0 and a® + b*+ ¢*.

4. Find the values of z, y, 2, when z'y2® is a maximum
or minimum, subject to the condition

a’c’ +2byt + 2t =c'.
‘We have, putting » for a'yz",
4a’y2’ Dz + 2*2* Dy + 22'y2Dz =
or u{é&+&+—2&}'=0.
: z oy 2
Also @*xDx + 8by* Dy +22°Dz = 0.

Therefore é + A’z =0,

1
— 4 3A\by’=0,
y "

1 s
s+ Az =0,

82
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Multiply the first of these equations by z, the second by
33-'!, and the third by , and add ; then

l; +{a’z’ + 2by® + 2} =
17
therefore A=— 3
12¢* ¢! 3¢t
e 8 . ="
Hence ,aa:'——l,l , b w LT

5. To find the maximum and minimum value of +* when
r=(@-a'+H-B + -7
the variables and constants being connected by the equations

3{; T R ),
lz+my+nz=p ........................... (2),
lat+mBHry=1D..ccoevrivviieiinianannn... (3),
a B _v
F oy SRS (4).

[The student who is acquainted with Geometry of Three
Dimensions will see that (1) is the equation to an ellipsoid,
and (2) is the equation to a plane; a, B, « are the co-ordinates
of the centre of the curve of intersection of the plane and the
ellipsoid, and r is the radius vector drawn from the centre
of this curve to any point of the curve.]

Since 7* is to be a maximum or minimum, we have

(x—a) Dz+(y—B) Dy+ (z—v) Dz=0......... (5);

also from (1) and (2)
“f”+yD3’+%f_o ..................... ®),
Dz +mDy+nDe=0.............. SITRIS ).
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Multiply (6) by A, and (7) by p, and add to (5); then
equate to zero the coefficients of Dz, Dy, and Dz ; thus,

T—at+—s+ pl=0 ccecrirreenncacs (8),
y—B+F+um=0 ....... )
2=+ +pn=0 .ccorreracra. (10)

Multiply (8), (9), and (10) by z—a, y—8, and z—¢q
respectively, and add ; thus by (2) and (3) ‘

,,+x{w(a;’—a)+y(yb:-ﬁ)+z'(zc;'y)}=o,

that is, * #+x{1—?’a—f—-'!6'§_%}=o...(u).

Now by (4)
e _B_y_ a+Bm+yn
&’

thus (11) becomes with the help of (2)

- p
"m n P+ +nt o+ Pm+ St

N Y }_
i oy R
Thus (8), (9), and (10) may be written

(e )men |
y(l + ,%,) R —— veeee(12).

»
z(l +k—c.)=fy-;m,
By substituting the values of z, y, and 2 from these in (2),

we obtain
lka’(a—pl)+mkb’(ﬁ—mn)+nkc’(fy—pn)= .
ka* +1° "+ b+ D3

also la + mf + ny =p.
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By subtraction
a r'a 2 2 B ry
l’(kp+ ’l) o'm (kp+m) n? (k,u.+c, ) o
‘ ka'+7 kb + 7' 7
Now kp+’i,-‘;, kp+;’,—ﬁ, and lt:/u.+c,,ﬁ are of equal value

by (4) ; and this value cannot be zero, because then by (12)
we should obtain the inadmissible results z=a, y=48, 2 =1.
Hence dividing out we have
el bm c'n?
kg"+1’+kb"+r’+kc'+1’
This quadratic will give two values of %, one will be
the maximum value of #* and the other the mini 'mqm value.

[The product of the values of »* will be
Ba't’c* (I' + m* 4+ 2") |

@l + b'm* +c'n*
and o times the square root of this product is the area of
the-curve of intersection of the ellipsoid and plane; hence
taking the positive value of the square root we have for
the area

wabe (@' + &'m* + ¢'n* — p°) (I + m* +n)]
(@ +b'm* + ')} )

- 6. Fiﬁd the maximum or minimum value of % when
u=a""%, and 22+ 3y + 42 =a.

, .
Result. (g) is & maximum value.

7. Find the minimum value of  from the equation
: u=2'+y +2'+...... R
the variables being connected by the equation
az+by+cz+......=k

Result. w=—
a
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8. Find the minimum value of

S+y++ae—22—ay.
Result,. z=-3%, y=-% z2=1

9. Find the minimum value of '+ y* + 2*, where ayz ="

10.

11.

12.

13.

14.

If x, y, # are the angles of a triangle, find the values of
«,y, z which make sin™z sin"y sin’z a maximum.

Find the maximum or minimum value of #*y?z" sub-
ject to the condition lz +my + nz =a. Hence find the
parallelepiped of maximum volume which has for its
three edges the axes of z, , z, and has the intersection
of its opposite edges in a given plane.

If ar’+bxy+cy*=f, and »'=2+y’ shew that the
maximum and minimum values of »* are given by the
equation

(8" — dac) r + 4f(@a +c) r* — 4f*=0.

Find the maximum value of

(a + by + c2) =P,
Result. z="3, y='l;,_b, =2,
1 a! ba ca
mee =vay/(Ge )

A given volume V of metal is to be formed into a
rectangular vessel; the sides of the vessel are to be
of a given thickness a, and there is to be no lid. De-
termine the shape of the vessel so that it may have a

maximum capacity.
Result. If x, y, and 2, are the external length, breadth,
and depth; :
V—a*\}

@&
w—y—a+(—3—a— 3 Z-E.

v
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15. If r*=a"4 y*+2' where
ax’ + by’ + 2" + 2a'yz + 22z + 22y =1,
and le+my+nz=0,
find the maximum and minimum values of +*.

Result. They are determined by the equation
- D)o e-2)6-2)

~ gmn (= 3) ~2nls (b 5) ~2ime’ (0~ 23)

+2mnb'c'+ 2nlc'a’+ 2lma’t'~ a™ — m*b" — n*c”* = 0.
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CHAPTER XVII.

ELIMINATION OF CONSTANTS AND FUNCTIONS.

241. 'WE may make use of differentiation in order to
eliminate from an equation involving variables and constants
one or more of the constants. For example, let

Y=+ @ =G =@ =0 eererrrerernn ).
Differentiate three times, giving

(y-b)g—g+x-a=o...§ ................. @),

(y—2) %+ (Z—Z)’+1=o ............... @),

-8 TE+s WY o .......... 4).

From these four equations we may deduce an equation
free from the three constants: we have

dy__z—¢a

de y-b’

dy_ (z—af'+(y—8)° _ ¢

rZ A S N TS
Sy Py

d__“dwdd' 3 (x—a)

y—b =—- (y—b)’ .

=
Hence {1 + (%)g} %— 3 % (%); 0 cevernirroren (5).
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242. In general, if we have an equation between = and y
and n arbit; constants, and we differentiate m times suc-
cessively, we have m + 1 equations between which we can
eliminate m constants, and this will give a result involving

# and inferior differential coefficients of y. There will

also be n — m constants in the resulting equation ; and as we
can choose at pleasure the m constants we eliminate, we can
form as many resulting equations containing n —m constants,
as the number of combinations that can be formed out of
n things taken m at a time ; that is,
nin—1)...(n—m+1)
m .

Each of these resulting equations is called a differential
equation of the m™ order, %}4 being the highest differential
coefficient of y which occurs in it.

‘When the original equation is differentiated n times suc-
cessively, we have n+ 1 equations, between which all the
constants can be eliminated, giving us a differential equation
of the n® order.

243. If we recur to the example in Art. 241, we have
for one of the three differential equations of the first order,

dy -
(y—d) a;;+:c—a-0.

If we find a from this equation in terms of z, y, b, and
g—% , and substitute in the giveli equation, we obtain another
differential equation of the first order. If we find b in terms
of z, y, @, and Z—'Z—: , and substitute in the given equation, we
obtain the remaining differential equation of the first order.

The three differential equations of the second order which
can be obtained by combining equations (1), (2), and (3) of
Art. 241, are
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L@
@)

It will be found on trial, that if we take any one of the
differential equations of the first order, and differentiate twice,
we shall obtain the same result if we eliminate the two
constants involved in these three equations, as we have
already found in equation (5) of Art. 241. Also, if we
take any one of the differential equations of the second order,
differentiate once, and eliminate the constant involved in
these two equations, we shall still arrive at the equation (5)
of Art. 241,

- 244. The process by which, as in the preceding Article,
we may deduce differential equations by differentiation and
elimination of constants, has not in itself much interest or
value. But the method of passing from the differential
equations to the primitive equation from which they were
deduced, forms a most important branch of mathematics. In
fact all investigations in physical science lead to differential
equations, which must be solved before we can be said to
understand the subject we are considering. We do not
enter here on the solution of differential equations, but it
is usual, in treatises on the Differential Calculus to devote
some space to the consideration of the formation of such
equations by elimination, as this process throws light on the
methods to be adopted for their solution.
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245. Not only constants may be eliminated, but functions.
Suppose, for example,

y=sinz;
then % = CO8 &
=v(1-3);
therefore ¥+ (%) ~1=0.
Henpe the function sin « has been eliminated.
Again, let
y=tan(z+y);
d; ' d
therefore sz = {1 + tan’ (z + y)} {l + Zc{!}
dy
=(1+ _1/’) (1 + Z-L‘) .

Hence tan (z +y) has been eliminated.

In these examples given functions have been eliminated:
we proceed to cases 1n which wnknown functions are elimi-
nated.

246. Suppose z=¢ ‘3-’) , Where ¢ denotes some function

the form of which is not given, and which is therefore called
an_arbitrary function. The variables  and y are supposed
independent. .

Put:f=t;then
y
z=¢ (1),
d [] dt 1 U
d‘%=¢ O Z=y5%0
ds o dt @,
=t O g=—pd®;

4 dz 42 _
therefore @ +y¢7§/ =0.
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Hence this last equation is true whatever be the form of
the function ¢; for example, if z=log G—’/) , OF #=§in ;;, or

z= G’) , in each case we have that equation sabsisting.

247. Suppose u=¢ (v), where 4 and v are known func-
tions of #, y, and 2, but the dform of g is not given, The
variables  and y are supposed independent. If we differen-
tiate both members of the equation with respect to = and y
successively, we have

du dudz ,,,,(dv dvdz .
Zz+7£d7=¢("){%+32£}’ | :
du dudz . dv  dvdz

e AL A

Therefore, whatever be the form of ¢,
du  dudz\ (dv  dvdz du  dudz\(dv  dvdz
(@ﬂz—z 213:) (@*7@) -(arzz 73/) (%me?)
In other words we have eliminated the arbitrary func-
tion ¢.
248. Suppose
a, =f; (= 9, 2),

%=/, (®, ¥, 2),
two known functions of z, y, 2, which enter into an equation,

' F{w, Y, 2, &, (a), Pe(a)} =0ceurernnnnnnn. (1),
¢, and ¢, being' arbitrary functions. If we form the equations
dF dF
=% Ty = 0ueeeneeenierunreanernannes @),
a'F d'F 4*F
%"-=0, dz__dy—o’ W—O ............. (3),

we introduce the unknown functions

,‘¢1I (ax)i ¢:' (an ’ ¢1" (al)’ ¢s" (a,), ,
and these, with ¢, (a,), and ¢, (a,), form siz quantities to be
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eliminated between the siz equations (1), (2), (3). This
cannot generally be effected. Proceeding to the equations

a'r aF &OF OF
-ﬁ=o, W—O’ W—o’ —d?'—-O.-- (4)’

we shall introduce only fwo new unknown functions, namely
¢,” (a,) and ¢,” (a,). Hence we can obtain by elimination an
equation between z and its partial differential coefficients with
respect to y and x of the third order inclusive, which will
be free from the functions ¢, («,) and ¢,(a,) and their derived
functions. Since we have ten equations and eight quantities
to be eliminated, two resulting equations can generally be
obtained.

249. We say that generally, in the case supposed in the
receding Article, we cannot eliminate the arbitrary functions
y proceeding as.far as the second derived equations. Cases

however occur, in"which, owing to the forms of ¢, and a,, this
elimination can be effected ; for example, suppose :

2=¢,(z+0y) + ¢, (2~ ay)-

dz ) '

Here (_1w—=¢" (m+ay)+¢s (z—ay):
dz , '
@=a¢x (x+ay) — ad, (x—ay),
d’z ” ”
d—?=¢t (w+ay) +¢: (w—ay):
T~ (a+ o) + O (e ~ay);

d* dz
therefore @, =d ol

250. Suppose we have an equation between three vari-
ables of the form

Flw, y,2, ¢, (), ¢,(ax),...... $u(a)} =0,

involving n arbitrary functions ¢,, ., +..... ¢, of the n knoun
Junctions a,, a,, ...... a, Tespectively.
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If we procéed in the manner of Art. 248, and deduce
from this equation all its derived equations up to those of the
o™ order inclusive, we shall obtain

1+248+4+..... (m+1)
(m+1) (m+2)
2
The number of unknown functions will be (m+1)n, and

therefore, that we may be able to eliminate the arbitrary
functions, we must have generally

(m+1) (m+2)

equations, that is equations.

greater than (m + 1) n,

2
therefore n ; 2 greater than n;
therefore m=2n—1 at least,

If m =2n—1, the number of equations will be = (224 1),
and the number of functions to be eliminated, 2n*; hence,
there will be generally » resulting equations.

251. Suppose however that the known functions a,, a,,..
are all the same function ; we shall find that it will be suﬂi-
cient to proceed to the derived equations of the n™ order
inclusive, in order to be able to eliminate the arbitrary func-
tions. For let

Fla, y, 2, ¢,(a), ¢, (a)y -..... ba(a)} =0;
differentiate with respect to « and y; thus
dF dF dz  dF (da da dz) 0,

izt la\=t

dF dF dz dF (da  dadz
dy+dz dy+d1 (dy+dzdy =0
dF

Eliminate 2’ ; thus

dF dF dz dx dadz
GtV Tl dtTHde
dF dFdz dx_dads’
Wt wl Tk
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This result involves only the same arbitrary functions as

the original equation, namely,
¢1(a)’ b, (@) seenee b (@)3
it also involves i and % we may denote it by
de " dy’ 7 ¥
a dz d:
.l' {ﬂ'}’ Y % d—:; d_'z ’ 4’:(“): ¢’(a), ...... ¢” (a)} =0.

Differentiate this equation with respect to @ and y as
before; thus we obtain another result which involves only
the same arbitrary functions as the original equation.” By
- continuing the process until we introduce the differential
coefficients of z of the n** order, we find that we have on the
whole n+ 1 equations, from which the n arbitrary functions
may be eliminated.

252. Suppose we have two equations of the form

F{w’ e ¢z (a)’ ¢a(a)’ """ ‘#n (1)} = 0,

Sy 29 (2, $,(a), ...... $a(@)} =0,
where a is an unknown function of @, y, and z, and ¢,, ¢,,... b,
denote arbitrary functions; and let it be required to eliminate
a and the arbitrary functions of & In this case also we shall
find that it will be sufficient to proceed to the derived equa-
tions-of the n™ order inclusive.

As in the preceding Article we differentiate the first équa-
tion and thus obtain

dF dFdz da  dadz
G ds dw dedw
I S dada e (1).
HTEYy HTmdy
But as « is not'a known function the right-hand member of

(1) is not a known function. But from the second of the
given equations we obtain in the same manner

da dadz df  df dz

Gt ds ditdsds o

d_d_'__ﬂ_l_df}f—d_f_l_giffk ..................... 2;
¢ dy dzdy dy dzdy
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so that we can replace the right-hand member of (1) by the
right-hand member of (2). Hence, as in the preceding Article,
we obtain a result which we may write ‘

F, {z, ;1, 2, %, Z—;, @ ¢, (@), Py(a), +eeeee ¢,,(a)}= 0.

Differentiate this again and make use of (1) or of (2); thus
we obtain another result involving only the same arbitrary
quantities. By continuing the process until we introduce the
differential coefficients of z of the a't order, we find that we
have on the whole n + 2 equations from which we may elimi-
nate a and the n arbitrary functions of a.

253. As an example of the preceding, suppose only one
arbitrary function ¢ (2). The given equations become
Sz 3 2 0 $(@} =0,
Fla,y, 2 e ¢(@)}=0.
: Diﬂ'erentiate each with respect to = and y. 'We thus have
six equations, from which we may eliminate
- da da ™
4 5 d_y’ ¢(a), and ¢'(a),
leaving one equation between

dz dz
@4 % 3. and 33}

254, 'The conclusions obtained in Arts. 251, 252 are
due to Dr Salmon; see his Geometry of Three Dimensions,
Chapter X11. It had been usual to overestimate the num-
ber of derived equations which are necessary in order to
effect the elimination in Art. 252. Suppose, for example, there
are two arbitrary functions so that '

Flz, y, 2, a, $,(a), $,(0)} =0,
Sz g 2 a ¢,(a), $,(0)} =0;

then it might appear that by forming the derived equations up
to the second order inclusive, as in Art. 248, we should obtain

T. D. C. T
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twelve equations, but have fwelve quantities to eliminate,
namely
Lda B de de da
¢l d$ ? dy ) M ) h dy ’ dyz ’
$, (o), ¢, (a); &,"(a), ¢4(a), &/ (@), ¢," ().

But the fact is that by adopting the method of Art. 252,
we have ¢,'(a) and ¢, (a) occurring in such a way that they

. . NPT dF If
disappear together in our elimination of Ta and T Hence
it happens that we are able to effect the required elimination
without proceeding beyond the derived equations of the second
order.

255. In particular cases the elimination may be effected
without proceeding to so many differentiations as the general
theory indicates. Suppose, for example, that we have three

+ arbitrary functions, we should generally have to form the de-
rived equations of the third order by Art. 252, But if the
three arbitrary functions are so related, that

$s(a) = ¢, (),
| $u() =4,"(a),
the given equations take the form
Flz, y, 2,0, ¢,(a), ¢, (a), $,"(a)} =0,
f@y e ¢ ¢/ ¢ @)}=0;

and by proceeding as far as the second derived equations, we
obtain twelve equations and eleven quantities to be eliminated,
namely
dr de d'a d'a da
% 2z’ E/ ' I ‘7‘173 ' dzdy’

$. () &' (2), 6,"(a), ¢, (a), ¢,"(a)-

Thus we can deduce one resulting equation involving z,
¥, 2, and partial differential coefficients of z up to those of the
second order inclusive.
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256. We will give one case in which more than three
variables are involved. Suppose

Flu,2,9,2,¢ (@ B)]=0.cccurucrrinnnns. (1),

in which ¢ («, 8) designates an arbitrary function of the two
quantities « and B, which are themselves both known func-
tions of u, 2, y, and 2. If we differentiate (1) with respect
to each of the independent variables z, y, 2, we obtain three
equations

dF dF dF )
-d—'w =0, 7}7 = 0, a; =V ceeccocecnvenns (2).
In these equations, besides dthe arbitrary function ¢, we
$ and %

have its two derived functions <~ and 5. Heiwe, between
da dag

the four equations (1) and (2), we shall be able to eliminate
the three arbitrary functions, and arrive at an equation in-

du du du

volving u, z, y, 2, o’ and

dy’ " ds”

EXAMPLES.
1. Eliminate the constant from
ay—c=(z+y) (c-1).
Result. (m‘+w+1)%+y’+y+1=o.

2. Eliminate €® and cos # from

y—€&cosxr=0.
dy _dy
Result. 74 —2F +2y=0.
3. Ifa’—2ay—a'—b=0, shew that
dy _dy
w@—%=o.
4. If y = ae™ sin nz, shew that
d’ d,
d—a;,y—2md—.i+(m’+n')y=0.

T2
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5. If y=asinz+bcosa, then
dl
p a:“+ y=0.
6. Eliminate the exponentials from
xy= aé® +be™.
Y oW oy
Result. e +2 5 —zy=0.
7. Eliminate the constants from
¥ +bt=a.
Result. a:y ( ) y—-—O.

8. ZEliminate the constants and exponentials from
ae’ +be? =fe" + ge™.

d% . (dy\' _dy) ((dy\' } dy d*y
Resuls. {dw"f(z;c) d:c} {(ai) —lf=32; a’z’)
9. If (z+y) (c+ log ) =a:e£, then
-
wy%—y’=(w+y K
10. Eliminate a and b from .
‘ _a N7
—7‘;’008 (—2-logz+b). -
d’y
a + 2x
11. Eliminate the constants from the equation
1=ax’+2bzy + cy"
d’y dy d%y
Result. aa (y wﬁ)+3w(dz,) =0,

12, If —--—=f(y-—), shew that

dy

Result. o d_:c + 2_1[ =(.

d:c+y'd



13.

14.

16.

17.

18.

19.

20.

L
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If log;=¢(ay+bx) + Y (ay — bx), then
- @)k F- @)}
Ifz—e’"¢(w+y) then 222 __2%_

4 . . dz dz
If 2=¢ (¢°siny), then sin y Ey—-—cosyd-;.

dz dz
It ;l—w+f(z)@=0, 'then
d’z (dz\} d’2 dz dz | d%z (dz\*
% (@) in w et T (@
If z= f( ) then
dz ’ dz
2z — +(y— —=0.
(6= ma) Gt (= na) 5
Eliminate the arbitrary functions from
z=wa¢ (ax +by) + y¥ (az +by).

Result, a* %% —gqp 22 ‘l”

& P gtV

‘,Eliminate the arbitrary and exponential functidns from

u=¢"F (@+y) + ™ f@-3).

d*u du  d®u
Result. z‘w,-“"'ﬂ +2ndy+d—y’.

Eliminate the circular and logarithmic functions from
(1) y =sinlogz, (2) y=logsina.

d &y dy\
Results. (1) wdx,+x Y ry=0, () -’/+(‘7w3)+1=o.
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Lis(t )
21, If s 2+¢(z+logy , then

ds | ,ds

22. Eliminate the functions from y =af (2) + ¢ (2).

Result. The same as in Example 16.
23. If z+mw+ny=f{(a:—a)’+ (_y—b)'+(z—c)'} then
. {y—b—n(z-—c)} —{z—a-— m(z-—c)} -y= —n(:v a)—m(y—"b).

2. If z=a"(ax+by) + (" +a") +¥ (' —2"),

1dzs 1dz2 1dz 1dz_3a b i
B il R s Ty |

25. If 2=¢{z+f(y)}, then
d'z dz dz d'z

Tody & dy dB

26. Eliminate the arbitrary functions from
s=£(5)-¢ (G75) x @)

',Result.( L y‘;;)”( ”Z—Z’-”%)( %" "’j;) o

27. fut+y+z=2'f{x(w—y), #(y—=2)}, then

wi'-‘+(u+z)z—u+(u+y)g—:=y+z.

28. Ifu-¢{F(y’ xz), f(?’:;-—y—%/'— )}, then



29.

30.

31.

32.
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If u=ayz. F{f,(@+y" +2"), f,(zy+xz+yz2)}, then
d; d; di
- gtE-Dg+E=9g

=u(~"'z+z_w+w—-’/).
z y z

Eliminate z from the equa,tions
d!
—-‘i’(”,y)’ —""‘I’(w:y)
d "!"(“’»3/) ¢ (=, 9)dw

dy
az

Result. 2¢ (z, y) =

Eliminate the arbitrary functions from

z=w"f(y- +l,.¢(§ }
d* d*z .4z dz dz
Result. w’dw,+2 ydmd +ydy,+ a;}+y~——'nz

Shew how to eliminate the n arbitrary functions from

z_¢l()+w¢,() ...... +ac"‘¢..()
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CHAPTER XVIIL

TANGENT AND NORMAL TO A PLANE CURVE.

257. DEerInrTION. Let P, @, be two points on a curve,
and suppose a straight line drawn through them; the limit-~
ing position of this straight line, as @ moves along the curve
and approaches indefinitely near to P, is called the tangent
to the curve at the point P.

I °

- O Y A G & -

To find the equation to the tangent at a given point of
a curve.

Let @, y, be the co-ordinates of the given point P, .

x + Az, y+ Ay, the co-ordinates of another point @ on the
curve.

Then 2/, y', being current co-ordinates, we have for the
equation to the straight line P@,

] +A —',1/ ’
R vl )

that is, y’-y=§——Z(a:’—a:).
" Now let @ approach indefinitely near to P; the limit of
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Ay . dy . .
Ay B s and the equation to the tangent at P is

’ dy, ,
y-y-@-a

258. DErFINITION. The normal to a curve at any point is
a straight line drawn through that point at right angles ta
the tangent at that point. ' '

To find the equation to the normal at any point of a curve.

Since the equation to the tangent at the point (=, y) is

’ d Y
y-y=3@-a),
the equation to the normal at the same point is

y-y=-F. @)
dz

supposing the axes rectangular.

259. .Let the tangent and normal at the point P meet the
axis of # at the points T'and @ respectively ; draw the ordi-
nate PM; then

MT is called the subtangent,

M@ is called the subnormal.
Now %[?%::the tangent of PTx
=9,
=1
‘ dz
therefore MT= %{ =y &
MG
Also UD = tangent of GPM = tangent of PTz
-%.
. dy
therefore M@=y~
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In these expressions for the subnormal and subtangent,
it is to be observed that the subtangent is measured from A/
towards the leff, and the submormal is measured from M
towards the right. If in any curve y % is a negative quantity,
it indicates that @ lies to the left of M, and, as in that case

y % is also negative, T lies'to the right of M.

260. In the equation to the tangent put ' =0, then
i dz
r=z—y ay’
this therefore is the value of OT.
Similarly, if we put &’ =0, we find
, dy
y=y—= d-; ’
which gives the ordinate of the point where the tangent
meets the axis of y.
261. The length of the perpendicular from the origin on
the tangent is, by the usual formule of analytical geometry,

wﬂ—y

i«/{1+ dy

262. If the equation to a curve be given in the form
¢ (=, y) =0, we have, by Art. 177,

a__()
=@

Thus the equation to the tangent becomes
, dé , d
@—>QQ+@—@Q%=Q
and the equation to the normal becomes -

w-m@ﬂ @-a) (F)=0.
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The length of the perpendicular on the tangent from the
origin is, neglecting the sign, '

= (&) +(3)

X,
d¢ 2 d¢ 2) *
V@ + (@)}
263. It is sometimes convenient to determine a curve by
the two equations

y=v(@), z=x (1),

so that # and y are both functions of a variable ¢, by elimi-
nating which between the given equations, a result of the
usual form y = f () may be obtained. With this supposition,
we have '

dy

dy di
da” dz’
7

Hence the equation to the tangent becomes
, de_,, dy
) "SI)E—(” ~z) a’
and the equation to the normal becomes
’ dy _ ’ dz
R =" (@' —=) 2

In the figure we have supposed the axe;,s rectangular;
if they are oblique no change is made either in the inves-
tigation of the equation to the tangent or in'the result. But
the equation to the normal is ‘
A 14+ cos @ dy_

: - dax
where o is the angle of inclination of the axes.

264. Example (1). The general equation to a curve of
the second order is

Ay*+2Bry+ Oa* + 2Dy + 2Bz + F=0.
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Hence, by Art. 262, the equation to the tangent at the
point (z, y) is
&' —y) (Ay+ Bz + D) + (& —z) (Cz+ By + E) =0,
which reduces by means of the given equation to
y' (Ay+ Bx+ D)+ (Cx+By+ E)+Dy+ Ex+ F=0.

Example (2). Suppose the equation to the curve to be

therefore il
and the equation to the tangent becomes
y-y=% (w ~a).

The subtangent M7 = é’; =¢, and is therefore constant in
dx
this curve which is called the logarithmic curve.

Example (3). The equation to the logarithmic spiral is

2, =klog V(@' +4).

w—*’l—y k(y%+w)

Hence P =—FiF
therefore Z‘Z l;z +k.'3; H

and the equation to the ta.ngent is

, km+1/
Yy=¥=_" ky(z —a).
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Example (4). Suppose that the equation ¢ (z,y)=0, or
% = 0, can be put in the form )

Vot U Ut oeeee +v,+9,=0,

where v,, ¥, «veeee are homogeneous functions of the degree
n,n—1, ... respectively ; hence

du dv, dv

v _ A% , %,

d’” dz + d:c + --------- ’

du_dv, dv, .

d—y = T;y + dy B SR TTTIRTrN R

and the equation to the tangent is

&' ~9) (‘fi—';'+%’yﬂ+...) +@—a) (% + 2y ) =0,

But by the pro(i)erty of homogeneous functions (see
Example 3 at the end of Chapter VIII,)

dv, a:fd—v"—v
ydy'l' dx""”m

dv,_ dv,_ '
y—@l +z7a=4f (n-1)v,,.

---------------------

Hence the equation to the tangent becomes

, (dv,  dv,_ , dv,_
(@+ dy1+ ...... )+w (%4'7‘;4' ----- )

=nv,+(n=1) v, +(n—-2) v, +...... ,

or,since U+, +Vp,...+v,+9,=0,
dv, , dv

, - , (dv, . dv,_
y (-@-l-—‘—iy—‘-i-. ..... )+a: (%-'-.d?l. ...... )

+

0yt 200+ (0 =1) v, + 0y = 0.
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Example (5). Determine a point in a given curve so that
the area of the triangle formed by the tangent at that point
and the co-ordinate axes may be a maximum or a minimum.

By Art. 260, the area varies as the product of

w—yj—:, and y—wg—‘:;

A
put u=91;i”l,

dz

then we require the maximum or minimum value of w.
It will be found that

o bR

dae @)’ ’
-
2,
Now, as we shall see in Chapter XXI., where z—g=0,
the curve has in general a singular point called a point of

inflection. Where y— w%= 0, the tangent passes through
the origin and the area in question vanishes. It will be often
obvious when any particular curve is considered, that nei-
ther of these exceptional cases can hold. We have then
zZ—Z+y=0 as the condition which determines the point
required.

‘When w% +y =0, we have, by Art. 260,

@ =2z, and y' =2y.

Hence in general when the area is a maximum or a mini-
mum the portion of the tangent between the axes is bisected
. at the point of contact. It will in general be obvious from
the figure in the case of any particular curve whether the
area is & maximum or minimum, :
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265. If the equation to a curve be given in the form

F(z,y)—c=0,
the equation to the tangent at the point (z, y), will be
, \@F ., dF _ .
| (y—y)@+(w—z)£—0 ............... 1);
and the equation te the normal
, aFr dF _
(y—y)%—(z—x)-a‘;—o ............... (2).

If we consider «, 4, as constant, equation (1) combined
with' F'(z, y)=c, will'/ give the co-ordinates of the points
where the tangents drawn from the point (', 4') meet the
curve represented by F (x, y) = ¢; and equation (2) combined
with F(», y)=c¢ will give the co-ordinates of the points
where the normals drawn from the point (2, 4) meet the
curve represented by F (z, y) =c.

Since the equations (1) and (2) are independent of ¢, they
will represent the geometrical loci of the points where the
curves which we obtain by ascribing different values to ¢ in
the equation F (x, y) =c, are met by their tangents or their
normals respectively, which pass through the point (z, ¥).
Thus, if we want to draw tangents from the point (z', y) to
any one of the curves F (z, y) =c, we must construct the

curve ;
@-a) (%) + & -9 (%) =0;

and determine where it intersects the particular curve
F(x, y)=c¢ which we are considering; join the point or
points of intersection with the point («/, ¥) and we bave
the required tangent or tangents. Similarly, we may draw
normals from (&', 4/) to any one of the curves F'(z, y) =c.

EXAMPLES.

1. In the curve y (¢ —1) (z —2) = = — 3, shew that the tan-
gent is parallel to the axis of « at the points for which
=3+ 42 '
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In the curve 3*=(z —a)* (x — ¢), shew that the tangent
is parallel to the axis of z at the point for which
2c+a
3 L)

In the curve 2% =a’ (x +y), the tangent at the origin is
inclined at an angle of 135° to the axis of «.

In the curve ' (z + y) = o’ (z—y), the equation to the
tangent at the origin is y =a.

In the curve ? + y? = ¥ find the length of the perpen-
dicular from the origin on the tangent at (z, ); also
find the length of that part of the tangent which is
intercepted between the two axes.

Results. (1) ¥(azy);® (e

If «,, y,, be the parts of the axes of # and y intercepted
by the tangent at the point (=, y) to the curve

)\t z)*_ @) Y
(a) +(b =1, then % 4 5 =1,

Shew that all the curves represented by the equation

2\ (%) =

(a) + (b) %,

different values being assigned to n, touch each other
at the point (a, b).

In the curve y"=a""x, express the equation to the
tangent in its simplest form ; and determine the value
of n when the area included between the tangent and
the co-ordinate axes is constant. :

If the normal to the curve z* + 3 = a¥, make an angle ¢
with the axis of «, shew that its equation is

Y c08 ¢ — @ sin ¢ = a cos 2¢.



10.

11.

12.

13.

14.
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Find at what angle the curve y®=2ax cuts the curve
&~ Baxy+y'=0. '
Results. The curves meet at the origin; here the
first curve has the axis of y for its tangent, and the
second curve has both the axes for tangents. The
curves also meet at the point £=a /2, y=a /4; and
here they meet at an angle whose cotangent is /4.

° 2
Tangents are drawn to the ellipse §+%§ =1, and the

circle 2’ +3*—a’ =0, at the points where a common
ordinate cuts them: shew that if ¢ be the greatest
inclination of these tangents

—b
tan¢=§“‘\/—(m.'

If tangents be drawn fro:n a p(:int (h, k) to the curve
whose equation is (g) + (%) =1, an ellipse whose
‘semiaxes are a (%)b, and b (%)b will pass through the
points of contact.

Shew that all the points of the curve 3*=4a (w +asin g)
at which the tangent is parallel to the axis of # lie on
a certain parabola.

The normal to a parabola at any point P is produced
to meet the directrix at @, and the tangent at P meets

" the directrix at R : find (1) when QR 1s a minimum,
(2) when the triangle PQR is a minimum.

Results. (1) w=—g, @) a:=%; where y'=dac is '
the equation to the parabola.
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CHAPTER XIX,

ASYMPTOTES.

266. SODPPOSE one or more of the branches of a curve to
extend to an infinite distance from the origin, and that at
successive points of such a branch we draw tangents. Then
two different cases may exist with respect to the directions of
these tangents; they either, as we pass from point to point
along the curve, approach some definite limit or they do not.
And with respect to the position of these tangents, two cases
are possible ; the intercepts cut from the axes of co-ordinates
either tend to a finite limit or they do not. If the direction
has a limit, and one or both of the intercepts a limit, there
exists a straight line towards which the successive tangents
continually approach. Such a straight line is called an
asymptote to the curve; hence we have the definition which
follows.

267. DEFINITION. An asymptote to a curve is the limit-
ing position of the tangent when the point of contact moves
to an infinite distance from the origin.

To find whether a proposed curve has an asymptote, we
must first ascertain if % has a Jimiting value as we proceed
to an infinite distance from the origin. If it has not there is
generally.no asymptote. If j—i has a limiting value, we must
then ascertain if the intersept on the axis of @, which by
Art. 260 is w—y%, has a limiting value. Suppose it has,

and let it be denoted by ¢ while u denotes the limit of % ,

then y=pu (2 —c) is the equation to an asymptote,
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268. If g—% increases without limit, and at the same time

_ygg has a finite limit, we have an asymptote parallel to
the axis of y.

Also. we may have an asymptote when the limit of
z— yé— is infinite, namely in the case where the limit of
dy ; is z‘gro, and the limit of y— wzw, which is the intercept

dx
on the axis of y, is finite. The asymptote is then parallel to

the axis of .

269. We will now take some simple examples.
(1) The equation to the parabola is y'=4ax; so that
we have y=12 Vax ; therefore QK[ =4 «/ 2. hence, when

x increases indefinitely the limit of ga—: is zero; but
y-—w%w—=i (2 Vaz —- Vaz):i'\/;z—z, which has no finite ‘limit.
Therefore there is no asymptote.

(2) The equatioﬁ to the hyperbola is 3*= -b:, (#*—a) ; so

dy b
that we haye y=+ SV(m':—a’)', therefore _——iad(a:’ —a
and w—yg—=a:—w ;a =‘—:;. Hence the hmltof—ywhen

. . b . .
« 18 infinite is i-a , and the limit of » — :'/Zf is 0. There-

fore y =§:z: is the equation to one asymptote; and y =~ P

is the equation to another asymptote.

3
(3) Suppose y= (—a'?); +c¢ to be the equation to a curve, then

' _dy 24 do _ c(x— b)
we ha.ve&”- ( b),,anda: ydy a:+—— o

U2
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As o approaches b, y and Z—Z increase without limit. The

limit of =z — yg—w is 5, and, by Art. 268, there is an asymp-
tote parallel to the axis of y; having for its equation #=25.

270. An asymptote may also be defined as a straight line,
the distance of whioh from a point in a curve diminishes with-
out limit as the point in the curve moves to an tnfinite distance
Jrom the origin.

Suppose y=px+pB
the equation to a straight line, and’
y=pz+B+v

the equation to a curve, then if v diminish without limit as
2 and y increase without limit, the straight line will be an
asymptote to the curve. For if z, y, be the co-ordinates of
a point in the curve, the perpendicular distance of that point
from the straight line is
. y=pe—f
Vil+p) T N1+ p)’

and this diminishes without limit when « and ¥ increase
without limit.

271. That the two definitions of an asymptote lead in
general to the same results may be seen by considering differ-
ent examples, or by the following proof. Let y=uz+8 +v
be the equation to a curve, where p and 8 are constants, and
v diminishes without limit as « and y iicrease without limis.
From the given equation

Yy_, . B+
el R

Hence p is the limit of '% when « and y increase without
limit, But, by Art. 148,

dy
the limit of Z = the limit of dz or id"-’-
@ 1 dz
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Also 8 is the limit of y— uo; but = the limit of %;
therefore in general B =the limit of y— % «. Hence the
equation to the tangent to the curve at the point (z, y),
which is 2 ,

y’—.'/ =E‘Z (w’_‘”):
becomes, when z and y are indefinitely increased,
y=p' +8;

that is, the equation to the asymptote found according to the

first definition is the same as the equation found according to
the second definition.

272. We say in the last Article that in general the limit
of y — pa = the limit of y — Z—Z 2. Suppose, for example, that

the equation to a curve is

a
y—Az+B+5,
Y_ 448,02
therefore p 4+ =t

Hence p = the limit of !£= 4, and

y—pz=B+°.
Also %=A—% ,
therefore y—d— z=B+ -25.
Here y — Z—Zw and y — ux have the same limit, namely B.
But suppose y=Aw+B+‘H—£-i-I£.

“Here, as before, pu=A
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Also y—yx=B+a+:nx.
dy . eosz a+sinz
And d——w-—.A.'l'——"a7 -

therefore y_g‘%m=3_mw+2(a-l:mm) .

Here we cannot assert that y — ux and y ~ Z—% # have the

same limit: the limit of the former is B, but the latter cannot
be said to have a limit; on adecount of the term cos, which
dees not tend to any limit as « ihcreases indefinitely, In
this case the curve

y=Aa:+B+a+;mw

has an asymptote according to the definition of Art. 270,
namely, y =42+ B, but not according to the definition of
Art. 267.

The demonstration in Art. 270 might, of course, start
with the equation @ = puy + 8+ v; so that, should the asymp-
tote be parallel to the axis of y, by taking the second form
we avoid having u infinite.

273. We have hitherto confined ourselves to rectilinear
asymptotes; we now extend the definition to curvilinear
asymptotes.

DEFINITION. When the difference of the ordinates of two
curves corresponding to a common abscissa diminishes without
limit, or the difference of the abscissee corresponding to a
common ordinate diminishes without limit, as we pass from
point to point along either curve, each curve is said to be an
asymptote to the other.

Hence, if the equation to a curve can be put in the form

y=A,z'+A‘m"'%+...+A,_,w+A.+—B;+€:+g'+...,

then y = Aﬁ' +d4x+...+ 4, x+ 4,
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is' the equation to a curve which is an asymptote to the
former. So also is

.y=A¢w"+.A1a;"‘+...+A,.;‘$+A,.+‘€l’
and y=Adaz*+ 42" +.. +A,_,w+A+ 'ga

and so on.

Example. Find asymptotes to the curve
—zy'+ay* =0.

3
Here y’=-xi_& ; therefore y =+ ,\/ (;?—(—z)

As « approaches the value @, both y and a—l— Y increase
without limit, and z=a is the equatlon to a rectllmear
. asymptote.

: -3

Putting y in the form i-w(l —g) , and expanding by

the Binomial Theorem, we have

3a’ 5a
y—j:a:{l+ +8z,+16w.+....}..‘. ........ ().

Hence y=+ (a; + ‘_’) are the equations to two rectilinear

asymptotes. We may obtain as many curvilinear asymptotes
as we please by making use of the series in (1). ' For example,

y= +(:z:+a+za

are the equations to two asymptotic curves of the second
order. The student will remember that by Art. 114 we
may use the Binomial Theorem in the above Example as a

true arithmetical expansion when 5 is less than unity, which
will certainly be the case when # is increased indefinitely.



296 RECTILINEAR ASYMPTOTES.

274. The following method will furnish the rectilinear
asymptotes with great readiness in many cases. Suppose
the equation to a curve, F'(z, y) = 0, to be such that F (z, y)
is the sum of different homogeneous functions of @ and v, so
that the equation may be put in the form .

o (fl-”) +aty (%) + iy (-'l) Fo=0 . ),

z
where #, p, ¢, are arranged in descending order of magnitude.

‘- For example, every rational integral algebraical equation
between « and y can be put in this form. From (1) we have

¢(%)+w—f‘;,~p(-’5’ + =X (£)+= ..... cene(2):

Now in finding an asymptote we must first by Art. 271
ascertain the limit of % when  and y are infinite. If we
call that limit u, and suppose it to be finite, we have from (2)

| ¢ (w) =0. '

Let p, be a value of u obtained from this equation; we
have next to find the limit of y—px Put y—px=48,
then from (2) '

¢ (p,+g)+w%«p(pl+ g) Fore =0 (3).
But, by Art. 92,

8 (m+5) =6 ) +2¢ (u+2)

8, [/
58 (m+ D)
since ¢ (u) =0.
Thus (3) becomes

ﬁ‘ﬁ'(/"'x"'?; +z-.—}’_i‘\[r(p‘+§)+...=0 ......... (4).



RECTILINEAR ASYMPTOTES. 297

In equation (4) let = be supposed to increase indefinitely,
then we shall have different results depending on the value
of p.

If p be greater than n—1 the value of B is infinite, and
there is no asymptote for the raot p; of the equation

¢ (w)=0.
If p be equal to n —1 and ¢’ (k) be not zero, the limit of

Bis— %}%; and the equation to an asymptote is
. ,

R, o)
, VTR )
If n be less than n — 1 and ¢’ (u,) be not zero, the limit of
B is 0 and the equation to an asymptote is

y=p2.
In the last case the equations

y=pz, ¢(u)=0,
give for determining the asymptotes

¢(g)=0, ora;"¢(g)=0;

‘hence when the equation to a curve can be exhibited in such
a form that the sum of a number of homogeneous functions is
zero, and the degree n of the highest of these functions ex-
ceeds by more than unity the degree of any of the others,
all the asymptotes vn general pass through the origin and
may be foundp by equating to zero the homogeneous function
of the n™ degree. We say in general because there is the
limitation that ¢’ (u,) is not to be zero ; that is, by the theory
of equations ¢ (u) =0 must not have equal rosts.

275. We will now consider the case in which ¢'(x,) is
zero,
First suppose p equal to n— 1.

If ¥ (u,) is not zero B becomes infinite, and there is no
ptote for the root p, of the equation ¢ (u) =0. But if
4 (,) = 0 the value of B becomes indeterminate.
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Suppose in this case g=n~—2, so that equation (3) of
Art. 274 gives

¢ ("‘+§) +al'c"’(“:+§) +;l,-x(ﬁ,+§)+;..=o

Sincecﬁl(pl) =0 and ¢’ (u,) =0, we have, by Art. 92,

(m+ﬂ) ¢"( ) B)’
also «lr(n.+§)=—~lf’(m+‘—)-

Substitute these values in the equation above, multiply by
o and then proceed to the limit, aud we have for determining
the limiting values of 8, the quadra.tlc equation

B g )+ BY () +x () =0.

If the values of B be-possible, we thus obtain two parallel
asymptotes.

If this quadratic assume an indeterminate form, we may
proceed in the same manner to form a cubic equation in 8.

In the case where ¢'(u,) is zero and ¥ (i,) is not zero,
there is no rectilinear asymptote for the root u, of the equation

¢ (k) =0, as we have already stated at the beginning of this
Artlcle In this case we may in general obtain a parabolic
asymptote, as we will now shew.

By Art. 92, since ¢ (1) =0, and¢’(p)—0

)

Hence equa.tlon (8) of Art. 274 becomes

288 (L) Ly (m+E) 4.
as @ increases indefinitely this equation approaches to the

18 _ ¥(w) B_[(_2 ¢
fO@ 2 T2 () o (u)’ so that ——{—'w*ﬁ"(ﬂq) .



ASYMPTOTES. 209

Hence wo have a parabolic asymptote determined by ‘the
equation

thatis,  (y— “,m)'=:%,“’,‘(’;—(f)‘ﬁ.

Next suppose p less than n—1.
Then since @' (u,) =0 equation (4) of Art. 274 will not de-

termine B; and instead of this equation we bave ultimately
in the manner just shewn

If n—=p=2, we obtain

Bs - 2":‘ (“l)
¢ (1)’
so that if ¥ (u,) and ¢”(u,) are of different signs We have two
possible values of B, and therefore two parallel asymptotes
which are equidistant from the origin. ~
If n— p 18 not equal to 2, we have a curvilinéar asymp-
tote determined by the equation :

(y-mo)' == i i,

276. We have agsumed in Article 274, that the limit of
% is finite; if it be not, the limit of ? will be zero, and we
must examine if there exists an asymptote parallel to the

axis of y. This can generally be easily ascertained in any
particular example. Or we may put the given equation in

the form
¥ G) +9°¥, (—;_”/') +...=0,
and proceed as above. '

277. If a curve be given by an algebraical equation we
may determine the asymptotes which are parallel to the
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axis of y thus, Arrange the equation according to powers
of y; suppose it to be

¥ f (@) + 3 f,(2) + y*tfi (@) + -0, =0,

where a, 3, ... are all positive, then the asymptotes parallel to
the axis of y will be given by the real roots of the equation

f@=o.

For the equation to the curve may be written
il =0,

and it is obvious that this is satisfied by supposing y = « and
JS(x)=0; and that when y is  no other value of  except
those derived from f («) =0 will satisfy it. Hence the asymp-
totes parallel to the axis of y are found by equating to zero the
coefficient of the highest power of y in the equation to the curve.
~ Similarly the asymptotes parallel to the axis of z may be
found by equating to zero the coefficient of the highest power
of @'in the equation to the curve. ‘ ‘
When a curve is given by a rational integral algebraical
equation, it will be convenient to determine by the preceding
method the asymptotes parallel to the axes, and then proceed
for the other asymptotes according to the following rule; we
suppose the equation of the n* degree. Substitute for y in
the given equation uz + 8 and arrange the terms of the equa-
tion according to powers of z. Equate to zero the coefficient
of 2 ; this will give an equation for determining x; suppose
p, one of the real values of x. Then examine the coefficient of
2™, and give to u if it occurs in this coefficient the value u,.
If we can détermine 8 so as to make this coefficient vanish,
then y=pu, = + B will be the equation to an asymptote ; if the
coefficient cannot, be made to vanish there is no corresponding
asymptote. If the coefficient vanishes whatever be the value
of B, then put the coefficient of "™ equal to zero, su
#, for p in it ; we shall thus have generally a quadratic eQua-
tion to determine the values of 8, and if these values are real,
we obtain two parallel asymptotes. If the coefficient of z™*
vanishes, whatever be the value of 8, we must equate to zero
the coefficient of 2*® and so on. 4
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This rule can be easily shewn to agree with Arts. 274
and 275. Equation (1) of Art. 274, may be supposed the
equation to the curve in which # is an integer, p=n-1,
¢ =n—2, ..i... Then if we put uz+p8 for y, and arrange
the terms according to powers of #, we shall obtain the ex-
Ppression

&)+ (1) B8 () +" ) +BY () +E ¢ ().

Thus by equating to zero the coefficient of 2* we arrive at
the equation for determining u given in Art. 274. Then by
equating to zero the coefficient of #** we shall obtain the
same value of 8 as that found in Art. 274; or if the coeffi-
cient of " vanishes, whatever 8 may be, then by equating
to zero the coefficient of «*™ we arrive at the quadratic equa-
tion given in Art. 275,

Example (1).  3*+a*—3axy=0.

Put px + B for y, then

(pe + B)* + ® = Bax (uz + B)=0;
therefore (w*+1) 2* + 82" (W'B — ap) + Mz + N=0.
Hence, . g +1=0,
F’B_a/"':()’

are the e;luations from which x4 and @3 are to be found ; they
give p =~1, 8=~ a; therefore

‘ y=—z—a
is the equation to an asymptote.

Example (2). & (x4y) =a'(x~=y).

Put px + B for y, then
@z +pzc+p)=a' (z—px—AB);
therefore «* (14 u) + Ba'— za® (1 — p) +a"B=0.
Hence, 1+pu=0 and B=0;

therefore = — is the equation to an asymptote.
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Example (8). ay(y—2)(y—=+3a)+4d’z—a'=0.

Here the term containing the highest power of y is ay®;
thus & = 0 gives one asymptote, namely the axis of y. Simi-
larly, the term containing the highest power of  is ya®;
therefore y =0 gives one asymptote, namely the axis of .
Then put uz + B for y, and we obtain the expression

z(uz+B) {(p—-1)z+ B} {(s — 1) 2 + 3a + B} + 4a’z — a*.
Arranging thig according to powers of z, we have
Fp(p-1)"+a" (p—1) {3pa+ (3p—1) B}
+a* (B (3 —2) + 3aB (2u — 1)} + ...

- Pt p(p—1)'=0; we have then u=0, or p=1; the
former value of u will lead to the asymptote coinciding with
the axis of « which we have already found. The value =1
makes the coefficient of #* in the above expression vanish;
we therefore equate to zero the coefficient of o, putting p=1
in it. We thus obtain 8*+3a8=0; hence, 8=0, or 8=— 3a.
Therefore we have for the equations to asymptotes y =, and
y=x - 3a.

It will he observed that the conclusiong of this Chapter all
hold whether the axes be rectangular or oblique.

EXAMPLES.

Find the asymptotes of the following curves: ‘

1. y'(x—2a)=20"-0a" Result. x=2a; y=+ (x+a).
2. y'=2"'(2a-2) , Result. y=—w+%a.
3 y(@'+a)=ad (a-2) ' Result. y=0.
4. o (ay+bx) =gy + 0%, " Result. y=-— g—i z 2.
5. y=(z—a) (x—c) Result. y=z—-3% (2a+c).
6. zy'+yzt=a’ Result. 2=0; y=0; y=—a.
7. dy'=a'(’-y). _ Result, y=1+a.

{
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11,

12.
13.

14.
15.

16.
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42’ = (a + 32) (" + ).
Result. y=1+ (

)a.nd z==2,

V3~ 343 3

(@+a)g= (g +B)

Result. z+a=0, y+b=0, y= w+b -a.
(y—2w)(y’-.—-a,’)-qa@/—w)'+4a’(w+y)=q,
Result, y=u, y+a;=i%a, y—2a:.=
¥ (z~y)+aa’ (z—y)—8a’y' —a'=0.
Result. y=m+3 (1 y13).

a
3"

(2 — a) — 2y (y* — a’) = 3ay* +a’

Result, 2y=2, y+2-6=0, y+x+a=0.

‘ P@—y)—a' (& +y) =0.

Result. 2=+a, y=x+ay2.
(y—2)' (@' —a")=a'
Y’ = 8y'x + 42° + ay* + axy — 6az’ + 2b°z — by + ¢’ =

If a curve of the third degree be referred to two asymp-
totes as axes, shew that 1ts equation will be of the form

oy (ax+by+c) +az+ by +c'=0,
and that the equation to the third asymptote will be
ax+by+c=0.
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CHAPTER XX.

TANGENTS AND ASYMPTOTES OF CURVES REFERRED TO
POLAR CO-ORDINATES.

278. Ir we have the equation to a curve expressed in
terms of & and y, we may transform it to one between polar
co-ordinates by assuming ¢ =rcos@ and y=7sin§. Thus
r becomes a function of §, and the equation to a curve in polar
co-ordinates takes the form »=f(6), or F (r, §) =0. In this
case the curve is called a polar curve or spiral ; r is called the
radius vector and 6 the vectorial angle.

The angle (y) which the tangent to a curve makes with the
axis of x 18 given by the equation

tony =3 (Art. 257).

=
Hence, by Art. 201,
sin0%+r®s€
tan y = .
cosegg ~=rginf

279. Expression for the angle included between the radius
vector at-any-point of a curve, and the tangent to the curve at
that point.

Let P be a point in a curve, the polar co-ordinates of which
are r and 6, S being the pole.
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Let @ be another point, the co-ordinates of which are
' r+ Ar, and 6 + A6.

" Draw PL perpendicular to S¢, then
PL =rsin A6,
LQ=r+Ar—rcosAb;

rsin A8
r+ Ar—rcos A’

therefore tan LQP=

Let Q move along the curve to P; the limiting position
of QP is by definition the tangent to the curve at P; let this
be PT. The limit of the angle L QP will be the angle SPT';
call this angle ¢, then

rsin Af
7+ Ar — r cos Af
when A6 and Ar are indefinitely diminished.

tan ¢ = the limit of

. rsin Ad
Now rsin Af _ Af
r+Ar—rcos A _ . ,A6
27 8in” —
et A
A6 . A6
The limit of $22% s 1,
. .. oAr, dr
The limit of Ag denoted by 38"
2 sin® Aé 4 sin Ag
The limit of —mmmr 2, that is, of-—A-;— sin %‘-’ , is zero,
2
- dé
Therefore tan p=1r P

T.D.C. ' x
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N 280. The result of the last Article may a.lso be obtained
thus:
. dr
sin g agHreos 0
tan PTx = , (Art. 278),
cosd W: —~rginé
P8z =0; therefore
sin 8 % +rcosd
- — tand
cosf = —rsin 0
a9 =r gg by reduction..

tan SPT = .
tan0(sin0(70+rcose)

14
dr .
cosﬁd—e—rsm9

281, To find the polar equation to the tangent to a curve.
A

s / X
‘Let SP=r, PSz=20, be the polar co-ordinates of the point

of contact.
Let SQ=7', @Sz =0, be the polar co-ordinates of a point
@ in the tangent line. ¥rom the triangle SPQ, we have,

putting SPQ=¢,
r _sin QP _sin (06 +¢)
¥ smBlPQ sin ¢
= gin (0 — ') cot ¢ + cos (6 — ).
But tan¢=r(—ig,

therefore ;,=1 9 0 (0= 8) + 008 (D= ) coorerenn, ).
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This result may be written,
,d .
r Eérsm(e—e')=r’ .................. (2).
If we put%:u, and é=u’, then
_ldr _du
»df do

Hence, dividing both sides of (1) by 7, we obtain
u'=wucos (0 —6)— sm(ﬂ 9),

or u’=ucos(0'—0)+@sin(0’—0).

282. Tb find the polar equation to the normal at any point
of a curve.
Let SP=r, PSz=86,
SN=+, NSzx=6,

N being any point in the normal; then

SP sin SNP sm(o'-o+’§’-¢).
SN =sm 8PN~ = (C-9) ;

therefore ; sin (0' 0) tan ¢ + cos (6" — H)

=sin (6 6) 702 . con (6' — ).

This may be written
ja'rcos(e 0’)_r‘$,
and may be transformed into
u' =ucos '-—0)—u’iqsin @'-9).

du
X2
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283. The polar equations in Arts. 281 and 282, may also
be derived from the recta,ngular equations to the tangent
and normal of Arts. 257 and 258, by transforming these to

polar co-ordinates, using the value of % given in Art. 278.

284. From S draw SY perpendicular to the tangent PT;
then

rtan SPT

SY=rsin SPT= m-)-.

Hence, if SY = p, we have
P 1.1 aopm 1 l‘k)’

=ut4 (Z—Z)! if ué-’l..

285. From §'draw ST at right angles to the radius vector
SP, then ST is called the polar subtangent; its value is

r tan SPT, that is r’gg.

286. Since an asymptote is a tangent which remains at
a finite distance from the origin when the point of contact
moves off to an infinite distance, if a polar curve has an
asymptote, SP or » must be infinite while S7 remains finite.
Hence to determine the asymptotes to a polar curve, we must
first find those values of 6, if any, which make s infinite.
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Suppose a such a value of 8; if for this value of @ the polar
subtangent r’g—: is infinite, there is no corresponding asymp-

tote. If r'd—e be finite there is an asymptote which may be
ar ymp y

constructed thus: conceive a straight line drawn from § at
an angle a to the initial line ; draw from S a second straight

line at right angles to the firs, to the right of it, if 1*52 bo

positive, and to the left of it, if r"gg be negative, and equal

in length to * gg, through the end of this second straight

line draw a straight line parallel to the first, and it will be
the required asymptote.

The terms right and left in the above rule are to be under-
stood with respect to the straight line first drawn, the eye
being supposed to look along that line from S. The reason
of the rule must be collected from the figure of Art. 284 and
the general principle of the interpretation of signs; that

figure makes r increase with 6, and therefore * 7 i8 positive.
If we draw a figure in which » diminishes when @ increases,

‘80 that' dr and the polar subtangent are nmegative, we shall

dé
find that ST falls to the left of SP.
ad
287. Example. =
Here # is infinite when @ is any multiple of .
dr _a(sind—6cosh)
Also dé sin? @ ’
dé af’
therefore N 37—' = m .
Hence, when sin § =0, the value of the polar subtangent
18 — a6 .
cos 6

‘When 6 =, the polar subtangent = am.
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When 6 =21, the polar subtangent =~ 2am,
and generally when 6=n, the polar subtangent = (~1)*"nanr.

To draw the first asymptote, for which 6 =, the eye must
be supposed to look from S along the direction opposite to
Sz, and then measure from 8 at right angles to Sz and
towards the right, a straight line in length am; a straight
line drawn parallel to the initial line and at a distance ar
from it is the required asymptote.

To draw the second asymptote, for which §=2m, the eye
must be supposed to look along Sz, and then measure to the
left (since the subtangent is negative) a length 2aw. Hence
the asymptote is parallel to the initial line at a distance 2am
from it, and above the initial line.

Proceeding in this way we find an infinite number of
asymptotes parallel and equidistant, and all above Sz.

If we ascribe to @ negative values, we shall in like manner
obtain a series of asymptotes all parallel to Sz, and equi-
distant, lying below S.

EXAMPLES.

1. In the curve » =asin 6, shew that ¢=40.

Determine the points in the curve »=a (1 + cos ) at
which the tangent is parallel to the initial line.

3. Shew that in the curve r6 =a the polar subtangent is
of constant length.

4. In the curve r (ae® + be™®) = ab, the length of the polar
ab

ae® —bed”

5. In any conic section, the focus being the pole, the locus

of the extremities of the polar subtangents is a straight
line at right angles to the axis major.

subtangent is —

6. Find the angle between the radius vector and tangent
at any point of an ellipse, (1) the focus being the pole,
(2) the centre being the pole. Determine in each case
when the angle is a maximum.




10.

11.
12.

13.
14.
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It r=a(l—cos6), then $=7, p=2asin'?, and the

polar subtangent = 24 sin® g tan g

If 7' cos 20 = o, shew that sin¢=—
If 7" =a" c0s 26, shew that ¢ =7 + 26.

If r=asec’g , shew that the locus of Y is a parabola.

See the figure in Art. 284.

If r=a(1+ cos §), shew that the locus of Y is deter-
: 3

mined by »=2a (cosg .

If »* =’ cos 20, shew that the locus of Y is determined

3
by r*=ad' (cos %g) .

Shew that the curve 7 cos  =a cos 26 has an asymptote
having for its equation r cosf =—a.

Shew that the curve (r —a) sin =0 has an asymptote
having for its equation rsin 8 =5.

Determine the asymptotes of the curve = cos 20 = a.

Determine the asymptotes of the curve
r sin 40 = a sin 34,
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CHAPTER XXL

CONCAVITY AND CONVEXITY.

288. THE terms ‘concave’ and ‘convex’ are commonly not
defined in works on the Differential Calculus, but are used
in their ordinary semse. The following definition however
has been given: “A curve is said to be concave at one of its
points with respect to a given straight line, when in passing
from that point its two branches are initially included within
the acute angle formed by the given straight line and the
tangent to the curve at that point. 'When, on the contrary,
the two branches are initially outside this angle, the curve 18
said to be convex at this point with respect to the straight
line.” :

289. To find a test of the convexity or concavity of a
curve.

Let P be a point in a curve whose co-ordinates are z, y.

(\‘ﬂ/f

[/] M & o
Draw the tangent at P; then if at the point P the curve be
convez to the axis of @, the ordinates of the curve cor-
responding to the absciss® z+h must be greater than the
corresponding ordinates of the tangent at P, when % has any
value contained between some finite limit and zero: if the
curve be concave, the ordinates of the curve must be less than

the ordinates of the tangent. This may be deduced from the
definition of Art. 288; or if we omit that definition it must
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still be taken as a consequence of the meaning of the terms
concave and convex.

Let y, denote the ordinate of the curve corresponding
to the abscissa x+ &, and g, the corresponding ordinate to
the tangent at P. If y=¢ () be the equation to the curve,
we have

=9 (z) + 4 (2) +’—;-' ¢ (z + Oh).

And since the equation to the tangent at P is
Y—y=¢() (X-a),

we have

Yi=9@) +hd'(z);
therefore Y=Y = 1‘23 ¢" (x+ 6R).

This, if we take h small enough, will have the same sign
as ¢”(z); and therefore the curve is convex to the axis of
z it ¢ (x) be positive, and concave if ¢" (z) be negative.

‘We have supposed in the figures that the curve is above the
axis of . If it be below the axis of @, then —y, and — g, are
the numerical values of the ordinates, and the curveis convex
if —y, +y, be positive, that is, if ¢”(2) be negative, and con-
cave if ¢’

(=) be positive.
Both cases may be included in one enunciation, thus, “A
. . . dy
curve is convex or concave to the axis of # according as y s
is positive or negative.”
290. DEFINITION. A point of inflexion is a point at
which a curve cuts its tangent at that point.

To find the conditions for the existence of a point of
inflexion. Let y=¢ (x) be the equation to a curve; let
, y, be the co-ordinates of a point in a curve, and @+ 4, y,,
the co-ordinates of an adjacent point. Let the tangent of
the curve at the point (x, ) be drawn, and let y, be the
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%r;]iinate of this tangent corresponding to the abscissa = + A.
en

=¢ (@) +h'(z)+ 3 ¢" (@ + OR),
%= (@) + k¢’ () ;
therefore Y=Y = %' ¢ (x + Oh).

Hence, if: ¢”(z) be not zero, the sign of Y~ Y% y, will, if
% be small enough, be the same as that of ¢" (), *whether
h be positive or negative, and the curve cannot cut its
tangent. Therefore if there be a point of inflexion, we must
have ¢”(z) =0. Suppose this condition satisfied, then

Bi= =[5 8 (o OB s

and this expression changes its sign when A does, prov1ded
¢” (z) be not zero. If ¢’ (x) be zero, it may be shewn that
¢ (z) must also vanish ; and generally if for a-certain value
of 2 several of the successive differential coefficients of y
vanish, beginning with the second, there is a point of in-
flexion if the first differential coefficient that does not vanish
is of an odd order.

Since generally at a point of inflexion 5—;’, vanishes while

a d’y &’y
d} 18 finite, T cha.nges its sign. For dx’ is the diffe-
- rential coefficient of %, therefore, by Art. 89, if ZZ’: be

oo Ay . dy dy
positive e increases with z, and 1f be negative Tt

d’
decreases as x increases. Hence <=5 7 ¥ must pass from negatwe

to positive if =% Iy  be positive, and from posmve to negative if

dwﬂ

dy
o be negative.
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[ )

Q/

o / £

291. In the above figure P, @, R, are points of inflexion
for the curves passing through them. At P there is a change
from concavity to convexity with respect to the axis of a.
At Q there is a point of inflexion, but the curve on both
sides of Q is convex to the axis of x. This agrees with
Art. 289; since, if y and % both change sign, no change
occurs in the sign of their product. At B we have a point

2,
of inflexion at which % is infinite and therefore also %
is infinite by Art. 113, a case which the investigation in
Art. 290 does not include. We should therefore in any

2
example ascertain if 3—5 can become infinite, and if so we
must examine that case specially. We may trace the curve
in the neighbourhood of that point, or we may examine the

sign of z—m% for values of « differing slightly from that which

gives rise to the infinite value, and thus determine if the curve
18 concave or convex near the point in question.

If we consider y as the independent variable, we may shew
in the manner of the preceding Articles, that a curve is convex

or concave to the axis of y, according as x g_;a; is positive or

negative, and that at a point of inflexion %’; must vanish and
change its sign. This is often useful in cases in which %
becomes infinite. .

. 2,
292. The connexion between :zi_x’y and, the concavity or

convexity of a curve, may also be shewn thus.
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Let PL, QM, RN, be three equidistant ordinates. Draw
the chord PR meeting QM at H.
Let y=¢ («) be the equation to the Q
curve; &, ¥y, the co-ordinates of P;
LM=MN=h. If the curve be con-
cave to the axis of z, QM is greater
than HM; and therefore 2QM
greater than 2HM, that is, greater o Z u > =
than PL + RN. Hence

¢ (@ + 2k) — 2¢ (@ + h) + ¢ (2) is negative,
and therefore also ¢ (= +2h) — 2%(“’ +h) +¢ ()

is negative.

Let % diminish indefinitely, and it follows by Art. 127,
that ¢”(x) is negative. Similarly, if the curve be convex
to the axis of #, then ¢”(z) is positive.

293. We will briefly indicate another method by which
the results of this Chapter are sometimes obtained. It is either
deduced from some definition of concavity and convexity, or

given as the definition of those words, that y being supposed
- . . ey, . .
Ppositive, a curve is convez to the axis of z, if o be increasing,

that is, if % be positive, and concave if g—z be decreasing, that
d%y

o be negative.

Also a point of inflexion may be defined as a point where
the curve changes from being concave to being convex, or

vice versa. Hence % must change sign at a point of inflexion.

is, if

A point of inflexion may also be defined as a point at
which the inclination of the tangent to the axis has a maxi-
mum or minimum value. Since when this angle has a maxi-
mum or minimum value, so also has its tangent, we must
have dy a maximum or minimum at a point of inflexion

dz

dy .
Hence ~7= must change sign.
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294. A curve referred to polar co-ordinates is said to be
concave or convex to the pole at any point, according as the
curve in the neighbourhood of that point-does, or does not, lie
on the same side of the tangent as the pole.

If p be_the perpendicular from the pole on the tangent at

a point whose co-ordinates are r, 6, 1t will be seen from a
figure, that if the curve be concave to the pole, p increases if

. . d
7 increases, and decreases if » decreases; hence E’;’ must be

positive. Similarly if the curve be convez to the pole dp

dr
be megative. Thus at a point of inflexion Z—f must change

must

sign.

295, Since = +(d“) Art, 284,

fl£=(u+d’u) du

therefore - 20 78’

u

dp_ a
therefore =P (u +3 0’)
dp
dr

But

Hence, at a point of inflexion we must have generally
u+ % changing its sign.

EXAMPLES.

1. Ify= a,f p there is a point of inflexion at the origin,

and also when =+ a /3.

a* (x + a)

2. Ify— o—a)’ there is a point of inflexion when

z=—a (W2 -1).
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10.

11.

12.
13.

14

POINTS OF INFLEXION. EXAMPLES.
If y (a'—?*) =2 (x — a)' — 2b", there is a point of inflexion
2 . . .
when 2 = —:— . Is there a point of inflexion when
z=a?

Y

Y= (“—z), there is a point of inflexion when

a x
3a
r=—.
4
—a\?
If %:2—7: (a: - ) , there is a point of inflexion when
r=a.

If o =log y, there is a point of inflexion when = 8.
If az®— a’y—a’y =0, there is a point of inflexion when

a
=4 :/—3-
Y= ( z ), there is a point of inflexion when
a 2a -z, ‘
z=7
2"

I xy=a' logz, there is 'a point of inflexion when

z=ad. v
Find the point of inflexion on the curve,
6
{y — 2 Y(a'x)} = 4az. Result. = (g) a

If y («*+a®) =a’ (e —z), there are three points of in-
flexion which lie on a straight line.

; 021 , there is a point of inflexion when » =-2:—;.

If r=>5. 6" there is a point of inflexion when -
r=b{—nn+1)}L
If r=a(l—cos¢), and y=a (np+sin¢), there is a
point of inflexion when cos ¢ =— n

.

Ifr=
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CHAPTER XXII.
SINGULAR POINTS.

- 296. UNDER the common title of *“ Singular Points” are

included all those points on a curve which offer any sin-
gularity depending on the curve itself and independent of -
the position of the co-ordinate axes. We proceed to define
the giﬂ'erent singular points and to investigate the conditions
of their existence. ‘

Points of Inflexion. .

297. These points have been considered in Arts. 288...295 ;
the condition for their existence is that % should change
sign. ‘

Multiple Points.

298. DEFINTTION. A multiple point is a point through
which two or more branches of a curve_ pass.

~ Let ¢(x, y) =0 be an equation in a rational form; by
Art. 177 W dbd :

dp  dbay_

T &y T = O e .

Now since two or more branches of a curve pass

through a multiple point, it will be possible to draw more
than one tangent to the curve at that point ; hence Z—‘Z must
admit of more than one value. But since the equation
¢ (#, y) =0 is supposed rational, Z—i and :iﬁs will each have

but one value for the given values of  and y. Hence from
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equation (1) it follows that z—% cannot have more than one

value unless both

e dé_
i 0, and 2= 0.
These then are the conditions for the existence of a mul-
tiple point. If values of 2 and y can be found which satisfy
these equations and the equation to the curve, then for such
values of 2 and y we have, by Art. 181,
d'¢ d'¢ dy  d'¢ dy)‘_
da:'+2dxdyd:c+dy’(da: =0 @)

From this quadratic equation we can find two values of 4y ’

and thus determine two tangents which can be drawn through
the multiple point. In this case the multiple point is called
& double point. .

If the above equation assumes an indeterminate form by

. d¢ d'p d'¢
the -vanishing of & dody’ and Pl for the values of

« and y under consideration, we have, by Art. 184,

R CE DN 1

This cubic equation gives three values of idg; if they are

all real, three tangents to the curve pass through the point
under consideration ; the point is then called a triple point.

If the equation (3) assumes an indeterminate form by the
vanishing of the coefficients of the different powers of %, we

must proceed to the fourth derived equation from ¢ (z, y) =0,
and we thus obtain a biquadratic equation for determining g—i

299, If'the two values of % furnished by equation (2) of

Art. 298 are equal, the two branches which pass through the
oint in question have a common tangent at that point.
this case, however, the method by which we have arrived

at equation (2) is not satisfactory, because in obtaining it we
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have assumed % to have more than one value. But as in

this case two different branches of the curve pass through
the same point, there will generally be fwo different values

ofdy; by Art. 181,

Po o B dy To )\ dbdy_
i oy dot @y (da:) tay ="
and since ¢ (z, y) is rational, each of the differential coefficients

of ¢ has only one value ; hence if 3—3 be different from zero

% can have only one value. But, by supposition Z—;;y has

more than one value; therefore dy =0 is the condition that
must hold at the point where two branches touch. Since
db_, dp

By =0, it follows from (1) of Art. 298 that 5 also = 0.

If % should have two egqual values, then the reasoning

of this Article may be applied to % and the therd derived

equation of ¢ (x, ) =0; and the same result as before may
be deduced.¢( " :

Points where two or more values of % are equal are
called “Points of Osculation.”
800. Example. Let y'—a'(1—2")=0.

dp _ - dé_ _

Here @—2.1/, %——21‘(1 o) +22%,
Hence 2=0, y =0, are the co-ordinates of a point which

may be a double point. Equation (2) of Art. 298 becomes

- i

therefore % = ¢ 1, and there is a double point.

'We may in this case put the given equation in the form

y=ia"\/(l—m’):
T.D.C. Y
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and from this we see that for values of # comprised between 0
and 1, both positive and negative, y is possible, and that
there are fwo values of y for every value of z. When & =0
the two values of y become equal ; but since

%=i«/(l—”')$m%s,

we see that when & =0 there are fwo values of Z—% . Hence,

instead of clearing an equation of radicals so as to bring
it into a rational %orm, and then applying the method of
Art. 298, we may often detect a multiple point more easily
by observing what values of 2 make one of the radicals sn the
value of y vanish.

Cusps.

801. DEFINITION. A cusp is a point of a curve at which
two branches meet a common tangent and stop at that point.
If the two branches lie on opposite sides of the common
tangent, the cusp is said to be of the first species; if on the
same side, the cusp is said to be of the s species,

Since a cusp is really a multiple point, if a cusp exist in

the curve ¢ (z, y) =0 at any point, we must have

ab_ . db
E-”—O, and @=0,

at that point. To distinguish a cusp from an ordinary mul-
tiple point, we must trace the curve in the vicinity of the
point in question, |

. — . .
Exsmple. Let  (y—baf' -2 oo, |

Here when &=a and y=%b we have the equation to the ‘
curve satisfied and also

dp d_
E=0, and 3—3‘/'—0.

Putting the given equation in the form

y=b?"'f.i§,\/{—(w;—@'}.... .............. (2),
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we see that y is impossible so long as & is less than g, and
that when = is greater than a there are two values of y for
every value of #. When #=a the radical in y vanishes,
and the two values of y become equal; at the same time

3—% has only one value, namely " Hence there is a cusp.

In the figure, 4 represents the cusp; the straight line 04
has for its equation y=—; and '
since of the two values of y given
by equation (2), one is greater and
the other less than - it is obvious
that the two branches lie on op- -5 >

posite sides of OA, and the cusp :
at A is of the first species. (3enemlly the cusp is of the first

species if the two values of g—m,‘z indefinitely near to the point
are of contrary signs, and of the second species if they are of

the same sign.

s of the first species have been Md “Xkeratoid cusps,”
and of the second “rhamphoid cusps.”

Conjugate Points.
802. DEFINITION. A conjugate ]fOint is an'isolaled point

the co-ordinates of which satisfy the equation to the curve.
For example, let

y=S@-a).

Here the values =0, y =0, satisfy the equation to the curve,
but no branch of the curve passes through the point thus
determined, y being impossible for all other values of « com-
prised between —a and a. Hence the origin of co-ordinates
18 & conjugate point in this curve. 4

In the above example, since

y=1VE-a),

we find that the va.l'ge of % is impossible when = =0; but %

Y2
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may be possible at a conjugate point; for example, suppose
' <
y=1, V& —a").

Here, when 2 =0, we have %=0; but the origin is a con-

jugate point, since =0, y=0, satisfy the equation, and y
18 impossible f:)r all other values of # between —a and @ In
like manner j—wy,- or any number of the differential coefficients
of y may be possible at a conjugate point, but they cannot be
all possible, for if they were we should have nothing to dis-
tinguish the point in question from an ordinary point of the
curve.

To find the condition for the existence of a conjugate point.
Since at a conjugate point the values of the differential
coefficients of y cannot be all possible, let the n® differential
coefficient of y be the first that is impossible. Suppose the

uation to the curve to be put in a rational form, and
denoted by ¢ (z, y) =0. Take the n* derived. equation; we

have

where the terms not written down ocontain differential .coeffi-
cients of ¢ with respect to  and y, and also differential
coefficients of y with respect to = of orders inferior to the n®,

If then Z—; be not zero the value of % furnished by the

above equation will be possible; hence gi’ =0 i8 & necessary
condition for the existence of a conjugate point ; but

dp  dpdy

&ty do="

therefore also . Z—t =0.

. 303. It appears from the preceding Articles that if
¢ (x, y) =0 be the equation to a curve, we must have at

.
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an_ordinary multiple point, at a cusp, and at a ‘conjugate

point,

dé _ aé _
a:”-—o, and@ 0.

Hence, whenever we have found values of # and y which
satisfy these three equations, we must, by examining the
particular curve, and tracing it in the vicinity of the point
in question, determine what species of singular point exists.

‘We now pass to some other singular points which occur
but rarely, and, as the student will find by experience, never
present themselves in curves the equations to which are of an
algebraical form. See Art. 6.

Points d’arrét. _
804. A point d’arrét is a point at which a single branch
of a curve suddenly stops.
Example. Let y=xlog 2.
Here when =0 we have y =0; but if 2 be negative, »
becomes impossible, Hence the origin is a point d'arrét.
1
Again, suppose y=6 .
Here if # be made indefinitely small and positive, wé have y
approa:x];i:lf the limit zero; but if  be negative and indefi-'
_nitely , y is indefinitely great.

4

Hence the curve has the form represented in the figure, the
origin being a point d’arrét; the dotted line is an asymptote
having for 1ts equation y = 1. o
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805. A point saillant isa point at which two branches of
a curve meet and stop without having a common tangent.

Example. Let :y= .z 1
146 .
therefore ‘ %= 1 T+ e T

1+e x(l+e) )
Here, if z be positive and approach zero as its limit, we have
ultimately y=0 and 5Z=0; but 4
if  be negative, we have ultimately

y=0 and %=J. Hence at the 5 Ea

origin two branches meet, one
having the axis of # as its tangent,
and the other inclined to the axis
of 2 at an angle of 45°.

Branches Pointillées.

"806. If a curve has an infinite number of conjugate points,
that series of points is called a branche pointillée.

For example, suppose y*=axsin’x; for all positive values
of « there are two possible values of y, but when z is nega-
tive y is impossible, unless « be a muﬂiple of . Hence we
have an infinite number of conjugate points lying on the axis
of « and forming a branche pointillée,

EXAMPLES,

1. If a’y*=a'%" — o* there is a multiple point at the origin.
2. In the following curves there is a point of inflexion at
the origin : .
y=sinz; y=xcosz; y=tanz; y-z‘tgnz.
3. The following curves have cusps at the origin :
y=a; (y-af=a) G-a=s
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Il
If y=¢ (@) + (z—a) ¥ F (:c) when z = a, there is a cusp
of the first kind if Pg be greater than 1 and less

than 2, and a cusp of the second kind if -B—be
greater than 2.

The curve 3*= (z—a)' (z—c) has a cusp of the first
kind at the point z =a.

The curve (zy+1)*+ (z—1)’(x—2)=0 has a cusp, of
the first kind at the point z=1.

The curve y—b= (a:—a)*+(z-a)’ has a cusp of the
second kind at the point 2 =a.

- The curve *—2az"y — axy" + a’y* =0 has a cusp of the

second kind at the origin.

The curve *-— aa’y—axy'+a’y'=0 has a conjugate
point at the origin.

The curve a*— 2ay’ — 8a’y’ — 2’2" + a* =0 has a double
point when z=1+ a, and Z——Z then =4+ 4/4; also a double

point when y =—a, and % then =4 /3.

If ay*=(#—a)’ (#—B), when z=a there is a conjugate
point if @ be less than 3, a double point if a be greater
than &, and a cusp if a=b.

Shew that the curve ay'—a*+ 2" =0 has a conju ate
point at the origin, and a point of inflexion when
b

w e

R
Find the points of inflexion in the following curves :
yYi+a)=1—-z+2")'; r'0=d’; rfsinfd=a.
Find the singular points in the following curves:

y+z+1)=(1-2)°; y'—azy'+2'=0;
y=2-2a'; y'+ay’+2 (ay—bx)=0.
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CHAPTER XXIII

DIFFERENTIAL COEFFICIENTS OF AN ARC, AN AREA,
A VOLUME, AND A SURFACE,

307. THE length of the arc of a curve 4P, reckoned
from any fixed pomnt 4 to the _
point P, is evidently a func-
tion of the abscissa @ of the
point P. This function is
often very difficult to deter-
mine, but its differential co-
efficient with respect to  can
always be assigned.

Let P, Q, be two points on a curve;
, y, the co-ordinates of P;
z+ Az, y+ Ay, the co-ordinates of Q.

Draw the ordinates PM, QN, and the tangent at P meet-
ing QN at R and Oz at T.

Let AP=s, AQ=s8+As.

We-assume as an axiom, that the length As 13 greater than
the chord PQ, and less than PR + RQ.

The chord PQ =v{(Az)* + (Ay)},
PR =MN sec PTM = MN /(1 + tan* PTHM)

T
QR=y+Ay— RN .‘ -
=y+Ay— (PM+ Az tan PTM)
dy

= Ay‘A“’d—m;
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therefore As lies between #/{(A2)' + (Ay)'} and

W

therefore As lies between J {l + %)’} and

R R

v .Now the limit of {l + '} when Ag is indefinitely -

“J{l}

The limit of {l+ % }+———m

J{ @} +2-% =i+ @)}

.. ds
The limit of A_a: is, by definition, o’ hence

%,J{1+(%)'} ........... S

Square and multiply by (%)‘, then

1= (‘i—f‘)’ + (%)' ....................... @)

If = and y are each functions of a third variable ¢, since
do &y
@=dt and dy di
A Tt
dt dt

e 0, (5 = (5 + ) 0
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808. Of the axioms on which the pleoetri:ilgﬂdemonstm-
tion is founded, the first will probably be ily granted ;
the second is more difficult, and will not be necessarily true
if the arc be not concave towards the chord PQ throughout
tts extent. It must be understood therefore, in stating it,
that the arc PQ must be taken so small that it is always
concave towards its chord.

There. is another mode of arriving at the results given in
Art. 307, which is preferred by some writers: they assert that
no precise idea can be formed of the length of an arc, except
by regarding it as the limat of the perimeter of a polygon in-
mibedintluztarc,whonﬂwlengﬂ;gfeaohside of the polygon
18 indefinitely diminished. If we adopt this definition of the
length of an arc, we must shew that the limit mentioned
does exist, and is the same in whatever manner we suppose
the polygon inscribed, provided that each side is ultimately
indefinitely diminished. }

Draw two chords dividing the whole arc we are consider-
ing into two portions; then in each of these subdivisions
place two chords -dividing the whole arc into four portions;
1n each of the last subdivisions place two chords, and so on.
The perimeters of the polygons thus formed constitute a series
continually increasing ; and -as it is easy to see they cannot
increase without limit, we prove the first point, namely, that
there is a limit to the perimeter of the inscribed polygon when
the length of each side 18 indefinitely diminished.

Suppose now two polygons with indefinitely small sides
inscribed in the curve, one of them being one of the series just
considered, and the other described after any other law. Draw
tangents-to the curve at the angular points of both polygons,
thus forming one polygon' circumscribing the arec. T[?l(:en it is
easy to see that any chord of either polygon bears to the cor-
responding portion of the circumscribing figure, a ratio which
can be made as near to unity as we glease by sufficiently
diminishing the length of each chord. Hence the perimeter of
each inscribed figure bears to that of the circumscribed figure
a ratio which is ultimately one of equality, and consequently
the ratio of the perimeter of one inscribed figure to that of the
other inscribed figure is ultimately one of equality. This
proves the second point involved in the definition of the length
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‘of an arc, namely, that the limit obtained is the same accord-
ing to whatever law the polygons be inscribed.

From this definition of the length of an are it follows that
the ultimate ratio of the length of an indefinitely small arc to
its chord is one of equality, that is,

As Az
. ds . dy |
therefore d; = ,\/ {l + (E) } .

309. Since secant PTs = V { 1+ (%)'}

9
we have cos PTx = 1 - =d‘._'”,
@)
7
and sin PT% = cos PT%x tan PTx
dxdy _dy
“dsdr ds°

310. If = and y be expressed in terms of @ from the
equations . '

z=rcosf, y=rsiné,
we have ds _ds do

dé ~ dz df

i@}
- {@+@)}-

dr
But d—o=008070-—rsm0

;E=sm0d—é+rcos0;
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therefore % = ~/ {(Z_’O)’-I- r'} .
R T Ry

We have shewn in Art. §79, that
ta.n¢=rg;0,

where ¢ is the angle between the radius vector at the point
whose polar co-ordinates are r, 6, and the tangent at that
point. Hence

.rdo . ﬁ
ar T do

ann  ds s’
Vi@ E
Similarly oos¢=§—:'.

These results may also be deduced immediately from the
figure in Art, 279; for sin is the limiting value of %,

sin ¢ =

" UPL As rsin A0 As .
tha:t is, of 2P0 of ~as 'PQ" The limit of
reinAf ; 746, nd the Limit of 2% is unity; hence

A " ds’ PQ
gin ¢ = rgg . Similarly the value of cos ¢ may be found.

311. The value of %, in Art. 810, may also be obtained
thus: :
Let P, Q, be points on & curve, and suppose
8P=r, PSz=6,
8Q=r+Ar, QSz=0+A6.
hDraw PL perpendicular to 8¢,
then

T

PL=1rsin A6, T s

b
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LQ=1r+Ar—1rcos Af
= Ai'+2rsin'é£.

2
Also the chord PQ = y/(PL* + LQ).

From this, if we proceed according to the method of the
preceding Articles, we shall arrive at

ds / dr
B/ 1"+ (@)}
812. If A4 denote the area contained between a curve and
the axis of z, we have shewn in Art. 43 that -

d4 _
h - .
813. To find the differential coefficient of the area of a
curve referred to polar co-ordinates. .
Let A denote the area contained between the radius SP,
the radius SO drawn to some
fixed point € on the curve, and
the curve CP. Let A4 denote ' @
the area PSQ. With centre S
and radius SP describe an arc
meeting SQ at L, and with
centre S and radius SQ describe =
an arc meeting SP produced at ¢
M. Then lies getween PSL and QSM, that is, between

3
,’go g +2Ar) A6

¢t ]
therefore %—‘g lies bgtween g and (r +2Ar) .

Hence, proceeding to the limit, we have
ad_ o
dd  2°
314. Differential coefficient of the volume of a solid of re-
volution.
Suppose the curve APQ in the figure of Art. 307 to
revolve round the axis of #, and thus to generate a solid.



334 SURFACE OF A SOLID OF REVOLUTION.

Let V denote the volume of a portion of this solid contained
between two planes perpendicular to the axis Oz, one drawn
through a fixed point 4 and the other through P. Let AV
denote the volume of the solid contained %etween planes
through P and Q pe%icular to the axis. The volume
of a cylinder having for its axis and for its base the
circular area formed by the revolution of M round the axis
Oz, is wy'Az. The volume of a cylinder having MN for its
axis and for its base the circular area formed by the revolu-
tion of QN round Oz, is = (y+ Ay)'Az. Hence AV lies

between my*Az and 7 (y+ Ay)*'Az. Therefore %—E lies be-

tween my* and 7 (y +Ay)®. Hence, proceeding to the limit,
we have )

315. Differential coefficient of the surface of a solid of re-
volution. . : ,
Let P, @, be two points in & curve which by revolving

round the axis Ox generates
a solid of revolution. Let 4
be a fixed point on the curve,
and suppose AP =g, PQ=As,
Let S denote the area of the
surface formed by the revolu-
tion of AP, and AS the area
of the surface formed by the
revolution of PQ. Draw PR and QT each equal to As and
each parallel to Ox. If PR revolve round Oz it generates
a cylinder, the surface of which is 2myAs. If QT revolve
round Oz it generates a cylinder, the surface of which is
27 (y+ Ay) As. We assume as an axiom that the surface
generated by the arc PQ lies between the former and the
latter. Hence AS lies between 27wyAs and 2 (y + Ay) As,
and proceeding to the limit, we have

ds .

ds 27y ;

ds ds
therefore &= 21ry e
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EXAMPLES.

Inthee]hpse J(a —¢ ; and if x =gq sin ¢,

%=a4(l-e’sm ¢).

In the par;xbolay’=4az, Z‘—fj(‘—’%’)

dx

Find the differential coefficient of the arc of the curve
e (—1)=¢"+1.

Inthecircleé=§.

ds _e*+1

.Restdt. CE=6—':_i.

3 -
In the curve ¥+ yt=al, g‘_;;_.:;

In the curve »=a (1+ cos6), %=2acosg.
v o ds .
In the curve r=a’, 70=n/{1+(loga) 1

ds a
In the curve 7*=a’ cos 26, v

Inthecurver=a0, o V(a +r’)

N dxz
If e?=cosx, s = cosa.
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CHAPTER XXIV,

CONTACT. CURVATURE. EVOLUTES AND INVOLUTES.

316. LET y=¢ (x) be the equation to one curve, and
y=v (z) the equation to another; then if ¢ (a) = Y (@) the
curves inlersect at the point whose abscissa is a. If more-
over ¢'(a) =+ (a) the curves have a common tangent at the
common point ; in this case they are said to have a contact
of the first order. If moreover ¢”(a) =+ (a) the curves are
said to have a contact of the second order. If ¢(a)=4(a),
¥ (0) =¥ (), ¢" (@) =" (a), " (a) =¥"(a), and 80 on up {0
¢"(a) =+¥"(a), the curves are said to have a contact of the
n' order at the common point. 'When we 8 of two curves
having contact of the 2 order we imply that they have not
contact of a higher order ; that is, with the preceding notation
we imply that ¢*** (a) is not equal to ¥***(a).

817. If two curves have at any point a contact of the
n® order, then in the vicinity of the common point no curve
can pass between them unless it has with both of them a
contact of an order not lower than the n®. For let y = ¢ ()
and y=+(z) be the equations to two curves which have
contact of the n® order at the point =a; and let y, denote
the ordinate in the former curve corresponding to the abscissa
a+ h, and y, the ordinate in the latter curve corresponding to
the same abscissa; then, by Art. 92,

y.=¢(a)+h¢'(a)+§¢"(a)...+§¢-(a)+|% ™ (a+6F),

vu=v (@) +h (a)+ & ¥(a) ...+L"—1_:qr-(a) +I7’:—:} ¥ (a + 6h).
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- Hence, since the curves have contact of the n' order,
L

y;4y.=|:+1 {¢"‘ (a+9h)—«k"“(a+eh)}.

Now suppose y=1x () to be the equation to a third curve
which bas contact of the m™ order with the first curve at the
point z=a; then if y,=x (@ + ), we have

m+1 .
Y= =P (¢ ) = )

If m be less than n we can give such a value to k as will
render y, — y, less than y, — vy, for that value of » and all
numerically inferior values both positive and negative. Hence
in the vicinity of the common point the second curve is nearer
to the first than the third is.

In the above expressions # denotes merely a proper fraction,
and it is not necessarily the same proper fraction in the
different cases.

318. The expression for y,—y, in Art. 317, when % is
sufficiently diminished, has the same sign as

hllfl { ¢n+l ( a) —_ ,‘P‘s‘l'l ( a)}’

and therefore changes sign with h if » be even; therefore
if two curves have contact of an even order they cross each
other at the common point. If two curves have contact of
an odd order they do not cross each other at the common

point.

319. In order that a curve may have contact of the
n® order with a given curve, it appears from Art. 316 that
n+1 equations must be satisfied. Hence, if the equation
to a species of curves contain n +1 cohstants, we may, by
giving suitable values to those constants, find  the par-
ticular curve of the species that has contact of the n'® order
with a given curve at a given point. For example, the
equation to a straight line is of the form y=mz+ ¢; since
there are two constants, m and ¢, we may, by properly de-
termining them, find the straight line which has contact of
the first order with a given curve at a given point. If the

T. D. C. Z
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given curve be y=¢ (), and the given point that whose
co-ordinates are £ =a, y = ¢ (a), then. we must have

ma +c¢= ¢ (a),
and m= ¢' (@).
Hence m and ¢ are determined.
If y = ¢ () be the equation to a curve, then

y=@+e-0¢ @+ 5L 5@ +E Ly

is the equation toa curve which has a contact of the n'® order
with the given curve at the point z=a. This may be easily
verified.

320. Circle of curvature. The general equation to a circle
involves three constants ; hence at any point of a curve a circle
may be found which has contact of the second order with the
curve at that point. We proceed to determine the radius and
the centre of such a circle. .

DerFmNiTION.  The circle of curvature at any point of a
curve is a circle which has at that point a contact of the
second order with the curve.

Let (X=a) '+ (Y =0y =p cereerrrrrnnnnen. (1)
be the equation to a circle, so that @, b, are the co-ordinates
of its centre and p its radius. From (1) by differentiating
we have

X—a+(Y—b)Z—§=O

............... @).
1+ () + -0 =0

If this circle is the circle of curvature at the point (z, ¥)
of a given curve, we must have .

X=z

Y=y9 ]

aY dy ' \
= dw} ..................... (3).
Y dy l

dX* " da
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Hendce, from (2),

oy Pu e (4).
1 +(&§) +(y—b) d—5=o
d L]
(@ ]
Therefore y—-b=——w—'-’
da* )
RN :

Hence the values of g, b, p, are found, and thus the position
“and the radius of the circle of curvature at any point of a
curve are determined.
In the value of p it will be proper in any particular
example to give to the ra(hgal in the numerator the same

sign as Z’—‘g has, so as to make p positive. Hence if y be
positive and the curve concave to the axis of & we should put

) . 14 (g—f’v)'}'

da*

From the first of equations (4) we see that the point (a, b)
_ is on the normal to the given curve at the point (z, ).
The centre of the circle of curvature at any point is called

zZ2
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for shortness the “centre of curvature.” Also the radius of
the circle of curvature is called the “radius of curvature.”

If a straight line be drawn from any point of a curve in any
direction the portion of this straight line which is intercepted
by the circle of curvature at the assumed point is called the
clzord of curvature at the assumed point in the assumed
direction. By the nature of a circle the length of the chord
of curvature will be obtained by multiplying the diameter of
the circle of curvature by the cosine of the angle between the
chord of curvature and t{ne common normal to the curve and
the circle at the assumed point.

321. If g be the perpendicular from the origin on the

tangent at the point (z, y) of a curve, we have
d
2y

dp_1, dr
dx p dx’
and ' p=r(k.
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322. Ifzxandy be each a function of a thlrd va.nable ¢

we have
dy dyde_dzdy
dy dt dy _ dz’ dt  df dt
) B
dt (dt
Using these values, we deduce
dx\* | (dy ’}l-
_ (@) + (@)
xy “n y .

@ EAwEd

For example, if ¢=s the arc of the curve measured from .

some fixed point, then

since by Art. 307 (%) +(Z'Z) =1 (2)

Hence -t o SO ¢ )

By differentiating (2) we obtain

dod’z | dy &'y

d3 ds’ + ds ds" ..................... (4).
Square (3) and (4), and add ; thus '

- ()

From (3), by means of (4), we may also deduce

0=

d'y d’z
1_d d&
P&

ds ds

323. If we put x=rcos 6, and y=rsin 6, we have from
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L. 3, .
Art. 201 the values of % and 7Y. Substitute these values
in the expression for p in Art. 320, and we find

{r‘+(g—2) ! )

r'+2(d—;)'-—rd—§,

1 dr 1 du '

I r=g, then Gp=—tazp 20d
dr_3 (12
a4 (d0 u' de*’

Substitute these in the above value of p; then

du
T (de)
v (u + d?)
This result may also be found thus:
dr__1du
1 du
By Art. 284 = ( de)
1dp d’u\ du
therefore P (u + de’) 70’
' dp _ d'u
and === (7 )"
Hence p= ———7—1
u'p® (u + a?u,)

@Y

v (u "'W)
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The chord of curvature passing through the origin will be
obtained by multiplying 2p by the cosige of theg::)gle be-
tween the radius vector and the normal to the curve at the
point considered. (Art. 320.). Hence the chord of curvature
through the origin ,

=2P1;,=2P%;
2u’+2(g—';)'
- u’(u+d;z:\

324. If 4 be the angle which the tangent at the point
(, y) of a curve makes with the axis of z, we have

therefore % =

_therefora p= ‘%} .

325. If two polar curves have a common point the polar
co-ordinates of that point must satisfy the equations to both
curves. If they have contact of the first order at that point

the value of Z‘—Z is the same for both curves at that point, and
hence, by Art. 201, the value of Z—; is the same for both
curves, If the curves have contact of the second order the

2,
value of Z‘—g also is the same for both curves at the common
2,
point, and hence, by Art. 201, the value of :%,' is the same
for both curves at that point. Proceeding in this way, we
see that if two curves have contact of the n™ order at any
point, if they are referred to polar co-ordinates, the values of
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3—2, %;;, .. ZO‘T will be the same for both curves a.t the
common pomt
326. Since 1 7',+ (Z;)

it follows from the last Artiele, that if two curves have con-
tact of the first order the value of p will be the same for both

_curves at the common point. Also, since

dp
dp 'd_e dr d’r
or — involves only 7, a0’ and -5 dﬁ“
dé

it follows that if two curves have eontact of the second arder

the value of gg must also be the same for both curves at
the common point.
327. We may apply the precedmo' Article to establish the
equation proved in Art. 821 as follows.
If B be the radius vector of a point in a circle,
P the perpendicular on the tangent,
¢ the radius of the circle, '
b the distance of the centre from the origin,
we have, from the properties of a circle,
2cP=R'+c" -0
dR
dP’
If this circle be the circle of curvature at a point in a

gln've having ~ for its radius vector and p for the perpen-
icular on the tangent, we have by the last Article,

Differentiating, ¢c=R

R=nr,
P=p,
dR dr

T
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dr

therefore e=rao H
\p
éf

that is, the radius of curvature =r &

328. At a point where the radius of.curvatyre is @ mazi-
mum ar & minvmum the circle of curvature has contact of the
third order with the curve. ‘

Since

d,
we have, when £ = 0,

(2 8-+ () -

If in Art, 320 we differentiate the second of equations (2),

we have p
Y d'y A 4
447 &Y
Hence 'y ___dX dX7
. axt Y—b \
d’y\' dy
=3(@) do
ay\'’
+(2)

by equations (3) and (5) of that Article. In order that the
circle of curvature may have contact of the third order with
the curve at the proposed point, we must have

aY_dy
aX* do*’

therefore - % {1 + (Z_Z')'} =3 (%)’ % .
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This is the relation we have already shewn to hold at
points where the radius of curvature is a maximum or
minimum.

329. In the figure of Art. 284 let S8P=r and 8Y=p;
if p, denote the perpendicular from § on the tangent at Y
to the locus of Y then will \
p -

n= ; .
Let 2, y, be the co-ordinates of P,

«, 9/, the ¢o-ordinates of ¥’;
Ay
@ =, —
then da
The equation to the tangent at P is
di
n-y=3 (E-2),

n and £ being the variable co-ordinates.
Since the point Y is on the tangent,

’ d 4
y—y=d-—z(a:—w) ................... ).
The equation to SY'is 9= .viniiiiinivnniinnnn (3)
But §Yis perpendlcular to PY, therefore
y__d=
F STy s (4)

Combining (2) and (4),
-9y =—2@~-2);

therefore yy +axd’ =y + (5).
Differentiate (5), thus
Yy ,dx’
Yy dz+yzy,+z +a:d =2y == e Y+ 2o ="
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This by (4) reduces to
i\ 9 YA
(22 ~2) 5 + 2y ~9) W =,
' dy’i 2z —x
therefore a? = '27,_—!/ .

Substitute in (1), and we obtain
'+ y's _ 2:
T

B=Y@

830. DEFINITION. The evolut¢ of a plane curve is the
locus of the centre of curvature; a curve when considered
with fespect to its evolute is called an involute.

If &, 3, be the co-ordinates of the centre of curvature at
the point (, y) of & curve, we have by Art. 320,

, d
x—z+(g—y’)—ly=0 ...... fecrernnnnns (1),

dy\* N da*
1+(_y.>+(y;.y)_y_=0 ................. . (2).

By means of the equation to the curve y, %, and % can be
expressed in terms of z; hence from the above equations we
can, by eliminating , obtain a relation between z' and ¥’

which is the equation to the evolute. From the above equa-
tions, ' and ¥ may be considered functions of ; differen-
tiating the first, we have '

By means of (2) this gives
& dy dy
dz Vdz 3z
dy' dy

therefore 1+ a7 do= (1 e (4)

=0, — 3),
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Hence (1) may be written
,_dy
y-y =2 @-2),

which shews that the point (z, ) is situated on the tangent to
the evolute at the point (2, y). Also (1) shews that the
E)int (#, ¥ is on the normal to the curve at the point (=, y).

ence the normal at any point of an involute is a tangent at
the corresponding point of the evolute.

331. If p be the length of the radius of curvature at the
point (z, y) of a curve, and &', & the co-ordinates of the centre
of curvatyre, we have .

pi=(—2Y+(y-9)"

As o’ and y' are functions of z, so also is p; hence differen-
tiating we have

dx dy dy d,
e (1= Z) =) (- )= 2.
By means of equation (1) of the preceding Article this gives
n dz’ dy d
(@ —=) %+(y.—y')-a%=—p dff; ............ 1).

From equatians (1) and (3) of the preceding Article we obtain

LY,
7=z y-y |®-ar+@-y)) ~pds’

& being the length of the arc of the evolute. See Art. 307.
Hence, by (1),

1 . dd _, dp
;{(“"-“’)’4’ G- z=tr g,
therefore ‘ ‘% =% %i ........................... (2).

Since ‘-i—(%ziez= 0, we have, by Art. 102,

&' F p =some constant, say



- EVOLUTE AND INVOLUTE 349

-~ Let ABC be the given curve, and A'B'C’ the evolute,

BB being the radius of curvature of the given curve at B,
and CC'at C. Then if 4" be the fixed point on the evolute
from which the arc is measured, we have

 A'B+BB=|,
ABO +C'C=],
therefore BC =BB-CC'.

Hence, if a flexible string of length ! be fastened at 4’ and
placed in contact with the evolute 4'B’(’, then, as the string
is-unwound from the evolute, the free end of it will describe
the involute CBA. From this property the names evolute
and involute are obtained.

In the figure as &' increases p diminishes and we have
8’ + p=a constant ; if s" be measured in the direction from C”
-towards 4’, then s’ and p increase together and we have
8 — p=a constant.

It will be observed that a curve has only one evolute ; but
a curve has an infinite number of involutes, for in the equa-
tion &' F p=some constant, the constant may have any value
we please. : '

332. The following polar formule for determining the
evolute of a curve are sometimes useful.
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Let O be the centre of curvature corresponding to the
point P of a curve referred to polar co-ordinates. Let SY be
the perpendicular on the tangent at P.

0

). / X
. /
Let 8P=7, PO=p, BY=p,

80 =7, p = perpendicular from S on PO.
From the triangle SOP we have -
r*=p*+ 1" — 2rp cos SPO
=p'+1*—2rpsin SPY

=p 1 — 2Pt (1.

Also Pr=r = i (2).
dr

p=r Gp e (3).

From the given equation to the curve we can find p in terms
of r, and then between (1) and (2) we can eliminate 7, and
thus we have an equation between p and 7’ to determine the
locus of O. Since PO is a tangent to the locus of O, p'is
the perpendicular from the origin on the tangent to the
evolute at O.

In the figure the curve is drawn concave to the pole.
If the curve be conves to the pole % is negative (Art. 204),

and we should take p=— rdl; in this case we shall find in-

. dp
stead of (1) the equation
r=p'+ r*+ 20p.
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Thus in both cases we have ' .

Let 8 be the centre of a circle, APQ a portion of the
involute, OP= OA the portion of the string unwound. Let
80=a, 08A=¢, and let z, y be the co-ordinates of P,
the origin being at 8, and SA4 the direction of the axis of z.

Then OP = a¢,
x=acos p+apsing,
y=asin ¢ —adcos ¢.

Let AP =3, then

ds dz\*, (dy ’}

2= — , Art. 307,

&= @)+ (%)

=ag.
Hence, as we shall see in the Integral Calculus,
2

-8
EXAMPLES.

1. In the curve
y= % (e;'*' e_;)’

the ordinate at any point is a mean proportional between
the radius of curvature there and at the lowest point.
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1o

10.
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In the curve -
y= ot — 42° — 182°,

the radius of curvature at the origin = 4.
In the curve .

y =2’ 4 52" + 6z,
the radius of curvature at the origin =22.506..
Find at what point the radius of curvature is infinite.

If ¢ (z, y) =0 be the equation to a curve, then
(@)@
PETINTdS_, db d dqu
( )da:' d dy d dy ( )dy’

Find the parabola whose axis is parallel to that of y
which has the closest possible contact with the curve

y= a—" at the point where z=a.

Result. (w - g’)’;g (y - ‘71)

Ifr= a(1—cost9). P—_smz
{
If r=a (2cos 0—1), —%

If the curves f(z, y) =0 and ¢ (z, 7) = 0 touch, shewthat
at the point of contact

Apply the last result to find if the straight line
z. Yy _‘ =
2 + 3 1=0
touches the curve
Dd+yt=(@+p)h=0.
When the angle between the radius vector and the per-

pendicular on the tangent has a maximum or minimum
value, shew that pp=7"



11.

12.

13.

14

15.

16.

17.

18.

19.
20.
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. de b
If at every point of a curve 2a &=y +y, then

3
o= %ay .. Shew also that _1_+1=l, where n isthe

portion of the normal intercepted by the axis of . - -
Find the value of p when r»=acos 6.
If 2= #/(c*+ "), find p.

The equations which determine the co-ordinates a, 5, of
the centre of curvature of a curve may be put in the
following form, where 7*=2" + 3*:

d'z _dr* dy dr
203?—-@", 2b£,—'@.
™~
In the parabola y* = 4m, g
_ _ 2zt _2(m+ )t
a=2m + 3z, b——%, p-—-—;/—;n—'.

Shew that the circle of curvature at any point of a

parabola, except the vertex, cuts the axis at two points
on opposite sides of the vertex. /

If Az*+ By'+ C=0,
__A(A_'B) 3 _B(B"-A) 3
then a= B0 % b—Ty.

dy _a _o+s
If E.—D——;’ thenp— @ .
az (z — 3a)

The radius of curvature of the curve y'= ——1a

)

at one of the points where y=0 is 3—: , and at the

3a
other -

If s=asin"v, find p. See Art. 324.

Find the equation to the circle of curvature of the curve
y'=4a’z"— 2!, at the origin.

T.D. C. AA
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(@ +35¥
ay °

2l. Ify+ae “=0, thenp=

) ] 2 2
22. Shew that the circle ( - ?3) + (y - %?) = %— and the

4
curve ¥z + 4y = /a have contact of the third order at
the point &=y =1.
0 o .0
23. Ifr=asec’§, find p. Result. p=2a sec 3

24. Find the two bolas which, having their axes parallel
to the co-ordinate axes respectively, have a contact of
the second order with the circle &*+y"= 54", at the
point z =a, y=2a. C

8a\*' 2a (Ta a\' 16a/lla
Renits. (9-) =5 (5 ~=)» (==3) =5 (5 ~¥)-
25. In the curve % =% (€ +e 5), shew that the co-ordinates

of the centre of curvature are

Y =2y, X=w—y\/(?{,-—1),

and find the equation to the evolute.

26. Find the equation to the evolute of the ellipse, and the
whole length of the evolute.

Results. (o)} + (by)}= (a*=1)}; 4(‘%’_% :

27. If r=4f(p) be the polar equation to a curve, shew that
the equation to the locus of the foot of the pergiendicula.r
drawn from the pole on the tangentis p’' = f—,(‘;,y Find

3, .

, and shew that itis a circle.

th s
“the locus when p' " 2a=r



28.
29.

31.

32.

33.

34

36.
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Find the evolute of the curve p*=1*—a".

If A be the area between a curve, its radius of curvature,
and its evolute, then

(i][ 22
aa_\7* () }
Ty
. .2
If p be the radius of curvature of a curve, then the radius
of curvature of the evolute at the corresponding point

. d
i p 2.

If 2, ' be the co-ordinates of the centre of curvature of
the curve y* = a'z, shew that

z _a'+ 1’53/‘ y,=a‘y— 9y°

6ya® ’ 20
Shew that in a parabola the radius of curvature at an
point is equal to twice the portion of the normal which

1s intercepted between the point and the directrix.

Investigate the following expressions for the radius of
curvature at any point of an ellipse :

(G b
@ ab? @ a (1— ¢ sin* ¢)t ’

where  and #' are the focal distances of the point and
¢ is the angle which the normal at the point makes
with the major axis.

The locus of the centres of all ellipses having the
directions of their axes given, and having a contact of
the second order with a given curve at a given point,
is a rectangular hyperbola passing through that point.

Find the asymptotes of the evolute of the curve
Yy=atan x.

Shew that corresponding to the portion of the curve
a’y’ =2’ near the origin, the evolute is approximately
a curve whose equation is zy* = ¢,

AA2
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37.

38.

39.
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Shew that corresponding to the portion of the curve

aly =ale? + 2 near the origin, the evolute is approxi-
mately a curve whose equation is

(y—a)*+Bz=0. '
Shew that the chord of curvature parallel to the axis
of z of the curve sec% =¢* is constant; and that the

evolute of this curve for the portion near the origin
is approximately a curve whose equation is

sec (‘i’l)i =ce.
a

If along a curve and its circle of curvature at any point
equal arcs (8s) be measured from the point of contact
and on the same side of it, shew that the distance be-

3
tween their extremities will be ultimately %%%,2—

Shew that in general a conic section may be found which
has a contact of the fourth order with a given curve at
a proposed point, and shew how to find it when the
length of the curve is given in terms of the angle which
the normal makes with a fixed line.

"If the curve be an equiangular spiral, and a be the
angle between the radius vector and the tangent at any
point, shew that the conic section is an ellipse, the
major axis of which makes with the normal to the
curve an angle o given by the equation

tan 2w + 3 tan a = 0.
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CHAPTER XXV.

ENVELOPS.

334. SUPPOSE
F(2, 4, @) =0cerueernernnrnnrennnns (1)
to be the equation to a curve, @ being some constant quantity.

By changing @ into @+ %, we obtain another curve of the
same species as (1), the equation to which is

F@y,ath)=0.uueieeunna.n. (2).

The point of intersection of (1) and (2) will be found by
combining the equations. Now (2) may be written

F(z,y a)+kF (2, y, a+ 60k) =0............ (3),

the accent denoting that F'(z, y, @) is to be differentiated
with respect to a, and in the result a changed into a+ 6.
Hence, combining (3) and (1), we have the point of inter-
section determined by

F(z,y,a)=0, and F (z, y, a+6k) =0......(4).
If we diminish % indefinitely, the equations (4) become
F(x, y, a) =0, and F’ (z, y, a) =0......... (5).

The point determined by equations (5) is the lmit of the
wntersection of (1) and (2).

If between equations (5) we eliminate @, we obtain the
equation to a curve which is called the locus of the ultimate
tntersections of the curves formed by varying a continuously in
the equation F'(z, y, a) = 0.

The quantity a is called the parameter of the curve.

835. The locus of the ultimate intersections of a series of
curves touches each of the series of intersecting curves.
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Let F'(z, y, a)=0 be the equation which gives the series
of curves by varying continuously the quantity a. Then the
locus of the ultimate intersections is found by eliminating @

between
F(z,y,a) =0.ccccceerrrercenenans ooe(1),

and F'(2,94 6)=0.ccccereunirarinnnennn. 2.

Suppose from (2) we obtain @ in terms of z and y, say
a=¢ (2, y); then if we substitute in (1) we have

Fla,y,d (@ 1))} =0 cerrieennenn. (3),

which is therefore the equation to the locus of the ultimate
intersections. Now if for any assigned value of a the equa-
tions (1) and (2) give possible values to 2 and y, then the
éurve represented by (1) when a has this assigned value, will
meet the curve represented by (3).

The value of % for the curve (1) is found by the equation

dF (z, y, a) +dF(:c, ¥ a)dy _
dx dy de~

The value of &y for the curve (3) is found by the equation

dz
dF(z,9,9) , dF (o3, ) dy
dx dy dx
dF (. y, ¢) (dp , dp dy] _
+—'—x(r {E +@a}—0 ....... cenae(B).

But ? only differs from z—f in having ¢ (z, y) in the
place of a; hence by (2) we have at the point where (1)

and (3) meet, Frae 0. Thus (5) becomes at that point
dF (2,9, ¢)  dF (z,y, d) dy _
T + & dp = Oeeeveeneens (6).

Since at the point of intersection of (1) and (3) we have
a= ¢ (2, y), equation (6) gives for ‘Tz at that point the same
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value as equation (4). Hence (1) and (3) fouck at their
common point. ' '
From this property the locus of the ultimate intersections
of a series of curves is called the envelop of the series of
curves. 4

336. Example. Required the locus of the ultimate inter-
sections of a series of parabolas found by varying a in the
equation ]

_ 1+da
y=azr— % o
' ]
Here F(z,y, a)=y—qz+12;a Z=0.0cuurerens (1),
F(2,y a)= ’a_z’__m =0ceeriirnnenn 2.
p
=2
From (2) a==.
Substitute in (1) and we have
—pZEZ_
y-p+ 2 0,
or @'+ 20y —p'=0,

which is the equation to a parabola.

387. Required the locus of the ultimate intersections of a
series of normals drawn at different points of a given curve.

Let z, y be co-ordinates of a point in the given curve, then

! ’ d
z—w+(3/—y)2—:=0 ..................... 1)

is the equation to the normal at that point; &, ', being the
variable co-ordinates. From the equation to the given curve

y and Z—i can be expressed as functions of =; thus z is the -

parameter in (1), by varying which the series of normals
18 obtained. Hence the required locus is to be found by
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eliminating # between (1) and the equation obtained from (1)
by differentiating it with respect to @, which is

“1"‘(-'/"'-'/)_"(%):0 ............... (2).

It appears from (1) and (2), compared with Art. 320, that
«, y will be the co-ordinates of the centre of curvature at
the point (z, y) of the given curve. Hence the locus of the
ultimate intersections of the normals to a curve s the evolute
of that curve.

338. It may happen that the envelop does not touch all
the curves of the series, as will appear from an example.

Suppose the centre of a circle of variable radius to move
along the axis of z, so that the

abscissa OP of its centre and its I
radius PM are the abscissa and B
ordinate of an ellipse A B which
has for its equation
2 9 (7 T
—ta=1:
m' ' n

required the envelop of the system of circles.
If OP= a, the equation to the circle will be
nﬂ
(w-a)’+y’—-;;,(mf—a’)=0 ........... (1).
Hence differentiating with respect to a, we have

n’a
z—a——7=0;
m?

therefore B e (2).
Substitute in (1) and we obtain
w’ y2
m’+n’+77=1 ........................... (3),

which is the equation to the envelop.
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v (mﬂ + n’)

the circles do not ultimately intersect, and are not touched by

the envelop: for the value of y found from (2) and (3) is

which is impossible when @ is greater than

For all values of @ comprised between and m,

m’

V(m' +n)"

Therefore in the enunciation of Art. 335 we do not assert
that the envelop touches each of the series of curves, but that
it touches each of the series of intersecting curves. The de-
monstration in that Article assumes that the equations (1) and
(2) lead to possible values of = and y; or in other words, that
one curve of the series ultimately intersects the adjacent curve.

339. The method of Art. 334 may be extended to the case
in which there are n parameters connected by n — 1 equations.
For example, suppose

F(z, 9, abc) I S (1)

to be the equation to a curve, the parameters a, b, ¢, being
connected by the equations

¢, (@ b, ¢c) = 0}
¢, (a, b,¢)=0

and that we require the locus of the ultimate intersections of
the curves obtained by giving to the parameters in (1) all
possible values consistent with (2). If from equations (2) we
find the values of b and ¢ in terms of ¢ and substitute them in
(1), we may then proceed as in Art. 334. If however the
solution of equations (2) be difficult we may proceed thus.
Regarding & and ¢ in (1) as implicit functions of @, we have,
if we differentiate with respect to @, and put the result equal

to zero as in Art, 334,
dFF dF db dF dc
—+W7JE+%—J&'=O .................. (3).

db de . .
To find Ta and Za’ Ve have by differentiating (2),
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dé,  dé db  d¢,do _
da dbda dc da
dp, , db,db  db, do
da dbda dec da

If the values of % and % from (4) be substituted in (3),

and then a, b, ¢, be ehmmated between (1), (2), and (3), the
resulting equation between z and y will determine the re-
quired locus.

This process may be rendered more symmetrical by suppos-
ing a, b, ¢ all functions of a third variable, say ¢; then using

=0

Da, Db, Dc for 5‘: ‘ﬂ’ de respectlvely, we have instead of
(3) and (4) the equatmns

dF dF dF

daD +dbDb+d De=0

%, Dot i Db 4 W Do o (5).

da
l’spa+d$m+d4’-pc=o

And the solution of the problem will be facilitated by the use
of indeterminate multipliers. Thus multiply the second of
equations (5) by A, the third by x, and add to the first;
this gives

R Lcas e L

+ (‘zﬂn‘%w —"’-)Dc=o............(e).

Now since A\ and x are at present undetermined, we may
take them such that

da da
..................... @,

d¢», ds,
'36- + A +p db =0
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from which it follows by (6) that

¢, %
d+x&+ ........................ (8).
Hence we have to ehmmate a,5,¢,\ and  from equations
(1), (2),(7) and (8) the result is the equation to the envelop
required.

Example. A straight line moves so that the length inter-
cepted between the co-ordinate axes is constant : required the
envelop of the moving straight line.

Let the equation to the straight line be

z. Y _
a+b ............................ 9),
so that a'+ b'=a constant =k, say .....c.ceuuenes (10).
From (9) Da+ 3 Db=0,
from (10) aDa + bDb=0;
thus (‘% + M)-Da + (Zy‘ + xb) Db =0,
therefore g,+>\a=0, and g, +A=0ucreinnennnnns (11);

multiply the first of these equations by @ and the second by
b and add ; thus

.Y 2 =
a+b+7\(a +8%) =0, |
that is, 1 4+ A =0, therefore A =— L .
Then from (11)

X

a*=Fk'z, and b*=FK".
Therefore by (9)
x
iyt J%)
or dayt=1d
This equation determines the envelop.
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EXAMPLES.

Find the envelop of the series of straight lines =+ %=1,

where 4/a + 4/b = y/k a constant.
Rosult. ab+y4=1h,
Ellipses are described with coincident centre and axes,

and having the sum of the semiaxes=c. Shew that
the equatlon to the locus of ultimate intersections is

Find the envelop of all elhpses having a constant area,
the axes being coincident.
Result. 42’y*= c* where mc® is the given area.

A straight line cuts off from the co-ordinate axes distances
AB, AC, such that ndB+ AC=c, shew that the
envelop of the straight lines is

(y +nz—0)’ = dnay.

Find the evolute of a parabola y* = 4az, by the method of

Art. 387, taking the equation to the normal in the form

y=m (z—2a) —am’.
Result. 27ay’=4 (z—2a)’.
Find the evolute of the curve a2¥+ yt=al See
Exzample 9, to Chapter XVIIL
Result, (z+y)t+ (x—y)t=24%
Shew that the envelop of the series of parabolas

V@)

under the condition ab=¢", is an hyperbola having its
asymptotes coinciding with the axes.

(]

Find the locus of the ultimate intersections of the
straight lines drawn at right angles to normals to
the parabola y'=4az, at the pomts where they cut

the axis.
Result. y'=4a (22 —2).
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11.

12.

13.

14.

15.
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Straight lines drawn at right angles to the tangents
of a parabola at the points where they meet a given
stra.igﬁt line perpendicular to the axis, are in general
tangents to a confocal parabola.

h b
the variable parameters o, b, being connected by the

equation (%) + (%)’ =1

-— 2 — 2
Find the envelop of the curves (u) + (y_b) =1,

2 v
Result. -}?'l.-]?—-l.

Circles are described on successive double ordinates of a
parabola as diameters: shew that their envelop is an
equal parabola. Find what part of this system of
circles does not admit of an envelop.

A circle moves with its centre on a parabola whose
equation is y*'—4ax =0, and always passes through
the vertex of the parabola : shew that the circle always
touches the curve 3* (z+2a) +2*=0.

A series of parabolas of latus rectum 7 is described with
their vertices in a given parabola of latus rectum I'.
Shew that the locus of the ultimate intersections is a

bola with latus rectum I+ 1’, the concavities being
in the same direction and the axes parallel.

Find the envelop of all ellipses having the same centre
and in which the straight line joining the ends of the
axes is of constant length.

Result. z+y=4%c.

From any point of the ellipse ‘2:—+%—:= 1, perpendiculars

are drawn to the axes, and the feet of these perpen-
diculars are joined: shew that the straight line thus

formed always touches the curve (:f’;)i + (‘%)i =1
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16.

17.

18,

19.

20,

21.

ENVELOPS. EXAMPLES.
. . 2 9 .
From every point of the ellipse ntp-1= 0 pairs of

2
tangents are drawn to the ellipse :—:—:+%—1=0:
shew that the locus of the ultimate intersections of

2
the chords of contact is h”'+’i;3£=1.

a‘

Circles are drawn passing through the origin having
their centres on the curve a"*—b*(2az —2")=0: shew
that the locus of the ultimate intersections of these
circles is (2" + y* — 2ax)* — 44’z — 40"y =0.

The circle whose equation is 2* + y* + 2ax + 2by + 2¢ =0,
is cut by another circle which passes through the
. . . ' z
origin and whose centre is on the curve 7 +'§,= :
shew that the chord joining the points of intersection
touches the curve a'z* + 8°y* = (az + by +¢)*.
Find the locus of the ultimate intersections of the
straight lines
ycos0—a:sin0=c-csin010gtan(¥+-g),
where 6 is the variable parameter.
Result. 2y=c (eg + e'f).

The equation to a spiral is r* cosnf = a"; straight lines
are drawn through the extremities of the radii vectores
at right angles to them : shew that the envelop of these
straight lines is the curve

m =T
™ cos mf = a™, where m—”+1.

A series of ellipses has the same centre and directrix:
shew that the envelop is a pair of parabolas, but that

~ the envelop will not meet those ellipses whose excen-

c e . 1
_tricity is lesq tha.n R
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22. Find the locus of the ultimate intersections of an ellipse

which touches a given straight line at a given peint
at the extremity of the axis minor, the excentricity
varying as the axis major. Find the limits of the
excentricity in order that two consecutive ellipses may
intersect.

23. A straight line is drawn from the focus to any point of

24.

26.

27.

28.

a conic section, and a circle is described on it as a
diameter : shew that the locus of the ultimate inter-
sections of all such circles is a circle, except, in a
certain case, where it is a straight line,

Shew that the locus of the ultimate intersections of all
the chords of an ellipse which join the points of con-
tact of pairs of tangents at right angles to one another
is a confocal ellipse.

Find the locus of the ultimate intersections of the straight

lines  cos 36 +y sin 30 = a (cos 20)}, where 6 is the
variable parameter.

Result. (2 +")'=a’ (& - 3").

Find the envelop of the circles described on the radii of
an ellipse, drawn from the centre, as diameters.

Result. (o +y*)'=a'2" + b;y'.

On any radius vector of the curve r=c¢ seé“g as diameter
is described a circle: shew that the envelop of all such

circles is the curve r=¢ sec""n I°

Find the locus of the ultimate intersections of a family

of parabolas of which the pole of a given equiangular
spiral is the focus, and its tangents directrices.

Result. A similar equiangular spiral,
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30.

31
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Perpendiculars are drawn from the pole of an equi-
angular spiral on the tangents to the eurve: find the
envelop of the circles described on these perpendiculars
as diameters.

Result. A similar equiangular spiral.

From every point of a parabola as centre a circle is
described with a radius exceeding the focal distance
of the point by a constant quantity : find the envelop
of the circles.

Result, (x+c+a){y’+(x—a)'—c}=0; where ¢ is
the constant quantity.

Find the envelop of the straight lines obtained by vary-
ing 6 in the equation axsec @ — by cosec0=a*—b".

Besult. (az)!+ (by)t = (a*- )1

From a fixed point A4 in the circumferenee of a circle
any chord AP is drawn and bisected at H, and on
PH as diameter a circle is described: find the locus
of the ultimate intersections of the system of circles
described according to this law.

Result. a* (2 + y°) = (22" + 2¢* — 3ax)*;
where 2* + ' = 2ax is the equation to the given circle.
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CHAPTER XXVL
TRACING OF CURVES.

840. Ix this Chapter we shall give some exami)les of
tracing curves from their equations.

Example (1). Let y’_”"(z,“"—:“') ................... ).

First find the value of : taking the loganthms of both
sides of the equation a,nd dlﬁ'erentlatmg, we have
- idl + z i _Tw_s >
ydz =z —4a' o'—a

2 (e — 4“'){ z i }....(2).

therefore

=t V@ —a) T—id T-a
Next find the asymptotes: since

_4a
)

8a*
3a*
3 3
=4 x—%} ................................. ).
Hence y= =z
and y=—=zx

are asymptotes.
T.D.C. BB
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Also when 2=+ a we see that y is infinite.

Hence z= a
and r=—a
are asymptotes.

We may now assign different values to a, and note the
corresponding values of y and 52 obtained from (1) and (2).

Since the curve is symmetrical with respect to the axis of z,
we may confine our attention to the positive values of y.

When =0, y=0, %=i2.

From = - 0 to ¢ =a, y is possible.

‘When r=a, = dy =
s Yy = .

From z = a to # =2a, y is impossible.

When z=2a, y=0, Z—*Z:oo.

‘When = is greater than 2q, y is possible.

It 18 not necessary to give negative values to  in this
example, because the curve is symmetrical with respect to
the axis of y.

If we draw the asymptotes and make use of the above
list of particular values of y and Z—% , we shall have sufficient
materials for ascertaining the general form of the curve. If

. dy .
necessary, in any example, we may find o0 10 order to
determine the points of inflexion ; also by examining when %

vanishes, we can determine the maxima and minima values

of y. ' ,
If we take the upper sign in equation (3), we have for

the asymptote

and for the curve y=a;—g—:-&c ..... ceresssnnnnnniiinn (5).
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" When 2 is very large the terms included in the &c. of
2
equation (5) will be very small compared with 32—: . Hence

compa.rin%1 (4) and (5) we see that corresponding to the same
abscissa the ordinate of the curve is less than that of the

asymptote, and therefore the curve lies below the asymptote
as represented in the figure.

341. Exzample (2). Suppose
. y,_:c(m—a)‘(m-—2a)
- z+3a
2dy 1, 1 11
therefore yde = w—a x—2a z+3a’
@g=1(w(w—a)(w—2a)}&{l+ 1 1 1 }

dz 2 z+3a x w—a+w—2a—w+3a

Also from (1) we have ' [ eeeeenseend veernee (2.
)

a ad , a a 8a 27a° ) :
=iw(1—ﬂ-ﬁ@...))(l—;—2—'1,...)(1—55-{-?;... .

BB2
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If the three series be multiplied together we have

y=ta(1-2+100.)

| =i(a: 3a+}E ) ............... @)
Hence y=z—3a
and =—z+3a
are asymptotes.
Also from (1) z=—3a

. 18 an asymptote.

From (1) and (2) we have the following results, confining
ourselves to the positive values of y.

®©.

§&

‘When z=0, y=0,
From z =0 to x=a, ¥ is possible.
=,

B&

‘When r=a, y=0,
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From x=a to # =24, y is impossible,

‘When z=2a, y=0, %sw.

When « is greater than 2a, y is possible.

When z is negative and between 0 and — 8a, y is impossible.

When x=-—3a, y=o, %=oo.

‘When « lies between — 3a and — o, y is possible.

From (3) we see that the equation to the curve when 2
is very great is approximately
11a*

2z
”, . 11a*
and whether « be positive or negative x —3a + 9n 8

numerically greater than z —3a. Hence the curve lies above
the asymptote.

y=x—3a+

342. In the above examples the value of y is given
explicitly in terms of . In a similar manner we may pro-
ceed if  is given explicitly in terms of y. But if the equa-
tion connecting = and y does not admit of easy solution we
must abandon this method. In such cases we may find the
asymptotes by Art. 277: we may determine the nature of
the curve near the origin by a method exemplified in the
next two Articles; from these results we may obtain some
idea of the form of the curve. By transforming the equation
to polar co-ordinates we shall sometimes be enabled to trace
it more accurately.

343. To determine the form of the curve
' —ay + 0 =0 eeriiiinnennens (1)
near the origin.

First, suppose that near the- origin the term by® can be
neglected in comparison with the other two terms in (1); in
that case we should have

- dyar' =0,
therefore o =ay.
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This makes y vary. as 2’ and therefore 3* vary as %
Hence the neglected term 3y* varies as 2%, while the terms
retained, «* and ay2’, vary as &' But by taking # small
enough z° can be made as small as we please comphred with
', and therefore near the origin one branch of the curve may
be found approximately by neflecting by’. The branch we
thus obtain, being determined by the equation 2*=ay, is
a portion of a parabola having its axis coincident with that
of y. o

Next, assume that near the origin the term aya® may be
neglected in comparison with the others. We thus find

a+b=0;
therefore y varies as ¥,

Hsnce the neglected term ay2* would vary as 2™!; that is
as z*, while the terms retained would vary as 2*. But since
10

z® can be made as great as we please compared with a*
by taking  small enough, we do not obtain an approximate
branch near the origin by neglecting aya’.

Again, assume that ' may be neglected near the origin;
then

by’ — az’y =0,
therefore by’ — ax’=0.

Hence Jl varies as @ ; the terms retained vary as «* and the
rejected term varies as a*; and thus an approximation to the
curve near the origin is given by :

by'—ax’=0, or y=iz«/%.

A

The figure shews the nature of the
curve near the origin; 4B is the
bolic branch, and CD, C'D’, are the two
branches found by neglecting z*,
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The conclusions in this case may be verified by solving the
given equation with respect to 2" We thus find

z’=g {a £ v/(a'—4by)}.
Expand /(a*—4by) in powers of y by the Binomial Theorem,
and take the upper sign, then
&' = ay approximately ;
with the lower sign
=2 y* approximately.
In this manner, or by transforming the equation into a
gola.r form, we may complete the tracing of the curve. It will
e found that the branches extending from the origin to C
and B respectively, unite, thus forming a loop. The branch .
from the origin to D’ extends to infinity, and has no recti-
linear asymptote. The curve is obviously symmetrical with
respect to the axis of y.
344. Determine the nature of the curve
y'+ay’z—a'=0
near the origin.
First, if we neglect «* we have
: y'+ay'z=0,
therefore =—aw.

Hence « varies as y*; the rejected term varies as y° while
the terms retained vary as y*, and therefore we have in the
parabola y* = — ax an approximation to the given curve near
the origin.

Next, reject the term ay’z; thus
y'—a'=0,
therefore y=+a

Hence y varies as z; the rejected term varies as 2*, and
the terms retained vary as z'; hence this does not give us
an approximate branch,
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Again, reject 3*; thus
ay'z — a*=0,
vherefore Y= ‘g .

Hence y* varies as 2°; the rejected term varies as 2,
and the terms retained vary as '

', and consequently we obtain 5
an approximate branch.
The branch to the left of the N ,
dxis of y is that given by 3*=—axz, —=
and the cusp to the right of the / RN
axis of y is that given byy’=%‘.

In this example, %* may be found
in terms of = and the whole curve traced.

345. We may observe that in the examples of the pre-
. ceding Articles, the supposition which was found inadmissible

near the origin, will be admissible for points at a very great
distance from the origin. Thus if

¥+ ay'z —z'=0,

when z and y are indefinitely great, ay’z may be neglected
in comparison with y* and &*; and 3=z, or y =+ , will be
an approximation at points remote from the origin. If we
find the asymptotes by Art. 277, we shall have

a
('/=i(""—z);
to which y=tzx

may be considered an approximation when & and y are inde-
finitely great.

346. Required the nature of the curve

¥ +ay’+az’y—ba* =0
near the origin.

Assume az’y — ba* =0
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as an approximation near the origin. Hence
ay = bz,
therefore Y varies as z,

the terms retained vary as 2%, and those rgjected vary as f,
and we have therefore an approximation to the curve at the
origin. If we examine all the six cases which present them-
selves by retaining two of the terms of the given equation and
rejecting the other two, we shall find that the only other

owable supposition is, that zy® and 4a® can be rejected, and
we obtain for an approximation

y'+as’y =0,
or P=—aa’,

It will be easy to draw the branches we have found; the
equation y® = — az" gives us a cusp, the two branches being on
the two sides of the negative part of the axis of y.

347. If in any examples we wish only to find the direc-
tions of the tangents at the origin, we may arrive at them
immediately, as shewn in Art. 195.

Suppose y' +ay’ + az’y — b2’ =0,
AP .

therefore (y+2) (x) +a? b = 0.

Hence, when 2 and y vanish, we have

‘the limit ofg=§-.
z a

Besides this, the limit of % may have an infinite value, and

this can be determined by examining if Z has zero for a limit.
The given equation may be put in the form

y+a+ G)'{a-bg}w.
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Hence one of the limiting values of s is zero.
In like manner, if ¥*+ ay’z —2*=0,
A ¢ =0,
we have Y (a:) +a z) z=0.

Hence g has zero for one of its limiting values. Also from

the given equation we may deduce
' x z\*
ta-—x —) =0.
yrag-s(;

Hence = has zero for one of its limiting values. Thusi—/:

may be zero or infinity when # and y are indefinitely dimi-
nished, and therefore the axes of 2 and y are tangents to the
branches through the origin.

In connexion with the subject of tracing curves from equa-
tions of the form ¢ (z, y) =0 the student may with advan-
tage consult Chapter XXIIL of the treatise on the Theory of
Equations. ,

348. We shall now give some examples of polar curves.

. 0
Y dr a3
Suppose r=asecz, therefore B30
cos* 5
do 0
tan¢='r$=3cot§. (Art. 279.)

The polar subtangent = * %-f = 3a cosec g .

‘When g = g, r is infinite, and the polar subtangent = 3a;
hence we have an asymptote. As 6 increases from 0 to E_!;_r,

Z—; is positive, and r is positive and increases with 6. As @
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increases from 32—‘"-150 3w, r is negative, and —gg is positive so
that » numerically diminishes.
To draw the asymptote we proceed thus: since, when

=
P
Bl
¢ 0 °
|5
Q
D

0= 3%'. » r i8 infinite, and the polar subtangent is 3a, the eye

must be supposed at O looking along OF; and a distance
OG =3a must be measured to the right of OF and at right
angles to it ; a straight line drawn through @ parallel to OF
is the required asymptote.

As 6 changes from 0 to ‘9—’21" the branch ABCD is traced
out, cutting 04 at right angles at 4 since tan ¢ = o when
0=0. When 6 becomes greater than ?23 » 7 18 negative, and

according to the usual conventions with respect to sign, must
be measured in a direction opposite.to that which it would
have if it were positive. For example, if the angle 40¢Q
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measured in the ordinary way round from OA be §;-r+'£
the corresponding value of r is '
: a
ST T e s
3 ( 2 "1 Sinyg

hence we take OP =a 4/2 (/3 +1) measuring it along Q0
produced. In this way, as 6 changes from 3?" to 3w, we
obtain the portion ZCFA of the curve.

If we suppose @ negative, or positive and greater than
i?:-n', we shall only obtain repetitions of the branches already
ound.

349. A very common mistake in drawing polar curves is
made with respect to the asymptotes. For example, if r is
infinite when 6=0, it is assumed that the initial line is an
asymptote. This involves a double error, for in the first
place it does not follow that because r is infinite there s an

tote ; and secondly, if there be an asymptote it may be
parallel to the initial line instead of coinciding with it.

For example, the polar equation to the parabola from the
vertex is

_4acos b
" sin’d
Here when 0=0, 7 is 0, but the curve has no asymptote.

In the curve

a
r= )

sin 3
when 6 =0, r is infinite; there is an asymptote, but it does
not coincide with the initial line; it will be found to be
parallel to it and at a distance 3a from it.

850. Trace the curve
" poasind

[
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dr _a(fcosd—siné)

Here 7] 7 R
fsind
tan b= s G —sm "

As r is never infinite there is no asymptote ; r is positive
from 6=0 to 6=, negative from 6= to §=2m, and
80 om.

‘When 6=0, tan ¢ assumes the form %; on examination it
will be found infinite.
The curve begins at A, crossing the initial line at right

angles, since there tan ¢ is infinite : as ¢ changes from 0 to 7
the portion 4BO0 is traced out; as 6 changes from = to 27
the portion ODEFO is traced out, and so on. The curve
forms an infinite number of loops, each smaller than the pre-
ceding and all passing through O.

If we ascribe negative values to 6 we obtain the dotted
part lying delow the straight line 0A4.

351. Trace the curve
— a
T —,l + &
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In this case the curve begins at the pole O'a.ndl makes

an infinite number of revolutions round it; » can never be-
come 8o great as a, to which value however it continually
approaches. Hence r=a is the equation to an asymptotic
curcle, to which the curve continually approaches as 6 in-
creases without limit.

If we give to 6 negative values, we have a branch similar
to that obtained from positive values of 6. It is represented
in the figure by the dotted portion.

352. We shall now give the equations and the figures of
a few curves which frequently occur in problems.

The Logarithmic Curve.

The equation to this curve is
&
y=be; % /

or, which is an equivalent form, /
¥y= ba'. ' —4
The curve extends to infinity

both in the positive and negative
directions of the axis of . As x
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is increased numerically in the negative direction, y tends
to the limit zero, so that the axis of « is an asymptote.

353. The Catenary.
The equation to this curve is
y=5 (6 +65). |
It is the curve in which a flexible string

would hang if suspended from two points, le €
as is shewn in works on Statics. . :

854. The Logarithmic Spiral.

The equation to this curve is

L]

r = bee,

or r = ba’.
Taking the first form we have

tan¢=r$—f=c.

Since ¢ is thus constant the curve is also called the
equiangular spiral.

\

\.

The dotted part arises from negative values of 6.
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855. The Spiral of Archimedes.

r =af.

356. The Cycloid.

AP B D

The cycloid is traced out by a fixed point in the circum-
ference of & circle as the circle rolls along a straight line.

Let Ax be the straight line along which the circle rolls; -

M the fixed point in the circumference of the circle
BM0 which traces out the cycloid ;

A the point in the straight line A:c with which M
was originally in contact ;

O the centre of the circle :
AP=x, MP=y, MOB=¢, OB=a.

The arc MB=a¢, and by the nature of the curve it is
equal to 4B;

therefare z=ap—PB=ap —asing,
y=a—acosd.
If we eliminate ¢ we have

22— v(2ay-9).

& =a cos*
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857. From the last equation we have

V&)

Hence the equation to the tangent at M is

y’—y=\/(2a; "’) (@' —a),

and the equation to the normal at M is

| y’—y=—\/(2ay_y) @ —a).

If in the last equation we put "= 0, we have
@ —z=w{y(2e—y)}=asin¢=PFB.

Hence MB is the direction of the normal at M, and therefore
MC is the direction of the tangent at M.

. If in the equations of Art. 356 we put ¢ =, we have y=2a
and « = am as the co-ordinates of the vertex £. Hence

PD =qmr—ad+asind
=a (6 +sinb), f0=m—¢.
Also the distance of M from a straight line through Z parallel
to Az is 2a—a (1 —cos @) or a (1 — cosf).
358. If we take the vertex as the origin, and the tangent
at that point as the axis of y, we have by the last Article
y=PN=a(0+ sinﬂ)}
= AN:G (1 —0080)

G

&

Describe a semicircle on 4D as diameter: let PN meet
this circle at M, and join M with the centre O; then

AN=a (1—cos AOM);
therefore AOM= 4.
T.D.C. ceC
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Since the arc AM = ad, it follows that

MP=arc AM.
From (1) we have
20—2
Yy =acos™ ~ +4/(@2ax~2)............ (2),
, dy 26 — &
therefore == (_a:—) .

If s denote the arc AP, we have

2= Vi@V
therefore 8= /(8ax),
as will appear from the Integral Calculus.

The normal to the curve at P is parallel to MD, as we
may see from Art. 357 or ftom an independent investigation.
y the property of the circle it follows that

MD=2acos—g.

If we investigate the value of the radius of curvature at P
we shall find it to be twice MD, that is,
4aooeg, or 2 4/(4a’ — 2ax).
359. The evolute af the cycloid i3 an equal cycloid.
2]

E

C

c B

For it appears by Art. 358 that the radius of curvature at

Wint M of a cycloid is twice MN. Hence if we produce

to 0, making NO = MN, the point O is the centre of

curvature corresponding to the point M, Draw EIB and

make IB =2qa; draw B parallel to ED; the circle described
on NC as a diameter will pass through O.
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The arc NO = arc MN and therefore = AN,
therefore the arc _00 = NI= CB.

Hence O is a point in a cycloid generated by rolling a circle
of radius a along BYU. Hence the evolute of the cycloid
AEA’ is composed of the two semi-cycloids 4B and 4'B.

360. The epicycloid is the curve traced out by a point in
the perimeter af a circle which rolls on the outsige of a fixed
circle.

Let O and C be the centres of the fixed and the rolling
circles respectively, B the point of cantact, P the tracing
point, A4 1its initial position. Take O4 as the axis of z;
draw ON, PM, perpendioular to the axis of z, Let

OB=a, BC=b, AOB=6, BCP=¢.
Then z=ON+NM
= (a+d)cosf+bsin (p—f7+0)
= (a+b) cos@ —bcos (¢ +6).

But the arc AB=the arc BP, by the mode of generation,
that is, af = b¢, therefore
z=(a+Db) cos@—bcqsa—z-éa.

Similarly y=(a+b) sinﬁ—bsin(i;—_ée.

" The hypocycloid is the curve traced out by a point in the
perimeter of a circle which rolls on the vnside of a fixed circle.

cc2
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It may be found by a method similar to the above that for
the hypocycloid
z=(a=b)cosl+ bcosa—;l’
a-b
b

361. The radius of the rolling circle may be greater or
less than the radius of the fixed circle both in the epicy-
cloid and in the hypocycloid; it is however easy to infer
from the figure, that a hypocycloid in which the radius of the
rolling circle is greater than the radius of the fixed circle may
be counted as an epicycloid. This can also be shewn from
the equations, For in the equations to the hypocycloid put

6,

y=(a—"b)sit@—bsih 0.

—;—00= ¢; then those equations may be written
2=(a+b—a)cosp—(b-a) s 2E0 =%y

g=(a+b—0)sing—(b—a) sinﬁ'{__b_;_“c;,;

these are the equations to an epicycloid in which the radius
of the fixed circle is @, and the radius of the rolling circle
isb—a.

Similarly we may shew that a hypocycloid in which the
radius of the rolling circle is greater than half the radius of
the fized circle may be counted as a hypocycloid in which the
radius of the rolling circle is less than half the radius of the
fixed circle. Thus we can obtain all epicycloids and h
cycloids if in addition to epicycloids we take hypocycl,oic{;pg
which the radius of the rolling circle is less than half the
radius of the fixed circle. :

862. If a and b are in the proportion of two whole num-
bers we may eliminate 6 between the two equations which
determine an epicycloid or a hypocycloid, and thus obtain the
equation to the curve in an algebraical form. For example,
suppose in the hypocycloid that a =45 ; then
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@ =3bcos 6 + b cos 30 = 4b cos* §,
y =3bsin 0 — bsin 30 =4bsin’G;
therefore ot +yt=db,
If in the hypocycloid we suppose a = 25, we obtain
x=2bcosfand y=0;

thus y is always zero and = I;I:X have any value between —a
and + « ; therefore the curve reduces to a diameter of the fixed
circle.

363. If in Art. 360 the describing point, instead of being
on the perimeter of the rolling circle, is on a fixed radius
of that circle, but either within or without the perimeter, the
curve generated is called the epitrochoid when the rolling
circle moves on the outside of the fixed circle, and the hypo-
trochoid when the rolling circle moves on the inside of the
fixed circle. In the former case we have

z=(a+) cosﬂ——mbcos‘—‘;bl.—bey

y=(a+b) sin0—mbsina—%-—bg,
and in the latter case

z=(a—b) cosl9+mbcosa—;b9,

y=(a—8)sin0—mbsin 2229,

mb being the distance of the describing point from the centre
of the rolling circle.

364. If a circle roll along a straight line the curve traced
out by a point +n the perimeter of the rolling circle is, as we
have already stated, called the cycloid. If the describing
point be inside the perimeter the curve is called the prolate
cycloid, if outside the curtate cycloid ; the term trochoid is also
used to denote both the prolate cycloid and the curtate cycloid.
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The equations
z=a (1 —mcosf),
y=a(@+msind),

will represent a prolate cycloid, a common cycloid, or a
curtate cycloid, actording as m is less than umty, equal to
unity, or greater than unity. See Art. 358.

EXAMPLES.
Trace the following curves :
¥ =aa' -2 2. y=d'-2"
¥ (z—a)=(z+a)2". 4. oy'=a' (-3

Y (z— 4a) =ax (z— 3a). 6. (+y)’=4a’2"y.
¥ (2a—2) =2". (The cissoid.)

2y=(a’—y") O+ (The conchoid) Transfer the
origin to the point (0, —b) and then change to polar
co-ordinates and we have for the equation
r=>bcosecl + a.

9. (@+9y)=d(x*—y"). (Thelemniscata.)

N ;e

10. r=afsinb. 11. r=a (0 +sind).
12. rsinf=acos’é. 13. r=logsin 6.
14. #* cos 6 = a®sin® 36. 15. 7*cos @ =a"sin® 6.

16. 7 (0 —sin 6) =a (6+sin ).
17. r=a(l1—cosf). (The cardioide.)
18. r6=a. (The hyperbolic spiral.)

19. Find the equations to the tangent and normal at the
point P in the epicycloid. See the Figure to Art. 360.
Shew that the normal at P passes through B.

20. Trace the curve determined by the equations

x=a(l—cos¢), y=ap;
this curve is called the companion to the cycloid.



21.

23.

24,

25.
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Obtain in an algebraical form the equation to the epi-
cycloid for which @ = 2.

Result. 4 (2*+ 4= o) = 27a%y".

Shew that when @ =5 the epicycloid becomes the car-
~ dioide. .

c 0
Trace the curve whose equation is r=acosz; and

shew that if 4 be the point where the curve meets the

prime radius produced backwards and PSQR any

chord drawn through the pole S meeting the curve

at P, Q, and R, the angles PAQ and QAR are each

ﬁ)‘,sand the angle 48¢Q equal to thrice the angle
PS.

Shew that the equations
r=a-atanf and 2c=r—rtan 8

represent the same curve in different positions, and
that the radii vectores to the points of intersection
bisect the angles between the tangents at those points.

Trace the curve g =sin 2 log (m sin '2) , (1) when m is

greater than unity, (2) when m is equal to unity,.
(8) when m is less than unity and greater than the
reciprocal of the base of the Napierian logarithms,
(4) when s is less than the reciprocal of the base of
the Napierian logarithms.
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CHAPTER XXVIL
ON DIFFERENTIALS.

365. IN the preceding we have given the proposi-
tions commonly found in works on the Differential Calculus,
and have used the method of limits in all the demonstrations.
We now offer a few remarks on another method of treating
the subject.

In the expansion of f(z+h) by Taylor's Theorem, the
coefficient ofx;;a was shewn to be that function of # which we
had called the differential coefficient of f (») with respect to .
Lagrange proposed to defne the differential coefficient of f(z)
with respect to = as the coefficient of h in the expansion of
f(x+h), and thus to avoid all reference to the theory of
limits. Lagrange’s views were propounded towards the close
of the last century and were generally adopted by elementary
writers.

One objection to this method is its use of infinite series
without ascertaining that those series are convergent, and the
proof that f(z+%) can always be expanded in a series of
ascending powers of A, which is made the foundation of the
Differential Calculus, labours under serious defects. .Another
objection is that it is imiossible to avoid introducing the
notion of a limit in the applications of the subject to geometry
and mechanics ; the defimtion of the tangent line to a curve
may be given as an example.

366. Nearly all the recent treatises on the Differential
Calculus have followed the method of limits, and the only
point of importance in which a difference exists among them
18 with respect to the use of differentials. In the present

work % has been defined as one symbol, thus: if y =¢ ()
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the limit of 2EXN =3 o 1 ig indefinitely diminished

18 denoted by 3—1 Some writers add the following words : the
quantities dx and dy are called the differentials of = and y
respectivelt;ﬁrthcir lute values are indeterminate, and they
may be either finite or indefinitely small provided their relative
magnitudes bemhumaga:seguazmheamitabmm
tioned.

With this meaning attached to dy and dx such equations
may occur as ,

dy = ¢' () d=,

where ¢'(z) is the differential coefficient of ¢ (z) or y.

Equations expressed by means of differentials are in
general capable of immediate translation into the language
of differential coefficients. For example, if  and y be co-
ordinates of a point on a curve and be functions of a third
variable ¢, and 1f s denote the corresponding arc of the curve
beginning at some fixed point, we have, by Art. 307,

(@) + (@) - @)

and by differentiation
ded’'c dydy dsds
GaBtGh B BE |
A writer who uses differentials will express these results thus,
do* + dyt = ds’,

ded'z+dyd'y=dsd’s.

The student may look upon the latter as merely abbreviated
methods of writing the previous equations, and may take
dz, dy, d'z, ... as standing for %, %’ ) % y oo respectively.v

367. Let u be a function of any number of variables,
for example three, so that u=¢ (2, y, 2). If we suppose



394 ON DIFFERENTIALS,

z, y, £, all functions of a variable ¢, and for shortness put

du dr _ dy d_ o,
-d_t=Du’ E-—Dx, HT:SD% dt—Dz,

we have

Du=(§—$) De+ (‘%’) Dy+ (‘;‘f) Dk e ().

In works on the Differential Calctilus, which use differentials,
we find an equation similar to the above occurring at an
early period, namely,

du = (g—z) dx + (g%’) dy+ (%f) dz ... ().

The introduction and use of this equation form the principal
difference between such works and one which, like the pre-
sent, uses only differential coefficients. To establish (2) the
following method 1s adopted.

Let u=¢ (¥ 2),
and v+ Au=¢ (z+ A, y+ Ay, 2+ Az),
therefore -

Au=¢ (x+ Az, y+ Ay, z+A2) - b (2, ¥, 2)
_lo+Ba, y+ Ay, 5400 =5, y+ Ay, 2+ As)
= e :
4@ y+ay o+ AAZ) — ¢ g 2+A42) Ay
Y
@92t 80 —bB g2 5, ..(3).
Az
If Az, Ay, and Az diminish without limit, the quantity
b(x+Ar, y+ Ay, z+ Az) — p(z, y+ Ay, 2+ Az)
' Ax

approaches the limit (Z—i’) . If then we put for this quantity

(Z—g>+a, we know that a diminishes without limit when
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Az, Ay, and Az do so. In this manner we may deduce from
(8) the equation

_ [(d d d
Ay= {(TZ) + a} Az 4+ {(j;) +ﬁ} Ay + {(71%) + fy} Az....(4),
where a, B3, , all diminish without limit when Az, Ay, Az
do so. If then du, dz, dy, and dz, denote quantities whose
absolute magnitudes are undetermined, but whose relative
magnitudes are those to which Aw, Az, Ay, and Ag, respec-
tively approach as their limits when they are all indefinitely
diminished, we have
(D) g1 (2 d¢
du=(dx)d£+(dy)dy+ ((k) de.

Having thus established (2), we give an example of its
application. Since in establishing (2) we had no occasion to
consider whether @, y, and 2, were independent or not, the
result is universally true, whatever relation be given or sup-
posed between the variables. If, for example, ¢ (z; y, 2) is
always =0, we have

) o %) 4y (%) =
(dg)dz+< 7 dy+(—£ dz= 0. (3).

Now if ¢ (2, y, 2) =0 is the only equation connecting =, y,
and 2, we may 1if we please vary « and z without changing .
Hence in the preceding investigation Ay =0 throughout, and
therefore in (5) dy=0; thus we have

(%)dx+(g§) Qo= 0iririnrerinnnr(6).
deb
Hence Z—:;=—(d3)

@)

dz

where % is the differential coefficient of z, suppo_sing z to
vary and y to be constant. See Art. 188.

368. It would occupy too much space if we were to pro-
ceed further with the subject of differentials. Differential
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coefficients have been used exclusively in the present work,
from the conviction that the subject is thus presented in the
clearest form, and that if some of the operations are thus
rendered a little longer than they would otherwise be, there
is at the same time far less liability to error. The equation
2) is certainly of great use in applioations of the Differential
culus, particularly in the higEer parts of the Geometry of
Three Dimensions: after the remarks already made, the
student will probably find little difficulty in those applica-
tions. Perhaps he may be further assisted by referring to the
theorem for the expansion of a function of three variables.
If u=¢(x, y, 2), we have '
¢@+hy+kz+l)—¢(z,y 2) or Au
du  ,du  ,du
—ha’z+kdy+ldz+R’
where R involves squares and products of %, %, I. Hence the
smaller 4, &, I, are taken, the smaller is the error contained
in the assertion
du  ,du  ,du

MISCELLANEOUS EXAMPLES.
1 Find 3 if u= sy y(a—2),
and v =cos™ (aat) — (zVad - ot ad)},

4
Result. — - 3z —_—
2at W1 --a:\/l—-a:*a*

2. Find the maxima and minima values of (sin z)%0%,

3. Find the area of the greatest isosceles triangle that can
be inscribed in a given ellipse, the triangle having its
vertex coincident with ane extremity of the major axis.

4. APQB is a semicircle whose diameter is 4B, and P@Q is
parallel to AB. Draw 4Q and BP, and let them meet
at B: find the position of P and @ so that the triangle
PQR may be a maximum.

P
Result. :4—% must be equal to

V1T—1
4
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5. A figure made up of a rectangle and an isosceles triangle
is inscribed in a semicircle : determine its dimensions
80 that its area may be a maximum.
Result. The height of the rectangle must be half the
radius of the circle.

6. Find the cone of least surface, excluding the base, that
can surround a given sphere.

Result. The sine of the semivertical angle = 4/2—1.

7. Find the cone of least surface, including the base, that
can surround a given sphere.

Result. The sine of the semivertical angle = }.

8. Find the maximum value of cos 6 cos ¢ cosr, where
0+d+Y=m.
du o
9. Transform Ez’--}'?i_yﬁ’ by assuming

d=latmy, y=Ilg+my.
du . .. d* d’u
Result. (If+m) 725 +2 (1] + mm) 2?5;, + G+ m)

10. An equation between three variables contains n arbi-
trary functions of one of them, and 4n*—n — 1 arbitrary
constants : shew that generally the equation must be
differentiated at least 4n — 2 times in order that the
functions and constants may be eliminated.

11. If V be any function of z, y, 2, and V' the value of V
when vw is substituted for , wx for y, and wv for 2;
then

av, AV, a7V &V TV v
:c’a?+y’—d7, +2 +yz———dydz+mdz—dx+zy——-dxdy
1 (@Y LAV, AV
=3[+ G+ T
12. Ify=¢"+¢™, and 2+ 2¢™ =0, shew that the general
term in the value of y when expanded in a series is
a {@n+1)*"— (2n—1)*}.

[n
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MISCELLANEOUS EXAMPLES.

18. Ify=z+ay (y)+B¢ (y)+.....- , then
F<y>=F(z>+...+é%[F'(w)W(wHM @+ F T+
14 If y=2+ad(y), and y' =3+ (y), 2z and 2’ being

16.

17.

18,

independent variables, shew that the general term in
the expansion of f(y, ¥) in powers and products .of
and & is

/%

S (— &F(z, 2)) 2™ =
’dz—;-xim_;jr-x {¢ @ @] —%} s

Find the coefficient of 2z’ in the expansion of.

cos (ay + a'y), when y=z+z siny, and y'=2"+4" sin y.
In any curve the part of the tangent between the point
of contact and the p(ilrpendiclﬂar from the origin on the
rdr
—Zj‘;' .
Shew that the equation to the normal at any point of a
curve may ne put under the form
d—x Y-y
. dy
ds  ds'

Shew that this equation is the analytical expression
of the fact, that if a tangent be drawn to a curve at
any point P, and in the tangent PT be taken equal to
the arc PQ and on the same side of P, then the straight
line QT is ultimately perpendicular to the tangent.

In the ellipse the focal distance cuts the curve at an
angle, the tangent of which is a mean proportional be-
tween the tangents of the angles at which the corre-
sponding diameter and s parallel through the point to
the transverse axis cut the curve. :

If a curve be referred to axes inclined at an angle a to
each other, shew that the radius of curvature is

dy | (dy\"}
{1+2cosaz-x+(d-;)lf '

—sina%d
sina -+

tangent is equal to




20.

21.

22.

23.

25.
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The equation to a parabola referred to any two tangents
@

being (E)‘+ (‘%)é:l shew that the radius of cur-

vature is ———— e {az 2 cos a /(abxy) + by}¥, where a

is the mclma.tlon of the tangents ; and thence find the
co-ordinates of the vertex assuming that the curvature
is a maximum at that point.

If a curve pass through the origin and touch the axis -
of y, the diameter of the circle of curvature is equal

to the limit of Z . if it touch the axis of & the diameter
is equal to the lumt of f'-

If a curve pass through the origin at an inclination a to
the axis of x, shew that the diameter of curvature at
the origin is the limit of __a:'_+_y_’__

zsina—ycosa
that the radius of curvature at the origin of the curve

'+ 2ay — 2az =0 is 2 4/2a,

If ¢ be the angle hetween the tangent and the radius
vector of a polar curve, shew that the radius of cur-
cosec ¢

do
+ 39

. Hence, shew

vature 1s

The equations to an epicycloid being
x=a (2 cqs 8 —cos 20),
y=a (2 sin § —sin 20),

shew that p= §— sin g , and that the evolute is an epi-
cycloid in which the radius of each circle is 2.

3

In the curve y=a'— 42®— 182" find the nature of the
curve at the points =3, —1, and § (1 + #/5).

Shew that the curve y = ¢™* has points of inflexion when

1
iﬁ'



26.

27.

28.

30.

31

32.

MISCELLANEQUS EXAMPLES,

In any curve the equation %"" 1=0 holds at a point

of inflexion, 6 and ¢ being the angles which the prime
radius and tangent make respectively with the radius
vector.

Is Z—; necessarily of the form g at & multiple point ?

Find the singular points in the curves
L@@ +y)=1+3y}
and ¥ —2zy + 22— 2*=0.
Find the nature of the curve
y+1=22z—2*+ (2—a)f
at the point =2,
Determine the point of inflexion in the curve
y=2a" 92"+ 24z — 16.

From the pole of the curve »= Aa’ perpendiculars are
drawn upon the tangent; through the points of inter-
section of the perpendiculars with the tangents, straight
lines are drawn parallel to the radii vectores: shew
that the equation to the locus of the ultimate intersec-
tions of all such straight lines is r = 4 cos aa®**, where
cot a=1log a.

If radii vectores of an equiangular spiral be diameters of
a series of circles, the locus of the ultimate intersections
of the circles will be a similar spiral. )



CHAPTER XXVIIL

MISCELLANEOUS PROPOSITIONS.

369. IN the present Chi{)ter we shall investigate various
propositions which afford valuable illustrations of the prin-

ciples of the subject and lead to important results.

870. The following formula is due to Jacobi:
at(1—a)™d (1)1 1:8:5.. @n—1)sinnd ‘

da™? n
where £=cos . This we shall now demonstrate.
Put y for 1 —2*: we have
d-yue-ﬁ a d

dﬂ-l
e da? = (2n 1) %
thus by Art. 80

%=—(2n+l)w%—(n—l) (2n+1)%-"...

ey _dyt
Also o by -
thus by Art. 80
n, wtd ", n-1, 8~} "3, #—{
dry gyt ddzg__n("_l)d yd

pe ek e - 2nz
oo dvyTE .
From (1) and (2) by eliminating 72,,& we obtain

(2n+1—n) d—:z;= (2n+1)y£é'§—‘—(2n+1)nw-d:» -‘

T.D.C. DD

da™t

(1).

.(3).
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Assume that_Jacobi’s formula is true for a specific value
of n; differentiate both sides with respect to «: thus
d'y"‘= = 1),,1.3.5 ... (2n — 1) cos nf
dz* sin 6 :
Using this result, and also Jacobi’s formula, on the right-
hand side of (3), we obtain

(n+1) d—fg—.'= (—1)*1.8.5... (2n +1) cosnfsin 0

+(—1)"1.8.5... (27 + 1) sinn6 cos

=(—1)*1.8.5...(2n +1)sin (n+1) 0;

3.5...(2n+1)sin (n+1) @
n+1 '

This shews that if Jacobi's formula is true for a specific
value of n it is true for that value increased by unity; and
it is obviously true when » =1, and when n =2: therefore it
is true for any positive integral value of n.

a nt} W1,
therefore JZ:‘ =(-1)

371. The following proposition is useful in some appli-
cations of mathematics to naiural philosophy: Having given
that if  varies, it must be such a function of the independent

- variable ¢, that Z—: = ax, where a is some quantity, not neces-

sarily constant, which is always finite; and having given

.that & is zero when ¢ is zero: then it will follow that z

cannot vary, or, in other words, that « is always zero.
Denote z by ¢ (f). We know by Art. 101 that

¢ () — ¢ (0) =1 (6),
where 6 is some proper fraction.
In the present case ¢ (0) =0, and ¢’ (6%) = a¢ (61), where a
is some finite quantity. Thus we have
¢ (§) = tag (00), -
and therefore, if ¢ (£) be not zero,
12100
é (2)
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Buat it is impossible that this result can be universally
true. For since a is always finite we can take ¢ so small
that ta shall be as small as we please. And as ¢ (f) begins
with the value zero, if it varies it must at first increase

numerically with ¢; and therefore %((—et;l cannot be greater
than unity. Hence the result is inadmissible ; and it follows

that = cannot vary, or in other words, « is always zero.

372. The preceding proposition may be extended so as
to involve any mumber of such supposed variables as z; we
will take three for example : Having given that if 2, y, and 2
vary, they must be such functions of the independent vari-
able ¢, that . ;

\
%=alw+a.y+a.z, %=b,w+b.y+b.z, ;}J—f=cxw+0.y+c.%
.8

where a,, a,, a,, b, ... c, are quantities, not necessarily con-
stant, which are always finite ; and having given that z, ¥,
and 2 are all zero when ¢ is zero: then it will follow that , y,
and z cannot vary, or, in other words, that «, y, and z are
always zero.

Denote z by ¢ (), ¥ by 4 (¢), and 2 by x(¢). Then, as in
the preceding Article, we have

¢ (2) =t {a,p (0%) + ay (62) + a,x (09)} :

and therefore if ¢ (¢) be not zero we have
mela 8060 ¥ x(0)

t=efa Bl +a i@+
and in like manner we deduce two other similar results.

But it is impossible that these results can be universally
true. For suppose ¢ indefinitely small, and let ¢ (¢) be not less
than either 4+ (¢) or x(f). Then the first of the three results
asserts that unity is equal to an indefinitely small quantity.
Hence the results are inadmissible; and it follows that z, ¥,
and 2 cannot vary, or, in other words, that z, y, and 2z are
always zero.

DD2
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373. We have already given two forms for the remainder
after n+1 terms of an expansion by Taylor's Theorem; see
Arts. 93 and 110: these two forms, and others, may be
deduced from one general expression which we will now
investigate.

Let ¢ (z) and ¥~ (x) be two functions of # which remain
continuous, as also their differential coefficients between the
values a and a+4 of the variable ; suppose also that be-
tween these values the differential coefficient y'(z) does not
vanish : then by Art. 98

¢(a+h)—¢(a) _¢'(a+06h) "
‘P‘(a-l'ﬁ)—\}r(a) 1lr'(a+0h) eseccncesense N

where 6 is some proper fraction. .

Denote by ¢ (z) the function
Fia4+h) —F(@)—(a+h-2) F'@)—...-CFE= pa ).
and denote by ¥~(z) the function
f@+H=f@-@+h=a)f@)-...- L=

We assume that F'(x) and all its differential coefficients
up to F™(z) inclusive are continuous while « lies between
the values @ and a+4%; as also f(x) and all its differential
coefficients up to ¥ (z) inclusive : moreover we assume that
S («) does not vanish between these values,

Now  e)=-EH =L g,
and ¥@=- L= pen o)
also ¢(@a+h)=0, and ¥ (a+hk)=0:

thus we have from (1)

¢ (a) _[__g_ ,_'F'"(a-}-ah) |
ﬁa‘m“"”"’ T aron "
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hMultiply by ¥(a), and put for ¢ (a) and ¥ (a) their values;
then :

Fath)-F@-iF@-..- 2@ p
where R = . _'
{71 @-f @ - L L gyl
v @).

This is a general expression for B, the remainder after n 41
terms of the expansion of F'(a + %) by Taylor's Theorem.

For a particular case take f(z) = (z —a)™, where p is any
positive number which is not less than ¢; then all the con-
ditions with respect to f(z) are satisfied : and we have

f@=0, f@)=0, ... f*@=0,
Sf@+h)=F",
and fM(a+0h)=(p+1)p...(p—g+1) (6R)™
Hence

_ L—z (1 _ H)H kﬂﬂFuﬂ(a_'_ha)

= e . 3).
o & Gidpn@—g+n @
In the particular case in which p = ¢ we have from (3)
_(1=0)"?r"" F*"(a + 6k)
R= GADm (4).

If in (4) we put p=n we have Lagrange’s form of the
remainder, which is given in Art. 92; if in (4) we put p=0
we have Cauchy’s form of the remainder, which is given
in Art. 110.

Other particular forms may be readily obtained. Thus in
(3) put ¢=0; then since |0 must be replaced by unity we
have

R= (1=6)" A" F** (a 4+ OR)

' B 0’ (p+1)|n




406 MISCELLANEOUS PROPOSITIONS.
Again, in the general expression (2) let f(«) = F*(z), and

¢=0; then
¥ (@) =F*(a+k) - F*"(a),

and assuming that F**!(z) does not vanish between the
values a and a + 4, we have ,

R=’ﬁ1|-_,}i‘i{p-(a.+ ) -F-(a)}.

In (§) put ¢=0; thus

Q1 F**(a + 6k)

r=Ee 2 e h -0 | i

Mémoires de U Académae... de Montpellier, Vol. 5, 1861...1868.

874. Expand /(1 —2%).sin™'z in powers of .

Assume /(1 —2%) .sin"ae=4,+ Azx+ 42"+ A2+ ...

Differentiate both sides with respect to «; thus
zsin'z

1 —m=A‘+2A’w+... +1‘A,df_l+

thatis 1— '1‘-%: (A, + Az + 42+ ...)
=4, +24z+...+rd2 + ...
therefore 1-a'—z (4, +4x+ A0 +...)
=4, +24z4 .. +rda ) (1 =),
Equate the coefficients of a”; thus if 7 be greater than 2
we have
-4,,= (r+1) An-l_ (r— n4,,,

therefore (r—2)4,,=@r+1)4,,.

Also we can see by expanding 4/(1 —2") and sin™ and
forming their product that
4,=0,4,=1, 4,=0, 4 .:_%,
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hence 4,, 4,, 4,, ... vanish,

' 2 2
a.nd A.=5A'=—ﬁ,
, 4 2.4
A"7A‘ T38.5.7°

------------

Pyt Ofor sinz; thus we deduce
2.4

6 1,. 2 ,. .
m =1—§(sm0)'—m(m 0).—'3_.5-.—7 (sgn0)°—'...

See Quarterly Journal of Mathematics, Vol. 6, page 23.

875. Let ¢(x) denote 2* +p,a™* + pa** +...+ p, 2+ ,,
where n is a positive integer. It is required to determine
the coefficients p,, p,, ... p, so that the numerically greatest
value of ¢ (x) between the given limits — % and % for « shall
be as small as possible. B

If we give a geometrical form to the problem, we may say
that the curve y=¢ () between the limits — /% and A is to
deviate as little as possible from the axis of .

The maxima and minima values of ¢ (z) will be deter-
mined by the equation ¢'(z) = 0, which is of the (n —1)* de-
gree; and therefore there cannot be more than n — 1 of such
values. These values, together with the values of ¢ (x) when

= —h, and when @ = A, will be called extreme values.

376. Now we admit as sufficiently obvious that there
must be some definite values of the coefficients in ¢ () which
solve the problem ; and we shall first shew that there must
be n + 1 extreme values all numerically equal.

Suppose, for instance, that n =8; then there must be 4
extreme values all numerically equal.

For if possible suppose that there are only 3 extreme values
of ¢ (z) all numerically equal; namely, corresponding to the
values z,, #,, and @, of 2. Let 4 (z) denote the expression

F’l(z_z’) (:c—a:,)+p,(z—a:,) (:c—a:‘) +F'I(w‘zl) (x—za)'
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and suppose p,, p,, and pu, to be infinitesimal constants, -
which are determined so that ¢ (z) and 4 («) may have con-
trary signs when z=2,, when x=ux,, and when z =«,: this
can obviously be done. For instance, the sign of 4, must be
contrary to the sign of ——-7— _‘: ')(‘2 —. “Then ¢(@)+¥(2)
differs only inﬁnitesima.ll)‘r from ¢I(:c) ; but when ¢ () has its
extreme values ¢ (z) + (z) is numerically less than ¢ () :
and so ¢ (2) + Y (x) deviates less from zero than ¢ (x) does.
Moreover the coefficient of 2* in ¢ (2) + 4 (#) is unity; so
that ¢ () + Y~ () is an expression of the proper form. It
follows therefore that ¢ (x) canmot be such as the problem
requires.

The preceding argument will perhaps be more readily
understood when presented in a geometrical form. The curve
=¢ (x) + (x) is indefinitely close to the curve y=¢ (x);
ut where the lafter curve deviates most from the axis
of = the former curve is nearer to the axis of z: and thus
the former curve deviates less from the axis of # than the
latter curve. :

In the same way we may treat the case in which ¢ ()
has only 2 extreme values numerically equal and numerically
greater than any other value; or the case in which the
numerically greatest value of ¢ (2) is unique.

The considerations which we have thus employed when
n = 3 are applicable whatever may be the value of n.

Hence, as we have said, to solve the problem the coeffi-
cients in ¢ (x) must be determined so that ¢ (x) may have
n + 1 extreme values all numerically equal.

377. Let k denote the extreme numerical value of ¢ (x);
then we have shewn that the equation

{¢ @) -F=0......... cenerenennes (1)
must have 7 + 1 values which also satisfy the equation

@ =A) ¢ (@) =0.eceerereernrerennn. ().
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Let the n+1 values be denoted by z,, «,,... =, _,, besides
—h and h. 'We shall shew that. any one of the former n—1
roots of (1) occurs twice in (1). For the derived equation

of (1) is )
2¢' () P(&) =0.eurvreriraninnennns 3);

and any one of the values z,, #,,... #, , is by supposition a
root of the equation ¢’'(x) =0, and so satisfies (3).

Hence we have by the Theory of Equations
{$ @P-F= (@) @ —2) (@—2)".. (@ -2, )"

But by supposition the roots of the equation ¢'(x) =0 are
@y, %55 ... ,_,; hence

d@)=n(z—2)(@—=,)... (- =,);

therefore {¢ (@) -%= M’y——ﬂ e 4). .
Differentiate (4) with respect to ; thus we get
n'p (2) =2 (z) + (& — A*) d" (&) cevvverennn. (5).
From (5) by equating the coefficients of z*, 2™, 2*7,... we
. shall be able to determine in succession p,, p,, p,,... For

thus we have
n'=n+n(n-1),
w'p=@n-1)p,+(n—1)(n—2)p,
”’pn= (n_2)p:+ (n_2) (”_3)P:_n(n— l) h”
”'pl= (n_g)pl-l- (”—3) (”—4)27;— (n-'l) (”—2) h’pv
w'p,=(n—4) p+ (n—4) (n—5) p,— (n—2) (n—3) K'p,,
and so on.

A 3) A
Thus p,=0, p,=-nT, P,=0, p‘=—("'—8)£’,...
: ]
Therefore ¢(zv)=a;"—n:c"";+”—(’|':;i)z"‘§

e T}
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878. If in the identity at the top of page 120 we put

4¢=§ we shall obtain

[+ v@-R)+ z— V- B _
=2" {a:'—n:c""-h—’-i-"(n—a) z"‘]i: - }:

P L2 2
hence we infer that
¢ @)= {"’”*’(“’""’)}"2';{”“/(""""')}' ......... @),

and this may be verified by shewing that this value of ¢ (z)
satisfies equation (5).

By putting 2 =% we find that = 2—";, .

Assume }—a:=cos 6, which is of course allowable so long as

 is not numerically greater than A
Then [z + (@ —K)}"= A" [cos 0 £ V—Tsin 6"
= h*{cos nf + ¥ — 1 sinnf} ;

h"cosnf
w1

thus ¢ (x) =

that is so long as « lies between — % and % we have

(@)= 2—}'#—__‘cosn(cos" ;) =kcosn (oos";) .

379. The st result may also be obtained from (4). For
put ¢ () =z; then (4) gives

Y- ) =% g - ),

a8 1 ds
therefore TE=a = TN &
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Hence since —\("%;) is the differential coefficient of
L& . _ 1 dz . .
ncos™ 3 with respect to , and TP =9 & is the differen-

tial coefficient of cos"% with respect to z; it follows by
Art. 102 that

noos”:-;s=cos"‘£+ C,

where C denotes some constant quantity. Hence
7—‘=-:cos (ncos"%— C).
~ But by hypothesis z must be numerically equal to Z when
x is equal to A; and thus C must be some multiple of 7;

and therefore cos(n cos"%’— C) is numerically equal to

cosn (cos’l %’) . This gives the required result.

The problem of Arts. 375...379 is also solved in Bertrand’s
Calcul Différentiel, pages 512...519.

380. We have sometimes to determine the value of Z—i

from an equation ¢ (x, y) =0, when = and y are such that
d¢‘(2.1/) and 2@ )
d

vanish ; for instance, we have to do so

when we are finding the directions of the tangents at a mul-
tiple point of a curve. The method of Art. 191 is liable to
the objection which is there stated. In Art. 195 another
method is given for the case in which 2 =0 and y =0 are the
values under consideration. It is easy to make the latter
method applicable for any values of = and y; by a process
which is geometrically equivalent to transferring the origin
of co-ordinates to the multiple point which may be supposed
to be under consideration.

Suppose that z=a and y =05 are the values to be con-
sid Put a+ A for 2, and y+ & for y. Then the equa-
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tion becomes¢ (a+ A, b+ k) =0. Nowexpand ¢ (a+%, b+ %)
by Chapter XIv. Suppose that every differential coefficient
¢ (z, y)

dx’ dy'
liss than n. Then we may denote the expansion symbolically
thus:

vanishes when 2 =a and y =5, s0 long as r+ s is

1/, d ,dv 1 /d ,d\™
¢(a+h,b+k)_E(hd;+k@)u+—|n+1(h%+k@) v,

where u stands for ¢ (z, y) and v for ¢ (z + 6k, y+ 6k),
0 being some l_})roper fraction ; and after the differentiations
have been performed we are to put z=a and y =b.

Now if we suppose % and % indefinitely small we have ulti-
mately for determinin%Othe ratio of % to % an equation which

may be expressed symbolically thus:
d a\"
or more explicitly thus:
" ﬂ "1 duv - n (n_ l) n-2 d"u —
. hdw.-l-nh kd:c"‘dy+ |2 Il k’m?+...-0,

where after the differentiations have been performed we are
to put z =a and y=>5.

It is obvious, as in Art. 195, that when % and % are indefi-
nitely small %coincides in meaning with Z—Z for the case in
which z=a and y=b.

381l. As an example of the preceding Article -suppose
we have the equation z'y*—c*(c—a)*(c"+42%)=0. ere

u

"
when z=c¢ and y=0 we have d.’c=0 a.ndgy-—o, also then

d'u « du du .

Em—,==—4-c, m—o, a.nd@,—%. Thus we obtain
—- it +k2'=0;

therefore k_ + 72

h
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382. The remarks which we shall now give will illustrate an
instructive mode of considering the singular points of curves.
It will be seen that in effect we transfer the origin to the
point to be examined, and then employ polar co-ordinates.

383. Suppose that from a.nﬁy;npoint of a curve as centre a
circle is described with an infinitesimal radius; then by the
aid of diagrams the following statements become obvious:

If the point is an ordinary point the circle cuts the curve at "
two points, and the radii of the circle drawn to the two points
include an angle which differs infinitesimally from two right
angles. ’

If the point is a singular point we have other results which
depend on the nature of the singularity.

If the point is a conjugate point the circle does not cut the
curve,

If the point be a point darrét the circle cuts the curve at
only one point. :

If the point is a cusp the circle cuts the curve at two
pointe; but the radii of the circle drawn to the two points
include an infinitesimal angle.

If the point is a point saillant the circle cuts the curve at
two points; but the radii of the circle drawn to the two

ints include an angle which is neither infinitesimal nor
infinitesimally different from two right angles,

If the point is a multiple point the circle cuts the curve
at more than two points.

384. Now suppose that ¢ (z, y) =0 is the equation to the
curve in a rationaix}?)rm. . Let « and y be the co-ordinates of
a point on the curve; and let z+ A and y + % be the co-ordi-
nates of any adjacent point.

Since ¢ (z,y) =0, we have, by Chapter x1v,
$ (o+h y+%) = Ah+ Bk + 3 (OR" + 2Dk + ER) + E;
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here 4, B, C, D, E are certain differential coefficients of
¢ (x, y) ; and B may be symbolically expressed as

1 d a\’

E (h E + k @)v,

where v denotes ¢ (z+ th, y + tk), and ¢ is some proper frac-
tion.

Let us suppose that 4 and B are not both zero ; assume
A=Ksiny, and B=Kcosey; also put rcosd for 2 and
rsin@ for £. Then the equation ¢ (z+k, y+ k) =0 becomes

Ksin (y+6) +g {C'cos’0+2Dsin 6 cos @ +Esin’9}

g.—. O ereereereereseeersen ).

It is obvious that when » is infinitesimal f; is also in-

finitesimal ; and that the above equation is satisfied by a
value of @ for which v + @ is infinitesimal, and by a value
of @ for which ¢+ 6 is infinitesimally different from o ;
and by no other value of 6 except such as differ from these by
a multiple of 2. Hence we have an ordinary point of the
curve. Therefore for a singular point it is necessary that
A=0and B=0.

Suppose then that 4=0 and B=0. The equation (1)
reduces to '

Ecos*d {tan’e +27Dtan0+%} + 2# =0......(2).

385. Suppose that D" is greater than CE; then we know
that tan®@d +2’E2 tan 6 +% can be resolved into real factors;
and so may be expressed as (tan 6 — tan a) (tan 6 —tan 8):
and « and 8 may be supposed to lie between 0 and 7.  Thus
the equation becomes

Ecos*0 (tan 0 — tan o) (tan 0 — tan §) + 2 = 0..v...(8).
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Now g is infinitesimal when r is; therefore, denoting by

n an infinitesimal angle, we see that (3) has four different
- solutions for 6, namely, one between a—7 and a+7, one
between 8—1n and B+ 1, one between 7+ a—9 and r+a+7,
and one between 7+ 8—9 and 7+ 8+ 9. Thus the singular
point is a double point, the tangents at the point being in-
clined at angles « and B respectively to the axis of z.

386. Next sup that D" is less than CE; then we
shall find that the infinitesimal circle does not cut the curve,
and so the singular point is a conjugate point.

387. Finally, suppose that D*= CE; then equation (2)
takes the form

Ecqs’G(tanO—tana)’+§2=0 ............ (4):

the discussion of this form is rather complex, and we will
only briefly indicate the results.

Suppose that % is negative when @ is indefinitely near

to & Then denoting by # an infinitesimal angle we see that
(4) has two solutions for 6, namely, one between a— 7 and a,

and one between a+#% and a. The sign of % when @ is

indefinitely near to 7+« will in general be contrary to the
sign when @ is indefinitely near to a, because B is in general
a function of the third degree in cos @ and sin 6, when r is
‘small enough ; and so there is no solution of (4) in this case
besides the two already noticed. Hence the infinitesimal
circle cuts the curve at two points, and only at two; and the
radii of the circle drawn to the two points include an in-
finitesimal angle. Therefore the singular point is a cusp ; the
tangent at the cusp is inclined to the axis of = at an angle «,
and the two branches are on opposite sides of the tangent.

Similarly if % is positive when @ is indefinitely near to a
we have in general a cusp of the first kind as before; the
tangent at the cusp is now inclined to the axis of « at an
angle 7+ a. L
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But it may happen that R itself changes sign when 0 :s
indefinitely near to @ or to mw+ a; and then our conclusion
as to a cusp of the first kind does not hold. We should have
in such a case to make a closer examination, and in general it
would be necessary to extend our expansion of ¢ (z+4, y+k),
and instead of R to have terms which may be expressed as

é(hgz%%)'ﬂw, 3/)+é(h(%+k%)‘¢(z+th, y + tk),

where ¢ represents a proper fraction.

388. Moreover if C, D, and E all vanish at the point
(x, y), we should have to use this extended form of the ex-
pansion of ¢ (z+4, y+ k) in order to determine the nature
of the si ity.

MISCELLANEOUS EXAMPLES.

1. If a semicircle roll along a straight line, the curve to
which its diameter is always a tangent is a cycloid.

2. If a cycloid roll along a straight line, the equation to
the curve which its base touches is

z _ y\i _ g_)i ]

2a {2 + (2a) } {l (2a :

3. A series of circles is described having their centres on an
equilateral hyperbola and passing through its centre,

shew that the locus of their ultimate intersections will
be a lemniscate.

4. Examine the nature of the following curves at the origin:
'+ 2ay’z + 2* — 2ax* =0,
y‘—§+z‘+ 82y'=0,

y'— dzy (ay — bx) —a' =0,
¥+ =24"".
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Trace the curve a'y*+ (2'—a’) (¢*—8*) =0, and shew
that the breadth of each closed portion is twice as great
in the direction of y as in that of . Shew also that
when b approaches a ag its limit, each of these portions
is ultimately similar to an ellipse.

Trace the curve (z*—a')'+ (y*—?8%)'=a'. Shew that
when b =a it reduces to two ellipses.

If a conic section whose focus is at the pole of a given
curve have with the curve a contact of the second
order at the point (u, 6) the equation to the conic sec-
tion will be '

du
d dé d*u
’ 'y _ @ . au
wror "’do{m}-wos-

A given curve rolls on a straight line, explain the
method of finding the locus of the centre of curva-
ture at the point of contact of the curve and straight
line.

If the rolling curve be an equiangular spiral the re-
quired locus will be a straight line; if a cycloid a
circle; and if a catenary a parabola.

Right-angled triangles are inscribed in a circle : if one
of the sides containing the right angle pass through
a fixed point, find the curve to which the other is
always a tangent. ,

Result. ¢ (@ +y') = (a'+b"—c'— ax—by)?,
where a and b are the co-ordinates of the centre of the
given circle and ¢ its radius, the fixed point being the
origin. ,
Determine the equation to the envelop of all the equi-

lateral hyperbolas which have a common centre and
cut.at right angles the same straight line.

Result. a:'+3(aa:y)*-—y’-!-a'=0,_
where z = a represents the given straight line.
T.D.C. EE
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11. Find the envelop of the axis of a parabola having a
focal chord given in position and magnitude.

Result. al+y?=c}; the origin being the middle
point of the given chord, and one of the axes coinciding
with that chord.

12. A system of ellipses is described such that each ellipse
touches two rectangular axes, to which its axes are
parallel, and that the rectangle under the axes of
the ellipse is constant: shew that each ellipse is
touched by two rectangular hyperbolas, the rectangle
under the transverse axes of which is equal to the
rectangle under the axes of any one of the ellipses,

13. A4, B, are the centres of two equal circles, and AP, BQ,
are two radii which are always perpendicular to each
other: find the curve which is always touched by the
right line PQ, and explain the result when

AB'=24P"

14. Trace the following curves:
&—zy'+ay'=0, ’
¥'-Tyd+6r'—a’=0,

Y+ —dd=0,

a(?+ 72+ Tzy"+ ) - 2*y* =0,
xy'+ax’—a’ =0,

Yy (x—2a)—a*+a*=0,
Y—aly—bay’ + 2" =0,

¥ —Bady' +2° =0,
y=21@-aYE=0,

¥ (@+2z)=2a"(a—a),
Yy =2,

’ - 0-'4\/(2!'— 1),
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18.
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FAL ]
e sin?,
a’
y=emu’

7"sin 6 = a’ cos 20,
.3 w’
r Q—-ar; =q (G’—Z)'

S and H are two fixed points, and a curve is described
such that, if P be any point in it the rectangle con-
tained by SP and HP is constant: shew that the

straight lines drawn from § at right angles to SP and
from H at right angles to HP meet the tangent at P at
points equidistant from P.

If f (:c y ) be a rational homogeneous function of £ E , %
of n dimensions, shew that the envelop of the curves
, b) =1, under the
condition ab=constant, consists in general of n rect-
angular hyperbole havmg the axes as asymptotes.

If any quadrilateral ABCD change its form, its sides
remaining constant, shew that the variations of the
angles 4, B, C, D are ultimately in the same ratio as
the areas of the triangles BCD, CDA, DAB, ABC.

represented by the equation f (

In Art. 274,if p=n—1, we have a.pproxxmately when
« and y are very large
¥ (),

'y b
Y =p +—, where b=—
7o ¢ )’

shew that if ¢g=n—2, we have by continuing the

approximation

Yoy 1 020 () 259" () + B¢ (w) |

z Mg 20°¢’ (u,)

Hence shew that in general the two extremities of

the rectilinear asymptote are on opposite sides of the
curve.
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19. In Art. 275,if p=n—1, we have a.ppronmately when
« and y are very large

(A =2 (),
_31_,,,14-(;), whereA——sz-

shew that if g=n —2, we have by’ continuing the
approximation

y_ B C
-t ()+ +m,+...

Y (k) k)4
where ¢ (m,) 6¢” (o) *

X(s)+5 ¥ (ﬂ.)+{4' () +5 8" )+ 3 4 ()] B

Aw(,,)

20. If (o, B) be a point of the curve ¢ (x,y) =0 through
which pass n tangents, shew that the locus of all the

tanvents at that point is expressed by

{e-agz+0u-Azf sA=0

21. Shew that the theorem of Art. 91 will hold even if ¢’ ()
is infinite when £=a or when #=b. Give a geo-
metrical illustration.

22. Shew that the theorem of Art. 98 will hold even if F”'(x)
or f'() is infinite when =a or when z=a + h.

23. Shew that the formula (3) of Art. 373 will hold provided
2 + 1 is not less than ¢.

24. Obtain from (3) of Art. 873 the result
_lg 2™ 6 (1—6)*1a F* (a + 6h)
1.3.5...2¢+1)[n )
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