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Preface 
Of making many bookes there is no 
end, and much studie is a weari­
nesse of the flesh. 

Ecclesiastes XII, 12. 

When I first took an interest in the Geometry of Numbers, I was 
struck by the absence of any book which gave the essential skeleton 
of the subject as it was known to the experienced workers in the subject. 
Since then the subject has developed, as will be clear from the dates 
of the papers cited in the bibliography, but the need for a book remains_ 
This is an attempt to fill the gap. It aspires to acquaint the reader with 
the main lines of development, so that he may with ease and pleasure 
follow up the things which interest him in the periodical literature. 
I have attempted to make the account as self-contained as possible. 

References are usually given to the more recent papers dealing with 
a particular topic, or to those with a good bibliography. They are given 
only to enable the reader to amplify the account in the text and are 
not intended to give a historical picture. To give anything like a reason­
able account of the history of the subject would have involved much 
additional research. 

lowe a particular debt of gratitude to Professor L. J. MORDELL, 
who first introduced me to the Geometry of Numbers. 

The proof-sheets have been read by Professors K. MAHLER, L.J. 
MORDELL and C. A. ROGERS. It is a pleasure to acknowledge their 
valuable help and advice both in detecting errors and obscurities and 
in suggesting improvements. Dr. V. ENNOLA has drawn my attention to 
several slips which survived info the second proofs. 

I should also like to take the opportunity to thank Professor F. K. 
SCHMIDT and the Springer-Verlag for accepting this book for their 
celebrated yellow series and the Springer-Verlag for its readiness to 
meet my typographical whims. 

Cambridge, June, 1959 J. W. S. CASSELS 
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Notation 
An effort has been made to distinguish different types of mathemati­

cal object by the use of different alphabets. It is not necessary to 
describe the scheme in full since an acquaintance with it is not pre­
supposed. However the following conventions are made throughout the 
book without explicit mention. 

Bold Latin letters (large and small) always denote vectors. The 
dimensions is n, unless the contrary is explicitly stated: and the letter n 
is not used otherwise, except in one or two places where there can be 
no fear of ambiguity. The co-ordinates of a vector are denoted by the 
corresponding italic letter with a suffix 1, 2, ... ,n. If the bold letter 
denoting the vector already has a suffix, then that is put after the 
co-ordinate suffix. Thus: 

a = (llt, ... , a,,) 

b, = (bI " ... , b",) 

x: = (X~., ... , X~.). 

The origin is always denoted by o. The length of re is 

lrel = (xl + ... + x!)i. 

Sanserif Greek capitals, in particular A, M, N, r, denote lattices. 
The notation d (A), L1 (9'), V( 9') for respectively the determinant 

of the lattice A and for the lattice-constant and volume of a set 9' 
will be standard, once the corresponding concepts have been introduced. 

Chapters are divided into sections with titles. These sections are 
subdivided, for convenience, into subsections, which are indicated by a 
decimal notation. The numbering of displayed formulae starts afresh 
in each subsection. The prologue is just subdivided into sections without 
titles, and it was convenient to number the displayed formulae con­
secutively throughout. 



Prologue 
P1. We owe to MINKOWSKI the fertile observation that certain 

results which can be made almost intuitive by the consideration of 
figures in n-dimensional euclidean space have far-reaching consequences 
in diverse branches of number theory. For example, he simplified the 
theory of units in algebraic number fields and both simplified and 
extended the theory of the approximation of irrational numbers by 
rational ones (Diophantine Approximation). This new branch of 
number theory, which MINKOWSKI christened "The Geometry of Num­
bers", has developed into an independent branch of number-theory 
which, indeed, has many applications elsewhere but which is well worth 
studying for its own sake. 

In this prologue we first discuss some of the concepts and results 
which will playa leading role. The arguments we shall use are some­
times rather different from those in the main body of the text: since 
here we wish to make the geometrical situation intuitive in simple cases 
without necessarily giving complete proofs, while later we may need to 
sacrifice picturesqueness for precision. The proofs in the text are inde­
pendent of this prologue, which may be omitted if desired. 

P2. A fundamental and typical problem in the geometry of numbers 
is as follows: 

Let l(x1 , ..• , x,,) be a real-valued function of the real variables 
Xl' ... , x". How small can I/(ul , ... ,un)1 be made by suitable choice 
of the integers u1 , ... , U" ? It may well be that one has trivially 
1(0, ... ,0) =0, for example when l(x1 , ••• , xn) is a homogeneous form; 
and then one excludes the set of values U 1 = U 2 = ... = Un = 0. (The 
"homogeneous problem".) 

In general one requires estimates which are valid not merely for 
individual functions I but for whole classes of functions. Thus a typical 
result is that if 

(1 ) 

is a positive definite quadratic form, then there are integers u1 , u2 not 
both ° such that 

(2) 
where 

Cassels, Geometry of Numbers 



2 Prologue 

is the discriminant of the form. It is trivial that if the result is true 
then it is the best possible of its kind, since 

u~ + UI U2 + u~ ~ 1 

for all pairs of integers uI , u2 not both zero; and here D = !. 
Of course the positive definite binary quadratic forms are a par­

ticularly simple case. The result above was known well before the birth 
of the Geometry of Numbers; and indeed we shall give a proof sub­
stantially independent of the Geometry of Numbers in Chapter II, § 3. 
But positive definite binary quadratic forms display a number of argu­
ments in a particularly simple way so we shall continue to use them as 
examples. 

P3. The result just stated could be represented graphically. An 
inequality of the type 

t(XI, x2) ~ k, 

where t(xl , x2) is given by (1) and k is some positive number, represents 
the region fA bounded by an ellipse in the (Xl' x2)-plane. Thus our 
result above states that fA contains a point (ul , u2), other than the 
origin, with integer coordinates provided that k~ (4D/W. 

A result of this kind but not so precise follows at once from a 
fundamental theorem of MINKOWSKI. The 2-dimensional case of this 
states that a region fA always contains a point (ul , u2) with integral 
co-ordinates other than the origin provided that it satisfies the following 
three conditions. 

(i) fA is symmetric about the origin, that is if (Xl' X2) is in fA then so 
is (- Xl' - x2). 

(ii) fA is convex, that is if (Xl' x2) and (YI' Y2) are two points of fA 
then the whole line segment 

joining them is also in fA. 

(iii) fA has area greater than 4. 

Any ellipse t(xl , x2)~k satisfies (i) and (ii). Since its area is 

kn kn 
( 2)' -Df' all an -al2 

it also satisfies (iii), provided that kn> 4Df. We thus have a result 
similar to (2), except that the constant (t), is replaced by any number 
greater than 4/n. 

p 4. It is useful to consider briefly the basic ideas behind the proof 
of MINKOWSKI'S theorem, since in the formal proofs in Chapter 3 they 
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may be obscured by the need to obtain powerful theorems which are 
as widely applicable as possible. Instead of the region JI, MINKOWSKI 
works with the region .'7= i91' of points (ixv ixz), where (Xl' Xz) is 
in 3£. Thus.'7 is symmetric about the origin and convex: its area is i 
that of 91' and so is greater than 1. More generally, MINKOWSKI considers 
the set of bodies .'7 (ul , uz) similar and similarly situated to .'7 but 
with centres at the points (ul , u2) with integer co-ordinates. 

We note first that if .'7 and .'7(uI , U 2} overlap then I (u l , u2) is in 91'. 
For let a point of overlap be (~l' ~z)' Since (~l' ~2) is in .'7(ul , u2) 

the point (~I-UI' ~2-U2) must 
be in .'7. Hence, by the symmetry 
of .'7, the point (UI-~I' U2-~2) IS 

in .'7. Finally, the mid-point of 
(UI-~I' U2-~2) and (~I' ~2) is m 
Y) because of convexity, that is 
(iul , iu2) is in .'7, and (ul , u2) 

is in [Jl, as required. I t is clear 
that .'7(ul , u2) overlaps .'7(u~, u~) 
when and only when .'7 overlaps 
Y'(u l - u~, u2 - u~). 

GGGO 
GGGO 
G GGG 

To prove MINKOWSKI'S theorein, 
it is thus enough to show that when 
the .'7 (ul , u2) do not overlap then 
the area of each is at most 1. A 

GGGG 
Fig. 1 

little reflection convinces one that this must be so. A formal proof 
is given in Chapter 3. Another argument, which is perhaps more intuitive 
is as follows, where we suppose that .'7 is entirely contained in a square 

hl:;:;:X, Ix21:;:;:X. 

Let U be a large integer. There are (2U +1)2 regions .'7(ul , u2) whose 
centres (ul , u 2) satisfy 

These .'7 (uI , u 2) are all entirely contained in the square 

IxII:;:;: U +X, Ix2 1:;:;: U +X 
of area 

4(U +X)2. 

Since the .'7(uI , u2) are supposed not to overlap, we have 

(2U + 1)2 V:;:;: 4(U +X)2, 

I The converse statement is trivially true. If (ul • u2 ) is in JI then (lUI' tu2) 

is in both [/' and [/'(ul • u2 ). 

1* 



4 Prologue 

where V is the area of !/'; and so of each !/' (u I , u2). On letting U tend 
to infinity we have V ~ 1, as required. 

P 5. A change in the co-ordinate system in our example of a definite 
binary quadratic form t(xl , x2) leads to another point of view. We may 
represent t (Xl' X2) as the sum of the squares of two linear forms: 

0) 
where 

Xl = IX Xl +Px2 , X 2 =rXI + bX2 (4) 

and IX, p, }', b are constants, e.g. by putting 

Fig. 2 

IX = aL, P = a11;aI2 , 

r = 0, b = all~ D~ . 

Conversely if IX, p, r, b are any 
real numbers with IXb-Pr=t=o and 

{ Xl' X2 are given by (4), then 
a-ft,}'-d) 

xi+ X~=all x~+ 2al2 Xl X 2 + a22 x~, 

with 

(5) 

is a positive definite quadratic form 
with 

D = all a22 - ai 2 = (IX b - Pr)2. (6) 

We now consider Xl' X 2 as a system of rectangular cartesian co­
ordinates. The points Xl' X 2 corresponding to integers Xl' x2 in (4) are 
then said to form a (2-dimensional) lattice I\. In vector notation /\ is 
the set of points 

(7) 

where uI , u 2 run through all integer values. 

We must now examine the properties of lattices more closely. Since 
we consider /\ merely as a set of points, it can be expressed in terms 
of more than one basis. For example 

(IX - P, r - b), (- P, - b) 

is another basis for I\. A fixed basis (IX, P), (r, b) for /\ determines 
a subdivision of the plane by two families of equidistant parallel 
lines, the first family consisting of those points (Xl' X 2) which can be 
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expressed in the form (7) with ttz integral and ttl only real, while for 
the lines of the second family the roles of UI and ttz are interchanged. 
In this way the plane is subdivided into parallelograms whose vertices 
are just the points of I\. Of course the subdivision into parallelograms 
depends on the choice of basis, but we show that the area of each 
parallelogram, namely 

jocb-Prj, 

is independent of the particular basis. We can do this by showing that 
the number N(X) of points of A in a large square 

satisfies 
.V(X) 1 
---*---

4X2 ICIa-Prl (X -* (0). 

Indeed a consideration along the lines of the proof of MINKOWSKI'S 

convex body theorem sketched above shows that the number of points 
of A in !2 (X) is roughly equal to the number of parallelograms contained 
in !2 (X), which again is roughly equal to the area of !2 (X) divided by 
the area joc b - Pr j of an individual parallelogram. The strictly positive 
number 

d(A) = jocb - Prj (8) 

is called the determinant of A. As we have seen, it is independent of 
the choice of basis. 

P 6. In terms of the new concepts we see that the statement that 
there is always an integer solution of t(xl , X2)~ (4D/3)i is equivalent 
to the statement that every lattice A has a point, other than the origin, in 

(9) 

On grounds of homogeneity this is again equivalent to the statement 
that the open circular disc 

£1): Xi+X~<1 (10) 

contains a point of every lattice A with d (A) < (l)i, and the fact that 
there are forms such that equality is necessary in (2) is equivalent to 
the existence of a lattice Ac with determinant d (AJ = (1)1 having no 
point in £1). So our problem about all definite binary quadratic forms 
is equivalent to one about the single region £1) and all lattices. Similarly 
consideration of the lattices with points in 
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gives us information about the minima of indefinite binary quadratic 
forms: 

and so on. 

ip.f II (UI , Ua)i : 
"h"t mtegers 

not both 0 

These considerations prompt the following definitions. A lattice A 
is said to be admissible for a region (point-set) ffi in the (Xl' Xa)-plane 
if it contains no point of ffi other than perhaps the origin, if that is a 
point of f!4. We may say then that A is ffi-admissible. The lower bound 
L1 (ffi) of d (A) over all ffi-admissible lattices is the lattice-constant of ffi: 
if there are no ffi-admissible lattices we put L1 (R) = 00. Then any 
lattice A with d (A) < L1 (R) certainly contains a point of ffi other than 
the origin. An ffi-admissible lattice A with d (A) = L1 (ffi) is called critical 
(for ffi): of course critical lattices need not exist in general. 

The importance of critical lattices was already recognized by 
MINKOWSKI. If Ac is critical for ffi and A is obtained from Ac by a 
slight distortion (i.e. by making small changes in a pair of base-points) 
then either A has a point in ffi other than the origin or d (A) ~ d (Acl 
(or both). 

As an example, let us again consider the open circular disc 

Suppose that Ac is a critical lattice for~. We outline a proof that a 
critical lattice, if it exists, must have three pairs of points ± (AI' A 2). 

±(BI , Ba), ±(CI , Ca) on the boundary X~+X~=1 of~. For if At 
had no points on X~ +X~ = 1, we could obtain an .!'}-admissible lattice 
with smaller determinant from Ac by shrinking it about the origin, that 
is by considering the lattice A =tAc of points (tXI' tXa), where 
(Xl' X 2) E A and O<t<1 is fixed. Then d(A) =t2d(A,J <d(Acl, and 
clearly A would be also .!'}-admissible if t is near enough to 1. Hence Ac 
contains a pair of points on X~ + X~ = 1, which, after a suitable rotation 
of the co-ordinate system, we may suppose to be ±(1, 0). If there were 
no further points of Ac on X~ + X~ = 1 then we could obtain a £il­
admissible lattice A of smaller determinant by shrinking Ac perpendicular 
to the Xcaxis, that is by taking A to be the lattice of (Xl' tX2), 

(Xl' X 2) E A" where t is near enough to 1. Finally, if Ac had only two 
pairs of points ±(1,O), ±(BI , B 2) on the boundary, then it is not 
difficult to see that it could be slightly distorted so that (1, 0) remains 
fixed but (BI' B 2) moves along X~ +X~ = 1 nearer to the Xl-axis, cf. 
Fig. 3. 

This can be verified to decrease the determinant of the lattice 
[indeed (1,0) and (BI' B,.) can be shown to be a basis for Ac], and for 
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small distortions the distorted lattice A will still be 2}-admissible. 
Hence a critical lattice At (if it exists) must have three pairs of points 
on X~ + X~ = 1 : and it is easy to verify that the only lattice with three 
pairs of points on xi + X~ = 1, one of them being ± (1, 0), is the lattice 
N with basis 

(1,0), (t, VI)· 
This has the vertices of 
a regular hexagon 

±(1,O), 

± (t, VI), 
±(-t, VI) 

on X~ +X~ = 1, but no 
points in X~ +X~< 1. 
We have thus shown 
thaL1(D) =d(N) =(-W 
provided that g has "< 
a critical lattice. MIN­

KOWSKI showed that 

( I,P) 

Fig. 3 

critical lattices exist for a fairly wide set of regions fJi by, roughly speak­
ing, showing that any fJi-admissible lattice A can be gradually shrunk 
and distorted until it becomes critical. In the text we give a more 
general proof of the existence of critical lattices using concepts due to 
MAHLER which turn out to have much wider significance. 

P 7. Another general type of problem is the typical "inhomogeneous 
problem": Let t (Xl' ... , XII) be some real-valued function of the real 
variables Xl' ... , X n • It is required to find a constant k with the following 
property: If $1' ... , $ n are any real numbers there are integers UI , ... , Un 

such that 

Questions of this sort turn up naturally, for example in the theory 
of algebraic numbers. Again there is a simple geometric picture. For 
simplicity let n = 2. Let fJi be the set of points (Xl' X2) in the 2-dimen­
sional euclidean plane with 

I/(xl , x2)i ~ k. 

Denote by 9l (uI , U 2), where UI , U 2 are any integers, the region similar 
to fJi but with the displacement UI , u2 ; that is 9l (ul , u2) is the set of 
points Xl' x2 such that 
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Then the inhomogeneous problem is clearly to choose k so that the 
regions ~(14l' 142) cover the whole plane. In general one will wish to 
choose k, and so fJI, as small as possible so that it still has this covering 
property. Here we have a contrast with the treatment of the homo­
geneous problem in § 4, where the objective was to make the regions 
[there denoted by 9' (14, v)] as large as possible but so that they did not 
overlap. 

In this book we shall mainly be concerned at first with the homo­
geneous problem. Only when we have a fairly complete theory of the 
homogeneous problem will we discuss in Chapter XI the inhomogeneous 
problem and its relation to the homogeneous one. 



Chapter I 

Lattices 
1.1. Introduction. In this chapter we introduce the most important 

concept in the geometry of numbers, that of a lattice, and develop some 
of its basic properties. The contents of this chapter, except § 2.4 and 
§ 5, are fundamental for almost everything that follows. 

In this book we shall be concerned only with lattices over the ring 
of rational integers. A certain amount of work has been done on 
lattices over complex quadratic fields, see e.g. MULLENDER (1945 a) and 
K. ROGERS (1955 a). Many of the concepts should carryover practically 
unaltered. Again, work on approximation to complex numbers by 
integers of a complex quadratic field [e.g. MULLENDER (1945a), CASSELS, 
LEDERMANN and MAHLER (1951 a), POITOU (1953 a)] and on the minima 
of hermitian forms when the variables are integers in a quadratic field 
[e.g. OPPENHEIM (1932a, 1936a, 1953f) and K. ROGERS (1956a)] may 
be regarded as a generalization of the geometry of numbers to lattices 
over complex quadratic fields. We shall not have occasion to mention 
lattices over complex quadratic fields again in this book; we mention 
them here only for completeness. For lattices over general algebraic 
number fields see ROGERS and SWINNERTON-DYER (1958a). 

1.2. Bases and sublattices. Let aI' ... , a" be linearly independent 
real vectors in n-dimensional real euclidean space, so that the only set of 
numbers t1, ... , tn for which tl ~ + ... + tn an = 0 is tl = t2 = ... = tn = O. 
The set of all points 

(1 ) 

with integral u 1 , .•• , Un is called the lattice with basis aI' ••• , a". We 
note that, since aI' ... ,an are linearly independent, the expression of 
any vector ~ in the shape (1) with real u1 , ••• , Un is unique. Hence if ~ 
is in A and (1) is any expression for ~ with real U1 , ... , U II , then U1 , ... , U II 

are integers. We shall make use of these remarks frequently, often 
without explicit reference. 

The basis is not uniquely determined by the lattice. For let a~ be 
the points 

a; = L v;;a, 
; 

where Vii are any integers with 

(1~i, i~n), 

det(v;j) = ± 1. 

(2) 

(3) 
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Then 

Lattices 

a j = L: wjiaj 
i 

(4) 

with integral Wi;' It follows easily that the set of points (1) is precisely 
the set of points 

where U~, ... , u~ run through all integers; that is ai' ... , all and a~, ... , a~ 
are bases of the same lattice. We show now that every basis a; of a 
lattice 1\ may be obtained from a given basis a j in this yvay. For since 
a; belongs to the lattice with basis ai' ... , an there are integers vij such 
that (2) holds: and since a j belongs to the lattice with basis a~, ... , a~ 
there are integers Wii such that (4) holds. On substituting (2) in (4) 
and making use of the linear independence of the aj , we have 

L: {1 if i = I 
WiiVil = 0 otherwise. 

Hence 
det(wij ) det (ViI) = 1 

and so each of the integers det (wii) and det (ViI) must be ± 1; that is 
0) holds as required. 

We denote lattices by capital sanserif Greek letters, and in particular 
by 1\, M, N, r. 

If ai' ... , a" and a~, ... , a~ are bases of the same lattice, so that 
they are related by (2) and (3), then we have 

det(a~, ... , a~) = det(vii) det(a1 , ... , an) = ± det(a1 ,···, all), 

where, for example, det (a\, ... , an) denotes the determinant of the 
n xn array whose i-th row is the vector a i . Hence 

is independent of the particular choice of basis for I\. Because of the 
linear independence of ai' "', a" we have 

d(/\) > o. 

We call d (1\) the determinant of I\. 
An example of a lattice is the set 1\0 of all vectors with integral 

coordinates. A basis for 1\0 is clearly the set of vectors 

(
i -1 zeros n - j zeros) 

ei = ~,1,~ (1;2;; i;2;; tt); 
and so 
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We note that the vectors of a lattice /\ form a group under addition: 
if aE/\ then -a(/\; and if a, bE/\ then a±bEI\. We shall see later 
(Chapter III, § 4) that a lattice is the most general group of vectors in 
n-dimensional space which contains n linearly independent vectors and 
which satisfies the further property that there is some sphere about 
the origin 0 which contains no other vector of the group except o. 

1.2.2. Let a1 , ... , a" be vectors of a lattice M with basis b1 , ... , b.-. 
so that 

a i = L vijb j 
i 

with integers Vij' The integer 

1= Idet(v .. )1 = !det(a1 ..... a,,)1 _ Idet(a1 • .... alln 
'1 Idet(b1 ..... bn)1 - d(M) 

(1 ) 

is called the index of the vectors a1 , ... , an in M. From the last ex­
pression it is independent of the particular choice of basis for M. By 
definition, I~ 0; and 1=0 only if a1 • ... , an are linearly dependent. 

If every point of the lattice /\ is also a point of the lattice M then 
we say that 1\ is a sublattice of M. Let a1 , ... , a" and b1 , ... , bn be 
bases of /\ and M respectively. Then there are integers Vij such that (1) 
holds, since ai~ M. The index of a1 , ... , an in M, namely 

(2) 

is called the index of /\ in M. From the last expression the index depends 
only on /\ and M, not on the choice of bases. Since a1 , •.• , a" are 
linearly independent, we have D> O. On solving (1) for the b i and 
using (2), we have 

Dbi = L wijaj , 

i 
where the Wij are integers. Hence 

DM(I\(M, 

where D M is the lattice of Db, bEM. 

(3) 

It is often convenient to choose particular bases for 1\ and M so 
that (1) takes a particularly simple shape. 

THEOREM I. Let /\ be a sublattice 0/ M. 

A. To every base bl , ... , b" 0/ M there can be found a base aI' ... , an 
all\ 0/ the shape 

al=vllbl I 
a2 = V 21 b1 + V 22 b2 

an = V" 1 b1 + ... + Vn " b", 

(4) 

where the Vi; are integers and Vii=!=O /oralli. 
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B. Conversely, to every basis aI' ... , a" 0/ " there exists a basis 
b1 , ••• , b" 0/ M such that (4) holds. 

Proof of A. For each i (1~i~n) there certainly exist points a; in 
" of the shape 

where vii' ... , Vj; are integers and v;i*O, since, as we have seen, 
Db/_A We choose for a j such an element of " for which the positive 
integer I vi;1 is as small as possible (but not 0), and will show that 
a1 , ..• , a" are in fact a basis for A Since a1 , .•• , a" are in /\, by con­
struction, so is every vector 

(5) 

where WI' . _', w" are integers. Suppose, if possible, that c is a vector 
of" not of the shape (5). Since c is in M, it certainly can be expressed 
in terms of bl , . _ ., b", and so can be written in the shape 

c = tl bl + ... + tk bk , 

where 1 ~ k ~ n, tk=1= ° and t1, ... , tk are integers. If there are several 
such c, then we choose one for which the integer k is as small as pos­
sible. Now, since Vu=1= 0, we may choose an integer s such that 

(6) 
The vector 

is in " since c and ak are; but it is not of the shape (5) since c is not. 
Hence tk- SVkk=1= ° by the assumption that k was chosen as small as 
possible. But then (6) contradicts the assumption that the non-zero 
integer Vkk was chosen as small as possible. The contradiction shows 
that there are no c in " which cannot be put in the form (5), and so 
proves part A of the theorem. 

Proof of B. Let aI' ... , an be some fixed basis of A Since D M 
is a sublattice of " by (3), where D is the index of " in M, there exists 
by Part A a basis Dbl , ... ,Db" of DM of the type 

Dbl=wUal \ 
D b2 = W21 a l + w22 a2 

Db .. = w .. lal + ... + w .... an ,. 

(7) 

with integral wii and W ij =1=O (1~i~n). On solving (7) for aI' ... ,an 

in succession we obtain a series of equations of the type (4) but where 
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at first we know only that the Vi; are rational. But clearly b1, ... , b" 
are a basis for M and so the Vi; are in fact integers, since the a i are 
in M, and since the representation of any vector a in the shape 

(t1' ... , tn' real numbers) 

is unique by the i.ndependence of b1 , ... , b". 
From this theorem we have a number of simple but useful corollaries. 
COROLLARY 1. In theorem I we may suppose further that 

and that 

Q ~ Vi; < Vi; 

o ~ t'i; < Vii 

in case A, 

in case B. 

(8) 

(9) 

(10) 

Proof of A. To obtain (8) it is necessary only to replace ai or b; 
by -ai' -bi respectively if originally Vii<O. To obtain (9) we replace 
the ai by 

a; = ti1 a1 + ... + t;,i--1ai-1 + ai' 

where the ti ; are integers to be determined. For any choice of the ti ; 

the a; are a basis for I\. We have 

where 

and, for j < i, we have 

v~.=t-.v,,+t. '+lV'+l .+ ... +t .. IV· 1 '+V" 11 I, 11 1,1 1,1 I,S- l-,1 " 

For each i we may now choose t i . i - 1, t i ,i-2' ... , til in that order so that 

as was required. 
Proof of B. Similar. 

COR OLLAR Y 2. Let aI' "', am be linearly independent vectors of a 
lattice M. Then there is a basis b1 , ... , b" of M such that 

a1 =v11 b1 

a2=v21b1+V22b2 

wt'th integers Vi; such that 

vii>O O~Vi;<Vii (1~i<i~m). (11) 
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We can choose vectors a m -- l , ... , an in M such that aI' ... , an are 
linearly independent. Corollary 2 follows now on applying Corollary 1 
to the lattke 1\ with basis aI' ... , an' 

COROLLARY 3. Let aI' ... , am (m < n) be linearly independent vectors 
01 a lattice M. A necessary and sul/icient condition lor the existence 01 
vectors am +l , ... , a,. in M such that aI' ... , an is a basis is the lollowing: 
every vector CE M which is 01 the shape 

(12) 

with real ul , ... , Um necessarily has ul , ... , Um integral. 

If ~, ... , am is part of a basis aI' ... , an the condition is clearly 
satisfied. Conversely if aI' ... , am satisfy the condition, let bl , ... , b n 

be the basis of M given by Corollary 2 and let Vij be the corresponding 
integers. Then c = b l , "', bm are of the shape (12) and indeed the 
coefficient of ai in the expression for b; is v;;!. Hence Vii= 1 and so 
v,;=O for i=4=j, that is ai=bi (1~i~m) and we may put ai=bi 
(m+1~i~n). 

In some contexts we shall need the following more specialized 
corollary which follows at once from Corollary 3. 

COROLLARY 4. Let bl , ... , bn be a basis lor a lattice M and let 

A necessary and sufficient condition that 

bl , ... , b rn - l , C 

be part 01 some basis 
b1 , ••. , bm - 1 , C, Crn +l , ... , CIt 

01 M is that urn' urn+l' "', un have no common lactors =4= ± 1-

Proof. Clear. 

The following characterisation of the index of a sub lattice 1\ of a 
lattice M is sometimes useful. We say that two vectors c, d of Mare 
in the same class with respect to 1\ if C - d is in I\. Clearly this is a 
subdivision into classes: if C - d and d - e are in 1\, then C - e is in 1\. 

LEMMA 1. The index 01 the sublattice 1\ 01 M is the number 01 classes 
in M with respect to I\. 

For let ai' bj be bases for 1\ and M respectively in the shape (4) 
given by Theorem 1. Then clearly the index D of 1\ in M is 
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But now every C( M is in the same class as precisely one of the vectors 

as is readily verified (d. proof of Theorem I, Corollary 1). 

1.2.3. There is a useful transformation of the criterion of Theorem I, 
Corollary 3, for deciding whether or not a set of vectors ai' ... , am 
(m<n) of a lattice A can be extended to a basis for A 

LEMMA 2. Let b1 , ... , bn be a basis for a lattice A and let 

(1~i~m) (1 ) 

be vectors of A A necessary and sufficient condition that aI' ... ,am be 
extendable to a basis ai' ... , an of A is that the m X m determinants formed 
by taking m columns of the array 

(1~i~1I1, 1~i~n) (2) 

shall not have a common factor. 

The condition is certainly necessary. For let am+!, ... , an form a 
basis with ai' ... , am, so that 

(m + 1~ i~n) (3) 

for some integers Vii' Since ai (1 ~ i ~ n) and b, (1 ~ i ~ n) are bases 
of the same lattice, we have 

det (Vi;) = ± 1 . (4) 

We may expand the determinant (4) by the first 111 and last (n - m) 
rows [Laplace-development] and obtain 

L V. w, = det (Vii) , (5) 
l~'~R 

where the v,: are the (:) determinants formed from columns of (2) 

and W, is the (n - m) X (n - m) determinant formed from the remaining 
(n-m) columns and the (n-m) rows, 

( .< /'"<) Vii m < ~ = n, 1::;:;, 1 = n , 

taken with an appropriate sign. Since the W, are integers, it follows 
from (4) and (5) that the V, have no common factor. 

The condition is also sufficient. For let c be a vector of A of the 
shape 

c = U 1 a1 + .. " + U," am (6) 
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for real numbers u1 , ••• , um • On inserting (1) in (6) we have 

2: u.v;j = integer = Ij (say) 
l~i~", 

(7) 

since b1 , ••• , b" is a basis for A. We may solve (7) for the u j ' and 
indeed in a multitude of ways. For example let ii j be the cofactor of 
VI; in the expansion of the determinant 

Then 
(1~i~tn, 1~i~lII). 

2: vjl;=l{u1 , 
l~j~m 

so Vi U1 is an integer. Similarly 

v, u; = integer (1~i~1n), 

where V, is any 11t Xm determinant formed from (2). Since, by hypothesis, 
the V, are integers without common divisor, the Uj must be integers. 
Hence by Theorem I, Corollary 3 it is possible to extend aI' ... , a", to 
a basis aI' ... , a'II • 

1.2.4 1• We shall now apply Lemma 2 to obtain a result of DAVEN­
PORT (1955 a) about the way in which a basis for a lattice may be chosen. 
This will be used only in Chapter V, § 10 and then only to prove a 
result on Diophantine Approximation rather aside from the main theme 
of the book. 

THEOREM II. Let A be an n-dimensional lattice, let 

c i (1~i~n-1) 

be (n -1) arbitrary real vectors and let e> 0 be an arbitrarily small real 
number. Then for all real numbers N greater than a number No depending 
only on A, e and the c;, there exists a basis ai' ... , a" of A such that 

(1~i~1t-1). (1) 
Here 

(2) 

denotes the usual euclidean distance. 

To prove Theorem II we shall need a result about the distribution 
of integers prime to a given integer. We prove this first, and then 
Theorem II. 

LEMMA 3. For each 15>0 there is a number k(b) with the following 
property: Every interval of length k (b) q6, where q is a positive integer, 
contains an integer prime to q. 

1 § 2.4 may weli be omitted at a first reading 
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q = II p«f, 
l;;;'i~,J 1 
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(3) 

where the Pi are distinct primes and the (Xi> 0 are integers. An integer 
is prime to q if and only if it is not divisible by any of P1' ... , Pl' 
Consider some interval 

V<U~V+U (4) 

of length U, where U, V are fixed integers. For j1 <j2 < ... <jS' where 
s~J, let 

M(j1' ···,js) 

be the number of integers u in the interval (4) which are divisible by 
Pi., Pi,' ... , Pi. (and perhaps also by other primes from Pl' ...• P f)' We 
show next that 

(5) 
s>o 

gives the number of integers u in (4) prime to q. where U is the number 
of integers u in (4). For let the integer u be divisible by precisely r 
primes Pi' where r~1: say by P1 •...• P,. but not by P,+l ... ·.P,. 
Then u is one of the integers counted in MU1' ...• js) if and only if 

s ~ rand ;1' .... js is one of the (:) combinations of s out of the numbers 

1. 2 •...• r. Also u contributes 1 to U regarded as giving the number 
of integers in (4). Hence the total contribution of u to (5) is 

1 - (;) + (;) ... = (1 -1)' =0. 

If, however, u is prime to q, then it contributes 1 to U but does not 
contribute to the MU1 •... , ;s); so W is the number of integers in (4) 
prime to q. as asserted. But 

IM(;l, .... ;s)- u \<1, 
Pi,'" Pi, 

since MU1' ...• js) is the number of integers 

u = Pi,'" Pj,U', 
where u' is an integer and 

V <u's u+ V . 
Pj,'" Pj, - Pi,'" Pi, 

Since (5) contains 2' summands, we have 

W> U{1 + L (~.~) .. } -2'=U II(1-~) -21 ~ 2-'U - 2'. 
s>o Pit P], i P, . 

;,<"'<i, 
Cassels, Geometry of Numbers 2 
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Hence there is an integer prime to q in the required interval provided 
that 

If 0 is the arbitrarily small number given in the lemma, we now have 

Uo~) ~ II (46) ~ II (-;) = k(o) (say). 
q j Pi P;;i,41/O P 

where the second product is taken now over all primes less than 41/°. 
This proves the lemma. 

We shall use the lemma in the following apparently more general 
shape. 

COROLLARY. Let q, 0, k (15) be as in the lemma and let s, t be integers 
0/ which t is prime to q. Then an interval 0/ length greater than k (0) qO 
contains an integer u such that t u + s is prime to q. 

For since t is prime to q we may write 

s = SIt + s2q 
for integers S1 and S2. Then 

tu+s=t(u+sl ) +S2q· 

Since t is prime to q we need only choose u so that u + S1 is prime to q; 
and this is possible by the lemma. 

We now revert to the proof of Theorem II. Let b l , ... , b" be any 
basis for A, and let the given vectors ci be 

(1~i~n-1) 

for real numbers Yw We shall choose a basis 

for A such that 

a i = L vijbj 
i 

(1~i~n) 

(6) 

(7) 

(8) 

where N> 1 is the given positive number, 0> 0 is arbitrarily small, and 
the constant implied by the 0 symbol may depend on n, 15 and the Yii. 
We shall choose the Vii so that for each I <n the two integers 

(1 ~ i ~ I, 1 ~ j ~ I) 
and 

are non-zero and without common factor. 
Suppose, first, that 1=1. We take for vn one of the integers nearest 

to NYn which is not o. Next we choose for V12 the integer nearest to 
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N Y12 which is not 0 and prime to vll . For j> 2 we choose for VI; the 
integer nearest to N Yl;' Then (8) holds for i = 1 and j =} 2 trivially 
and for i = 1, j = 2 by Lemma 3, and since clearly Vll = 0 (N). The 
integers Rl =Vll and 51 =V12 have the required properties. 

Now suppose that 1>1, and that the Vi; with i<1 have already 
been constructed. For j * 1, 1 + 1 we take for V 1 j just the nearest 
integer to Ny 1.;' On expanding R I and 51 by their last rows, we now 
have 

R I = ±vIIRI_l +A, 

51 = ± VI,!+! 51- 1 + vIlE + C, 

where A, E, C are integers which have already been determined. Since 
R I - 1 is prime to 51-1, we may choose the integer VII so that RI is not 0 
and prime to 51 -- 1 , We choose for V II the integer nearest to Ny II for 
which this is true, so that, by the corollary to Lemma 3, 

vII -NYII=O(5Ll) = o (N(l-I) 0) , 

since 51 - 1 =0 (NI-l), being a sum of products of 1 -1 numbers Vi; each 
of order N. Having determined VII we now take for VI,I+l the integer 
nearest to Ny I,1 +! such that 51 is not 0 and prime to R I, so that 
similarly 

VI,!+! - NY!,I+! =O(5~) =O(NIO). 

This completes one stage of the induction. We have thus shown the 
existence of integers Vi; satisfying (8). 

From (7) and (8) we have 

lai-Neil = o (N(n-l) 0) (1~i~1t-1). 

The truth of the statement of the theorem now follows on taking <5 = eln. 
1.3. Lattices under linear transformation. It is convenient here to 

consider briefly the effect of a non-singular affine transformation 
x-+X =(lX of n-dimensional space into itself. Let the transformation 
X =(lX be given by 

where 

Xi = L (XiiXj 
l:;;;i:;;;n 

(1~i~n), 

X=(X1 ,···,X,,), x=(x1 ,···,xn) 

(1 ) 

are corresponding points in the transformation and (Xii are real numbers 
such that 

det((l) =det((Xii) =}O. 

Let /\ be a lattice and denote by a./\ the set of points (lX, xEI\. 
If b1 , ••. , b" is a basis for /\, then the general point b = U 1 b1 + ... + uti b n 

2* 
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(u,., ... , U" integers) of A has the transform 

o.b = o.(u1 bl + ... + u"b,,) = ulo.bl + ... + u"o.b". 

Hence o.A is a lattice with basis o.bl , ... ,o.b", and 

d (a. A) = I det (a. bl , ... , a. b,,)i = I det (a.) II det (bl , ... , bn)l = I det (0.)1 d (A) . 

We note two particular cases. First, if t =1= ° is a real number, then 
the set of tb, bEA is a lattice of determinant Itlnd(A) which we shall 
denote by tl\. Secondly every lattice M can be put in the shape M =o.Ao, 
where a. is of the type (1) and Ao is the lattice of integer vectors. For 
if flt, ... ,a" is any basis for A, we may define IXi; by 

a; = (lXii' ... , IX,,;) • 

1.4. Forms and lattices. We consider first quadratic forms. Let 

" 
I(x) = ~ Iii Xi x; 

i,i=l 
(1 ) 

where 
(2) 

be a non-singular quadratic form of signature 1 (r, n - r); that is, there 
exist independent real linear forms 

such that identically 

where 

and 

Xi = ~ diixi 
l;:>j;:;; .. 

I(x) = IJ?(X) , 

(3) 

(4) 

(5) 

IJ?(X) = X~ + ... + X~ - X~+l - ... - X: (6) 

(for r =0, n there are no positive or negative squares respectively). 
We have clearly 

(7) 

Conversely, if di ; is any set of real numbers with det(dji) =1=0, then (3). 
(4) and (6) determine a quadratic form (1) of signature (r, n - r) and 
(7) holds. We shall be concerned a great deal with the values which 
I (x) takes when Xl' "', XII are integers. By (3), these are precisely the 

1 Many writers define the signature of a form to be the number of positi"e 
squares less the number of negative squares in (6). i.e. 2r - 11. But it is more 
convenient to give explicitly the number of each kind of square than to do the 
arithmetic every time. 
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values which q; (X) takes when X runs through the vectors of the 
lattice A with basis 

Then, by (7), we have 
(8) 

In this way statements about different quadratic forms of signature 
(r. n - r) at integral values are equivalent to statements about the 
single form q;(X) and different lattices. For later reference we formulate 
a typical result as a Lemma. 

LEMMA 4. The following four statements about a number x are eqtti-
valent, where 

q;(X) = X~ + ... + X~ - X~+l - ... - X!. 

( i) In every lattice A there is a vector A + 0 with 

(ii) In every lattice A of determinant 1 there is a vector A + 0 with 

1q;(A)1 ~x. 

(iii) In every lattice A of determi1tant d(A)~y'-n/2 there is a vector 
.4+0 in 

I q;(A)1 ~ 1-

(iv) For every quadratic form L fii Xi Xi of signature (r, n-r) there 
is an integer vector a + 0 such that 

I/(a)1 ~xldet(/;iWI". 
That (i), (ii) and (iii) are equivalent follows from homogeneity, since 

q;(tX) =t2q;(X) and since the set tA of all tX (XEA) is a lattice tA of 
determinant I ti" d (A); and we may choose t so that t" d (A) = 1. That 
(iii) and (iv) are equivalent follows at once from the earlier discussion 
and, in particular, from (8). 

The foregoing argument is quite general. For example the behaviour 
for integer values of the variables of any form I (~) of degree n which 
can be expressed as the product of 1t real linear forms: 

I(~) = IT (dil Xl + ... + di"x,,) 
1;:;;;;:;;" 

is equivalent to the behaviour of the function 

q;(X) = Xl ... X" 

at the points of an appropriate lattice A A single function q;(X) cor­
responds to the set of all functions I (~) that can be deduced from it 
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by a real non-singular affine transformation 

Xi = L: dijXj (dij real, det (dij) =!= 0). 

1.4.2. Of course the form rp(x) and the lattice A do not determine 
the function I(x) uniquely, since I(x) depends on the choice of a 
particular basis for A; and we shall discuss this ambiguity here. The 
transformation 

of § 4.1 is just of the type 

Xi=L:dijXj 
j 

X=ax 

discussed in § 3. Identifying these transformations we see that 

A =aAo, 

where /\0 is the lattice of all integer vectors; the particular basis 

d1 , .•• ,dn 

of A corresponding to the basis 

( 
i-I n-i ) 

e;= ~,1,~ (1~i~n) 

of /\0' Hence any other basis d~, ... , d~ of /\ is of the shape 

dj = aej, 

where ej is some other basis for /\0' Let I' be the form corresponding 
to the basis dj as I does to di . Then clearly there is the identical relation 

I'({£') = I'(x~, ... , x~) = rp(x~ d~ + ... + x~d~) = I(x~ e~ + ... + x~e~). 
But now since ej is a basis for /\0 we have 

e; = (VI;' ... , vni) , 

where the Vi; are integers and 

so that identically 

if 

det (vij ) = ± 1 : 

j'(x') = I(x) 

Xi = L: Vii xi· 
i 

(1 ) 

(2) 

Conversely, if the Vii are integers such that (1), (2), (3), hold then j' 
and I correspond to the same lattice /\. Two forms in this relationship 
are said to be equivalent; they take the same set of values as the 
variables run through all integral values, since, by '1) and (3), integral 
x' correspond to integral x and vice versa. 
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It is sometimes useful to distinguish between det (vij ) = + 1 (proper 
equivalence) and det(vij) =-1 (improper equivalence) in (1). We shall 
not do this, however, since it does not correspond to anything intrinsic 
in the corresponding lattices. 

1.4.3. The forms /(x) and <p(X) do not in general determine the 
lattice uniquely, since for example a quadratic form /(x) of signature 
(r,s) with r+s=n may be expressed in the shape 

X~ + ... + X; - X;+l - ... - X;+s 

in many different ways. Let a l , ... , a" and b1 , ... , b" be bases of 
lattices /\ and M respectively and suppose that 

(1 ) 

for all integral 11 =(111' ... , Uti)' Since <p(X) is a form, (1) is an identity 
in the variables Ul , ... , u". Let w be the uniquely determined homo­
geneous transformation such that 

Then 

for all u, and so 
<p(X) = <p(wX) (2) 

for all X, by (1) and since every vector is of the shape X = L uj u j 

for some real numbers u j • If the homogeneous transformation w 
satisfies (2) we call it an automorph of <po We have just shown that if 
(1) holds there is an automorph w of <p such that waj=bj . The con­
verse is, of course trivial that if w is an automorph of <p and wUj = b j 

then (1) holds. 

We shall study the automorphs of forms intensively in Chapter X. 

1.5. The polar lattice l • We denote the scalar product of two n­
dimensional vectors x, y by 

xy = Xl Yl + ... + x" y". (1 ) 

Let b l , •.. , b" be a basis of a lattice I\. Since the bj are linearly 
independent, there exist vectors bt such that 

b* b. = {1 if i = j 
I' 0 otherwise. 

(2) 

1 This section will not be referred to until Chapter \"III and will not be of 
importance until Chapter X and XI. 
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The lattice A* with basis bj is called the polar (or dual or reciprocal) 
lattice of A. and bj is the polar basis to b;. The polar lattice A* of A 
is independent of the choice of the particular basis. as we now show. 

LEMMA 5. The polar lattice A* 01 A consists 01 all vectors a* such 
that a*a is an integer lor all a in A. Then A is conversely the polar 
lattice 01 A*. Further. 

d(A) d(A*) = 1. 
Suppose. first. that 

* -" b* a-£... ui j • 

are in A* and A respectively. so that the ui • Vi are integers. Then 

a*a = L ujvi 

is an integer. Now let c be any vector such that ca is an integer for 
all a in A. In particular 

(1~i~n) 

is an integer. Put a* = L ujbj. Then 

(c - a*) b j = 0 (1~i~n); 

and so c =a* since the bi are linearly independent. This proves the 
first sentence of the theorem. The second sentence follows immediately 
from the first and also from (2). Finally. (2) implies that 

det(bt •...• b!) det(b1 ..... b ll ) = 1. 

and so d (A*) d (A) = 1. This concludes the proof of the lemma. 

1.5.2. When Y=F0 is fixed. the points z such that yz=O lie in a 
hyperplane through o. 

LEMMA 6. A necessary and sulficient condition that there be 11 - 1 

linearly independent points Ot •...• a,,-1 in A with ya;=O (1 ~i~n -1) 
is that y = ta* tor some real t and some a* in A *. 

Suppose first that yaj=o (1~i~n-1). Then by Theorem I 
Corollary 2 there is a basis b j (1 ~i~n) for A such that 

(Vi; =F 0) 

for integers Vii' Hence ybj=O (1 ~i~n -1). Let yb .. =t. Then 
clearly y =tb: where bj (1 ~i~n) is the polar basis to bi . This proves 
half the lemma. 

Suppose now that y = ta*. where a* EA·. If a* = 0 there is nothing 
to prove. Otherwise. a* =mbt. where m is an integer and bt is primitive l . 

1 That is, not of the shape u c·, c· EA· for an integer u > t. 
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Then bi can be extend to a basis bj for 1\.*. Let b j be the polar basis. 
Then 

(2~j~ n). 

This concludes the proof of the lemma. 

Let I\.(a*) be the set of a in I\. such that a*a = O. Clearly if a1 and 
a2 are in I\.(a*), so is U1llt+u2a2 for any integers u1 , U2. By Lemma 6 
if a* (" 1\.* there are n -1 linearly independent points of I\.(a*), and so 
in a sense I\.(a*) is an (n -1 )-dimensionallattice. The following corollary 
makes those remarks more precise. 

COROLLARY. Let b*=(bi, ... , b!) be a primitive point 01 1\.* and 
suppose that b! =1= O. Then the set 01 (n -i)-dimensional vectors a' = 
(a1 , ... , an~l) such that lor some an the vector a = (a1 , •.• , an) is in I\. and 
satisfies b*a =0 is an (n -i)-dimensional lattice M 01 determinant 
d(M) =\b!\d(I\.). 

We note that M is the projection on x" = 0 of the set I\.(b*) just 
defined. Since b: =1= 0, if an exists it is uniquely determined by a1 , •.. , 

an~l' and the condition b*a=O. 
We may suppose that b*=b:, where bi, ... , b: is a basis for 1\.* 

and bj is the polar basis. After what was said before the enunciation 
of the corollary, it is clear that the (n -i)-dimensional vectors b; formed 
by taking the first n -1 coordinates of bi are a basis for M. We now 
show that 

(1 ) 

If in the determinant in the left the n-th coordinate Xn is replaced by 
b: x for x = b1 , ... , bn , the value of the determinant is multiplied by 
b!n=b!. Since b!bj=O for 1~j~n-1 and b!bn=1, the equation (1) 
follows at once. In particular \ b!\ d(l\.) =d(M), as required. 

1.5.3. Finally we must note the effect of homogeneous linear trans­
formations on the relationship between polar pairs of lattices. Let 

X=1:X 

be a non-singular homogeneous linear transformation given by 

Xi = L: Tiixi 
i 

where 
det(1:) =det(Tii) =1=0. 

If Y is any vector, we have 

YX = L: ¥;X; = L: ¥;T;jXi' 
i i~ i 

(1 ) 

(2) 
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Hence 
YX=yx, (3) 

where 
(1~j~n). (4) 

Since det ('t) =f= 0, by hypothesis, the equations (4) define Y as a function 
of y. We write 

Y = 't*y, 

where 't* is called the transformation polar to 'to 

LEMMA 7. Let't be a non-singular homogeneous linear transformation, 
1\ a lattice, and 't 1\ the lattice of points 'tX, x E I\. Then the polar lattice 
of 't 1\ is 't* 1\ *, where 't* and 1\* are respectively polar to 't and I\. 

This follows at once from Lemma 5 and equation (3) above, where 

X ='tX, Y ='t*y. 

Chapter II 

Reduction 
11.1. Introduction. In investigating the values taken by an algebraic 

form I (x) for integer values of the variables it is often useful to sub­
stitute for I a form equivalent to it (in the sense of Chapter I, § 4) which 
bears a special relation to the problem under consideration. This process 
is independent of the geometrical notions introduced by MINKOWSKI 

and depends only on the properties of bases of lattices developed in 
Chapter I. Indeed only the lattice 1\0 of integer vectors comes into 
consideration. 

It is convenient to collect together in one chapter the various 
applications of reduction. The later parts of the chapter involve some 
moderately heavy computation. The beginner might well omit all after 
the enunciation of the results in § 4.2. Indeed the next few chapters 
are practically independent of Chapter II, which might well have been 
deferred until later. 

In § 2 we discuss the general method. In the rest of the chapter 
we shall be mainly occupied in investigating 

M(f) = inf [f(u) [ 
u~o 

" integral 

where f (x) is a form of a special type. Definite and indefinite quadratic 
forms are treated in §§ 3.4 respectively and binary cubic forms in § 5. 
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The methods of this chapter have been successfully applied to 
related problems: for example, when j (x) is indefinite, to the estimation of 

inf j (u) 

over integer vectors u =l= 0 for which j (ll) is positive [either in the strict 
sense j (u) > 0 or the weak sense j (u) ~ 0: two distinct problems in 
general] but we shall'do this only for binary forms. 

A table listing the known results about quadratic forms is given in 
an appendix. We shall be considering quadratic forms later from other 
points of view. 

DAVENPORT and ROGERS (1950a) have shown that in many cases 
not merely one but infinitely many integer points u exist such that 
j (u) satisfies the inequalities stated. This requires deeper methods than 
those used here and will be discussed in Chapter X. 

It should be remarked that there is a classical theory of reduction 
for indefinite binary quadratic forms which we do not discuss here. 
Although it comes into the general scope of reduction as defined here, 
that is the choosing of bases with special properties, it is best under­
stood after the discussion of Chapter III. It is closely related to con­
tinued fraction theory. See Chapter X, § 8. 

11.2. The basic process. We first discuss the standard procedure 
for positive definite forms j (x); that is for forms such that j (x) > 0 
for all real vectors x =l= o. 

We note first that if j(x) is positive definite of degree r, say, then 
there is a constant u> 0 such that 

(1) 

for all real x, where we have written 

Ixl = (xi + ... + x!)~. 
For on the surface of the sphere Ixl =1 the continuous function j(x) 
must attain its lower bound u, so %>0; and then (1) follows by homo­
geneity. In particular, there are only a finite number of integral 
vectors· u such that j (u) is less than any given number. 

We now choose a basis for the lattice /\0 of integral vectors with 
respect to the positive definite form j (x) as follows. Let e~ =l= 0 be one 
of those integral vectors u for which j (u) is as small as possible. By the 
argument of the last paragraph such u exist, and there are only a finite 
number of them. If e~ were of the shape e~=ka, a~/\o, where k>1 
is an integer we should have 

• i.e. \'ectors whose co-ordinates are rational integers. 
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contrary to the definition of e~. Hence by Corollary 3 to Theorem I of 
Chapter I. we may extend e~ to a basis e~. b2 • •••• b" of the lattice /\0 
of integer vectors. We now choose e; (2;;:;'j;;:;' n) in succession. Suppose 
that e~ . .... el~-l have already been chosen and are extensible to a base 
e~ ..... ef- l • b i' .••• b n of /\0. Then e; is one of the finite number of 
vectors with the property that e~ . ... ; ej is extensible to a base of /\0 
and for which / (e;) is as small as possible. Such e; exist but are finite 
in number. by argument used for e~. In this way we obtain a base 
e~ • ...• e~: and for any given / (x) there are only a finite number of such 
bases. 

If the function / (x) is such that we may indeed choose 

( 
j-l n- j ) 

.--"--, .--"--, 

e:=e.= .0 •...• 0.1.0 •...• 0 
, , ' (1;;:;'j~n) 

for the above basis, then / (x) is said to be reduced (in the sense of 
MINKOWSKI). The above proof shows that every positive definite form 
is equivalent (in the sense introduced in Chapter I. § 4) to at least one 
and to at most a finite number of reduced forms. 

We may make the definition of a reduced form more explicit. By 
Corollary 4 to Theorem I of Chapter I (or by Lemma 2 of Chapter I). 
a necessary and sufficient condition that ell ...• e j _ l and the integral 
vector u = (ul , ... , u,,) be extensible to a basis for /\0 is that 

g.c.d. (U;, ... , un) = 1-

Hence the fOIT)1 I (x) is reduced if and only if 

/(UI.···, un) ~ /(eJ 

for all j and for all integers Ul •...• Un satisfying (2). 

(2) 

11.2.2. When the form /(x) is not definite, then there is no generally 
valid procedure to replace the reduction procedure for definite forms. 

If we know (or may assume) that /(u) does not assume arbitrarily 
small values for integral u * 0 then it is possible to salvage something 
of the reduction procedure. Let e> 0 be chosen arbitrarily small. By 
hypothesis, 

Ml = inf I/(u)l > o. 
",,"0 

integral 

Hence we may find an integral e~ * 0 such that 

Without loss of generality e~ is not of the form ka where a is integral 
and k> 1 is a rational integer. If e~, ... , ef- 1 have already been found. 
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write 
M; = inf I/(u)1 

where the infimum is over all integral vectors u such that ('~. 000. ('i-I. U 

is extensible to a basis for Aoo Then 

Mj~Ml>O. 

and so we may choose ei so that e~. 000. ej is extensible to a basis and 

I I (eil! ~ Mj/(1 - e) 0 

Let I'(x) be the equivalent form for which 

I(e;) =I'(ei) 0 

Then we have 
II'(u l • 0 ••• un)! ~ (1 - e) II' (ei) I 

for all sets of integers U l • •••• Un such that goc. d. (ui • ...• un) = 1. But. 
of course. there is no reason to suppose that there are only a finite 
number of I' with this property and equivalent to a given f. 

An alternative procedure which is sometimes possible is to find some 
other form g(x). related to our given I. which is definite and to reduce 
g(x)o We shall do this for binary cubic forms in § 6. This method goes 
back to HERMITE. who applied it to indefinite quadratic forms as follows. 

Let I (x) be an indefinite quadratic form of signature (r. n - r). so 
that. as before. 

I(x) =X~ + ... +X~ - X~+l-'" - X!. (1) 

where the Xi are linear forms in Xl' .•.• XII' Then 

g (x) = X~ + ... + X~ + X~+l + ... + X: (2) 

is a definite quadratic form with the same determinant. except. perhaps. 
for sign. The forms Xl' .... Xn are not uniquely determined by I(x) 
but we say that I(x) is reduced (in the sense of HERMITE) if the form 
g (x) is reduced in the sense of MINKOWSKI for some choice of Xl' .... X". 
Clearly I (x) is always equivalent to a reduced form. since we may choose 
any representation (1) and then apply the transformation which reduces 
g(x). Reduction more or less of this kind was first introduced by 
HERMITE. and has been further discussed. amongst others. by SIEGEL 
(1940a). as a tool for investigating the arithmetical properties of quad­
ratic forms. In general a form I (x) is equivalent to infinitely many 
HERMITE-reduced forms. but SIEGEL shows that it is equivalent to only 
finitely many if the coefficients of I (x) are all rational. 

We note here that the relationship between (1) and (2) allows 
estimates for the minimum of a definite form to be extended to an 
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indefinite one, since clearly 1/(:r) I ~ g (:r) for all real vectors:r. But in 
general, the information so obtained is quite weak. 

11.3. Definite quadratic forms. We shall be considering definite 
quadratic forms from many different points of view in the course of 
this book. Here we see what can be done by reduction methods alone. 
The study of reduction is of great importance in the arithmetical theory 
of quadratic forms, see WEYL (1940a) or VAN DER WAERDEN (1956a), 
who give references to earlier literature. Here we are concerned only 
with the minima of forms. 

Let 
I (Xl' X2) = III X~ + 2/12 Xl X2 + 122 X~ 

be a positive definite quadratic form. We wish to prove that there are 
integers (u I , u2) =l= (0, 0) such that 

I (u l , u2) ~ (4D/3)~, 
where 

D = III 122 -/~2' 
By taking an equivalent form, if need be, we may suppose that 

M(f) = inf I(U I ,U2) =/ll' 

We have 

U" u% 
integers not both 0 

I(xl , X 2) = III (Xl + ~ X2)2 + ~ X~. 
III III 

Put U 2 = 1 and choose for UI an integer such that 

lUI + 11~_1 ~ ~ . 
III 2 

Then, on the one hand, 

and, on the other, 
1 D 

I(ul , 1) ~ 4 /11 + 7;;' 
Hence 

that is 
I~l ~ 4D/3, 

(1 ) 

(2) 

as required. That ~ here cannot be replaced by < is shown by the 
form 

IO(Xj, x2) = xi + X 1 X 2 + x~ 
for which D =! and I (u1 , u2) ~ 1 for integers (u1 , u2) =l= (0,0). It is not 
difficult to show by examining when equality can occur in the above 
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argument that ~ can be replaced by < unless I is equivalent to a 
multiple of 10' We do not go into details, since we shall prove this 
later more simply. 

11.3.2. As HERMITE noted, this argument can be extended to prove 
the following theorem. 

THEORDJ 1. A non-singular quadratic lorm 

I(x) = L: Iii X; Xi 

represents a value I (u) with 

I/(u)1 ~ (!)(n-l)/2I D I1/n, (1 ) 

where u =1= 0 is integral and 
D = det (Iii) . 

By the remarks at the end of § 2.2 we may suppose, without loss 
of generality, that I (x) is positive definite. We may now suppose, as 
before, that 

111~ I(u) 
for all integral u =1= o. Then 

I (x) = III (Xl + ~ X2 + ... + h X»)2 + g (X2' ... , x,.) , 
III III 

where g(X2' ... , xn) is a definite quadratic form of determinant Dllll' 
Since we may suppose the result already proved for forms in n - 1 
variables, there are integers u2 , .•. , Un not all 0 such that 

g(u2 , .. ·,un = , . ) < (~)~(n-2)( D_)'l/(n-l) 
J ./11 

Choose the integer 1(1 so that 

Then 

and so 

lUI + 1~ U 2 + ... + h u" I ~ ~- . 
hi hi 2 

I :s;: (~)~ (n-l) Dl/n. 
11 -- 3 

This proves the assertion. Unfortunately, the constant (!)~(n-l) is the 
best possible only for n = 2. We shall show below that it is not the 
best possible for n = 3, and since the above proof is by induction it 
cannot be best possible for n ~ 3. It is possible to modify the argument 
to give the best possible result for n = 3 [for a neat version of this see 
;\10RDELL (1948 a) J, but we shall not do this. Instead we give a more 
elegant, if more artificial, treatment depending on a more detailed 
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examination of reduced forms which goes back essentially at least 
as far as GAUSS. 

11.3.3. We start with the consideration of a positive definite binary 
form which is reduced in the sense of MINKOWSKI: 

l(x1 ,x2) =/11X~+2/12xlx2+/22xi. 

After the substitution X1-*X1 ' x2-* - X 2 if need be, we may suppose 
without loss of generality that 

112-;;;;' o. (1 ) 
By the definition of reduction, 

(2) 
and 

1(-1,1)-;;;;'/(0,1), 
that is 

(3) 
By (1), (2), (3) we have 

4D - 3/11/22 = 111122 - 4/~2-;;;;' t~l - 4/~2-;;;;' 0; 
and so 

Rl~/11/22~tD. 

The sign of equality is required only when 111=/22=2112; i.e. when 

I(JJ) = III (x~ + X1 X2 + x~). 
Before going on to ternary forms, we note that any form satisfying 

(1), (2), (3) is reduced. This is a special case of the general theorem 
that MINKowsKI-reduced forms can be characterised by a finite set of 
inequalities, but here it is easy to verify directly. 

Let U1 , U2 be integers neither of which is O. If lull-;;;;.lu2 1 we have 

t ( UI , u2) = lUll {t 11 lUll ± 2/121 u21} + t 2 2 U~ 

-;;;;.1 u11 {Ill I u11 - 2/121 u11} + 122u~ 
= UWll - 2/12) + 122u~ 
-;;;;'/11- 2/12+/22=/(-1,1); 

and if 0< I Ull ~ I u2 1 the same inequality follows on reversing the roles 
of U 1 and U2. Since 111-2112+/22-;;;;'/22' by (3), we have shown that 
I (JJ) is reduced. 

In particular, if t is any number -;;;;.! then the form 

It = x~ + Xl X 2 + (t + i) x~ 
is reduced. Since 

MUt} = 1(1,0) = 1 
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and the determinant D 'of It is t, we see that 

M(f)/Dl 

may take any value t-i~ (t)i. This is in striking contrast with the 
behaviour of indefinite quadratic forms (see § 4). 

For later convenience we collect what has been proved so far and 
express it as a theorem. 

THEOREM II. A positive delinite binary quadratic lorm 

l11x~ + 2/12 Xl X2 + I22X~ 
is reduced il and only il 

\2/12\ ~ III ~ 122' 
The three smallest values taken by I(u) lor a reduced lorm and integral 
u=!=o are 111,122 and In - 2\/12\ + 122' where 

11l~/22~/11-2\/12\ +/22' 
For a reduced lorm 

lulu ~ 4D/3, 
where 

D = In 122 - tt2' 
The ratio e = InlDi may take any value in the interval 

11.3.4. We now consider ternary quadratic forms. As we shall 
later be considering definite quadratic forms in a wider context 
(Chapter V, § 9, see also Chapter IX, § 3.3) we content ourselves with 
the following. 

THEOREM III. A. Let 

be a positive delinite ternary quadratic lorm. Then there is an integral vector 
u =!= 0 such that 

I(u) ~ (2D)l, 
where 

D = D(f) = det(/'i)' 

B. 11 I (x) is reduced, then 

Cassels, Geometry of Numbers 3 
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C. The signs 01 equality are required when and only when I(a:) is 
equivalent to a multiple 01 

lo(a:) =x~ +x~ +x; +X2X3+XaX1 +X1X2. 

We note again that we get as good an estimate for 111/22/33 as we 
do for fl.l' This will be put in a wider setting in Chapter VIII, § 2. 

Since lo(u) is an integer we have 10(u)~1. Since D(/o) =i, this 
shows that the equality signs are required for 10' Part A of the theorem 
follows from the rest. Hence we need only prove Part B and that 
equality in B occurs only for multiples of 10' 

Following GAUSS (1831a) we distinguish two cases. Suppose first 
that 

Then after a substitution 
Xj -+ ± x; 

we may suppose without loss of generality that 

112~O, 123~o, 131~o. 
Write 

(I;i = Ii;)' (1) 
Then 

{}i; ~ 0 

for all i =t= j since I is reduced. For example 

1(1, -1, 0) ~ 1(1, 0, 0) 

gives {}2l ~ o. We have identically 

2D -/1l/22/33 = {}32{}21 {}13 + L {/1l/23{}23 + 123 {}13{}21} , (2) 

where the sum is over cyclic permutations of 1,2,3; as is readily 
verified on expressing both sides in terms of the I;; alone1• Since all 
the terms on the right-hand side of (2) are non-negative, we have 

(3 ) 
as required. 

The other case is when 112/23/;'1~o, and then we may suppose that 

112~O, 123~O, 131~o. 
We write now 

"Pi; = Ii; + 21i; 
and 

Wi = 1(1,1,1) -I .. · 
1 This is an application of LITTLEWOOD'S Principle: all identities are trivial 

(once they have been written down by someone else). 
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Then "Pij~ ° and Wi~ 0, since I is reduced. Then identically 

6D - 3/11/22/33 = "P23"P3 1 "P12 + } 
(4) + 2"P32 "PI 3 "P2l + L {Ill (-/23) ("P23 + 2wl) + (-/23) "P13 "P21}' 

Again all the terms on the right-hand side are non-negative, so (3) holds. 

We leave to the reader an examination of when equality can occur. 
A rather tedious investigation of cases shows that it can occur only 
when 

111 = 122 = 133 

and either 2/23=2/31=2/12= ±1, or one of 2/23,2/31,2112 vanishes and 
the remaining two are equal to ± 1. But all these forms are equivalent 
to 111/0 (x), as is readily verified. For example, 

x~ + x~ + x~ + Xl X2 + X2 Xa = 10 (Xl' X2 + Xa , - Xa) • 

GAUSS lists several other identities which could be used instead of 
those here. 

11.4. Indefinite quadratic forms. These will also be considered 
again and again throughout the book from different points of view. 
A table listing known results is given in Appendix A. We do not here 
carry the reduction argument as far as it will go, but only far enough 
to illustrate the different nature of the results from those obtained in 
the definite case. 

We shall continue to use the notation 

M(I) = inf II (u)1 ' 
"'*'o integral 

where 1 (x) is a form in any number of variables, and write 

D = D (I) = det (Iii) 

for a quadratic form Lliixixj=/(x). 
There are two characteristic differences between the behaviour of 

M(I) for definite and indefinite forms. For definite binary forms we 
saw that M(I)/ID(I)I~ could take any value (! in an interval 

° < (! ~ (t)~, 
where (t)i was the maximum possible value. It is not difficult to verify 
that definite quadratic forms in any number of variables behave simi­
larly, d. Chapter V, Lemma 6. The first difference in the behaviour 
of indefinite quadratic forms is rather trivial: it is quite possible that 
M(I) =0, and this may occur either because there is an integral U::f.:O 

such that I(u) =0, or because there are integral U::f.:O such that I(u) 
3* 
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is arbitrarily small but not o. The second difference is deeper: the values 
of M(/)/I D (1)\1 do not fill the complete interval up to the maximum 
possible value. 

The position for indefinite binary quadratic forms has been the 
most investigated. Here a very great deal is known about the possible 
values of M(I)/I D (/)1 i. The greatest value is (f)l, given by the multiples 
of X~+XIX2-X~. Otherwise M(t)~(~_)lID(t)ll. A well-known theorem 
of MARKOFF ("the MARKOFF chain") states that there are only de­
numerably many possible values of M(/)/ID(f) 11 greater than t. There 
are certainly intervals to the left of i which contain no values of 
M(I)/I D (f) I~· The author has given a proof of the Markoff chain theorem 
in his Cambridge Tract [CASSELS (1956a)], to which the reader is referred 
for references for the various statements made in this paragraph. Here 
we shall be content with finding the two largest possible values of 
M(/)/1 D(/)I!· 

There is a similar state of affairs for ternary quadratics but much 
less is known. The most complete information is due to VENKOV (1945 a) 
who has found the eleven largest values of M(f)/1 D (/)11, but they do 
not seem to follow any general pattern, except that they are all given 
by forms with integral coefficients. There are two unsolved problems 
about indefinite ternaries which appear completely intractable. It is 
not known whether there are forms t with M(f) > 0 which are not 
multiples of integral forms; and it is not known whether the set of 
values of M(f)/ID(f)ll has any limit point other than o. These two 
problems are closely related [CASSELS and SWINNERTON-DYER (19SS·a); 
see also Chapter X, Theorem XII]. 

This phenomenon of "successive minima" (not to be confused with 
the "successive minima" of a lattice with respect to a point set which 
is discussed in Chapter VIII) occurs very widely with indefinite forms. 
It takes a great many different shapes and a general theory hardly 
exists *. It is not possible to predict when it occurs: for example it does 
not occur in the problems discussed in § 4.5 or § 5. 

It is not difficult to see how "successive minima" can occur. An 
inequality of the type I/(u)1 ~ 1, where 1(;£) is an indefinite form and u 
is an integer vector, is really a pair of alternatives 

either 

or 

I(u) ~ 1 

l(u)~-1. 

Each of these inequalities may be regarded as a linear inequality in 
the coefficients of I. If we consider a large number of different u then 

• MAHLER has shown that the minima form a closed set. In fact this follows 
at once from his compactness theorem of Chapter V. 
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the various pairs of alternatives are a priori independent. It may turn 
out. on combining the various alternatives. that some combinations of 
alternatives are altogether impossible while other combinations of alter­
natives define a form I uniquely. An example may make this clearer. 
Suppose that we are interested in binary quadratic forms for which 
M(f)=1 and 1{1.O)=1. 
Such a form has the shape 

I{x) = } (i) 
xr + ex Xl X2 + .B xL 
where the coefficients ex 
and .B are to be investi­
gated. The only such form 
which satisfies the ine­
qualities 

I{O.1) ;;;:;-1. 

1{1.1) ;S+1 . 

1{2.-1) ;S +1. Fig. 4 

is xi + Xl x2 - x~. as the reader will easily verify. Hence any other form 
with I (i. 0) = 1 and M(f) = 1 must satisfy at least one of the inequalities 
I{O.1);S+1. 1(1.1);;;:;-1. 1(2. -1);;;:;-1. The form X~+XIX2-X~ is 
thus in a strong sense isolated from all other forms (1) with M(f) = 1. 
For example if ex and .B are plotted as cartesian coordinates for the 
form I. a condition I/{u l • u2)1;S 1 excludes a strip of the plane between 
two parallel lines. The three conditions 

I/{O.1)I;S 1. 1/(1.1)1;S 1. 1/(2. -1)I;S 1 

exclude three strips. What is left consists of the point (1. - 1) and a 
number of infinite regions which are separated from the point by one 
of the strips (see Fig. 4). 

In the actual proofs. this general principle tends to be obscured. If I 
is an indefinite form and M(f) = 1 there is not necessarily an integral 
vector u with II (u)1 = 1. though there are integral vectors with 
1;;;:; II (u) 1< 1 + e for any given e> O. and further devices must be used 
to deal with this. The difficulty is that if t> 1. then the form t I (x) = I' (x) 
satisfies the same choice of inequalities "I (u);S 1 or I (u);;;:; - 1" as the 
original/(x). Here t might be arbitrarily close to 1. that is. the coef­
ficients of I'(x) might be arbitrarily close those of I(x). Hence to pin 
down I (x) uniquely we must some-how make use of the normalization 
M(f) = 1. We do this by first finding the determinant of the form in 
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question and then using this as part of our information. The actual 
proofs will make the details clearer. 

We shall later deal with isolation of this type from a more sophisti­
cated point of view (Chapter X). The treatment there will also help to 
show why the additional devices just mentioned are effective. 

11.4.2. The problem of the minimum of indefinite binary quadratics 
has already been discussed in § 4.1. All we shall actually prove here 
is the following. 

THEORElI! IV. Let 

I (x) = III x~ + 2/12 Xl X2 + 122 X~ 
be an indelinite lorm and 

D =D(I) =/1l/22-/~2' 
Then 

except when I is equivalent to a multiple alone 01 the two lorms 

lo(x) = x~ + X I X 2 - xi, 

11 (x) = x~ - 2x~ 

lor which M (I) = 1 and I D I = i, 2 respectively. 

(1 ) 

(2) 

(3) 

(4) 

That 10 and 11 are exceptional is clear, since they both represent 

only non-zero integers for integral U=F o. The constant 100 in (2) 
221 

cannot, in fact, be improved since the next form of the MARKOFF chain is 

12 = 5 xr + 11 Xl X 2 - 5x~ 

which has D (/2) = - 221/4 and can be shown to have M(l2) = 5. 
We now prove Theorem IV. If M(I) =0 there is nothing to prove. 

Otherwise, we may suppose, without loss of generality, that 

M(I) = 1, 

by considering tl instead of I, where t is a suitable number. By the 
general argument of § 2.2, there is a form g (x) = g. (x) equivalent to 
I (x) for which 

where B is any given positive number in the range 0 < B < 1. Put 

± g(1, 0) = (1 -11)-1, 
where 
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Since the equivalent forms I and g have the same determinant D, we 
may write g(x) in the shape 

± g(x) = (xl +t:XX2)2 -IDI (1-1]) xt (5) 
1-'Y) 

where ex = ex. is a real number, which may be supposed to satisfy 

(6) 

on replacing Xl by ±xI +vx2 with a suitable integer l'. Since M(f) = 1, 

we have either 
(7) 

or 

(8) 

for each pair of integers U 1 , U 2 not both 0. Of course as e changes there 
is no reason to suppose that for fixed u the same alternative (7) or (8) 
always holds. 

We consider various suitable pairs of integers U1 , U 2 and must con­
sider various cases according as (7) or (8) holds for the integers in 
question. Since we wish to single out the forms (3) and (4), we natu­
rally choose values of u such that lo(u) = ±1 or Il(U) = ±1. 

In the first place, (7) cannot hold with (u1 , u2) = (0, 1) since by (6) 
it would imply I D I < 0, at least when 1] is small enough. Hence on 
putting (u 1 , u2) = (0,1) in (8), we have 

(1-1])2IDI ~ (1-1]) +ex2 

for all e less than some eo> 0. 

(9) 

We now consider the two possibilities when (u1 , u 2) = (1,1). Suppose, 
first, that there are arbitrarily small values of e such that (7) holds. 
For these e we have, suppressing the suffix e, that 

(1-1])2IDI ~ - (1-1]) + (1 +ex)2. 

On eliminating IDI between (9) and (10) we have 

20c ~ 1 - 21] 
and so 

(10) 

(11) 

by (6). On substituting this in (9) and (10), it follows that I DI can 
differ from i at most by terms of the order of 1]. But now I D I is in­
dependent of 1] and either 1] = 0 or 1] > 0 can be made arbitrarily 
small. Hence IDI =i. We now revert to one particular g(x) =g.(x) 
for which (10) is true, where now we have the additional information 
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I DI =!. On substituting D = i. IX~ l-1] in (9), we have 

1]2-21]~0. 

Since 1]<2, this implies 1] =0. Hence IX =l and 

± g{XI' x2) = (Xl + lX2)2 - ix~ = lo{x1' x2)· 

Otherwise (1O) cannot hold, when 8 is small enough; and so for all 8 

less than some 81> 0 we have (8) with u = (1, 1), that is 

(12) 

We now consider the possibilities for u={-3, 2). Note that 
11(-3,2) =1, where 11 is given by (4). If there are arbitrarily small 
values of 8 such that (7) holds with u = (- 3,2), then for these 8 

(13) 

On eliminating IDI between (12) and (13) we have 4IX~1], so 0~4IX~1] 
by (6). On substituting in (12) and (13) and using the fact that 1] =0 
or 1] can be made arbitrarily small and positive, we find that I D I = 2. 
Finally on putting I D I = 2, IX ~ 0 in (12) we get 1] = 0, so IX = 0 and 

± g(x) = x~ - 2X~ = 11 (x) . 

Otherwise for all 8 less than some 82> 0 we must have (8) with u = 
(- 3,2), that is 

4(1-1])2IDI ~ (1-1]) + (-3 + 2OC)2. (14) 

But now the right-hand sides of (12) and (14) increase and decrease 
respectively in O~IX~l. If IX~ 1~ we use (14) and if IX;;;; l~ we use (12). 
In either case we obtain I D I ~ 2.21 + 0 (1]), so I D I;;;; 2.21 since I D I is 
independent of 1]. 

It is at first sight remarkable in these proofs that the inequalities 
obtained show that 1] = o. As already mentioned, this is tied up with 
the phenomenon of "isolation" which we shall discuss more fully later. 

11.4.3. We consider now the "one-sided" problem for ·indefinite 
binary quadratic forms. In contrast with § 4.2 there is here no set of 
successive minima. Theorem V A, which we now enunciate, is a special 
case of Theorem IX of Chapter XI and is due to MAHLER. 

THEOREM V. A. Let 

I (x) = 111 x~ + 2/12 Xl X2 + 122 x~ 
be an indelinite quadratic lorm and 

D = 111/22 - 1~2. 
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Then there is an integral vector u =+= 0 such that 

0< feu) ~ 21 Dil. (1) 

The sign of equality is required when and only when f is equivalent to a 
multiple of 

B. For any e> 0 there are infinitely many forms, not equivalent to 
multiples of each other, such that 

M+ (I) = inf f(u) > (2 - e) I Dli. 
I(u) > 0 
u integral 

(2) 

We first prove A. That fo = X1X2 is exceptional is obvious, so we 
need only prove (1) and that equality can occur only when stated. As 
in § 4.2, we may suppose that 

M+U) = 1, 

where M + (f) is defined by (2). Hence, as in § 4.2, there is a form 

g(z) = (Xl + CU.)2 - (1 -1]) I DI X~ 
1-"1 

equivalent to f, where 
O~oc~t 

and 1] ~ 0 can be made arbitrarily small·. Suppose, first, that 
g ( - 1, 1) ~ 1. Then 

(1 -1])21 DI ~ (1 - OC)2 - (1 -1]) ~ 1], 

which is impossible if'fJ is small enough, since I DI is independent of 1]. 

Hence g(-1, 1)~O, that is 

IDlz (1 -ex)· Z ~ 
- (1 -"1)2 - 4 ' 

the sign of equality being required only when oc = t, 1] = 0; that is when 

g(z) = (Xl + tX2)2 - !x~ = Xl (Xl + X2) = fo(X1, Xl + x2). 

It remains to prove B. It will be shown in § 4.4 that the forms 

f,,(x) =k(X~+X1X2) -x~ 
have 

when k is a positive integer. Since 

ID(f,,)! = lk2 + k, 
• More precisely, we should work with a family of forms g,(3:) as in § II 4.2. 

Having once carried out this type of proof in full rigour. in the rest of this chapter 
we shall be more informal. 
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the ratio 
111+ (/k)!1 D (/k)l~ 

may be arbitrarily close to 2. 

Another simple proof of B would be by means of continued fractions. 

11.4.4. As an interpolation between the problems of § 4.2 and 4.3 
one may consider the forms / (x) such that there is no integral point 
u =FO in 

-a</(u)<b, 

where a and b are given positive numbers. 

For some values of a and b one may deduce the least possible value 
of D (f) from the results of § 4.2. For example I if 

a = 1, b=~ 
10 

we certainly have 

and so by Theorem IV either 
111(/) ;:s 1 , 

I D(/)I ;:s 2 
or / is equivalent to 

t (xi + Xl X2 - x~) 

for some t. In the second case it is clearly enough that t?:.~. The 
- 10 

corresponding determinant is (~)2. ~ < 2. Hence we have an isolated 
10 4 

first minimum. Note that the form with the least I DI does not take 
any values in the neighbourhood of - a. 

For any given values of a and b the techniques of §§ 4.2, 4.3 some­
times apply. For example, the minimum determinant when a = 5, b = 3 
is I D I = 24 given by 3 xi - 8 x~; this being isolated. The verification of 
this statement is left to the reader. Here we shall prove only the follow­
ing theorem due essentially to SEGRE (1945a). 

THEOREM VI. Let 

have determinant 

Suppose that there is no integral u =F 0 such that 

-a</(u)<b, 
where a>O, b>O. Then 

I D I ;:s a b + 1 max (a2 , b2) • 

1 This remark was made to the author by Professor C. A. ROGERS. 

(1) 

(2) 

(3) 

(4) 
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lib> a, the sign 01 equality is required when and only when 

k =b/a ( 5) 
is an integer and 

!(z) = a!k(z) , (6) 
where 

Ik(z) =k(x~ +X1 X 2) -x~. (7) 

For k = 1, Theorem VI is contained in Theorem IV. When k is not 
an integer, an explicit improvement of (4) can be given. When k is an 
integer, there is isolation and much more is in fact known rSAWYER 
(1953a), TORNHEIM (1955a)]. When b5:a the cases of equality may, 
of course, be deduced from the theorem by interchanging a and b. 

We may suppose without loss of generality that 

a=1, b=k, 

where at first k is not necessarily an integer. Let 

c = M+ (/) = inf I (u) , 
l(u»O 

so that 
c;;;' k. 

As in § 4.2 there is a form g(z) equivalent to I(z) of the shape 

g(z) = _c _ (Xl + CXX2)2 _lEl (1 - T}) X~, 
1-1) C 

where 
05:cx5:! 

and T};?;. 0 may be chosen arbitrarily small. 

Clearly g{O,1)<c, so g(o, 1)5:-1. Hence g(1, -1)<c, and so 
g (1, -1) ~ - 1, that is 

IDI2-c -+ c2 (1-cx)2. 
- 1 -1) (1-1))2 

Hence 
I D I ;;;. c + i c2 ;;;' k + i k2 

with equality only when 

T}=O, cx=!, c=k, 
so 

It remains to see whether Ik(Z) has any integral solutions U=F0 of 

(8) 
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Since Ik (1, 0) > 0 but Ik (1, x2) -+ - 00 as x2-+ + 00, there must be some 
integer v ~ 0 such that 

Ik(1,v}~O>lk(1,v +1}. 

If (8) were insoluble, we should have 

Ik(1,v)~k, Ik(1,V+1)~-1: 
that is 

v(k - v) ~ 0, (v + 2) (k - v) ~ O. 

This is possible only when v =k, i.e. when k is an integer. 

It remains only to show that when k is an integer there is no integral 
U=f=O such that -1<lk(u)<k. Since the roots {} of Ik({}' 1)=0 are 
irrational, it is impossible that Ik(U) =0. Hence we must deduce a 
contradiction from 

(9) 

If there are several solutions of (9) we choose one for which the integer 
I "11 is as small as possible. Clearly 

"1 =f= O. 
We require the identities 

I. (z) = Ik {(k + 1) Xl - x2 , - k Xl + X2} 

= Ik{Xl + X2 , kX1 + (k + 1) x 2} 

= (k + 2) Xl {(k + 1) Xl - X2} - {(k + 1) Xl - X2}2 - X~ 

= (k + 2) Xl (Xl + X2) - (Xl + X2)2 - x~. 

Since I. (u) > 0, the last of these identities shows that 

"1 {(k + 1)"1 - "2} > 0 

"1 ("1 + "2) > O. 

On writing - U for U if necessary, we thus have 

"1>0, (k+1)"1>"2>-"1' (10) 

From the first two identities and the minimal properly of 1"11, we have 

1"1 + "21 ~ "1' 

I (k + 1) "1 - "21 ~ "1 : 
and so, by (10), 

But then 
I.(u) = k"~ + U2(ku1 - u2) ~ ku~ ~ k. 

Hence our assumption (9) was false. 
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By considering 1(1, v) for all integers v, the estimate (4) may be 
improved when k is not an integer. Since Ik is the only form I satisfying 
1(1,0) =k and 

I(O,1)~-1, 1(1,k+1)~-1, 

1(-1,1)~-1, 1(1,k)~k, 

the form I" gives an isolated first minimum when k is an integer. The 
proof of these statements is left to the reader (d. papers quoted at the 
beginning of § 4.4). 

11.4.5. We now consider indefinite ternary forms. As already noted 
(§ 4.1) there is a set of successive minima, the first eleven having been 
found by VENKOV (1945 a). There is a derivation of the first four 
minima due to OPPENHEIM in DICKSON (1930a) and a neat proof of the 
first minimum only by DAVENPORT (1947a). Here we shall prove only 
the following result. 

THEOREM VII. Let 
I (a:) = L Iii Xi Xi 

be an indelinite ternary quadratic lorm with determinant 

Then 
D(f) =det(fii) *0. 

M(f) = inf I/(u)! ~ I!Dli, 
"*'o integral 

except when I is equivalent to a multiple 01 

10 = X~ + Xl X 2 - X~ - X 2 Xa + X~. 
Further, 

(1) 

(2) 

(3) 

(4) 

(5) 

We first prove (5). Since lo(u) is an integer when u=f=o is integral, 
it is enough to show that lo(u) =1= 0. Now 

4/o(u) = (2Ut + U2)2 + (2ua - U2)2 - 6u~. 

Hence it is enough to show that there are no integral solutions of 

v~ +v~ = 6v~ 
other than Vl =V2=Va=0. We may suppose that VI' V2 , Va have no 
common factor. Then clearly Vl and Va must be divisible by 3. Then 
v~ +v~ must be divisible by 9, so v2 is divisible by 3; a contradiction. 

That the consta:tlt ! in (3) cannot be further improved is shown by 

Il(a:) = x~ + Xl X2 - x~ - 2x~. 
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The reader should have no difficulty in modifying the proof to show 
that this is the only case when there is equality in (3) and that it is 
isolated. 

We may suppose as before that 

M(f) = 1 

and, by taking - 1 for 1 if necessary, that 

D<O. 

(6) 

(7) 

We have to show that 1 is equivalent to 10 or D~ -~. It is convenient 
to enunciate steps of the proof as propositions. 

PROPOSITION 1. Either 

M+ (I) = inf I(u) = 1 
l(u»O 

(8) 

or 
D~ -f. (9) 

If (6) is true but (8) is false, there must be integral u such that 
I(u) = - (1-1]tl , where 1] ~O may be chosen arbitrarily small. Hence 
1 (x) is equivalent to a form g (x) of the shape 

(1 -1]) g(x) = - (Xl + rx. X2 + (J X3)Z + h(X2' x3), 

where rx., (J are real numbers and the form 

h(x) = hZ2 x~ + 2h23 X2 Xa + h33 xi 

must be positive definite. The determinant of h (x) is 

h22h33 - h~3 = - (1 _1])3 D = (1 -1])31 DI. 

After a transformation on the variables x2 , x3 , we may suppose that 
h(x) is reduced; and so 

by Theorem II. 

We now consider the indefinite binary form 

G(XI' x2) = (1 -1]) g(XI' x2, 0) = - (Xl + rx.xz)2 + h22X~, 
of determinant - h22 • Clearly 

M(G) ~ (1 -1]) M(g) = 1 -1]. 

Hence, by Theorem IV, either 

h ~ 221 (1 _ )2 
22- 100 1] 

( 10) 

( t 1 ) 
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or G(Xl' x2) is equivalent to one of t(Xi+XIX2-X~) or t(xl-2xi) for 
some number t with 1 tl ~ (1-17). If the second alternative holds, we 
must have t = -1, since G( 1, 0) = -1. Then there arc integral u1 , u2 

such that G(U)=+1, i.e. g(U1,U2, 0) =(1-17t1, so 

M+(f) = M+ (g) = 1 

since 17~ 0 may be chosen arbitrarily small. Otherwise the first alter­
native, namely (11), holds, and so, by (10), 

IDI2(1_17).]_.(221)2> 7 
- 4 100 2 

This proves the proposition. 

We may now suppose that 
M+(f) = 1. 

As before, there is a form g equivalent to t such that 

(1 -17) g(x) = (Xl + (X X2 + (J XS)2 + h(X2' xs), 

where 17 ~ 0 may be chosen arbitrarily small, and the form 

h(X2' xs) = h22 x~ + 2h23 X2 Xs + has x~ 

is now indefinite and has determinant 

or 

or 

h22h33 - h~3 = (1 - 'Y))3 D < O. 

PROPOSITION 2. It U 2 , u3 are integers not both 0, then either 

h(u2, u3) ~! - 'Y), 

- £ - 17 ~ h( U 2 , u3) ~ - £ + 'Y) . 

Further, it (17) holds there is an integer v such that 

I v + 1- ((XU2 + (Ju3)! ~!'Y). 

(12) 

(13) 

(14) 

( 15) 

(16) 

(17) 

(18) 

We must first show that there are no integral solutions u4=O of 

- 2 + 17 < h (u2, u3) < - £ - 'Y), 

- ! + 17 < h(u2, u3) ~ - 1 + 'Y), 

-1 +'Y)<h(u2,Us) <!-17' 

We may clearly choose the integer UI so that respectively 

1 ~ 1 u1 + (X u2 + {J u3 1 ~ !, 
i- ~ I u1 + (X u2 + {J tt31 ~ 1 , 
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and 
0;:;:;; lUI +«Ull+PUaI ;:;:;;i· 

Then in each case we have 
(1- t l) Ig(u)1 < 1 - fJ. 

contrary to hypothesis. 
Suppose that (17) holds. There is an integer t and a real number 

l' such that by choice of sign 

IXU2 +PUa=t±1'. O;:;:;;1';:;:;;t· 
We may clearly choose integers u~. u~' so that 

Then 

and so 

I u~ + IX U ll + P ual = 1 - l' 

Iu~' +lXu2 +pual =1 +1'. 

h(ua.ua) + (1- T)2 =g(U~,U2.Ua);:;:;; -1 +fJ, (19) 

h(u2• us) + (1 + T)2 = g(u~'. U2• us) ~ 1 - fJ. (20) 

By subtracting (19) from (20) we have 

i(1-fJ);:;:;;1';:;:;;i· 
This is equivalent to (18) and so proves the proposition. 

COROLLARY. If (17) holds, then U 2 and ua cannot have a common 
factor except ± 1. 

For if U2=VU~, Ua=vu~, where v> 1, none of (15), (16) or (17) would 
be satisfied by h(u~, u~). 

PROPOSITION 3. Either 
IDI~i 

or, after an equivalence transformation, we may suppose that 

-i-fJ;:;:;;h(1,O);:;:;;-i+fJ. 

h(1,-1)~!-fJ, 

-! - fJ;:;:;; h(1,1);:;:;; -! +fJ. 

h(2.-1);:;:;;-2+fJ. 

IIX - il;:;:;; ifJ. 

1.BI~fJ 
provided that fJ is less than some absolute constant fJo> O. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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Suppose, first, that there are no solutions of 

- 2 + rJ < h(u2, u3) < 1 - rJ· 

Then, by SEGRE'S Theorem VI, we must have 

I h22 hSS - h=31 ;;;; H2 - rJ)2 + (2 - rJ) (1 - rJ) = 1(2 - rJ) (1 - rJ)· 

Hence, by (14), 
IDI ~ 5(2-1]) ~~. 

- 4 (1 - 1])2 - 2 

49 

Otherwise by Proposition 2 there is a solution of I h(u2 , Us) +11 ~'Y) and 
by Proposition 2, Corollary we may suppose, after a suitable trans­
formation on x2 , X3 , that 

- 1 -'Y) ~ h(1, 0) = h22 ~ -i +'Y)' (28) 

After a further substitution of the type X2~ ± x2 + v Xs , where v is an 
integer, we may suppose further that 

(29) 

We now consider h(u2 , us) for various choices of u2 , us. If h(O, 1) 

~ - 1 +rJ; that is h33~ - 1 +'Y), we should have 

h22hS3 - h~3 > 0, 

contrary to the assumption that h is an indefinite form. Hence 
h33> - !+rJ, and so, by Proposition 2, 

h33 = h(O, 1);;;; 1 -rJ· 
But now, by (29), 

h(1, -1);;;; h22 + h33> - 1 +rJ, 

and so, by Proposition 2 again, 

h22 - 2h23 + haa = h(1, -1) ~! - 'Y). 
Hence 

h(1, 1) = h(1, -1) + 4h23> - 2 +rJ 
by (29). 

(30) 

We now consider the two remaining possibilities for h ( 1, 1) allowed by 
Proposition 2. Suppose, first, that 

so 

Then, by (14), 
(1-rJ)3I D I =h~3-h22h33;;;; -hU h3S' 

Cassels, Geometry of Numbers 4 
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so 
IDI ~ (1 -t1]LJ_ > ~ 

- (1 _7])2 2 = 2 ' 

which is all we require. We may therefore suppose that 

-! - fJ ~ h(1, 1) = h22 + 2h23 + ha3 ~ -! +fJ· 

We now invoke the part of Proposition 2 referring to oc and fJ with 
(u2 , u3) =(1,0) and (1, 1). Hence there are integers v' and v" such that 

I v' + l- oc I ~ IfJ, 
I v" + l- (oc + fJli ~ IfJ· 

After a substitution of Xl +v' X2+ (v" - Vi) Xa for Xl we may suppose 
indeed that 

Then 

We now consider 

1 .!-ocl~J-l1 2 - S·I' 

II- {oc + fJ)1 ~ IfJ· 
IfJl~fJ· 

h(2, -1) = h(1, 1) + 3h22 - 6h2a ~ h(1, 1) ~ -! +fJ. 

We cannot have h{2, -1)~-!-fJ, since then by Proposition 2 the 
fractional part of 20c - fJ would be about i-, while we know that 20c - fJ 
is 1 +O(fJ). Hence 

4h22 - 4h23 + h33 = h(2, -1) ~ - 2 +fJ. 

This completes the proof of the assertions of Proposition 3. 
We now conclude the proof of the theorem. The inequalities (22) 

to (25) of Proposition 3 are linear inequalities in h22' h23 , h3a · Put 

h22 =-!+).fJ, (31) 

h23 = - ! +,ufJ, 

h3a =1+vfJ· 
Then (22) to (25) become 

Hence 

so 

1).\ ~ 1, 

). - 2,u + v ~ - 1 , 

I). +2,u +vl ~1, 
4). - 4,u + v ~ 1-

2v = (). - 2,u + ,,) + l). + 2,u + v) - 2). ~ - 4, 

3v = 4). - 4fl + v + 2{). + 2,u + v) - 6), ~ 9, 

Ivl ~ 3· 

(32) 

(33) 

{H) 

(35) 

(36) 

(37) 
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Hence 

by (36). Hence and by (14), 

(1 .- 1]) 31 D I = h~ 3 - h22 hsa = I + ( - A - ,u + i V) 1] + 0 (1]2) • (38) 

= I+O(1]) 
But D is independent of 1], so* 

IDI =f. 
Suppose, if possible, that 1] * O. On putting I D I = I in (38) we have 

- A - ,u + iv = - ! + 0 (1]) . 

For small enough 1] this contradicts (34), (35) and (36), since they give 

- A - ,u + iv = - t A + i (A - 2,u + v) + i (A + 2,u + v) 

~-t-i-i=-f· 

Hence 1] =0, so by (13), (26), (27), (31), (32), (33), we have 

g(x) = (Xl + IX2)2 - ix~ - x2 xa + x~ = 10 (x) . 

Since g(x) is equivalent to I(x), this concludes the proof of Theorem VII. 

1I.S. Binary cubic forms. We must first consider briefly the 
algebra associated with a binary cubic form 

(1 ) 

Such a form may always be split up into linear factors with real or 
complex coefficients: 

I(XI ,X2 ) =[J({}jXI +"PjX2 ), (2) 
l:oi:o3 

With the form is associated the discriminant 

It is easily verified that 

D (/) = 18 abe d + bi ell - 4a e3 - 4d b3 - 27 a2 d2 (4) 

(see § 5.2). From (3) it follows that D(/) =0 if and only if I(xl , x2) 

has a repeated linear factor. Forms I with D(/) =0 are called singular. 

The discriminant D (I) is an invariant of the cubic, in the sense 
that if 

(5) 

• More precisely. we should have worked with a family of forms g.(:lJ) as in 
§ II 4.2. each form with its own TJ = TJ. and O~TJ < E. Then A. p.. v depend on E, 

but (38) is true for all sufficiently small E. 

4* 
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identically for some numbers «, fJ, y, <5, then 

D (I) = (<< <5 - fJy)8 D (I), 

as follows at once from (3) and the fact that 

where 

I'(xt , x2) = II (1'); xt + 1f'; XI), 
; 

(6) 

(7) 

(8) 

In particular, D(f') =D(/) if 1 and I' are equivalent, since then (5) holds 
for some integers (1., fJ, y, <5 with (1. <5 - fJ Y = ± 1-

If a, b, c, d are real, then either all the ratios 1f';I1'); are real or two 
of them are conjugate complex and the third is real, since roots ~ of 
an equation I(t 1) =0 with real coefficients occur in complex conjugate 
pairs. This subdivides the real non-singular binary cubic forms into 
two essentially distinct types. We show now that two forms in the 
same type may be transformed into each other by a transformation of 
the type (7) with real «, fJ, y, <5. It is enough to show that all forms I 
of a given type may be transformed into an I' which is fixed for the type. 
We may suppose without loss of generality that either 

1');,1f'; are all real 
or 

in our two respective cases, where the bar denotes the complex conjugate. 
Clearly these two cases are characterised by D> 0 and D < 0 respectively. 
There exist numbers At, A2' Aa not all 0 such that 

Al1f'1 + Aa1f'2 + Aa1f'3 = 0 } 

At 1')1 + AI1')a + Aa1')3 = O. 

If, say, Aa=O, we should have 

{}t1f'z - {}a1f't = 0, 

(10) 

and so D(/) =0 by (3), contrary to the hypothesis that I is non-singular. 
Hence AtAlAa=!=O and we may suppose, without loss of generality, by 
multiplying Al' Aa, Aa by a common factor, that 

(11) 

We now distinguish the two cases according as (9t ) or (92) holds. If 
(91) holds, we may suppose that AI' A2 , Aa are real and put 

(f = 1, 2). 
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Then 

and so, by (11), 
I(Xl ,X2) = Xl X 2 (Xl +X2)· 

If (92) holds, we may suppose that A2=Al , As=Aa and put 

eXl + el XI = Al (1?lXl + 'PI X 2) } 

elXl +e X2=A2(t?2 Xl + 'PI XI) , 

where e is a complex cube root of 1. Then, by (10), 

Xl + XI = As (1?a xl + 'Paxa) 
and 

I(xl , XI) = X~ +~. 
The coefficients IX, p, ')I, d in 

Xl = IX Xl +Pxa, XI = ')I Xl + "XI 
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(12) 

(13) 

(14) 

(15) 

are real, since the two equations (13) here are complex conjugates one 
of the other. 

In the sense of § 4 of Chapter I the values taken by non-singular 
binary cubic forms are the values taken by the function 

or 

at the points of a lattice. The reader will have no difficulty in verifying 
that there is a corresponding result for singular cubic forms, with 

tp(X) =X~X2' 

tp(X) =xt 
according as only two or all three of the linear forms 1?jXl + 'Pj Xa are 
multiples of each other. 

It was first shown by MORDELL (1943 b) that if I is a real cubic form, 
then there is an integer vector u =+= 0 such that 

(16) 

according as D> 0, D < 0 or D = 0, where e is an arbitrarily small positive 
number. The third case, when I(z) is singular, may be dealt with 
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trivially by MINKOWSKI'S theorem of the next chapter, so we do not 
discuss it here. That the coefficients 49, 23 are best possible in their 
respective cases is shown by the binary cubic forms 

(17) 
and 

(18) 

These have discriminants 49 and 23 respectively. Since they do not 
represent 0 and represent integer values for integer vectors u, the:;:;; in 
(16) cannot be replaced by <. It will be shown that < may be taken 
in (16) for all forms not equivalent to (17) and (18). 

The results (16) were not first obtained by reduction arguments. 
DAVENPORT (1945a, b) has however given simple proofs by such 
arguments. 

This treatment consists in defining a binary cubic form as being 
reduced if a certain definite quadratic form associated with it is reduced: 
it is necessary to choose different quadratic forms according as D> 0 
or D < O. DAVENPORT then shows for a reduced form that either (16) 
is true with strict inequality for one of a prescribed set of u, or I (x) 
is one of the forms (17), (18). We give the proof for D>O in full but 
only sketch that for D < 0 since we shall later be using the case D < 0 
to illustrate another technique. 

It was shown by DAVENPORT (1941 b) that neither the 49 nor the 
23 is isolated. We do not give the proof, which depends essentially on 
the fact that although a cubic form I{x) is always indefinite the area 
of the region 

I/(x)1 < 1 

is finite, and the forms (17), (18) take the values ± 1 only a finite number 
of times: in contrast to the situation with indefinite quadratic forms. 

11.5.2. In order to enunciate DAVENPORT'S result we must first 
introduce a quadratic form associated with a cubic form 

where 

I (Xl' X 2) = a X~ + b X; X 2 + C Xl X~ + d X~ 

= II ({)jX1 + "p;x2), 
1:::>;:::>3 

(1 ) 

(2) 

(3) 

(4) 
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On evaluating the partial differentials by (2), a brief calculation shows 
that 

(6) 

the sum being taken over all cyclic permutations of 1,2,3. 

We now show that the hessian is a covariant of the form I(xl , x2); 

that is if oc, {3, y, b are real numbers with 

ocb-{3y=±1, (7) 

then the hessian of the form j'(xl , x2) defined by 

IS 

h' (Xl' X2) = h (oc Xl + {3 X 2 , Y Xl + b X2) . 

Indeed this follows at once from (6) and the expressions (7), (8) of § 5.1, 
on noting that 

{);tp~ - {)~ tpi = (oc b - {3 y) ({)itpk - {)k tpi) = ± ({)itpk - -Ok tpi) , 

on using (7). 

From either (5) or (6) we see that the determinant of h(xl , X 2) IS 

(8) 

In particular, h (Xl' X 2) is definite when and only when D> 0, i.e. when 
1 is a product of three real linear forms [when the {)i' tpi are real the form 
(6) is clearly positive definite, but the converse is not so clear without 
using (8) J. 

When the {)i' tpi are real, the form 1 was said by HERMITE to be 
reduced when the definite quadratic form h is reduced in the sense of 
MINKOWSKI I . 

Every form with real {)i' tpi is equivalent to a reduced form. For 
the transformation which reduces the h (x) in MINKOWSKI'S sense also 
reduces 1 (x) ; since h (x) is a covariant of 1 (x), as we have seen. Further, 
this reduction can be carried out in only a finite number of ways since 
we saw that a definite quadratic form can be reduced by only a finite 
number of transformations. 

II.5.3. We may now enunciate and prove DAVENPORT'S theorem: 

THEOREM VIII. Let 1 (x) be a binary cubic lorm with discriminant 
D>O which is reduced in the sense 01 HERMITE (§ 5.2). Then 

min{lf(1,o)l, 1/(0,1)1, 1/(1,1)1, If(1,-1J1}~(~t. (1) 

1 He could not put it this way, of course! 
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The sign 01 equality is needed only when 

±/(xl • ±x.) =x~ +X~X2- 2xlx~-x1 
OT 

the ± signs being independent. 

(2) 

(3 ) 

DAVENPORT actually proved that if I(xl • XI) is reduced. then at least 
one of the five products 

1/(1.0)/(0.1)1. 1/(1.0)/(1.1)1. 1/(0.1)1(1.1)1. 

1/(1.0)/(1.-1)1. 1/(0.1)/(1.-1)1 

is ~ (D/49)i. with equality only for the forms (2) and (3). as before. 
We shall follow CHALK (1949) and prove another generalisation. Let 

h (Xl' XI) = A x~ + B Xl XI + C x~ 

be the hessian of 1 (z). so that 

O~B~A~C. A>o (4) 
CHALK'S result is that 

( A '6 
min{l/(1.o)l. 1/(0.1)1. 1/(1.1)1. 1/(1. -1)I}~ .-d . 

with equality only for the forms (2) and (3). Since 4AC-BI~3Aa. 
and 4AC-BI=3DU) by (8) of § 5.2. this will be a stronger result 
than Theorem VIII. 

We may suppose by homogeneity that 

A =7. 

We must then deduce a contradiction from 

1/(1.0)1~1. 1/(0.1)1~1. 1/(1.1)1~1. 1/(1.-1)1~1. 

except for the forms (2) and (3). On writing 

1 (z) = a x~ + b x~ XI + C Xl X: + d X: 
these inequalities are 

(5) 

lal~1, Idl~1. (6) 

I a + b + C + dl ~ 1. I a - b + c - dl ~ 1. (7) 

By taking -I for 1 we may suppose that 

a~1. (8) 
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We shall require the identities 

A=b2-3ac, B=bc-9aa, C=c2 -3ba, (9) 

from which follow 

Bc-Cb=3Aa, Bb-Ac=3Ca. 

From (4), (5) and (9) we have 

0;;;; bc - 9aa~ 7. 

Suppose, if possible, that a>O. Then (11) gives 

bcG9aaG9. 

(10) 

(11 ) 

(12) 

If bGc>O there is a contradiction with (101) and if cGb>O there is 
a contradiction with (102), so 

Then we should have 
b<O, C<O. 

A=b2 -3 ac 

=l bI2 +il ac l +llacl 
G H£a2 b2 c2)t 

by the inequality of the arithmetic and geometric means; and so, by 
(12), 

in contradiction with the normalization A = 7. 
Hence we may suppose that 

d<O, 
and so, by (11), 

b c ;;;; 7 - 9a 1 al ;;;; - 2. 

If b<O<c we have a contradiction with (102), so 

c<O<b, 
and (13) becomes 

Further, (5) becomes 

7 = A = b2 + 3 a 1 c 1 G b2 + 31 c I. 
On substituting (14) in (15), we have 

7 G b2 + 31 c 1 ~ b2 + 6/b, 
and so 

(13) 

(14) 

(15) 

(16) 
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Similarly we have 

7~~+3Icl, c 
and so 

1~ - c~ 2. 

Clearly a sign of equality can hold in (16) or (17) only if 

a=-d=1, bc=-2. 

From (14), (16) and (17) we now have 

9aldl~7+lbcl~11 
and so 

But now 

and so 

...--11 
a~­- 9 ' I dl~~ - 9 . 

11 11 
a-b+c-d~--1-1+-<1 

- 9 9' 

a-b+c-d~-1. 

We now consider the two possibilities for 1(1, 1). If 

a+b+c+d~-1, 

then on adding (19) and (20) we have 

a-lcl~-1, so Icl~1+a~2. 

( 17) 

(18) 

(19) 

(20) 

Comparison with (17) shows that I c I = 2, and, since there is equality 
in (17), we must have (18); that is 

a=-d=1, b=1, c=-2. 
Similarly, if 

a+b+c+d~+1, 
then 

b+d~+1, so b~2; 
and we have 

a = - d = 1 , b = 2, c = - 1 . 

This concludes the proof of the theorem. 

11.5.4. When the binary cubic form 1 has discriminant D(/)<O the 
hessian form is indefinite, and so a reduction of the hessian does not 
single out a finite number of reduced forms from amongst the forms 
equivalent to I. However, if D<O then only one of the linear factors 
of 1 is real, and 1 may be put in the shape 

l(xI , x2) = (-&aXl + 'f'aX2)(P x~ + Q XI X 2 + R x~), (1) 
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where the form P x~ + Q Xl X2 + R x~ is positive definite, since it is the 
product of two conjugate forms with complex coefficients. DAVENPORT 
following earlier workers calls such a form reduced if the quadratic 
form 

P x~ + Q Xl X2 + R x~ 

is MINKowsKI-reduced, that is 

IQI~P;::;;;R, 
and, further, 

(2) 

(3) 

The last condition may be achieved by changing the sign of X2 if need 
be, which does not affect (2). DAVENPORT (194Sb) proves 

THEOREM IX. I II (x) is binary cubic lorm with discriminant D (f) < 0, 
then there are integers u =j= 0 such that 

I/(u)I;::;;;I~ll. 
II, lurther, I (x) is reduced, then 

min[I/(1,O)I, 1/(0,1)1, 1/(1, -1)1, 1/(1, - 2)IJ;::;;; I ~ It, 
with equality only when 

1 (Xl' X2) = a (X~ + X~ X2 + 2 Xl X~ + x~) . 

We only sketch the proof and refer to the original memoire for the 
details. We later give another proof of the first paragraph of the 
theorem (Chapter III, Theorem VII). 

We have to show that D (f) ~ - 23 when 

i.e. when 

1/(1,0)1;;;; 1, 

1/(1, -1)1 ;;;;1, 
1/(0,1)1 ~ 1, 

1/(1'-f)I~1, 

PI1fal;;;;1, RIV'al;;;;1, 

l1fa - V'al (P - Q + R) ~ 1, 

l1fa - 2V'al (P - 2 Q + 4R) ;;;; 1, 

(~) 

(4~ 

(4a) 

since P-Q+R, P-2Q+4R are positive by the positive definiteness 
of the quadratic form. For fixed 1fa and V'a, the inequalities (2) and (4) 
restrict the point P, Q, R in 3-dimensional euclidean space to lie in a 
certain infinite region !/' bounded by planes. DAVENPORT shows, 
further, that 

- D(f) = {PV'~ - Q1faV'a + RV'~}2(4P R - Q2), 
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and that ID(f)il is a convex function of (P, Q,R) for fixed {}a,"Pa' 
Hence the maximum of DU) is attained at the vertices of g, where 
three of the plane faces meet [since it is easily seen that I D I ~ 00 as 
max (I PI, I Q I, I R I) ~ 00]. The proof then follows from a rather tricky 
estimation of DU) at the vertices of g. 

II.6. Other forms. We briefly survey here results on the reduction 
of forms other than those already discussed. 

II.6.2. For binary forms of degree n~ 4 there is more than one 
invariant. For example, a binary quartic form 1 (Xl' X2) which is the 
product of two pairs of complex conjugate linear forms may be reduced 
to the shape 

where 
X I =OCXI +{JX2, X 2 =yxl +bx2 , 

for some real (I., {J, y, band ft =ft (/) is a real number lying in 

Iftl <i· 
Two forms with different ft cannot be transformed into each other by 
a homogeneous linear transformation of the variables. Further, ft (/) is 
an absolute invariant in the sense that ft (t I) = ft (I), where t is any num­
ber. Of course we still also have the discriminant 

where 
1 (Xl' X2) = II (1J;Xl + "P; x2)· 

i 

The problem for definite binary quartics was solved independently 
by DAVIS (1951 a) and CERNY (1952a) in the sense that they found the 
best possible function y (ft) of ft such that every form 1 with invariant ft 
has 

inf 1 (u) ~ y (ft) {D U) }A. 
"*,o 

integral 

DAVIS (1951 a) also gives some results for indefinite binary quartic 
and full references to earlier work. It is no longer true, as it was for 
quadratic and cubic forms, that forms 1 with D (/) = 0 assume arbitrarily 
small values. This case was completely elucidated by DAVENPORT 

(1950a). 
The methods of these authors combines reduction techniques with 

other tools drawn from the geometry of numbers. 
There does not seem to be any systematic work on binary forms of 

degree greater than 4. 
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II. 6. 3. The only other types of forms I (Xl' .... xm) of degree n with 
m> 2. n> 2 for which the best estimate of 

M(I) = inf If(u)1 
"*0 integral 

is known appear to be the ternary cubic forms with real coefficients 
which are expressible as the product of three real linear forms: 

I (Xl' X2• Xa) = IT ({Jjl Xl + {J,2 Xa + (Ji3 Xa). 
1;:;;;;:;;3 

where either all the {Jih are real (first type) or {JSl' {Jaa. {Jaa are real and 
{Ju=;ou (1 ~ k~ 3). There is an invariant 

This is the only invariant in each type. since there are obvious real 
transformations taking I into 

and 
Xl(X~ +X=). 

respectively. The two types are distinguished by D>O and D<O 
respectively. The following two results are known: 

THEOREM X. Let I(xl • X2 • xa) be a lactorisable ternary cubic lorm with 
D (f) > O. Then there exist integers u 4= 0 such that 

DO 
I I (u)1 < 9.1' 

except when I is equivalent to a multiple 01 one 01 the lorms 

149 = x~ + x~+ x~- x~ x2+ 5 x~ x3-2 Xl X~ + 6 Xl X:-2 x2 x:- X: X3 - Xl X. X3• 

lSI = X~+ X~+ ~+6x~xa-3 Xl X~+9Xl X:-3 X2 X:-3 Xl X2 Xa. 

lor which M(f) = 1 and D (I) = 49. 81 respectively. 

THEOREM XI. Let I (:I)) be a lactorisable ternary cubic lorm with 
D (f) < O. Then there exist integers u 4= 0 such that 

II (u)l ~ I ~ Ii . 
The sign 01 equality is needed when and only when 1(:1)) is equivalent to 
a multiple 01 the lorm 

123 = x~ + x~ + xg + 2x~xa - XIX~ + XIX: - xax: - 3X1 X2 X3 • 

We note that 140.181 and 123 are all of the shape 

Norm (Xl + tpXa +tpx3). 
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where 1, tp, VI are a basis for the integers of a cubic field. We shall 
discuss later the reasons why this might have been expected (Chapter X). 
For 149,/81 and 123 we have VI =tp2, and tpsatisfies the respective equations: 

and 

tp3 + tp2 - 2tp - 1 = 0, 

tp3-3tp-1 =0, 

tp3-tp-1=0. 

[By Norm is meant the product of the three forms obtained from the 
given one by inserting the three pairs of conjugate values for tp and VI.] 
The first equation here corresponds in an obvious way tQ the form in 
Theorem VIII. The third equation here corresponds to the binary form 

which is equivalent to that in Theorem IX on making the substitution 
X1-+X1 , X2-+-X1 -X2 · 

For D>O Theorem X gives the first two successive minima and 
shows that the second minimum is isolated. The first minimum in 
Theorem XI is not isolated; but there is a weaker sense in which it is 
isolated [DAVENPORT and ROGERS (1950a, especially Theorem 14): see 
also Chapter Xl Theorem X was obtained by DAVENPORT (1943 a). He 
had already obtained the first minimum [DAVENPORT (1938 a) and a 
simpler proof in DAVENPORT (1941 a)]. A slightly weaker form of 
Theorem XI in which I D/23 I i + e with arbitrarily small e> 0 appears 
instead of I D/23 I ! was given by DAVENPORT (1943 a); the full form is in 
DAVENPORT and ROGERS (1950a). CHALK and ROGERS (1951 a) showed 
that every factorisable ternary cubic form with D> 0 is either equi­
valent to a multiple of 1 or to a form g (;.c) with 

( Di)3 Ig(1, 0, 0) g(O, 1, 0) g(O, 0, 1)1 ~ 7.1 

This is analogue of the results about the products of the diagonal terms 
of definite quadratic forms obtained in § 3. 

We do not prove Theorems X and XI here, since in Chapter X, 
following MORDELL, we deduce Theorems X, XI from the corresponding 
results for binary cubics (in which, as the reader will have noticed, the 
integers 49 and 23 also occur). It is however worth sketching the 
reduction which DAVENPORT use to prove Theorem X: 

Let /(z) be a factor is able ternary cubic with D > 0, where we may suppose, 
without loss of generality for our purpose that M(f) = 1. Hence t is equivalent 
to a form g such that 

g(1, 0,0) = (1 -7}t1, 
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where 7] ~ 0 is arbitrarily small. Hence we may write 

3 

(t - 7]) g(:z:) = II (Xl + r1.i Xa + PjX3), 
;=1 

We consider also the quadratic form 

h (:z:) = ~ (Xl + r1.i Xa + Pi xa)2. 
i 
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From the inequality of the arithmetic and geometric means h (u) ~ 3 (1 - 7])i for 
all integers u*' 0, and it is easy to verify that in fact h (u) ~ 3, with equality only 
when U= (1, 0, 0). Hence h(:z:) may be reduced in the sense of MINKOWSKI by 
a transformation of the type 

Xl ->- Xl + Vn X2 + V13 Xa 

X2 ->- V a2 X2 + V2a Xa 

Xa ->- V32 X2 + V33 Xa 

where the vii are integers and VZ2 V33 - v2av32= ± 1. Since h(:z:) has determinant 
(1 - 7])8 D(f) and is reduced, we have bounds for the coefficients. The proof now 
continues by an intricate and delicate chain of computations using these bounds 
and the fact that Ig(u)1 ~t for all integers u*,o. 

DAVENPORT'S treatment of Theorem XI starts off with a similar reduction but 
the completion of the proof requires different ideas and the detailed consideration 
of an intractable 2-dimensional figure. 

11.6.4. The corresponding problem for the product of n> 3 homo­
geneous forms in n variables has been much worked on. Estimates 
but no precise results are known, and these estimates were obtained 
by other methods. We shall consider the case of large 1t in Chapter IX, 
§ 8. The best estimates for n = 4, 5 in print appear to be those of 
ZILINSKAS (1941 a) and GODWIN (1950a) respectively; but GODWIN refers 
to a better estimate for n = 4, presumably the Vienna dissertation of 
G. BOHM (1942) also mentioned in KELLER'S encyclopedia article 
[KELLER (1954a)] but unavailable to me. 

There is however a striking result of CHALK on the product of. the 
values taken by n linear forms when these values are positive. He 
shows that if LI , ••. , Ln are n linear forms in n variables ;E = (Xl' ... , xn) 
with determinant LI =1= 0, then there exist integers u =1= 0 such that 

Li(U) > ° (1 ~i~ n), 

II Li(u)~ILlI· 
; 

(1 ) 

(2) 

That the implied constant 1 on the right-hand side of (2) is the best 
possible is shown by the simple example Li = xi' CHALK'S theorem is 
indeed more general than the form given here since it refers to the 
product of inhomogeneous linear forms. Consequently we do not prove 
it here, but later in Chapter XI, § 4. 
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Chapter III 

Theorems of BLICHFELDT and MINKOWSKI 

111.1. Introduction. The whole of the geometry of numbers may 
be said to have sprung from MINKOWSKI'S convex body theorem. In 
its crudest sense this says that if a point set f/ in n-dimensional euclidean 
space is symmetric about the origin (i.e. contains -:E when it contains :E) 

and convex [i.e. contains the whole line-segment 

when it contains :E and y] and has volume V> 2", then it contains an 
integral point u other than the origin. In this way we have a link 
between the "geometrical" properties of a set - convexity, symmetry 
and volume - and an "arithmetical" property, namely the existence 
of an integral point in f/. Another form of the same theorem, which 
is more general only in appearance, states that if A is a lattice of 
determinant d (A) and f/ is convex and symmetric about the origin, 
as before, then f/ contains a point of A other than the origin, provided 
that the volume Vof f/ is greater than 2"d (A). In § 2 we shall prove 
MINKOWSKI'S theorem and some refinements. We shall not follow 
MINKOWSKI'S own proof but deduce his theorem from one of BLICH­

FELDT, which has important applications of its own and which is 
intuitively practically obvious: if a point set at has volume strictly 
greater than d (A) then it contains two distinct points :El and :E2 whose 
difference :El -:E2 belongs to A 

The theorems of BLICHFELDT and MINKOWSKI may be regarded as 
statements about the characteristic functions of a set f/, that is the 
function X (:E) which is 1 if :E E f/ but otherwise O. There are generalisa­
tions of the theorems of BLICHFELDT and MINKOWSKI to non-negative 
functions ""(:E) due to SIEGEL and RADO. These we present in § 3. 
We do not in fact use these theorems later. 

In § 4 we use MINKOWSKI'S theorem to obtain a characterisation of 
a lattice which is independent of the notion of a basis: a lattice is any 
set of points A in n-dimensional space which (i) contains n linearly 
independent vectors, (ii) is a group under addition, i.e. if :E and y 
are in A so are :E ± y, and (iii) has only the origin in some sphere 
x~ + ... + X~<1J2, where 1J> O. 

In § 5 we introduce the notion of the lattice constant LI (f/) of a 
set f/. This is a number with the property that every lattice A with 
d(A)<LI (f/) has a point other than 0 in f/, while there are lattices 
whose determinant d (A) is arbitrarily near to LI (f/) with no other 
point than 0 in Y. In § 6 we discuss at length a method due to MORDELL 
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which uses MINKOWSKI'S convex body theorem to evaluate or estimate 
A (9') for sets which mayor may not be convex. The idea is, roughly 
speaking, to show that if a lattice 1\ of given determinant d (1\) = Ao 
has no points except 0 in 9', then at least 1\ must have paints in various 
sets abutting on 9'. Since these points belong to 1\, so do linear com­
binations of them. These combinations must be either 0 or lie outside 9'. 
In this way more and more information about these points of 1\ near 
9' is obtained, until there is a contradiction; the contradiction showing 
that every lattice 1\ with determinant d(/\) =Ao has a point in 9'. 
This method is particularly effective in 2 dimensions, since the relation­
ship of the various points to each other then springs to the eye. Con­
sequently in § 6.2 we give a series of simple lemmas about 2-dimensional 
lattices which are non-the-Iess useful tools. MORDELL'S method is 
applied, amongst other things, to finding A (9') when 9' is the region 

IX~ +X~I <1. (1) 

This is equivalent to finding the lower bound of the values taken by 
a binary cubic form with negative discriminant. This question was 
discussed but not answered in Chapter II. The proof given here is ~ 
conflation of several given by MORDELL. It uses essentially the algebraic 
background. We remark in passing that MORDELL (1946a) has shown 
that the result obtained generalizes to all regions which look sufficiently 
like (1). Similarly, BAMBAH (1951a) has proved a result to show that 
all sets which look sufficiently like 

(2) 

do, in fact behave like (2). The set (2) corresponds to binary cubic 
forms with positive discriminant in the same way as {1} does to those 
with negative discriminant. For example BAMBAH'S result applies to 
regions 9' with hexagonal symmetry and six asymptotes at angles :rt/3, 
the set of points between two asymptotes which do not belong to 9' 
being convex. Compare Chapter X, § 3.3. 

Finally, in § 7 we use MINKOWSKI'S theorem to obtain some results 
about the representations of numbers by quadratic forms; for example 
that every prime p = 4m + 1 can be expressed as the sum of the squares 
of two integers; p = u~ + u~. This is all rather aside from the main 
theme of the book but the proofs are so elementary and so striking 
that they deserve to be better known. 

III.l.2. It is convenient to introduce here some important defini­
tions and notions. 

The length of a vector :ll = (Xl' ... , xn), namely 

(x~ + ... +x!)l 
Cassels, Geometry of Numbers 5 
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will, as usual, be denoted by 

It satisfies the "triangle inequality" 

for all vectors z and y. The length o~ a vector is not an invariant under 
all unimodular transformations, unlike most of the concepts we work 
with, but we shall be concerned only with the topology induced by the 
metric Izl and not the metric itself. Let 

(1~i,i~n) 

be a real transformation of determinant 

Clearly 

where 

lyl2 = ~ (~>XijX;t;£ n3A2 'Lx: = n3A21 z 12, 

A = max IOCi;l. 
Since det(oci;)=t=O, we may solve (1) for the xi and obtain, say, 

(1) 

(2) 

X,='LPiiYi' (3) 

Then similarly 

where 

; 

IzI2~n3B2IyI2, 

B = max IPiil. 
Hence there exist constants cl • c2 independent of z and y such that 1 

(4) 

We shall often make use of the following consequences without 
explicit reference. 

LEMMA 1. Let A be a lattice in n-dimensional space. Then there exist 
constants 'YJl. 'YJ2 depending only on A with the following properties 

(i) If uEA, vEA and lu-vl<'YJl' then u and v are identical: 
(ii) The number N(R) of points of A in a sphere Izl <R is at most 

1/2 (R" + 1). 
Both of these statements are trivially true for the lattice Ao of 

points with integer coordinates. But now (d. § 3 of Chapter I) if A 

1 This is a particular case of a result to be proved later (Chapter IV, Lemma 2 
Corollary). 
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(1~j~n), 

then the points of A are just the points (3) with Y E Ao. The truth of 
(i), (ii) in general now follows at once from (4) and the truth of (i), (ii) 
for Ao. 

111.1.3. We say that a sequence of vectors J!, (r = 1,2, ... ) con­
verges to the vector J!' as limit if 

lim I J!, - J!'I = 0 

in the usual sense. Clearly a necessary and sufficient condition for this 
is that the co-ordinates of J!, should converge to the corresponding 
co-ordinates of J!', since clearly 

maxlxil ~IJ!I ~nimaxlxil 

for any vector J! = (Xl' ... , X,,). An immediate consequence of Lemma 1 
ci) is that a sequence of vectors u, of a lattice A can converge only if u, 
is the same for all sufficiently large r, say 

u,=u' 

A set [I' of points is said to be compact if every sequence of points 
J!,t [I' contains a subsequence Y. =J!" (rl <r2<···) which converges to 
a limit in [1': 

lim y; = Y' E f/ . 
5-+00 

A classical theorem of WEIERSTRASS states that a set [l'in n-dimensional 
euclidean space is compact if and only if it is both bounded (i.e. con­
tained in a sphere I J! I < R for some sufficiently large R) and closed 
(i.e. if J!, E f/ (1 ~ r < (0) and J!' = lim J!, exists, then J!' E f/). 

For the sake of completeness we give a proof of WEIERSTRASS'S theorem. 
Suppose first that .9' is a compact set. If.9' were unbounded, we could find a 
sequence of points iX,E.9' such that J iX,J- 00, and then it clearly cannot contain 
a convergent subsequence. Hence a compact set .9' is bounded. If.9' were not 
closed, we could find a sequence of points iX,E.9' such that lim iX, = iX' is not in .9'. 
Clearly every subsequence of the original sequence tends to IX'. Hence a compact 
set .9' is closed. Now let .9' be a set which is both bounded and closed. We shall 
show that .9' is compact. Let iX, (1 ~ I' < 00) be a sequence of points of .9'. We 
may suppose that originally all the iX, are contained in a n-dimensional cube ~o 
of side 2R for some R. This cube may be dissected into 2" cubes of side R by 
taking planes through the centre of 'to parallel to the faces. For definiteness we 
take the cubes of side 'to to be closed, that is to include their boundary points. 
At least one of the cubes of side R must contain iX, for infinitely many 1'. Let'tl 
be one of these. On repeating the original process with 'tl instead of 'to we obtain 
a cube 't2 of side t R contained in 'tl which contains iX, for infinitely many r. 
And so on. In this way we obtain a sequence of cubes 'ts (0 ~ S < 00)' of side 

5· 
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21-. R. such that ilS+1 is contained in il.. Each ils contains ;E, for infinitely 
many". The cubes '1/. define a point ;E' which is contained in all of them. We may 
now find a subsequence ;E" tending to ;E' as follows: ;E" is any point of the original 
sequence in ilo: if "1' ...• ". have already been fixed with 

then ".+1 is anyone of the infinitely many indices" >". such that ;E, is in ils' 
Finally. since 

;E' = lim ;E, • 
s~oo ' 

the point ;E' is in Y, since Y is assumed closed. 

There is a form of WEIERSTRASS' Theorem which is apparently 
more general. Let 

~", (1~k~m, 1~r<oo) 

be a sequence of sets A, of m points ~", in a compact set [/. Then there 
is a increasing sequence r l <r2 <··· of integers such that all the limits 

lim~.h 
s-+oo ' 

exist and are in [/. For if 

~", = (Xl"""" X"",), 

the sets A, may be represent by points X, with coordinates x;kr 
(1 ~i~n, 1 ~k~m) in nm-dimensional space. Clearly the set [/m of 
points X = (xi") with 

(xu, ...• XII") E: [/ (1 ~ k ~ n) 

is bounded and closed if [/ is. Hence the points X, have a convergent 
subsequence X", Then the rs clearly do what is required. 

[Alternatively one could make use of the so-called diagonal process. First 
pick out a subsequence 

of the A, such that Yl. is convergent. Then pick out a subsequence C,= (zu •...• Zmt) 
of the 8. such that z., is convergent. The sequence Zu is also convergent. being a 
subsequence of the convergent sequence YU' And so on. After m repetitions of 
the process one obtains the required subsequence.] 

111.1.4. By volume we shall mean in this book LEBESGUE measure 
unless the contrary is stated. We shall however have no need of any 
of the more recondite properties of measure; the sets we shall be mainly 
concerned with have a volume by any definition. for example the 
interiors of cubes or ellipsoids. 

111.2. BLICHFELDT'S and MINKOWSKI's theorems. We use the no­
tation and results of Chapter I. To BUCHFELDT is due the realization 
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that the following almost intuitive result forms a basis for a great 
portion of the geometry of numbers [BLICHFELDT (1914a)). 

THEOREM I. Let m be a positive integer, A a laUice with determinant 
d(A), and 9' a point-set 01 volume V(9'), possibly V(9') = 00. Suppose 
that either 

V(9') > md(A), 

V(9') = md (A) 

(1 ) 

(2) 

and 9' is compact. Then there exist m + 1 distinct points ~l' ... , ~"'+l 
01 9' such that the dillerences ~i -~; are all in A 

Let b l , ... , b" be any basis of A and .let f1J be the generalized paral­
lelopiped of points 

y1b1 + ... +y"b" 

Then f1J has volume 

Every point ~ in space may be put in the shape 

~=u+1', uEA, 1'Ef1J, 

(3) 

and this expression is unique, since the points of A are just the 
y1b1+ .. · + y"b" , where Yl' ... , y" are integers. 

This parallelopiped f1J will play an important part later (Chapter VII), 
where it will be called a fundamental paral1elopiped for A 

For each 11, E A let al(u) be the set of points v such that 

1'Ef1J. v +UE9'. 

Clearly the corresponding volumes V{al(u)} satisfy 

~ V {al (un = V(9'). (4) 
II 

Suppose now that the first alternative holds, namely V(9'»md(A), 
so that (4) implies 

LV {al (u)} > m d (A) = m V(f1J). 
II 

Since the al(u) are all contained in f1J, there must be at least one 
point 1'0 E f1J which belongs to at least m + 1 of the al(u), say 

1'oE: al(u;) (1 ~ i;;;; m + 1), 

where the 11,; are distinct. Then the points 

~;=1'o+u; 
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are in !/ by the definition of 9t(u), and 

Zi-Zj=Ui- uj {~o 
-r (i=j=j). 

This proves the theorem for the first alternative. 
Suppose now that the second alternative holds. Let s, (1 ;:;:;;r< 00) 

be a sequence of positive numbers and 

lim s, = O. 

For each r, the set (1 +s,)!/ of points (1+s,)z, ZE!/ clearly has 
volume 

Hence, by what we have already proved, there exist points 

Zj,<=(1+B,).9' (1;:;:;;j;:;:;;m+1) 
such that 

u.(i,i) (say) = Zi, - zi' {~/\o (i =j= i). } (5) 

By extracting suitable subsequences of the original sequences, and then 
calling them B" Zj, again to avoid introducing new notation, we may 
suppose, without loss of generality, that 

all exist. Since!/ is now assumed to be compact, the z; are in .9'. 
Then, by (5), 

Z: - z; = lim u,(i,j). ,_00 

But now the u,(i, i) are in I\. Hence (d. § 1.3) u,(i, i) is independent 
of r from some stage onwards: 

U,(i,i) = u'(i,i) 
Hence 

z· -z· = U t , , '(..) {E /\ } 
• 1 ,7 =l= 0 (i =l= j), ' 

as required. 
For later reference (Chapter VII) we note that in the proof for the 

first alternative we have implicitly proved the following: 

COROLLARY. Let.9' be any set 01 points and let 9;. be the set 01 points 
v of the fundamental parallelopiped which can be put in the shape 

V=Z-U, zE.9', UE/\. 
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Then 
V(~) ~ V(9"). 

If no difference Xl - x2 between distinct points of 9" belongs to A then 

V(~) = V(9"). 

The first paragraph is clear. The second follows since then no two 
9l(u) overlap. 

111.2.2. From Theorem I we deduce almost at once the following 
theorem which is due, at least! for m = 1 to MINKOWSKI ("MINKOWSKI'S 

convex body theorem"). 

THEOREM II. Let 9" be a point set of volume V(9") (possibly infinite) 
which is symmetric 2 about the origin and convex2• Let m be an integer 
and let A be a lattice 0/ determinant d(A). Suppose that either 

or 
V(9") > m 2"d(A), 

V(9") = m 2"d(A) 

and 9" is compact. Then 9" contains at least m pairs of points ± ui 
(1 ~i~m) which are distinct from each other and from o. 

Again we note that the possibility of infinite volume is not excluded. 
Theorem I applies to the set -l9" of points -l X, X E 9" which has 

volume rn V(9"). Hence there exist m + 1 distinct points 

(1~i~m+1), 
such that 

1 1 {EA } 
z:l:; - z:l:i =+= 0 (i =+= i) . 

We introduce an ordering of the real vectors and write 

if the first non-zero component of :l:1-X2 is positive. We may suppose 
without loss of generality that 

Put 

Then clearly 

1 The general case is apparently due to VAN DER CORPUT (1936a). 
2 For the definition of these terms see § 1.1. 
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are all distinct. But - X m+ I E f/ since X m+ IE f/ and f/ is symmetric. 
Hence 

U; = ix; + !(-xm+!) E f/ 

by the convexity of f/. This proves the theorem. 
For later use we note the 

COROLLARY. Let f/ be symmetric about the ongm and convex. 
A necessary and sufficient condition that f/ contain a point of /\ other 
than 0 is that there exist two distinct points ! Xl' ! X2 E! f/ whose differ­
ence !XI -!X2 is in f/. 

If f/ contains the point a E /\ then! f/ contains the two points !a 
and -! a whose difference is a; which proves part of the corollary. 
Conversely, as in the proof of the theorem, if ! Xl' ! x2 are given, then 
!xI - !x2 is in f/. 

Theorem II is the best possible of its kind for any m. For example 
the convex symmetric set 

(2~j~n), 

has volume m 2" but contains only m - 1 pairs of points of the lattice /\" 
of integral points other than 0 namely 

± (u, 0, ... ,0) (1~u~m-1). 

We shall return in Chapter IX to the general problem of finding 
convex symmetric sets of volume 2" d (/\) which do not contain any 
lattice points other than the origin. 

111.2.3. Important examples of a convex symmetric point set are 
those sets f/ defined by a set of inequalities of the type 

(1~l~L), 

where the ali are real or complex numbers. Such a set is clearly sym­
metric. It is also convex, since if x, yare in f/ and 

(O~).~1), 

then clearly 

I~ al;z;1 ~ ).I~ al;x;1 + (1 - ).) I~ al;y;1 ~ max {I~ ali x;I' I L ali y;l} . 
1 1 1 1 

For sets f/ of this kind one can relax the condition of compactness 
in Theorem II somewhat. We enunciate the theorem for the most 
important case when the ali are all real. It will be observed that the 
argument might be used for a wide class of convex sets Y. 
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THEOREM III. Let A be an n-dimensional lattice of determinant d (A) 
and let aij (1~i,i~n) be real numbers. Suppose that l Cj>O (1~i~n) 
are numbers such that 

CI • •• C" ~ I det (aij)i d (A) . 

Then there is a point U E A other than 0 satisfying 

ILaljUjl~CI 

I L a,iujl < ci 

Suppose, first, that 

(2 ~ i ~ n). } 

det (aij) =f: O. 

Then (d. Chapter I, § 3) the points X = (Xl' ... , X,,) defined by 

Xi = L aijxj XE A 
j 

form a lattice M of determinant 

d (M) = I det(aij) I d (A) . 

The inequalities (2) become 

IXII ~ CI 

IXil <ci (2 ~ i~ n). } 

(1 ) 

(2) 

(3) 

(4) 

These define a set !/ in the space of X of volume 2" ci ... c". Hence 
if there is strict inequality in (1) the theorem follows from the first 
alternative in Theorem II. Let now 8 be any number in 

0<8<1. 

Even if there is equality in (i), there is certainly a point X.E Mother 
than 0, with co-ordinates (Xlt , •..• X".), such that 

I X Ie I ~ CI + 8 < CI + 1 

IXi.I<Ci (2~i~n). 

But now there are only a finite number of possibilities for X., by 
Lemma 1 (ii). Since 8 is arbitrarily small, one of those possibilities 
must therefore satisfy (4). This proves the theorem unless det(aij) =0. 
But then it is readily verified that (2) defines a region of infinite volume. 
and so Theorem II certainly applies. 

111.3. Generalisations to non-negative functions 2• The results of 
§ 2 may to some extent be generalised to non-negative functions ",(x) 

1 Cj> 0 follows from (1) except when det(aij) = o. But we do not exclude this. 
2 The results of § 3 will not be used later. 
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of a vector variable~. We suppose that tp(~) is integrable and write 

V(tp) = f tp(~) d~, (1 ) 
- 00 <x,<oo 

where 
d~ = dx1 ... dx". 

This notation is justified, since if tp is the characteristic function of a 
sct Y, that is. 

tp (~) = { 1 if ~ E Y } (2) 
o otherwise, 

then V(tp) is just the volume V(Y) of Y. 
We now have the following simple analogue of BLICHFELDT'S 

Theorem I: 

THEOREM IV. Let tp (~) be a non-negative integrable junction and let 
A be a lattice oj determinant d (A). Then there is certainly a point Vo 

such that 
d(A) ~ tp(vo + u) ~ V(tp). 

uEII 

Before proving Theorem IV we note that it certainly implies the first 
alternative form of Theorem 1. For if tp is the characteristic function 
of a set Yand V(tp) = V(Y»md(A) for some integer m, then (3) gives 

~tp(vo + u) > m, 
u 

and so 
L tp(vo + u) ~ m + 1 , 
u 

since now tp (~) is given by (2). But this means that there are m + 1 
distinct vectors u i such that vo+ UiE Y, and this is just the conclusion 
of Theorem 1. 

The proof of Theorem IV follows that of Theorem 1. Let b1 , .•. , b" 
be a base of A, and ~, as before, the set of 

y1b1+···+y"b" (O~Yi<1); 

so that every ~ is uniquely of the shape 

~=v+U, VE~, uEA. 
Then 

V(tp) = f tp(~) d~ 

=~ ftp(u+v)dv 
uEII vE~ 

= J {~tp(u +v)} dv. 
VE~ uEII 

Since ~ has volume V(~) =d(A), the theorem now follows at once. 
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11.3.2. SIEGEL (1935il) has given a stronger form of Theorem IV which has, 
however, remained rather sterile of applications. For notational simplicity we 
enunciate it only for the lattice 110 of integral vectors. The function 

cp(v) = ~!p(v + U) 
"E A, 

(1 ) 

is periodic by definition. Its Fourier coefficients c (p) = C (PI' "', Pn), where pE 110 , 

are given by 
c (p) = J cp(t,) e-21Ii (pv) dv, 

9 

where (p v) denotes the scalar product 

PI VI + ... + Pn vn · 

On substituting (1) in (2), we have 

c(p) = J !pix) e- 21Ii (px) dx, 
- 00 < XI <00 

(1;;> i;;> u) 

since pu is an integer when pEllo' uEllo . In particular, 

Jcp(v)dv=c(o) = V(!p). 
9 

But now, by a fundamental theorem in the theory of Fourier series, 

J cp2(V) dv = ~ [c(p)i2. 
9 pEA, 

Since cp(u) :2: 0 for all v, there must be some Vo such that 

J cp2 (v) dv ~ cp(vo) J cp (v) dv = cp (vo) V(!p). 
9 9 

(2) 

(3) 

(4) 

(5) 

(6) 

On substituting the definition of cp (vo) and the values (3), (4), (5) in (6) we have 

L IJI (vo + te) = cp(vo) ~ V(!p) + {V(!p) }-1 L 1 f !p (x) e- 2ni (px) dx 12. (7) 
"EA, PEA. 

P400 
This is SIEGEL'S inequality. 

When a general lattice II is substituted for 110 on the left-hand side of (7) then 
11* must be read for 110 on the right-hand side, where 11* is the polar lattice of II 
defined in Chapter I, § 5. 

111.3.3. We now give RADO'S generalisation of MINKOWSKI'S convex 
body theorem II. [RADO (1946a), see also CASSELS (1947a).] RADO 

considered very generally a homogeneous linear mapping A of n-dimen­
sional vector space into itself given by 

(1 ) 

when X=Ax. We write det(A)=det(Aij). 

THEOREM V. Let 1p(x) be a non-negative junction oj the vector x in 
n-dimensional space which vanishes outside a bounded set, and suppose that 

1p (Ax - AY) ~ min {1p(X) , 1p (Y)} (2) 
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for all real vectors a: and y. Then 

(0) +~ '\1 (u);;::: I det(A)1 V( ) 1p 2 LJ 1p - d(lI) 1p 

for any lattice A, where 

"Ell 

V(1p) = J 1p(a:) da:. 
-00<"1<00 

(1 ~i:iO ,,) 

(3) 

Before proving Theorem V we note that it does in fact imply the 
first alternative part of Theorem II. Let 1p(a:) be the characteristic 
function of a convex symmetric set [1', so that V(1p) = V([I'). For A we 
merely take Aa: =ta:, so that det (A) = (t)". The condition (2) is certainly 
satisfied, since the right-hand side of (2) is 0 unless both a: and yare 
in [1'; and then 

Aa: - AY = ta: + t( - y) 

is also in [I' by the convexity and symmetry. On the other hand the 
left-hand side of (3) is P + 1, where p is the number of distinct pairs 
±uEA in [I' other than o. Hence if V(1p»m2"d(A), we have 1 +p> m, 
that is p ~ m; which is the conclusion of Theorem II. 

To prove Theorem V we need an elementary combinatorial lemma. 
LEMMA 2. Given any sequence of distinct vectors 

we can construct another sequence 

{W} :WO,W1, ... ,w" ... 

satisfying the following three conditions: 

(i)wo=o, 
(ii) W,=f= ±ws t"f r=f=s, 

(iii) every w, is the dillerence between two of the first r + 1 elements 
of {z}, say 

(4) 

We introduce an ordering of real vectors and write 

if the first non-zero coordinate of a:1 - a:2 is positive. If a:1 =f= a:2 then 
either a:1> a:2 or a:2> a:1 • We construct wo, ... , w" ... in turn, so that 

w,>o (r> 0). 

The vector Wo is given. Suppose that W o, ... , W,_1 have already been 
constructed, where r;;:;;1. There is a unique permutation Zkl(O~j~r) 
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of the vectors Zj (O~i~r) so that 

The r vectors 
Zkj - Zk. (i = 1, 2, ... , r) 

are distinct from each other and from o. Hence we may choose as w, 
one of them which is distinct also from the r -1 vectors WI' ... , W,-I' 

Since wi> 0 (1 ;;;'i~r) we cannot have w,= -wi' Hence the w, 
do what is required. 

Theorem V, will be an almost immediate consequence of the following 
Lemma. 

LEMMA 3. Suppose that (2) holds and that det (A) =!= 0, so that a trans­
formation A-I reciprocal to A exists. Then 

l: tp (A -1 U + A-I t) ;;;, tp (0) + l l: tp (u) (5) 
UE/\ UE/\ 

*0 
for every real vector t. 

For fixed t let z, be the sequence of vectors Z of 1\ such that 
tp(A-1 Z+A-1t»0 arranged so that 

tp (A -1 z, + A-I t) ;;:;; tp (A -1 Zs + A-I t) (r;;;' s). (6) 

Let w, be the corresponding sequence defined by Lemma 2. We apply 
(2) with 

x = x, = A-1 Zlr + A-It 

Y = Y, = A-1 Z mr + A-It, 

where lr and mr are defined by (4). Then 

min {tp (Xr) , tp (Yr)} ~ tp (A -1 Zr + A-I t) 

by (6), and since lr;;;'r, mr~r. But now, by (4) again, 

A(Xr - Y,) = wr 
and so, by (2) and (7) 

tp(Wr );;:;; tp (A-l zr + A-It). 

Similarly, on interchanging x, and Yr' we obtain 

tp (- wr) ;;:;; tp (A-1 zr + A-I t) . 

Hence, since tp;;:;;O, we have 

l:tp (u) ;;:;;tp(wol + l: {tp(Wr) +tp(-Wr}} 
UE/\ r>O 

;;:;; tp (A -1 Zo + A-I t) + 2 l: tp (A -1 Zr + A-I t) 
r> 0 

= - tp (A -1 Zo + A-I t) + 2 l: tp (A -1 U + A-I t) , 
u~/\ 

( 7) 

(8) 
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since every vector uEA with 1JI(A-1U+A-1 t) >0 occurs as a z,. But 
now (2) with y = x implies that 1JI (0) ~ 1JI (x) for any x, and in particular 

(9) 

The truth of the lemma follows now at once from (8) and (9). 

Finally Theorem V follows from (5) on integrating with respect to t 
over a fundamental parallelopiped f!P of A defined as in § 2.1. The 
left-hand side becomes 

j L~l(A-IU + A-I t)} dt =:: ooj;<~(A -1 t) dt = I det(A)1 V(1JI). 

(l"5,i"5, n) 

The right-hand side of (5) is independent of t and so, on integrating 
with respect to t, is merely multiplied by V(f!P) = d (A). This proves the 
theorem. 

RADO (1946a) discusses the homogeneous linear transformations A 
for which there is a function 1JI (x) which is not identically 0 satisfying 
(2). It turns out that A must satisfy pretty stringent conditions, and 
that taking multiplication by {- for A is in a sense on the borderline of 
what is possible. 

111.4. Characterisation of lattices. We are now in a position to 
give a characterisation of lattices in which the notion of a basis does 
not appear. 

THEOREM VI. A necessary and sufficient condition that a set of points 
1\ in n-dimensional euclidean space be a lattice is that it should have the 
following three properties: 

(i) If a and b are in 1\ then a ± b is in I\. 

(ii) A contains n linearly independent points ai' "', all' 

(iii) There exists a constant 'fj> 0 such that 0 is the only point of A 
in the sphere 

Ixl <17, 
where, as usual, 

Ixl = (x~ + ... + x~)~. 
By the definition and Lemma 1 every lattice satisfies (i), (ii), (iii). 

It remains to show that any set A satisfying (i), (ii) and (iii) is a lattice. 
We note first that it follows by induction from (i) that if c1 , ••• , cm 

are any points of A and u1 , ••• , Urn are integers, then 

Secondly, we show that if 

c j =(c1 j,···,cni ) 
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are n + 1 points of /\, then there are integers ui (1 ~ i ~ n + 1) not all 0 
such that 

LUiCj=O. 

For by Theorem II there certainly exist points (u1, ... , un+!) *0 of the 
(n + i)-dimensional lattice /\0 of integral vectors in the convex sym­
metric (n + i)-dimensional set [I' of infinite volume defined by the n 
inequalities 

I L Ci1Uil <'YJ/n (1~i~n). 
ISjSn+1 

Put 

so that trivially 

Then d = 0 by property (iii), as was required. 
N ow let Ml be the lattice with the basis ai' ... , a.. given by (ii). 

Then Ml is a subset of I\. If /\ coincides with Ml there is nothing to 
prove. If not, there is some vector h in /\ but not in MI. But now, 
on applying the result of the previous paragraph to the n + 1 vectors 
ai' ... , a .. and h, there must be .integers U 1 , ••• , un and v not all 0 such 
that 

(1 ) 

Here v * 0, since a1 , ••• , a.. are linearly independent. Further, 
v * ± 1 since h is not in Ml by hypothesis. We may suppose that b is 
chosen so that I vi in (1) is as small as possible. Let p be a prime divisor 
of v and write 

Then 
P hI = u1 a1 + ... + un an, 

where not all of u1 , ••• , un are divisible by p since hI is not in Ml (because 
v was chosen minimal). Without loss of generality, p does not divide UI , 

and so 
lp -mu1=1 

for some integers I and m. Put now 

a{ = tal - m b1 } 

a; = a j (2 ~ i ~ n), 
so that conversely 

a1 = pa~ + mU2a~ + ... + mu .. a~ } 

aj = a; (2~ j~ n) . 

Let M2 be the lattice with basis at. 

(2) 
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Then Ml has index p in M2 , so in particular 

d(M2) = P-Id(M1) ~ id(M1)· (4) 

But now, by (2), a basis of M2 is in A and so M2 is entirely contained 
in A. We may now repeat the argument. If M2 does not coincide with 
A there is a third lattice M3 which is in A and contains M2 as a sublattice. 
And so on. Now, by (4), 

d (M,) ~ id(M'-I) ... ~ (!),-l d (MI). 
If 

d (M,) < (rJln)", 

where 'fJ is defined in (iii) of the enunciation of the Theorem, then, by 
Theorem II, M, would contain a point d =1= 0 with 

(1~j~n) 

contrary to hypothesis. Hence the chain of lattices M1 , ... , M" ... must 
have a last, MR; and MR then coincides with A. 

111.5. Lattice constants. We must now introduce a number of new 
definitions relating to lattices and points sets. The new concepts will 
be subjected to a searching analysis in Chapters IV and V; here we just 
prove enough to show their use and to enable applications of MIN­
KOWSKI'S theorem to be made. 

Let g> be any point set. If a lattice A has no points in !7 other 
than 0 (if 0 is in !7), then we say that A is admissible for !7 or 
!7 -admissible. We call the infimum (greatest lower bound) of d (A) for 
all A-admissible lattices the lattice constant of !7 and write 

L1 (!7) = inf d (A) (A is !7-admissible). 

If there are no !7-admissible lattices then we say that !7 is of infinite 
type, and write L1 (!7) = 00; otherwise !7 is of finite type and 
O~L1(!7)<oo. An !7-admissible lattice A with d(A)=L1(!7) is said 
to be critical. Critical lattices playa very prominent role in Chapter V. 
Of course in general there is no reason why a general set !7 shbuld have 
critical lattices at all. 

Our definitions do not quite correspond with those of MAHLER 

(1946d, e). He is usually concerned with closed sets !7 and says that 
A is !7-admissible if no interior point of !7 except 0 belongs to A, that 
is if A is admissible in our sense for the set of interior points of !7. 
Our usage is a compromise between MAHLER'S and that proposed by 
ROGERS (1952a). 

111.5.2. The definition of L1 (!7) may be stood on its head: L1 (!7) is the 
greatest number L1 such that every lattice A with d (A) < L1 has a point 
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other than 0 in Y. The discussion of § 4 of Chapter I shows that many 
of the results of Chapter II may be interpreted as giving the value 
of L1 (Y) for certain regions Y. Take for example the statement that 
if /(;X:)=/l1x~+2/12XlX2+/22X~ is a definite quadratic form and 
D=/11/22-/~2' then there are integers u=(U1,U2)=FO such that 
/(u) ~(4D/3)!, withequalityonlyforformsequivalentto/ll (x~ + Xl X2+ x~) 
lTheorem II of Chapter II). This is equivalent to the statement that 

the 2-dimensional set P): X~ + X~ < 1 (1) 

has lattice constant L1 (P)) = (Wand that the critical lattices are pre­
cisely those with a base b1=(bll , b21), b2=(b12 , b22) such that 

(b11 Xl + b12 X2)2 + (b21 Xl + b22 X2)2 = X~ + Xl X2 + x~ (2) 

identically. The reader will have no difficulty in making the translation 
for himself (d. Lemma 4 of Chapter n. We can also make a geometrical 
interpretation of (2l. Put 

b11 = cos{), b21 = sin{}, 

b12 = cos1p, b22 = sin 1p. 

Then (2) is true provided that 

cos {} cos 1p + sin {} sin 1p = ! , 
that is provided that 

-{} - 1p = ± n/3 . 

Hence the critical lattice has as basis two points at angular distance 
n/3 on X~ + X~ = 1. A further point on X~ + X~ = 1 is b l - b2 , as is 
clear from (2). It is readily verified that the six points ± bl , ± b2 , 

± (b l - b2) are the vertices of a regular hexagon inscribed in X~ + X~ = 1. 

111.5.3. In this and in the next section we shall use MINKOWSKI'S 

convex body Theorem II to evaluate or estimate L1 (Y) for various 
sets Y. Theorem II is directly applicable when Y is symmetric and 
convex, since it asserts that then 

L1 (Y) ~ 2- 11 V(Y). (1 ) 

This applies for example to the circular discP): X~+X~<1 and gives 
L1 (P)) ~ n/4 = 0.785 .... , which may be compared with the exact value 
(!)t=0.866 ... obtained above. 

Even if our region Y is not convex or symmetric, we may obtain 
estimates for L1 (Y) below if a convex symmetric body .:T is inscribable 
in it. Clearly L1 (Y) ~ L1 (.:T) if .:T is a subset of Y, since every Y -admis­
sible lattice is automatically .:T-admissible. Hence 

Cassels, Geometry of Numbers 6 
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Consider for example the region 

This contains the convex symmetric region 

ff: I XII + ... + I X .. I < n 

by the inequality of the arithmetic and geometric means. Now ff is 
convex and symmetric, since it is defined by homogeneous linear in­
equalities, and its volume is 

Hence 
Ll (Y) ~ n"/n!. 

We shall later obtain a rather better estimate than this (Chapter IX, 
§ 8). We note the translation into the theory of forms: Let 

Lj(~) = L CjiX i 
I;:;;.;:;; .. 

be real linear forms in the n variables ~ = (XI' ... , x,,) with det (cij) * o. 
Then there exists an integral u*o such that 

117 L j (u) I ~ :~ I det (cii)!· 

MINKOWSKI'S convex body theorem also permits the evaluation of 
Ll (Y) for sets Y which are not symmetric in o. We reproduce here, 
with his kind permission, Professor MAHLER'S elegant treatment of the 
simplex, hitherto unpublished l . Let Y be an open simplex in n-di­
mensional space containing o. If the faces of Yare given by the equa­
tions 

(O~i~n), 

where the L j (~) are linear forms, then Y is the set of points satisfying 

(O~i~n). 

There is one non-trivial relation between the linear forms, say 

L I1.j Lj(~) = 0 
O;:;;i~" 

identically in ~, where the I1.j are real numbers, and without loss of 
generality 

11.0> o. 
1 It is given, however, in his mimeographed lecture course, Boulder (Colorado), 

U.S.A., 1950, together with other interesting results about non-symmetric sets. 
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If, say, Ct.l ~ 0, then Y would contain the infinite ray of points x satisfying 

(j=l=O,1); 

which is impossible, since Y is a simplex. Hence 

(O~j~n). 

We may suppose without loss of generality that 

and then 

where 

We show that 

Ct.o = 1 = min Ct.j' 
1 

Lo(x) = - L Ct.jLj(x) , 
l~j~n 

where V('if) is the volume of the parallelopiped 

(1~j~n). 

(2) 

(3) 

(4) 

(5) 

In the first place, if 1\ is a lattice with d(I\)<2~nv('if), then there is 
a point a=l=o of 1\ in 'if. By taking -a instead of a if necessary, we may 
suppose that 

and then 
(O~j~n) ; 

so a is in Y. Hence ,1(Y) 2; rnv('if). On the other hand, we shall show 
that the lattice M of points a such that 

(1~j~n) 

is admissible for Y. 

If a is in Y, we must have Uj~O (1~j~n), and minuj~-1 if 
a=l=o. But then, by (4), we should have 

Lo(a) = - L Ct.j Uj 2; 1; 

and so a is not in Y. Hence 0 is the only point of M in Y. Since 
d(M)=rnv('if), this completes the proof of (5). We note that 
2~n V('~) = I dol ~l, where do is the determinant of the n forms L 1 , .•• , L". 
By (3) and (4), do is the least in absolute value of the determinants of 
selections of n out of the n + 1 forms Lo, ... , Ln. 

Estimates of ,1 (Y) for non-convex sets Y may be obtained from 
Theorem I instead of Theorem II. Let fJ£ be any set such that all the 

6* 
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differences 
~l - ~2' ~l EfJl, ~2EfJl (6) 

lie in !/. Then 
LI (!/) ~ V(fJl), 

since by Theorem I if d(A)<V(fJl) there exist two points ~I'~2EfJl 
such that ~1-~2EA; and by hypothesis ~1-~2E!/. Of course if :Y 
is a convex symmetric set inscribed in !/ we could take fJl = i:Y: but 
then we get just the same estimate LI (!/) ~ z-" V(:Y) as by the use of 
Theorem II. However MORDELL and MULLENDER found suitable sets 
fJl in the case they were treating such that V(fJl) was greater than 
2-" V(:Y) for any convex symmetric inscribed :Y. The increases are 
usually comparatively small and obtained at the expense of some 
complication. We refer the reader to MULLENDER (1948a) and the 
literature quoted there for further information. 

In Chapter VI are obtained upper estimates for LI (!/) in terms of 
V(!/) which are valid for all sets (Minkowski-Hlawka Theorem and 
related topics). 

111.6. A method of MORDELL. In this section we develop a method 
of MORDELL for finding LI (!/) precisely for point sets !/ which mayor 
may not be convex. The method applies primarily to star bodies. 
This class of sets is defined by the properties that the origin is an inner 
point and any radius vector meets the boundary either not at all or in 
precisely one point: in other words, if ~ is any vector other than 0, then 
either tZE g for all t~ 0 or there exists a to such that tz is an inner 
point of !/, a boundary point of !/ or not in !/ according as t<to, 
t = to or t> to. We now have the I rather trivial 

LEMMA 4. Let!/ be a star body and suppose that a constant Llo exists 
with the following two properties. 

(i) every lattice A with d(A) =Llo has a point other than 0 in or on 
the boundary of !/. 

(ii) there exist lattices A, with d (A,) = Llo having no points other 
than 0 in the interior of !/. 

Then LI (!/) =Llo. If further, !/ is open l , then the critical lattices are 
lust the A,. 

For suppose, if possible that M is an !/-admissible lattice with 
d(M)<Llo. Let 1'>1 be defined by y"d(M) =Llo. Then the lattice I'M 
of points y~, ~E M has clearly no points in or on the boundary of !/, 
contrary to (i). Hence LI (!/) 6L10' On the other hand (1 +e)A, has 
no points in !/ for any e> 0, where A, is one of the lattices given in (ii). 

1 i.e. does not contain any of its boundary points. MINKOWSKI and following 
him MAHLER define a star body to be closed. We depart from their nomenclature. 
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Hence LI (9") ;£ (1 + t: t LI 0' so .1 (9") = LI o' The truth of the last sentence 
of the lemma is now obvious. 

When the description of star-bodies by distance-functions is intro­
duced in the next chapter, Lemma 4 will fall into place as part of a 
wider theory. 

MORDELL'S method of finding .1 (9") for a given star-body 9" may 
now be described. First one must make an intelligent guess Llo at LI (9"): 
in particular so that (ii) of Lemma 4 is true. If Llo has been correctly 
chosen, then it may be possible to verify (i) and to find all the Ac in 
(ii) by the following general procedure, of which the details naturally 
vary widely from case to case. We suppose for simplicity that 9" is 
open. Let M be any 9"-admissible lattice with d (M) = Llo. Then if 
~ (1 ;£ j;£ r) is any collection of closed convex symmetric sets each of 
volume 

(1;£ j;£ r), 

there must be points P;=FO of M in ~ for 1 ;£j;£r. Since M is 9"­
admissible, the P; must lie in fJt;, the set of points of ~ which are not 
in 9". We may now use the hypothesis that the Pi are in a lattice M 
of determinant Llo to obtain further points of M. Since these cannot 
lie in 9", this gives further information about the Pi' In the end it 
may be possible to show that M is one of a set of lattices A" all of which 
have points on the boundary of 9". Lemma 4 shows that LI (9") =.10 , 

Of course the power of the method depends on a suitable choice of the ~. 
MORDELL'S method is at its best in dealing with 2-dimensional 

regions, since for these it is easier to grasp the geometry of the figure. 
Before giving some concrete examples we must therefore study the 
geometry of a 2-dimensional lattice more closely. 

111.6.2. Throughout § 6.2 we denote by A a 2-dimensional lattice. 
We regard vectors as coordinates of points on a 2-dimensional euclidean 
plane, and use the normal geometric language to discuss their relations. 
By distance we mean the usual euclidean distance. For later reference 
we formulate our conclusions as lemmas. 

We say that a point u of a (not necessarily 2-dimensional) lattice 
is primitive if it is not of the shape u =ku1 , where U1EA and k>l is 
an integer. 

LEMMA 5. Let U be a primitive point of the 2-dimensional lattice A 
Then the points of A lie on lines IT, (r =0, ± 1, ... ) which are parallel 
to 0 U and at a perpendicular distance 

rd(A)/lul 

from it!. Each line IT, contains infinitely many points of A and these 
are spaced at a distance I u I. 

1 As before lui = (u~ + u:)l, that is the distance from 0 to u. 



86 Theorems of BLICHFELDT and MINKOWSKI 

This is just a re-statement in geometrical language of what is known 
already. Since u is primitive, there is a point v which with u forms a 
basis for A (Chapter I, Theorem I, Corollary 3). Hence 

det(u,v) = ±d(A), 

that is the perpendicular distance from v on the line through ° and u 
is d(A)Jlul. But now A is just the set of points 

rv + su (r, s integers). 

Clearly the points with r fixed but s varying lie on a line IT, with the 
required properties. 

LEMMA 6. Let u, v be points of the 2-dimensional lattice A such that 
0, u, v are not collinear. Then a necessary and sufficient condition that 
u, v be a basis for A is that the closed 1 triangle ouv should contain no 
points of A other than the vertices. 

The condition is clearly necessary, by Lemma 5, so we must prove 
it sufficient. If there are no points of A in the triangle ouv other than 
the vertices, then the same must be true of the triangles with vertices 

-u,o, v-u ( 1) 
and 

-v, u-v, 0, (2) 

since, for example if JJ is a point of A in (1), then JJ +u is a point of A 
in triangle ouv. Similarly there can be no points of A in the images 
of our first three triangles in the origin, since - JJ is in A if JJ is. Hence 
there is no point of Ain the hexagon .?Ie with vertices ±u, ±v, 
± (v - u) except ° and the vertices. By Theorem II 

d (A) ;;;:; ! V(.?Ie) =! I det (u, v)\ . 
But 

I det (u, v)\ = I d (A), 

where the integer I is the index of the points u, v in A (Chapter I, § 2.2) ; 
and so I = 1, as required. 

The analogue of Lemma 6 does not hold in space of dimension > 2. 

LEMMA 7. Let !2 be an open parallelogram with ° as centre of area 
4d (A), which contains no other point of A than 0. Then A has a basis 
consisting of the mid-point of one of the sides of !2 and a point on one of 
the other pair of parallel sides. 

1 i.e. the sides are counted as belonging to the triangle. 
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After a suitable transformation of coordinates, we may suppose 
that fl is the parallelogram 

fl: IXd<1, IX21<1 

and that d (1\) = 1. By Theorem III there is certainly a point of 1\ 
other than 0 in IX d ;;:;; 1, IX 21 < 1, and so 1\ must contain a point 

u = (1, u2) I u 2 1 < 1. 

Similarly, 1\ must contain a point 

v=(vI,1) 

But now, since d (1\) = 1, the index of (u, v) in 1\ is 

1= Idet(u,v)1 = 1- U2 V I • 

But I is an integer and I U 2 vII < 1. Hence 1=1 and either u2 = 0 or 
VI=O. 

LEMMA 8. Let 1\ be a lattice 0/ determinant d (1\) which has two points 
other than 0 in the closed parallelogram with vertices 0, a, b, a + band 
volume (area) d(I\). Then either 

or 

or 

(i) the two points are collinear with 0, 

(ii) one 01 the points is a and the other is on the line-segment b, a + b, 

(iii) one 0/ the points is b and the other is on a, a +b. 
For the points p, q, say, are of the type 

where 
0;;:;; Jli ;;:;; 1 , 0;;:;; "i;;:;; 1 (j = 1,2). 

The index I of p, q in 1\ is 

I = I Jll "2 - Jl2 "11· 
Hence Jll"2- Jl2"'1 = 0 or ± 1; which gives the three alternatives quoted. 

111.6.3. We first illustrate MORDELL'S method with an example 
where the amount of subsidiary argument required is a minimum. 

Let f be the cross-shaped 2-dimensional region defined by 

min {lXII, Ix2 \} < 1, max {lXII, Ix2 1} <!. 

We shall show that 
LJ(f) =2 
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and that the only critical lattices of :% are those with the following 
bases: 

Al basis (1.1) and (1. -1) 

AI basis (t. -t) and (-t.f) 
As basis (t. t) and (t. t)· 

It is readily verified that these lattices are :%-admissible and have 
determinant 2. Hence by Lemma 4. it is enough to show that any 

Xz :%-admissible lattice A with 
r----- -----, d(A) =2 must be one of AI' 
I h 0 : 

J---I------i.' A2 • As· 
/ ',0 From now on we / suppose / 0' 

i-- that 
I 
I 

d(A) = 2: A is :%-admissible. I 
I 0 
I 

0 
XI The convex symmetric oc-

I 
I C tagon 
I 
I ~: IXII <to L __ 

, , / , / IX21 <to , / 

I I IXII + IXII < i I I L _____ _____ J 

has area 
Fig. 5 ~ > 2I d(A). 

and so contains a point a =F 0 of A The only points of ~ not in :% 
are the four triangles with IXII ~ 1. IXII ~ 1 (see Fig. 5). Hence. by 
symmetry. we may suppose that A contains a point a = (a l • a2) with 

a: (1) 

By Theorem III there is a point b =F 0 of A in 

IXII < 1 IX21 ~ 2. 

On taking - b instead of b if necessary and using the fact that b is 
not in :%. we may assume that. the coordinates of b satisfy 

b: (2) 

Similarly there is a point c of A satisfying 

c: 

Now we show that a. b is a basis for A We have 
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and 
det(a,b)<1·2+1·1 =t, 

so 
det(a, b) = 2 or 4, 

since det (a, b) is an integral multiple of d (1\). Suppose first, if possible, 
that det (a, b) = 4, so that the index of a, b in 1\ is 2. For any integer 
k> 1 the points k-1a, k-1b clearly lie in .YI" and so are not in the .YI"­
admissible lattice 1\: that is a and b are primitive points of A We 
show now that l (b - a) is in A Since a is primitive there is a basis 
a,d where, say, det(a, d) =d(/\) =2. Than b=ua+vd for some 
integers u, v; and indeed v = 2 since det (a, b) = 4 = 2 det (a, d). Then 
u is odd since b is primitive, so {(b - a) is in 1\ as asserted. But 
} (b - a) is clearly in .:it, so we have a contradiction. Hence we can only 
have 

det(a, b) =2 =d(I\). (4) 
This gives the estimate 

(5) 

since otherwise we should have the contradiction 

Similarly 
det(a, c) = - 2 = - d(/\) (6) 

and 
(7) 

Since a, b is a basis for 1\ we have 

c=sa+rb 

for some integers r, s. On substituting this in (6) and using (4) we 
obtain r = - 1 and so 

b +c =sa 
i.e. 

But 
-~ < b1 + C1 < 3, 1 ~ a1 < I 

by (1), (2), (3); so there are only the two possibilities 

s = 1 or s = 2. 

First case s = 1. From (1), (2), (3) and (9) we have 

b1< 0, c2< 0. 

From (4), (5), (6) we have 
det(c, b) = 2 

(8) 

(9) 

(10) 
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that is 
c1 b2 - c2 bI = 2. 

But Cl~.i, b2~1 by (2) and (3); and O>bl~ -l, O>C2~ -l by (5), 
(7) and (10). Hence (8) can hold only if 

C1 = b2 = I, C2 = b1 = -l, 
which gives the lattice 1\2' 

Second case s =.2. By (1), (2), (3) and (9) we now have 

bl~O, C2~O. 

We now consider the lattice-point 

(db d2) = d = (b - a) = l' (b - c) . 

By (2), (3) and (11) we have 

o ~ 2d1 = bI - Cl~ - 2, 

O~2d2=b2-C2~2. 

(11) 

Since d cannot be in .:f(" we must have d1 = -1, d2= + 1; that is 
C1 = b2 = 2, b1 = c2 = O. This gives a1 = a2 = 1. Hence 1\ = 1\1 . 

In the proof we have made use of the symmetry of the figure. Since 
1\1 remains unchanged under transformation of .:f(" into itself, but 1\2 
and As may be interchanged, we have shown that 1\ is one of 1\1,1\2,1\3' 
as required. 

111.6.4. As a second example of MORDELL'S method we take the disc 

~: x~ +x~<1, 

which we have already discussed by other means (§ 5.2). We take 
,10= {!)I in Lemma 4. The lattices Ac certainly exist; since they can 
be taken to be the lattices with a basis consisting of two of the vertices 
of an inscribed regular hexagon. We shall show that if d (1\) = WI, 
then 1\ has a point other than 0 in ~ except when 1\ is a I\c. 

There are certainly points of 1\ in the circle 

x~+x:<2, 

since this has area 2n> 22> 22d (1\). Since 1\ is ~-admissible, the point 
must lie in 1 ~ x~ + x~ < 2. After a suitable rotation of the coordinate 
system we may thus suppose without loss of generality that there is 
a point p = (PI' P2) in 1\ with 

P2=-(i)l, l~Pl<l· 

But now, by Theorem III there is a point q = (ql' q2) other than 0 in 
the half-open parallelogram 

~: IXI + riX21 ~ 1, IX21 < VI 
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of area 2113= 4d (1\) (see Fig. 6). The only portion of fl not contained 
in !!) is the curvilinear triangle ~ cut off by the arc of the circle between 
a = (1,0) and b =(l, - VI) and the image of ~ in the origin. We may 
suppose without loss of generality that q is in ~. 

Cleariy both p and q are primitive, since, if either were of the shape 
ku with u"A and integer k>1, then u would be in!!). Further p=j=:q, 
since P2= - VI but \ q2\ < I T· We now apply Lemma 8. From what 

"\--------
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ (10)=0 

Fig. 6 

has just been proved, p, q, 0 cannot be collinear. Hence either p =b 
and q lies on the line-segment between a (inclusive) and a + b (exclusive) 
or q = a and p lies on the line-segment between b (inclusive) and a + b 
(exclusive); and by symmetry we may suppose the second holds. Then 
p - q = p - a lies between b - a (inclusive) and b (exclusive). The only 
one of these points not in £f} is b - a. Hence also p = b. Hence A 
is the lattice generated by a and b. Since we made an arbitrary rotation 
of the coordinate system this completes the proof of the result stated. 

111.6.5. As a final application of MORDELL'S method we prove a 
result about binary cubic forms which fills a gap left in Chapter II, § 5. 
We use the same notation. 

THEOREM VII. 11 l(x1 , x2) be a binary cubic lorm 01 determinant 
D<o, there are integers (u1 , u2)=j=:o such that 

\/(u)I~I~ll. 

The sign 01 equality is needed when and only when I is equivalent to a 
multiple 01 



92 Theorems of BLICHFELDT and MINKOWSKI 

This is the most important part of Theorem XI of Chapter II, which 
was left unproved. As already remarked, the form here is transformed 
into the form there by the substitution XI--+XI , X 2--+ - (x I+ x2). We 
already noted that the exceptional form does require the sign of 
equality since it has D = - 23 and represents only integers other than O. 

We must first express Theorem VII in a geometrical form. We saw 
in Chapter II that any two binary cubics with negative discriminant 
can be transformed into one another. It is convenient to take X1 + ~ 
with discriminant - 27 as standard. Then Theorem VII is equivalent to 

THEOREM VII A. Let 1\ be a lattice with 

( 23 )1 d (1\) = 27. = Llo (say) (1 ) 

in the two-dimensional space 01 vectors X = (XI' X 2). Then 1\ contains a 
point other than 0 in 

f/: IX~+X~I <1, (2) 

except when 1\ has a basis a = (aI' a2L b = (bl , b2) such that identically 

(3) 

In stating the equivalence of Theorem VII and Theorem VII A we 
have tacitly applied Lemma 4 to the star body f/. From now on we 
shall be concerned only with Theorem VII A. We use capital letters 
to denote points and coordinates, except that 0 is still the origin. 
Further, 1\ is a lattice with d(/\) given by (1) which has no point other 
than 0 in the set f/' defined by (2). The set f/' is shown in Fig. 7. 

First, since Llo < 1, there is certainly a point P =F 0 of 1\ in the square 

(4) 

Since P does not lie in f/', either P or - P must lie in the first quadrant 
and we may suppose without loss of generality that. 

O~1l<1, O~Pz<1. 

From Fig. 7 (or from elementary algebra) we must have 

ll+Pz~1. 

(5) 

(6) 

Suppose, if possible, that there were two such points, P and P'. Then 
their difference P"=P-P' satisfies (4). Hence on interchanging P 
and pi if need be, we may suppose that P" is in the first quadrant: 
of course it may coincide with P or P'. Hence 

p=p,+p". 
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But now, in the obvious notation, we have P;+P;~1, P;'+P;'~1. 
since neither P' nor pIt is in f/. Hence we should have 

in contradiction to (5). To sum up what we have proved so far: there 
is precisely one pair of points ±PE/\ other than 0 in the square 

o2L+P 

o 
2fl-P 

B 

Fig. 7 

\ 
\ 

! Xl! < 1, ! X 2 ! < 1. We denote from now on by P the point of /\ which 
satisfies (5) and (6). 

We now examine more closely the lattices which satisfy (3). We 
must make use of the algebra developed in Chapter II, § 5. Let AI, E I , 

A 2 , B2 be any numbers such that identically 

On equating the hessians of both sides, we obtain 
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The linear factors ·of both sides must coincide, and so, after inter­
changing AI, BI and A2, B2 if need be we have 

On comparing the coefficients on both sides of (7), we have 

A~+A~=1 

(9- V69)A~ + (9+ V69)A~ = o. 
This determines At Ag uniquely, and so AI' A2, BI , B2 since they are 
all real. 

Hence there are only two lattices of the type specified in the theorem, 
namely those with base 

A = (AI' A2), B = (BI' B 2), 

and 

respectively. 
The approximate values are 

Al : 1.014, A2 : - 0·347 

BI-:- - 0.017, B2 : 1.0005. 

All we shall in fact use are the inequalities 

The signs of A 2 , BI are easy to establish and, since 

A~ + A~ = B~ + Bg = 1, 

by (7), the rest follows. 
Comparison of discriminants on both sides of (7) gives 

27(AIBa - Aa B l)6 = 23, 
and so 

AIBa-AaBI= ±Llo, 

(8) 

where in fact the + sign holds, but we do not use this information. 
Let X =~~ be the transformation of the plane X = (Xl' X 2) into 

the plane z = (XI' xa) given by 

XI=AIXI-BIXa, X2=A2XI-BaX2' 



A method of MORDELL 

Then the region -r-l!l' of points -r-l X, X E!I' is given by 

IX~-XIX~-x~1 <1. 

Further, -r-l A is a lattice of determinant 

(d. Chapter I, § 3). 

95 

(9) 

The region -r-l!l' is shown in Fig. 8. The line Xl = 1 touches 10 (x) = 
xi - Xl X~ - X~ = 1 at X2= ° and meets it again at x2 =-1. The line 

X2 

----

o 
X, 

--
-:1-(lJI- --

x2 =1 meets xi-xlx~-x~=-1 at xl=O, ±1. Since no line meets a 
cubic curve in more than three points, it follows readily that the whole 
of the unit square 

lies in -r-l!l', except for a small region fJi in Xl < 0, X 2 < ° and the image 
- ~ of fJi in the origin. 

Suppose first that (1, 0)E-r-11\. Since d (-r-l A) =1, there are points 
of -r- l A on the line x 2 = 1 spaced unit distance apart, by Lemma 5. 
Since none of these can lie in -r-l!l' the only possibility is that -r-1 A = Ao, 

the lattice of points with integral co-ordinates. But then A = -r Ao, 
which is one of the exceptional lattices permitted by the theorem. 
Similarly, if (0, 1) E -r-1 A, then A = -r Ao. Hence from now on we may 
assume that 

(10) 

By Lemma 7, either there is a point q=l=o of A in the square !l, 
or (1, 0) E A, or (0, 1) E I\. But the second and third alternatives have 
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already been disposed of, and so, since q cannot lie in ",-1.9', we may 
suppose that q is in Bt. Further, q must be primitive, since if q =kqI, 
with integral k>1 and q I E",-lA, then qi would lie in IXII<j, IX21<t 
and so certainly 1 in ",-1.9', contrary to the hypothesis that ",-1 A is 
",-l.9'-admissible. Hence q is unique by Lemma 8. 

We require another point of ",-IA. The tangent to lo(~) =1 at 
(0, -1) is 

This meets fo(~) = 1 again at (...2...., - 28). Hence all of the parallelogram 
25 25. 

~': Ix11<1, IX1+3x21~3 

lies in ",-1.9' except for the points ± (0, 1) and a region or in X2 < 0, 
Xl> 0 and its image in the origin. But now, by Theorem III, there is 
a point P of ",-1 A in ~' and, since ",-1 A is ",-I .9'-admissible, we may sup­
pose by (10) that P is in .r. The point p is primitive since if p =kpi 
with integral k>1, then PI lies in IX11 ~t, IX21~-i, so PIE ",-1.9'. 
An application of Lemma 8 shows that P is unique. 

We note that the point 2q-p clearly lies in X1<O, x2>-1. 
Since the point q is the only point of ",-1 A in Bt, it follows that 2 q - P 
must lie in the region to(~)~-1. 

The next stage is to show that P and q form a basis for A. We have 

(11) 
and 

(12) 

Hence 

det ( ) _ p _ p {< 0 p, q - 1 q2 qi 2 > _ 1.1 - l.t> - 3. 

Since det (p, q) is a multiple of det (",-1 A) = 1, the only possibilities are 

det(p, q) = -1 
or 

det(p,q) = - 2. 

In the first case, p, q are a basis. Suppose, if possible, that det (p, q) 
= - 2. Since p is primitive, there is a basis p, '1', where det (p, '1') 
= ±d(A) = ±1. Write q=up+v'l' 

where u and v are integers. Then 

det (p, q) = v det (p, '1') , 

1 For then I/o(%lI :5lxlI3+ Ix1 11x212+ IX213<t< 1. We shall not explicitly give 
such trivial estimations later. 



A method of MORDELL 97 

so V = ±2. Now u must be odd, since q is primitive, and so 

t = Hp - q) E-r-1 /\.. 

But then, by (11) and (12), 

o < tl < 1, - i < t2 < 0; 

a trivial estimation shows that I/o(t)I<1, and so t would be in -r-I 9', 
contrary to hypothesis. 

To sum up: there is a basis PE.'T, qEfJl of -r-11\. The point 2q- P 
lies in 10 (x) ~ - 1. There are no other points of .-1/\. in f/ or fJl. 

We must now translate our facts about -r-1 /\. into facts about I\. 
We write 

The region -r fJl is bounded by the curve 

X~+X~=1 , 

the transform of 10 (x) = 1, and the line-segment joining the points 

-r(O,-1)=B, -r(-1,-1)=-A+B, 

and so is roughly as shown in Fig. 7. The point 

Q (say) =-rq 
lies in -r fJl. 

Similarly -rf/ is bounded by Xi + X~ = 1 and the tangents at 
-r(O, -1)=B and at -r(1,O) =A. We now show that -rf/lies in 

(13) 

Indeed, since B 2> 1, the tangent to X~ + X; = 1 at B has negative 
gradient and so meets Xi +X~ = 1 again at a point in (13). Since-rff 
lies below this tangent, its points satisfy X 2< 1. Similarly, since AI> 1, 
the points of -rff satisfy X 1 <1. They clearly satisfy X 1 >O, X2>O. 

But now we saw earlier that there is only one point, P, of /\. in (13). 
Since -rp is in -rf/ we must have 

-rp =P. 

To sum up the results of our translation: there is precisely one point 
Q E /\. in -r fJl. This point Q together with the unique point P of /\. in 
(13) form a basis for I\. The point 2 Q - P lies in Xi + X~~ -1-

Let £' be the mirror image of -r fJl in XI + X 2 = O. By symmetry 
there is precisely one point L, say, of /\. in £': this point together with 
- P forms a basis for /\., and the point 2L + P lies in Xi + X~~ 1-

Cassels, Geometry of Numbers 7 
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But now every point of the triangle oLQ is in one of the regions 
Y, T 31 and.Yf'. By hypothesis there is no point of 1\ in Y, and we 
proved that Q, L are the only points of 1\ in T 31,.Yf' respectively. 
Hence Q, L forms a basis of 1\ by Lemma 6. 

We have three bases P, Q: Q, Land L, -P for 1\ and must study 
their relations. Now 

det (P, Q) = det (Q, L) = det (L, - P) = d (1\), 

since the determinants are ± d (1\) and are clearly positive. Write 

P=uQ+vL. 

Then 

Hence 

det (P, Q) = v det (L, Q), 

det (P, L) = u det (P, Q) . 

P=Q-L. 

We have now reached a contradiction, since 

2Q -P=2L+P, 

and this point has been shown to lie both in X~ + X~;S; 1 and in 
X~ + X~;;;; -1. The contradiction shows that there are no Y-admissible 
lattices with d (1\) = Llo except those mentioned in the enunciation of 
the theorem. 

We have shown rather more. Let the line joining Band - A + B 
(which forms part of the boundary of T3I) meet Xl +X2 =O in the 
point (- c, c). Then it is clear that our argument shows that there is 
a point of every lattice 1\ with d (1\) ;;;; Llo in the bounded region 

I X~ + X~ I < 1 , max {i XII, IX 21} ;;;; c, 

except when 1\ is one of the two critical lattices. That is, I X~ + X~ I < 1 
is boundedly reducible and indeed fully reducible in the sense of 
Chapter V, § 7. 

111.7. Representation of integers by quadratic forms 1. In this 
section we digress to present a number of results in the arithmetic 
theory of quadratic forms which can be proved very simply by the 
methods of the geometry of numbers. The principle tool is the following 
lemma. 

LEMMA 9. Let n, m, kl' ... , km be positive integers and ajj (1;;;; i;;;; m, 
1 :;;'j:;;' n) be integers. The set /\ 0/ points u with integral co-ordinates 

1 This section is not used later. 
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satisfying the congruences 1. 

L aijUj == 0 (ki ) 
l:,>j:'>n 

is a lattice with the determinant 

99 

That A is a lattice follows, for example, from Theorem VI. Two 
points u and v of the lattice Ao of all integral vectors are in the same 
class with respect to A if and only if 

L aijuj == L aijvj (k i ) (1~i~m). 
i i 

Hence the index I of A in Ao, that is the number of classes, is at most 
II ki' so 

d (A) = I d (Ao) ~ II k i 
i 

(compare Lemma 1 of Chapter I). 

III. 7.2. As a first example we show that every prime number 
p == 1 (4) is the sum of the squares of two integers. For then, as is well 
known, there is an integer i such that 

i2 + 1 == 0 IP). 

The set of integers (u1 , u2) such that 

u2 == iU1 (P) (1 ) 

is, by Lemma 9, a lattice A of determinant dIA)~p. Hence by MIN­

KOWSKI'S convex body Theorem II there is certainly a point of A in 
the disc 

~: x~ +x~< 2P 

of area V(!Zl) =2ilP>22dIA). Hence there are integers U 1 , u2 not both 0 
satisfying (1) and 

But (1) implies 
u~ + u~ - f4~ (1 + i2) == 0 (P) • 

and so u~ + u~ = p, as required. The method is readily extended to show 
that a positive integer is the sum of two squares provided that it is 
not divisible by a prime p = -1(4). 

111.7.3. As a second example, we shall show that every positive 
integer m is of the shape 

m = u~ + u~ + u~ + U: 
1 By a"", b (k) we mean that a - b is divisible by k. 

7* 
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with integral uI , u2 , u1 , u4 • We may suppose without loss of generality 
that m is not divisible by a square other than 1, so 

m=PI"'Pg , 

with distinct primes PI' "', pg • We now show that to every prime P 
there exist integers ap ' bp such that 

a! + b! + 1 == 0 (P) . (1) 

Indeed when P is odd the numbers 

(0;;:;; a < iP)' (2) 
and 

-1- b2 (3) 

are each a set of i (P + 1) integers which are incongruent modulo p. 
Since there are only P classes modulo P, there must be some integer c 
which is congruent to an element of each set (2) and (3), that is 
a~ == c == - 1- b!, so a~ + b~ + 1 == O. If P = 2, then a2 = 1, b2 = 0 will do. 

We now consider (d. DAVENPORT 1947b) the lattice of integral 
U = (u1 , ••• , u4) which satisfy the 2g congruences 

U 1 == ap u3 + bpu4 

u2 == bp u3 - ap u4 

(P) } 
(P) 

(4) 

for P = PI' ... , pg • By Lemma 9, these form a lattice 1\ of determinant 

d(/\) ~ pi ... p~ = m 2• 

Hence there is a lattice-point other than 0 in the set 

x~ + x~ + x~ + x: < 2 m 
of volume 

in2(2m)2> 24m2~ 24d(I\). 

If u is this point, then 

o < u~ + u~ + u~ + u: < 2 m 
and, by (1) and (4), 

u~ + u~ + u~ + ui == (a! + b! + 1) u~ + (a~ + b~ + 1) u~ == 0 (P) 

for P = PI' ... , P g; that is m divides u~ + ... + u~. This proves the result. 
111.7.4. A famous theorem of LEGENDRE states that a ternary 

quadratic form t (Xl' X 2 , x3) with rational coefficients represents 0 if 
obviously necessary congruence conditions are satisfied. Following 
DAVENPORT and MARSHALL HALL (1948a) and MORDELL (1951 a) we 
verify this in a particular case, to which indeed the general case may 
be reduced by simple arguments. 
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Let 
1(:£) = al X~ + a2 X~ + a3 xt 

where aI' a2, a3 are square-free integers no two of which have a common 
factor, so al a2 a3 is square-free. We show that there exist integers u*o 
such that I (u) = 0 provided that the following two .conditions are 
satisfied 

(i) there are integers AI' A 2, A3 such that 

al + A~a2 == 0 (a3), a2 + A~a3 == 0 (al) , a3 + A~al == 0 (a2) 

and 

(ii) there are integers VI' V2 , V3 not all even such that 

2 + 2 + 2 0 (22+A) , al VI a2 V2 aaV3 == 
where A. = 1 or 0 according as ~a2a3 is even or odd. 

Let 
laI a2a31 =2ApI,,·Pg 

where PI' "., Pg are distinct odd primes and A. = 1 or O. We shall take 
for 1\ the integral vectors U=(UI , U2 , u3) satisfying the following con­
gruence conditions. 

(I) Let P be one of PI' "., pg • By symmetry we may suppose that 
a3 == 0 (P). We impose the condition 

u2 == A3 uI (Pi· 
Then 

al u~ + a2 u~ + a3 u~ == al u~ + a2 u~ == (a l + a2 A~) u~ = 0 (P) . 

(II",) Suppose A. =0, so aI' a2 , aa are all odd. Now 

v2 == 0 or 1 (22) 

for any integer v. In condition (ii) precisely one of VI' V2 , Va must be 
{'ven, say V3 • Then 

o == al v~ + a2 v~ + aa v= == al + a2 (22) . 

We impose the two congruences 

(2), } 
(2) . 

Then 

(IIp) Suppose A. = 1, so one of ~, a2 , aa is even, say aa. Then 
2+ 2' al VI a2 V2 IS even, so VI' V2 are both even or both odd. If VI' V2 were 

even then 
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would be divisible by 22, so V3 would be even. Hence VI' v2 in (ii) must 
be odd, and 

since v2 = 1 (23) if v is odd. We impose the two conditions 

Then it is readily verified that 

al u~ + a2u~ + aau~ = O. (23) 

In any case the lattice 1\ of integers u has determinant 

d (1\) ~ 2H2PI'" Pg = 41 al a2aal, 

and the congruence conditions imply that 

al u~ + a2u~ + aau~ == 0 (mod 2A+2PI'" Pg = 41 al a2aa!)' 

But now, by MINKOWSKI'S convex body theorem, there is a lattice 
point not ° in the ellipsoid 

of volume 
fI: I a] I x~ + I a2 1 x~ + I asl x~ < 41 lIt a2 asl 

V(fI) = ~ . 25 1 a1 a2 tlal > 23 d(A). 
3 

If u*o is the lattice point in fI, we must have alu~+a2u:+tlaug=O, 
since it is divisible by 4~a2as; and 

We conclude with a couple of remarks. An obviously necessary 
condition for solubility of lIt u~ + a2 u~ t as u= = 0 is that lIt, as, as should 
not all have the same sign. We did not use this at all. Hence this 
condition must be derivable from the others. The reader migbt verify 
that this can be done by means of the law of quadratic reciprocity. 

In the second place we have not merely shown the existence of a 
solution, but we have shown that there is one which satisfies 

I all u~ + I asl u~ + I as I u= < 41 al as as I· 
The right-hand side here may be improved to 2tllItasasi by the use 
of the precise Theorem III of Chapter II instead of Theorem II, as the 
reader can easily verify. 
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IV.t. Introduction. In this chapter we introduce a number of 
concepts which are useful tools in all that follows. 

IV.t.2. A distance-function F(;lJ) of variable vector;lJ is any function 
which is 

and 

(i) non-negative, i.e. F(;lJ) ~ 0, 
(ii) continuous, 

(iii) has the homogeneity-property that 

F(t;lJ) = tF(;lJ) 

The set [/ defined by 

(t ~ 0, real). 

[/: F(;lJ) <1 (1 ) 

turns out to be a star-body in the sense already introduced in the last 
chapter: that is, the origin 0 is an inner point of [/ and a radius vector 

t;lJo (0 ~ t < (0) 

either lies entirely in [/ [which happens when F(;lJo) =0] or there is a 
real number to = {F(;lJo)} -1> ° such that t;lJo is an interior point of, a 
boundary point of or outside of [/ according as t<to, t=to or t>to. 
In § 2 we examine this relationship and show that conversely every 
star-body [/ determines a distance function F(;lJ) such that the set (1) 
is the set of interior points of [/. Since many, though not all, of the 
point-sets of interest in the geometry of numbers are star-bodies, the 
concept of distance-function plays an important rOle. 

Most of the problems considered in Chapter II relate to star-bodies; 
and then it is easy to write down the corresponding distance functions. 
For example if 1 (;lJ) is a positive definite or semi-definite1 form, the set 

1(;lJ) < 1 

corresponds to the distance-function 

F(;lJ) = {I (;lJ) }1t" 

where r is the degree of 1 (;lJ). Again, if 1 (;lJ) is an indefinite form of 
degree r andk>O is a number, then the set 

- 1 < 1 (;lJ) < k 

1 By semi-definite we mean that f (;E) Z 0 for all a: but f (;E) = 0 for some ;E * o. 
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corresponds to the' distance function 

F(3:) _ {k--1/'1/(3:)1 1/' if 1(3:) ~ 0, 
- . 1/(3:)1 11' if 1(3:) ~ O. 

The reader will readily verify that both the functions just defined 
are in fact distance-functions. One advantage of introducing distance­
functions is that some of the ideas of Chapter II can be carried over 
to all star-bodies. A simple example of a 2-dimensional set which is 
not a star-body is 

0<X1 X2 < 'I. 

Clearly star-bodies!/' which are symmetric, i.e. have the property 
that - 3:E!/' when 3:E!/' correspond to distance-functions which are 
symmetric in the sense that 

F( - 3:) = F(3:) . 

K. MAHLER (1950a) and C. A. ROGERS (1952a) have investigated a 
wider class of sets which ROGERS calls star-sets and which include the 
closed star-bodies as a sub-class. A star-set is a closed set such that 
t3: E !/' whenever 0 ~ t ~ 1 and 3: E!/'. They are important in connection 
with certain problems ("bounded reducibility" d. Chapter V, § 7) and 
we shall mention them again; but we refer the reader to the original 
memoirs for the details. 

IV.l.3. Convex sets:f( are important as MINKOWSKI'S convex-body 
theorem shows. It turns out that the convex sets which have the origin 
o as an interior point are precisely the star-bodies whose distance­
function satisfies the inequality 

F(3: + y) ~ F(3:) + F(y) . 

This we prove in § 3. We call such distance-functions convex. 
In § 4 we show that an n-dimensional convex set :f( has a tac­

(hyper) plane 1 at every point a on the boundary of :f(; that is a 
(hyper) plane 

which passes through a and is such that :f( lies entirely on one side 
of or in n; say 

(all 3: E:f() . 

Clearly if there is a tangent plane to:f( at a, then it is the only tac­
plane. But tac-planes exist even when tangent planes do not, and they do 

1 We use the words tac-plane and plane for tac-hyperplane and hyperplane. 
'When n = 2 the corresponding thing is called a tac-line. The term supportplane 
(German: Stiitzebene) is sometimes used. 
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not need to be unique: for example when a is a corner of the square 
I XII < 1, I x2 1 < 1. 

In discussing tac-planes it is convenient to introduce the polar 
body of a convex body; a notion which we shall in any case require 
in Chapters VIII and XI. Any plane n not passing through the origin 
can be put in the form 

n: y1x1+"'+Ynxn=1, 

and so may be represented as a point y = (YI' ... , YII) in n-dimensional 
space. It turns out that the points y corresponding to planes n which 
do not meet! f themselves form a convex set f*, say, the polar of f. 
Further, the relationship between f and f* is reciprocal in the sense 
that f may be obtained 2 from f* in the same way as f* was obtained 
from f. 

An example of a pair of polar bodies are the generalized cube 

~: maxlx;1 ~ 1 

and the generalized octahedron 

£1): 2:IY;I~1. 

It is easy to see that a plane 2: Y;x;= 1 for fixed y can contain a point 
of the interior of ~ only if y is not in £1); and vice versa. We discuss 
polar sets in § 4. 

There is a rich theory of convex sets but we do not prove more than 
is relevant to the geometry of numbers. For the rest the reader is 
referred to the report of BONNESEN and FENCHEL (1934a) or EGGLE­
STON'S tract (1958a). 

IV.2. General distance-functions. We set up now the relationship 
between distance functions and star-bodies sketched in § 1.2. 

THEOREM I. A. II F(x) is any distance lunction then the set 

Y: F(x) <1 

is an open star-body. The boundary 01 Y is the set 01 points x with 
F(x) = 1 and points with F(x) > 1 are exterior to Y (that is, have a neigh­
bourhood which does not meet Y). 

B. Conversely any star-body .r determines a unique distance-Iunction 
F(x). II Y is the set 01 interior points 01 .r then Y is related to F(x) 
in the way described in A. 

1 We say that two point-sets meet if they have a point or points in common. 
2 Strictly speaking the set .%'"** obtained from .%'"* coincides with.%'" except 

possibly on the boundary. The distance-functions of.%'" and.%'"** are thus the same. 
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We note first that two distinct star-bodies 9";. and 5; determine the 
same distance-function F(x) if they have the same set of interior points, 
but a distance-function defines precisely one open star-body, namely 
F(x) < 1 and one closed star-body, namely F(x) ~ 1. Distinct distance­
functions 1;, ~ always determine distinct star-bodies. For then 1; (xo) =1= 
~ (xo) for some xo' say Fl (xo) < F; (xo); and then there is a t such that 

1; (txo) < 1 < ~ (txo); 

so txo is in one star-body but not the other. 
The proof of Part A of the theorem is nearly trivial. If F(xo) < 1, 

then, by the continuity of F(x), there is a neighbourhood 

Ix - xol < r; 
of Xo which lies in Y; so Xo is an interior point of Y. Here we have used 
the standard notation 

Ixl = (x~ + ... + x!)~. 
Similarly, if F(xo) > 1, then there is a neighbourhood of Xo which does 
not meet Y. Finally, if F(xo) = 1, then every neighbourhood of Xo 

contains points txo both with t>1 and t<1, for which F(txo) > 1, 
F(txo) < 1 respectively: and so Xo is a boundary point of Y. 

It remains to prove B. If.'T is any star-body, we define a function 
F(x) as follows: 

(cx.) F(x) =0 if tXE.'T for all t>o. In particular F(o) =0. 
(p) If tx is not in .r for all t> 0 then, by the definition of a star­

body, there is a to=to(x»O such that tx is interior to or exterior to Y 
according as t < to or t> to; and tox is on the boundary of ,i/. vVe put 

Clearly, if F(x) is a distance function, then it is related. to the set Y of 
interior points of .r in the way described. Further, it follows trivially 
from the construction of F(x) that it satisfies two of the defining pro­
perties of a distance function, namely F(x) ~ 0 and F(tx) = tF(x) for 
all t> o. It remains only to show that F(x) is continuous. 

We show first that F(x) is continuous at o. By the definition of a 
star-body, the origin 0 is an inner point of .'T, so there is an r; > 0 such 
that the sphere 

is contained in.'T. Hence, if xo=l= 0, the vector 

t' x o, if = r;/I xol 
is certainly in .r, so 

F(xo) ~ r;-ll Xo I. (1) 
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Since 'YJ is independent of xo, this proves the continuity of F(x) at the 
OrIgIn. 

We now prove continuity at a point xo=l=o. Let e>.O be arbitrarily 
small. The point 

(2) 

is an interior point of 3 by the definition of F; and so there is a 
neighbourhood 

Ix - xII <'YJl' 

which lies in 3, that is, (3) implies 

F(x) ~ 1. 
Write 

.r = {F(xo) + etly, 'YJl = {F(xo) + et1'YJ2' 

Then (3) is equivalent to 

(4) 

(5) 

and, by the homogeneity property of F(x), which we have already 
proved, the inequality (4) is equivalent to 

F(y) ~ F(xo) + e. (6) 

We have thus found a neighbourhood (5) of Xo in which (6) holds. 
It remains to find a neighbourhood of points y in which 

F(y) ~ F(xo) - e. (7) 

If F(xo) ~ e, then (7) is true for all y, since F(y) ~ O. Otherwise one 
considers the point 

x 2 = {F(xo) - etlxo' 

This is an exterior point of 3 and then the argument goes as before. 
This completes the proof of the theorem. 

There is the trivial corollary of which we leave the proof to the 
reader. 

COROLLARY. Let ~ (x) and ~(x) be distance functions. The star-body 
~ (x) < 1 is a subset of the star-body ~ (x) < 1 if and only if 

(8) 
lor all x. 

We record for later reference two results, the first of which we have 
already proved. 

LEMMA 1. For every distance-function F(x) there is a constant C such 
that 

F(x) ~ Clxl 
lor all x. 
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LEMMA 2. A necessary and sulficient condition that the star-body 
F(or) < 1 be bounded is that F(or) =F 0 if or =F o. There is then a constant 
c> 0 such that 

(9) 
for all or. 

We proved Lemma 1 above with C =Tj-1, at least when or=FO; and 
it is trivial when or =0. If there is a oro=FO with F(oro) =0 then toro 
lies in F(or) < 1 for all t> 0, so F(or) < 1 cannot be bounded; which 
proves half of Lemma 2. Suppose conversely that F(or) =F 0 if or =F o. 
The function F(or) is continuous on the surface of the sphere 1 orl = 1 ; 
and so attains its minimum, say, at oro. Then F(oro) > 0, by hypothesis. 
Put F(oro) = c. Then F(oro) ~ c if lor 1 = 1; and so (9) holds by homo­
geneity. This completes the proof of Lemma 2. We note that if (9) 
holds, then F(or) < 1 is entirely in the sphere 1 orl < c-1. 

The following trivial corollary rids Lemma 1 of its dependence on 
the particular distance-function lor I. 

COROLLARY. Let ~ (or), ~ (or) be distance-functions and let ~ (or) < 1 
be a bounded set (i.e. ~ (or) = 0 only for or = 0). Then there is a constant C 
such that 

for all or. 
If, further, ~(or)<1 is bounded, then there is a c>O such that 

C 1\ (or) ~ r; (or) ~ c 1\ (or) . 

The second part of the corollary may be picturesquely summed up 
10 the slogan "for qualitative purposes there is only one bounded 
star-body". 

IV.3. Convex sets. A set.Yt' is convex if 

tor+(1-t)y (0<t<1) (1 ) 

is in.Yt' whenever or and yare in.Yt'. It is said to be strictly convex 
if the points (1) are all interior points of .Yt'. 

We show first that if or1 , ... , or, are any points of.Yt' and 

then 
(2) 

This is true for r = 2 by the definition of convexity, and it is true for 
r>2 by induction, since we may suppose that t1=F1, and then 

t1or1 + ... + t,or, = t1or1 + (1 - t1) y, 
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where 
t2 + + t, .go y=--:r2 ... --:r,EoA, 

1-tl 1-tl 

since it is of the shape (2) with r -1 summands. 
Almost immediate consequences are 

LEMMA 3. A convex set f in n-dimensional space either lies entirely 
in a hyperplane 

1T: PI Xl + ... + p" X" = k 
or it has interior points. 

LEMMA 4. A convex setf with a volume V(f) such that 0< V(f) < 00 

is bounded. 
For if f does not lie in a hyperplane it contains n + 1 points 

which do not lie in a hyperplane. The points L ti:ri with ti ~ 0, L ti = 1 
are just the points of the simplex with vertices :r1 , ••• , :r"H. The 
whole simplex must be contained in f, and since a simplex has interior 
points this proves Lemma 3. 

In Lemma 4, we note that f cannot lie in a hyperplane if V(f) > 0; 
so we may suppose without loss of generality after a change of origin 
that 0 is an interior point of f. There is then a number 11 > Osuch 
that all the vectors 

;-1 "-i 
~~ 

11 ei = (0, ... ,0,11,0, ... ,0) (1~j~n) 

are in f. If a = (aI' ... , a,,) be any other point of f, we shall show that 

max I ail ~ 11-,,+1 (n!) V(.~). 
1::;;1~" 

If, say, a1=FO, then the whole of the simplex with vertices 0, a, rJe2' 
... ,11e" is contained in f and has volume 

(n!)-l· 11"-ll ~I· 

Since this can be at most V(f), the result follows. 
Finally we prove 

THEOREM II. A convex body f of which 0 is an interior point is a 
star-body. The corresponding distance function F(:r) satisfies the inequality 

F(:r + y) ~ F(:r) + F(y) (3) 
for all :r and y. 

Conversely if F(:r) is a distance function for which (3) holds, then the 
star-body 

Ft:r) < 1 (4) 
is convex. 
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The converse is trivial. If F(x)<1, F(y)<1 and O<t<l, then the 
inequality (3) applied to tx and (1 - t) Y gives 

F{tx+(1-t)y}:£F(tx) +F{(1-t)y} 
= tF(x) + (1 - t)F(y) 
<t+(1-t) 
=1. 

It remains, then, only to verify the direct assertion of Theorem II. 
We define a function F(x) as follows: 

F(x) = inf t-I, (5) 

where the infimum is taken over all t such that 

t>O, tXEX". (6) 

Since 0 is an interior point of X", there certainly do exist t satisfying (6). 
It follows at once from the definition that F(x) ~ 0, F(o) = 0; and that 
F(sx) = sF(x) for all s ~ 0. Thus F(x) will be a distance-function if 
we can prove continuity. We first prove the functional inequality (3) 
and then deduce continuity from (3). 

Let x,y be any two vectors and s, t any two positive numbers such that 

SXEX", tYEX". (7) 
Then 

rsx + (1 - r) tYEX" 

if O<r< 1. We choose r so that this point is multiple of x +y, i.e. 

Then 

so 

Hence 

rs=(1-r)t; r=t/(s+t). 

~(X+Y)EX"; 
s + t 

F(x + y) :£ F(x) + F(y) 

since F(x), F(y) are the infima of S-I, t-1 over s, t respectively which 
satisfy (7). 

The function F(x) is continuous at 0 by the same argument as was 
used for distance functions. Since 0 is an interior point there is a neigh­
bourhood 

of 0 contained in X", and so 
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The continuity at a general point :ro is now immediate. We have 

and 
F(:ro + y) ~ F(:ro) + F(y) , 

F(:ro) ~ F(:ro + y) + F( - y) . 
Hence 

I F(:ro + y) - F(:ro) I ~ max F( ± y) ~ 'Y}-11 yl < e 
± 

for any given e>O, provided that Iyl <'Y}e. 
Finally we must verify that the set 

F(:r) < 1 

is in fact the set of interior points of f. A point :r with F(:r) < 1 is 
certainly in f since, by the definition of F(:r), there is a t> 1 such that 
t:rEf; and so 

is in f by convexity. Since F is continuous, the set F(:r) < 1 is open; 
and so all its points are inner points of f. Conversely, if :r is an inner 
point of f, there is a t> 1 such that t:rEf, and so F(:r) < 1 by the 
definition of F(:r). From the definition of F, no point :r with F(:r) > 1 
can belong to f. Points with F(:r) = 1 mayor may not belong to f 
but, since F(:r) is a distance-function, they must be boundary-points 
off. 

For later reference we enunciate formally a result we have just 
proved: 

COROLLARY. Let F(:r) be a non-negative junction of the vector :r which 
satisfies the two conditions 

F(tx) = tF(x) if t> 0, 

F(:r + y) ~ F(:r) + F(y) , 

and which is continuous at o. Then F(:r) is continuous for all :r; and so 
is a distance-function. 

IV.3.2. The next lemma is an essential preliminary to the treat­
ment of polar bodies and tac-planes. 

LEMMA 51. Let ~,Jt;; be a closed convex sets having no point in 
common. Then there is a hyperplane 

1T: PI Xl + ... + Pn Xn = k 

which separates ~ and Jt;: that is all the points of ~ are on the opposite 
side of 1T from those of Jt;. 

1 Proof given is valid only if at least one of .;t;, .)(2 is closed (as otherwise there 
need be no minimum distance). 
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Consider the distance l:rl - :r2 1 when :r1 ,:r2 run through the points 
of ~, %2 respectively. Since Jt'i and Jt; are closed, this distance 
attains its infinum at some points :rjEJtf (j = 1, 2); and :r~ =F:r~ since 
Jt'i and ·""2 have no points in common. We show that the hyperplane 1T 

which bisects perpendicularly the line-segment :r~:r~ will do what was 
required. After a suitable rotation of the co-ordinate system and a 
possible change of origin we may suppose that 

:r~ = (- 'f}, 0, ... ,0), :r~ = ('f}, 0, ... ,0) 

for some 'YJ> O. The plane 1T is then 

1T: x1 =0. 

Suppose, if possible, that there is a point z in Jt'i with ZI ~ O. By con­
vexity, the point 

z, = (1 - t):r~ + t z (0<t<1) 

is in ~. The distance 1 z,- :r~ 1 is given by 

1 z, - :r~12 = (2'f} - t'f} - tz1)2 + L (tz;)2 
2",;:;; .. 

= 4'f}2 - 4('f} +ZI)'f}t + o (t2) < 4'f}2, 

if t is small enough and strictly positive. This contradicts the definition 
of :r~ and :r~. The contradiction shows that z cannot in fact exist, and 
so proves the lemma. 

COROLLARY. II;;r is a convex closed set and a a point not in ;;r, 
there is a hyperplane separating % and a. 

For we may put Jt'i =% and take %2 to be the set consisting of a 
alone. 

IV.3.3. In introducing the polar set of a given convex set %, we 
confine attention to the case when % is bounded and can be described 
by a distance function; that is 0 is an inner point and 0< V(%) < 00 

by Lemmas 3 and 4 and Theorem II. If the reader is interested he will 
have no difficulty in extending the results to the other cases using 
Lemma 2. 

We write 
pa=pl~+ .. ·+p .. a .. 

for the scalar product of two vectors p and a. 

THEOREM III. Let F(:r) be the distance-/unctzon 
bounded convex set. For all vectors y let 

F*( ) _ a:y y -sup F( ). 
:I: ,*,0 a: 

associated with a 

(1 ) 



Convex sets 113 

Then F*(y) is the distance-function associated with a bounded convex set. 
The relationship is reciprocal in the sense that 

_ OlJY 
F(al) - sup P( ) . (2) 

II'*'O Y 

The functions F and F*, or the convex sets associated with them, 
are said to be polar to each other. 

We must first show that F* is well-defined. Since the body F(al) < 1 
is bounded, we have F(al) =F 0 if al =F 0 by Lemma 2, and indeed there is a 
constant c>O such that F(al)~Clall. Since alY~lalIlYI, it follows that 

F*(y) ~ c-1Iyl· (3) 

Immediate consequences of the definition are that 

F*(ty) = tF*(y) if t> 0, 
and 

F*(y) >0 if y=Fo. 

Now if Yl' Y2 are any vectors, we have 

F*(y + Y ) = sup :Jl(Yl + Y.) ::;; sup :JlYl + sup :JlY. I 
1 2 .., F(:Jl) -.., F(:Jl) .., F(:Jl) 

= F*(Yl) + F*(Y2)' 

(4) 

(5) 

(6) 

But now (3). (4), (5) and (6) show that F*(y) is the distance-function 
of a convex set, by Theorem II and its Corollary. This convex set is 
bounded because of (5) and Lemma 2. 

It remains only to prove (2); and here we need the convexity of 
F(al), which we have not yet seriously used. If al =0, then (2) is trivial, 
so let alo=FO be fixed. From (1) we have 

F(al) F*(y) ~ a:y (7) 

for all al and y: and so certainly 

F(a:o) ~ s~p F~o(:) • (8) 

Let e> O. Then by Lemma 5 Corollary there is a hyperplane TT separating 
alo from the set of a: such that 

(9) 

Since TT does not pass through the origin, it may be written in the shape 

TT: a:yo = 1. (10) 

Then F(a:) ~ (1- e)F(a:o) for all points a: on TT, since TT does not meet 
(9); hence 

(11) 

Cassels, Geometry of Numbers 8 
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since one need clearly only consider the x with xy = 1 in (1), by homo­
geneity, if y*o. Further, 

xoYo> 1, (12) 

since xi! is on the other side of 1T from the origin, which is a point of (9). 
From (11) and (12) we have 

sup~oJL;;::: a)oYo > (1 - B) F(x ) 
y F*(y) - F*(yo) 0 • 

(13) 

The required result (2) now follows from (8) and (13), since B is arbi­
trarily small. 

This concludes the proof of the theorem. The reader will be able 
to verify readily that the sets F(x) < 1 and F*(y) < 1 are related to 
each other in the way described in § 1.3. 

We have at once the 

COROLLARY 1 
F(x) F*(y) ~ xy 

lor all x, y For any Yo* ° there is an x o* ° such that 

F(xo) F*(yo) = xoYo; 
and vice versa. 

(14) 

We have already noted the first inequality, which is an immediate 
consequence of the definition. By symmetry it is enough to show the 
existence of xo, given Yo. The set fJI of points x with F(x) = 1 is 
bounded; and it is closed since F(x) is continuous. Hence the continuous 
function xYo attains its upper bound, say at xo. But we have already 
seen that the upper bound is F*(yo), so (14) must hold. 

We also shall need later 

COROLLARY 2. Let ~, Jt; be convex sets with non-zero volume having 
the origin as inner point and with respective polars ~* and :Yt;*. If .fl 

contains .)("2 then :Yt;* contains ~*. 

Let the corresponding distance functions be 1\ (x), F; (x), Fl*(X) , 
F2*(X). Then F;(x)~1\(x) by Theorem I Corollary. The definition (1) of 
the polar distance-function then gives immediately F2*(Y) ~Fl*(Y) for ally. 

The following corollary links polar distance-functions with the polar 
lattices and transformations introduced in Chapter I, § V. 

COROLLARY 3. Let F(x), F*(y) be a pair of mutually polar convex 
distance-functions. Let 't be a homogeneous linear transformation and 't* 

its polar transformation. Then F('tx) and F*('t*Y) are mutually polar. 

For by the definition of 't* we have 'tx't*Y =xy for all x, y. The 
truth of the corollary now follows from (1) and (2). 
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IV.3.4. A hyperplane 1T through a point Xo on the boundary of a 
convex set :fl is said to be a tac-plane to :fl at Xo if no interior point 
of:fl is in 1T. The following Theorem IV is an almost immediate con­
sequence of the results of § 3.3. We shall need Theorem IV in the next 
chapter, but § 3.3 only in Chapter VIII. 

THEOREM IV. Let:fl be any convex body with volume V(:fl) such 
that 0< V(:fl) < 00. Then at every point Xo on the boundary ol:fl there 
is at least one tac-plane. There are precisely two tac-planes to :fl parallel 
to any given hyperplane 1T. 

We may suppose that 0 is an interior point of <X". Let F(x) be the 
corresponding distance function. Then F(xo) = 1. By Corollary 1 to 
Theorem III there is a Yo=F 0 with 

(1 ) 
The plane 

(2) 

thus passes through xo' By the Corollary 1 to Theorem III we have 

x Yo ~ F{x) F* (Yo) , 

so F(x) ~ 1 for all points of 1T'. Hence 1T' contains no interior point 
of :fl, so is a tac-plane. 

Any plane (2) for fixed Yo is a tac-plane at some point xo' For by 
Corollary 1 to Theorem III there is an Xo such that (1) holds. 

Hence if Yo is any vector, the two planes 

xYo = F*(yo) 
and 

xYo = - F*( - Yo) (4) 

are both tac-planes. It is clear that they are the only tac-planes parallel 
to x Yo = O. The origin lies between the hyperplanes (3) and (4), and 
hence so does the whole of the interior of :fl. 

IV.3.S. In Chapter IX we shall need the following result. 

LEMMA 6. Let.x;. and ~ be open convex sets in n-dimensional space 
with 

0< V(X'j) < 00 (j =1, 2). 

Suppose that .x;. and ~ have no points in common but that a is a boundary 
point 01 both .x;. and~. Then there is a hyperplane through a which 
does not meet either .x;. or :fl2 (and so is a tac-plane to both .x;. and ~). 

The proof follows that of Theorem III. We may suppose without 
loss of generality that 0 is an inner point of .x;.. Let b be an inner 

8* 
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point of f 2 • Then Jt;. and ~ may be described by distance-functions: 

Jt;.: 1\ (x) < 1 , 

f 2 : ~(x-b)<1. 

For ·~·<t< 1 let f/ (i = 1,2) be given by 

fi: 1\ (x) ~ t, 

Jt1: F2 (x - b) ~ t, 

so that :xjt is a closed subset of.Ytf. By Lemma 5 there is a plane rr 
separating fi and fi. Since rr does not pass through the point 
o E fi, it has an equation 

Since t> i, the set fi contains a neighbourhood I x I ~ 1] of the origin, 
where 1] > O. Since no points of this neighbourhood lie on rr, we have 

(1~i~n). 

Since b is on the opposite side of rr from 0, we have 

L Pi/hi> 1. 
l~i~" 

(1 ) 

(2) 

By (1) and WEIERSTRASS'S compactness theorem, there exist pi which 
are the limits of Pit as t tends to 1 through a sequence of values 
t1<t2<···<tm <··· which is the same for each i. By (2) not all the pi 
are O. The plane TI' defined by 

L: P; Xi = 1 
i 

clearly has all the properties required. 

IV.3.6. The results of the rest of this § 3 will not be required until 
Chapter VIII, but it is convenient to give them here. They show that 
any two symmetric convex sets Jt;. and ~ with finite non-zero volumes 
behave similarly. 

For more precise results, generalisations to convex sets which are 
not symmetric, and references to the literature, see for example BAM BAH 
(1955 a), and for an interesting application see MAHLER (1955 a, b). 

A closed "generalized parallelopiped" in n-dimensional space with 
o as centre is the set of all points 

(1) 

where Xl' ... , x,. are fixed linearly independent vectors and tl , "', tn 
run through all real numbers in 

(2) 
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A closed "generalised octahedron" with 0 as centre is similarly the set 
of all vectors (1), where tl , ... ,tn run through all numbers in 

0) 

We first prove the following refinement! of a result of MAHLER 

(1939b). 
THEOREM V. Let f be any closed symmetric convex set with volume 

V(f) such that 0< V(f) < 00. Then there exist points ±X1 , ... , ±XnEf 
such thatf is contained in the parallelopiped'C with faces ±TIJ(1 ~ J ~ n), 
where TIJ is the hyperplane through the points xJ±Xj (j=t-j). Further, 
the generalized octahedron £& with vertices ± Xi (1 ~ j ~ n) is contained 
info 

The last sentence is in any case trivial by convexity. We take for 
Xl' ... , Xn points of f such that the volume of £& is a maximum. Such 
a choice is possible since f is closed and bounded. If f were not 
contained in 'C, there would be a point y on the opposite side of the origin 
from one of the faces ± TI J' say on the opposite side of TI". Then the 
generalized octahedron with vertices ±XI , ... , ±X,,_l' ± Y would have 
greater volume than £&, contrary to construction. 

COROLLARY 1. 

V(f) ~ V('C) ~ n! V(f) , 

V(f) ~ V(£&) ~ (n !tl V(f). 

For the left-hand inequalities are trivial, and the right-hand ones 
follow from them and V('C)~n! V(£&). 

COROLLARY 2. Let f, !l' be any two closed symmetric convex sets of 
finite non-zero volume. Then there is a homogeneous linear transforma­
tion ~ of the variables such that 

n-l~ ff (f (n~ ff 
and 

(n!tl V('t'") ~ V(~ ff) ~ (n!) V(f). 

Let Xl' ... , Xn be the points of the theorem for f and let Yl' ... , Yn 

be the corresponding points for ff. We determine ~ by the equations 

(1~j~n). 

Then the 'C, £& of the theorem are the same for f and ~ ff. The stated 
results are now trivial, since n-l'C(£&. 

1 Suggested by Professor C. A. ROGERS, who disclaims originality. The same 
method proves a corresponding result for non-symmetric bodies in which the 
inscribed and circumscribed bodies are both simplexes (d. MAHLER 1950a). There 
are also results about inscribed and circumscribed ellipsoids (J OH:-I 1948 a). 
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IV.3.7. As an application of the methods and results of § 3.6 we 
prove the following result about the volumes and lattice constants 
(Chapter III, § 5.1) of polar convex sets. We again denote the lattice 
constant of a set !7 by J(!7). 

THEOREM VI. Let f and f* be bounded symmetrical convex sets 
which are mutually polar. Then 

~ ~ V(f) V(f*) ~ 4n 
(n!)2 - -

and 
(/)2~ J(f) J(f*) ~ 1, 

where (/) is the lattice constant 0/ the octahedron L I xi I ~ 1. 

The first pair of inequality is MAHLER'S (1939a, b) and the proof 
of the second pair is practically identical. When n =2 MAHLER (1948a) 
has determined the best possible inequalities namely 

i~J(f) J(f*) ~1, 

equality on the left-hand side being necessary when f is a square and 
on the right when f is a circle. For related inequalities and references 
to later work see BAM BAH (1954c and 1955a). 

We now prove the theorem for the lattice constants. The proof for 
the volumes is similar. Let -r be any homogeneous linear transformation 
and -r* its polar transformation, so 

det (-r) det (-r*) = 1 . (1 ) 

The bodies -rf, -r*f* are mutually polar by Theorem III, Corollary 3. 
Since 

it follows from (1) that 

J{-rf) LI{-r*f*) = J(f) LI(f*). 

Hence neither the hypotheses nor the conclusion of the theorem are 
affected if f is subjected to a homogeneous linear transformation and 
f* to the polar transformation. 

Suppose first that f = fa is a parallelopiped. After the application 
of a suitable homogeneous linear transformation we may suppose 
without loss of generality that fo is the unit cube 

IXil~1 (1~f~n). 

We saw already in § 1.3 that fo* is the generalized octahedron 
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Hence 
A (fo) A (JtO*) = A (JtO*) = f/> 

by the definition of f/>. 
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(2) 

Now consider a general f, which we may suppose without loss of 
generality to be closed. Let ~ and !l) be the parallelopiped and octa­
hedron given by Theorem V so that 

(3) 
The polar of the parallelopiped ~ is an octahedron ~* which is inscribed 
in f* by Theorem III, Corollary 2. Similarly the polar of the octa­
hedron !l) is a parallelopiped !l)* and 

~*)f*)~*. 

We now show that 

where f/> is given in the enunciation. By Theorem V we have 

(4) 

(5) 

(6) 

But every octahedron may be transformed into any other by a homo­
geneous linear transformation, and so the ratio A(~)IV(!l)) is the same 
for all octahedra~. In particular, taking !l) to be L I Xi 1< 1, we have 

Similarly, 

LJ(!'J) _ n! r:p 
V(!'J) - 2" 

and (5) follows from (6). 

But now from (3) and (4) we have 

L1(f) L1(f*) ~ L1{!l)) L1(~*) ~ f/> L1{~) L1(~*) = f/>2, 

on applying (2) with JtO=~. Similarly 

L1{f) L1(f*) ~ L1(~) L1(!l)*) ~ f/>-1L1{!l)) L1(!l)*) = 1, 

on applying (2) with JtO=~*. 

IV.4. Distance-functions and lattices. In the further study of the 
relationship between star-bodies (and in particular convex bodies) and 
lattices it is convenient to work with distance-functions rather than the 
star-bodies themselves. We write 

F(I\) = inf F(a) , 
aEII 
a,*,o 

(1) 
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for any distance function F and lattice A. In the language of § 5.1 of 
Chapter III the lattice A is admissible for the star-body F(z) < k if 
k~F(A) but not if k>F(A). 

We have 
F(tA) = It I F(A) (2) 

for any real number t *' 0, where tA is the set of ta, aE A. If t> ° this 
follows from the property F(tz) = tF(z) of distance-functions, and if 
t< ° from the further observation that A contains - a if it contains a. 
I n particular, 

{F(t A)}" _ {F(A)}" 
d(tA) - d(A) , (3) 

where n is the dimension of the space. We sum up the properties of 
F(A) in the following theorem, which links our present point of view 
with that of § 5.1 of Chapter III. 

THEOREM VII. For any distance function F write 

~(F) = sup {F(A)}" 
II d(A) 

over all lattices A. Then ~ (F) < 00. Further, 

~(F) = {L1(9'n-1, 

where .1(9') is the lattice constant of the star-body 

9': F(z) < 1. 

If .1(9') = 00, then (5) is to be interpreted as ~(F) =0. 

(4) 

(5) 

If ~(F) *,0, then the supremum in (4) may be confined to lattices 
A with F(A) > 0, and then, by homogeneity, to those lattices with 
F(A) = 1. Such lattices are admissible for 9' by definition, and so they 
have d(A)~L1(A). This shows that 

(6) 

On the other hand, if A is 9' -admissible then F(A) ~ 1, and since there 
are 9'-admissible lattices A with d(A) arbitrarily close to .1(9'), by the 
definition of .1(9'), we must have 

~(F) ~ sup {d(An-l~ {L1(9'n-1• (7) 
II is Y·admissible 

Then (5) follows from (6) and (7). 

If ~(F) =0, then F(A) =0 for every A. From (7) this can hold only 
if there are no 9'-admissible lattices, i.e. if .1(9') = 00. Conversely if 
.1(9') = 00 and A is any lattice, the lattice tA is not 9'-admissible, for 
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any t>O: 
tF(A) = F(tA) < 1. 

Hence F(A) =0 on letting t-+ 00. 

We note also the rather trivial 

LEMMA 7. Suppose that the distance-function F(;£) vanishes only for 
;£ =0. Then every lattice A contains a point a=t=o such that F(A) =F(a). 
In particular, F(A) > O. 

For by Lemma 2 there is then a number c> 0 such that 

F(;£) ~ cl;£l. 
Hence 

F(;£) ~ F(A) + 1 (8) 
implies that 

1;£1 ~ c-1 {F(A) + 1}. (9) 

But now by Lemma 1 of Chapter III there are only a finite number 
of points of A for which 1;£ 1 is less than a given bound, and so there 
are only a finite number of points ;£ of A satisfying (9). If we take 
a =t= 0 to be one of those points for which F(a) is least, then a enjoys 
the properties required. 

Chapter V 

MAHLER'S compactness theorem 
V.I. Introduction. So far we have been concerned with one lattice 

at a time. In this chapter we are concerned with properties of sets of 
lattices. We first must define what is meant by two lattices A and M 
being near to each other; and this is done by means of homogeneous 
linear transformations. A homogeneous linear transformation X ="t';£ 
of n-dimensional euclidean space into itself is said to be near to identity 
transformation if the coefficients Tij in 

(1~i~n) 

are near those of the identity transformation, that is if 

(1~i~n) 
and 

1 1 (1 < '< 1 < '< ' -I- ') Tij = Z = n, = J = n, Z T J 

are all small. The lattice M is thought of as near to A if it is of the 
shape "t' A where "t' is near the identity transformation, and where "t' A 
denotes the set of "t'a, aE A. Roughly speaking, M is near to A if it can 
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be obtained from A by a small deformation of the underlying space. 
Convergence of a sequence of lattices AT to a lattice A' may then be 
defined in the obvious way. 

MINKOWSKI (1904a and 1907a) already used the idea of the con­
tinuous variation of lattices to show that a bounded convex set 

.9: F{x) < 1, (i) 

where F(x) is the corresponding distance function, always has a critical 
lattice A, in the sense of § 5.1 of Chapter III; that is 

and d (A,) is a minimum: 

F(A,) = inf F{a) ~ 1 , (2) 
"EA. 

,*,0 

d(A,) =.1(.9) = inf d{A). 
F(A)~l 

A critical lattice A, has the property that if it is slightly distorted to 
a lattice A with d (A) < d (A,) then F(A) < 1 ; that is A has a point other 
than 0 in.9. From this, MINKOWSKI obtained important properties of 
critical lattices and so gave an explicit process for finding .1(.9) for 
convex bodies .9, at least in 3-dimensional space. This was generalized 
and put on a more satisfactory basis by MAHLER (1946a), who gives 
general conditions under which a sequence of lattices A, should con­
tain a convergent subsequence. In this way he showed that any star 
body F(x) < 1 has a critical lattice if only there are any lattices A with 
F(A»O. In an important sequence of papers, MAHLER (1946a, b, c, d, e) 
extended much of MINKOWSKI'S work on critical lattice to general 
star bodies and made other applications of his compactness criteria. 
He has also [MAHLER (1949b)] considered the critical lattices of sets 
which are not star bodies, but we do not go into this here. 

In this chapter we first consider the properties of homogeneous 
linear transformations which are needed for the treatment of convergence. 
Then we prove MAHLER'S general criterion for a sequence of lattices A, 
to contain a convergent subsequence. After that, we study the pro­
perties of critical lattices of sets .9 taking in turn general star bodies, 
bounded star bodies, convex sets and spheres. As the sets become more 
specialized, there is more and more precise information about the critical 
lattices. Finally in § 10 we give an application to a problem in the 
theory of Dophantine approximation. 

V.2. Linear transformations. Convergence for lattices will be 
defined in terms of homogeneous linear transformations, already intro­
duced in Chapter I, § 3. We operate in n-dimensional space with some 
fixed euclidean coordinate system. If "Cij is a set of n2 real numbers, 
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we denote by 'tX the transformation of our space into itself given by 
the equations 

(1;;:;; i;;:;; n), 

where X ='tX. We write det('t) =det(Tii). If det('t) =0, the trans­
formation 't is singular: otherwise it is non-singular and possesses an 
inverse, which we denote by 't-1. By a +'t, where a and 't are trans­
formations, we mean the transformation 

(a +'t)x =ax +'tx; 

and by a't we mean the transformation 

(a't) X =a('tx). 

If a, 't correspond to the matrices of coefficients (Iii' and Tii' then the 
coefficients of a +'t and a't are clearly 

and 
(1 ) 

respectively. We denote the identical transformation 

by l. 
We require a measure of the size of the coefficients of the matrix 

of a transformation 'to We write 

11't11 = n max ITiil. 
Clearly 

11- 'tIl = 11't11, } 

Iia +'tll;;:;; Iiall + 11't11· 
(2) 

Further, 

Ila'tll;;:;; Ilallll'tll (3) 

since the coefficients of a't are given by (i). Further, if X ='tX we 
have trivially 

max IXil ;;:;; 11't11 max Ix;l· , , (4) 

From this it follows crudely that 

(5) 
sInce 

max Ix,1 ;;:;; I xl ;;:;; n~ max IXil , , 
for all x. 
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We shall also need to use the fact that if ~ is near to the identical 
transformation l, then ~-l exists and is also near to l. This statement 
is made more precise in the following lemma. 

LEMMA 1. Let ~ = l + a be a homogeneous linear transformation with 

lioll < 1. (6) 
Then ~ is nonsingular and 

p = l- ~-l (7) 
satisfies 

II II < Iiall p = 1 -ilail . (8) 

We note first that if p exists, the inequality (8) follows at once 
from (2) and (3). We have 

p = ~-lo = a - po; 
so 

as required. 
It remains to show that ~ is nonsingular; and for this it is con­

venient to use another characterization of II~II. Put 

~(x)=n-lLlxil, ~(x)=maxlxil· (9) 
i 1 

Then ~ (x) and ~ (x) are convex symmetric distance-functions vanishing 
only at 0, and 

for all x. Then clearly 

II~II = sup!2i~1 
.1',.,0 .F;.(or) 

(10) 

(11) 

for all homogeneous transformations~. For any x we have, by (10), 
(11), that 

~ (x) = ~ (~x - ox) ~ ~ (~x) + ~ (ox) 

~ ~ (~x) + ~(ox) ~ ~ (~x) + 11 all ~ (x), 

the last line by (11) with a for~. In particular, since 11011 <.1 by hypo­
thesis, we have ~ (~x) = 0 only when x = 0: that is ~x = 0 only when 
x = 0: so ~ is nonsingular. This concludes the proof. 

Our choice of 1I't11 to represent the "size" of 't is somewhat arbitrary. If F 
is the distance-function of a symmetric convex bounded body, an alternative would 
be to use 

( 12) 

The reader will have no difficulty in verifying that (2), (3) and Lemma 1 continue 
to hold when IIIIF is substituted for 1111. Since we have used lorl to denote the 
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size of the vector:l:, it might have been more tidy to use lI'tIlF., where 1<;,(:1:) = 1:1:1, 
to measure the size of't. We have chosen 1I't1l because of its simpler expression 
in terms of the Y'j. The choice of 1111 instead of some IIIIF is, for all essential 
purposes, irrelevant, since it follows from Lemma 2, Corollary of Chapter IV that 

where c; and c~ are numbers depending on the particular function F, but not on 'to 

We shall also need later two lemmas relating to distance functions 
and linear transformations. 

LEMMA 2. Let F(z) be a distance function such that F(z) =0 only for 
;l! = 0, and let 't be a linear transformation. Then there is a number C1 

depending only on F and 't such that 

F('t z) ~ C1 F(;l!) 
for all z. 

For 

is clearly a distance function. The result now follows at once from 
Lemma 2 Corollary of Chapter IV. If 't is non-singular we may apply 
Lemma 2 with 't-1 instead of 't and obtain the 

COROLLARY. If't is non-singular there is a constant Cz such that 

F(;l!) ~ czF('tz). 

LEMMA 3. Let F(z) be a distance function such that F(;l!) =0 only for 
;l!=0. Then to every 8 in 0<8<1 there is an 1]=1](8»0, depending 
only on F and 8, such that 

1 - £::;: F('t:l:l ::;: 1 + £ (13) 
- F(:I:) -

for all homogeneous linear transformations 't such that 1 

(14) 
and all z. 

By Lemma 2 of Chapter IV there exists a number c> 0 such that 

F(z) ~ clzl (15) 

for all z. Since F(z) is continuous in the sphere 1;l!1 ~ 2, there exists 
a number 1]1 in 0<1]1 < 1 such that 

1 F(;l!I) - F(zz)1 < c 8, 

whenever 

1 As before, L denotes the identical transformation. 
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In particular, this is true when 1~21 = 1; and so, by homogeneity, 

(16) 
whenever 

(17) 

But now, by (5) and (14), 

I't'~-~I =1('t'-l)~I~n!II't'-llll~1 <17I1~1; 

provided that n~1J <1JI; which we may suppose. 

But then from (15) and (16) with ~I ='t'~, ~2=~' we have 

IF('t'~) - F(~)I < tF(~), 

which is equivalent to (13). 

V.3. Convergence of lattices. If /\ is a lattice and 't' a non-singular 
homogeneous transformation, we saw already in Chapter I, § 3 that the 
set of 't'a, aE /\ is a lattice 't' /\ with determinant 

d('t'/\) = Idet('t')1 d(/\). 

If M is any other lattice, it may be put in the shape 

M ='t'/\ 

(1 ) 

for some non-singular homogeneous transformation 't', and indeed in 
infinitely many ways. For if aI' ... , an, b l , ... , b n are bases for /\ and M 
respectively, there is a uniquely defined homogeneous linear trans­
formation 't' such that 

(1~i~n); 

and then 
M ='t'/\. 

We say that a sequence of lattices /\, (1~r<oo) tends to the lattice 
I\' if there exist homogeneous linear transformations 't', such that 

1\ = 't',/\' (2) 
and 

(3) 

where l is the identity transformation and 11't'11 is as defined in § 2. 
We write then 

/\, -,>-/\'. 

From (1) and (3) we have immediately 

d (/\,) -'>- d (1\') . 
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If « is any non-singular homogeneous linear transformation it is also 
immediate that 

«/\, -+ «I\' . 
Indeed 

«/\, = «'t, «-I {«I\'} 
and 

so 

by (3) of § 2. 
LEMMA 4. A necessary and sul/icient condition that the se.quence 01 

lattices /\, (1;:;;; r < 00) tends to I\' is that there exist bases 

b~, ... , b~, 
and 

b~, ... , b~ 
01/\" I\' respectively, such that 

bj -+ bi (4) 

The last limit is meant, of course, in the sense of the ordinary con­
vergence of vectors: I bi - bi 1-+ O. 

The proof of Lemma 4 is almost trivial. Suppose first that /\,-+1\' 
and let 't, be the transformation satisfying (2) and (3). Choose any 
basis bi for I\' and put 

bj='t,bj (1;:;;;j;:;;;n; 1;:;;;r<00). (5) 

Then by (5) of § 2 and (3), we have 

Ibi-bil =1('t,-L)bil;:;;;nill't,-Llllbil-+o (r-+oo). 

Suppose conversely that the bases are given satisfying (4). We may 
define't, uniquely by (5). Then clearly 11't,-LII-+o. 

The following criterion is rather less trivial. 

THEOREM 1. A necessary and sul/icient condit£on that /\,-+1\' is that 
the lollowing two conditions be both satislied: 

(i) il a' E 1\', there are points a' E /\, lor r = 1, 2, ... such that 

a' -+a' (r-+ 00). (6) 

(ii) il c is not in 1\', there is a number 'Y}>O and an integer ro>O, 
both depending on c, such that 

la'-cl>'Y} (7) 
lor all a'E/\, with r;;:;;ro. 
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It is quite straightforward that (i) and (ii) are satisfied when I\,--+/\'. 
In (i) we have only to put 

a' = 't,a' , 

where the 't, are the transformations such that 

1\, = T, /\', 11't, - L II --+ o. 
Then, as before, 

II a' - a' II ~ n~ II T, - L III a' I --+ 0 (r --+ 00) . 

To prove (ii), we note that there certainly is an 'iJl> 0 such that 

la' -ci >'iJ1 
for all a' E/\'. Put 

'iJ =1'iJ1' 

Suppose, if possible, that there is a point a' E 1\, such that 

la'-cl~1'}· 
Then 

By the definition of T, we have 

a' = 't,a' 
for some a' E I\. Then 

a' - a' = p,a', 
where 

Now 
II p,II--+ 0 (r --+ 00) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

by Lemma 1 and since IIT,- LII--+O. Hence by (5) of § 2 and (11), we 
have 

I a' - a' I ~ n& II p, III a' I ~ nt II p, II {I c I + 1'}} < 1'} 

for all r greater than some roo From this and (9) and (10) we have 

la' - cl ~ 21'} =1'}1' 

This is in contradiction to (8). Hence statement (ii) of the theorem is true. 

We must now show that if (i) and (ii) of the theorem are true then 
I\,--+/\'. We require a lemma of some independent interest. 

LEMMA 5. Let C1 , ... , cn be linearly independent points 0/ a lattice 1\ 
but not a basis. Then 1\ contains a point 

d = {}l c1 + ... + {}ncn, 



Convergence of lattices 129 

where fA •...• fJ" are numbers such that 

i ~ max IfJil ~ i· 
I 

(14) 

We first prove Lemma 5. Since c1 • .... cn is not a basis. there cer­
tainly exist points 

a = (Xl C 1 + ... + (X" en 

in /\ for which (Xl ..... (Xn are not integers. We may suppose without 
loss of generality that 

(1~j~n). 

Let t be the least non-negative integer such that 

zt max I (Xi I ~ i· 
I 

Then 

and 
d = ia 

will do what is required. A slight refinement of the argument. which 
is left to the reader. shows that the i in (14) may be replaced by! but 
by no larger number. 

We now revert to the proof of Theorem I. Suppose that /\, and I\' 
satisfy (i) and (ii). Let b~ • .... b~ be any basis for 1\'. By (i) there exist 
sequences of points 

bj_bj (1~j~n. bjE/\,). (15) 

We show that bj (1 ~j~n) is actually a basis for /\, except. possibly. 
for a finite number of r. For if bL .... b~ is not a basis for /\'. let 

be a point of /\ with 
(16) 

(17) 

which is given by Lemma 5. Since the fJi , are bounded. they contain 
a convergent subsequence by a classical theorem of WEIERSTRASS (d. 
§ 1.2 of Chapter III). say 

where 
r1<r2 < .. · <r,< .. · 

is an increasing sequence of integers. Then 

d' (say) = LfJ;b; = limd". 
i '-+00 

Cassels, Geometry of Numbers 

(18) 

9 
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by (15), (16) and (18). Hence d'eA' by (ii) of the enunciation of the 
theorem. This is a contradiction since 

J.::;; max If)'1 ::;;.l 
4-. I - 2' 

1 

by (14) and (15), and since bj (1 ~i~n) was defined to be a basis for A'. 
The contradiction shows that bi is a basis for A, except for a finite 
number of r. If the bi are changed for these exceptional r so that bi 
(1 ~ i ~ r) is a basis for A, for all r this does not affect the limits (15). 
Hence the criterion is certainly sufficient by Lemma 4. 

V.3.2. In Chapter X we shall need the notion of a neighbourhood 
of a lattice, and we shall mention it again in passing briefly in § 9 of 
this chapter. 

A set £ of lattices A is said to be a neighbourhood of the lattice M 
if it contains all lattices 

A =-rM (1 ) 
with 

for some TJ> 0 depending on the particular neighbourhood. The neigh­
bourhood £ may contain other lattices A than those given by (1) and 
(2); but there is some TJ> 0 such that it contains all these. If II is any 
non-singular homogeneous transformation we show that the set II £ of 
lattices rJ.A, AE £ is a neighbourhood of II M. Indeed II £ contains all 
lattices 

N = cr(IIM) 
with 

since then 
N =IIA 

where 

and then 

as in § 3.1. 
Clearly the sequence A, (1 ~r<oo) of lattices tends to M if and 

only if every neighbourhood of M contains all but a finite number of 
the A,. 

Although we nowhere use it, we note that it is in fact possible to 
introduce explicitly a metric into the space of all lattices. Let A and M 
be two lattices and let 
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where the infima are over all non-singular a and 't such that 

/\=aM M='t/\. 
Put 

O(M,/\) = 0(/\, M) = max {log (1 +,u),log(1 +v)}. 

Then we have the triangle inequality 

since if 

then 

where 

and so 

0(/\, N) ~ 0(/\, M) + O(M, N); 

/\ = (l + PI) M, M = (l + P2) N; 

/\ = (l + Pa) N, 

II Pall = II PI + P2 + PI P211 ~ II PIli + II P211 + II PIli II P211 ; 

log (1 + II P31 \) ~ log (1 + II PI I \) + log (1 + II P211) . 
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The neighbourhood defined above is the one associated with this 
metric, since if 

with 

then 

where 

and so 

/\=aM 

lI a -lll< 1J<1; 

0(/\, M) <_11_. 
1-11 

V.3.3. The continuity of the distance-function F(z) of the vector z 
is reflected as a semi-continuity of the function 

F(/\) = inf F(a) 
aEII 

(1 ) 

*0 
of the lattice /\ considered in § 4 of Chapter IV. For certain later 
applications it is useful to allow the distance-function F and the lattice /\ 
to vary simultaneously. 

THEOREM II. Let /\, (1~r<oo) be a sequence of lattices tending to 
the lattice 1\'. Let .F;(z) (1~r<oo) be a sequence of distance functions 
which converge uniformly to the distance-function F' (z) in the unit sphere 
Izl<1. Then 

F'(I\') ~ lim sup F, (/\,). (2) 
'--"00 

9· 
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The proof is very simple. Since F,. (tx) = tF,. (x) for t> 0, the con­
vergence of F,.(x) to F'(x) is uniform in any bounded set of points; 
in particular, since the distance-function F'(x) is continuous by defini­
tion, if a, is any sequence of points converging to a point a', we have 

lim F,.(a,) =F'(a'). 
' ..... 00 

But by Theorem I, every point a' =F 0 of N is the limit of points a,=F 0 

of /\,. Hence 
F'(a') = lim F,.(a,) ~ lim sup F,.(/\,) , 

1-+00 1-----+-00 

since F,. (a,) ~ F,. (/\,). The result (2) now follows from the definition (1). 

The sign of equality need not hold in (2) even when F,. =F' for alI r, 
but we defer giving an example until § 10.5. However, much more 
than Theorem II is true if F'(x) = 0 only for x = 0, i.e. if the set F' (x) < 1 
is bounded (Lemma 2 of Chapter IV). 

COROLLARY. Suppose that the hypotheses 01 Theorem I I hold and that 
the only point x such that F'(x) = 0 is x = o. Then 

lim }~(/\,) 
' ..... 00 

exists and is equal to F'(N). 

The proof is similar to that of Lemma). By Lemma 2 of Chapter IV, 
there is a c> 0 such that 

(3) 

for alI x. Let e> 0 be arbitrarily small. By the uniformity of the con­
vergence of F,.(x), there is an ro such that 

1F,.(x) -F'(x)! <ce (4) 

for all r ~ r 0 and all x with I x I = 1. Hence for all x whatsoever and 
r~ro, we have 

1F,.(x) -F'(x)1 <celxl ~eF'(x); 
so 

F,(x) 
1 - e < F'(:E) < 1 + e. (5) 

Now let /\,="t,/\', where "t, are homogeneous linear transformations 
such that 

(r~ 00) 

in the language of § 2. Then 

1 - < F'(-r,:E) < 1 + 
e F'(:E) e (6) 
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for all r greater than some rl , by Lemma 3. Hence by (6) and (5) with 
"C'r~ for ~ we have 

(1 - e)2< F,(~,a:) < (1 + e)2 
F'(a:) 

for all r> inax (ro' r1). But now A, is just the set of "C',~ with ~EN, 
and SOl 

(1 - e)2~ F,(I\,) ~ (1 + e)2. 
- F'(i\') -

Since e is arbitrarily small, this proves the corollary. 

V.3.4. An almost immediate consequence of Theorem II, Corollary 
is the following result, which shows that no bounded star body can 
have successive minima in the sense of Chapter II, § 4. 

LEMMA 6. Let F(~) be an n-dimensional distance function which 
vanishes only when ~ = 0 and let 1] be any number for which 

0<'7 < d (F) = sup {F(I\)}" 
A d(l\) . 

Then there exists a lattice M'I such that 

{F(M'I)}" = 1] d (M'I) . 

(1) 

After Theorem VI we shall be able to replace the second < in (1) 
by ~. 

Suppose that 1] satisfies (1). Then there exists a lattice N, such that 

{F(N)}" > 1] d (N) . (2) 

Let b1 , ''', b" be any basis for N; and for 0 < e < 1 let N. be the lattice 
with basis 

Then 
d(N.) = ed(N) 

and 

Hence 

(e ~ 0). 

But now, by Theorem II Corollary, F(N.) is a continuous function of e. 
Hence by (2) and (3) we may put M'I= N. for an appropriate value of e. 

V.3.5. For the sake of completeness we enunciate the following 
lemma, which interprets the uniformity of the convergence of F, (~) to 

1 Note that F'(i\') '*' 0 by Lemma 7 of Chapter IV. 
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F'(~) in terms of the corresponding star bodies 

.9;: F,(~) < 1 
and 

f/': F'(~) < 1. 

(1) 

(2) 

Since we do not use the lemma we do not give the proof, but the reader 
should have no difficulty in constructing one along the lines of the 
proof of Theorem I of Chapter IV. 

LEMMA 7. A necessary and sufficient condition that the sequence of 
distance functions F,(~) tend to the distance-function F'(~) uniformly in 
I ~ I ~ 1 is that the bodies .9; and f/' defined by (1) and (2) have the following 
properties: 

(i) If c is an (inner) point of f/ ' , then there exists an 'fJ> 0 and an 
integer ro (depending on c) such that all points ~ of the neighbourhood 
I~-cl <'fJ belong to .9; for all r greater than roo 

(ii) If c is an exterior point to f/' (i.e. F' (~) > 1) then there is an 
'fJ> 0 and r 0 such that no point ~ of the neighbourhood I ~ - c I < 'fJ belongs 
to .9; for any r>ro' 

VA. Compactness for lattices. In this section we are concerned 
with conditions under which an infinite sequence /\, of lattices should 
contain a subsequence Mt =/\" which converges to a lattice M/, not 
necessarily belonging to the sequence. 

The simplest such condition is when every lattice of the sequence 
has a basis every point (If which lies in some fixed sphere 

I~I;;;;R (1) 

and d (/\,) is bounded below by a positive constant, say 

d (/\,) ~ " > 0 (all r) . (2) 

Since all the lattices have bases in (1) we may by WEIERSTRASS' com­
pactness theorem, find a subsequence of lattices Mt = /\" with bases 
bL ... , b~ in (1) such that all the limits 

lim b~ = b~ 
t-+oo 1 1 

exist. By (2) we have 

Idet(b~, ... ,b~)1 = lim Idet(bL ... ,b~)1 = lim d(M,)~,,>o: 
t-+oo t-+'Xl 

and so b~, ... , b~ are linearly independent. Hence there exists a lattice 
M' with basis b~, ... , b~ and, by Lemma 4, 

(t~oo). 
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A slight extension of this idea gives the following theorem which 
however turns out not to be very useful. We give it partly for historical 
interest and partly because the lemma on which it depends will be used 
later. 

THEOREM III. Let A, (1 ~r<oo) be an infinite sequence 0/ n-dimen­
sional lattices enjoying the following two properties: 

( i) there exists an R such that every A, has n linearly independent 
points in the sphere 

(ii) there exists a x> 0 such that 

d(A,) ~ x 
for all r. 

Then A, contains a subsequence of lattices Me for which 

M'= lim Me 
1->00 

exists. 

The proof of Theorem III depends on the following lemma due to 
MAHLER (1938a) and rediscovered by WEYL (1942a). 

LEMMA 8. Let F(x) be any symmetric convex distance function and 
a l , ... , an be n linearly independent points of a lattice A. Then there 
exists a basis bl , ... I bn of A for which 

F{bi) ~ max [F(aj ) I !{F(al ) + ... +F(ai)}J. 

Before proving Lemma 8 we show that Theorem III follows from it 
by applying it to the convex function F(x) = I xl and to the n linearly 
independent points a~, ... , a~ of A, given by (i) of the theorem. Then 
Lemma 8 shows that A, has a basis bJ:, ... , b~ with 

I btl ~ max [Iail, Hlarj + ... + lail}] ~ nRj2. 

We have thus reduced Theorem III to the trivial case discussed at the 
beginning but with nRj2 instead of R. 

It remains to prove Lemma 8. By Theorem I of Chapter I there is 
a basis Cli •.. , cn of A such that 

al=vllcl • I 
a 2 = Vn c1 + V22 C2 ' 

a" = Vn1 cl + ... + v"ncn' 

(3) 

where the Vii are integers and Vii=F o. We shall take bi of the shape 

(4) 
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where the tj i are numbers to be determined. Clearly 1)1' ... , b" is a 
basis for 1\ for any set of numbers tj; such that bjE I\. 

We distinguish two cases for each i. If vii= ± 1, we put bj = ± a j • 

This certainly has the shape (4) and 

F(bj) = F(aj). 

Otherwise I viii;;;:; 2. On solving (3) for the cj we have 

c· = v~la· + k . 1a 1 + ... + k· a_ 1 11 1 1.1- 1- ]1-» (5) 

where kj; are certain real numbers. Choose tji in (4) to be integers such 
that 

(6) 
where 

and 
(i <i). 

Then by the convexity symmetry and homogeneity of F(x) we have 

F(b j) ~ F(liiaj) + ... + F(lj1 a1) l 
= I Iii I F(aj) + ... + Ilj1IF(~) 
~ HF(aj) + ... + F(~)}. 

(7) 

This concludes the proof of the lemma. 

When F(x) is the usual euclidean distance, an argument due to 
REMAK (1938a) gives a sharper result. See also VAN DER WAERDEN 
(1956a). 

When 
(8) 

Lemma 8 gives 

F(bj) ~ max (1, i)F(aj). 

V.4.2. We owe to MAHLER (1946d, e) a criterion for the existence 
of a convergent subsequence of lattices in a sequence of lattices, which 
is much more fertile of applications than Theorem III, and which may 
be said to have completely transformed the subject. MAHLER proved 
his criterion by using the theory of successive minima l of a sphere to 
show that it is equivalent to that of Theorem III. We shall give 

1 Not to be confused with the "successive minima" discussed in Chapter II 
which are quite different. 
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MAHLER'S argument 1 when we discuss successive minima in Chapter VIII, 
but here we give a direct treatment due to CHABAUTY (1950a), who 
shows that it generalizes significantly to a more general situation (sub­
groups of locally compact topological groups). MAHLER'S criterion is 
expressed in 

THEOREM IV. Let /\, be any infinite sequence of lattices satisfying the 
following two conditions 

(i) d(/\,)~K for all lattices /\" where K is independent of r. 
(ii) I/\,I~){>o for all r where){ is independent of r and, as usual. 

1/\ 1 = inf I a I . 
"Ell 

Then /\, contains a subsequence M, = /\" which converges to a limit M'. 
We prove2 Theorem IV by induction. The result of the j-th stage 

(1 ~ j ~ n) will be the following statement: 
I$i: There exist j linearly independent points a1 , ••• , ai and a sub­

sequence Nt = Nt (1 ~ t < (0) of /\, which satisfies the following conditions: 

1$;: Each point ai (1 ~i~j) is the limit of points 

alE Nt = Nt (1) 
1$; I: Suppose that t1 < t2 < ... is any increasing sequence of integers 

and there exist points Ct,E Nt, such that 

lim ct =Y1a1 + ... +y·a· 
s~oo ' 1 1 

(2) 

with real Y1' ... , Yi' Then Y1' ... , Yi must be integers. 
Before continuing the proof we note that the statement 1$" implies 

that the lattices Me = N: converge to the lattice M' with basis Ut, ... , an; 
the parts I$~ and I$~' of corresponding respectively to (i) and (ii) of the 
Theorem 1. Hence it suffices to prove I$n. 

We do not give a separate proof of 1$1 since that is a simple version 
of the deduction of 1$i+1 from I$j. For the rest of this section we shall 
assume therefore that I$i holds for some j in 1 ~j < n and will deduce 
1$i+1' The sequence N;+l will be a subsequence of the sequence Nt = Ni, 
and the points Ut, ... , aj will be the same in I$i and I$j +1' 

A non-singular homogeneous linear transformation of the variables 
does not affect either statement I$i or the hypotheses of the theorem, 
though it will in general replace the K and ){ in (i) and (ii) by different 
numbers. Hence we may suppose without loss of generality that 

i-I n-i 

U i = e j = (0.:-::0, 1,~) (1~i~j). 

1 The reader may prefer, instead of studying the proof here, to turn to §§ 1, 2 
of Chapter VIII, which are independent of the intervening matter. 

2 I now prefer the proof given by CHABAUTY (1950a) to the version given here. 
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Define the number 1p by 
(4) 

where K is the number occurring in hypothesis (i) of the theorem. By 
Theorem III of Chapter III, each lattice Nt contains a point x =t= 0 with I 

Ix;! ~f 
IXil ~ 1p 

(1~i~i) } 

U +1~i~ n). 
(5) 

Let ct be one of the finite number of points of Nt other than 0 in (5) 
for which 

max Ix·1 
j+l~i~n 1 

(6) 

is a mInImum. Since the ct are in the bounded set (5), they contain a 
convergent subsequence, say 

where 

Write 

so that clearly 
IAil ~ f 
IAil ~ 1p 

(7) 

(8) 

(1~i~j) } 

(i + 1 ~ i ~ n). 
(9) 

Suppose first, if possible, that AiH = ... = An = 0, so that ai+I is linearly 
dependent on a l , ••• , ai . We are assuming statement @3i to be already 
established. Hence by (7) we could apply @3;' with Yi=A, (1 ~i~i) 
and it would follow from (9) that Al = ... =Ai=O, and so 

lim ct, = o. 
S--+ co 

This contradicts hypothesis (ii) of the theorem, since ct'E Nt, = /\, for 
some rand ct,=t= o. Hence the vectors aI' ... , ai +1 are linearly inde­
pendent. We put r. = Nt" and will show that the statement @:ii+I 

now holds for N~+! = r.. 
The statement @:i;+l is trivially true. So far as ai-II is concerned, 

@:if+I follows from (7); and so far as the remaining ai (1 ~ i ~i) are con­
cerned, @:if+! follows from @:ij since r.is a subsequence of Nt. 

It remains to prove @:i;~l' Suppose, if possible, that there is an 
increasing sequence of integers 

(10) 
and vectors 

dS",!O[ >,. 

1 The only property of !- we use is t < ! < 1. 
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such that 
lim d'm = d (say) } 
t-+oo 

= 0lal + ... + OJ+1 aj+l' 

(11 ) 

where °1 , ... , OJ+1 are not all integers. By ®f+1' which we have already 
proved, we may add integer multiples of aI' ... , aj +1 to the right-hand 
side of (11), after appropriate modification of the sequence d S'". Hence 
we may suppose in the first place that 

I OJ +1 I ~ i (12) 

and in the second place, by (3). that 

Idil~i<! (1~i~j), 

where, as usual, d=(dl , ... , dOl)' From (8) and (12) we have 

. max Id;I=IOj+1l.max IA;I) 
J+l~.~n J+l~.~n 

~i. max IA;I 
J+lS.~n 

(13) 

(14) 

( 15) 

We now show that this in contradiction with the definition of the vectors 
ct as the vectors x of Nt in (5) other than 0 for which (6) is as small 
as possible. Since ct· --+ aj +1' we have 

where 
lim max I Cit I = max IA;I, 

r---+oo j+l~i~n ' j+l~i~n 
(16) 

By (13) and (15) the vector dSm certainly lies in the region defined by 
(5) when m is large enough. Further, dSmE NT, where T =tsm' But 
now, by (14) and (16), the function (6) is certainly greater for cT than 
it is for dSm when m is large enough, which contradicts the choice of CT. 

The contradiction shows that if (11) holds then °1"", OJ +1 are all 
integers; that is the statement ®;~l holds. 

This ends the deduction of ®j -1 1 from ®j' and so concludes the proof 
of Theorem IV. 

We note a form which is often useful in applications and which does 
not depend on the use of the special distance-function I x I. 

COROLLARY. Let F(x) be any distance function and let A, be any 
intinite sequence at lattices satisfying the two conditions 

(i) d(A,)~K tor all r, where K is independent at r. 

(ii) F(A,)~x>o for all r, where x is independent at r and, as usual, 

F(A) = inf F(a). 
aE/\ 

Then A, contains a convergent subsequence. 
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For by Lemma 1 of Chapter IV there is a C> 0 such that F(3J) ~ C 13J I ' 
and so 

I A,I ~ C-IF(A,) ~ C-I" > o. 
V.4.3. An almost immediate consequence (d. MAHLER 1949a) of 

Theorem IV is 

THEOREM V. Let !I' be any open set. Let~,~, ... , ~, ... be a 
sequence at open s1-tbsets at !I' such that 

(i) ~ is contained in 9; it r < t, 
(ii) the origin is an inner point at .9i, 

(iii) every point 3J ot !l'is in ~ tor some r. 

Then 
LI(!I') = lim LI(~). 

,-+00 

We recall that. LI(!I') is the lower bound of d(A) over !I'-admissible 
lattices A, i.e. A having only 0 in!l'. Clearly 

LI(~) ~ LI(!I') 
for all r. Suppose that 

lim inf LI(~) < LI(!I'). 
'-+00 

(1 ) 

(2) 

Then there is an increasing sequence of integers rl <r2< .. · and 
lattices A" such that 

lim d(A,,) < LI(!I'); 
1-+00 

and A" is ~,-admissible. By (ii) and Theorem IV we may extract a 
convergent sequence of lattices from the A", so that without loss of 
generality 

lim A" = N; d(N) < LI(!I'). 
1-+00 

Hence there is a point p =l= 0 of N in!l'. By (iii) then p is in !l'R for 
some R. By (i) and since ~ is open by hypothesis, there is a neigh­
bourhood 

13J-pl<17 (3) 
every point of which is in ~ for all r~R. 

But now 
p = lim p', p'EA, 

'-+00 

by Theorem I. Hence 3J =p' satisfies (3) for all r greater than some ri . 

For r> max (R, r1) this means that p, is in !I' contrary to our assumption. 
The contradiction arose from the assumption that (2) is true. Hence 
the theorem is true by (1). 
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When the //' and .~ are star-bodies, Theorem V follows fairly 
immediatelyl from Theorem II but we shall in fact apply Theorem V 
when !/ is not a star-body in Chapter VIII. The proof of Theorem V 
gives also the following corollary which is a trivial consequence of the 
theorem when the //' and .~ are star-bodies, but which is valid when 
they are not. 

COROLLARY. Suppose that lor 1 ~ r< 00 there is an fI',-admissible 
lattice Ar with 

d(A,) = .11 , 

lor some number .11 ' Then there is an f/-admissible lattice A with d (A) =.11 , 

V.S. Critical lattices. Let F(~) be a distance-function. It may 
well be that F(A) = 0 for every lattice A, in which case we say, following 
MAHLER, that the distance function and its associated star-body are of 
"infinite type". An example of a distance function of infinite type in 
two dimensions is 

F(~) = JX~X2J!. 

Any lattice A of determinant d (A) = d contains a point a = (a1 , a2) * 0 

with 

where e> 0 is arbitrarily small, by MINKOWSKI'S convex body Theo­
rem II of Chapter III. Then 

F(a) ~ JedJ! 
is arbitrarily small, so F(A) = o. It is not always possible to decide 
whether a distance function is of finite type or not, for example, this 
is not known in the case of the 5-dimensional distance functions 

and 
F(~) = Jx~ + x~ + x~ - x: - x:J~. 

The problem whether these functions are of infinite type or not is equi­
valent to the problem whether all indefinite quadratic forms in 5 vari­
ables represent arbitrarily small values (including 0) or not for integer 
values of the variables (d. § 3 of Chapter I). A classical theorem of 
MEYER says that if the coefficients of the form are rational then it 
represents O. Recently DAVENPORT and more recently B. J. BIRCH have 
developed an attack on this problem but it appears to work only for 

1 When the !I' and ~ are star-bodies, say, with distance-functions F(a:) and 
Fr (a:) , the hypotheses of Theorem V imply that, for each x, Fr (a:) tends monotonely 
to F(a:). Since Fr(a:) and F(a:) are continuous, this convergence must be uniform; 
and so Theorem II applies. 
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indefinite forms in more variables than 5 [see DAVENPORT (1956a) and 
later work of DAVENPORT and BIRCH]' The results of Chapters VI and X 
sometimes permit one to decide whether a given distance function F(x) is 
of finite type or not but beyond that very little is known. For another 
unsolved problem of this type with important implications see CASSELS 
and SWINNERTON-DYER (1950a). 

Most of the investigations in the geometry of numbers are concerned 
with distance-functions F of finite type, i.e. not of infinite type. Then 

r5(F) = sup {F(!\W 
/I d(!\) 

s strictly positive. Then by Theorem VI of Chapter IV, 

0< r5(F) < 00 

and 
r5(F)L1(Y) =1, 

where L1(Y) is the lattice constant of the set 

Y: F(x)<1. 

(1) 

(2) 

(3) 

(4) 

We recollect that a critical lattice for Y is a lattice 1\ which is 
Y-admissible and which has determinant d (1\) = L1(Y) (Chapter III, § 5). 
A general theorem of MAHLER states that a set Y of the type (4) always 
has critical lattices if it has admissible lattices. 

THEOREM VI. Let the distance-function F(x) be of finite type. Then 
there exist lattices 1\ such that 

F(I\) =1, d(l\) = {r5(F)}-l = L1(Y) , 

where r5 (F) is defined in (1) and L1 (Y) is the lattice constant of the region 
defined by (4). 

The proof of Theorem VI is now quite simple. By the definition of 
L1(Y), there exists a sequence of lattices A, such that 

F(A,) ~ 1, d (A,) ~ L1(Y). (5) 

We may now apply Theorem IV Corollary 1, its conditions (i) and (ii) 
being satisfied by (5). Hence there exists a convergent subsequence, 
and so, after a change of notation, we may suppose that 

A,~N 

for some lattice N. By (5) we have 

d (N) = lim d (A,) = L1 (Y). 
,->00 
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By (5) and Theorem II. we have 

F(/\,) ~ lim sup F(I\,) ~ 1 . 
,-)000 

If F(/\,) > 1 there would exist a real number ·0< 1 such that 

in contradiction to the definition of £"1(9') as a lower bound. Hence 
F(/\,) = 1. This concludes the proof of the theorem. 

In evaluating £"1(9') for star-bodies 9' we may therefore confine 
attention to critical lattices. 

There is an alternative formulation of Theorem VI which does not 
need to distinguish between the two cases 0 (F) = 0 and 0 (F) > 0: 

COROLLARY. For every distance-function F(x) in n-dimensional space 
there is a lattice M such that 

d(M) = 1 
and 

{F(MW = 0 (F) = s~p {~((~r • 

For if 0 (F) = O. any lattice M with d (M) = 1 will do. Otherwise 
M =(}/\' will do. where I\' is a critical lattice and {} is chosen so that 
d(M) =1. 

V.S.2. It would be natural to assume that every critical lattice 1\ 
for a star-body 

9': F(x) < 1 

should contain a point a with F(a) = 1. but in fact this is not the case 
even in 2 dimensions. Here we construct a counter-example using the 
phenomenon of successive minima discussed in § 4 of Chapter II. Write 

(1 ) 

Theorem IV of Chapter I when translated into our present language 
implies that 

{Fa (1\)}2~ d (1\)/8~ (2) 

except when 1\ is a lattice 1\, with basis 

a1 = (all. an) • a2 = (a12 • au) 
such that 

identically in u1 • U 2 for some number k; in which case 

(5) 
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In particular 
(6) 

Now consider the distance-function 

(7) 

so that 
401 Po (:Il) ~ 1\ (:Il) ~ 400 Po (:Il) . (8) 

From (8) and (2) or (5) we have 

{1\ (A)}2~ (:~~ r d (A)/8' (9) 

jf A is not a Ac; and 
(10) 

respectively. Since 
8-& (401)2 < 5-& 

400 ' 

a critical lattice for 1\ (:Il) < 1 is necessarily a Ac. 
We show now that equality holds in (10). After a possible inter­

change of Xl and X2 we may suppose that 

where 

U I all + U 2 au = all (ul + w u2) 

UI au + U 2 au = au (ul + 11' u2) , 

2w=1+5', 211'=1-5', k=all a2l , 

on factorising the right-hand side of (4). Here 

wtp = -1. 
Since 

we have 

for every positive integer t and certain integers u~), u~). Hence 

11 (say) = (all w', a21 vi) E Ac· 

But now, since wtp = -1, we have 

F. (.,1) - I a a I j [1 + I au aui 1 ~ I a a Ii 
I N - 11 U 100{i aui wI + au w 1}2 II U 

(t ~ 00) 

=kl. 

Hence 
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This with (10) gives 

But now if a+o is a point of Ac' we have trivially 

{1\ (a)}2 > {F.,(a)}2 ~ d (Ac)/5~. 

In particular, if k=1, so that d(Ac)=5t=LI(~), where ~ is the 
region 1\ (z) < 1, there are no points a of Ac on the boundary 1\ (z) = 1 
of Ac • 

By an ingenious argument, again using the phenomenon of successive 
minima, ROGERS (1947c) has constructed a distance-function F(z) such 
that the critical lattice of the unbounded star-body F(z) < 1 has only 
one pair of points ±a with F(±a) =1. All other points b+o of A 
satisfy F(b) ~ t for some explicitly given t> 1. This is in striking 
contrast with the results we shall prove in § 6 about bounded star-bodies. 

V.6. Bounded star-bodies. For bounded star-bodies a great deal is 
known about critical lattices. [See in particular MAHLER (d, e) and for 
an extremely detailed treatment of the 2-dimensional case MAHLER 
(a, b, c).] In contrast to the negative result of § 5.2 we now have 

THEOREM VII. Every critical lattice A 01 a bounded star body !/ has 
n linearly independent points on the boundary 01 !/. 

For suppose not. Then there exists a basis b1 , ..• , bn of A such that 
any point 

(U1, ••• , un' integers) (1 ) 

of A on the boundary of !/ has u" = O. Since!/ is bounded, there exists 
a number Y such that if a point 

with real Yl' ... , Yn is in or on the boundary of [/, then certainly 

(1~i~n). 

Now let e be a number in, say, 

and let A. be the lattice with basis 

b1, ... ,bn - 1 and (1-e)bn. 
Consider a point 

P. = u1b1 + ... + un-1bn- 1 + u,,(1 - e) b ll (2) 
Cassels, Geometry of Numbers 10 
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of A., where ttl' ••• , Un are integers. If Un = O. then Pc is in A; and so 
is either on the boundary of Y' or outside !7. If 

m~x I ttl I > 2 Y, 
1::;;1=" 

then certainly P. is outside !7. We need therefore consider only the 
points with 

max I u;1 ~ 2 Y, tt" =t= O. (3) 

But now for these Uj the corresponding point p given by (1) is an 
exterior point of !7, since u .. =l= 0; that is some whole neighbourhood 
of p lies outside!7. Hence Pc cannot be in !7 for all e smaller than 
some eo, which may depend in the first place on ul , ... , U ... But there 
are only a finite number of Ul •••.• U" to consider. by (3). and hence 
A. is !7-admissible if e is small enough. But now 

d(AE) = (1 - e) d(A) = (1 - e) L1(!7). 

since A was assumed to be critical. But this contradicts the definition 
of .1 (!7) as the lower bound of the determinants of admissible lattices. 

It is only exceptionally that there can be as few as n pairs of linearly 
independent points ±a; (1~i~n) of a critical lattice on the boundary 
of!7. Rather surprisingly. it is possible, however, at least when n = 2. 
for a star-body to have a continuous infinity of critical lattices each 
with only n pairs of points on the boundary, see OLLERENSHAW (1945 a). 

COROLLARY. Suppose that ± a; (1 ~ i ~ n) are the only points 0/ A 
on the boundary 0/!7. Then there exists an eo such that all points 

with 

are either in or on the boundary 0/ !7. 

(4) 

(5) 

For "t, ... , a.. are linearly independent by the theorem; and so 
there exists a basis bl , ... , b .. such that 

(1~i~n) (6) 

with integers Vii and vi.=t=O. Let A~ be the lattice with basis 

where 
(7) 

and 'fIl • ••• , 'fI .. -l are small real numbers. As in the proof of the theo­
rem, if max 1'fI;1 is small enough. the only points of A~ which can lie 
in or on the boundary of !7 are ±al ..... ±a,,-l (which are unchanged 
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by the substitution of b~ for b,,) and ±a:, where 

a~ (say) =v"lb1 + ... +l'",,,-lb"_l +v""b~. (8) 
But 

d(Aq) =ldet(bl, ... ,b"l,b~)1 =ldet(b1 , ... ,b,,)1 =d(A) =.1(9'). 

Hence either a: is in .~, when there is nothing more to prove, or A~ is 
critical, and then a: is on the boundary of 9' by the theorem. Since 
every vector of the shape (4) can be put in the shape (8), where max l17i I 
is small if max I 8il is small, this proves the corollary. 

V.6.2. For the continued study of the points of a critical lattice 
on the boundary of a bounded star-body, we need an estimate of 
det (aI' ... ,a,,) in terms of 

where "t, ... , a" are any n-dimensional vectors. For our present purposes 
any estimate, however crude, would suffice, but, since we shall later 
need a more precise estimate, we prove it here. 

LEMMA 9 (HADAMARD). Let aI' ... , an be n-dimensional vectors. Then 

I det (aI' ... , an) I ~ I all ... I an I· 
We note that the simple example 

;-1 n-; 

a;=e;=(~,1,~) 
shows that ~ cannot in general be improved to <. The inequality is 
the n-dimensional analogue of the fact that the volume of a parallelo­
piped is at most the product of the length of the sides. 

If the determinant is 0 there is nothing to prove. Hence we may 
suppose that a1 , ... , a" are linearly independent. We construct a 
sequence of vectors c; (1 ~i~n) such that 

C,C; = 0 (i 4= i) (1) 

(scalar product of two vectors), and 

a. = til C1 + ... + ti,,-l Ci - 1 + c. (2) 

for some real numbers t,;. Indeed if c1 = a1 and the ci are defined 
recursively by 

C, = at - ~ (a i c;) I C; 1-2 Ci ' 
;<i 

it is readily verified that the c, have the required properties. By (1) 
and (2) we have 

I a.12 = aiai = t~ll cl l2 + ... + t~.i-ll Ci _ 1 12 + I cil2~ I C,12, (3) 
and 

(4) 
10· 
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On the other hand. on regarding the c1 • •••• c .. in det(c1 ••••• c .. } first as 
rows and then as columns and multiplying the two determinants to­
gether. we have1 

{det (c1 • •••• C .. )}2 = det {cjci} = II I c,12. (5) 

by (1). The required inequality now follows from (3). (4) and (5). 

V.6.3. We may now show that. in principle. the evaluation of LI(.9') 
for a bounded n-dimensional star-body .9' may be reduced to a finite 
set of ordinary minimal problems. Except for convex bodies, for which 
see § 7. this is hardly in practice a fruitful approach. though it might 
well be adaptable to machine computation. 

We may suppose without loss of generality that .9' is defined by 

.9': F(a:} < 1, {1} 

where F(a:} is a distance-function. By Lemmas 1 and 2 of Chapter IV. 
there are numbers c>O and C such that 

(2) 

In particular. a lattice A admissible for .9' has no points in the sphere 

1a:1 < C-l. 
and so has 

(3) 

by MINKOWSKI'S convex body Theorem II of Chapter III, where v.. is 
the volume of the unit sphere I a: I < 1. 

Now let A be a critical lattice, so that there are (at least) n linearly 
independent points fit, ... , a.. of A on the boundary F(a:} = 1 of .9'. 
Then by (2) we have 

(1~i~n), (4) 

and so by HADAMARD'S Lemma 9 we have 

I det(a1,···, a .. }! ~ c-". (5) 

Hence in the language of Chapter I the index I of ai' ... , a .. in A is 

1= Idet(fIt . .... a .. H ~ (~)"v.:-l = I (6) 
d(A) - c " o· 

Hence by the corollaries to Theorem I of Chapter I. there is a basis 
b1 , .... b" of A such that 

(7) 

1 Alternatively one may observe that. by (1).1 ~ x, C, 11 = 1.: x:1 c,l' and compare 
determinants. • 
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where the vii are integers, 

O:;::;;Vij<Vji (i < i), (8) 
and 

O<IIvji =I:;::;;10 · (9) 

There are thus only a finite set of possibility for the integers Vij. For 
each set of integers Vij' the points a i on the boundary determine the 
bi , by (6). The ai are to be chosen so as to make 

d (A) = I det("t, .... an)1 
V11·"V nn 

a minimum, subject to no points of A being in Y and, in particular, 
subject to (3). Then.d (Y) is clearly the minimum of d (A) over the A 
so obtained and over all of the finite number of choices for the Vij. 

We now verify that if A is a lattice constructed with n points 
al' ... , an on the boundary and satisfying (3), (5), (6), (7), (8), (9), 
and if d were any point of A in Y, then d has the shape 

d = u1 b1 + ... + un bn , 

where bounds can be given for the integers Uj. Indeed then I d I :;::;; c-1 ; 

and so for each integer i we have 

Idet(Ut, ... ,ai - 1 ,d,ai +1' ... ,an)1 ~ c- n 

by (4) and HADAMARD'S Lemma 9. Hence, if ()) is true, the index of 
al, ... ,ai-l,d,aj+1, ... ,an in A is at most 10 fori=1,2, ... ,n: and 
it is easily verified that this gives bounds for the ui . It is thus, in 
principle, a finite problem to find .d(Y). 

The lattice constants of a great many 2-dimensional bounded star­
bodies have been evaluated. There is a partial list in KELLER (1954a) 
to which may be added among others the bodies discussed by OLLE­
RENSHAW (1945a, b, 1953g). The treatment of bounded non-convex 
body in more than 2 dimensions by such methods seems inevitably 
laborious. Perhaps the only cases worked out are those of N. MULLINEUX 
(1951 a). 

V.6.4. In the evaluation of .d(Y) for a given star set Y it is usually 
best to combine the techniques just introduced with those discussed 
in Chapter III. We consider an instructive example due to N. MULLINEUX 
which we shall have occasion to discuss further in § 7. 

LEMMA 10. Let k be an arbitrary positive number and put 

D = (k2 + 4k)~, 
and 

g = l (k + 2 + D) , 
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so that 
g-l = j (k + 2 - D) . 

Let f/ be the 2-dimensional star-body defined by 

- 1 < Xl X 2 < k, ! Xl + X 2 ! < D. 
Then 

L1(f/) = D. 

The only critical lattices have bases of one of the two following kinds 

(i) the point (1, -1) and any point on Xl + x2=D, 
( ii) the points 

p = (_g-lt,gt-l ), q = (-t,t-l) 

where t is any number in the range 

1<t<g. 

We must first verify that the lattices defined above are f/-admissible. 
This is certainly true for (i). We now verify it for (ii). It is readily 
verified that the line Xl + x2 = D meets Xl X 2 = - 1 in the points 

Hence the points p and q above do lie on the portion of the boundary 
of f/ given by Xl X2= -1. The point 

r =p - q ={j(-k + D) t, j(k + D)t-I } = (rI , r 2) 

lies on 

Further, 

since 1 <t<g and 
j ( - k + D) t + j (k + D) t-l 

equals D both for t = 1 and for t = g. Hence a lattice of type (ii) has six 
points ±p, ±q, ±r on the boundary of f/. There can be no further 
point of the lattice in f/, since it is easy to verify that every point 
of f/ except ±r lies either strictly between the (infinite) line A through 
p and r and its image - A in 0; or strictly between the line 1.1 through 
q, r and its image - 1.1 in 0; for example the line A meets Xl X 2 = - 1 
and Xl x2=k respectively apart from p, r in the points 

(gt, _g-lt-1), g(k +D)t, }(-k +D)t-1}; 

and for both of these ! Xl + x21 > D. 
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For later use we note that the whole of the line-segment joining 
p, r must lie in Y except the end points, since a line can meet a hyper­
bola X I X 2= -1 or X l x2=k in at most two points. Hence the whole 
of the closed parallelogram with vertices at 0, p, rand - q must lie 
in ,,/ except for p, rand - q. 

We are now in a position to prove Lemma 10. Let M be a critical 
lattice. Suppose, if possible, that there is no point of M on the portion 

of the boundary of Y. Then the set of pointsl 

M.: {(1-S)XI +eX2, eXI +(1-s)x2}, 

for small enough e, will also be Y-admissible since 

{(1 - S) Xl + S x2} -:- {S Xl + (1 - S) Xz} = Xl + X2 
and 

{ (1 - s) Xl + S x2}{ S Xl + (1 - s) x2} = Xl X2 + (s - S2) (Xl - X2) 2 ;;:;; Xl x2· 

Since 
d(M.) = (1 -- 2s) d(M) < J(Y), 

this contradicts the hypothesis that M is critical. Hence there is a 
point q = (ql' q2) on the boundary Xl X2 = - 1 of Y; and, by symmetry, 
we may suppose that 

-ql;;:;; 1;;:;;q2> o. 
Suppose first that q =1= ( - 1, 1). Then 

(ql' q2) = (- t, t-l) 

for some tin 1 <t<g. Let us identify this q, with the q of the lattice 
1\ introduced earlier, and let p, r have the meanings introduced then. 
Since 1\ is admissible and M is critical, we have 

d (M) ~ d (1\) . 
The line A of points x with 

det (x, q) = d (1\) 

passes through p and r, so the line 

det (x, q) = d (M) (1 ) 

must either coincide with it or lie between it and the line through 0 

and q. But now q is a primitive point of M, since r-1q Y for any 

1 This argument becomes more transparent on introducing temporarily the 
co-ordinates Yl = } (Xl + X2J, )'2 = ! (Xl - X t )· 
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integer r> 1; and so there are points of M on the line (i) and at a distance 
I q I apart. Hence there must be a point of M other than 0 and - q 
in the closed parallelogram with vertices at 0, - q, p and". But we 
have already seen that the only points of this parallelogram which are 
not in f/ are the vertices p, " and - q. Hence either p or " is in M; 
and in both cases then M coincides with A. 

There remains the possibility that q = ( - 1, 1). If the definition of 
p and" is extended in the obvious way to t = 1, the situation remains 
the same, except that now the whole line-segment joining p and" is 
part of the boundary Xl +x2=D of f/. Hence we may deduce only 
that M has a basis consisting of (- 1, 1) and some point on Xl + x2 = D. 

For this type of proof compare OLLERENSHAW (1945b). 
For later use we note that we have also proved the 

COROLLARY 1. The only critical lattices lor 

- 1 < Xl X 2 < k, I Xl + x21 -;;;, D 

are those 01 type (ii), where now t is allowed also to take the value 1. 

For the other lattices of type (i) have a point on -1<XI X2<D, 
IXI +x2 1 =D. Here our usage differs from that of MAHLER (1946a), 
since he calls a lattice admissible for a set f/ if it has no points other 
than 0 in the interior of f/. Thus MAHLER calls the lattice of type (i) 
admissible (and so critical) for the set of the corollary. 

Lemma 10 may be regarded as a more precise version of Theorem IV 
of Chapter II. To make the connection more clear we prove 

COROLLARY 2. Ilk is an integer, the critical lattices 01 type (ii) are 
admissible lor 

-1<XIXa<k. 

For the general point of a lattice of type (ii) is 

;I: = ulP + ua", 

where uI , Us are integers. Then 

xIXS = (UIPI + U2'1) (UI P2 + u2rS) = - u~ + kUIU2 + ku~. 
We showed in § 4.4 of Chapter II that -us +kUIUS+ku~ does not 
take any values strictly between - 1 and + k when k is a positive 
integer and UI , U2 are integers not both o. 

V.7. Reducibility. It may happen that if ~ is a star-body, there is 
some star-body ~ which is properly contained in ~ but which has 
the same lattice constant: L1(~) =L1(~). We say then that ~ is 
reducible. If no such f/2 exists, then ~ is said to be irreducible. Criteria 
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for the reducibility of a bounded star-body have been given by MAHLER 
(1946a) and ROGERS (1947a). Later, ROGERS (1952a) gave a most 
ingenious example of a reducible star-body which does not contain an 
irreducible star-body of the same lattice constant: but he was able to show 
that if a rather wider class of point sets, which he calls "star sets", 
is considered, then every bounded reducible star set contains an irreducible 
star set. Convex 2-dimensional sets were considered in great detail by 
MAHLER (1947a). Mrs. OLLERENSHAW (1953 b) has shown that the 
n-dimensional unit cube is irreducible for all n and that the unit sphere 
is irreducible at least for n ~ 5. She shows further that a 3-dimensional 
cylinder is irreducible if its 2-dimensional base is irreducible. 

We refer the reader to the papers quoted for the general theory. 
The following lemma shows in a simple case the sort of ideas involved 
in the proof that a star-body is irreducible. 

LEMMA 11. The star-body 

!l) : x~ + x~ < 1 
is irreducible; 

For suppose Y is a star-body strictly contained in !l). Then there 
is a point p on the boundary of ~ which is not on the boundary of Y. 
But now (§ 6.4 of Chapter III) there is a critical lattice /\ of !l) having 
points at ±p. The only other points of /\ on the boundary of !l) are 
the points ±q, ±r which, together with ±p, are at the vertices of a 
regular hexagon. Since Y (~, the lattice /\ must be admissible for Y. 
But now the only points of /\ on the boundary of Y can be ±q and ±r. 
These points clearly do not satisfy the criterion of Theorem VII, Corollary. 
Hence /\ is not critical for Y, that is 

L1(Y) <d(/\) =L1(!l)). 

Since Y is any star-body contained in !l), this proves the lemma. 

A similar proof shows that MULLINEUX'S star-body ,fj' defined in 
Lemma 10 is irreducible. Again, if p is a point on the boundary of Y 
then, apart from a finite number of exceptional p, there is a critical 
lattice for Y which has only three pairs of points ±p, ± q and ± r 
on the boundary of Y; and the points ± q, ± r cannot be the only 
points on the boundary of a critical lattice of any set :T contained in Y. 
The finite number of exceptional points p for which such a lattice does 
not exist cannot affect the argument, since if :T is properly contained 
in Y there are infinitely many boundary points of Y which are not 
boundary points of :T. 

V.7.2. If Y is an unbounded star set but there is a bounded star 
set :T contained in Y such that L1(:T) =L1(Y), then Y is said to be 
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boundedly reducible. Corollary 2 of Lemma 10 shows that the 2-dimen­
sional star-body 

(1 ) 

is boundedly reducible when k is a positive integer, since L1(9;.) = 
L1(Y,,), where y" is MULLINEUX'S set 

Y,,: -1<X1 X2<k, !X1 +X2!«k2 +4k)1. (2) 

On the other hand, 9;. is not boundedly reducible for every k. 
Thus we saw in § 4.4 of Chapter II that the critical lattices M for y', 

are admissible for ! Xl X2 ! < it, and so have no points on Xl X2 = - t 
But then, precisely as in the proof of Lemma 10, M cannot be critical 
for a bounded set .'T contained in 9Jb' since the lattice M. of points 

would be admissible for .'T for sufficiently small e. 
The proof of Theorem VII of Chapter III shows that the 2-dimen­

sional star-body 

is boundedly reducible, since the proof used only a bounded portion 
of the set. MAHLER (1946a) has developed criteria for sets of certain 
types to be boundedly reducible if their critical lattices are known. 
Bounded reducibility is further discussed by DAVENPORT and ROGERS 

(1950a). DAVENPORT and ROGERS introduce the concept of full redu­
cibility. If.'T is a set contained in the set Y' and L1 (.'T) = L1 (Y') then 
clearly every lattice critical for Y' is also critical for .'T, but in general .'T 
might have more critical lattices. For example when k is a positive 
integer the sets defined in (1) and (2) have the same lattice constant, 
but the critical lattices of y" of the type (i) of the enunciation of 
Lemma 1 0 will in general have points in 9;.. On the other hand, the set 

.'T;: -1<X1 X2<k, !Xl+X2!;£(k2+4k)~ 

has no more critical lattices then 9;. by Lemma 10 Corollary 1. If an 
unbounded set Y' contains a bounded set .'T with the same lattice constant 
and no more critical lattices then Y' is said by DAVENPORT and ROGERS 

(1950a) to be fully reducible l . They, following MAHLER, use the concept to 
show that lattices of certain types have infinitely many points in certain 
regions. We shall be discussing this from a rather different point of 
view later in Chapter X. We do not discuss bounded and full reducibility 

1 Their definition is not quite the same as ours since they use MAHLER'S defini­
tion of an admissible lattice. But it is not difficult to see that it is equivalent 
to ours. 
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further but refer the reader to the papers quoted. The following example 
illustrates the connection with the existence of infinitely many lattice 
points in sets. 

LEMMA 12. Let k be a positive integer and 1\ a lattice with 

d (1\) ~ (k2+ 4k)~. 
Then there are infinitely many points of 1\ in 

~: - 1 ~ Xl X2 ~ k. (3) 

There are infinitely many points of 1\ in 

~: - 1 < Xl X2 < k, (4) 

except when 1\ is critical for ~. 

If 1\ contains a point (0, x2) with X 2=F 0, it contains all the points 
(0, H 2) (r = 1,2,3, ... ) and so the lemma is trivially true. Otherwise it 
suffices to show that for every e> ° there is a point (Xl' x2) of 1\ in .9';. 
for which I xII;;;;; e; and that this point is in ~ unless 1\ is critical for 9;.. 

Let t be any positive number. Then the lattice I\t of points 

(5) 

has the same determinant as I\. Hence by Lemma 10, Corollary 1 
there is a point of I\t in 

(6) 

and indeed in ~ unless I\t is critical for 9;.. But now the region (6) 
is bounded, so all the points of (6) satisfy 

IXII ;;;;;y 
for some number y which depends only on k. Hence, by (5), the original 
lattice 1\ contains a point (Xl> X 2) =j=o such that 

-1~XIX2;;;;;k, IXII~yt-l. 

Further, A is critical for !/ if and only if At is. Since yrl is arbitrarily 
small when t is a arbitrarily large, this proves the result. 

V.S. Convex bodies. For convex bodies stronger results than Theo­
rem VII hold about the lattice points of a critical lattice on the boundary. 
The following theorem of SWINNERTON-DYER (1953 a) generalised an old 
result of KORKINE and ZOLOTAREFF for spheres. 

THEOREM VIII. Let;X" be a bounded open symmetric convex set in 
n dimensions and let A be a critical lattice for f. Then A has at least 
in(n+1) pairs of points ±a on the boundary of f. 
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We reproduce SWINNERTON-DYER'S elegant proof. Let b1 , ••• , b .. be 
a basis for A and let A' be a lattice with the basis bj (1 ~i~n), where 

(1) 

and the aii and 17 are real numbers to be determined later. Let 
±P1' ... , ±PN be the only points of A on the boundary of:£ and let 
±p~, ... , ±P;' be the points of A' which correspond to them in an 
obvious way. Let 1T1, ... , 1TN be tac-planes to:£ at PI' ... ,PN (Theo­
rem IV of Chapter IV). If there is more than one tac-plane, we choose 
one arbitrarily. We then impose on A' the condition that PI lies in 1TJ 
for 1 ~ J ~ N. By (1), and since P J lies on 1T J, this imposes a condition 
of the type 

~ a··tW =0 
L. "" 1;:>;;:> .. 

1;:>;;:> .. 

(1~J~N), (2) 

where the numbers tlf> depend only on the point P J and the choice of 
tac-plane 1TJ. We also impose the conditions 

(i=l=i)· (3) 

The total number of linear conditions (2) and (3) imposed on the nZ 

numbers ai i is !n(n-1) +N. Hence if N<!n(n+1), there exists a 
set of real numbers aii not all 0 satisfying (2) and (3). We select any 
one such solution and keep it fixed in what follows. 

Since the points P J lie on tac-planes to the open set:£, they do not 
lie in:£. When 1171 is small enough, there are no further points of A' 
in :£ other than 0, by the argument of § 6.1. Hence A' is admissible 
for:£. Since A is critical, we must then have 

d(A') =ldet(b~, ... ,b~)I~ldet(b1, ... ,b .. )I =d(A) =.1(:£); 

that is 

(

1 + all17 ~217 

1 ~ det . a21 17 .1:- ~2~17 

a .. 1 17 anZ17 

:::~ ) 
1 + a .. n17 

= 1 + A117 + A2172 + ... + An17n (say). 

Since this must be true for all sufficiently small values of 1171. it follows 
that 

and 
A z = - L aii aii + L ajiaii ~ o. 

i<; i<; 
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Hence on using the symmetry conditions (3) we have 

o ~ 2A2 - A~ = - ~ a~j. 
1;;;.;;;" 
1:Si.j;;;" 
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Hence ajj=O for all i andj; which is a contradiction. The contradiction 
arises from the assumption that there are fewer than t n (n + 1) pairs 
of points of A on the boundary of f. Hence the theorem is established. 

V.8.2. For bounded symmetric convex star sets the considerations 
of § 6.3 about the maximum number of points of a critical lattice on 
the boundary and about their index may be made much more precise, 
as was shown already by MINKOWSKI. His results apply indeed not 
merely to critical but to all admissible lattices. We recollect that a 
body f is strictly convex if every point tp+(1-t)q (O<t<1) is an 
interior point of f whenever p and q are distinct points in or on the 
boundary of f. 

THEOREM IX. Let A be an admissible lattice lor the convex symmetric 
open set f. Then there are at most !(3"-1) pairs 01 points ±a 01 A 
on the boundary olf. Ilf is strictly convex, the number 01 pairs is at 
most 2"-1. 

The proofs are very simple. Suppose first that f is strictly convex. 
Let b1 , ••. , b" be any basis for A and let 

a =u1b1 + ... +u"b" 

be a point of A on the boundary of f. Then not all of Ut, ... , u" are 
even, since otherwise !a would belong to A; and !a is certainly an 
inner point of f. Let now 

a' =U~b1 + ... +u~b", 

if possible, be another point of A on the boundary of f such thatl 

uj == uj (mod 2) (1~j~n). 

Then !(a+a')EA. By the strict convexity, !(a+a') is an inner point 
of f and so must be 0, that is a' = - a. Hence the total number of 
boundary points is at most the number of residue classes for (U1' ... , u,,) 
modulo 2 excluding (0, ... ,0), that is 2"-1, as required. 

When K is not strictly convex one must work with congruences 
modulo 3; the details are left to the reader. 

THEOREM X. Let f be a convex symmetric open n-dimensional set 
and A an admissible lattice lor f. I I ~, ... , a" are points 01 A on the 

1 The notation means that Uj - ui is divisible by 2.· 
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boundary 01 .% then their index I satislies 

I~n!. 

There is inequality in (1) il.% is strictly convex. 

(1) 

If a l •...• an are linearly dependent. then their index is 0 and there 
is nothing to prove. Otherwise. every point c of A may be put in the 
shape 

(2) 

where VI • •..• Vn are rational numbers. The sets of numbers 'v such that 
(2) is in A clearly form a lattice M of determinant 

d(M) = _~dJ!'l~ __ = I-I. 
Idet(a1 , .,.,a .. )1 

Hence. by MINKOWSKI'S convex body Theorem II of Chapter III. there 
is point v =1= 0 of M such that 

(3 ) 

Let F be the distance function associated with.%. so that 

F(aj ) = 1 (1~j~n). 

For the cEA given by (2) and (3) we thus have by the convexity and 
symmetry of.%. that 

(4) 

But F(c) ~ 1 since A is admissible for .% and so I ~ n! as required. 
If 1= n! and.% is strictly convex we should have F(c) < 1 unless both 
M is a critical lattice for I vII + ... + I Vn I < 1 and every point of M on 
the boundary has n - 1 of the co-ordinates VI • •.•• vn equal to O. But 
these two requirements are incompatible by SWINNERTON-DYER'S 
Theorem VIII. 

The l estimate for I in Theorem X can usually be much improved 
and more information obtained about the relationship of a l •...• an to 
a basis for the lattice. Thus for n = 3 we have 

COROLLARY. 11.% is strictly convex and n = 3. then I = 1 or 2. II 
I =2. then t(~+a2+a3)EA 

For I~ 5. If 1= 5. then there are integers ul • U 2 • U3 not all divisible 
by 5 such that 

1 We do not use the rest of § 3,2 later but do refer to it at the end of § 8.5. 
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We may suppose that 5 does not divide Ul and, by taking 2c instead 
of c if necessary, that 

Ul == ± 1 (mod 5) . 

Hence by adding appropriate integer multiples of aI' a2, a3 to c we 
may suppose, without loss of generality, that 

ul =±1, lu21;£2, lual;£2. 

But then by the strict convexity we should have 

F(c) < iF(al) + i-F(a2) + i-F(aa) = 1; 

a contradiction. Hence I =f= 5. Similarly I =f= 3. 
Suppose now I = 4. Then there exists a base bl , b 2 , ba for A such 

that 

where 

and 

a l = VII bl , 

a2 =v2l bl +V22 b2 , 

aa = Val bl + V32 b 2 + V33 ba, 

(i < i), 

Then vn =1, since otherwise tUtEA andF{tal ) <F(al ) =1. If v22 =l=1, 
then either ta2 or t(al +a2) is in A; and again we have a contradiction. 
Hence 

VU =V22 =1; so vaa=4. 

If V3l were even, we should have either i aa or t(a2 +aa) in A; so Val 

is odd. Similarly, V32 is odd. Hence there is a point 

c = t( u1 Ut + u2 a2 + aa) E A, 

where U1 , U 2 are odd. By adding integer multiples of Ut and a2 to e, 
we may suppose that Ut = ± 1, u2 = ± 1. But then 

F(c) < i{F(a1) +F(a2) +F(aa)} =! < 1. 
Hence I =l= 4. 

Finally, when 1=2 it follows, just as for 1=4, that the only pos­
sibility is vn=v22=1, v21 =O and vas=2. Further, the argument that 
Val' Va2 are both odd continues to hold. Hence t(Ut+a2+aa)EA. 

V.S.3. When:f{' is a bounded symmetrical strictly convex 2-dimen­
sional set, the lower bound 3 for the number of pairs of points ±a of 
a critical lattice on the boundary given by Theorem VIII coincides with 
the upper bound give by Theorem IX. We have indeed 
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THEOREM XI. A. Let f be an open convex symmetrical2-dimensional 
convex body. Then a critical lattice 1\ olf has six points ±P. ±q, ±r 
on the boundary 01 f such that 

(1 ) 

and any two 01 P. q. r is a basis lor I\. 
B. Further, il ±p, ±q, ±r are any poi1lts on the boundary olf 

st"h that (1) holds, then the lattice M with basis P. q is admissible lor f. 
There are no lurther points 01 M on the boundary. except when f is a 
parallelogram and two 01 p. q. r are mid-points 01 its sides. 

The first part of Theorem XI is an almost immediate consequence 
of the last three theorems. By Theorem VIII there are three pairs of 
points ±P. ± q, ±r on the boundary of f. By Theorem IX, the index 
of p, q is 1 or 2. Since ip. iq are (inner) points of f, they cannot 
belong to I\. Hence, if the index is 2, the point i(p +q) is in I\. It is 
also in f or on the boundary of f. the latter only if f is not strictly 
convex. If the index is 2, we may thus take i(p+q) =q' instead of q. 
The index of p and q' is 1. Hence without loss of generality the index 
of p and q is 1. Hence r =up +vq for some integers u and v, where 
I ul ~2, I vi ~ 2, since the indexes of P. r and of q, r are at most 2. Not 
both u and v can be even, since otherwise ir would be in I\. If, say, 
u=±2 is even, then v=±1 is odd, and r'=i(r+vq)=iup+vq 
is in or on the boundary of f. It must be on the boundary since 1\ is 
admissible. Hence by taking r' instead of r we may suppose, with~ut 
loss of generality, that I u I = I v I = 1. By changing the signs of p and q. 
where necessary, we may suppose that u =V = -1, that is, that (1) 
holds. This proves A. 

It remains to prove B. Suppose, if possible, that the point 

c=up+vq 
= (v - u) q + (- u) r 

= (u - v)p + (-v)r 

is in or on the boundary off for some integers u, v. If, say, lui> I vi + 1, 
then the point 

p = u-1c - vu-1q 

would be an inner point of f, because we should have I u-11 + I vu-11 < 1. 
Hence from the three expressions for c we deduce that 

Ilul-Ivil ~ 1, 

Ilu-vl-lull~1, 

Ilu-vl-lvl\~1. 
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It is easy to see that the only integral solutions of those inequalities 
giving primitive lattice points distinct from ±p, ±q, ±" are 

± (u, v) = (2,1), (1,~) or (1, -1). 

Hence after permuting p, q," cyclically if need be, we may suppose 
that c =p - q is in or on the boundary of f. Since now 

p=!c-!" .. q=-!c-!", 

the only possibility is that c is a boundary point. 
We now show that f contains the whole parallelogram ~ of points 

;x!=Ap+,uq 
with 

max{1 AI,I,uI} < 1. 
Indeed 

;x! = ec + U", 
where 

lei +Iul =!IA-,ul +!IA+,u1 =max{IAI,I,uI}· 

But now the area V(~) of ~ is 

V(~) = 41 det(p, q)1 = 4d (M). 

On the other hand, by MINKOWSKI'S convex body theorem, we have 

V(f) ~ 4d (M) . 

Since f includes ~, and since f is open, the only possibility is that 
f coincides with~. This concludes the proof of the theorem. 

Theorem XI gives one a ready criterion for finding the lattice constapt 
of 2-dimensional convex star-bodies. It is easy to see that if p is a 
given point on the boundary of f, then there is precisely one hexagon 
of boundary points ±p, ±q, ±" for which (1) holds. The lattice 
constant of f is then the lower bound of det (p, q) for these hexagons. 

V.S.4. As an application af Theorem XI we prove 

LEMMA 13. Let!/' be a convex symmetric open hexagon. Then 

LI(!/') = i V(!/,). (1) 

The only critical lattice M is that which has points at the mid-points 01 
all the sides 01 !/'. 

By MINKOWSKI'S convex body theorem, 

LI(!/') ~ i V(9'). (2) 
Cassels, Geometry of Numbers 11 
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Let the vertices of ,,/ taken in counter-clockwise order be 

a, - b,c, -a, b, -c. 

Then the lattice M of the lemma has basis ita-b) and i(b-c). It 
clearly contains also i(c-a). Hence, by Theorem XI, M is 9'-admis­
sible. We now show that 

d(M) = i: V(9'). 

On dissecting 9' into triangles with a vertex at 0, we have 

- V(9') :::: det (a, b) + det (b, c) + det (c, a) = 4 det (u, v) 

on putting b = a + 2 tt, C = a + 2 v. This proves (3). Then (1) follows 
from (2) and (3) since M is 9'-admissible. 

Now let A be any critical lattice for 9'. Then d (A) = i: V(,'/). If 
A did not have a point on a particular side of 9' there would be a sym­
metric convex set larger than 9' which contained no point of 9' except 
0; which would contradict MINKOWSKI'S convex body theorem. Hence, 
by Theorem XI, A has precisely 6 points ±p, ± q, ±1' on the boundary 
of 9'; one on each side. If, say, the points ±P are not the mid-points 
of their sides, then by rotating slightly the sides about ±p, leaving 
the other pairs of sides fixed, it would be possible to find a convex 
symmetric set or of volume V(Y» V(9') containing no points of A 
except 0; again contradicting MINKOWSKI'S convex body theorem. 
Hence ±p, ± q, ±1' are the mid-points of their sides, and A = M. 

It would, of course, be possible directly to compute the determinants 
of all lattices having points p, q, l' with p +q +1' =0 on the boundary 
of 9' and to show that M gives a minimum. 

V.8.5. MINKOWSKI (1904a) has extended the argument of Theorem XI to 
3 dimensions and proved the following. 

THEOREM XII. To lind the lal/ice constaflt LI(f) 01 an open symmetrical convu 
set f in 3 dimensions it sulfices to consider the minimum 0/ the determinants 0/ 
lattices generated by three points aI' a2 , a3 on the boundary 0/ 1\ alld satisfying one 
0/ the followinlf three condition.s: 

(A) the points a1- a2, a2- aa' aa- a1 are on the boundary 0/ f and - a1+ ",+a3, 
a1-a2+a3, "l+aa-aa are outside f. 

(B) the points a1+a2, a2+03, a3+o1 al·e on the boundary 01 f and a1+a,+"8 
is ott/side f. 

(C) the points ~ + a2, "2+"s' "s+ a1 and a1 + a.+ a3 are on the boundary 0/ f. 

We refer the reader to the original paper for the proof. Alternatively the 
reader may construct a proof by combining the ideas of the proof of Theorem XI 
with those at the end of § 8.2. The corresponding result in 4-dimensional space, 
which is fairly complicated, has been found by K. H. WOLFF (1954a), who states 
that some of the auxiliary results are due to E. BRUNNGRABER (1944a). 
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MINKOWSKI (1904 a) used Theorem XII to find the lattice constant of the 
octahedron 

namely 19/108. The lattice constants of further convex 3-dimensional bodies have 
been determined by CHALK (1950a) and WHITWORTH (1948a and 1951a). In all 
cases a considerable amount of rather tedious detail is necessary. 

V.9. Spheres. We now consider more particularly the n-dimensional 
spheres 

P},.: 1:1:12 = x~ + ... + x: < 1. (1 ) 

We denote the lattice constant of P}" by 

r.. = L1(P},,). (2) 

The value of r.. is known for 1 ~n~ 8, see Appendix A. We here find 
again Fa, which we already found in another context in Chapter II, 
Theorem III. From this the value of ~ will follow almost at once by 
a general theorem of MORDELL in Chapter X. 

We must first prove a result for spheres which is more precise than 
the mere application of Theorem X. 

THEOREM XIII. Let /\ be a lattice admissible lor P},,: 1:1:1 2<1; and 
let ai' . '" an be points all\ on the boundary 0/ P}n. Then the index I 
0/ a l , ... , an satisfies 

I ~ {d(/\)}-l ~ {L1(~,,)}-1 = r..- l. (3) 

For la;1 =1 (1~j~n), and so, by HADAMARD'S Lemma 9, we have 

I det (ai' .,,' an) I ~ I ~ I ". I an I = 1. 
Since 

I = I det(ai' ... , an) I 
d(/\.) , 

the first half of (3) follows. The second half of (3) is a trivial conse­
quence of the definition of r... 

COROLLARY. 1/ n = 3 the index is 0 or 1. 

For P}" has volume 4:r:/3, and so 

Fa~ 71:16> t, 
by MINKOWSKI'S convex body Theorem II of Chapter III. 

THEOREM XIV. 
Fa=ri. 

A critical lattice lor P}s has a basis m l , m 2 , ma such that 

Iulml + u2 m 2 + uamal2 = u~ + tt~ + u~ + u2 ua + uaul + UI U2 

identically in UI , U2 and Us. 
11* 



164 MAHLER'S compactness theorem 

Let A be a critical lattice for !iJa. By Theorem VIII there are at 
least In(n+1} =6 pairs of points ±m of A on the boundary of !iJa 
and by Theorem VII there is a linearly independent set of 3, say ~, 
m 2, rna. By Theorem XIII, ~,m2' ma is a basis for A If 

m = Ul~ + u2 m 2 + uama 

is another point of A on the boundary of !iJa, the only possible value 
for the ui are 0, ± 1 by Theorem XIII. There can be at most one such 
pair ±m with UlU2Ua=FO. For if, say, 

m = ulm1 + u2 m 2 + uams, 

m' = u~ml + u~m2 + u~ma, 
U 1 U2U a =f= 0, 

u~ u~ u~ =F ° , 
the index IU2U~-Uau~1 of~, m, m' is even, so must be 0. Similarly 

som'= ±m. Hence there must beat least one point ~ml +u2m 2+uarna 
with Ul U2Ua=0 on the boundary of !iJa other than ±~, ±m2 , ±rna. 
We may suppose without loss of generality that it is 

m,=ml -m2· 

Then neither m l+m2 nor ~+m2±rna can occur as boundary points, 
since they would give index 2 with rna and m,. Hence at least two 
of the remaining possibilities 

~±ma, m 2±ma, ~-m2±ma 

must occur. Since ~-m2+ma and ~-m2-ma cannot both occur, 
we may suppose without loss of generality that 

occurs. Then m 2+rna and ~-m2-rna do not occur, since they 
give index 2 with m 2 and m6: and ~ + rna cannot occur, since it gives 
index 2 with m, and m 6 • Hence the only possibilities for ±m. are 

ma - 'Inl or m l - m 2 + rna. 

In the second of these cases take m6 instead of rna. Then without loss 
of generality 

Write 
I(ul , U 2 , u3} = IUl~ + u2m 2 + uam al2, 

where ~,U2' ua are variables, so I(u} is a quadratic form. Then 

1(1,0,0) = 1(0,1, O} = 1(0, 0,1) 

= 1(1, 0, -1) = 1(0,1, -1} = 1(1, -1,0) = 1. 
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Hence 
IM=~+~+~+~~+~~+~~ 

with determinant D (f) = 1. and so 

{det(~. m 2 • ma)}2=1. 
as required. 
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V.9.2. Let f/ be a star-body and 1\ an f/-admissible lattice. We say that 
1\ is extreme for f/ if there is a neighbourhood 2 of I\, in the sense of § 3.2, in which 
every f/-admissible lattice M satisfies 

d(M) ;;;; d(I\). 

Clearly a critical lattice is extreme; but an extreme lattice need not be critical. 
Some of the results proved already extend to extreme lattices, notably SWINNERTON­
DYER'S Theorem VIII. 

The extreme lattices of n-dimensional spheres have been exhaustively studied. 
For example there are six distinct types of extreme lattice for the 6-dimensional 
sphere as was shown by BARNES (1957b). There is a general theorem of VORONOI 
( 1907 a) which helps to characterise the extreme lattices of an n-dimensional sphere 
(they are "perfect" and "eutactic"). BARNES (1957a) has given an extremely 
elegant proof of VORONOI'S characterisation. Unfortunately we cannot discuss 
these points further here. so we refer the reader to the two papers by BARNES 
where there are further references to the copious literature. 

V.10. Applications to diophantine approximation 1. The theory of 
Diophantine approximation deals with the approximation of rational or 
irrational numbers by rational numbers with special properties. The 
geometry of numbers has many applications to Diophantine approxima­
tion. The author's recent Cambridge Tract [CASSELS (1957a)] deals 
with Diophantine approximation and we do not intend to repeat what 
was done there. We give however a theorem of DAVENPORT generalizing 
work of FURTWANGLER which is an interesting application of MAHLER'S 
compactness techniques. 

First. we note an obvious consequence of MINKOWSKI'S linear forms 
Theorem III of Chapter III. Let (A •...• {},. be real numbers and Q an 
integer. By Theorem III of Chapter III there exist n + 1 integers 
"0 ..... ",.. not all O. such that 

I "0{}1 - "II < Q-l/,. 

l"ol~Q; 

(1~i~n). (i) 

(2) 

since "o{}j-"I (1~i~n) together with "0 form n+1 linear forms in 
"0 ..... ",. with determinant 1. Were "0=0. we should have 1"11 < Q-l/". 
so "1=0 (1~i~n). Hence "0=1=0. and on replacing "0. """If by 

1 Not used later in book. 
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-Uo, ... , -U .. if need be, we may suppose that 

(2') 
Further, (1) may be written 

( 1') 

which shows that the u;luo are good rational approximations to the {};, 
all with the same denominator uo. 

We may look at (1) and (2') from another point of view. On elimi­
nating Q we have 

There are in fact infinitely many solutions uo>O, u1 , ••• , u .. of (3). If 
all of {}1' ... , {} .. are rational, this is trivial since then there exist integers 
vo>O, VI' ••• , V .. such that 

(1~j~n), 

and then we may put 
(O~j~ n), 

where r is any positive integer: and then the left-hand side of (3) is 0. 
Otherwise we may suppose that {}1 is irrational. Suppose that R integral 
solutions u}'l (O~j~n, 1~r~R) have already been found with u~»O. 
Since {}l is irrational, we may choose Q so large that 

(1~ r~ R). 

For this value of Q the solution of (1) and (2') gives a solution of (3) 
which is clearly not identical with any of the earlier one~. 

V.I0.2. For different purposes one may be interested in different 
properties of the approximations u;/uo to the 0;. For example, instead of 

max I uO{}i - ujl 
1~1~" 

we may wish to make 
(1) . 

or 
(2) 

small. Or again one may be interested in "asymmetric" inequalities, 
of the type 

k -1/ .. ..- {} --- k -1/ .. - 0 Uo 2::! Uo i - ui 2::! 1 Uo (1~j~n), (3) 



Applications to diophantine approximation 167 

where ko and kl are positive numbers. All these different problems 
may be brought into one general shape. Let (j)(xl , ... , x .. ) be a distance­
function of n variables. How small can 1 

Uo (j)" (uo 1}1 - Ul , ... , Uo 1)" - Un) 

be made for infinitely many sets of integers uo> 0 and U1, ••• , Un? We 
write 

D ((j) : 1}1, ... , 1} n) = lim inf Uo (j)" (uo 1}1 - u1 , ... , Uo 1) n - un) (4) 
110-+ 00 

tlO! "II ''OJ UrI integers 

and 
D((j)) = sup D((j) :1}1, ... ,1},.l; (5) 

lih··"lJ,. 

so that D ((j)) is the number we wish to estimate. 

The non-negative function F(xo, ... , x,,) of n + 1 real variables 
defined by 

+1 _{ XO(j)"(xl,· .. ,X,.) if xo~O} 
pn (xo, ... , X,.) -

- Xo (j)" ( - Xl' .•. , - X,.) if Xo ~ 0 
(6) 

is a distance-function when (j) is a distance function of n variables: 
since it clearly has the three defining properties that it is non-negative, 
continuous and satisfies 

F(txo, .. ·,txn ) =tF(xO, .. ·,xnl 

when t> o. By definition, F is symmetric: 

F(- Xo, ... , - xn) =F(xo, ... , x,,). 

It satisfies the identity 

F(t" xo, t-l Xl' ... , t-l X,,) = F(xo, ... , x,,) 

for any t>o, since 

(j)(t-l Xl' ... , t-l Xn ) = t-l (j)(Xl , ... , X .. ). 

As in § 4 of Chapter IV we write 
pH (J\) 

c5 (F) = s~p d (J\) , 

where the supremum is over all (1J + i)-dimensional lattices, so that 

c5(F) = {Lf(9')}-l, 

where 9' is the (n + i)-dimensional star-body 

9': F(xo, ... ,xn)<i. 

DAVENPORT'S result may now be put in the following shape. 

1 By tP" is meant the n-th power of tP. 

(7) 

(8) 
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THEOREM XV. Let tJ> and F be related as above. Then 

D(tJ» ~ ~(F) 

always. If tJ>(:I:) =0 only for :I: =0. then 

D (tJ» = ~ (F) . 

(9) 

(10) 

The first part of Theorem XV is due essentially to MAHLER and is 
related to the theory of automorphic bodies which we shall study in 
Chapter X. When D(tJ» =0. there is nothing to prove. Otherwise. 
let c be any positive number such that 

c < D(tJ». (11) 

Then. by the definition of D(tJ». there are real numbers {}l' .... {},. and 
an integer 00 such that 

whenever Uo • ...• u,. are integers and 

uo~ 00· 

(12) 

(13) 

In particular. {}l ..... {},. are not all rational; and so there exists a 
number ,,>0 such that 

(14) 

for all integers U o • ...• u,. with 

O<Uo~ 00. 
Clearly 

,,~t<1. ( 15) 

Let Ml be the n + i-dimensional lattice of points 

(xo ... ·• x .. ) = (uo• UO{}l - U1 • .... uo{),. - u"). (16) 

where uo, "', u,. run through all integers. Clearly 

The function 

~(xo ... ·.x,.) = max F(xo ..... x"). -- m?-x Ix;1 [ 
,1/("+1) ] 

" 1:>,::0" 

is clearly an (n + i)-dimensional distance-function and 

~ (-:I:) = 1\ (:1:) 
by (7). We show now that 

(17) 

( 18) 

(19) 

(20) 
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Consider a point (16) of M1 , where, by (19), we may suppose that uo~O. 
If uo= 0 but not all of u1 , ... , un are 0, then the second term of the 
outer maximum in (18) is 

c1/(n+1) I I c1/(n+1) 1/(n+l) --max u· ~--~c x l:;;;i;:;on I - ,,- , 

by (15). If O<uo~ Uo, then the second term of the outer maximum 
in (18) is still ~ c1/(n+l), by (14). If Uo ~ [fo, the first term of the outer 
maximum in (18) is ~cl/(n+1) by (12). Hence in any case, 

F;. (x) ~ c1/(n+l) 

for all XE Ml except o. This completes the proof of (20). 
For positive integers r = 1,2, ... write more generally 

Then 

and 

[ 
cl/(n+l) 1 F,.(Xo,···, Xn) = max F(xo,· .. , Xn), -- max I Xii . r" 1;:;0,;:;0, 

F(x) ~ F,. (x) ~ 1\ (x) 

lim F,. (x) = F(x) 
,--+ 00 

uniformly in any bounded set of points x. We have the identity 

by (8). 

Let M, be the lattice 

Clearly 

and 

(21) 

(21 ') 

(22) 

(23) 

(24) 

p,n+l (M,) = 1\n +l (Ml ) ~ c, (25) 

by (17), (20) and (23). Consequently, by (21'), we have the weaker 
assertion 

F;.n+1 (M,) ~ c> 0 (1~r<oo). (26) 

By (24), (26) and Theorem IV Corollary, there exists a convergent 
subsequence of the M" say 

M,,-+ N. 
By (24) we have 

deN) =1. 

Since (22) holds uniformly in any bounded set, we have 

p+l (N) ~ lim sup P;;+ 1 (M,,) ~ C, 
'--+00 

(27) 

(28) 
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by (25) and Theorem II. Hence 

F,,+l (1\) 
o (F) = s~p d (1\) 

> F n +1 (N) > 
= diN) =C. 

Since C was any positive number smaller than D (C/» , this proves 
o(F)~D(c/», the first part of Theorem XV. 

The second part of Theorem XV requires quite different techniques 
and uses the basis constructed in Theorem II of Chapter 1. By the 
Corollary to Theorem VI, there is a lattice 1\ with 

and 
d(/\) = 1 

p+l (1\) = 0 (F) . 

(29) 

(30) 

We denote the (n + i)-dimensional vector (xo, ... , x,,) in which xi = 1 
but the remaining co-ordinates are 0 by 

i n-i 
ei=(~,1,~) (O~j~ n). 

By Theorem II of Chapter I, with e =} and n + 1 for n, there exists, 
for all sufficiently large numbers N, a basis ao' aI' ... , a" of 1\ such that 

lai-Neil <NA (1~j~n). (31) 
Then 

aj = N ~ tj.e. (1~j~n), (32) 
0::;;.::;;" 

where 
It.· -11 ~ N-! 11 - (1~j~n) (33) 

and 
I tjil ~ N-i (1~j~n, o ~ i ~ n, i =l= ;) . (34) 

Since ao, aI' ... , a" are linearly independent, there are feal numbers 
.1.0, AI, ... , An such that 

eo = .1.0 ao + Al a1 + ... + An an , 

where we may suppose that 
Ao~ 0, 

on taking -ao for ao if necessary. Since d(/\) =1, we have now 

.1.0 = .1.0 I det (ao,"" an) I 
= I det (eo, aI' ... , an) I 
= N"{1 +O(N-!)}, 

where the constant implied by the 0 depends only on n. We may 
thus write 

(35) 
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where 01 , ••• ,0 .. are certain real numbers, and 

(36) 

Let (l be any number such that 

<5' < <5 (F). 
We wish to show that 

for the 01 , ••• ,0 .. we have just constructed; provided that N is greater 
than some No which may depend on <5' and the function tP. After the 
first part of Theorem XV, this will complete the proof of the theorem. 
If <5 (F) = 0 there is nothing to prove. Otherwise we may suppose without 
loss of generality that 

o < <5' < <5 (F) . (37') 

To prove (37) we may clearly confine attention to integers uo, "', u .. , 
if any, for which 

uo>O, uotP"(Y1, .. ·,y .. )~<5(F), (38) 
where we have put 

(1~i~n). (39) 

So far we have not used the fact that tP(:r) = 0 only for :r = o. 
By Lemma 2 of Chapter IV, this implies that 

or some c>O. Hence, by (38), we have 

Uo max IYil .. ~c- .. <5(F). 
l~I:O" 

We now consider the point 

of A. By (35) and (39) this is of the shape 

Y = p,uoeo + L Yj"j; 
1:oi:;;" 

and so, by (32), has co-ordinates (Yo, ... , Y .. ), where 

Yo=p,uo+N L YjtjO' 
l~i:o" 

Y;= (1~i~n). 

(40) 

(41) 

(42) 
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Let e be an arbitrarily small positive number to be determined later. 
By (33). (34) and Lemma 3. the inequality 

f/J (f ti I Yi •...• f ti " Yi) ~ (1 + e) f/J(YI' ...• y,,) 

holds for all real numbers YI •...• y" whatsoever. provided that N is 
greater than a number depending only on the number e and the func­
tion rJ>. Hence. by (42). 

rJ>{\i •...• V,,) ~ (1 + e) N rJ>(YI' ...• y,,). (43) 

By (40) and (41). we have 

(44) 

for some l:{, which will depend. of course. on N. But now YEA and 
pH (A) = d (F). by hypothesis. Hence 

d(F) ~ YorJ>"(\i • ...• V,,). (45) 

by the definition (6) of F. From (36). (37'). (43) and (44). we have 

UOrJ>"{YI' ... , y,,) ~ (N",utl(1 + e)-.. -ld{F) > d' (all uo~ Uo), 

provided that first e is chosen small enough. then N is chosen large 
enough, and finally Uo is chosen large enough. This concludes the proof 
of (37). and so of the theorem. 

V.tO.3. The condition that rJ>(z) =0 only for z =0 is necessary for 
the second part of Theorem XV. The case when n = 2 and 

rJ>2(XI • x2) = IXl X2 1 

represents a fascinating problem of LITTLEWOOD. It is not in fact 
known whether there exist numbers {h and {}2 such that 

lim inf uol UO{}1 - ulll UO{}2 - u2 1 > O • 
....... 00 

where uo• ul • u2 are integers. The corresponding function F(xo. Xl' XI) 
is given by 

F3(Xo• Xl' X 2) = IXOXIXsl: 

and for this we have DAVENPORT'S result that 

d(F) = 1/7. 

which we shall prove in Chapter X. But it follows from work of CASSELS 
and SWINNERTON-DvER (1955a) and from DAVENPORT'S results about 
the successive minima of F, that at least 
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There is a companion result to Theorem XV, also due to DAVENPORT, 

which relates to the approximation of a single linear form to O. Here 
one is concerned with 

D'(l/J:{}l' ... , (},,) = lim inf I Uo + Ul (}l + ... + u"{},,Il/J"(ul , ... , U,,), 
max 1 ... 1 •.••• 1 .... 1-0-00 

.. 0+ ... ".+···+ .... " .. 0;:0 
"'J .'0' "" integers 

where the condition UO+Ul{}l+'" +u,,{},,~O may clearly be omitted 
if l/J is symmetric. Then Theorem XV remains valid if D (l/J) is replaced 
by 

D'(l/J) = sup D'(l/J:{}l'"'' (},,); 
81,···,iJ" 

and the proof is substantially similar. 

V.I0.4. Note that we have not shown the existence in the second 
part of Theorem XV of {}l' "', {}" such that 

lim infuol/J"(uo{}l - Ul , ... , uo{}" - u,,) = «5 (F) : 
"o~OO 

and indeed in general such {}l' ... , {}" do not exist!. When n = 1, however, 
a (}l does exist, as is easy to show. Here, of course, the only possibility 
for the distance function l/J(Xl) of one variable is 

l/J(xl) = { k Xl if Xt~ 0 
-tXt if Xt~ 0, 

where k and t are positive constants. As in the proof of the second 
part of Theorem XV, we consider a lattice 1\ with 

d (1\) = 1 , p2 (1\) = «5 (F) . 
Let 

a = (ao• at). b = (bo, bt) 

be a basis for 1\, where without loss of generality 

bt > 0 aobt - atbo = d(/\) = 1. 
Put 

{} = {}t = iltlbt· 

After Theorem XV it is enough to show that 

lim inf Uo l/J(uo{} + ul ) ~ «5 (F). 
"0-+ 00 

(1 ) 

(2) 

As in the proof of Theorem XV, it is enough to consider value of Uo 
and ~, such that 

(3) 

where c is a constant such that l/J( Xl) ;?; c I XII for all Xl' 

1 For example when n=2 and If>2(Xl.X2)=X~+x~. as one may show by 
"isolation" techniques. Cf. Chapter X. 
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We consider now the point 

y = Uo a + UI b = (uo ao + ul bo, Uo al + UI bl) = (Yo' ~) 

of A. By (1) and (2), we have 

IP(~} = bl IP(uo{} + ul ). 

But now, by (3), we have 

lim Yo = lim (ao + bo~) = ao - bo{} = bI I , 
"0 -to co 140 140 

by (1) and (2). But 
Yo IP(~) ~ c5 (F) ; 

and so 

by (4) and (5). 
In particular, Theorem IV of Chapter II shows that 

lim infuol uo{} + ull ~ 5-1 
"0-+ 00 

(4) 

(5) 

for all {}: and there exist numbers {} for which the sign of equality is 
required. Indeed the "successive minima" of Theorem IV of Chapter II 
correspond to a sequence of successive minima here. The original proofs 
of this used continued fractions, but there is a proof due to C. A. ROGERS 
which uses the isolation techniques which will be discussed in Chapter X 
and which is given in the author's Tract (CASSELS 1957a). 

V.tO.5. The proof of Theorem XV gives a simple case when in­
equality necessarily occurs in Theorem II, that is, when we have a 
convergent sequence of lattices, 

M,-7M' 

and a distance function F such that 

F(M') > lim supF(M,}. 
'--+00 

Let F be the distance-function and M, the lattices occurring in the first 
half of the proof. Then 

F(M,) = 0 

for all r, since M, has points with xo=O. On the other hand, we con­
structed a convergent subsequence M" of the M, such that 

M,,-7 N, 
where 

p+l (N) ~ D(IP: {}1"'" {}n). 

The right-hand side here may well be strictly positive, as § 10.4 shows. 
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Chapter VI 

The theorem of MINKOWSKI-HLAWKA 

VI.l. Introduction. Hitherto we have been primarily concerned to 
estimate the lattice constant L1(9') of a set 9' from below, that is to 
find numbers L10 such that every lattice A with d (A) < L10 certainly has 
points other than 0 in !/. In this chapter we are concerned with estimates 
for L1(9') from above; that is we wish to find numbers L11 such that 
there are certainly lattices A with d (A) = L11 which have no points other 
than the origin in /1', i.e. are 9'-admissible. 

HLAWKA (1944a) showed that if 9' is any bounded n-dimensional 
set with a volume (content) V in the sense of JORDAN1 and if L11> V, 
then there is a lattice A with d (A) = L11 which is admissible for 9'. He 
showed, further, that if 9' is a bounded symmetric star-body, then it 
is enough that 

(1 ) 
where 

(2) 

thereby confirming a conjecture of MINKOWSKI. These results were put 
in a wider setting by SIEGEL (1945 a). Denote by N,9'(A) =N(A) the 
number of points of A other than 0 in a set 9'; and by P,9'(A) = P(A) 
the number of primitive 2 points of A in 9'. SIEGEL 3 gave a very natural 
way to define averages over the set of all lattices A with a fixed deter­
minant d (A) = L11. If 'IjJ (A) is any function of a lattice A, let us denote 
this average by 

9Jl {'IjJ (A)}. 
II 

(3) 

SIEGEL showed that 
9Jl {N,9' (A)} = V(9')/L11 , 
II 

(4) 

and 
9Jl{P,9'(A)} = V(9')g(n) L11, 
II 

(5) 

where 9' is any bounded set, not necessarily a star-body and not 
necessarily convex, which possesses a volume V(9') in JORDAN'S sense. 

1 This is rather more restrictive than the sense of LEBESGUE, but if the volume 
is defined in the sense of JORDAN it is also defined in that of LEBESGUE and equal 
to it. Let X (xl be the characteristic function of .9', that is X (xl = 1 if xE 5 and 
X (xl = 0 otherwise. Then .9' has a volume in the sense of JORDAN if X (xl is integrable 
in the sense of RIEMANN, and the volume is equal to the integral of X (xl over all 
space. 

Z That is points aE A which are not of the form a = Rb, where bE A and 
k> 1 is an integer. 

3 For a particularly simple exposition of SIEGEL'S averaging process, see 
MACBEATH and ROGERS (1958al. 
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HLAWKA'S theorems follow at once from (4) and (5). If .11 > V(9') , then, 
from the definition of the average, there must certainly by (4) be at 
least one lattice, say M, such that N9'(M) ~ rol(N9'(I\)) < 1. Since 

A 
N9'(M) is an integer, we must have N9'(M) =0, so M is 9'-admissible. 
Similarly, if 9' is a symmetric star-body and Ll1> V(9')/2C(n), then 
there must be some lattice N for which P9' (N) < 2. Since 9' is sym­
metric, points of N, other than the origin, occur in pairs, ±a, so 
P9'(N) =0. Hence 9' contains no primitive points of N and, being a 
star-body, can contain no points of N at all other than o. 

The constant C(n) occurs in (5), roughly speaking, because the 
probability that a point of a lattice 1\ chosen at random should be 
primitive is {C(n)}-l. More precisely, the ratio of the number of primitive 
points of 1\ to the total number of points of 1\ in a large sphere I all < R 
tends to {C(n)}-l as R~oo. 

When 9' is convex, improvements of the Minkowski-Hlawka theo­
rem were obtained fairly soon after the original proof [see e.g. MAHLER 
(1947b), DAVENPORT and ROGERS (1947a) and LEKKERKERKER (1957a)]. 
However, even so, the smallest value of 

Q(9') = V(9') 
.1(9') (6) 

is not known even for 2-dimensional symmetric convex sets: though 
the same conjecture was made independently by REINHARDT (1934a) 
and MAHLER (1947c) that it is attained when 9' is a certain "smoothed 
octagon", that is an octagon in which the corners are replaced by certain 
hyperbolic arcs. 

Mrs. OLLERENSHAW (1953a) has given an example of a 2-dimensional 
non-convex symmetric star-body 9' for which Q(9') is smaller than for 
the REINHARDT-MAHLER convex octagon and constructed from it a set 
which is not a star-body for which 

Q = 1.3173 .... 

It is not known whether this is the smallest possible value for a 2-dimen­
sional set. 

For a long time no improvement was obtained on the Minkowski­
Hlawka theorem for general sets or for star-bodies. However, almost 
simultaneously, improvements were made by ROGERS (1955 a, 1955 band 
1956a) and SCHMIDT (1956a and 1956b). ROGERS'S work depends on 
elaborate estimates of the average 

(7) 
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for positive integers k, where we have used the same notation as in (4). 
In a later paper ROGERS (1958a), using ideas of SCHMIDT combined 
with his own, shows that there is an absolute constant C such that 

V(.9') 1 4 Q(9') =-- ~-nlog- - 210gn - C 
Ll(9') - 2 3 

(8) 

for all symmetric sets 1, provided that the dimension n is greater than 
some absolute constant no. We shall not discuss ROGERS'S work further 
but refer the reader to the original memoires. SCHMIDT, on the other 
hand, uses an elegant device which is more effective than ROGERS'S 
method for small dimensions but much less effective when the dimension 
is large. We shall discuss it more in detail in § 4. 

The work just described can be generalized in several directions. 
In the first place, instead of operating with the number Ny (A) defined 
above, one may consider more generally 

2:.1(a), (9) 
DEli 
*0 

where 1 (~) is some function defined at all points of space and which 
may be subjected to certain conditions (e.g. that it be non-negative or 
Riemann-integrable). If f(~) is the characteristic function of 9', then 
the sum (9) is just Ny(A). Again, one may confine the sum in (9) to 
primitive points of A, when there is an analogue of Py(A). In fact 
most of the work so far described has dealt with generalisations of this 
kind. Again, it was shown by MACBEATH and ROGERS (1955a) that the 
Minkowski-Hlawka theorem extends to more general sets of points than 
lattices. It is enough for A to be any set of points such that the ratio 
of the number of points of the set A in the sphere I ~I < R to the volume 
of the sphere should tend to a finite non-zero limit d as R -+ 00. Indeed 
(4) continues to hold with a modified definition of the mean !In and with 
Lll =d-1• 

Finally, we observe that MAHLER'S Theorem V Corollary of Chap­
ter III often permits the results of this chapter to be extended to un­
bounded sets 9' on taking .9, to be the set of points of 9' in the sphere 
1~I<r. 

VI.l.2. In this book we shall not consider any of these generaliza­
tions in detail. In § 3 we shall prove the Minkowski-Hlawka Theorem 
in its original formulation, that is, the existence of a lattice A admissible 
for a symmetric star-body 9' with finite volume V(9') and with deter­
minant arbitrarily near to V(9'). We shall use an averaging argument, 
but the type of average will be chosen to facilitate the proof, not for 

1 Professor ROGERS tells me that Dr. SCHMIDT has obtained an improvement 
of (8) which is in course of publication in Acta Mathematica. 

Cassels, Geometry of Numbers 12 
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any deeper reason l . Then in § 4 we shall give an improvement of the 
Minkowski-Hlawka theorem using SCHMIDT'S ideas but not carrying 
the detail quite so far as he does. 

The arguments of §§ 3. 4 depend on a thorough investigation of the 
properties of sublattices of prime index in a lattice and this is carried 
out in § 2. These investigations further enable one to prove the result 
conjectured by ROGERS that if Y is a symmetric star-body and 
md (A) < L1 (Y) for some integer m and some lattice A. then Y contains 
at least m pairs of points ±a E A other than o. This we do in § 5. 

In § 6 we give an entirely different generalization of the Minkowski­
Hlawka Theorem which applies only in 2 dimensions. We show namely 
that certain sets Y of infinite volume (= area) are of finite type, that 
is. possess admissible lattices. The proof depends on a generalization 
of a theorem of MARSHALL HALL (1947a) due to the author (CASSELS 
1956a). 

We do not use the contents of this chapter later in the book. 

VI. 2. Sublattices of prime index. An important tool in the work 
of both ROGERS and SCHMIDT is the existence of sublattices of a given 
lattice with certain special properties. We shall use the definition and 
properties of an index introduced in Chapter I. 

LEMMA 1. Let p be a prime number and A an n-dimensional lattice. 
Let a1 , •••• a R be any points 0/ A which are not 0/ the shape pa, a E A 
and let k1 • ... , k R be real numbers. Then there is a lattice M 0/ inde.x p 
in A such that 

Let b1 , ... , bn be a basis for A. Let c1 , .... Cn be integers and 

O~Ci<P (1~j~n), 

(c1 .... ,cn ) =4= (0 .... ,0). 

( 1) 

(2) 

(3) 

Let M (c1 , •• '. cn) be the lattice of points U 1 b1 + ... + Un bn, where 
u1 , ... , Un are integers, such that 

U1 Cl + ... + UnCn == 0 (P). 

Clearly M (c1 , ... , cn) is of index p. There are P" -1 such lattices and 
we now show that a point ar belongs to precisely pn-1 - 1 of them. 

1 Other averaging processes have been used. For a particularly brief proof of 
Theorem II using one of them. see CASSELS (1953 a). It has been shown by ROGERS 

(1955a) that many of the averaging processes that can be used to prove the 
Minkowski-Hlawka Theorem are essentially equivalent to SIEGEL·S. 
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We have 

where V,l"'" v'n are integers not all divisible by p, by hypothesis. 
Without loss of generality, Vrl is not divisible by p. The congruence 

(4) 

then determines C1 uniquely if C2 , •.• , c .. are given subject to (2). In 
particular, (4) gives C1 = 0 if already c2=··· =; = 0; contrary to (3). 
But cz, "', Cn may be given any other of the p ,. 1_1 possible sets of 
values s';~ject to (2). Hence the average of th: left-hand side of (1) 
over all lattices M = M (c1 , •.. , cn) is given by the right-hand side, and 
so (1) must be true for at least one of them. 

We have at once the 

COROLLARY 1. Let p be a prime number and let aI' ... , at> be p points 
0/ A none 0/ which is 0/ the shaP.e Pb, bE A Then th Ie is a lattice M 
0/ index p in A which contains none 0/ aI' ... , at>. 

For we may put k, = 1 for 1-;;'r-;;'p. For the lattice M of the theorem 
we have 

" 1 s: p .. -l_ 1 P < 1-
L....J - pn_1 

orE M 

The number p of points in the corollary cannot be replaced by p + 1. 
It is easy to see that if aI' a2 are any two points of A, then at least 
one of the p + 1 points 

~, a2 +ra1 

is in each sublattice of index p. 

(O-;;'r-;;,p-1) 

More generally we have the following corollary, due to SCHMIDT in 
essence. 

COROLLARY 2. Suppose that the number R 0/ points a, satisfies 

R< pm+l_1 
P-1 

jor some integer m. Then there is a lattice M 0/ index p in A such that 
pm-l_ 1 

" k, -;;, " k,. L....J pm-1 L....J 
orE M l;;;,;;;R 

(5) 

(i.e. n in (1) may be replaced by m). 

If the dimension n of the space is -;;, m the result follows at once since 

pm-l_ 1 > p .. -l_ 1 

pm-1 = pn_ 1 
if m~ n. 

12* 
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When n>m we use induction on the dimension n. We say that two 
vectors a and a' of /\, neither of the shape pb, b (/\, are proportional 
mod p if there is an integer u and a vector c of /\ such that 

a =ua' +pc. (6) 

Clearly u is prime to p. The relationship is a symmetric one between 
a and a', since there is an integer v such that uv == 1 (P); and then 

va =a' +pc' 

or some c' E I\. Further, if a proportional both to a' and a", then a' 
s proportional to a". We thus have a subdivision into classes or "rays". 
The number of rays is clearly 

P"-1 
P-1 

Since we are now supposing that n>m, at least one of these rays 
must contain no members of the set a, (1 ~r~R). If c is in this ray, 
it is of the shape c = w b where b is primitive and w is an integer priJl.le 
to p. Hence the primitive point b is in the ray, and we may suppose 
that b = b1 , where b1 , ... , b" is a basis for I\. Then every point a, is 
of the shape 

a,=v,lb1 +··· +t1,,,b,,, 
where by the construction of b1 , at least one of V,2' ... , v,,, is not divisible 
by p. Hence if we make a, correspond to the vector 

0, = (V,2' .•• , v,,,) 

in the (n -i)-dimensional lattice /\0 of points with integer coordinates, 
then ii, is not of the shape p b, b E /\0' Since we are assuming that the 
corollary has already been proved for smaller values of n, there exist 
integers c2 , ••• , c" such that 

The lattice M of points 

with 
C2U2+"'+C"U,,=O (P) 

then does what is required. 

VI.2.2. A refinement of the argument gives a rather more special 
result than Lemma 1 in which now the k, must be non-negative. 

LEMMA 2. Let p be a prime-number and /\ an n-dimensional lattice. 
Let ao, ... , aR be any R + 1 points all\ which are not 0/ the shape Pb, 
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bE" and let kl' ... , k R be non-negative real numbers. Then there is a 
lattice M 01 index p in " such that 

ao~M 
and 

(1) 

We may choose a basis bl , ••• , btl for" such that 

where Vo is some integer, which is not divisible by p by hypothesis. 
For integers c; (2~j~n) with 

O~c;<p (2~i~n), (2) 

denote by N (ca, ... , cp) the lattice of points 

ulbl + ... + u"b,., 

where the integers u1 , •.• , u" satisfy 

Ul +CaU 2 +····+c,.u,.=O (p). 

Clearly ao~ N (ca, •.. , cp). 

For 1 ~r~R, let 
a, = V,l bl + ... + v," b". 

By hypothesis, not all of the integers V,l' ••• , v," are divisible by p. 
If all of V,I' •.• , v," are divisible by p, then V,l is not divisible by p: 
and so a, does not belong to any N (ca, •••• c,,). If, say, V,I is not divisible 
by p, the condition 

v,l+cav,a+···+c"v,,,=O (P) 

is satisfied for precisely one value of CI if Ca • •••• C" are fixed; that is 
a, belongs to precisely p"-ll of the p,,-l lattices N (ca, ••• , c,,). Hence 
if M runs through all the p,.-l lattices N (ca, ... , c,,) the average value 
of the left-hand side of (1) is 

P-l};' k" 

where };' denotes that the r for which v,a • ... , v," are all divisible by p 
must be omitted. Since k,~o for all r, by hypothesis, this shows that 
at least one of the lattices M =N(ca, ... , c,,) satisfies (1). 

VI.3. The Minkowski-Hlawka Theorem. Following ROGERS (1942 b 
and 1951 b) we now prove the following theorem of HLAWKA. 

THEOREM 1. Let 1 (a:) be a Riemann-integrable lunction 01 the variables 
a: = (Xl' ... , X,,) which vanishes outside a bounded set. Let L1l >O and 8> 0 
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be given. Thm there is a lattice M of determinant .11 such that 

where 

.11 L f(a) < J f{~) d~ + 6, 
oEM 

,*0 

We may suppose that I(x) vanishes outside the cube 

(1~i~n). 

(1) 

(2) 

Let p be a prime number and let "I> 0 be determined by the equation 

pTJtI = .11. 
We may choose p so large that 

PTJ>S. 
Let A be the lattice of points 

where u1 , ••• , uti are integers, so 

Now 
d(A) =TJtI. 

TJtI L f(a) <JI(x)dx +!s 
oEII 
0,*0 

(3) 

(4) 

(6) 

(7) 

if "I is small enough, by the definition of Riemann integration; and 
so (7) is true when P is large enough, by (3). 

A point a of A other than 0 for which f{a) =FO lies in (2); and 
so cannot be of the shape pb, bE A by (4). Hence we may apply 
Lemma 1 where ~, ... , aR are all the points a of A other than 0 at 
which f(a) =FO and 

k, = I (a,) . 
Then M has determinant 

and 
d{M) = Pd(A) = pTJ" = .11, 

L f(a) ~ P":~~ 1 L f(a). 
oEM p oEII 

,*0 0'*0 

(8) 

(9) 

Finally, (1) follows from (3), (7) and (9), when p is chosen large enough. 
As in § 1 we have the 

COROLLARY. Let !/' be a set with Jordan-volume V(!/,) and let 
.11> V(!/,). Then there is a lattice M with d(M) =.11 which is admissible 
for !/'. 
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For let I (x) be the characteristic function of Y, and choose e so 
that ,11> V(Y) +e. The number of points of M other than 0 in Y is 
then 

L I (a) < ,111 {V(.9') + e} < 1, 
oEM 
0*0 

by (1). Since the number is an integer, it must be 0. 

VI.3.2. The result corresponding to Theorem I in which only primi­
tive points are summed over is: 

THEOREM II. Let I (x), ,11 and e be as in the enunciation 01 Theorem I. 
Then there exists a lattice M 01 determinant d (M) = ,11 such that 

C(n) ,11 L* I (a) < f I (x) dx + e, 
oE M 

where the star (*) indicates that only primitive points are to be summed 
over. 

We only indicate briefly the modification required to the proof of 
Theorem 1. In any case Theorem II is embraced in the generalization 
of Theorem I to point sets /\ other than lattices due to MACBEATH and 
ROGERS (1955 a), which was discussed in § 1. The exposition still follows 
ROGERS (1947b and 1951 b). 

In the first place, it is trivial that a point of M in the cube (2) of 
§ 3.1 is a primitive point of M if and only if it is primitive as a point 
of I\. Hence it is enough to show that 

limrl"L*/(a) = {C(n)}-l fl(x)dx. 
'1->0 oEA 

(1 ) 

Now 
00 

L I(a) = L L* I(ra). 
aEA ,=10EA 
0*0 

Hence by MOBIUS' inversion formula [e.g. HARDY and WRIGHT (1938a) 
Chapter XVI], we have 

L*/(a) =L,u(r) LI(ra). 
oEA , oEA 

0*0 

Hence 

'f}" 'L* I (a) = 'L Ilr~) <1(rfj), 
aEA ,;';1 

where, for any ;>0, we have put 

<1(;) =;" L 1(;11). 
" integral 
"*0 
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But now a (E) is bounded for all E. and 

lima(E) = f I(z) dz. 
e-+o 

The result now follows on letting p -? 00, so "l ~ 0, since 

L IJ,.~) = {C(n)}-l. 
'~l 

As in § 1 we have the 

COROLLARY (The "Minkowski-Hlawka Theorem"). Let 9' be a bounded 
symmetric star-body with volume V(9') and let 2C(n) Ll1> V(9'). Then 
there is a lattice M with d(M) =Lll which is admissible lor 9'. 

VI.4. SCHMIDT's theorems. We are now in a position to illustrate 
SCHMIDT'S method of improving the corollaries to the last two theorems. 
We first give a simple example 

LEMMA 3. Let 9' be a symmetric star-body in n-dimensions with 
Jordan-volume V(9') and let Lll be any number such that 

3C(n) Lll> (1 + 21-,,) V(9'). 

Then there is a 9'-admissible lattice M 01 determinant Ll1 • 

Let g (:1:) be the characteristic function of 9', and let 

so that 

and 

I(z) = g(z) + 2g(2z), 

{
3 if zEi9' 

1(:1:) = 1 if zE9', zEEt9' 
o otherwise 

Choose e so small that 

By Theorem II with Ll1/2 for Lll and this e, there is a lattice A with 
determinant 

such that 
L I (a) <6. 

"E II. primitive 

Since I(-z) =/(:1:), by the symmetry of 9', there is thus no primitive 
point of A for which 1(0) =3, and so no point of A at all in i9' except o. 
Further, there are at most two pairs of primitive points say ±a1 , ±a2 
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of 1\ in Y. By Lemma 1 Corollary 1, there is a lattice M of index 2 
which contains neither a1 nor a2 • Since ai' a2 are not in l Y, the points 
2~, 2a2 of M are not in Y. Hence M is Y-admissible. Since 

d(M) = 2d(l\) = L11 , 

the lattice M does what is required. 

VI.4.2. When n = 2, the result of Lemma 3 is no stronger than 
Theorem II Corollary. 

By further elaboration, SCHMIDT (1956a) improved Lemma 3 some­
what but for values of n at all large Lemma 3 is weaker than the follow­
ing Theorem III which applies to all Jordan-measurable bounded sets 
not merely symmetric star-bodies. To obtain results about symmetric 
sets, Theorem III should not be applied to Y directly but, say, to the 
"half-set" g;, of points 

Then 
V(g;) = l V(Y) , 

and a lattice Mis g;-admissible if and only if it is Y-admissible. There 
is thus an additional factor 2 for symmetric sets. 

THEOREM I II. Let Y be any hounded n-dimensional] ordan-measurable 
set 01 volume V(Y\ and let Lfl be any number such that 

(1 ) 

Then there is a lattice M 01 determinant Lfl having no points, except pos­
sibly 0, in Y. 

Let g (z) be the characteristic function of S and put 

Then 
j(z) = g(z) + 2g(2Z) + 3g(3z) + 6g(6z). 

J I(z) dz = (1 + 2·2-" + 3 . r" + 6·6-") J g(z) dz 

= (1 + 21-") (1 + 31-") V(Y). 

By Theorem I there is thus a lattice 1\ of determinant 

such that 
d (1\) = Lfl/6, 

L: 1 (a) < 12. 
oE/\ 
0,*,O 

(2) 

(3) 

(4) 

We shall construct a lattice M of index 6 in 1\ with the required properties. 
We classify the points a of 1\ in Y, other than 0, into four types 

:t1 , :t2 , :ta and :te: 



186 The theorem of MINKOWSKI-HLAWKA 

(i) a is in Xl if it is not of either the shape a = 2b or a = 3 b with 
bEl\. 

(ii) a is in X2 if it is of the shape a = 2b but not of the shape a = 3 b, 
with bEl\. 

(iii) a is in Xa if it is of the shape a = 3 b but not of the shape a = 2b, 
bEl\. 

(iv) a is in Xa if it is of the shape a =6b, bEl\. 

Let Nl , N2 , N3 , !Va be the numbers of lattice points in the correspond­
ing classes. Then by (2) and (4) we have 

Nl + 3 N2 + 4N3 + 12!Va < 12, 
since, for example, the coutribution to (4) of aEXa is 

1+2+3+6=12. 
In particular, by (5), 

!Va=o. 

(5) 

Suppose, first, that N3> o. We apply Lemma 2 with P = 2, taking 
ao to be one of the N3 points in X3 and aI' ... , aR to be the remaining 
points in Xa (if any) together with any points in Xl' The numbers k, 
of the lemma are taken as 1 if a,EXl and 4 if a,E1:3 • Then, by Lemma 2, 
there is a lattice r of index 2 which contains N;, N; points of Xl' X3 
respectively, where 

(6) 

(the - 4 being the contribution of ao, which is definitely lost). All the 
points of X2 are, of course, in r. By (5) and (6) we have 

2 N; + 3 Nz + 8 N; + 4 ~ 11. 

Hence N; =0 and Nt' +Nz~i, so Nt' +Nz~3. But now 'by Lemma 1, 
Corollary 1 there is a sublattice M of r of index 3 which contains 
none of these N..' + N 2 points. Then M does what is required. 

We may thus suppose now that 

Na=O. 
We now apply Lemma 1, Corollary 2 with P = 3 to the points a, with 
k,=1 if a,EXl and k,=3 if a,EX2 • Since there are at most 

11 < (33 -1)/(3 -1) 

points a" we may take m = 2, so, in the notation of the corollary, 

pm-l_ 1 1 

P"'-1 -T' 
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Hence there is a sublattice r of index 3 which contains N{ , N2' points 
of ~, 't2 respectively, where 

N{ + 3 N; ~ : (Nl + 3 N2) ~ ~ < 3 . 

Hence N; = 0 and N1' ~ 2. By Lemma 1, Corollary 1, there is a sub­
lattice M of r of index 2 which contains non~ of these N1' points. This 
lattice M does what is required. 

Thus in every case we have constructed a lattice M of index 6 in 1\ 
which is admissible for g. Since 

d(M) = 6d(l\) = ,11' 

the lattice M has all the required properties. 

As SCHMIDT remarks, Theorem IIi can be improved somewhat at 
the expense of further elaboration; but for large n is weaker than 
ROGERS' results which we referred to in § 1 and which we cannot prove 
here. In particular the factor (1 + 21 -") (1 + 31-") on the left of (1) may 
be replaced by something smaller if g is a star-body, since then a point 
in r-1g is automatically in rIg if t~r. 

VI.5. A conjecture of Rogers. We digress now from the general 
theme of the chapter to prove a result which was conjectured by ROGERS 
(1951 a), who compares it with the generalization of Theorem II of 
Chapter III from m = 1 to m> 1. It was proved by ROGERS when the 
number m occurring in it is a prime and by SCHMIDT (1955 a) for all 
except a finite number1 of m. It has been proved generally in a rather 
wider context by the author (CASSELS 1958a). We do not use it later. 

THEOREM IV. Let g by a symmetric star-body and let 1\ be a lattice 
with 

md(/\) < ,1 (g), (1 ) 

where m~ 1 is an integer. Then g contains at least m pairs ±a of points 
of 1\ other than o. 

Theorem IV is an immediate consequence of the following theorem 
in which the reference to star-bodies disappears. 

THEOREM V. Let aI' ... , a R be primitive points 01 a lattice 1\ and let 

1r (2) 

be positive integers. Then there is a lattice of index at most 

(3) 

1 For all m;;;; 107 and all sufficiently large m, according to the review in Mathe­
matical Reviews! 
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which contains none 01 the points 

±i,a, (4) 

We show first that Theorem V implies Theorem IV. Suppose that 
1\ in Theorem IV contains fewer than m pairs of points of f/. Since f/ 
is a star-body. the points of 1\ in f/ can be put in the shape (4). where 
the number of pairs is 

J<m. 

Hence by Theorem V there is a lattice M of index ;;;; m in 1\ which con­
tains none of these points. i.e. M is f/-admissible. Since 

d (M) ;;;; m d (1\) < LJ( f/). 

by (1). this is a contradiction to the definition of LI(f/). 

The proof of Theorem V depends on the following lemma. which 
gives the existence of primes with certain properties. It is due to 
SYLVESTER (1892a) and was rediscovered by SCHUR (1929a) who 
gave a rather simpler proof. The proof is in any case rather involved. 
so we do not give it here but refer the reader to the original papers. 

LEMMA 4 (SYLVESTER). Let X. Y be integers and 

1;;;;X;;;;Y. 

Then there is a prime number p>X which divides one 01 the numbers 

Y+1 ..... Y+X. 

We now prove Theorem V. Suppose first that R = 1. Since fit is 
primitive. it may be taken as part of a basis for 1\: 

where n is the dimension. Clearly the lattice M of points 

~ b1 + ... + Un b,I' 

where ~ •...• u,. are integers and 

(] + 1). 
does all that is required. 

We now consider the case whenR>1 and use induction onJ. Without 
loss of generality 

fl = max f,· 
1;:i;,&R 

(5) 
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Let p be the prime given by SYLVESTER'S Lemma 4 with 

x = min VI ';2 + ... + iR) , 

Y = max &1' ; 2 + ... +; R) . 
Then 

p>X~j, (6) 

Since p divides one of the numbers Y + 1, ... , Y + X, we have 

[:]+[~]<[X~Y], 
that is 

(7) 

where for any real number x we denote by [x] in this proof the integer 
such that [x] ~ x < [x] + 1. By Lemma 2, there is a lattice r of index p 
which does not contain ~ and such that 

that is 
" . ::::;; [ ii + ... + iR ]. 
L.." 1,- P 

o,Er 
(8) 

By (6), if a point i,a, in (4) with r> 1 is in r, then a, is in r. Since 
~ is not in r, the only points (4) with r = 1 in r are the 

± i~ (p~) (9) 

But now, by the hypothesis of the induction argument, there is a lattice 
M of index at most 

1 + [; 1 + o~/'~ 1 + [;] + [i2+'; + iR] 
in r which contains none of the points (4) at all. The index of M in A 
is p times the index of M in r; and so, by (7), is 

~p{1 + [;] + [i2+·;+iR]}~J<J+1. 

This concludes the proof of Theorem V. 

VI.6. Unbounded star-bodies. The results of §§), 4 extend to un­
bounded star-bodies. For example we have 

THEOREM VI. Let f/ be a bounded or unbounded symmetric star-body. 
Then 

,1(f/) ~ {2C(n)}-1 V(f/). (1) 
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When !/ is bounded this is just Theorem II, Corollary. When !/ 
is unbounded it follows from Theorem II, Corollary together with Theo­
rem V, Corollary of Chapter V. 

In the same way any of the other estimates of §§ 3, 4 may be extended 
to unbounded star-bodies !/, or indeed, to any open sets of finite volume 
of which the origin is an inner point. 

VI. 6.2. There certainly exist star-bodies !/ of finite type [i.e. with 
L1(!/) < 00] and infinite volume. A 2-dimensional example is 

(1 ) 

for which L1(!/1) = St, as we saw in Chapter II. More generally, in 
n-dimensions the body 

is of finite type but infinite volume, since admissible lattices are given 
by the norm-forms of totally real algebraic fields of degree n (see 
Chapter X). In general, in more than 2 dimensions it is very difficult 
to decide whether a given star-body is of finite type or not. Two 3-
dimensional examples are discussed in CASSELS and SWINNERTON-DYER 
(19SSa), for which a decision on this point would have interesting reper­
cussions. In 2 dimensions however there do exist general criteria which 
we shall now discuss. 

VI.6.3. From now on we put 1 

n =2. 

In an obvious sense, the body ~ defined in (1) of § 6.2 has two pairs 
of asymptotic arms, the asymptotes being the Xl and X 2 axis. It is 
possible to inscribe in !/ arbitrarily narrow parallelograms with one 
pair of sides parallel to an asymptote and area 1, for example 

In a sense ~ is a limiting case, since if it is possible to inscribe in a 
star-body !/ parallelograms with centre the origin and arbitrarily large 
volume (area), then !/ is of infinite type by MINKOWSKI'S convex body 
Theorem II of Chapter III. Roughly speaking, any star-body with a 
pair of arms wider than those of ~ is of infinite type. We now show 
that a 2-dimensional star-body may have any finite number of arms 
like those of ~ and still remain of finite type. 

1 It is customary to call 2-dimensional star-bodies "star domains" but we do 
not follow this usage. Similarly we may sometimes continue to speak of volume 
where area is more usual. 
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THEOREM VII. Let 

lor some s> 0, and let 
(1~j~J) 

be any linite number of indefinite quadratic forms. Suppose that the 
distance-function F(XI' x2) satisfies 

(2) 

for all (Xl' X2)' Then the star-body 

[/: F(XI' x2) < 1 (3) 
is of finite type. 

The exponent 2 in (2) is dictated by reasons of homogeneity. 

We shall deduce Theorem VII from the following generalization of 
a theorem of MARSHALL HALL (1947a) which is due to the author 
(CASSELS 1956a). 

THEOREM VIII. Let PI' "', P K be any real numbers. Then there exists 
a real number oc such that 

I u! I(oc +- Pk) u +- vi> 8(K ~ 1)2 

for all integers u =1= 0 and v. 

(1~k~K) (4) 

We first deduce Theorem VII from Theorem VIII, and then prove 
Theorem VIII in § 6.4. After a suitable rotation of the co-ordinate 
system, we may suppose without loss of generality that 

f;(1,O) =1=0 (1~j~]); 
and so 

f; (Xl , xa) = Aj(XI +- {);X2) (Xl +- CP; x2) 

for real numbers;', {);, CPt such that 

A; =1= 0, 1J; =1= cp;. 
But now 

(1~j~J) (5) 

If; (Xl' x2)1 ~ P; min {lx2 (Xl +- {); XI) I ' IXI (Xl +- CP; xl)I}, (6) 
where 

'"; = II A; II {); - CPt I > 0; 
since if, for example 

then we have 
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We apply Theorem VIII where the Pl' ... ,PK are the {}i' fIJi in some 
order, so K = 2J. Let IX be the number given by Theorem VIII, so that 

I U{(IX + {}i) u + v}1 ~ '1 > 0 } 

I U{(IX + fIJi) U + v}1 ~ 7J > 0 

or integers u =1= 0, v, where 
7J = {8(2] +1)2}-I. 

Let /\ be the lattice of points 

(Xl' X2) = R(IXU + V, u), 

(7) 

(8) 

where u, v run through all integer values and R is a positive number 
yet to be chosen. If u=I=O we have, by (6) and (7) 

I li{R (IXU + v). Ru}1 ~ft;R27J. (9) 

If however u=O but v=l=O then. by (5), 

1/;(Rv, 0)1 ~ I A;I R2. (10) 
Similarly 

(11) 

for all (Xl' X2)E/\ other than 0, on distinguishing the two cases u=l=O 
and u =0, v=l=O in (8). We may choose R so large that the right-hand 
sides of (9), (10) and (11) are all not less than 1. Then for all (Xl' X2)E/\ 
except 0, we have, by (2), 

F(x}, x2) ~ min 1/;(x}, x2)! ~ 1; 
O;fi,;;fi,J 

that is /\ is ..9'-admissible. This concludes the proof of Theorem VII. 

VI. 6.4. We now prove Theorem VIII which was enunciated in 
§ 6.3. Write 

(1) 

We shall construct a sequence of open intervals J_I , J o, .1;., ... which 
enjoy the following three properties: 

(i)m Jm+l is contained in J m. 
(ii)m J m is of length ,,-2m-2. 

(iii)m the inequality 

Ui(1X + PI<) u + vi> t,,-4 (1~k~K) 

holds for all numbers IX in J m and for all integers v and u with 

O<u~"m. 

(2) 
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If we can construct the J". we shall have proved Theorem VIII, 
since there is a number a. contained in all the intervals J". and then 
(2) holds with this a. for all integers u>O and v. 

We may take J_1 to be the interval O<a.< 1, since there are no 
integers u in (3) with m = -1. We thus assume that J". has already 
been constructed and construct J".H. By (ii)"., the open interval J". 
is the set of a. satisfying 

a.' < a.< a." (4) 

for some numbers a.' and a." for which 

(5) 

For each k (1 "!i:k"!i:K), there is at most one fraction Vk/Uk in its lowest 
terms such that 

- (:: +Pk)EJm , 0< uk"!i: ""'+1, (6) 

since two fractions v/u with 0<u;~:~,,"'+1 differ by at least "-2,,.-2. 
By (iii)"., we have 

Uk> "m 
Let f§ be the set of a. such that 

and 

(1"!i: k~ K). (7) 

(8) 

(9) 

for all k in 1"!i: k"!i: K for which a Vk!Uk of the type (6) exists. Then ~ 
consists of at most K + 1 intervals. Their total length is 

a." - a.' - ,,-2 ".-4 - L ,,-4 u;2 
k 

~ ,,-2m-2 _ (K + 1) "-2,,.-4 

= (K + 1) "-2,,,-4, 

by (1), (5) and (7). We may therefore find in ~ an open interval J"'H 
of length exactly "-2,,.-4. Then J"'H satisfies (i)". and (ii)".H' by 
construction. It remains only to verify (iii)"'H. We may clearly suppose 
that U and v are coprime and that 

,,"'< U ~ "",+1 (10) 

by (i)". and (iii)",. If V/U =Vk/Uk is a fraction of the type (6), then 

UI(a.+Pk)U+vl>i,,-4 (11) 

for all a.EJm-H' by (9). Otherwise - (: + Pk) is not in J"" and so 

I: + (a. + Pk) I > ~ "-2,,,-4 

for all a.EJ"'H' by (8); then (11) follows, by (10). Thus J"'+l has all 
the required properties. 

Cassels, Geometry of Numbers 13 
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Chapter VII 

The quotient space 
VII. I. Introduction. Before resuming the general study of the geo­

metry of numbers, it is convenient to introduce here the concept of the 
quotient space of an n-dimensional space by a lattice. This concept 
plays an important role in the discussion of inhomogeneous problems in 
Chapter XI: but we shall also need it in Chapter VIII as it gives the 
most natural interpretation of MINKOWSKI'S theorem about the succes­
sive minima of a convex body with respect to a lattice. 

In § 2 we give the definition and most important properties of a 
quotient space. In § 3 we prove a result which will be basic for one 
topic in Chapter XI. 

VII.2. General properties. Let A be a lattice in n-dimensional eu­
clidean space. Two points Yl, Y2 of the space are said to be congruent 
modulo A, written 

(1) 

if the difference Yl- Y2 is in A This relationship is clearly symmetrical 
in Yl and Y2. If 

then 
Yl == Y2 (A) , Y2 == Ya (A) , 

Yl == Ya (A). 

The points Y may therefore be divided into classes t) so that two points 
y and y' are congruent if and only if they are in the same class. A class t) 
consists of all the points Yo+a, where Yo is some fixed member of t) 
and a runs through all points of A 

If 
Y' == Y (A) , z' == z (A) , 

Y' + z' == Y + z (A) . 
then clearly 

Hence there is no ambiguity in deIining the sum t) + 3 of two classes 
as the class to which Y +z belongs when Y, z are any members of t), 3 
respectively. 

Similarly, if t is an integer, the definition of tt) as the class to which 
ty belongs when Y is in t) is unambiguous. On the other hand, if t is 
not an integer, it is not, in general, true that ty'=ty when y'=y. 
Hence tt) for real numbers t other than integers must be left undefined. 

So far, of course, we have only followed the standard procedure for 
finding the quotient group of an abelian group (namely the additive 
group of all vectors) by a subgroup (namely the additive group of vectors 
in A). We shall say that the classes t) are points of the quotient space 
9l/A, where [}l will denote the original n-dimensional euclidean space. 
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VII.2.2. Let F(x) be any distance function defined in 9t and put! 

F(t)) =infF(y) (1) 
yEI) 

for t)EBi/A This is the function which will be important in inhomo­
geneous problems (Chapter XI). Note that 

F(o) =0, (2) 

where 0 is the class to which 0 belongs. For reference we enunciate the 
principal properties of F("£), "£EBi/A, in the following lemma. 

LEMMA 1. Let F(x) be a distance lunction and let F("£) be delined, as 
above, lor "£EPi/A Then 

(i) F(t"£) ~ tF(!) lor integers t ~ 0. 

(ii) II F(x) is convex, then so is FI"£), in the sense that 

F("£ + t)) ~ F("£) + F(t)) 
lor all ~, t). 

(iii) I I F(x) = ° only lor x = 0, then F(t) = ° only lor ~ = o. Further, 
lor each t)EBi/A there is a YEt) such that F(t)) =F(y). 

(iv) II 1\ (x), ~(x) are two distance lunction and 1\(x)~cF;{x) lor 
some number c and all xEPi, then 1\ (~) ~ c~ (~) lor all FPi/A 

Here (iv) is an immediate consequence of the definition (1). By the 
definition of a distance function, we have F(tx) =tF(x) for all real t> 0. 
Hence, if t>o is-an integer, we have 

F(t!) =infF(y)~infF(tx) =tinfF(x) =tF(~). 
YEI~ zE~ zE~ 

This establishes (i). The proof of (ii) is similar and may be left to the 
reader. 

It remains to prove (iii). Let t)EBijA and let yoEt), so that the general 
element of t) is yo+a, aEA By Lemma 2 of Chapter IV, there is a 
constant c>o such that F(x)~clxl for all x; and so 

F(Yo+a) ~ cIYo+al;S cllal-IYoil· 

In particular, if F(a+Yo)~F(yo), we have 

lal ~ IYol + c-1F(yo)' (3) 
There are only a finite number of aEA in (3). Hence there exists an 
aoEA such thatF(yo+ao) = inf F(Yo+a). By definition,F(t)) =F(yo+ao)' 

aEA 
Further, F(t)) =0 only if F(Yo+ao) =0, that is t) =0. 

1 There should be no confusion with the usage of Chapter IV, since there the 
arguments were lattices; and here they are classes with respect to a lattice. 

13· 
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VII.2.3. Let~, (1~r<oo) be a sequence of elements of BIll\. We 
say that the sequence tends to ~' EBI/A if 

lim I~, - ~'I = 0, 
'-+00 

(1) 

where, in conformity with the notation of § 2.2, we have written 

1 ~ 1 = inf 1 xl· 
orE~ 

(2) 

LEMMA 2. A necessary and sufficient condition that ~,~~' is that 
there exist elements y,E tJr and y' E tJ' such that 

y,-+y'. 

Suppose, first, that the y" y' exist such that (3) holds. Then 

I~, - ~'I ~ Iy, - y'l; 
so (1) holds, that is ~r~~'. 

(3) 

Suppose, now, that (1) holds. By Lemma 1 (iv) there exist Z,E~,-~' 
such that 

1 z,l = 1 ~, - ~'I-

Let y' be any element of ~' and put y,=1/' +zr. Then the Yr clearly 
have all the properties required. 

VII.2.4. Let 
(1 ) 

be any basis for I\. Then every point x of space can be put uniquely 
in the shape 

(2) 

for some real numbers ~l' ... , ; n; and x E A if and only if ~l' ••• , ~ n are 
integers. Hence to every vector x there is a unique aEA such that 

where 
(3) 

(4) 

In other words, every ~t.Bl/A has precisely one representative YE~ in 
the half-open parallelopiped fjJ defined by (3) and (4). We say that 
this parallelopiped is a fundamental parallelopiped for I\. Different 
bases b j in general give rise to different fundamental parallelopipeds. 

An immediate consequence of Lemma 2 and the existence of a 
fundamental parallelopiped is 
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LEMMA 3. The quotient space fJll/\ is compact. That is, any sequence 
I), (1 ~r<oo) 0/ elements 0/ fJlj/\ contains a convergent subsequence: 

t)" ~ t)'. (5) 

The fundamental parallelopiped & is not compact, since although 
it is bounded it is not closed. Let 1# be its closure, that is the set of 
points (3) with O~1Jj~ 1 (1 ~i~n). Let y, be the representative of I), 
in &. By WEIERSTRASS'S compactness theorem (§ 1.3 of Chapter III), 
there is a convergent subsequence 

y,,~y', 

where y'E9. Then (5) holds by Lemma 2, where y'Et)'. 

VII.2.S. We are now in a position to introduce a measure into the 
quotient space fJlll\. Let 5 be any set of elements of fJlll\. We call a 
set .9 of elements of fJI a set of representatives for 5 if (i) for each 
tES there is precisely one ZEt which belongs to .9 and (ii) each zE.9 
belongs to an tE S. We say that S is measurable if at least one set .9 
of representatives is measurable. 

Let ~ be the set of elements ZE& of the shape 

z=y+u, yE!i, uEA, 

where .9 is any measurable set of representatives of 5 and & is a funda­
mental parallelopiped. By Theorem I Corollary of Chapter III, the set 
~ is measurable, and 

V(~) = V(.9). 

In particular, if .9, .9' are any two measurable sets of representatives 
of S, we have V(.9) = V(.9'). This common value will be denoted by 

m(S) 

and will be called the measure of S. 
Clearly the measure of the whole of the quotient space is the volume 

of the fundamental parallelopiped &, that is d(/\). 
Let't be any homogeneous mapping of n-dimensional space fJI onto 

itself. In a natural way, it gives a mapping of fJlj/\ into fJlj't/\, which 
we may also denote by 'to If m' is the measure defined in fJlj't/\ in the 
way that m is defined in fJll/\, then clearly 

m'('tS) = Idet('t)1 m(S) 
for any set S in fJljl\. 
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VII.3. The sum theorem l • If C and 0 are two sets of points in 
the quotient space 1;1//\ we denote by C + 0 the set of all points 

c + b, where C E C, bE O. 

This section is devoted to proving 

THEOREM I. Let C and 0 be non-empty sets in 1;1//\ with measures 
m(C) and m(O) respectively. 

(i) II m(C) +m(O»d(/\), then C +0 is the whole space 1;I/A. 
(ii) II m(C) +m{O)~d(A), then m{C + 0) ~ m(C) + m(O). 

This theorem is due to MACBEATH (1953a). It was discovered inde­
pendently by KNESER (1955 a), who first recognized its importance for 
the geometry of numbers. Theorem I is, in fact, now only part of a 
much wider theory, for which see KNESER (1956a) and the literature 
cited there. It falls into the same circle of ideas as the so-called "rJ. +P 
hypothesis" about the densities of sequences of integers which was first 
proved by MANN. As all this is rather aside from the main theme of 
the book we do not discuss it further. It is convenient to prove Theo­
rem I here but the application to the geometry of numbers will not be 
made until Chapter XI. 

Part (i) of Theorem I is easy. Suppose that there is a point !" of 
1;1//\ which does not belong to C + O. Then none of the points 

!"-C, CEC (1 ) 

can belong to D. We may denote the set (1) by !"- C. Clearly 

m(!"-C)=m(C). (2) 

But 0 and !" - C have no points in common, so 

m{!" - C) + m(O) ~ m(1;I/A) = d(A). 

Then m(C) +m(O)~d(/\), by (2) and (3). This proves (i). 

In what follows we denote, as is conventional, by C f"\ 0 and C v 0 
the sets of points which belong to both C and 0 and to either C or 0 
(or both) respectively. We note for further reference the identity 

m(Cf"\O) + m(CvO) = m(C) + m(O); (4) 

which becomes clear on noting that points of C f"\ 0 occur in two sets 
on each side of (4), but points of C v 0 other than those of C f"\ 0 occur 

1 The results of § 3 will not be needed until Chapter XI. 



The sum theorem 199 

in precisely one set on each side. Further, we show that 

C + D) (C("\D) + (CvD) (5) 

( ) means "contains"). For let 

Suppose b belongs to C: then we may regard a as belonging to D since 
it belongs to both C and D. Hence a + b = b +aE C +D. Similarly, if b 
belongs to D we regard a as belonging to C. 

It follows from (4) and (5) that, if the conclusions of Theorem I are 
true when C ("\ D, C v D are read for C, D respectively, then the con­
clusions are also true for C and D themselves. This is one of the principal 
ingredients of the proof. The other is provided by 

LEMMA 4. There is some !EfJl/A such that 

d(A) mf(C +!) ("\D} = m(C) m(D). 

Before proving Lemma 4 we complete the proof of Theorem I with 
its use. Let C, D be two sets with 

m(C) =yd(A), m(D) = CJd(A) 
and 

If y = 0, the conclusions of the theorem certainly hold, since C is non­
empty, by hypothesis, and if CE C the set C + D, which is contained in 
C +D, has measure m(D) = m(C) + m(D). We may thus suppose without 
loss of generality that 

(6) 

Now let! be given by Lemma 4, and put 

C1=(C+!)("\D, D1={(C+;r;)vD}-!. 
Write 

m(C1) =y1d(A). m(Dl) = CJ1d(A) , 
so that 

and 
Yl = yCJ 

by (4) applied to C +! and D and by Lemma 4 respectively. Further, 



200 The quotient space 

by (5) applied to C +~ and D. We may now repeat the process on 
C1 , D1 • In this way we get a sequence of sets C" D, with measures 
y,d (/\), b,d (/\) respectively, such that 

C+D)C,+D" (7) 
and 

y, + b, = l' + b, 

1', = 1',-1 b,-I' 

(8) 

(9) 

But now, by the argument used when l' =0, it is certainly true that 

m (C, +- D,) ~ m (D,) = b, d (/\). 

It follows from (6), (8) with 1 - 1 for 1 and (9), that 

y,~ 1',-1 (1 - 1"-1); 
and so 

1', --+ ° (1--+00). 

Hence 
b,--+y + b (1 --+ (0), 

by (8). But 
m(C + D) ~ b,d(/\) , 

by (7) and (10). In letting 1 --+ 00 in (13) and using (12) we have 

m(C + D) ~ (1' + b) d(/\) = m(C) + m(D) 
as required. 

It remains only to prove Lemma 3. We note, first, that 

(10) 

(11) 

(12) 

(13) 

(14) 

varies continuously with~. This is clearly true with the "well-behaved" 
sets C and 0 to which we will wish to apply Theorem I, but it is in fact 
true for all measurable C and 0, see for example A. WElL (1951 a). 
In the second place, in an appropriate sense, to be explained more fully 
below, the average of (14) as ~ runs through fJt//\ is m(C) m(D)/d(/\). 
Perhaps the simplest way is to observe that we may introduce integration 
in fJt//\ in the obvious way. Let tp(~) be a function defined in fJt//\ and 
let 1 (a:) be the function in fJt such that 

when a: belongs to the class~. Then we write 

f tp(~) d~ = f 1 (a:) da:, 
fit/A !1' 

where f!jJ is a fundamental parallelopiped. Exactly as in § 2.5, one may 
show that this definition is independent of the choice of fundamental 
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parallelopiped fP. Let tp(~), X(~) be the characteristic functions of C,D 
respectively; so that 

m {( C + ~) "D} = J tp (t) + ~) X (t)) d t). 
at/A 

Then 

But 
J tp(t) +~) X(t)) d~ = X(t)) m(C). 

dl/A 

Hence, on interchanging the order of integration in (15), we obtain 

J m{(C +~)" D}d~ = m(C) J X(t)) dt) = m(C) m(D). 
dl/A dl/A 

Since 9l/A has measure 

m(91/A) = J 1 d~ = d(A), 
dl/A 

the truth of Lemma 4 now follows from the continuity of m {( C +~) "D} 
and the connectedness of 9l/A. 

Chapter VIII 

Successive minima 
VII!.t. Introduction. For some purposes one requires to know not 

merely that a lattice A has a point in a set .9', but that it has a number 
of linearly independent points in .9'. 

Let F(a;) be an n-dimensional distance function and A a lattice. If 
for some integer k in 1 ~ k ~ n and some number A the star-body 

(1 ) 

contains k linearly independent points 

(2) 

of A, then so does 1-'.9' for any I-'>A, since the points (2) are also in 
1-'.9'. We define the k-th successive minimum Ak =Ak(F, A) of the dis­
tance function F with respect to the lattice l A to be the lower bound 
of the numbers A such that A.9' contains k linearly independent lattice 
points. Clearly 

1 Or of the lattice with respect to the distance functio~. 
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The numbers AI' ... ' A" defined above certainly exist, since if 
aI' ... , a" are any n linearly independent points of A, then, trivially, 

Ak~ A,,~ max F(a;). 
1~1;$" 

In the notation of § 4 of Chapter IV we have 

A1 = F(I\) = inf F(a). 
aE/\ 

,*0 

Hence, by the definition of 

d (F) = sup po (A) 
/\ d(A) , 

we have 
A~~ d(F) d(I\). 

The remarkable inequality 

AI ... A,,~ 21(,,-1) d (F) d (1\) 

(4) 

(5) 

(6) 

(7) 

was discovered independently by ROGERS (1949a) and CHABAUTY 
(1949a); and CHABAUTY (1949a) and MAHLER (1949a) independently 
produced examples to show that if ~ is any number < 21 (,,-1) then there 
are distance-functions F and lattices 1\ such that 

(8) 

We shall give the elegant proof of (7) in § 3 and give the construction 
of the counter-example to show that it cannot be improved in the case 
n = 2. The difficulties in extending the counter-example to n dimensions 
are purely algebraic. It can be shown easily by means of an example 
that 

can be arbitrarily small, so there is no lower bound analogous to the 
upper bound (7) [but see (13) below for symmetric convex F]. 

The inequality (7) holds with a suitable definition of the terms not 
merely to star-bodies F(x) < 1 but to all point sets [/' whatsoever. 
There have been several different definitions of the successive minima 
of an arbitrary set [/'. We do not discuss these further, but refer the 
reader to the papers quoted for the extensive literature. 

It was shown already by MINKOWSKI (1896a, § 51) that, when F(x) 
is the euclidean distance lxi, the inequality (7) may be replaced by 

AI . .. An ~ d (F) d (1\) . (9) 

We give his proof in § 2. More generally, it has been conjectured that 
(9) holds for all symmetric convex distance functions. In § 4 we shall 
show for these F that 

(10) 
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which is equivalent to (9) when n =2. The inequality (10) was ap­
parently discovered by CHALK and ROGERS (1949a) and CHABAUTY 
(1949a) independently. It has been shown by WOODS (1956a and 
1958b) that (9) continues to hold for n = 3 when F is symmetric and 
convex and for n = 2 when F is convex but not symmetric: the proof 
is distinctly intricate and we do not discuss it here. For general n 
and symmetric convex F, RANKIN (1953a) indicates that the constant 
2*(,,-1) can be replaced by a rather smaller one. 

For symmetric convex functions F and any n, there is a result going 
back to MINKOWSKI (1907a) which may be regarded as a substitute 
for the unproved conjecture that (9) holds. In our notation, MIN­
KOWSKI'S convex body Theorem II of Chapter III states that 

(11) 

where VF is the volume of F(:e) < 1; and so Ai VF is the volume of the 
body F(:e) < AI' which, by hypothesis, contains· no point of A except o. 
MINKOWSKI'S theorem is that in fact 

(12) 

The proof of (12) remains difficult. Simpler proofs than the original 
have been given by DAVENPORT (1939c) and WEYL (1942a). We follow 
WEYL in § 4, since the ideas introduced will be needed in Chapter XI. 

For symmetric convex F there is also an inequality 

2" 
AI' .. A" Vj...~ I d (A) , n. (13) 

the almost trivial proof of which is also given in § 4. From (12) and 
(13) it follows that the product Al ... An is determined by VF and d (A), 
except for a factor which is bounded in terms of n. 

In general, it is hopeless to expect more information about successive 
minima than can be deduced from the formulae for the product AI'" A". 
For example, let AI' "', A" be any numbers such that 

Al~A2~"'~A,,; A1 •• ·A,,=1. 

Then the lattice A of points 

(Ut, ... , Un' integers) 

has d (A) = 1 and has successive minima AI' ... , An with respect to the 
distance function 

F(:e) = max 1 x·1 ' 
1;:;;,;:;;" 1 

as is easily verified. 
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VIII. 1.2. For later purposes we shall often need the following two 
simple lemmas. 

LEMMA 1. Let AI' ... , An be the successive minima 01 a lattice A with 
respect to a distance lunction F associated with a bounded star-body 
F(:ll) < 1. Then there exist n linearly independent points ~, ... , an E A 
such that 

(1~i~n). 

II aEA and F(a) <Ai' then a is linearly dependent on ~, ... , ai-I. 
For by the definition of An there are n linearly independent points 

of A in 
F(:ll) < An + 1. (1) 

By Lemma 2 of Chapter IV, the set (1) is bounded and so contains only 
a finite number of lattice points. Only these points need be considered 
in the definition of the Ai. The truth of the lemma is now obvious. 

LEMMA 2. Let AI' ... ' An be the successive minima 01 the distance 
lunction F with respect to the lattice A. Then there is a basis 

bl , ... , bn 

01 A such that, lor each i = 1,2, ... , n, the inequality 

F(x) <Ai 
implies that 

:ll = U l b1 + ... + uj - l bj - 1 

lor integers ut, ... , Uj-l· 

When F(x) = 0 only for :ll = 0, this is a trivial consequence of Lem­
ma 1, since we may choose b l , ... , bn so that a i for each i is dependent 
only on bl , •.• , bi • by Theorem I of Chapter 1. 

Otherwise a slightly more refined argument is needed. In general, 
the Ai will not be all unequal, but there are numbers 

#1<fl2<···· <fl., 

for some s in 1 ~s~n,such that 

where 
All = flt if 

o =ko<~< ... <k.=n. 

By the definition of successive minima, there is no point of A with 
F(a) <#1 except, possibly 1, o. Since 

fl2> All" 
I For a general distance function F(z) there is, of course, no reason why Al 

should not be o. Indeed, if F(z) = I Xl ••• X" Il/n, we have Al = ... = A" = 0 for the 
lattice 11.0 of points with integer coordinates. 
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the are kl linearly independent points 

(2) 
of A in F(~) <Ps, and, since 

every other point of A in F(~) <Ps is linearly dependent on them. 
Similarly, we may find ks linearly independent points of A in F(~) <Pa 
such that every other point of A in F(~) <Pa is linearly dependent on 
them. Since Ps<Pa we may suppose that kl of these k2 points are 
~, ... , ak, already determined. We may thus denote by 

the maximal linearly independent set of points of A in F(~) <Pa without 
disturbing the notation (2). And so on. In this way we obtain kS - 1 < n 
points 

of A such that 
(t ~ s). 

By Theorem I of Chapter I there is a basis bl , "', b .. of A such that, 
for each i = 1, ... , ks- l , the vector aj is linearly dependent on bl , ... , b j 

only. This basis clearly has all the properties required. 

VIII.2. Spheres. We first prove the results for spheres. since they 
are simplest and the treatment forms the model for what follows. 

THEOREM 1. Let 
(1) 

and let AI' ... , A .. be the successive minima 01 a lattice A with respect to 
Eo. Then 

d(A) ~ AI'" A .. ~ d(Eo) d(A). (2) 

The left-hand side of (2) was substantially proved in Theorem XIII 
of Chapter V. We have on the one hand 

1 det(~ •...• a .. )1 = I d(A) ~ d(A), 

where I is the index of ~, ... , a .. in A. and, on the other hand, 

Idet(~, ...• a .. )1 ~ 1~1···la .. 1 
by HADAMARD'S Lemma 9 of Chapter V. If now the aj are the linearly 
independent vectors of A with F(a;) = Ai given by Lemma 1, the required 
inequality follows at once. 



206 Successive minima 

It remains to prove the second part of (2). As in the proof of Lemma 9 
of Chapter V, there is a set of mutually orthogonaF vectors C1 , "', cn 

such that 
bi = tjl Cl + ... + til ci 

for some real numbers ti; (n~j), where bi is the basis given by Lemma 2. 
By incorporating a factor in c; we may suppose, without loss of generality, 
that 

(1~i~n). 
Then 

and so 
I L ui bj 12 = L (L Ui tj Y 

• J~' 

(3) 

We now show that 
L .1.;-2 (L Ujtjit~ 1 
i i~i 

(4) 

for all sets of integers tt =1= o. For let Ul , ... , Un be integers, and suppose 
that 

(j> J). (5) 

Then ulbl+ .. ·+unbn is not dependent on bl, ... ,b j - l ; and so 

ILUjbiI2~A}. (5') 

Further, (5) implies that all the summands in (3) and (4) with i?- ] 
are O. Hence, and since Ai~Aj if j~J, the left-hand side of (4) is 

L A;-2 (L uitiiy~ L AJ 2 (L ujtii)2 = AJ21L ui bil2~ 1, 
i;;:'j i~i i~j i~i i 

by (3) and (5'). Hence if I\' is the lattice with basis 

(1~j~n), 

we have 
IL u j bil 2 ~ 1 

for every point L ui bj =1= 0 of 1\'; that is 

Po (1\') = II\' I ~ 1. 
On the other hand, 

d (1\') = All ... .1.;;-1 d (1\). 
But now 

IA'I" IMln -- < sup -- = t5 (Eo) d(A') = M d(M) , 

(6) 

(7) 

(8) 

1 We say that two vectors a, b are orthogonal if their scalar product ab 
vanishes. 
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by the definition of d (Po). The right-hand side of (2) follows now from 
(6). (7) and (8). This concludes the proof of Theorem I. 

VIII.2.2. As was remarked in Chapter V. the theory of successive 
minima shows that the hypotheses of Theorem III and IV of Chapter V 
are equivalent. This we do now. 

LEMMA 3. The lollowing two statements A and B about a set 2 01 
n-dimensional lattices 1\ are equivalent. where x. K. ,10' ,11 are supposed 
to depend on 2 but not on I\. 

(A) there exist ,11 < 00 and x> 0 such that d (1\) ~ ,11' and 11\1 ~ x > 0 
lor all I\E 2. 

(B) there exist ,10> 0 and K < 00 such that d (1\) ~ ,10> 0 and the sphere 
I x I ~ K contains n linearly independent points 01 1\. lor all 1\ E 2. 

If AI •...• An are the successive minima of Po (x) =Ixl with respect 
to 1\. then clearly (A) and (B) are equivalent to 

(A) d(I\)~L11' Al~X>O. 
and 

respectively. We now use the inequality 

d (1\) ~ AI' .. An ~ d (Po) d (1\) (1 ) 

of Theorem I. Suppose first that (A) holds. Then 

d(l\) ~ {d(Po)}-IAl ... An~ {d (Fo)}-I xn = ,10 (say). 
and 

These are the two conditions (B). 
Suppose now that (B) holds. Then 

AI~ (AnAn-l ... A2tl d(l\) ~ K-n+lL1o=y. (say). 
and 

d (1\) ~ )'1'" An ~ Kn = ,11 (say). 

These are the two conditions (B). 

VIII.3. General distance-functions. We first prove a lemma which 
will be required later. Just in this section we denote by {x} the fractional 
part of x. that is. the number such that 

O~{x}<1. x-{x} = integer. 

LEMMA 4. Let 'f}1 •...• 'f}n be any real numbers. Then there tS a 
number 'f} such that 

(1 ) 
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For any number ~ we have clearly 

{~} + {_ n = {O if {n.= O} ~ 1-
1 otherWIse 

Hence 

Thus there is at least one k such that (1) holds with rJ =rJk' 

We shall require only the more specialized 

COROLLARY. Let fll' ... , fl .. be any numbers such that 

° < fll~ fl2~ ... ~ fln' (2) 

Then there exists a real number fl> ° and positive integers m1, ... , m" 
such that 

(i) mj +1!mj is an integer (1 ~j< n), 

(1~j~n), 
and 

We shall in fact take all the mj to be powers of 2, say 

Let 
m·=il 1 

fli = 2'11 

(1~j~n). 

(1~i~n) 

(3) 

(4) 

for real numbers rJi; and let rJ be the number given by Lemma 4. By 
subtracting an appropriate integer from rJ we may suppose, by (2) and 
(4), that 

rJ ~ rJl~ rJ2~ .. , ~ rJ,,' 

If now fl = 2~ and the integers Ii are defined by 

rJi - rJ = li + {rJj - rJ}, 

then the numbers mj defined by (3) clearly satisfy (i) and (ii). Further, 
by the lemma, 

which is just (iii). 

VIII.3.2. We are now in a position to prove 

THEOREM II. Let F(~) be a distance-function and A.1 , ••• , A.n its succes 
sive minima with respect to a lattice A. Then 

(1 ) 
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We denote by b1 , ••• , b1l the basis for /\ given by Lemma 2. Let 
fl and the integers mj be given by Lemma 4, Corollary when flj = Aj 
and let I\' be the lattice with basis 

Then 
d (I\') = II (fl mj) -1 d (/\) . (2) 

We now show that 

F(/\,) ~ 1. (3) 

Any point a of I\' other than 0 may be put in the shape 

a = u1 b~ + ... + U J b J ' U J =F 0, 

where u1 , ••. , U J are integers. Then 

where 

(1~j<]), 

are integers, since u j and m Jjmj are integers. By Lemma 2, since v J=F 0, 
we have 

Hence 

This proves (3). 
Finally, 

F(flmJa) ~ AJ' 

F(a)~~ ~1. 
JlmJ 

F" (I\') < 
d (I\') = b (F) , (4) 

by the definition of b(F). The required inequality (1) now follows from 
(2), (3), (4) and the inequality 

II(/~j) ~2l(n-ll 
1 

of Lemma 4, Corollary. 

A rather more detailed argument shows that the sign of equality 
in (1) cannot hold if F(x) < 1 is a bounded star-body. Then it is possible 
to ensure that there are not n linearly independent points a of I\' with 
F(a) = 1, so I\' cannot be critical, and there is inequality in (4). See 
ROGERS (1949a). 

Cassels. Geometry of Numbers 14 
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VII!.3.3. We now show that the constant 2~(n I) in Theorem II 
cannot be improved. For reasons of algebra we treat only the case 

n = 2. 

For general n see MAHLER (1949a) or CHABAUTY (1949a). 

We first consider a point set which is not a star-body. Denote by 
C(j' the set of points 

C(j': (±t,O) 

and by C(j" the set of points 

where 

Finally, let Y be the set of points which belong neither to C(j' nor 
to C(j". Clearly Y is open, and if any point x is in Y, then rx is in Y 
for O~ I rl ~ 1: so Y has some of the attributes of a star-body. We shall 
later modify Y slightly to obtain a set .c;; which actually is a star­
body. 

There certainly exist Y-admissible lattices I\, i.e. lattices having 
only the origin 0 in Y. For example the lattice 1\2 of points 

where U 1 , U2 are integers, is Y -admissible, since if U 2=f= ° the point 
(2u1, u 2) is in C(j" and if u 2 =O, but U1=f=O, then (2u\, u 2) is in C(j'. We 
shall next show that 

(1 ) 

that is that every Y-admissible lattice 1\ has determinant d (1\) ~ 2. 

Let 1\ be any Y-admissible lattice. By MINKOWSKI'S ·convex body 
Theorem II of Chapter III, there is certainly a point x other than 0 

of 1\ in 

This point is not in Y, so must be in C(j' or C(j" and hence has the shape 

We may suppose without loss of generality that b\ is primitive. There 
is then a vector 

b2 = (b\2' b22) ( 1\, 

which, with b\, forms a basis. Hence 
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Since b2 is in the 9'-admissible lattice A, it must be in re' or re", so 

b12lb22 = rational. 

Similarly bi + b2 is in re' or re", so (bu + bl2)/b22 is rational; and hence 

bn lb22 = rational. 

There thus exists a real number ~ > 0 and integers Bu , Bu , Bn such 
that 

Without loss of generality; Bu , Bl2 and B22 have no common divisor 
except ±1. 

Let v be the product of the primes which divide Bn but not Bl2 • 

Put 
B~2 = V Bll + Bl2 . 

We wish to show that B~2 is prime to Bn: and must distinguish two 
cases for the prime divisors p of Bw If P does not divide Bl2 , then it 
divides v. If p divides Bl2 then it does not divide Bu , since Bu , Bl2 , Bn 
have no non-trivial common divisor; and p does not divide v. In both 
cases p does not divide B~2' Hence, on replacing b 2 by b2+vb1 , we may 
suppose that Bl2 and B22 have no common non-trivial divisor. 

Now b2 is in the 9'-admissible lattice 1\, so is in re' or re". Hence 

I~I ~1, 

since Bn and Bn have no common factor. Similarly bi is in re' or f(j", 
and so 

Hence 

In either case, 

either I Bnl = 1, 

or I Bnl ~ 2, 

I~I ~ 21, 

I~I ~ 1. 

d(/\) = I BllBn~21 ~ I Bn~21 ~ 2. 

This concludes the proof of (1). 
We denote, as usual, by fl9' the set of points 

fl9': fl~, zE9'; 

and by Ao the lattice of points ("I' "2) with integer "I' "2' Clearly if 
fl;;;;;' 2-1 there are no points of 1\0 except 0 in ,It 9'; if rl <fl ;;;;;'1, there 
are only the further points (± 1, 0) of 1\0 in fl9'; while if fl> 1, the 
points (± 1, 0) and (0, ± 1) are in fl9'. If 9' were a star-body F(z) < 1, 

14* 
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these statements would imply that the successive minima of 1\0 were 
Al = 2-', A2 = 1. Hence 

).IA2 = 2' (L1(9'))-ld(l\o); 

which is the case of equality in Theorem II if (.1 (9'))-1 is written for 
b(F), the two being equal for star-bodies. 

It remains now to modify 9' so as to obtain a bounded star-body, 
in such a way that its successive minima with respect to 1\0 remain 
2-1 and 1, and so that its lattice constant is arbitrarily close to 2. We 
do this by replacing the lines in rr' and rr" by narrow wedges. 

Fig. 9. The shaded portion is ", (tI) 

Let £>0 be arbitrarily small. For any vector Y=(Yl' Y2)'*0. let 
1r, (y) be the set of points z for which 

ir,(y) : XIY1+X2Y2-£-llxIY2-X2YI!;;;;Y~+Yi. (2) 

Then ir, (y) is an infinite wedge having a vertex at Y, see Fig. 9. Its 
precise shape is not important. The two sides of the wedge make the 
small angle ±arc tan £ with the outward radius vector from 0 to y. 

Now let rr; be the set of points in ir, (26, 0) and 1r, (- 26, 0) and 
let rr;' be the set of points in ir, (u1 , u2) for any pair of integers with 
U2'* 0. Finally let y. be the set of points in 

which do not lie either in rr; or in rr:'. Clearly y. is a star-body, since 
there are only a finite number of the wedges composing rr; and ~:' 
which have points in common with the disc (3). Indeed, by (2) and 
(3), the distance-function F.(z) as!'ociated with y. may be written down 
explicitly. 
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Since .9, is contained in f/, and since the points (±2i , 0), (0, ±1) 
are evidently still boundary points of .9" at least when 8 is small enough, 
it follows that the two minima A1 and A2 of Ao with respect to F.(~) 
are r1 and 1 respectively. 

Further, 

Indeed 
.1(.9,) ~ .1(9') = 2. 

lim .1(.9,) = .1(f/) = 2 
....... 0+ 

by Theorem V of Chapter V. Hence there exist e such that 

21 t5 (F.) d (Ao) = 2* (.1 (.9,) )-1 

is arbitrarily close to A1 A2 • This shows that for n = 2 the constant 
26(,,-1) = 21 in Theorem II cannot be improved. 

VIII.4. Convex sets. We shall often have occasion to refer to the 
results of § 3.1-3.4 of Chapter IV and in particular to the properties 
of tac-planes. 

We first need a general lemma about convex functions. 

LAMMA 5. Let F(~) be a symmetric convex distance function associated 
with a bounded convex body F(~) < 1. Let c =F 0 and let Tr be the plane 
through the origin parallel to a tac-plane at c to F(:I:) <F(c). Then 

F(y + p.sc) !?: p.F(y + sc) 

for aU y in Tr, all real s, and all It in 

0<p.<1-

(1 ) 

If s = 0 there is nothing to prove. Otherwise we may suppose, by 
homogeneity, that 

s = 1, 
since s-ly is in Tr if Y is. Then 

F(y + c) ~ F(c) , 

by the definition of a tac-plane. Then, by convexity, 

F(y+c) ~F(y+p.c) +F{(1-p.)c} } 

=F(y + p.c) + (1 - p.)F(c). 

(2) 

(3) 

The required inequality (1) with s = 1 now follows from (2) and (3). 
We may now prove 

THEOREM III. Let F(~) be a symmetric convex distance-function 
associated with a bounded body F(:I:) < 1 and let Al , •.. , A" be the successive 
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minima 0/ a lattice 1\ with respect to F. Then there is a lattice I\' with 
determinant 

d (1\') = ( AI~:l ) d (1\) (4) 

and successive minima Ai (1 ~j~n), where 

(5) 

Let b1 , "', b n be the basis for 1\ given by Lemma 2. Let ± c be 
the points on the boundary of F(x) < 1 at which the tac-plane is parallel 
to the plane IT through b1 , .•• , b n - 1 (Theorem IV of Chapter IV). Then 
every point in space can be uniquely put in the shape 

x=y+sc, YElT. 
We put 

fl = An - 1/An , 

and define I\' to be the lattice of all points 

Y+flsc, y+sc,:/\. 

(6) 

(7) 

Then (4) dearly holds. If s =1= 0 in (7), the point Y + s c is not linearly 
dependent on b1 , ... , bn - 1 ; and so 

F(y + sc) ~ An' 
Hence 

(s =1= 0) (8) 

by Lemma 5. On the other hand, the points of I\' with s = 0 are just 
the points of 1\ which are linearly dependent on b1 , ... , bn - 1 . Hence 
(8) implies (5). 

COROLLARY 1. 

).~-1 An ~ b (F) d (1\). 

For in the proof of the Theorem put 

fl = AI/An 

instead of A,.-l/A,.. Then (8) becomes 

F(y + flsc) ~flJ.,. = Al 
so 

F(a');;;; Al 
for all a' E I\' except o. That is, 

F(I\') ;;;; AI' 
Further, 

(s =1= 0); 

d (1\') = fl d (1\) = t-t.) d (1\) . 

(8') 

(4') 
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But 
P (1\') ~ 1J (F) d (1\') 

by the definition of 1J (F); and then the corollary follows from (4') 
and (8'). 

COROLLARY 2. 
1 1 

AI'" A,,~ 22(n-l)-,.- 1J(F) d(/\). 

We only sketch the proof. By varying fl in the proof of the theorem, 
we may obtain a lattice I\' with successive minima Ai, where 

(1~j<n), 
and 

d (1\') ~ A~:1 d (/\) . 

Then 
Al ... A" < A; ... A~ 
d(i\) = d(R)' 

Hence it is enough to prove the corollary when An - 1 =An • But it is 
easy to see that if two of the numbers 'fJj in Lemma 4 are equal, then 

the right-hand side of (1) of § 3.1 may be replaced by ~ (n -1) - : . 

When this improvement is inserted in the proof of Theorem II, it gives 
the corollary. 

VIII.4.2. Before treating MINKowSKI'S estimates for the product of 
the successive minima of a bounded symmetric convex body in terms 
of the volume we must first prove a result, which we shall also use 
later, relating to convex bodies and the quotient space !Jill\. We 
shall use the concepts and notation of Chapter VII. As was done 
there, we denote the points of fJl by small bold letters and those of 
!JIj/\ by small gothic letters. 

THEOREM IV. Let F(;r) be a convex symmetric distance-function 
associated with a bounded convex set 

of volume 
Y: F(;r) < 1 

Vp= V(Y). 

(1 ) 

(2) 

Let /\ be a lattice with successive minima AI, ... , An with respect to F. 
For real t>O denote by Sit) the set of t.)E!JII/\ which have at least one 
representative y in t Y (i.e. F(y) < i). Then ihe measure m {S (i)} of S (i) 
satisfies ihe inequality 

1 
= tn VF if i ~ VI 1 

m{S(i)} ~(-Pl) .. ·aAJ)tn-JVF if !AJ~i~-~AJ+1J 

~ (-}A}) ... (iAn) Vp if t ~ iAn. 
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We first examine how the hypotheses and conclusion are affected 
by a homogeneous linear transformation T. Let N=TA, F'{~) =F(T-l~). 
The successive minima of N with respect to F' are the same as those 
of A with respect to F. Clearly 

Vp, = Idet(T)I VF , 

and by the remarks at the end of § 2.5 of Chapter VII we have 

m' {T S (t)} = I det (T)I m {S (t)}, 

where T S (t) is the image of S (t) in the natural mapping of 9t/A onto 
9tlTA; and m' is the measure in 9tlTA But TS{t) =S'(t) is the set in 
9tlT A defined in respect of F' and N as S (t) was defined in terms of 
F and A. Hence a homogeneous linear transformation multiplies both 
sides of (3) by the same factor I det (T)I. 

We may therefore suppose without loss of generality that the basis 
bl , ... , b,. for A given by Lemma 2 is just 

;-1 ,.-; 

b;=e;=(~,1,~); (4) 

and that A = Ao is the lattice of points with integer coordinates. 
We now obtain a formula for m {S (t)} valid when 

t;£ jAJ+1' (5) 
and J = 1, 2, ... , n -1. Let 

~l = (xu, ... , X,.l)' ~2 = (xu, ... , x1I2) 

be two points of F(OI:) <t;£jAJ+1; and suppose that 

Then 
F(~l - 01:2) ;£ F{:r.l) + F(~2) < AJ+1' 

Since Zt -0I:2 EAo, we have now 

(i > J), 
by (4). Further, 

(6) 

(7) 

(8) 

where At is the J-dimensionallattice of points with integral co-ordinates. 
Clearly (7) and (8) together imply (6). Denote by 9tJ the J-dimensional 
euclidean space and by m J the measure in 91 J/At. For given (n - J)­
dimensional vector z = (zJ+1' ... , ZII)' denote by S Jet, z) the set of points 
of 91 J/At which contain representatives {Xl' ... , X J} E 91 J such that 

F(x1, ••• , X J, zJ+1' ... , Zn) < t. (9) 
Then we assert that (5) implies 

m{S(t)} = J m,{SJ(t,z)}dz (10) 



Convex sets 217 

In the first place, 5J (t, z) certainly has a J-dimensional measure, since 
F(~) is continuous by its definition as a distance function. Then, if z 
runs through all (n - f)-dimensional space and y = (YI, ... , Y J) runs for 
each z through a complete set of representatives for 5J (t, z), it follows 
from the equivalence of (6) to (7) and (8), that 

~ = (YI' .. ·' Y J' ZJ+I' .. ·' zn) 
runs through a complete set of representatives for 5 (t). We may, for 
example, normalize the y by taking always O~ Yi< 1 (1 ~i~J). This 
proves (10). 

The next stage is to show that if s is any number ~ 1, so 

O<t~st, 
then 

mJ{5J(st,sz)};;;; mJ{5J(t,z)} 

(11) 

(12) 

for any (n - f)-dimensional vector z. This is certainly true if the right­
hand side of (12) is O. Otherwise, there is some J-dimensional vector 
yo= (YIO' ... , YJo) such that 

F(yo,z) < t 
where, in an obvious notation, (Yo, z) = (YIO' ... , YJo, ZJ+I' ... , zn): and 
similarly later. Let y be any J-dimensional vector with 

F(y, z) < t. 
Then by the convexity and homogeneity of F(~), we have 

F{y + (s -1) Yo, sz} =F{(y,z) + (s -1) (Yo,z)} 
~ F(y, z) + (5 -1) F(yo, z) 

< t + (s -1) t 
=st. 

Hence, if Y runs through a complete set of representatives for 5 J (t, z), 
then y + (5 - 1) Yo runs through representatives of distinct elements I of 
5J (st, sz), when Yo is kept fixed. This proves (12). 

Suppose, now, that 
0< t ~ st ~ V'J+!' 

Then, by (10) and (12) we have 

m{5(st)} = J mJ {5J {st, z)} dz 1 
= sn-J J mJ{5J(st, sz)}dz 

~sn-J J mJ{5J(t,z)}dz 

= sn-J m {5 (t)}, 

(13) 

(14) 

1 Of course not every element of S J (s t, sz) necessarily has a representative 
of the type y + (s - 1)yo' What is important, is that distinct y mod At give 
distinct y + (s - l)yo mod At. 
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where in the second line we have replaced z by sz and in the third 
line we have used (12). 

When 
( 15) 

we have the simple equation 

m{S(t)} = V(tY') = tnVp., (16) 

where t Y' is the set F(;r) < t. Indeed, if ;rI and ;r2 are any two points 
of tY' with ;rI==;r2 (Ao), we have 

F(;rI - ;r2) ~ F(;rI) + F(;r2) < 2t ~ AI; 
and so ;rI = ;r2' 

We may now prove (3) . For t ~ .pI' the truth of (3) follows from 
(16). Suppose that (3) is already proved for t ~ t AI' where 1 ~ J ~ n - 1. 
Its truth in the range t A I ~ t ~ t Al +1 then follows from (13) and (14) 
with t = t A I' Finally, the truth of (2) for t~ t An is trivial, since Y' (tI ) 

includes Y'(t2) if tI~t2: and hence m {S(t)} increases with t. 

VIII.4.3. Theorem IV provides the kernel of the proof of the follow­
ing theorem of MINKOWSKI. 

THEOREM V. Let F(;r) be a symmetric convex distance-function as­
sociated with the bounded set F(;r) < 1 of volume VF . Let AI, ... , An be the 
successive minima of a lattice A with respect to F. Then 

(1) 

In Theorem IV the measure m {S (t)} for any t can be at most the 
measure of the whole space f!.ljA, namely d (A). On applying this remark 
when t=jAn to the inequality (3) of § 4.2 we get the right-hand side 
of (1) at once. 

Now let aI' ... , an be the linearly independent points of A with 

F(a j ) =Aj 

given by Lemma 1. By the homogeneity and convexity of F(;r), all 
points 

such that 
(2) 

(3) 

lie in F(;r) < 1. Hence Vp. ~ V' where V'is the volume of the set of (2) 
subject to (3). But clearly 

I 2n 2n I 
V = -I det(aI ,· .. , a,.) 1 = -d(A), 

n! n! 
(4) 
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where I is the index of a1 • •••• a" in /\. This proves the left-hand side 
of (1). since I~ 1. 

COROLLARY. The index I of a1 • .••• a" is at most n!. 

This follows from (4) and the right-hand side of (1). (Compare the 
proof of Theorem X of Chapter V.) 

VIII.5. Polar convex bodies. Let /\* and F* be the respective polars 
of the lattice /\ (Chapter I. § 5) and the symmetric convex distance­
function F (Chapter IV. § 3). MAHLER (1939b) has shown that the 
successive minima of /\* with respect to F* are determined by the suc­
cessive minima of /\ with respect to F apart from factors which have 
bounds depending only on the dimension n. Thus relationship will be 
exploited in Chapter XI in the discussion of inhomogeneous problems 
and is of importance in other contexts. The theorem is. of course. 
closely related to Theorem VI of Chapter IV dealing with the lattice 
constants of mutually polar convex bodies. 

THEOREM VI. Let AI' ...• An be the successive minima of a lattice /\ 
with respect to the symmetric convex distance-function F and let At I •••• A! 
be the successive minima of the polar lattice /\ * with respect to the distance­
function F* polar to F. Then 

(1~j~n). (1 ) 

We attack first the left-hand inequality. By Lemma 1 there exist 
linearly independent vectors ai' af of /\ and /\* respectively such that 

F(ai) = Ai' F*(aj) = Ai. (2) 

By Theorem III of Chapter IV we have 

F(~) F*(~*) ~ ~~* 

(scalar product) for any two vectors ~ and ~*. On applying this 
~=±a,. ~*=±a' for any pair of indices i,j we have 

since F(~) and F*(~) are symmetric. 
of Chapter 1. and so 

either A, Ai ~ 1 

But a,af is an integer by Lemma 5 

or a,af = O. (4) 

Let I be a fixed index. The vectors ~ such that ~at = 0 (1 ~ i ~ I) 
form an (n - I)-dimensional subspace. Hence by the linear independence 
of the ai there is some a j with j ~ n + 1 - I which does not lie in this 
subspace; that is 
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for some i, i with 
i~I, i~n+1-I. 

Then ).:~).1, ).j~)."+I-I' and so, by (4), 

Since this is true for any I, this gives the left-hand inequality of (1). 
We now prove the right-hand inequality in the enunciation. Let 

aj (1 ~i~n) be as above. Then (d. Chapter I, § 5) there are n primitive 
vectors bf of A* such that 

(i =1= i) . (5) 

Since the a j are linearly independent, the n equations a j ;):* = 0 are 
satisfied only by ;):* = 0: and so 

(1~i~n). (6) 

Hence the b! are linearly independent. 

By Theorem III, Corollary 1 of Chapter IV, there are vectors ;):; 
such that 

F(;):;) F*(bf) = ;):ib;*. (7) 

Without loss of generality 

(1~i~n). (8) 

The next stage is to show that for fixed J the determinant D J formed 
from;):J and the a j (i=l=]) has absolute value at least d(A). For fixed J, 
there is a basis ct, ... , c! for A* with 

Let c j (1 ~i~n) be the polar basis, so that, by (5) and (9), 

a j = L VjiC; 
1 :0;:0"-1 

for some integers Vj;. Further, 

(i =1= J) 

;): J = ± c" + L t, c i 
l~i:o,,-1 

for some real numbers ti , by (8) and (9). Hence 

(9) 

(10) 

DJ = I det (ai' ... , a.1-1';): J' a HI' ... , a,,)1 = I det (Vji};,~.fll det (cl , ... , c,,)I. 
,*" 
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The first factor here is a non-zero integer since the ai are linearly in­
dependent; the second factor is just d (/\). Thus 

(11) 
as required. 

The points 

with 
I tJI F(xJ) + L I til F(aj ) < 1 

i*,J 

lie all in the set F(x) < 1 of volume Vp. This set of points has volume 

Hence, and by (11), 

( 12) 

and finally 
(13) 

by (7), (8). The inequality (13) holds for each integer] and for the 
independent vectors by of /\*. 

Now AI;:;;; A2;:;;;"';:;;; An and so, for each integer], there are the n+ 1 -] 
linearly independent vectors b*=br (J~j~n) of /\* such that F(b*) 
~n!Ajl. By the definition of A:+ 1 -J it follows that 

A:+1-J;:;;; n!Ajl. 

This is the required inequality and so concludes the proof of the theorem. 
The applications of the theorem are usually only qualitative so the 

magnitude of the factor n! on the right-hand side is usually irrelevant. 
MAHLER (1939b) showed that the weaker inequality 

AJA!+l-J;:;;; (n!)2 

can be deduced very simply from the left-hand inequalities, Theorem V 
and Theorem VI of Chapter IV. We have 

~A1· .. An~2"d(/\), 

VpoAt ... A!;:;;; 2"d(/\*) , 
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and so 

Now 

Successive minima 

VF VF* n AjA:+1_; ~ 22Kd (A) d (A*). 
; 

d(A)d(A*) =1 

by Lemma 5 of Chapter I, and 

22 " 
VF~·~ (n!)1 

by Theorem VI of Chapter IV. Further, 

JI A;A:+1_;~AJA:t-l-J 
; 

for any particular J by the left-hand inequality of Theorem VI. Hence 
A J A: _ J ~ (n !)2, as required. 

VIII.5.2. In Chapter XI we shall also need the following result of 
which the proof is similar to that of Theorem VI. 

THEOREM VII. Let F(~) and F*(~) be polar symmetric convex distance 
functions. Let b1 , ••• , b" be any basis of a lattice A and bt, ... , b: the 
polar basis of the polar lattice A *. Then 

2"d(A) F*(bj) ~ n! VF n F(b;) 
;*J 

for each integer J = 1, 2, ... , n. 

(1) 

For the deduction of (12) from (5) and (6) in § 5.1 did not depend 
on the fact that the ai gave the successive minima for F. Hence (12) 
of § 5.1 remains true if b j is read for aj' where ~j is to be given by (7) 
and (8) of § 5.1. On substituting (7) and (8) into (12) of § 5.1 the required 
result follows. 

COROLLARY [M. RIESZ (1936a), K. MAHLER (1939a, b)). tet AI' ... ' A" 
be the successive minima of F with respect to A Then the basis bi may be 
chosen so that 

and 

F(b1) = Al 

2F(b;) ~j Ai (2~j~n) } 
(2) 

(3) 

The existence of a basis b j satisfying (2) follows at once from Lemma 8 
of Chapter V on defining a j there to be the linearly independent points 
with F(ai) =A;. But now on multiplying (1) by F(bJ) and using Theo­
rem V, we have 

2"d(A)F(bJ)F*(bj) ~ n! ~ II F(b j ) ~ (-i)"-I(n!)2VF n Aj~2(n!)2d(A). 
l~j:;;" l;:;;j;:;; .. 
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IX.1. Introduction. If Y is any n-dimensional set and y a point, 
we denote by Y + y the set of points 

(1 ) 

By a packing of Y in some other set :T we shall mean a collection of 
sets 

(2) 

each of which is contained in :T, and no two of which have points in 
common. If:T is the whole space 9t we speak simply of a packing 
of Y. If the Yr in (2) run through the points of a lattice A then we 
say that the packing is a lattice packing. In this chapter we examine the 
consequences of these ideas for the geometry of numbers. This chapter may 
be regarded as a sequel of Chapter III but we shall also require some of 
the general properties of convex bodies discussed in Chapter IV. We 
shall find that the general theory of packings is relevant even to strictly 
lattice-theoretic problems. 

There is an admirable account of the theory of packing in FEJES 
T 6TH (1953 a) and a conspectus of the more important results in 
BAMBAH and ROGERS (1952a). 

IX.l.2. The three following theorems show the relevance of packings 
to the theory of Chapter III. We give the simple proofs here 

THEOREM I. A necessary and suflicient condition that the lattice A 
give a packing 01 the set Y is that no diflerence ~1 - ~2 01 two distinct 
points 01 Y belong to A 

Suppose, first, that ~1-~2=aEA Then the sets Y=Y+o and 
Y +a both contain the point ~1 =~2+a, and so overlap. Conversely, 
suppose that the sets Y +a1 and Y +a2 have the point y in common 
where "t, a2 are in A Then the two points y-a1 =~1' y-a2=~2 are 
in Y, and their difference a2-"t is in A 

BLICHFELDT'S Theorem I of Chapter III shows that 

V(Y) ~ d(A) 

whenever A packs Y. The following theorem shows when the sign of 
equality can occur. To avoid irrelevant topological considerations we 
confine attention to rather special sets Y. 

THEOREM II. Let Y be a bounded open star-body and A a lattice with 

V(Y) = d (A). (1 ) 
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(A) 1/ A packs !/', then every point in space either belongs to precisely 
one set!/' +a, aEA and is not a boundary point 0/ any other!/' +a, 
or is a boundary point 0/ at least two such sets !/' + a. 

(B) 1/ every point 0/ space either belongs to or is a boundary point 0/ 
at least one set!/' +a, then A packs !/'. 

By hypothesis, there is an R such that !/' is contained in 

We now prove (A). Suppose, first, that A packs!/' and that there 
is some point y which is not in or on the boundary of any!/' +a. aEA 
We may choose e in the range 0<£<1, so small, that the sphere 9;. 
of points a: with 

9;.: Ia:-yl<e (2) 

is completely outside the finite number of bodies!/' + a with aE A and 
I a - y 1< R + 1. By the definition of R, the set!/' + a certainly contains 
no points a: of 9;. if I a - yl ~ R + 1. We may suppose, further, that e 
is so small that the only point of A in I a: I < 2 £ is o. Let 

!/" = !/' v 9;. 

be the set of points belonging to either!/' or 9;.. Clearly, if a:1 and a:2 

are distinct points of !/" the difference a:1 -a:2 cannot belong to A 
Hence 

V(!/");;;;; d(A) 

by BLlCHFELDT'S Theorem I of Chapter III. But then V(!/,) < V(!/") , 
which contradicts the hypothesis. Suppose now that the hypotheses 
of (A) are fulfilled and that there is a point y which is on the boundary 
of precisely one !/' +a, aEA. Suppose, without loss of generality, 
that y is on the boundary of !/'. As before, there is an £>0 such that 
9;. defined in (2) contains no point or boundary point of any !/' + a 
with aEA, a=Fo. But then the point (1 +7J)y, for sufficiently small 
7J> 0, is in 9;. and is not a point or boundary point of!/,. On taking 
(1 +7J)y instead of y, we thus have the case first considered. No point 
can belong to more than one !/'+a, aEA by the definition of a packing. 
If y were a point of !/' + a and a boundary point of !/' + b, where 
a, bEA, then there would be points in the neighbourhood of y in both 
!/' + a and!/' + b, since!/' is open. This completes the proof of (A). 

We now prove (B). If!/' is not packed, then, by Theorem I, there 
are points a:1 and a:2 such that 
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Since!/' is open, by hypothesis, there is an e>O such that both spheres 

~: 1;1: - ;1:11 < e, 

~: 1;1: - ;1:21 < e 

are contained in!/'. We may suppose that e is so small that ~ and ~ 
have no points in common. Let!/" be the set of points which belong 
to !/' but not to ~. Clearly every point in space is either an inner 
point or a boundary point of !/" + a for some aE A, since every point 
of !/' is either in !/" or in !/" + ao' Let !/" be the closure of !/,'. Since 
!/' is a star-body and ~ is a subset of !/', we have 

V(!/,') = V(!/,') < V(!/,) = d (A). 

This is a contradiction with the Corollary to Theorem I of Chapter III 
since we are supposing that every point, and so every point of the 
fundamental parallelogram, is of the form z + a where ZE !/" and aE A. 
This completes the proof of Theorem II. 

THEOREM III. A necessary and suflicient condition that the convex 
symmetric set!/' admit the lattice A is that A give a lattice packing of t!/'o 

This follows at once from Theorem I and Theorem II, Corollary of 
Chapter III. 

We shall consider only packings of convex sets!/' in what follows, 
and we shall suppose that !/' is symmetric, whenever this gives any 
simplification of proofs or results. 

IX.1.3. MINKOWSKI'S convex body Theorem II of Chapter III states 
that if // is an n-dimensional symmetric convex body of volume 
V(!/,) >2"d(I\), then the lattice 1\ cannot be !/'-admissible. In § 2 w~ 
discuss when a lattice I\c can be admissible for a convex symmetric 
body of volume 2"d(Ac). Of course then by MINKOWSKI'S convex body 
theorem we have 

L1(//) = r"V(!/,) , (1 ) 

and the lattice Ac is critical. 

Even when!/' is the cube Ix;1 < 1 (1 ;;;;;l;;;;;n), the critical lattices were 
not completely known until HAJ6s (1942) confirmed on old conjecture 
of MINKOWSKI. We quote the result here, but shall not prove it since 
it depends on considerations of group-algebra remote from the other 
topics in the book. 

THEOREM IV. A necessary and sufficient condition that a lattice A 
be critical tor Ix;I<1 (1;;;;;l;;;;;n) is that, after a suitable permutation ot 

Cassels, Geometry of Numbers 15 
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the axes 0/ co-ordinates, it has a basis 0/ the shape 

b1 = (1,0, 0) 

b2 =(bI2 ,1,0, 0) 

b2 = (b1a , b2a , 1,0, ... ,0) 

b" = (bIn' ... , bn-1,n, 1). 

The reader will readily verify that a lattice of the stated kind has 
determinant 1 and no points other than 0 in I xii < 1 (1 ~j ~ n). For 
the proof of the converse the reader is referred to the original paper of 
HAJOS (1942) and to REDEl (1955 a) where there are references to the 
considerable amount of later literature. We proved HAJ6s' Theorem for 
n = 2 incidentally as Lemma 7 of Chapter III. 

MlNKOWSKl (1896a) showed that any convex symmetric set Y with 
LI(Y) = 2 -n V(Y) must have very special properties, for example that 
it must be a polyhedron bounded by at most 2" - 1 pairs of hyperplane 
faces. We prove this in § 2. 

IX.l.4. VORONO! (1908a) suggested a simple way of finding open 
convex symmetric sets Y such that 

V(Y) = d (A) 

and which are packed by a given lattice I\. If g(x) is any positive 
definite quadratic form, the set of points such that 

g(x) < infg(x + a) 
aE/\ 

has this property. The condition 

g (x) < g(x + a) , 

for any given a, is linear in the coefficients XI' ... , Xn; so Y is convex. 
Y is clearly symmetric. It is not difficult to verify that Y is, in fact, 
bounded; and that then the infimum in (1) may be replaced by a 
minimum over a finite number of a depending on A and the function 
g(x), but not otherwise on the individual x. Not every open convex 
symmetric Y with V(Y) =2"d(A) for which A is admissible may be 
obtained in this way, but VORONO! was able to show that all, in a 
sense, sufficiently general such Y could be. Unfortunately the excluded 
cases include some of great interest, such as those covered by HAJOS'S 
Theorem IV. 

We do not discuss the case of general dimension n in this book but 
deal in detail with n = 2 in § 3. As a byproduct we obtain a result 
about the inhomogeneous problem for definite binary quadratics. 
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IX.I.5. Let:ft be any open 2-dimensional set and !/ the 3-dimen­
sional set of points 

tt': (XI ,X2 ,Xa) (XI ,X2)E:ft !xa!<1; (1) 

that is, a generalized cylinder of height 2 and with cross-section :ft. 
Then a plane section 

X3 = constant 

of a lattice packing of tt' gives, in an obvious way, a packing of :ft, 
but not necessarily a lattice packing. The idea of using non-lattice 
pac kings in this context is apparently MAHLER'S (1946g). In this way 
we are led to consider non-lattice packings of 2-dimensional sets. This 
we do in § 5, after some preparatory lemmas in § 4. It turns out, as 
was proved independently by ROGERS (1951a) and FEJES TOTH (1950a) 
[see also FEJES TOTH (1953a)] that, in a sense which will be made 
precise, no packing of convex symmetric open sets is closer than the 
closest lattice packing. It appears unlikely that this result extends to 
higher dimensions. For a discussion of this point see FEJES T6TH 
(1953a). 

In § 6 we use the packing results to show that 

Ll (tt') = Ll ( :ft), (2) 

when :ft is convex and symmetric and tt' is defined in (1). This result 
was originally proved independently by CHALK and ROGERS (1948a) 
and YEH (1948a). An example was given by ROGERS (1949b) which 
shows that (2) need not hold when :ft is a symmetric non-convex 
2-dimensional star-body, and DAVENPORT and ROGERS (1950b) gave an 
example to show that then the ratio Ll(tt')jLl(:ft) may be arbitrary small. 
VARNAVIDES (1948a) has shown that (2) continues to hold in one inter­
esting non-convex case. It is trivial that Ll(tt')~Ll(:ft) for any:ft, since 
if 1\ is a 2-dimensional admissible lattice for tt', the 3-dimensionallattice 
of points 

(Xl' X 2 , X3) (Xl' X 2) E 1\, X3 = integer 

is clearly admissible for tt' and has the same determinant as I\. 
There is an interesting unsolved problem in this connection. Let 

~ and Jt; be convex symmetric bodies in nl and n2 dimensions respec­
tively and let tt' be the (nl + n2)-dimensional "topological product" of 
~ and Jt;; that is the set of points 

;r = (y,z), YE~, ZEJt;. 

The argument above shows that 

Ll (tt') ~ Ll(~) Ll(~). (3 ) 
15· 
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Can it ever happen that there is strict inequality here? The cylinder 
is, of course, the case ~ = 2, nz= 1. WOODS (1958a) has shown that there 
is equality in (3) for n1=3. nz=1 when ~ is a 3-dimensional sphere. 

IX.l.6. In §§ 7, 8 are given applications by BLICHFELDT techniques 
based on packing considerations, or at least BLICHFELDT'S Theorem I 
of Chapter III, to the estimation of the lattice constants of the sets 

x~+ ... +x:<1 
and 

IX1 ... X,.1 <1 

respectively. The relationship of BLICHFELDT'S results to later work 
will be discussed there. 

IX.2. Sets with V(9') = 2" ,1(9'). We prove here the following result 
of MINKOWSKI (1896a). 

THEOREM V. Let 9' be an open symmetric n-dimensional convex set 
which admits a lattice A with d(A) =2-"V(9'). Then 9' is defined by 
m ~ 2" -1 inequalities1 01 the shape 

1~/;iXil < 1. 
1 

(1 ) 

For each I (1 ~ I ~ m) the planes 

'Lflixi= ±1 
i 

give an (n -i}-dimensional pair of faces of [/, and each such face 
contains a point of /\ as an inner point (i.e. for each I there are lattice 
points satisfying (2), and (1) for i=t=I). 

By Lemma 4 of Chapter IV the set 9' is bounded since 0< V(9')<oo. 
By Theorems II and III, every point either belongs to precisely 

one set 
Y(a): 'i9'+a, aEA, 

in which case it is not a boundary point of any Y(b), bEA or it is a 
boundary point of at least two Y(a). Hence every boundary point of 
Y(o) =19' is also a boundary point of some Y(a), a=t=o: and, by the 
boundedness of !7, only a finite number of a can occur in this way. 

We note now that, for fixed a, the set of points which are on the 
boundary of both Y(o) and Y(a) is convex. For if ~,y are two such 
points, the point 

t~ + (1 - t)y (0 < t < 1) (3) 

1 In fact there are at most 3" - 3 faces [GROEMER, MZ 79 (1962) 364 - 37 5], and 
both .9'and its faces are centrally symmetric. Estimate 3"-1 is easy (HLAWKA, 

1949a). Both GROEMER and HLAWKA give generalizations. 
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is certainly either a boundary point of .r(a) or belongs to .r(a) by 
convexity, and similarly for .r(o). Hence (3) is a boundary point of 
both .r(o) and .r(a) by Theorem II. 

In particular, if z is common to the boundaries of .r(o) and .r(a) 
then so is l a - z by the symmetry of Y. Hence so is also 

!a =!z + !(a - z) 
a common boundary point. 

Denote by 
(i~ k~ K) (4) 

the points c of 1\ such that the boundary of .r(c) has n linearly inde­
pendent points in common 2 with that of .r(o), and denote by 

(i~l~L) (5) 

the remaining points b of 1\ such that the boundaries of .r(b) and 
.r(o) have points in common. From what has just been shown, the 
points common to the boundaries of .r(o) and .r(bz) lie in a linear 
subspace of dimension at most n - 2 (not, of course, necessarily, passing 
through the origin. In fact, it cannot pass through the origin). 

We show now that every boundary point z of .r(o) is also a boundary 
point of a .r(ck). The set of boundary points x of .r(o) in any neigh­
bourhood 

(6) 

of z is (n -i)-dimensional, and so cannot be exhausted by the at most 
(n - 2)-dimensional sets of boundary points in common with the .r(bz). 
Hence there must be points in (6) which are common boundary points 
of .r(o) and a .r(ck ). Thus z itself is a boundary point with a .r(ck ) 

as required, since there are only a finite number of Ck • 

[More precisely, let 9' be F(:r) < 1, where F(:r) is a distance-function. We may 
suppose, without loss of generality, that z = (1, 0, ... , 0). If z is common to the 
boundary of 9""(0) and .r(bz), the common boundary points of 9""(0)' and .~(bz) 
satisfy at least two distinct equations 

and so at least one equation 

T1(X1-1) + L,T;X;= 0, 
;<?;2 

L,S;X;= o. 
;<?;2 

There is an equation of this type for each 1 for which z is on the boundary of .r(b/). 
If xi' ... , X" are chosen so as not to satisfy any of these conditions, and arbitrarily 

1 -z is on the boundary of 9""(0), by symmetry, and then a-z is on the 
boundary of .r(a). 

2 That is, the common boundary of .r(o) and .r(e) is a convex (n - i)-dimen­
sional set with centre te, by what has been already proved. 
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small. then the point 
t{F(I. X 2 • •.•• X II )}-1 (1. x 2 • •••• xn) 

is arbitrarily close to % and not on the boundary of any Y(bl ).] 

Now we consider the boundary common to .9""(0) and .9""(ck). We 
saw already that lCk is one point of the common boundary. Let 

(1;£;j;£;n-1) (7) 

be 1~ linearly independent points on the common boundary. (They exist 
by the definition of the cd Then the points 

lCk - Ykj 

are also on the common boundary, by symmetry; and hence, by con­
vexi t y 1, so are all poin ts 

(8) 

with 
(8') 

Let TTk be the (hyper)plane through lCk and the lCk±Yk;' Clearly any 
plane other than TTk through lCk contains points of .9""(0); and so TTk 

must be the only tac-plane to .9""(0) at Jck. The equation of TTk may he 
written in the shape 

(9) 

since TTk cannot pass through the inner point 0 of .9""(0). The correspond­
ing tac-plane - TTk through - lCk is obtained by changing the sign of 
the fk; in (9). Hence every point of the open set .9""(0) satisfies the 
inequalities 

IIfk,x;1 <i· 
I 

(10) 

Further, every point y, which does not belong to .9""(0) is of the 
shape Y =tyo, where t~ 1 and Yo is a boundary point. We saw already 
that every boundary point of .9""(0) is also a boundary point to some 
.9""(±ck) and so satisfies 

± Ifk;x; = l 
for this k. Hence Yo. and a fortiori y; cannot satisfy (10). Thus .9""(0) 
is precisely the set of ;£ which satisfy (10). Since .9"=2.9""(0), the 
corresponding equations for .9" are (1). 

1 The point (8) is 
to (tck) + ~ It;1 (lCd-Ykj). 

1:;;;:;;,,-1 

where the ± prefixed to Yki is the sign of tl • and 

to+lt1 1+"'+I/''-11 = 1. 
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Some of the inequalities (10) may be identical, since it is quite 
possible that the pairs of tac-planes ±TT" may be the same for distinct k. 
We may suppose that (10) for 1~k~m gives a complete set of distinct 
inequalities, where m~K. We saw that there is a unique tac-plane at 
c", and so, since the planes ± TTl (1 ~ l ~ m, l =F k) are certainly tac­
planes and are distinct from TTk , they cannot pass through c". Hence 
x =c" satisfies 

(1~l~m, l=Fk), (11) 

and 
(12) 

To complete the proof of the theorem, it remains to show that 
m~ 2"-1. As in the proof of Theorem IX of Chapter V, it is enough 
to show that the points -i(e,,-e,) are not in A for 1 ~k<r~m. But 
from what has just been proved, the point ·H e" - e,) certainly satisfies 
I ~ II i 1< 1, for 1 ~ l ~ m, there being strict ineqmility for l = k, r because 

1 

then (11) holds for x=·~e,., te" respectively. Hence -~-(ek-e,)E9', so 
cannot be in A, since A is 9' -admissible by hypothesis. 

IX.2.2. When n = 2, it is possible to specify completely the convex 
symmetric sets 9' with ..1(9') =!V(9'). 

THEOREM VI. A necessary and sulficient condition that the latt1"ce A 
be admissible lor the convex open symmetric 2-dimensional set 9' with 

V(9') = 4d(A) 
is that either 

(i) 9' is a parallelogram and 1\ is generated by a mid-point 01 one 
side and a point on one 01 the other pair 01 sides or 

(ii) 9' is a hexagon and 1\ is the lattice generated by the mid-points 
01 any two non-opposite sides. Then A contains the mid-points 01 all the 
sides. 

That 9' is a parallelogram or hexagon follows from Theorem V, 
since 2"- 1 = 3 for n = 2. The lattices A are critical by MINKOWSKI'S 

convex body theorem. The critical lattices of parallelograms and 
hexagons have already been determined in Lemma 7 of Chapter III and 
Lemma 13 of Chapter V respectively. 

IX.3. VORONOi's results. We already saw in § 1 that if g(x) is a 
positive definite quadratic form and A a lattice, then the set of points 
such that 

~(x) < inf g(x + a) 
"Ell *0 
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form a convex symmetric body f/' of volume 2nd (1\). We shall show 
that when n = 2 every symmetric convex hexagon j(> and its unique 
critical lattice can be related in this way by a suitable quadratic form 
g(~). On the other hand. if f/' is a parallelogram. then 1\ must be the 
particular critical lattice generated by the mid-points of the sides. 

These results are clearly invariant under homogeneous linear trans­
formation so we may suppose without loss of generality that 1\ = 1\0 
is the lattice of points with integral co-ordinates and that 

g (Xl. X 2) = a X~ + 2 h Xl X 2 + b X~ 

is reduced. in the sense that 

(1) 

If UI • Ua are integers not both O. the condi tion 

(2) 
is 

Since (-u1 • -u2) occurs as well as (ul • U 2). we thus have the infinitely 
many conditions 

(3) 
where 

(4) 
In particular. 

21X11<a ) 
21X21 <b 
2IXI+Xal<a+2h+b=c (say). 

(5) 

where 
O<a;£b;£c;£a+b. ( 1') 

The set j(> defined by (5) is a proper hexagon unless h = O. when it 
degenerates into a parallelogram. The area V(j(» of j(> is reasily com­
puted from (4) and (5) to be 

V(j(» = 4 = 4d (Ao) . 

But f/' is a subset of j(> and V(f/') =4. by Theorem II. Hence f/' =j(>. 

since both are open. This implies that the infinitely many inequalities 
(3) all follow from (5). which the reader may verify directly with little 
trouble. 

Further. every non-degenerate convex symmetric hexagon j(> with 
its critical lattice may be generated in this way. as we now show. The 
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hexagon is given by three inequalities 

(1=1,2,3). (6) 
where 

and 
'iJ! =lliXl +l2i x2 

is the scalar product. The three 2-dimensional vectors 'i are linearly 
dependent and, by multiplying them by suitable factors, we may suppose 
without loss of generality that 

'1 +'2 + fa = 0, 
and, on re-indexing, that 

kl -;;;' k2 -;;;' ka· (7) 

On taking Xi = 'iJ! (i = 1,2), the inequalities (6) become 

(8) 

Further, 

since the hexagon.Tf is not degeneratic, by hypothesis. We may identify 
(8) and (5) by putting 

2 kl = a, 2 k2 = b, 2 ka = c = a + 2 h + b, 

though of course the Xl' x2 in (4) are not necessarily to be identified 
with the Xl' x2 in (6). Let xi, x~ be defined in terms of Xl' X 2 by the 
analogue 

of (4). On comparing with the earlier part of this section, we see that 
the unique critical lattice of .Tf must be given by integral values of 
xi, x~. We may thus suppose, without loss of generality, that (xi, x~) 
was in fact the original co-ordinate system (Xl, X2), and then we have 
the situation already discussed. 

IX.3.2. From the results of § 3.1 we deduce the so-called "hexagon­
lemma" of DIRICHLET 1 which illustrates the connection between homo­
geneous and inhomogeneous problems that will be discussed in more 
detail in Chapter XI. 

I For an alternative derivation of the lemma and a partial generalization to 
n dimensions, see MORDELL (1956a). 
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THEOREM VII. Let 

g (Xl' X2) = a xi + 2 h Xl X2 + b x~ 

be a quadratic lorm, reduced in the sense that 

0~-2h~a~b. 

(1 ) 

(2) 

Then to every real point Xo = (Xl 0' x20 ) there is a point u = (ul , u2) with 
integer co-ordinates, such that 

4(ab-h2)g(xo+u)~abc, c=a+2h+b. (3) 

The sign 01 equality is required when and only when 

2(ab - h2) (xo + v) = ± {bra + h), - a(b + h)}, (4) 

where v has integral co-ordinates. 
For by the results of § 3.1 and by Theorem II there is certainly a 

point xo+u with integral u in the closed hexagon 

where 
(5) 

But the positive definite quadratic form g (x) can reach its maximum 
in £ only at the vertices l of £. It is now readily verified that the 
vertices are of the shape (4) and that the value of g (x) at all the vertices 
is given by the right-hand side of (3). The calculations are facilitated 
by the identity 

g(X2' - Xl) = (ab - h2) g(x), 

where Xl' X 2 are given by (5). 
Finally, the ~ in (3) cannot be replaced by < if Xo is any vertex 

of £, since 
g(x) = inf g(x + u) 

"EA, 

for the points x of £. This last remark also shows that it was sufficient 
to compute g(x) at anyone vertex a'l (say) since, from the nature of a 
critical lattice, all the other vertices are of the shape ±xI + w, where W 

has integral co-ordinates. 

IX.3.3. Theorem VII gives yet another proof of the result that a 
definite ternary quadratic form I(x) represents an number a~ (2D)! for 
integral values of the variahles not all 0, where D is the determinant 
of I(x) (§ 3.4 of Chapter II). We may suppose, without loss of generality, 

1 Perhaps the easiest way to see this is to make a homogeneous linear trans­
formation Y='tz so that g(z) = iyi 2, when it is obvious. 
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that I(~) is reduced in MINKOWSKI'S sense (d. Chapter II, § 2.1). We have 

I(~) =ax~ + bx= + c x: + 2hx1 X 2 + 2g xlxa + 21 x2 xa } 

= a (Xl + (xXa)2 + 2h(Xl + (Xxa}lX2 + P Xa) + b(X2 + P Xa)2 + y x: (1) 

for some (x, p, y. We may suppose that h~ O. Then 

(2) 
and 

(3) 

for all integers u1 , u2 , by the condition of the reduction. But now, by 
Theorem VII, we may choose u1 , u2 so that 

I ( 1)::;; ab(a + 2h+ b) + u1 , u2 , - 4 (a b _ h2) y. (4) 

Hence from (1), (3), (4) we have 

4D = 4(ab - h2)y ~ 4b(ab - hI) - ab(a + 2h + b) 

Now 
12h + }al ~ -i a, 

by (2); and so 
4D ~ 3ab2 - a2 b ~ 2ab2 ~ 2aa, 

by a further application of (2). This is the required result. Further, 
using the knowledge of the cases of equality in Theorem VII, it is easily 
verified that 2D=a3 can occur only for forms equivalent to multiples 
of the critical form 

2 + 2 + 2 Xl X2 Xa - Xl Xa - Xa Xa - Xa Xl' 

IX.4. Preparatory lemmas. In § § 5, 6 we shall need three lemmas, 
each of independent interest, which it is convenient to prove first. We 
use the word polygon to mean indifferently a 2-dimensional set bounded 
by a finite number of line-segments or the boundary of such a set. 
Which is meant will be clear from the context. We shall say that a 
convex polygon is circumscribed to a convex set :Yt" if it contains :Yt" 
and if every side of the polygon is a tac-line l of :Yt". The first lemma is 
an analogue of Theorem XI of Chapter V due to REINHARDT (1934a), 
and found independently by MAHLER (1947c). 

LEMMA 1. Let:Yt" be a convex symmetric open 2-dimensional set. Then 

LI(Y') = i inf V(Jf'), (1 ) 

where Jf' runs through all symmetric circumscr£bed hexagons at,d V(Jf') 
is the area 01 Jf'. 

1 We speak of a tac-line in 2-dimensions instead of a tac-plane. 
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Let yt be any circumscribed hexagon and I\(yt) the critical lattice 
of yt; so that 

d {I\(yt)} = t V(yt) 

by Lemma 13 of Chapter V. But I\(yt) is certainly admissible for f, 
and so the left-hand side of (1) is at most equal to the right. 

When f is a parallelogram, the lemma is trivial, so we suppose f 
is not a parallelogram. Let M be a critical lattice for f so that, by 
Theorem XI of Chapter V, it has precisely 6 points ±p, ±q, ±r on 
the boundary of f, where p, q is a basis and 

p+q+r=o. 

Let yto be the hexagon formed by tac-lines at ±p, ±q, ±r to f, 
taking the corresponding tac-line - TI at p to the tac-Iine TI taken at p, 
if that is not unique, etc. Then yto is a symmetric hexagon circum­
scribed to f. The lattice M is admissible for yto by Theorem XI of 
Chapter V, and so 

L1(f) = d(M) ~ L1(yto) = t V(ytoL 

by Lemma 13 of Chapter V. This concludes the proof of Lemma 1. 

IX.4.2. The following lemma due to DOWKER (1944a) relates the 
areas of circumscribed polygons to a convex set f, which need not be 
symmetric. We sketch the proof, for which see also FEJES TOTH (1953 a). 

LEMMA 2. Suppose that there exists a circumscribed (n + 1)-gon 91',,+1 
and a circumscribed (n -1)-gon &'''-1 to a convex set f. Then there exists 
a circumscribed m-gon with m ~ n and area 

If ~, a2 , tla are three points on the boundary of f then in this 
proof we mean by 

that~, a2 , tla occur in that order on traversing the boundary of fin, 
say, a counter-clockwise direction. 

Let the sides of &',,-1 be the lines °1, ... , a,,-1' By definition, these 
are tac-lines to f. Let a j (1~j~n-1) be a point on the boundary 
of f at which OJ is a tac-line. If OJ is a tac-line at several points, then 
we choose aj once for all. We may suppose without loss of generality 
that 

Similarly let ~jand b j be defined with respect to &'"H' where 1 ~j~ n+1. 



Preparatory lemmas 237 

We distinguish two cases. Suppose, first, that three of the b; occur 
between two of the ai' say, 

a1 -< b1 -< b2 -< ba-< a2 , 

where the symbol between "t and b1 means that possibly a1 = b1 , but 
otherwise "t -< b1 -< b2 • Let &'~ have sides aI' ~2' a2, "', a" and &'~' have 
sides~l' ~3' ... , ~"+1' Then 

V(&',,+1) + V(&'''_l) ~ V(&,~) + V(&,~'), (1) 

as is clear from Fig. 10. Indeed the difference between the two sides 
of (1) is the sum of the areas of the two 4-gons whose sides are formed 
by aI' ~a, ~1' ~2 and aI' a2' 
~a, ~2 respectively. From (1) 
we have 

min{V(&,~), V(&,~')} 

:;;; HV(&',,-l) + V(&'''+1)}' 

which proves the lemma in 
this case. 

The polygons &'~, &'~' 
may have fewer than n sides, 
since some sides of &'''+1 may 
coincide with those of &'''-1' 
But this possibility is covered 
by the enunciation of the 
lemma. We shall not repeat 
this remark which will apply 
at a later stage in this proof 
and also to the proof of 
Lemma 3. 

P 
,;>,,<-... -;,.=:-- ... ,---~-----T----------""fq 

az '..., \ 1 
,\ 1 
,\ 1 

IJ~ 'u \ 1 
" \ 1 

~.... \ I 
"J.v 1 

'f-., 1 
, ........ I 

~\ ............ ,j 
~w 1 
\\ 1 

, 1 
\1 

'P1' 
1 
1 

~' 
1 

Fig. to. From the figure, 

and clearly 

V(ao'R_') - V(ao'~) = V(pqr) , 

V(9',;') - V(ao'R+t) = V(uvw) 

V(pqr):<:V(uvw). 

The point labelled 0, should be labelled 0, 

If the first case does not happen, then, since there are two more 
b's than a's we have, on re-indexing if necessary, that 

"t.:S b1 -< b2 < a2 < a'_l -< b.< b'+1 -< a. 
for some s. Let &'~, &'~' have sides 

aI' ~2' ... , ~., a., ... , a,,-l 
and 

respectively. Then again 

V(&'''+1) + V(&'''-l} ~ V(&,~) + V(&,~'), 
the difference being the sum of the areas of the 4-gons a1 a2 ~1 ~2 and 
a'-la'~'~'+1' see Fig.H. 
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COROLLARY 1. Let U(n) denote the infimum 0/ the areas 0/ circum­
scribed m-gons with m'5, n. Then 

U(n) '5, U(n -1) (2) 

and 
2 U(n) '5, U(n - 1) + U(n + 1). (3) 

The first inequality is a trivial consequence of the definition, the 
second follows at once from Lemma 2. 

It is convenient to extend the definition of U(n) to non-integral 
value of the argument. For 
t~3 put 

U(t) = (i-I) U(n) + l U(n+1), 

if 
t=n+l, O'5,l'5,1. 

COROLLARY 2. Let /11' ... , /1R 
be numbers such that 

/1,~0 (1'5,r'5,R), L,u,=1. 

Then 

U(L/1,tr) '5, L/1, U(tr) , (4) , , 
Fig. 11. The sum of the areas of the shaded regions is where t, (1 ~ r ~ R) are any num-

V(9'n+ ,) + V(~_,) - V(9'':) - V(9'~') b' h ers w1f t,~ 3. 
The inequality follows at once from Corollary 1 if R = 2 and then 

follows easily for general R by induction. 
By a similar argument to that used for Lemma 2 DOWKER (i944a) 

proved 

LEMMA 3. Suppose that f is symmetric as well as being convex. Let 
.9'2n be an 2n-gon ci,cumscribed to f. Then there is a symmetric 2m-gon 
with m'5, n, also circumscribed to f ot area at most V (.9'2 n). 

Let the sides 

of .9'2n be tac-lines at 

where 

Let 
(5) 

where the bar denotes the image in the origin. Then, by symmetry, 
the ~i are the sides of the circumscribed polygon .9'2n' which is the 



Preparatory lemmas 239 

image of &2n in the origin. By the convexity and symmetry we have 

ai+1 < u j < u j +1 < aj 

for every j. 
If .9'2n is not already symmetric, we may suppose without loss of 

generality that Un=F bn and, by changing the orientation of the indexing 
if need be, that 

Then 

by (5). There is thus a greatest j in w~j<2n such that 

b<a<b.<a J= J J= J' 

and for this j clearly 
U j < b j < b j +1.:s: u j +1' 

It is not excluded that bi+2 also lies between u j and UjI.1' Without 
loss of generality j = n; and then 

by (5). 

Let &;n, .9';~ have sides 

a1, "', an, /3"+1' ... , /32n and /31' ... , /3n, a,,+1' ... , a2n , 

so .9';n and &;~ are symmetric, by (5). Precisely as in the second case 
of the proof of Lemma 2 we have 

V(.9';,,) + V(.9';~) ;£ V(.9'2") + V(.9'2") = 2 V(.9'2"); 

and so either .9';" or .9';~ satisfies the requirements of the lemma. 

COROLLARY. For convex symmetric f, 

,1(f) =! V(6) , 

where V(6) is the infimum of the areas of circumscribed m-gons with m;£ 6. 

This follows at once from Lemma 1 and Lemma 3. 

IX.4.3. We shall also need EULER'S formula for convex polyhedra 
in a slightly unusual form (d. FEJES TOTH 1953a). Let v" (1 ~n;£N) 
be points in the plane (vertices). Let As (1 ~ s;£ S) be curves joining 
one vertex to another vertex or, possibly coming back to the same 
vertex (the edges). The reader may think of the As as line-segments or 
composed of a finite number of line-segments. We suppose that no 
point of As except its ends is a Vn and that no two As cross. Finally we 
suppose that it is possible to get from anyone vertex to any other along 
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the As' Then the whole plane is dissected by the As into a number rp 
of connected pieces (the "faces") one of which contains all points 
outside a large circle 1a:1 =R. Then EULER'S formula is 

LEMMA 4. 
rp+N=S+2. 

This may be readily verified by induction on S. 

IX.S. FEJES TOTH's theorem. In this section we prove a result 
due to FEJES TOTH (1950a), see also FEJES TOTH (1953a). He proves 
something more general and also gives interesting related results but 
we give here only what is needed to treat the lattice constants of 
cylinders. 

THEOREM VIII. Let.Yf be a convex open polygon with at most 6 sides. 
Let .:f be any convex open set and suppose that the sets 

~ = .:f + a:, (1 ~ r ~ R) 

are packed it~ .?It', i.c. the ~ are subsets 01 .?IF and no two have points in 
common. Then 

R U(6) ~ V(.Yf) , 

where U(6) is the lower bound 01 the areas 01 m-gons circumscribed to .:f 
with m~6. 

The notation U(6) is in conformity with that of Lemma 2, Corollary. 
FEJES TOTH'S own version of his proof is very compact, and we have 
found it desirable to expand it. 

IX.S.2. The stages in the proof of Theorem VIII are enunciated for 
convenience as propositions. 

PROPOSITION 11. Let.Yf be a convex open 2-dimensional polygon and 
let.Yt", (1 ~r~R) be open convex sets packed in.Yf. Then there are open 
convex polygons fl, (1 ~ r~ R) such that fl, contains .Yt", and 

or 

( i) the fl, are packed in .Yf, 
(ii) il 0' is a side 01 fl, then either, 

(iiI) 0' is part 01 the boundary ol.Yf, 

(ii2) there is a subsegment 0" 01 0' containing more than a single point 
which is part 01 the boundary 01 a fls' (s=4=r), and 

(iii) il 0' is a side 01 .Yf then some subsegment 0" 01 .Yf consisting 01 
more than a single point is part 01 the boundary 01 some fl,. 

Note that the .Yt", are not required to be similar to each other. We 
shall give two proofs of proposition 1. The first is by transfinite induc-

1 Mr. H. L. DAVIES has pointed out that this Proposition is false as it stands by 
giving a counter example. The proof of Theorem VIII can, however, be salvaged. 
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tion (ZORN'S Lemma). It involves the minimum of geometric argument, 
but is non-constructive. The second, which will only be sketched, gives 
a process for constructing the !!2, in a finite number of steps. 

If {f'} and {f"} arc two packings of R open convex sets in ,Yf, 

we write 
{f'} < {fll} 

if f;' contains f; for 1 ~r~R, not necessarily strictly. We denote the 
set of all such packings by n and verify three statements about the 
symbol <. 

(I) If {f'} < {fll} and {f"} < {f'} then {f'} = {fll}, in the 
sense that the sets f,' and f," are identical for 1 ~ r~ R. This is 
trivial. 

(II) If {f'} < {f"} and {fll} < {f'"}, then {f'} < {f"'}. This 
is again trivial. 

(III) Suppose that ii is any subset of the set of packings n such that 

if {f'} and {fll} are in n then either {f'} < {fll} or {~"} < {f'}. 
Condition (III) states that then there is some packing {f} in n (not 

necessarily in ii), such that {f'} < {%} for all {f'} in ii. 
To prove (III) we take for:%, the union of :r, for all {f} in ll. 

We must verify that {f} is a packing of convex open sets, and do this 
for the properties in turn: 

First, :%, is open. For if Zo is a point of .i", then it is a point of f,' 
for some packing {f'} of ii. Since f; is open, a neighbourhood of Zo 

is in f;, and hence also in :%" as required. - -Secondly, f, is convex. For let z}, z. be any points of 1;" say, 
~l E f;, Z2E f;', where {f'}, {f"} are packings of ii. By the hypotheses 
of (III) we may suppose, by interchanging Zl and Z2 if necessary, that 
{f'} < {f"}. Then ZlEf;(f,". Since z2Ef,", the whole segment 

(O~t~1), 

is in f;'; and so in :%" as required. - -Thirdly, :r, and ~ have no points in common if r=Fs. For suppose 

zoE.i"" zoE"f.. Then zoEf;, zoEf;' for some packings {f'}, {fll} inll, 
where again without loss of generality {f'} < {f"}. Then ZoEf; (f;', 
so Zo is common to f;' and ~", contrary to the hypothesis that {fll} 
is a packing. This concludes the verification of (I), (II) and (III). 

We say that a packing {fl'} is maximal if 

{fl'} < {f'} 
Cassels, Geometry 01 Numbers 16 
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implies {~/l} ={~'}. By ZORN'S Lemma, since (I), (II), (III) are satis­
fied, to any packing {~} there is at least one maximal packing {~/l} 
such that 

{~} -< {~/l}. 
But it is easy to see that in a maximal packing {~/l} the sets~:' must 
be polygons fl, which satisfy the conditions (i), (ii) and (iii) of Proposi­
tion 1. Since this will be clear from the constructive proof which we 
give later, we do not give the detailed argument here. This concludes 
the first proof of Proposition 1. 

We now sketch a second, constructive, proof of Proposition 1. The 
fundamental process is this. If ~ is any open convex bounded set and 

Bountlory of JI! 

Fig. 12. r,' consists of Jr, together with the shaded region 

P is any point not in~, then the open convex cover of ~ and p is the 
least convex set which contains ~ and has p as a boundary point: 
that is, ~ is the set of 

tp+(1-t)q, qE~, 

If P is on the boundary of ~, then the open convex cover of q and ~ 
is just~. Otherwise the convex cover has as boundary the two tac­
lines from p to ~ together with a portion of the boundary of ~. 

If now ~, ... , ~R are the sets of Proposition 1, we form the'poly­
gons fl, by successively taking the convex covers of the sets .;r, and 
suitably chosen points. Let a be any point on the boundary of ~ 
and a a tac-line at a. Consider points q on a along one direction, say, 
to the right of a (see Fig. 12). If q2 is to the right of ql' then the open 
convex cover of q2 and ~ contains that of ql and ~. For some q 
to the right of a on a it is possible that the open convex cover of ~ 
and q overlaps some other body Jt; of the original packing. Since the 
.;r, are open, there is then a p fartherst to the right along a such that 
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the open convex cover of p and Jt';. contains no points of any f, (r=l= 1). 
It is possible that p = a. We then get a new packing {f'} on replacing 
Jt';. by the portion of open convex cover of Jt';. and p which is in 1 Jf. 
If the open convex cover of p and Jt';. does not meet any f, (r +-1) 
for all q to the right of a, then f{ is to be the set of points in :K which 
are in the convex cover of Jt';. and any point q to the right of a on ex. 
Similarly one may consider points to the left of a alongex~ 

We may repeat the process on the new sets {f'} and will indicate 
how after a finite number of steps. it must come to an end with polygons 
fl, have the properties (i), (ii), (iii) of Proposition 1. We denote the 
sets at the i-th stage by {fi}, so {fi-1} < {fi}. Suppose first that 
there is a pair of indices r, s such that f/ and f,1 have a boundary 
point a in common. Then f,/+1, f,1+1 are obtained from f/, f,1 by 
taking ex to be a common tac-line (Chapter IV, Lemma 6) to f/, f,1 
at a and by applying the above process both to f/ and f,1 and both 
to right and left along ex. Once this has been done for a pair of indices 
r, s at the i-th stage we do not do it again for the same pair of indices at 
a later stage. If there is no pair r, s of indices for which :f/, f,1 have 
a common boundary point and which have not already been treated, 
then there may be a body f,/ with a boundary point a on the boundary 
of Jf. If so, we take ex to be the side of Jf on which a lies (both sides 
in tum if a is a vertex of Jf) and apply the process. Again, once this 
has been done for f,/ and a side of Jf we do not do it again for the 
same r and the same side of Jf. Neither of the first two steps may be 
allowable. Suppose that one of the f,/ is not a polygon. Then a is 
taken to be any point on the boundary of f,! which is not in a line­
segment forming part of the boundary of f,s nor on the boundary of 
.Jt1 (s =l= r). Finally, if all the :7("/ are polygons and the first two stages 
are impossible, then a is taken to be any vertex of a f,! at which at 
least one of the two sides is not also a tac-line to some f,1 (s=l=r). 

It is clear that the steps outlined above will come to an end. And 
the final set of .Yt[is clearly a set of polygons fl, having the properties 
(i), (ii). (iii) of the enunciation. 

IX.S.3. The next stage is an ,application of EULER'S formula (Lem­
ma 4) to the configuration of Proposition 1-

PROPOSITION 2. Let fl, 01 Proposition 1 have q, sides (1 ~r~R). 
Then 2 

In the application of EULER'S formula, the faces will be the polygons 
fl, together with flo, the set of points not in or on the boundary of Jf. 

1 The reader is reminded that .1f' is the set in which the :r, are packed. 
2 The proof assumes facitly that every vertex of .1f' is a vertex of a ~,. 

16* 
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Lemma 4 is not immediately applicable, since not every point is in or 
on the boundary of a ~,. The set of points which do not enjoy this 
property is clearly open and so consists of a finite number ~, ... , 9'L 
of connected open sets. By (ii) and (iii) of Proposition 1, anyone of 
these sets, say, ~ cannot contain the whole of a side a of a ~,. We 
now apply Lemma 4 where the "vertices" are of the following kinds 

(at) the sets ~ (1 ~l~L), 
(fJ) points not on the boundary of an ~ but on the boundary of 

at least three ~, (O~r~R), 
(r) vertices of fe. 

The "edges", for the purpose of Lemma 4, are the segments of the 
sides of the ~, joining the "vertices". Then every side of ~, gives rise 
to at least 1 but possibly more "edges". Let q; be the number of "~dges" 
surrounding ~" so 

(1) 

Since every "edge" belongs to precisely two ~, (O~r~R), the number 
of "edges" is 

S =1 L q;. 
O;;;;,;;;;R 

Let fe have precisely h sides, so 

h~6. 

(2) 

(3) 

Every vertex of type (at) or (P) above belongs to at least three ~, 
(O~r~R) and there are at most h vertices of type (r). Vertices of 
type (r) are on the boundary of ~o and at least one ~, (r=l=O). Hence 
the total number of "vertices" N satisfies 

Finally, the number of faces rp is 

rp=R+1. 

From (i), (3), (4) and EULER'S 

IJi+N=S+2 
(Lemma 4), we get 

L q;~6R-6+2h. 
O;:iO,;:iOR 

But clearly q~~qo=h, by (i), and so, by (i), (3), 

L q,~ L q;~6R. 
l;:iO,;;;;R l:i!,:iOR 

This concludes the proof of Proposition 2. 

(4) 

(5) 
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IX.S.4. The proof of Theorem VIII is now comparatively rapid. 
Let U(t) and fl" q, have the meanings they had in Lemma 2, Corol­
laries 1, 2 and Propositions 1, 2. Clearly 

V(fl,) ~ U(q,) 
and so 

V(Jt") ~ L V(fl,) ~ L U(q,), 

since the fl, are packed in Jt". 

Hence by Corollaries 1, 2 to Lemma 2 and by Proposition 2 we have 

R-l V(Jt") ~ L R-l U(q,) ~ U {R-l L q,} ~ U(6). 
l:;;,;:>R l:;;,:;;R 

This is just the assertion of Theorem VIII, and so concludes the 
proof. 

IX.6. Cylinders. We now make the application of Theorem VIII 
to the lattice constants of cylinders adumbrated in § 1.5. 

THEOREM IX. Let.:f be a convex symmetric 2-dimensional star-body 
and ~ the set 01 points 

f(/: (Xl' X2 , Xa) (Xl' X2) E.:f, IXal < 1. 
Then 

L1(~) = .1 (.:f) . 

We may suppose without loss of generality that .:f, and so ~, is 
open since the presence or absence of boundary points does not affect 
the value of the lattice constants L1(~), L1(.:f). It was shown already 
that 

whether or not .)(' is convex, so it remains only to show that 

d (1\) ~ .1 (.:f) (1 ) 

for any ~-admissible lattice J\. 
We prove (1) by computing in two ways the number N =N(X) of 

points of 1\ in a large cube 

IXil <X (1~i~3)· 

In the first place we have the trivial estimate 

as X-+oo. 
(2) 

By Theorem III, since 1\ is ~-admissible, it gives a packing of l~. 
Let C be the set of N cylinders 
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where 
aEA, maxlail <X. 

I 

These cylinders are all contained in the cube 

m<:Lxlxil <X +R, 
I 

(4) 

(5) 

if tre is contained in 1:1:1 <R. We consider only the packing of the 
cylinders C in (5). 

For Iyl <X +R, let L(y) be the number of cylinders of C which 
meet the plane X3 = y, that is the number of aE A satisfying (4) for which 

la3-YI<~-· 

These L(y) cylinders give rise to a packing in the square 

1 xii < X + R (j = 1, 2) 

of L(y) sets similar and similarly situated to tf. Hence 

L(y) U'(6) < 4(X + R)2 (6) 

by Theorem VIII, where U'(6) is infimum of the areas of circumscribed 
m-gons to t f with m ~ 6. 

But clearly 
X+R 
J L(y)dy =N 

-X-R 

from the definition of L(y). Hence 

U'(6) N < 8(X + R)3, (7) 
by (6). 

Since Rand U'(6) are independent of X, the comparisGn of (1) and 
(7) as X ~ 00 gives 

d (A) ~ U'(6). 
But 

U'(6) = 4L1(tf) = L1(f) 

by Lemma 3, Corollary. This completes the proof of (1), and so of the 
theorem. 

IX.7. Packing of spheres. The unit sphere 

~,,: 1:1:1 <1 

in n dimensions has volume 

v.. = V(~,,) (1) 
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where r ( 1 + ;) is the usual gamma function. In this section we estimate 

the lattice constant 
1',. = ,1(2),,); (2) 

and are primarily interested in the behaviour of r" when n is large. 

In the literature it is customary to use y" defined as the lower bound 
of the constants y~ such that every positive definite quadratic form 
L I,; x, x; in n variables represents a number ~y~ I det(/i;W'" ("HER­
MITE'S Constant"). By the arguments of Chapter I, § 3 we have 

(3) 
We shall need to know the asymptotic behaviour of the volume v". 

From STIRLING'S formula l we have 

lim n V:'" = 2ne, 
"-+00 

(4) 

where 

From MINKOWSKI'S convex body Theorem and the Minkowski­
Hlawka Theorem we have 

(5) 

where C(n) is RIEMANN'S function. These inequalities lead by (3) and 
(4) to 

lim sup ny;I~ 2n e (6) 
,,-+'X) 

and 
lim inf ny;l~ ine. 
"-+00 

(7) 

Of course the factor 2C (n) in (5) has no effect in (6) and might as well 
have been replaced by 1. Indeed none of the improvements of the 
Minkowski-Hlawka Theorem discussed in Chapter VI affect the constant 
on the right-hand side of (6). On the other hand, BLICHFELDT (1929a) 
has improved (7) to 

lim inf ny;I~ ne, (8) 

which appears to be the best asymptotic form to date 2. The argument 
is a purely packing one and makes no use of the fact that only lattice 
packings are relevant to (8). BLICHFELDT'S results have been improved 
by RANKIN (1947a), and yet further, by a more perspicuous argument, 

1 See any reputable text book on analysis, for example WHITTAKER and 
WATSON (1902a) Chapter XII. 

2 The improvement in (8) announced by CHABAUTY (1952a) is not correct, 
see the review by RANKIN in Maths. Reviews 14, 541. 
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by ROGERS (1958c). Their methods yield considerable improvements 
for small values of n, but do not improve the constant in (8). 

BUCHFELDT'S methods may be applied to other sets than spheres, 
see RANKIN (1949a, b, c) and 1955a and the literature cited there. 

There is a detailed discussion of the non-lattice packings of 3-dimen­
sional spheres in FEJES T6TH (1953a), see also S. MELMORE (1947a). 

I have been helped by my recollection of a seminar talk by Professor 
RANKIN in Cambridge in the late 1940s on BUCHFELDT'S method. 

IX.7.2. We observe first that BUCHFELDT'S Theorem I of Chapter III 
may be generalized to pac kings and indeed takes a quite simple shape. 
Let /7 be any bounded n-dimensional set and suppose that the sets 

(1) 

are packed in some set Y. Then trivially 

V(Y) ~ R V(/7). (2) 

Suppose now that there is some function rp (~) of the vector variable 
Z such that 

(i) rp(z) = 0 if Izl ~ e for some e 
and 

for all z, 

whenever (1) is a packing of /7. 

Let Y(e) be the set of points at a distance ~ e from Y, including 
the points of Y itself. Then, in the first place, 

f 'P(z) dz ~ V{Y(e)} (dz = dx1 ••• dx,.) (3) 
9"(C/) 

by (ii) and, on the other hand, by (i) 

f 'P(z) dz = L f rp(z - zr) dz = R f rp(z) dz = R V(rp) (say), (4) 
9"(C/) r 

since all points with rp(z-zr) =1=0 lie in Y(e). The comparison of (3) 
and (4) gives 

(5) 

Of course the characteristic function of /7, which is 1 on /7 and 0 
elsewhere, has the properties (i) and (ii). With this as the function rp, 
the inequality (5) is rather weaker than (2). because we have replaced 
V(Y) by V{Y(e)}: though of course this can be avoided by a refinement 
of the argument. BLlCHFELDT observed that there are sometimes 
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functions rp which give a better estimate than the characteristic 
function. 

For example, if [/' =P)" is the sphere of unit radius, the necessary 
and sufficient condition that open spheres of radius 1 and centres :Ill' :Il2 
shall not overlap is I :Ill - :Il21 ;;;:; 2. The following lemma may be regarded 
heuristically as showing that, in a packing of spheres, a point may be 
on the boundary of two spheres but cannot be too near the boundaries 
of more than two spheres simultaneously. 

LEMMA 4. Put 
rp(:Il) = max{o, 1 - t 1:Il12}. 

Suppose that :Il, (1 ~ r ~ R) are any points such that 

Then 
L rp (:Il - :Il,) ~ 1 

l::i!,::i!R 

lor all points :Il. 
We may clearly suppose without loss of generality that 

0< rp(:Il- :Il,) = 1 - tl:ll- :Il,12 
for 1 ~r~R. 

If Yl> ... , YR and yare any real numbers, we have 

R L (y - y,)2 = L (y,- Ys)2+ (Ry - Ly,)2;;;:; L (y,- Ys)2. 
, ,<s , ,<s 

(6) 

(7) 

(8) 

Hence, on applying this to the individual co-ordinates, since 1:Il1 2 = 
x~ + ... + x~, we have 

R ~ 1:Il-:Il,12~~I:Il,-:IlsI2~2R(R-1), 
l::i!,::i!R ,<s 

by (2). But this is just the same as (8). 

From this we have almost immediately 

THEOREM X. Let:ll, (1 ~r~R) be points in the n-dimensional sphere 

(9) 
and let 

Then 

R ~ 2-,,/2 (1 + ;) (X + 26)". (10) 

If rp(:Il) is as in Lemma 4, we have 

V(rp) = J rp(:Il) d:ll = J (1- ~ 1:Il1 2) d:ll = 2"/2 (1 + ;rlv,., 
Izl'<2 
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where V" is the volume of the unit sphere. The result now follows from 
(5), since .9'"(e) is now the sphere 

Izl <X +2~, 

which has volume (X + 2i)"v". 
COROLLARY 1. The lattice constant r.. and volume v" of the unit sphere 

I zl < 1 satisfy 

1',.:?; r"j2 (1 + ;r1v". 

If I\. is admissible for I z 1< 1, then the points z, of 21\. satisfy the 
conditions of the theorem. The number of points of 21\. in 

.9'": Izl <X 
is 

{d (21\.)}-1 V(.9'") + 0 (X"-l) = r"{d (I\.)}-l X" v,. + 0 (X .. - 1). 

On comparing with the theorem and letting X _ 00, we obtain the 
required inequality. 

COROLLARY 2. 
lim inf ny.;l:?; n e, 

where y: =r..-2• 

This follows from Corollary 1 and (4) of § 7.1. 

IX.S. The product of n linear forms. Denote by .;v,. the n-dimen­
sional set 

and let 

The set .;v,. plays an important part in algebraic number theory (see 
Chapter X), but the only precise values of v" known are 

v: = 51, v~ = 7 

given by Chapter II, Theorem IV and Chapter X, Theorem V respec­
tively. Here we shall be concerned with estimates for v" when n is large 
rather as in § 7. For information about what is known for n =4 or 5 
see Chapter II, § 6.4. 

In Chapter III, § 5.3 we already gave MINKOWSKI'S estimate 

J(.#.:) ~ n" 
,,- n! 

which by STIRLING'S Formula, gives 

lim infv,,:?; e = 2·71828 .... 
,,--+00 
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BLICHFELDT has given an elegant proof that 

lim inf v,. ~ (2n)1 e1 = S ·30653 ... : 
,.-400 

(1 ) 

and this we obtain in this section. 

The estimate (1) is not the best yet found. ROGERS (1950a) has 
shown indeed that 

lim inf v,. ~ 4n-1 el = S . 70626 .... 
,.-400 

His intricate and laborious proof may be regarded as an elaboration of 
BLICHFELDT'S. 

Since.#;. has infinite volume, there is no estimate of L1 (.#;.) above 
from the Minkowski-Hlawka Theorem. Indeed, work of SCHOLZ (1938a) 
on the discriminants of algebraic number fields gives some reason to 
suspect that lim sup v,. = 00. 

,.-400 

In § 8.2 and 8.3 we give two lemmas and then in § 8.4 BLICHFELDT'S 
proof of (1). 

IX.8.2. The following Lemma of SCHUR (1918a) also occurs in the 
theory of the "transfinite diameter" in analysis. 

LEMMA 6. Let ~l' ..• ,~,. be real numbers. Then 

11. (~. - ~;)2~ -D", (L ~f)l"'(m-l), 
.</ • 

(1 ) 

where 
-Dm={m(m-1)}-lm(m-l).12.22 ..... m"'. (2) 

The continuous function II (~'_~i)2 of the m variables~. attains its 
k; 

maximum, -D say, on L~~=1, say at ~.=rJ; (1~i~m). Then, by 
homogeneity, 

(L ~~)-l"'(m-l) II. (~. - ~;)2~-D 
• .</ 

(3) 

for all ~i' with equality when (~i) = (rJ.). The derivative of the logarithm 
of the left-hand side of (3) with respect to each variable must vanish 
at the maximum (~j) = (rJi); and so 

L:--1 -= m(m-1)1]i (1~i~m). 
;,*,' 1]i - 1]; 2 

since L rJ~ = 1. Let 
l(rJ) = II ("I - "I.) 

be a polynomial in the variable "I. Then (4) is 

/"(1]i) m(m -1)1], 
2/'(1],) = -- 2 -

(4) 

is) 

(6) 
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The polynomial 

is of degree at most m -1, since the coefficients of r/" vanishes. By 
(5) and (6) we have h(17i) =0 (1 ~i~m); and so h(17) vanishes identically: 

1"(17) - m(m - 1) 17 /'(17) + m2 (m - 1) 1(17) = O. (7) 

The difterential equation (7) determines 1(17) completely in terms of, say, 
1(0) and /,(0). Hence we may determine the symmetric functions ~ 17~ 
and II (1]i-1]i)2 in terms of 1(0) and /,(0). Since ~17~ =1 and the coef­
ficient of 17m in I (17) is 1, this determines I (17) completely, and so also 

II (1]i _1];)2 = {}. (8) 

It is simpler, however, to use a more indirect approach which will now 
be described. 

The resultant of two polynomials, say, 

with highest coefficient 1 is defined to be 

If 

R (f{J, 1p) = II (rt.i - P;) 
i,; 

= II 1p(rt.,) 
i 

= (-1)/J n f{J(/J;) 
; 

= (_1)IJ R(1p, f{J). 

w(17) = II (17 - Yk) 
l~k;:oK 

is a third polynomial with highest coefficient 1, and if 

identically for some number ,l and polynomial X (17), then 

R(f{J,w) =,ll R(f{J,1p). 
by (92), 

In particular, if 1(17) is defined by (5), we have 

(10) 

{) ~;i!lJ;:o.~17i -17;)2 = (- 1)lm(m-~;;lJ!,(17i)) (11) 

= (_1),m(m-l)mm R(f, 11). 
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where 

has highest coefficient 1. More generally, put 

I.('YJ) = (m,:-!k)! pl('YJ); 
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so that I. ('YJ) has highest coefficient 1. Then on differentiating (7) k 
times one readily obtains 

(12) 

Hence 

I { - (m - k - 1) }",-k-l I I 
R(/k,/Hl) = R(lHl' k) = m(m _ 1) R( HI' H2)' (13) 

on using the rules of operation (9.) and (10). But I",('YJ) =1 and 
1",-I('YJ) ='YJ+y for some number I' (in fact 1'=0); so 

(14) 

by (92). The required value (2) for {} follows now from (11), (13) and (14). 

IX.8.l. We also require an estimate of the number {}", occurring in 
the last lemma. 

LEMMA 7. II 
G", = 1 . 22 ••••• m"', 

then 
lim sup {m-2 10g G", -llog m};:;;; - 1. 

"'-+00 

Put 
g(x) =xlogx (x>o). 

Then 
g'(x) = log x + 1 

increases with x; and so 

g(x + t) + g(x - t) ~ 2g(x) 

for any t, since if t> 0 we have 

g(x + t) - g(x) = tg'(~I) 
g(x) - g(x - t) = tg'(~2)' 

where ~2< X<~I' so g'(~2) <g'(~l)· 
In particular, 

IH i 

(1) 

J g(x) dx = J {g(l + t) + g(l- t)}dt~g(l), (2) 
1-6 0 
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for any integer l. Thus 

m+' 
10gG,,. = L g(l) ~ J g(x) dx =! (m + !)210g(m +!) - 1(m + !)2 + y, 

2;>;t;>;m ~ 

where y is independent of m. The required estimate now follows at once. 

COROLLARY. II .om ={m(m -1)}-i m(m-1l Gm is the number delined in 
Lemma 6, then 

lim sup {m-2 10g{}m + ! log m} ~ - 1. 
m->oo 

This is immediate. It is not difficult to see that "lim sup" may be 
replaced by "lim'~, but we do not need this. 

IX.S.4. We can now prove BLICHFELDT'S Theorem on the product 
of linear forms discussed in § 8.1. 

THEOREM XI. Let v: be the lattice constant 01 the set 

Then 
lim inf v,. ~ (2n)1 et. (1 ) 

Let A be a lattice which is admissible for .;v, and let m be an integer 
whose value will be settled later. 

Consider the sphere 

where e is chosen so that 

that is 

fi}: l:.el < e, 

V(fi}) = md(A); 

e" v.. = m d (A) , (2) 

where v.. is the volume of l:.el < 1. By BLICHFELDT'S Theorem I of 
Chapter III, there are m points :.e1 , ••• ,:.em in fi} whose differences 
:.e .. -:.ei all lie in A. Put 

(1~i~m). 
and write 

S,,=Lx~ .. (1~k~n). 
l;>;";>;m 

Then 
L s" = L 1:.e .. 12~ me2 ; 

1:;;";>;,. l:;;i:;;m 

and so 

by the inequality of the arithmetic and geometric means. 
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Now let 

Then, on the one hand 
(4) 

by Lemma 6, where {)". is the number defined there. On the other hand, 

where 

The points ~i-~i belong to A, which is %-admissible; and so 

(i=f:i). 
Hence 

II ~~1. 
l;;;k;;;" 

On eliminating ~, Sk from (3), (4) and (5) we get 

<.0." (!!'_ 2)1"".(".-1) 1 = "V". e . n 

Hence, on eliminating e between (2) and (6), 

{d(AW'" ~XIX2X3' 
where 

and 

Xl = m-i{);l,,,.(,,.-l), 

X2=n1V,t''', 

Now Xl is independent of nand 

lim inf XI~ el , 
"'-+00 

by Lemma 7 Corollary. Further, Xa is independent of m, and 

lim Xa = (2:rte)1 
"-+00 

by (4) of § 7.1. Finally, 
limXa = 1 

if, say, m=n-+oo. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Since v" is the infimum of {d(AW'" over %-admissible lattices, and 
since the product of the right-hand sides of (8), (9) and (10) is the right­
hand side of (1), this proves the theorem, by (7). 
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Chapter X 

Automorphs 

x.t. Introduction. A homogeneous linear transformation w is said 
to be an automorph of a point set .9 if .9 is just the set of points w:I:, 

:l:E.9. The automorphs of a set .9 evidently form a group. Many of 
the point sets of interest in the geometry of numbers, or which occur 
naturally in problems arising in other branches of number-theory, have 
a rich group of automorphs which is reflected in the set of .9-admissible 
lattices. Already in the work in which he introduced the notion of 
limit of a sequence of lattices, MAHLER (1946d, e) laid the foundations 
for future work and indicated some fundamental theorems. Since then 
much has been done but some challenging and natural questions remain 
unanswered. 

MAHLER (1946d, e) considers star-bodies with groups of automor­
phisms having special properties which he calls automorphic star-bodies. 
In this account we prefer in each case to state the properties of the 
group of automorphs which are required to hold. 

We shall say that a homogeneous linear transformation w is an 
automorph of a lattice A if wA =A, that is if A is precisely the set of 
wa, aEA This is really a special case of the definition at the beginning 
of the chapter since A is a point set. Since 

d(wA) = jdet(w)i d(A) , 
we must have 

det(w) = ± 1. 

We say that w is an automorph of a function 1(:1:) of the vector :I: if 

I(w:l:) =/(:1:), 

for all:l:. In particular, w is an automorph of the distance-function 
F(:I:) if and only if it is an automorph of the star-body 

.9: F(:I:) < 1, 

since .9 and F(:I:) determine each other uniquely. Clearly 

F(w A) = F(A) 

for a lattice A if w is an automorph of the distance-function F(:I:), since 

by defimtion. 

F(A) = inf F(a) , 
oEII 
*,0 
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If Y is any point set and 't a non-singular homogeneous linear 
transformation, then 

,1('tY) = \det('t)\ ,1(Y). 

since a lattice 1\ is admissible for Y if and only if 't 1\ is admissible 
for 'tY. 

In this chapter we shall make great use of the properties of homo­
geneous linear transformation expounded in Chapter V, § 2. In par­
ticular we write 

<p=p+a, ~ =pa 
if 

<px=px+ax, ~x=p(ax), 

respectively for all x. 

X.1.2. We first give three theorems which are already in MAHLER 
(1946a, b) but not all as formulated here. We give also the proofs: 
their brevity shows the power of MAHLER'S techniques, particularly in 
the striking Theorem III. 

THEOREM I. Let F(x) be a distance-function with an automorph w 
such that 

det (w) =1= ± 1-

Then F(I\) =0 for all lattices I\. 

By taking w-1 instead of w if need be, we may suppose that 

\det(w)\ < 1-

If there is a lattice 1\ with F(I\) =1= 0, then there is a critical lattice M 
for F(x) < 1, by Theorem VI of Chapter V. But then 

F(wM) =F(M) = 1, 
and 

d(wM) = \det(w)1 diM) <.d(M), 

in contradiction to the definition of a critical lattice. 

For example, Theorem I shows that 

\x~ x2 \ < 1 

is of infinite type since it has the automorphs xC"~ix, x2--+4x of de­
terminant 2. This was our example of a star-body of infinite type in 
§ 5 of Chapter V. 

THEOREM II. Let F(x) be a distance-function. Suppose that every 
point Xo with F(xo) = 1 is ot the shape 

(1 ) 
Cassels, Grometry of Nurnbf"rs 17 
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where w is an automorph 0/ F, and Co is in a compact set «1'. Then lor 
every lattice 1\ with F(I\) = 1 there exists a lattice M with 

F(M) = 1, d(/\) = d(M) 
having a point in f'{/. 

Since F(x) is continuous, the set f'{/' of points cEf'{/ with F(c) = 1 is 
compact if '6' is compact. Since Co as defined in (i) has F(co) =F(xo) = 1, 
we may suppose without loss of generality that 

F{c) =1 (CEf'{/) . (2) 

Since F(I\) = 1, there is a sequence of points a,E 1\, not necessarily 
distinct, such that 

F(a,) ~ 1 : F(a,) -r 1 (r -r 00). 

Then b,= {F(a,)}-lar satisfies F(b,) = 1; and so 

b, = w,c, 

for some automorph w, of F and some c,E«1'. Since f'{/ is compact, we 
may suppose, after extracting a subsequence and re-indexing, that 

C, -r c' E f'{/ (r-roo). 
Let 

1\ = Wr 1\,. 

Then, since I det (wr)i = 1 by Theorem I, we have 

F(I\,l = F(I\) = 1 , d (I\r) = d (1\) 
and 

F(ar)CrEI\,. 

By Theorem IV, Corollary of Chapter V, the sequence I\r contains a 
convergent subsequence, and so, without loss of generality, 

I\,-r M 
for some lattice M. Then 

d (M) = lim d (1\,) = d (1\) 
'-+00 

and 
F(M) ~ lim supF(I\,) = F(I\) = 1 

'-+00 

by Theorem II of Chapter V. Further, M contains 

e' = lim F(a,) c" 
'-+00 

so 
F(M) ~ F(c') = 1 , (4) 

by (2). From (3) and (4) we have F(M) = 1. This concludes the proof. 
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COROLLARY. There is a critical lattice for F(x) < 1 having a point c 
in ~ with F(c) = 1-

For if 1\ is critical so is M. This corollary is in contrast with the 
example given in § 5.2 of Chapter V of a star-body no critical lattice 
of which has points on the boundary. Note that the corollary does 
not affirm that every critical lattice of F(x) < 1 has points on F(x) = 1 ; 
the author [CASSELS (1948a)] has given a rather artificiaP counter­
example of a body F(x) < 1 satisfying the hypotheses of Theorem II 
and having critical lattices with no point on F(x) = 1. 

As an example of Theorem II consider the body %: I Xl X 2 Xal < 1 
with its distance-function IXIX2Xal!. Here ~ may be taken to be the 
single point c=(1, 1, 1); since every point XO=(XIO' x 20 ' xao) with 
IXloX2oXaol=1 is of the shape 

XO=WC, 
where w is the automorph 

of %. Hence there are critical lattices for %with a point at (1,1,1). 
If one is concerned only with the evaluation of .1(%) and not with the 
enumeration of all the critical lattices, it is enough to consider critical 
lattices with a point at (1,1,1). 

THEOREM III. Let the point-set f7 be a subset of the star-body ,,/ 
with .1(9') < 00. Suppose that for every r there is an automorph w, of ,,/ 
such that w r f7 contains every point of 9' which is in I x 1< r. Then 

Clearly 
.1(f7) = .1(9'). 

.1(f7) ~ .1(9'). 

By Theorem I we have det (wr ) = ± 1, and so 

,1(f7) = .1(w,f7) ~ .1(~), 

where ~ is the set of points of 9' in I xl < r. But 

lim .1(~) = ,1(9') 
,-->00 

by Theorem V of Chapter V, so .1 (f7) = L1 (9'), as asserted. 

Clearly one may formulate theorems similar to but more general 
than Theorem III by making use of the full force of Theorems II and V 
of Chapter V. The argument used in the proof of Theorem III was 
already used in the proof of Theorem XV of Chapter V. 

1 As Professor ROGERS remarks, it is quite likely that the 3-dimensional body 
I XII max (x:' xi) < 1 furnishes a natural example. 

17' 
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As an example of Theorem III one may take for f/, 9" respectively 
the sets 

and 
9": IXlxsxal < 1, Ixsl < e, IXal < e, 

where e is any fixed positive number. Then the automorphism w, may 
be taken to be 

XI=r-2e2xI' X 2=re-Ixs, Xa=re-Ixa, 

where X = W,:I:. In this example one may deduce that a lattice A 
with d(A) <LI(f/) has infinitely many points in f/.. For A must have 
a point in 9" for every e>O. If A has no point a=!=o with a2=aa=0, 
this implies that A has infinitely many points in f/; and on the other 
hand, if a = (al , 0, 0) is in A, then all the points ma (m = 1, 2, ... ) are 
in A, so there are still infinitely many points of A in f/. Indeed the 
argument shows that for any e> 0 there are infinitely many points 
of A in :r. This sort of argument was already used for Lemma 12 of 
Chapter V about the existence of infinitely many points in -1 <Xlx2<k. 
There we could prove rather more since this set was shown to be bound­
edly reducible. In § 7 we shall make a systematic study of when there 
are infinitely many points of a lattice in a star-body following DAVEN­

PORT and ROGERS (1950a). 
X.l.3. The point sets with a large group of automorphisms with 

which we shall be concerned will be mainly constructed simply from an 
algebraic form ffJ (:1:). For example ffJ (:I:) may be Xl XI' Xl X2Xa' Xl (X: + X:) 
or X~ + X~ - xt and the set f/ may be defined by 

I ffJ (:1:)1 < 1 (1 ) 
or 

o ~ ffJ(:I:) < 1 {2} 
or 

0< ffJ(:I:) < 1 (3) 
or 

- k < cp(:I:) < 1, (4) 

where k and 1 are positive numbers. Of course (2) and (3) are not star­
bodies. Apart from sets especially constructed from sets of the type 
(1)-{4) to act as counter-examples, other sets with large groups of 
automorphisms have proved intractable. For example the lattice 
constant of 

IXII max(xt x~) < 1 

is not known, though it would be of some interest in the theory of 
simultaneous approximation and the problem has had considerable 
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attention [see DAVENPORT (1952a) and CASSELS (1955a) and the refer­
ences given there J. 

We shall make continual use in this chapter of the results of Chap­
ter I, § 4 about the relationship of lattices to forms. 

A particular kind of lattice plays a special rl'>le in connection with 
sets of the type (1)-(4), where IP(:I:) is an algebraic form. It is useful 
to introduce some new terminology. If IP(a) is an integer for all aEA 
we say that IP is integral on A. If, further, IP (a) = 0 for aE A only when 
a =0, we will say that IP is non-null on A (the trivial zero at 0 being 
disregarded). Finally, if there is some number t=l=O such that tIP is 
integral on A we say that IP is proportional to integral on A. Then IP 
is integral on I WI'" A, where m is the degree of IP' 

In many, if not all, cases where the form IP has infinitely many 
automorphs and the critical lattices Ac for one of the sets (1)-(4) are 
known, it turns out that IP is proportional to integral on Ac' Indeed 
in some cases IP is proportional to integral on every known admissible 
lattice, and it is suspected, but not proved, that no other admissible 
lattices exist. In other cases, there certainly do exist admissible lattices 
on which IP is not proportional to integral, but the critical lattices are 
not amongst them. 

Before discussing the general· properties of a lattice A on which a 
form l IP is proportional to integral and illustrating it with concrete 
examples, it is convenient to prove a simple lemma. 

LEMMA 1. Let l' > 0 and m> 0 be integers and let 

y(ul , ... , u,) 

be arbitrarily given numbers lor integers ull in 

(1~e~r). (5) 

Then there is a uniquely delined polynomial I (u) 01 degree m in the variables 
ul , ... , u, such that 

I(u) =y(u) (6) 

lor all integers u = (Ut, ... , u,) in (5). 
This is certainly true when T = 1. For T> 1 we use induction on T. 

We may write 
I (u) = L u~ gp (~ , ... , U,_l), (7) 

0;:;;;1';:;;;'" 

where the gl' are polynomials to be determined. For any fixed values 
of Ul , "'J U,-lJ the equations (6) determine uniquely the values that 
must be taken by gl' (u1J ... J U,_l) in (5); and then there are uniquely 

1 We recollect that the word "form" implies homogeneity. 
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determined polynomials taking these values, since we assume that the 
lemma has already been proved with r -1 for r. Alternatively one 
could observe that the determinant of the (m + 1)' equations for the 
(m + 1)' coefficients in I(u) have determinant 

II (v_u)2m=!=O. 
O;i;u<v;i;m 

COROLLARY. II the y (ul , ... , uri are rational, so are the coellicients in f. 
This follows at once from the proof. 

Now let rp be a form which is integral on the lattice /\ with basis 
bl , ... , b n • Put 

I(u) = I(u l , ... , un) = rp (f Ui bi )· (8) 

By Lemma 1, Corollary, the coefficients in the form I(u) are rational. 
Conversely if the coefficients in I (u) are rational, then rp is proportional 
to integral on I\. 

We shall now describe in some detail what happens in some special 
cases which have been extensively investigated. 

Suppose, for example, that 

so that I (u) in (8) is any indefinite ternary quadratic form of signature 
(2,1) (d. § 4 of Chapter I). No-one has yet been able to construct a 
ternary quadratic form which can be shown not to take arbitrarily 
small values for integral u, apart from the multiples of forms with 
integral coefficients. OPPENHEIM (1953 b, c) has shown I that an in­
definite quadratic form which takes arbitrarily small values of one sign 
also takes arbitrarily small values of the other. Such a form then takes 
values in every interval, since 

I(ru) = r2/(u) 

and I(u) may be taken arbitrarily small of either sign. 

The situation is much the same when 

rp(x) = Xl X2 Xa' 

Then the function I (u) given by (8) is the product of three real linear 
forms: 

(9) 

1 He also shows that if an indefinite quadratic form is not a multiple of a 
form with integral coefficients and takes the value 0 then it also takes arbitrarily 
small non-zero values for integer values of the variables if the number of variables 
is greater than 5. 
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and conversely every product of three linear forms (9) with 

gives rise in this way to a lattice A. A classical theorem which we 
shall prove in § 4 states that if the coefficients in I (u) are rational and 
I(u) may be expressed as the product of three real linear forms and if, 
further, I(u) =j=-O for integral u*,o, then 

I (u) = t n (fJil UI + /3i2 U 2 + /3i a ua) , 
l&i&a 

where /311' /312' /313 are numbers in a totally real cubic field srI and /3i k 

is the conjugate of /31k in the conjugate field sri. 

On the other hand, there are certainly lattices 1\ which are admis­
sible for 

and on which Xl x2 is not proportional to integral. This follows at once 
from the theory of continued fractions: alternatively it is not difficult 
to modify the proof of Theorem VIn of Chapter VI. 

A rather more interesting case is 

(10) 
Since 

where i2 = - 1, there is a connection with the cubic fields that are not 
totally real, similar to that of Xl X2 Xa with totally real fields: it is clas­
sical, and will be proved in § 4.4 that if Xl (X~ + xi) is proportional to 
integral and non-zero on 1\, then 1\ arises from a cubic field. But there 
certainly are other admissible lattices for 

Let T be any transformation X =TX of the special type 

Xl = tIl Xl I 
X 2 = t22 X2+ t 2a Xa 

Xa= tS2X2+taaXa, 

where 

Then there are clearly constants C, c depending on T, such that 

00 > C ~ I q; (-r:r) I ~ c > 0 
Iq;(:r) I -

(11) 
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for all z. Hence if A is admissible for I cp (z) I < 1, so is t ~ A for some 
number t; and in general cp (z) will not be proportional to integral on 
~ A if it is on A. 

This does not exhaust the admissible lattices for Xl (X: + X:) < 1. One way to 
show this is to use the arithmetic-geometric mean inequality in the shape 

Hence any lattice admissible for IXI x2xal < t is also admissible for IXI (x= + x:lI < I; 

for example 2-! M has this property if Xl X 2 xa is integral and non-null on M (i.e. 
when M arises from a totally real cubic field); and it is easy to see that Xl (X: + x~) 
cannot be proportional to integral on M. [In fact the xl-eo-ordinates of M for 
a lattice on which Xl X, xa or Xl (X: + x~) is non-null and proportional to integral 
determine the relevant cubic field completely and it cannot be both totally real 
and not totally reaL] More generally, one can construct admissible lattices by the 
methods of Chapter VI, Theorem VIII, compare CASSELS (1955 b) for a closely 
related problem. 

It is an interesting problem to decide for any given form cp (z) if 
there exist admissible lattices for a set I cp (z) 1< 1 on which cp (z) is not 
proportional to integral. CASSELS and SWINNERTON-DYER (1955 a) have 
considered the special cases cp (z) = Xl X 2 Xa and x~ + x~ - x~, but they only 
transform the problems into another one. For another line of attack, 
see ROGERS (1953b). It is reasonable to think that essentially new ideas 
will be required even to cope with Xl X2 Xa or x~ + x~ - x~. 

X.l.4. An important part in the theory is played by so-called isola­
tion theorems. Their importance was first apparently recognised by 
DAVENPORT and ROGERS (1950a) though there are foreshadowings in 
MAHLER (1946e) and indeed in REMAK (1925a). A new type of isolation 
theorem is proved and exploited in CASSELS and SWINNERTON-DYER 
(1955a). 

The phenomenon of isolation takes various forms all of which state, 
roughly speaking, that lattices in the neighbourhood of a given lattice 
M, with certain exceptions, are much worse behaved than M itself. 
Thus one result we shall prove is that if Xl X 2 Xa is integral and non-null 
on a lattice M, then to every e> 0 there is a neighbourhood ~ of M 
in the sense of § 3.2 of Chapter V, depending on e, such that 

inf IXI x2 x3 1 < e 
:rEA 

,*,0 

for all A E ~ except the A of the shape t M, for a number t. This is a 
particularly sweeping result .. Perhaps more typical is the isolation 
theorem for xdx~ + x:). This states that if 

inf Ixdx~ + x~)1 = 1, 
:rEM 
:r,*,o 
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and if Xl (X~ + x~) is proportional to integral on M, then there exists 
an rJo> 0 and a neighbourhood Q of M, such that 

inf Ixdxi + x~)1 < 1 - rJo 
;rEA 

*0 
for all /\E ~ except those of the type 't'M, where 't' is of the special type 
with T12=T13=T21=Tal=O already discussed in § 1.3. Note that for 
Xl x2 xa, the number e could be chosen at will, whereas for Xl (xi + x~) 
both rJo and Q are fixed by the lattice M. 

All isolation theorems have the same general type of proof. In the 
first place, it is shown that if the form rp (x) is, say, integral or integral 
and non-null on a lattice M, then rp (x) and M have a group Q M of 
automorphs w in common; that is 

rp(wx) = rp(x), w M = M. 

For the special forms X I X2 ' XI X2 Xa and xl(xi+x~) these automorphs 
are given by the theory of units in algebraic number fields, and for 
x~ + xi - x~ by the theory of indefinite ternary quadratic forms; but 
we shall, in fact, find it easy to handle the group Q M without these 
theories and using only MAHLER'S compactness theorem I. A lattice /\ 
near M, in the sense of MAHLER, is one of the shape 

/\ ='t'M, 

where 't' is near the identity transformation. Suppose that there is an 
aoE M such that rp (ao) takes some interesting value (I.. Then 

rp(wao) = rp(ao) = (I., WEQM' 

Then /\ contains the point 't'wao' Although I't'ao-aol is small when 't' 
is near the identity, it does not follow that I 't'wao- waol is uniformly 
small for all w, since in general w may be chosen so that wao is arbi­
trarily large. By suitable choice of w in Q M one may then show the 
existence of a point 't'wao in /\ ='t' M having the properties desired in 
the problem in question, unless the transformation 't' satisfies certain 
conditions. Sometimes one must start not with one point ao, but with 
several, aI' ... , aT' so as to eliminate 't' of different kinds. This general 
attack will be clearer from the examples in § 5. Isolation theorems may 
be used to discuss the existence of infinitely many lattice points in 
regions, as will be shown, following DAVENPORT and ROGERS (1950a), in § 7. 

X.1.S. Before going on to the main subject matter of the chapter 
we shall discuss in § 2 certain special forms and their groups of auto­
morphs. In § 3 we shall then discuss a method of MORDELL which shows 

lOne of MINKOWSKI'S first applications of the geometry of numbers was in 
fact to the theory of units in algebraic fields. 
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how a bound for the lattice-constant of an n-dimensional body may 
be obtained from a bound for that of a related (n -i)-dimensional body. 
When the original n-dimensional body is of a special type having many 
automorphs, MORDELL showed the argument can be carried a stage fur­
ther. In particular it gives the lattice constants of the 3-dimensional 
sets ! Xl X 2 X3 ! < 1 and ! Xl (x~ + x~)! < 1. In § 8 we discuss briefly the 
relevance of continued fractions to forms and bodies with automorphs 
and the possibility of generalisation. 

X.2. Special forms. We discuss first the automorphs of the form 

<p(a:) =t!l"X;} {J!~s(X~+k+X~+S+k)}: n =r+2s, (1) 

where both the possibilities r = 0 and s = 0 are permitted. We may 
write 

(2) 

where 
Z, =xj 

(3) 

and i2 = - 1. If the XI are all real, then z; is real for 1 ~ j ~ rand z,H 
and z,+ s+ k are conjugate complex numbers for 1 ~ k ~ s; and conversely, 
if the ZI (1 ~ 1 ~ n) are of this shape then the XI are real. Let now w 
be a real automorph of <p(a:). In the obvious way it gives rise to an 
automorph w of 1f' (z). Let Z = w z. Then 

(4) 

identically in Zl' ... , Z,,' where the ZI are linear forms in Zl' ... , z". The 
only possibility is that Z L =).1 ZI where L = L (I) is a permutation of 
1, ... , nand ).1' ... , )." are real or complex numbers. For our purposes, 
it is enough to consider the automorphs 

(1~l~n), (5) 
where 

(6) 

by (4). But the transformation w transforms the real point a: into the 
real point X = wa:. Hence Zl' ... , Z, are real and Z,H' Z'+s+k are 
conjugate complex, and so 

).i = real (1~j~r) } 

).,+ k' ).,+s+ k conjugate complex (1 ~ k ~ s). 
(7) 
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Conversely, if the numbers Al satisfy (6) and (7), then (5) defines a real 
automorph CI) of tp(~). 

We shall also need the transformation CI)* polar to CI), that is the 
transformation such that identically 

when 
x = CI) ~ , y = CI)* y. 

Now 
L XIYI = LZIWI, 
I I 

where ZI is given by (3) and 

(1~i ~ r) 

2W,+k = Y,+k - i Y'+S+k} (1 ~ k ~ s). 
2W,+s+k = Y,H + i Y,+s+k 

Hence if CI)* induces the transformation (;,* in the w-co-ordinates, we 
must have 

where W = w* w. In particular, the transformation CI)* is also an auto­
morph of tp (~). 

X.2.2. We shall require also to know something of the automorphs 
of the form 

tp (~) = x~ + ... + x~ - ~+l - .•. - x:, (1 ) 

where possibly' = n, so there are no negative terms. For completeness 
we prove the well-known 

LEMMA 2. II tp(~) is delined by (1) and ~o is any point, then there 
is an automorph CI) 01 tp (~) such that, lor some number t, 

CI) ~o = (t,o, ... ,0) 
or 

CI) ~o = (0, ... , 0, t) 
or 

CI) ~o = (t, 0, ... , 0, t) 

according as tp (~o) > 0, tp (~o) < 0 or tp (~o) = O. 

This is certainly true for n = 2, since then there are the well-known 
automorphs X =CI)~ given by 

Xl = Xl cos{} + Xa sin {}, Xa = - xlsin{} + xacos{} (2) 
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for any real {} when r = n = 2, and by 

Xl + X2 = k(XI + X2), Xl - X 2 = k-I(XI - X2) (3) 

when r = 1, n =2 and k ma.y take any values except k = 0. 

Next, the lemma is true when r = n. For we may suppose it proved 
for n - 1. There is then an automorph WI acting only on the first n - 1 
co-ordinates such that 

Xl = WI Xo = (u, 0, ... ,0, x"o) 

for some u. Then an automorph W 2 acting only on the first and last 
co-ordinates makes 

W 2 Xl = (t, 0, ... ,0) 

for some t. Then W = W 2 WI does what is required. 

Finally, the lemma is true in general. For we may find in succession 
automorphs WI' W 2 , Wa such that for some numbers u, v we have 

Xl = WI Xo = (u, 0, ... ,0, Xr+],Q, ... , X"o) , 

X 2 = W 2XI = (u, 0, ... ,0,0, ... ,0, v); 
and then 

X3 = W 3 X 2 = (t, 0, ... ,0) or (0, ... ,0, t) or (t, 0, ... ,0, t) . 

COROLLARY. 1/ W is the automorph constructed above, then the polar 
w* is also an automorph. 

It is readily verified that the polars of the special transformation (2) 
and (3) are automorphs of cp(x). The required result now follows by 
induction. 

[It is in fact true that if w is any automorph of IP (z) then its polar is also an 
automorph. This is most easily proved using matrix theory. Let w for the nonce 
denote the matrix whose elements are the coefficients in the transformation w 
and let E be the matrix with 1 in the first I' places on the diagonal, - 1 on the 
remaining diagonal places, and 0 elsewhere. The fact that w is an automorph is 
expressed by 

W'EW = E, (4) 

where the dash (') denotes the transposed. On taking the reciprocal of (4) we 
obtain 

(5) 

But the polar w· of w is clearly w· = W'-I; and so w· is an automorph of IP by 
(5). since E-1= E.) 

X.3. A method of Mordell. In this section we discuss a method of 
MORDELL for estimating the lattice constant of an n-dimensional set 
by reducing the problem to an (n -i)-dimensional one. 

Let [I' be any n-dimensional set, not for the moment necessarily 
endowed with any automorphs and A a lattice. In Chapter I, § 5 it 
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was shown that if b is any point of the polar lattice /\*, then there 
are n - 1 linearly independent points of /I. on the plane 

lTb: ;rb=Q 

(scalar product). The plane lTb cuts Y in an (n -i)-dimensional set 
Y b . In an obvious sense, there is an (n -i)-dimensional lattice /\b 
consisting of the points of /\ in lTb' Hence, if we can show that there is a 
point other than 0 of the (n -1 )-dimensionallattice /\b in Y b , then there 
is certainly a point other than 0 of /\ in Y. If bn=f=O, for example, one 
could project Yb on to the hyperplane Xn = ° and use Lemma 6 Corollary 
of Chapter I. For this procedure to be effective, the vector bE /\* must 
be chosen so as to give a good (n -i)-dimensional problem in lTb; and 
so in general we have replaced one n-dimensional problem by another, 
rather vaguer, one for the polar lattice, together with an (n -1)­
dimensional problem. 

In this shape the technique has been applied by MULLENDER (1950a) 
and DAVENPORT (1952a) to the enigmatic 3-dimensional starbody 

IXII max (xi, x~) < 1. 

Making use of the known (d. § 3.3) lattice constant of the set 

I XII (xi + x~) < 1 , 

they select a point b of /\* for which bdb~+ b~) is small and then treat 
the 2-dimensional problem in lTb' 

MORDELL (1942a, 1943a, 1944b) observed that it is sometimes 
possible to make the n-dimensional problem for the polar lattice the 
same as the original problem; and then the n-dimensional problem is 
reduced entirely to one or more (n -i)-dimensional problems without 
the need to solve an n-dimensional auxiliary problem. The sets Y for 
which this procedure is feasible are those with a large group of auto­
morphs, so it is appropriate to discuss them in this chapter. From one 
point of view it may be regarded as based on a generalization to non­
convex bodies of the results in Chapter VIII about polar convex bodies. 

X.3.2. We first consider quadratic forms, for which OPPENHEIM 
(1946a) has given a neat treatment following MORDELL (1944b). 

THEOREM IV. Let r"s=LI(24) be the lattice constant 01 the (r+s)­
dimensional star-body 

24,s Ix~ + ... + x~ - X~+l - ... - x~+sl < 1 

lor r;;;;O, s;;;;O. Then 

where the lirst or second term is omitted il r = ° or s = ° respectively. 

(1 ) 

(2) 
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Write 
'P(x) = 'P" s(X) = X~ + ... + X~ - X~+1 - ••• - x~+s, (3) 

and 
(4) 

for any lattice A. Then, by homogeneity, 

r..-2 _ {l1P1 (A)}'+s 
',S - s~p d2 (A) (5) 

over all lattices A, with the natural convention that if I 'P I (A) = ° for 
all A, then 4, S = 00; as most probably happens when r > 0, S > 0, 
r+s~5 (see appendix A). 

We show first that 

{I'PI (A)}'+S-l ~ C-2 {1'P1 (A*)} d2 (A) , 

where A* is the polar lattice of A and 

C = min (4-l,s, 4,S-1)' 

It is enough to show that 

{I'PI (A)}'+S-l ~ C-2 1'P(b)i d2 (A) , 

(6) 

(7) 

(8) 

where b is any primitive point of A*. After Lemma 2 we may suppose 
that b is one of the points 

bl = (t, 0, ... ,0), b2 = (0, ... ,0, t), b3 = (t, 0, ... ,0, t), (9) 

where bl , b2 , b3 occur only if r>O, S>O and both r>O, S>O, respectively. 
Consider first b = bl , where 

'P (bl ) = t2• (10) 

By the results of § 5 of Chapter 1 there is a basis aI' ... , an for A such 
that 

bl a l =1, blai=O (2~j~n): 

so that al=(t-l,a~) and ai=(O,aj) for j=l=1, where aj is an (n-1)­
dimensional vector. Hence the points of A in Xl =0 form an (n -1)­
dimensional lattice M in the space with co-ordinates X2 , ... , Xn with 
basis aj (2~j~n). Further, 

d(A) = Idet(al, ... ,a .. )i = It-llldet(a~, ... ,a~)1 = Itl-1d(M). (11) 

But now by (5) with r -1, S for r, s we have 
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by (10) and (11). This proves (8) in the case b = bl since the left-hand 
side of (12) is not less than {Irp I (I\)},+S-l. The proof of (8) in the second 
case, when b = b2 in (9), is similar except that the roles of rand s are 
interchanged. 

It remains to consider the case 

b = ba = (t, 0, ... , 0, t) , 

which occurs only when r>O, s>O, so 

rp(b) =0. 

There then exist a basis ai' ... , an of 1\ such that 

ba; = ° (2~i~n). 
Introduce new co-ordinates xj by 

, 
Xn = Xl - X"' xj=Xj (i=l=l,n), 

so that 
() , "2 '2'2 '2 rp :r = Xl X" + X2 + ... + X, - X'+l - ... - X,+s-l, 

and the points a2 , ••• , an lie on X~ = 0. The points of 1\ on X~ = ° form 
an (n -1)-dimensionallattice M, and rp(:r) with x~ =0 depends only on 
the n-2 variables X 2 , ••• , xn - l • Hence Irp(:r) I takes arbitrarily small 
values on M; for example, by the degenerate case of MINKOWSKI'S 

convex body Theorem, there are points of M other than 0 with 

X~=o, Ixjl<e (2~i~n-l), 

where e> 0 is arbitrarily small, since this set has infinite (n - 1)­
dimensional volume. Hence (8) holds also when b = ba; and so generally. 
This concludes the"proof of (6). 

We may also apply (6) to the lattice 1\* with its determinant 
d (1\ *) = d-l (I\) and its polar lattice 1\: 

{Irp I (1\*) }'+S-l ~ C-2 {Irp I (I\)} d-2 (1\) . 

On eliminating Irpl (1\*) between (6) and (6')", we obtain 

{Irp I (1\) }('+S) (,+s-2) ~ C-2 (,+s) {d (1\)}2 (,+s-2). 

This implies the required result (2) on using (5) and (7). 

(6') 

In general there is no reason to expect there to be equality in (2), 
but this sometimes happens, as in the following 

COROLLARY. 
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By Theorems III and VII of Chapter II, we have 

Fa 0 = 2-1, 1;,1 = r;,2 = mi. 
Hence the theorem shows that ~,o and 1;,2 have at least the values 
specified. The forms 

!{(x2 + xa + X4)2 + (X2 + Xl)2 + (xa + Xl)2 + xU 
and 

X~ - x~ - x§ - x~ + X4 Xl + X4 X2 + x4 xa + 2x1 xa + 2Xl X2 

have signature (4,0), (2,2), and determinants i,! respectively and do 
not represent members less than 1 in absolute value for integer value 
of the variables not all 0, as is easily verified. This proves the corollary 
on making use of the relationship between forms and lattices of Chapter I, 
§ 4 (especially Lemma 4). 

Again, as MORDELL observed, Theorem IV gives Fa,o once 1;,0 is 
known. Again, the method of proof of Theorem IV gives the lattice 
constant [i, see OPPENHEIM (1953 b)] of 

o < x~ + x~ - x~ - x~ < 1, 

once that el, see DAVENPORT (1949a)] of 

O<x~+x~-x~<1 

is known. These sets are not star-bodies. It is necessary to choose the 
point b of A* so that b~ + b~ - b~ - b~ is numerically small and negative. 
It is possible to use MORDELL'S method to obtain information about the 
critical lattices wheR there is equality in (2). We do not do this here 
since we shall do something similar for products of linear forms in § 3.3. 

X.3.3. Before applying MORDELL'S method to ternary cubics we 
must translate Theorem VIII of Chapter II out of the language of forms 
into that of lattices. 

LEMMA 3. The lattice-constant of the 2-dimensional set 

.9'": Itp(x) I <1, (1 ) 
where 

tp(x) =XlXZ(Xl +X2), (2) 

is LJ(.9'") = 71. There are precisely two critical lattices, Ml and M2. These 
lattices have only 0 in common. 

Let {}l' {}2' {}s be the roots of 

(}3+{}2-2{}-1=0 (3) 

in some order. Then the lattice M({}l'{}2,{}a) with basis aI' a! defined by 

71al = ({}2 - {}a, {}a - (}l)' 71a2 = {{}l ({)! - (}a). {}2 ({}a - (}l)} (4) 
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is one of the two critical lattices. I f-&~ , -&;, -&; is a permutation of-&I' {}2' -&3' 
then M (-&1' -&2' -&3) = M (-&~, -&;, -&;) if and only if the permutation is an 
even one. 

The geometrical purport of the lemma becomes clearer if new co-ordinates 
YI' Y2 are introduced by the equations 

1 V] 
xI=YI' x2=-2YI+2Y2' 

so 

In YJ' Y2 co-ordinates, the region .'T has three asymptotes at an angle of 2n!3 
and is carried into itself by either a rotation through 2n/3 round the origin or by a 
reflection in an asymptote. Thc two critical lattices given by the lemma are then 
each invariant under a rotation through 2n/3 and each is carried into the other 
by a reflection in an asymptote. The reader may find it instructive to draw a 
figure of the critical lattices each with 6 pairs of points on the boundary. For a 
treatmcnt of sets .'T' which have similar symmetry and convexity properties to 
.'T by the geometrical methods of Chapter III see BAMBAH (1951 a). 

In what follows we do not introduce YI' Y2 as above but we do maintain the 
essential cyclic symmetry between XI' x2 and - XI - x2 • 

We note that the roots of (3) are 

Ll 2n 0'1 = 2cos~ 
7 ' 

Ll 4n 0'2 = 2cos~ 
7 ' 

e 6n 
"3 = 2cos~ 

7 ' 
(5) 

so that -&1' -&2' -&3 are a permutation of 8 1, 8 2, 8 3, We have the trivial 
identities 

82=8~-2, 83=8~-2, 8 1=8;-2, 81=1-82-8~ etc. (6) 

The value of J(.'1} follows at once from Theorem VIII of Chapter II, 
so it remains only to verify the statement about the critical lattices. 
By Theorem VIII of Chapter II, if M is critical there is certainly a basis 
u1 , u2 of M such that 

1p (u1 u1 + U 2 u 2) = - to (u1 , u2) , (7) 
where 

(8) 

for one may interchange the two elements of the base given by Theo­
rem VIII of Chapter II or take - Uk for Uk (k = 1, 2). Let 

Uk = (au, a2k) 

and define numbers a3k by 

Then (7) becomes 

(k = 1, 2), 

(k = 1, 2). 

II (a j1 u1 + aj2 u2) = IT (u1 + 8 j u2)· 
1~j::;:;3 l::;:;j::;:;3 

Cassels, Geometry of Numbers 

(9) 

(1O) 

(11) 

18 
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Hence 
(12) 

where {fl' D2 • Da is some permutation of 81, 8 2, 8a. From (10) and (12) 
we have 

lajl = D;+l - O;H } 

l a;2 = D; (Of+l - Of H) 
(j=1.2.3). 

where °4=°1 • OS=02 and l is some number. By (11) we have 

IT afl = 1. 

and so in fact 
f 

la = (Dl - ( 2) (02 - Oa) (Oa - ( 1) 

=±7. 

(13) 

(14) 

( 15) 

where the value ± 7 may either be checked directly from (5) or from 
the fact that the square of the right-hand side of (14) is the discriminant 
of the cubic f 0 (ul • u2) by definition (§ 5.1 of Chapter II). We note that °1 , °2 , Oa determine a l and a2 absolutely uniquely. by (14). 

But now we have the identity 

fo(w+v.v) =fo(-v.w). 

Hence if the point aa of M (°1 , °2 • Oa) is defined by 

we have 

and so a2 • aa must correspond to a permutation O~. O~. O~ of °1 , °2 • Oa; 
and it cannot be the identical permutation by the last sentence of the 
previous paragraph. Hence the cyclic change of bases of M (°1 , °2 , Oa): 

(al • a2) --+ (a2 • aa) --+ (aa. al ) --+ (~. a2)--+ 

must correspond to a cyclic permutation of °1 , °2 , Oa. Hence there are 
at most two distinct lattices M (°1 , °2 • Oa), for the permutations °1 • D2 • Da 
of 81 , 8 2 , 8a. 

lt remains to show that M (°1 , '192 , Oa) is distinct from M (81.82 , 8a) 
if D1 • O2 • Oa is an odd permutation of 8 1 , 8 2 , 8a. We may suppose now. 
without loss of generality. that 

°1 =82 , °2 =81 , Oa=8a· 

From (4). (6). (13) and (15). a point b of M (81 .82 , 8a) has 

7ibj = P(8 j ) (j = 1. 2. 3). (16) 
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where P(t) is a polynomial in the variable t with (rational) integer 
coefficients. We may suppose, by (3), that P(t) is of degree ~2: and 
then it is completely determined by anyone of bl , b2 , bs. If b is also in 
M(e2,el ,ea), then it is also of the shape 

7l b1 = Q(e2). 7!b2 = Q(e1). 71bs = Q(eaL 

for some polynomial Q (t) of degree ~ 2 with integer coefficients. But 
now p(ea) =Q(ea), and so the polynomials P(t) and Q(t) are identical. 
Hence 

p(ez) = p(el ): 

and so 
p(ea) = p(ez) = p(el ) , 

since p(ej ) {J' = 1,2,3) are conjugates l . Finally, 

by (16) and (18), and so 
b1 = bl = 0: 

(17) 

(18) 

That is, 0 the only point common to M (e1 , ez, ( 3) and M (e2 , e1 , ( 3), 

as required. 

X.3.4. We now apply MORDELL'S method to prove results for 
XlXIXa and Xl(X~+X:). These are equivalent to weaker forms of Theo­
rems X and XI of Chapter 2, where the relevant literature is cited. 
We shall later prove something rather stronger by the use of isolation, 
but will not prove the full force of Theorem X of Chapter 2 in this book. 
The methods extend to products of n real or complex forms in n dimen­
sions in a way which will be obvious, but do not then give the exact 
lattice constants [MORDELL (1941a) and (1943a)]. 

THEOREM V. A. The lattice constant 01 the 3-dimensional set 

.Ai: Ix1x1xal < 1 (1) 

is L1(.Ai) = 7. Denote by Nl the lattice with basis 

b1 =(1,1,1), bz ={lh,f)2,{}a). ba=({}~,{}:,U:), (2) 

where {}l' {}2' {}a are the roots 01 

in some order. All the critical lattices A 01 .A'i which have a point a lor 
which 

(4) 

1 Alternatively, (17) means that p(ef - 2) = p(e1); and so the polynomial 
P(t2 _ 2) - P(t) is divisible by t3+ t2 _ 2t - 1. One may now put t = e. and obtain 
p(e.) = p(ea). 

1S* 
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are 01 the shape 
A=wN l • 

where w is an automorph 01 ~. 
B. The lattice constant 01 

A;: IXII (x: + x~) < 1 

is LI(A;) =1(23)t. Denote by N2 the lattice with basis 

(1.1.1). {DI• ~ (D2+Da). 2ti (D2-Da)}.) 

{O~. ~ (D: +D~). ;i (D~ - D:)} , 

where i2= -1 and {)l is the real, and D2 , Da are the complex roots 0/ 

D3-D2+1 =0. 

Every critical lattice A lor A; which possesses a point a with 

1~(a:+a:)1 =1 
is 01 the shape 

A =wNa, 

where w is an automorph 01 A;. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

We first prove Theorem V. A. The lattice NI given by the theorem 
is certainly ~-admissible, since a point a of NI has co-ordinates 

(J' = 1, 2, 3), (11) 

where ul , ua' Us are integers. Then ~aaaa is a rational integer by its 
symmetry in DI, Da, Da. If alaaaa=O, then one of the a; is 0, say 
uI+uaDI+UsD~=O; and this is impossible unless uI=uz=ua=O, since 
DI does not satisfy any equation of degree less than 3. Further, 

d(NI) = Idet(bl.ba.ba)i =1(DI-{)a)(Da-{)a)({)a-{)I)l =7, (12) 

as was verified already in the proof of Lemma 3. The lattices obtained 
by different permutations of DI, Oz, {)a in (2) all differ from each other 
by an automorph of ~, namely a peI'fhutation of the co-ordinate axes. 

Write 

and, as before, 
I <pI (A) = inf l<p(a)i. 

aEA 
~o 

We show first that, for any lattice A. 

(13) 
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where A* is the polar lattice of A. The proof follows closely the pattern 
of the proof of Theorem IV. It is enough to show that 

(14) 

where b is any primitive point of A*. 
Suppose, first, that !p (b) = 0. Then, after applying a suitable auto­

morph of .Ai furnished by § 2.1, we may suppose without loss of 
generality 1 that 

b=(1,O,O) 
or 

b=(1,1,O). 

In the first case, (15), the plane 
bz = 0, 

(15) 

(16) 

which must contain two linearly independent elements of A is iust the 
plane x1=0, and all points on it satisfy !p(:':) =0. Hence (14) certainly 
holds in this case. In the second case, (16), there are two linearly inde­
pendent points of A on 

For these points 
(17) 

(18) 

and the 2-dimensional set IX~X31 <8 is of infinite type for any 8>0. 
Hence there are certainly points aEA other than 0 with 1!p(a)I<8. 
This proves (14) in the case b is given by (16). 

There remains the case when !p(b) =1=0 and so, after the application 
of a suitable automorph, we may suppose that 

b = (t, t, t) , t> 0, 
and so 

(19) 

(20) 

We have supposed that b is primitive, and so, by Lemma 6, Corollary 
of Chapter 1, the 2-dimensional set of points (Xl' X 2) such that 

(Xl' X2 , - Xl - X 2) E A 

is a lattice M of determinant 

But now 
d(M) =td(A). 

inf Iflta2(flt +a2)1 ;£{7-1tl(M)}I= rlt1dl(A) , 
(II .... )EM 

,*,0 

1 For we may suppose that b1* O. ba= O. One gets the shape (15) or (16) 
according as b.= 0 or b.* o. 
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by Lemma 3, the exponent I being correct for reasons of homogeneity. 
A fortiori 

I rpl (/\) ;;;:; 7-~ tt dt (/\). 

This proves (14) when b is given by (19) and (20); and so completes the 
proof of (13) and (14). 

On interchanging /\ and 1\* in (13) and using d(/\*) =d-l (/\), we 
have 

{I rp I (/\ *)}2;;;:; 7-1 {I rp I (/\)} d-a (/\) . 

On eliminating I rp I (1\*) from (13) and (13') we obtain 

Irpl (/\);;;:; ;-1 d (/\), 

(13') 

(21) 

so LI(~);;;:; 7, since NI is the set of x with I rp (x)1 < 1; and then LI(~) = 7 
since we have already exhibited an admissible lattice NI , with d (NI ) = 7. 

It remains to consider the critical lattices /\c with a point on the 
boundary, and we may suppose, after the use of a suitable automorph, 
that 

(1,1,1)E/\c d(/\c) =7. (22) 

Clearly then the 2-dimensional lattices considered above will turn out 
to be critical for the relevant 2-dimensional sets, and it is necessary 
only to check that this can happen only when /\c = NI for a suitable 
choice of {)l' {)2' {)a, where NI is defined in Theorem V. A. 

We note first that 
I rpl (/\:) = ;-2 

by (13) and (13'). Hence the lattice M; of points 

(Xl' X 2) with (Xl' X 2 , - Xl - X 2) E /\c*, 

which has determinant 

must be one of the two critical lattices for 

I Xl X 2 (Xl + X 2) I < 7-2 

(23) 

(24) 

(25) 

given by Lemma 3. But we have already seen that NI for any choice 
of {)l' {)2' {)3 is critical, and so the lattice 

M~ = M~ ({)l' {)2' {)a), 

defined by putting Nl = Nl ({)I , {)2' {)3) for /\c in (24), is also critical. 
Clearly, by the proof of Lemma 3, both critical lattices of (25) occur as 
M~ ({)l' {)2' ()3) for suitable choice of {)l' {)2. f}3' Hence we may suppose 
without loss of generality, that 

M; = M~; 
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that is, the polar lattices /\: and N: are identical at least on the plane 

Xl + X2 + Xa = o. 
Let now b = (bl , b2 , ba) be any point of /\: (and so of N:) with 

(26) 

Then the lattices /\~, N~ consisting of the points of /\t and of Nl re­
spectively in the plane 

(27) 

must both be critical, in the obvious sense, for the 2-dimensional section 
of IXl X2 Xai < 1 by the hyperplane (27). By Lemma 3, there are only 
two critical lattices and these have only the origin in common. Hence 
/\~ and /\~ must be identical, since (1. 1, 1) belong to both lattices, by 
(27). Thus /\t and /\1 coincide on any hyperplane (27) such that the 
point b satisfies (26). 

But now N: has a basis b:. bt, b: (say) such that b =b:, b: 
satisfies (26), for we have only to choose a suitable basis b:, b: for the 
section of Nt by Xl + X2 + Xa = 0 and extend it to a basis for N:. Let 
bl , b2 , ba be the polar basis for Nl . Then. on putting b = b:, b: in 
(25) in turn, we see that /\t contains all points a of Nl such that either 

b: a = 0 or b: a = 0; 

that is all points of Nl of the shape either 

U2 b2 + Ua ba or VI bl + Va ba, 

where ul • U 2 • VI. V3 are any integers. Hence /\t must contain each point 

U 1 b1 + u2 b2 + uaba = (u2 b2 + u3 b3) + (ul bl + Oba) 

of N1 • Since d(Nl } =d(/\t}; we then have /\t=N l , as required. 
This completes the proof of Theorem V. A. That of Theorem V. B 

is similar except that Theorems VII and VII A of Chapter III are used 
instead of Lemma 3. The details may be left to the reader. 

X.4. Existence of automorphs. In this section we prove the exist­
ence of common automorphs of a lattice /\ and a form ffJ (~) which is 
integral and non-null on I\, and make deductions about the possible 
such /\ in a special case. 

We shall require a quantitative form of MAHLER'S compactness 
criterion, Theorem IV of Chapter 5. 

LEMMA 4. There is a number 

(1) 
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depending only on the integer n>O and the numbers ,11>0, ">0, 8>0 
with the following property: amongst any No lattices 1\; (1 ;£i;£N) in 
n-dimensional space such that 

and 
d (1\;) ~ ,11 

11\;1 ~ ", 
there is at least one pair, say 1\1' 1\2' such that 

1\2 = ~1\1 
and the linear transformation ~ satisfies 

where l is the iaentity transformation. 
We recollect that 

11\1 = inf lal, 
aEA 

*0 

(2) 

(3) 

(4) 

(5) 

(6) 

and that the symbol 110'11 for a linear transformation X = 0':£ with 
X;=L(I;"X" is 110'11 =nmax l(lf"l. 

It would be possible to modify the proof of Theorem IV given in 
Chapter V but it is simpler to follow the alternative proof sketched in 
§ 2.2 of Chapter VIII. We suppose we have No lattices I\f, where No 
will be determined later. By Lemma 3 of Chapter VIII there is a 
,10> 0 and a K depending only on ,11 and ", such that any I\i satisfying 
(2) and (3) has 

d(I\;) ~ Llo >0 (7) 

and has n linearly independent points in the sphere 

1:£1 ~K. 

By Lemma 8 of Chapter V, there is then a basis 

of I\i with 
(8) 

Let '1/>0 be arbitrarily small, to be chosen later. Then, by (8), if No 
is greater than an N1 depending only on n, '1/, Llo, K, that is on n, '1/, 
Ll1, ", there are two A; say 1\1 and 1\2' such that 

Ibn - bi2 1 <'1/ (1;£ i~ n). (9) 

Since the bo are linearly independent, we have 

" bi2 - bn = L 0';; bi1 
;=1 
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for some numbers a;i' But now on solving for the aii from (7), (8) 
and (9), we have 

\aij\~aOrJ (1~i~n, 1~i~n), 

where ao is a number depending only on ,1oK and n; a crude estimate 
being 

ao = n! ,101 (n K)"-1 

obtained by estimating the elements of the matrix reciprocal to the 
matrix with columns bn (1 ~i~n). Hence 

\Ia\l<e 
if rJ chosen to satisfy n ao rJ < e. Hence 't' = l + a has 't' Al = A2 and 
I\'t'-ll\<e. Since A1 ='t'-IA2 we have also 1\'t'-I- l l\<e, because (9) is 
symmetric in AI' A2. This concludes the proof. 

X.4.2. We shall also require the following rather trivial lemma which 
says, roughly, that a form rp (z) cannot be integral on too many essen­
tially distinct lattices. 

LEMMA 5. Let rp(z) be a lorm integral on a lattice A. Then there is 
an rJ> 0 depending only on rp (z) and A with the lollowing property: II 
rp (z) is integral on 't' A and 

then 't' is an automorph 01 rp(z). 
Let rp (z) be of degree m and let b1 , ••• , b" be a basis for A. If 't' 

satisfies (1) with sufficiently smallrJ, we have 

I rp ('t' f Uj bj) - rp (f Uj bj ) I < 1 (2) 

for all integers Uj such that 

Then (2) implies 
(3) 

(4) 

for the integers (3), since both sides of (4) are integers. By Lemma 1, 
it follows that (4) holds for all real numbers Uj. Since every z is of 
the shape LUjbj with real Uj' we have rp('t'z) =rp(z) for all z, as required. 

COROLLARY. Suppose, Iurther, that rp(z) is non-null on A and that 

d(A) ~,11 

lor some ,11' Then rJ may be chosen depending only on rp and ,1., but not 
otherwise on A. 

For then 
\rp(a)\ ~1 (aEA, a=Fo); 
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and so 
IAI~c>o 

for some c depending only on cp. Hence, as in the proof of Lemma 4, 
there is a basis b1 , ... , b" of A with 

(1;£j;£n) 

for a K depending only on .d1 and c, i.e. on .d1 and cp. Hence all the 
points 1.: u, b, subject to (3) lie in a sphere 

(5) 

Then (2) holds for small enough 1J depending only on cp and K, since 
cp(x) is uniformly continuous in (5). Hence the corollary follows. 

XA.3. We are now in a position to prove the main theorem on the 
existence of automorphs. 

THEOREM VI. Let the form cp (x) be integral and non-null on the 
lattice A and let a be any automorph 0/ cp (x). Suppose e> 0 is given 
arbitrarily small. Then there is an automorph 't 0/ cp (x) with 

I/'t-lll<e, 
such that 

is an automorph 01 A for certain integers u, v with 

o~u<v. 

(1) 

(2) 

(3) 

It is not excluded, of course, that w may be the identical trans­
formation. 

We have 
I cpl (A) = inf\ cp(a)1 ~ 1, 

aE/\ 
,*0 

by hypothesis, and so 

for all integers u. Hence 
laUA\ ~ c > 0 

for all u and some constant c> O. Further, 

d (aft A) = d (A) 

(4) 

(5) 

(6) 

(7) 

for all u since det (a) = ± 1 by Theorem I. By (6) and (7) we may apply 
Lemma 3 to the aU A (1;£ u;£ N), if N is some large enough number, 
to obtain two lattices a" I\. and a" I\. such that 

aU A = 'tav A (u < v) (8) 
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and 
(9) 

We may suppose, by choosing a smaller number instead of the ori­
ginal e if necessary, that e<1], where 1] is the number in Lemma 5, 
Corollary with L11=d(I\). We may then apply Lemma 5, Corollary with 
a V 1\ instead of 1\ and deduce from (8), (9) that't is an automorph for 
<p(x). Hence w defined in (2) has all the properties required. 

Theorem VI becomes false if the condition that <p(x) be non-null 
on 1\ is omitted, as is shown by the 2-dimensional example where 1\ = 1\0 
is the lattice of integral vectors, <p (x) = Xl X 2 , and a is the automorph 
x1 -?2x1 , X2-?!X2 . But in more dimensions it is sometimes possible to 
use the idea behind Theorem VI to construct automorphs of 1\ even 
when <p (x) may be null on 1\, for example, by restricting attention to 
automorphs leaving fixed an element or elements of 1\ or of the polar 
lattice 1\*. 

X.4.4. Theorem VI takes a particularly simple shape when 

<p (x) = { II Xi}{ n (X~+k + X~+S+k)}' (1) 
l~i~' I ;i;k;i;s 

where n = r + 2s, which is substantially equivalent to, but rather 
stronger than, DIRICHLET'S theorem on the existence of units in an 
algebraic number field. We write as usual 

(1~j~r) 

Z,+k = X'+k + i X,+s+k } 

z,+s+.~ = X,+k - t X,+s+k (1 " k " 'i. ) 
(2) 

It is convenient to work with the zi rather than the xi' so we shall speak 
of the zi as the appropriate complex co-ordinates. We shall also say 
for brevity that a set of numbers Ai (1 ~j~n) is compatible with <p(x) if 

Ai = real (1 ~ j ~ n) 

A,+k' A,+s+ .• conjugate complex (1 ~ k ~ s). 

THEOREM VII. Let <p(x) be given by (1), and let Aj (1 ~j~n) be 
numbers compatible with <p (x) such that 

17 Ai = 1. 
l~i~n 

Suppose that <p (x) is integral on 1\ and that to> 0 is given arbitrarily 
small. Then there are numbers Wi compatible 'with <p (x) and an integer 
m> 0 such that 

(1~j~n), (3) 
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and such that the translormation (a) given in the appropriate complex co­
ordinates by 

(1~i~n) 
is an automorph 01 A 

The automorphs of rp (a:) were discussed in § 2.1. From what is said 
there it is clear that if Z ='U is an automorph of rp given in the ap­
propriate complex co-ordinates and if 

II,; -lll < n, (4) 

where n is the dimension, then T must be of the shape 

(1~i~n); (5) 

that is, there can be no permutation of the forms on the right-hand side: 
indeed, if '; is written as Zi= L T,IIZ,<> the inequality (4) implies 

II 

(1~i~n), 

and the only automorphs of this kind are (5). If Z = AZ is given in 
complex co-ordinates by 

Z; = liZ; (1 ~i~ n), 

it follows now that A and '; commute. Hence applying Theorem VI 
with 0" =A we have 

where m = v - u. Then (a) does what is required. 
We shall later require to know slightly more about the automorphs 

(a) of lattices on which rp (a:) given by (1) is integral; and it is convenient 
to prove it here. 

LEMMA 6. Let rp (a:} given by (1) be integral on A and let the automorph 
Z =(a)Z 01 A be given in the appropriate complex co-ordinates by 

(1~i~n). 

Then the Wi are algebraic units, that is they satisly an equation 01 the type 

I(w;) = 0, 
where 

lor some m and c1 , ••• , cm- 1 are rational integers. 

Let b l •.•.• b" be a basis for 1\. so that 

(a) bi = L mi" b" 
1:0;11:0; .. 

(6) 

(7) 
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for some integers mj k' Since the w bi are a basis, we have 

det(mik) = ± 1. 
Let 

(1~k~n) 

285 

(8) 

in the appropriate complex co-ordinates and let B be the matrix of 
which the rows are given by (8). Then (7) takes the shape 

Bw =mB, (9) 

where m is the matrix with elements mik and w is the diagonal matrix 
with elements WI' .•• , Wn on the diagonal. Hence 

w =B-1mB, 

and Wt, ... , Wn all satisfy the equation I (wi) = 0, where 

I(t) =det(tl-m), 
which is of the form (6). 

The two following corollaries are immediate 

COROLLARY 1. WI'"'' Wn satisly the same equation 01 type (6) with 
m=n. 

COROLLARY 2. II Wj is rational, then Wj= ±1. 
Although we do not need it later it is interesting to note that Theorem VII 

and Lemma 6 rapidly gives a complete characterisation of the lattices A on which 
q:>(:I:) is proportional to integral and non-null, at least when r>O. We only sketch 
the proof, for details see BACHMANN (1923a) Kap.12. 

LEMMA 7. All the lattices A on which q:>(:I:) is proportional to integral may be 
obtained in the following way. Let srI' ... , sr" be a set of conjugate algebraic fields 
of degree n over the field of rational numbers, wI/ere srI' ... , sr, are real and sr,+k, 
sr,+s+k are conjugate complex (1 ~k~s). Let Yll' ... , YIn be linearly itldependent 
elements of srI over the rationals and iet Ylk (t ~l~n) be the conjugate of Ylk in sri' 
Let M be the lattice with basis 

(t:::;;k:::;;n) 

in the appropriate complex co-ordinates. Then a necessary and sufficietlt condition 
tllat q:> (:1:) be proportional to integral and non-null on a lattice A is that A be of the 
shape 

wllere t is real, "" is an automorph 0/ q:>(:I:), and M is of the type fust described. 

When r > 0, the proof is shorter than the enunciation. By applying Theorem VI I 
with 

we deduce the existence of an automorph (a) of q:> (:1:) and A with 

(10) 
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Since WI' ...• w" all satisfy the same equation of degree 11. they must all by (10) 
be precisely of degree n and so conjugates. Let b l •...• bn be a basis for /\ and 
use the notation (7). (8). Then it follows from (9) that 

(Pil' ...• {Jj II) 
is an eigenvector belonging to Wj of the matrix tn. But clearly m has a set of con­
jugate eigenvectors 

(Yil' ...• Yin) 

in the fields srj generated by Wj; and if these are identified with those of the enuncia­
tion it is easy to see that the lattice M has the required properties. 

When y= O. the position is more difficult since it may be impossible to achieve 
that the Wj are all of degree n. though it is possible to make them all of degree 
tn. Let a = (IX\ •...• IX,,) and b = (Pl' ...• {In) be two linearly independent vectors 
of /\ in the appropriate complex co-ordinate system. Then 91 (ua + v b) is a poly­
nomial in the variables u and v with coefficients proportional to integers. and it 
vanishes for integers u and v only when u = v = O. Hence lXI/PI is an algebraic 
number. Similarly. if c= (YI' ...• Yn)E/\ is linearly independent from a and b. 
then the ratios IXI/YI' PI/YI are of degree n as is also (PIXI + q PI)/:'l for any integers 
p and q. It is not then difficult to deduce that lXI/PI is in a field of degree n depending 
only on /\ and not on the choice of a and b; and the rl)st follows with some little 
trouble. We do not go into details as we do not use the result. 

X.S. Isolation theorems. As was stated in § 1 there is a wide 
variety of isolation theorems, and it hardly seems worth while to for­
mulate theorems of great generality. We shall instead consider only 
three concrete cases. 

We shall need the following simple Lemma which is really a simple 
case of KRONECKER'S Theorem and belongs of right in Chapter XI. 

LEMMA 8. Let a., p, 1', 6 be real numbers with a.6 - PI' =t= o. Suppose 
thata.IPisirrational. Then to every number e>O there is an rJ =rJ (a.,p, 1',6, e) 
with the following property: 

For any numbers A, I-' there are integers m, n such that 

Ima.+np-AI<e, Imy+n6-I-'I~rJ· 

By MINKOWSKI'S linear forms Theorem there are integers (m, n) =t= (0,0) 
such that Ima.+nPI is arbitrarily small; and ma.+np=t=O since a.IP is 
irrational. Hence there are integers (ml' nl) and (m2' n2) such that 

o<lmla.+nJPI<e, O<lm2 a.+n 2 PI<e, 
and 

Put 
(j = 1, 2), 

so that 
(j = 1, 2), 

Let e, f1 be the solution of 

eXl + f1 Xz = A, 
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and choose integers a, b such that 

la-el~t, Ib-O'I~t· 
Then 

laXl + bXz - AI = i(a - e) Xl + (b - 0') X2 1 ~t (IXll + IXzl) < £, 

and 
la~+bYz-,tl~t(I~1 +IYzJ) ='fJ (say). 

The lemma now follows on putting 

m=aml+bmz, n=anl +bn2 • 

X.S.2. Perhaps the simplest isolation theorem is that for Xl X2 and 
is due to C. A. ROGERS [unpublished, but see CASSELS (1957 a), Chapter II 
where an application to the "Markoff chain", due to ROGERS, is given]. 

THEOREM VIII. Let Xl x2 be integral and non-null on the 2-dimensional 
lattice A and let there be a, bE A such that 

al a2 = - ex < 0 < bl b2 = p. 
Then there are numbers 'fJo>O, 'fJl>O with the following properties: 

Let 't' be a linear transformation and suppose that 

11't'- LII<'fJl 
and 

1'12 =l= 0, 

where the transformation X ='t':V is given by 

Xl = TllXl + 1'12 X 2 , X 2 = T2l Xl + T 22 X 2 • 

Then there is a point c =l= 0 ol't'A such that 

- ex (1 - 'fJo) < cl Cz < P (1 - 'fJo) , I cll < 1. 

We may suppose without loss of generality that 

al>O, bl>O 
and so 

a2< 0, b2 >0. 

(1) 

(2) 

(3) 

By Theorem VII, there is an automorph X =W:V of A of the shape 

Xl =WlXl, X 2 =WZ X 2 , 

where 
0< % < 1 < W 2 , WI Wz = 1. 

Then A contains all the points 

am=(w;m~,w;'az)' b".=(w;mbl,w;'bz), (4) 

where m is any integer, positive negative or O. 
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We must now distinguish two cases according ro the sign of Tl2 . 
Suppose, first, that 

Tl2>O. (5) 

Let the integer m be determined by 

as is possible, since Tn a,. > 0> Tl2 a2 • Then 

(6') 

Hence 
£0;' =O(T1h, (7) 

where the constant implied by the 0 symbol may depend on aI' a2, and 
where we assume TJl in (2) chosen so that, say, I Tn -11 < t. Put 

c='t'a,,,, (8) 

where a", is given by (4). Then, in the first place, it follows from (6) 
and (7) that 

so 
Icll <1 

if TJl is chosen small enough. Secondly, it follows from (6) or (6') that 

(9) 
But now, by (7), 

£02'" C2 = Tn al £02 2'" + Tn a2 = Tn a2 + 0 (Tn). (10) 

Put TJO=tW22. Then since a2<O<al , we have from (7), (9) and (10), 
that 

provided that Tl2' T2l are small enough and that Tn, Tn are near 
enough to 1, which may be achieved by taking TJl small enough in (2). 
This concludes the proof when T12>O. The proof when T12 <O is 
completely similar, except that b is used instead of a. 

COROLLARY. Under the hypotheses 01 the theorem except (3), there is 
an TJ2 such that il 

and 't' is not an automorph 0/ Xl .%2, then 't' A contains a point c with 

al a2 (1 - TJo) < c) c2 < bl b2 (1 - TJo) • 
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For if or is not an automorph, then either 'f12=F0 or 'f21=F0. If 'f12=FO, 
then the theorem applies; and if 'fa I =F 0 then the theorem can be applied 
with the roles of Xl and x2 interchanged. 

Note that Theorem VIn works with the values of XIXZ at two 
distinct points of A. This rather restricts its field of application. The 
other isolation theorems which we shall discuss require at most knowledge 
of the value of the function at only one lattice point. 

X.S.3. Before discussing the isolation results for 

rp (or) = Xl Xa Xa 
we require a simple lemma. 

LEMMA 9. Let Xl Xa xa be integral and non-null on A. To every 8> 0 
there is an 'Y/ > 0, depending on A, with the following property: 

To any numbers e>O, 0'>0 and index k =1,2 or 3 there is an auto­
morph X =wor of A: 

Xi =w,xi (1;£;i;£;3). (1 ) 
with 

wi>O (1;£; i;£; 3), WIWzWa = 1 (2) 
and 

1 - 8 < eCOl_ < 1 + 8, 'Y/-l< COk <'Y/. (3) 
co. G 

For by Theorem VII there are certainly automorphs .s and ~ of A 
defined by 

Xi =8j Xj, Xj = V'j Xi (1;£; i;£; 3) 

respectively, with 

81>1, 0<8z<1, 0<83 <1, 818a83 =1, 

Put 

so 

and 
PI> 0, pz< 0, Pa< 0, 

ql< 0, qz> 0, qa< O. 
Hence 

PI qa - Paql = P2Qa - PaQ2 =F O. 

We now show that 

(4) 

(5) 

(6) 

(7) 

is irrational. If not, there would be an automorph A =.s"~o with 
integers (u, v) =F (0,0) for which, in an obvious notation, At = )'2' But 

Cassels, Geometry of Numbers 19 
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then, Al would be rational, since AI' A2 , Aa satisfy a cubic equation with 
integer coefficients by Lemma 6, Corollary 1. Hence Al = A2 = Aa= 1, by 
Lemma 6, Corollary 2; that is 

u Pj + v qj = 0 (1 ~ i ~ 3) , 

which contradicts (6). By (6) we may now apply Lemma 8, with 

A = log e , (X = P2 - PI' {J = q2 - qI' 

p = log 0', I' = Pk' 
and 

min \log (1 ± £)j, Ipg1} 
± 

or £, 'fJ respectively. Then 
w =,sm$", 

where m and n are given by Lemma 8, clearly has all the properties 
required. 

It is now a simple matter to prove 

THEOREM IX. Let XI X2Xa be integral and non-null on 1\ and let £1>0 

be arbitrarily small. There exists an 'fJ1>0, depending on £1 and 1\, such 
that il 

1I'1'-tll<'fJ1 (8) 

and t'1' is not an automorph 01 Xl X2 Xs lor any number t, then the lattice 
'1' A contains a point c =1= 0 lor which 

Ic1 c2 csl<£I' (9) 

Let '1' be given by Xi = 2: TijXj , when X ='1':11. If '1' is not an auto­
j 

morph, there is a Tij=F 0 (i =Fi). We shall suppose that 

(9') 

this being one of twelve possible cases i • Now 1\ certainly does contain 
some point a with 

~>0>a2' 

We shall pick one such point and keep it fixed in all that follows, so 
that numbers depending only on a and 1\ will be said to depend only 
on 1\, etc. 

By Lemma 9 with an £ > 0 to be chosen later and 

0' = 1, k =3, (10) 

1 For the maximum in (9') may correspond to anyone of the six pairs (i, i) 
with i*i; and the maximal Tij may be either positive or negative. 
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there is an automorph W of A with 

1_e<_a1'fU w1 <1+e, r(l< W3< 1], (11) 
a2 T12 W 2 

where 
(12) 

is independent of the Tij' Since Tn is assumed near to 1, say I Tn- 11 < t, 
it follows from (11) and WI wawa = 1 that 

1]'-1 Tia< WI < 1]' Tta, 1]'-1 Ti-i < Wa < 1]' Tj}, (13) 
where 

is independent of the Tij­

We put 

Then by (9'), (11) and (13), we have 

WIIICII = wIll al TuWl + aaT12w2 + aaT13Wal 

(14) 

~ wIl{1 al TuWl + aaT12W21 + 1 aa T13Wa I}< "'Ie + ~1 Tia. 
where 

"'1 = "'1 (A) , ~l = ~1 (A, e) . 

It is important that "'1 is independent of 8. Hence 

Willcil < 2"'18, (15) 

provided that Tn is smaller than a number depending on 8. Similarly, 
but more simply, by (9'), (11) and (13), 

where 

and so 

wil lc21 <wilwlIT21all +IT22a21 +wilwaI T13 aal 

< I T22 aal + ~aTt2' 

~2 = ~a(A, E); 

(16) 

provided that 1'12 is small enough and 1'22 is near enough to 1. Similarly 

(17) 

if Ta3-1 and Tn are small enough. From (15), (16) and (17) we have 

I Cl Ca cal < 81 "'1 aa aa I 8. 

Since e is arbitrarily small, we may put 81 =81 "'la2aal 8, where 81 is the 
number in the enunciation. 

This completes the proof. 
19· 



292 Automorphs 

Note that we have used the full force neither. of Lemma 9 nor of 
the inequalities (13). 

The proofs of the following two corollaries maybe left to the reader. 

COROLLARY1. Theorem IX remains valid i/lcl c2c3 1<8l is replaced 
by 0<1 c1 c2 cal <81' 

COROLLARY 2. To every 82>0 there is an '1/2>0 depending only on 
A, 82 such that, i/ 

II-r - LII < '1/2 

and one 0/ 1'12,1'13,1'21,1'23 is not 0, then there is a cE-rA with 

o < I Cl C2 Cal < 82' I Cli < 1 , I e2 1 < 1. 

Corollary 1 is proved in CASSELS and SWINNERTON-DYER (1955a). 
A somewhat weaker form of Corollary 2 is in DAVENPORT and ROGERS 
(1950a). 

X.S.4. We now discuss 

!p(:r) = Xl (X; + x~). 
As in § 4.4 it is convenient to introduce the appropriate complex co­
ordinates 

(i2 = -1). 

A transformation Z =-rz corresponds to a real transformation for the 
real variables :r if and only if it is of the shape 

Zi = ~ Ti"z", (i) 

" where 

1'12 = Tn. Tn = Tal. Tn = Tn T23 = T32' Tn = Taa (2) 

and the bar (-) denotes the complex conjugate. 

THEOREM X. Let 
!p(:r) = Xt (x; +~) 

be proportional to integral and non-null on A and let 

A = 1!p1 (A) = inf I !p(a)!. 
oEA 
,*0 

Then there are numbers '1/1>0, '1/2>0 with the following properties: 

(4) 

Suppose that -r is a homogeneous trans/ormation in the appropriate 
complex co-ordinates given by (1) and (2) such that 

1I-r-LII<'1/l' (5) 
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Then 
(i) II T12=TlS=FO, there lS a C=(Yl,Y2'YS)=F0, in complex co-

ordinates, in T A such that 

(6) 

(ii) II TSI=T21=FO, there is a C=(YI'Y2,YS)=FO in TA such that 

(7) 

By Theorem VII there is an automorph Z =wz in complex co­
ordinates of the shape 

Define numbers T>O and X by 

WI = P, W 2 = T-Ie(x) , Ws = T-Ie( - X), (8) 
where 

e(x) = e2n'x. 

If X were rational, say X =f4/V, the transformation WV would have two 
equal eigenvalues w~, w~, which would thus be rational and so 1, 
contrary to hypothesis (d. proof of Lemma 9). Hence X is irrational. 
Thus by Lemma 8 with e = 1, there is a number 'Y/s> ° with the follow­
ing property: To every pair of numbers e> ° and 'P there are integers 
u and v such that 

lux+V-'PI<l (9) 
and 

-1 Tau 
'Y/s <- <'Y/s· (10) e 

We now prove (i). Since IP (:1:) is proportional to integral on A, 
there is an aEA of the shape 

a=(tX),tX2 ,0Cs). tX2=Ce(O), IXs=Ce(-O), (11) 
where 

tX1>o, C>O, A=tX1C2 

and A is defined by (4). Put 

T12 = -ae('P). T13= -ae(-'P), (12) 

where a> 0. Then a is small when liT - LII is small. We now choose 
integers u and v to satisfy 

lux+v-('P+O)i<l (13) 
[d. (9)] and (10) with 

(14) 
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so that 
-2 2aC Tau 

'YJa < <1-
Tn ell 

(15) 

Since Tn is near 1, there are two constants 1'/, 'YJ", depending only on 1\ 
(and a), such that 

0<1'/ a-I < T" <1'/, a-i. (16) 

We shall show that the point 

C ='t"w-ua = (YI'Y2,Ya) (17) 

satisfies the conditions of Theorem X in case (i). In the first place, 

T2N IYII = lOCI Tn - Th aC{e(1J +tp - uX) + e(-1J- tp +UX)}lj 

= lOCI Tn - 2 ThaC cos 2n(1J +tp - ux)i 

~ OCI Tn (1 - i 'YJa2) < OCI (1 - ! 'YJa2) 

(18) 

by (11), (13), (15), provided that 1I't" - LII is small enough. Further, 

T-uiYal = T-u1Y21 ~ I Tnl OCI T-au+CI Tnl +CI Tnl <C(1 + e) (19) 

for any given e> 0, provided that 1I't" - LII, and so also a, is small enough. 
From (18) and (19) we then have 

IYIY2Yai < OCIC2 (1 -1 'YJa2) (1 + e)2 < OCIC2 (1 - t 'YJa2) = A(1 - t 'YJa2) , 

if e was chosen suitably. Since (16) and (18) clearly imply I Yll < 1 if 
1I't" - LII is small enough, this completes the proof of (i) of the theorem 

·th 1-2 WI 'YJ2=S'YJ3. 
The proof of the second part is similar on considering 't"wUa with 

suitable positive integer u. The details may be left to the reader. 
For a later application we note the 

COROLLARY 1. The numbers 'YJl an.d 'YJ2 may be chosen so that the con­
clusion 01 the theorem holds unilormly lor all lattices 1\ =A M, where M 
is some lixed lattice on which g; (01)) is proportional to integral and non­
null and A runs through all automorphs 01 g;(0I)). 

It is clearly enough to consider the case when Z =AZ is of the type 
Z;=A;z;. Then w is an automorph of 1\ if it is of M. Hence the only 
non-uniformity is possibly introduced by the point a. But clearly there 
is a number R depending only on w, and so only on M, such that 
Iw"al <R for some k. If w"a is taken for a, there is then complete 
uniformity in the estimates. 

COROLLARY 2. When 't" is any automorph 01 g; (01)) with 
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then 

We may suppose that A=1 and that a=r=(1,1,1). For any 
integer u positive or negative we have 

I cp('tw"e) I = I Tllil T22 e (U X) + T2S e( - u X)12, 

where X is given by (8). By Lemma 8, we may choose u so that 

IT22 e(ux) +T23 e(-UX)i 

is arbitrarily near to II id -I i23ll, and the corollary follows. 
Note that 

dJ~~) = I illllli2212 -li2s 121 ~ I ill I {I T221 -I T231}2, 

with equality only when i 22 =O or T23 =0, i.e. when 't is an automorph 
of cp (or). 

X.6. Applications of isolation. Following DAVENPORT and ROGERS 
(1950a) we first use isolation to strengthen Theorem V. For XI(X~+X~) 
it gives the best result to date, but for Xl X 2 Xs more is known, see Theo­
rem X of Chapter II, which is not proved in this book. 

THEOREM XI. A. There is an- 111 > 0 such that every lattice A admis­
sible for 

and with 

is of the shape 
A=twNI' 

where t~ 1, w is an automorph 01 .Ai, and NI is delined in Theorem V. 

B. There is an 1J2> 0 such that every lattice A admissible lor 

.A'; : I Xl (x~ + x~) I < 1 
and with 

is 01 the shape 
A ='tw N2 , 

where N2 is delined in Theorem VB, w is an automorph 01 .A'; and 't 

is a transformation Xi= l: TikXk with T12=T)3=T21=T31=O. 
k 

We first prove A by reductio ad absurdum. Suppose, if possible, 
that 1JI does not exist. Then there exists an infinite sequence of admis­
sible lattices M, (1;;;;r<oo), none of the shape twN1 , and such that 

d(M,) -+ 7. 
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Now 

by Theorem V, and since M, is ~ admissible; and so there is a sequence 
of points 

such that 

On replacing M, by w, M" with a suitable automorph w, of ~, we may 
suppose that 

a, = (5,,5,,5,), 5,--+ 1 

By MAHLER'S compactness principle, there is a convergent subsequence 
of the M, which we may also call M" say 

M,--+ M. (1 ) 

Then d (M) = 7 and M is ~-admissible, so is critical. Further, (1,1,1) EM 
and so, by Theorem V, we have 

M=SN1 

where..s is an automorph of~. In particular, X 1 X 2 Xa is integral on M. 
But now 

M, ='f,M 

for transformations of, such that 

1I'f, - 111--+ 0 

Since M, is Ai-admissible, the transformation of, must be of the shape 
'f,=t,~, for some number t, and some automorph ~, of Ai, by Theo­
rem IX, provided r is sufficiently large. T!lis contradicts the definition 
of the M,. The contradiction proves Theorem XI A. 

The proof of Theorem XI B is similar but using Theorem X instead 
of Theorem IX. The details may be left to the reader. The only point 
to notice is that if 'f and ware as enunciated in the theorem, then 
'fW =w''f' for some w', of' with similar properties to wand 'f respectively. 

COROLLARY TO THEOREM XI. B. To every s> 0 there is an"l ="la (s) > 0 
such that every admissible lattice A for oN; with 

d(A) < t(23)i(1 + "la) (2) 

is of the shape A ='fW N2 , where of, ware as in the theorem and 

1I'f-lll<s. 



Applications of isolation 297 

We take 'YJa<'YJ2 for the 'YJa of the theorem, so that A ='twN2 • We 
may suppose that Tll>O and then, incorporating an appropriate auto­
morph in (0, that 

Then 

(4;) 

where we use the appropriate complex co-ordinates for 't as in § 5.4. 
But now 

(5) 

by Theorem X, Corollary 2 since A is .At;-admissible; and so, in particular, 

ITuls-1 Tnls < 1 + 
{lTul-ITul}l 'YJa· 

Hence if 'YJs is small, either I Tnl/I Tnl or I Tul/I Tnl is small; and we 
may suppose the latter on incorporating in w, if necessary, the trans­
formation which interchanges X2 and X3 • We may further incorporate 
in w a transformation of the type 

XC+ X1' x2 -e(x)xs, xs-e(-X)xa, 

where e(x) =ebil. and X is chosen to make Tn real and positive. Then 
from (4) and (5) we see that T22-1 and Tn are small if 'YJs is small. 
Since Taa=Tu and T2a=T32' this proves the corollary by (3), and since 
the remaining terms T;k are O. 

X.6.2. The following interesting result about X1 X2 Xa has no analogue 
for Xl (X: + x:), since it depends on the fact that 8 in Theorem IX may 
be chosen arbitrarily. There is, however, a corresponding result for 
~+x=-x:, see CASSELS and SWINNERTON-DvER (19SSa). 

THEOREM XII. Suppose that lor some number D there are inlinitely 
many lattices M, (1 ~ l' < (0), admissible lor 

.Ai: IX1 x2 xal < 1, 

with d(M,)~D; and such that no two, M', M", say, are 01 the shape 
M"=twM', where t is a number and w an automorph 01.Ai. Then 
there is a laUice A admissible lor .Ai with d (A) ~ D on which Xl X2 xa is not 
proportional to integral. 

For the lattices M, have a convergent subsequence, say, without 
loss of generality 

M,-A (1'_00). 

If X1 X2 X3 were proportional to integral on A, then by Theorem IX and 
since M, is .Ai-admissible, we should have for all sufficiently large r 

M, =t,w,A 
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for some numbers t, and some automorphs 00, of .Ai. This clearly 
contradicts the hypotheses of the theorem. 

As stated in § 1, it is unknown whether such a D or such a A exists. 

X.7. An infinity of solutions. We now prove some results of DA­
VENPORT and ROGERS (1950a) about the existence of infinitely many 
points of a lattice in certain point-sets with groups of automorphisms. 
They prove more than we do here; the reader is referred to their inter­
esting memoire for the details. 

The following trivial lemma gives almost all we need for the first 
type of result. 

LEMMA 10. Let n be some group of homogeneous linear transforma­
tions 00. Suppose that for every :1:*0 and every number r tnere is an ooEn 
such that 

100:1:1> r. 

Then for every pair of numbers c, C with 

O<c<C<oo (1 ) 

and every number r there is a finite set of elements 001, ... , 00", of n such 
that 

for aU:I: in 

m~x 100;:1:1 >r 
1;:;i,S;". 

(2) 

This is a simple application of the HEINE-BoREL covering theorem. 
The infinitely many open sets .r,(oo) of points z such that loozl >r 
cover the compact set (3). Hence a finite covering may be selected from 
the .r, (00). 

THEOREM XIII. Let the boundedly reducible 1 star-body !/ have a group 
n of automorphisms 00 such that to every z * 0 and every r there is an 
OOEn such that IOO:l:I>r. Then to.every integer k>O there is a bounded 
set .9;. contained in !/ such that every lattice A with d (A) < LI (!/) has at 
least k points in .9;. other than o. 

That .9;, exists is equivalent to the statement that !/ is boundedly 
reducible. We suppose .9;. has been found and deduce the existence of 
.9;.+1' We may suppose without loss of generality that .9;. is the set 
of points of !/ in some sphere 

1:1:1 ~ C = Ck • 

Further, there is a positive number Ck < C such that the entire sphere 

(4) 
1 For definition, see Chapter V, § 7.2. 
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is contained in!/'o We denote by g;,+l the set of points of !/' in 

Ixl ~ CHI' 
where 

CHI> max {Ck , (k + 1) ck} 

299 

(5) 

is so large that (5) contains all the sets wil g;,(1 ~j~m), where the wi 
are given by Lemma 10 with c = Ck and r = C = C k. We must verify 
that g;,+l has the required properties. 

By hypothesis, if d (A) < A (!/') there are k points of A in g;, other 
than o. If one of them, say a, is in I x I < Ck' then all the points 

la (1~l~k+1) 

are in Ixl~CHI and in!/', so in !/'HI' as required. Otherwise, there 
is a point b of A in g;,+l for which 

c=ck~lbl~C=Ck· 

Hence there is an automorph wi of the set ~, ... , w'" stich that 
I wjb I > C. Hence b ~ wil g;,. But now, since Wj is an automorph, 
we have 

Idet wil =1, 
and so 

d(wiA) = d(A) < A(!/,). 

Hence by the defining property of g;, there are k points of wi A in g;" 
that is there are k points of A in W,-:-l g;,. These together with b give 
k + 1 points of A in !/'HI' as required. 

COROLLARY. When!/' is fully reducible I, the conclusions of Theo­
rem XIII continue to hold when d(A) =..1 (!/'), provided that A is not a 
critical lattice of !/'. 

For the existence of .9i is equivalent to the statement that !/' is 
fully reducible, and the induction now goes as before. 

When the star-body!/' is not boundedly reducible only slightly less 
than Theorem XIII is true. 

THEOREM XIV. Let!/' be a star-body and Al any number in 

0< Al < A(!/,). 

Then to every integer k there is a bounded star-body g;, (depending also 
on AI) such that every lattice with d (A) ~ Al has at least k points other 
than 0 in g;,. 

We may suppose that !/' is open. Suppose, if possible, that for 
every integer r there is a lattice A, with d (A,) ~ Al which contains no 

1 For definition. see Chapter V. § 7.2. 
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point other than 0 of !l' in l;r I ~ r. Then MAHLER'S compactness 
theorem applies, and there is a lattice I\' which is the limit of a conver­
gent subsequence of 1\.,. Since d (I\') ~ Lll and I\' is !l' -admissible, this 
contradicts the definition of Ll(!l'). The contradiction shows that ~ 
exists. The induction from Y,. to y"+l then goes exactly as for Theo­
rem XIII. 

X.7.2. Where they apply, isolation theorems may give stronger 
results than those § 7.1", as the following example shows. 

THEOREM XV. Put 
1P(;r) = Xl H + x~). (1) 

There is a number 1)0> 0 such that every lattice I\. has one 01 the lollowing 
two properties. 

(i) there is a number t such that the set 01 xl-co-ordinates 01 tl\. is 
identical with the set 01 xcco-ordinates 01 the critical lattice N2 01 lIP (z)1 < 1 
occurring in the enunciation 01 Theorem VB, or (ii) lor every e> 0 there 
is a point a =f= 0 01 I\. such that 

IIP(a)1 ~ ---;- (1 -1)0) d(l\.) , I ~I < e. 
(23) 

(2) 

We will choose 1)0 later in the course of the proof. Suppose that (ii) 
is false for some particular I\. and e. For integers r = 1, 2, ... , let 1\., be 
the set of points (r2 Xl' r-l X2 , r-l Xa), (Xl> X2 , Xa) E I\. Then there IS a 
convergent subsequence 

and M is admissible for 

IXl (x~ + x~)1 <~(1 -1)0) d(I\.). 
(23) 

(3 ) 

Hence by Theorem XI B, Corollary for any given eo we may choose 
1)0 =1)0 (eo) so small that 

(4) 

where 'r, ware as in Theorem XI Band t is some number. We take 
for eo the number 1)1 which occurs in the enunciation of Theorem X 
and its Corollary when M = N2 • By (3) and (4) we now have 

(5) 
for some Ok such that 

IIOk - III < eo, 

for all sufficiently large k. Clearly M, does not contain any points 

c = (711,712,713) with 17111 < 1 and 17'17127131 < ~ (1-1)0) d (I\.) if r is suf­
(23) 
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ficiently large. Hence, by Theorem XI and its Corollary, if 1]0 is small 
enough, there is a (/=(/k such that (/12=(/13=0 in the obvious notation; 
indeed this happens for all sufficiently large k. But then, by (5) this 
implies that (i) holds. This concludes the proof of the Theorem. 

There is a similar result where I all < e in (2) is replaced by a~ + a: < e, 
d. DAVENPORT and ROGERS (1950a). 

X.S. Local methods. For many questions concerning indefinite 
quadratic forms the appropriate tool is the theory of continued fractions. 
We only mention the topic briefly here since the application to specific 
problems not infrequently involves detailed calculation. Continued 
fractions appear very naturally from the point of view of the geometry 
of numbers. We sketch the connection here and refer the reader to 
the author's Cambridge Tract [CASSELS (1957a)], where they are intro­
duced in a similar spirit 1 in a slightly different context, for a fuller treat­
ment and references. There a knowledge of the geometry of numbers 
could not be assumed. For another account of the relationship of 
continued fractions to quadratic forms see, for example, DICKSON (1929a). 

Characteristic applications of local methods are MARKOFF'S original 
treatment of his chain theorem (MARKOFF 1879a), [there is an account 
in DICKSON (1930a); compJ.re Chapter II, §4)], the paper of BLANEY 
(1957a) that will be dis(U;sed in Chapter XI, § 4, and the paper of 
BARNES (1951 a). But applications are almost everywhere dense in the 
literature. 

Let us suppose for convenience that the 2-dimensional lattice 1\ has 
no point except 0 on either axis. Then no two distinct points of 1\ have 
the same xl-co-ordinate or the same x2-co-ordinate. There certainly 
exist points ~o= (x10 , x20) of /\ such that 0 is the only point of /\ in 

IX11 < Ixlol, IX21 < Ix20 1· 
Let ±~l = ± (X11' x21)=f=o be the points in IXll <Ixiol for which IX21 
is least. Then there is no point except 0 in 

IXll < IXIOI, IX21 < IX21I, (1 ') 
and a fortiori in 

IXll < IX11I, IX21 < Ix21 l· 

We may then repeat the process with a; instead of ~o to obtain a se­
quence of points a;, ~2' • .•• Similarly we may start with ~o and inter­
change the roles of Xl and x2 to obtain a sequence of points ~-1' ~-2' .... 
There is thus a sequence of 

(-oo<i<oo) 

1 Which goes back to FELIX KLEIN (189Sa and 1896a). 
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such that there is no point of /\ except 0 in 

IXII < lXIii, IX21 < IX2,i+ll· (1 ) 

Clearly a necessary and sufficient condition that a point YE/\ should 
occur as ±zi for some i is that there should be no point of /\ except 0 

in I xII < I YII, I x21 < I Y21· Hence the sequence of pairs ± zi is completei y 
determined by I\, although the particular pair chosen to be ±zo is, 
of course, arbitrary. If W is any automorph of Xl x2 then the sequence 
of pairs for w/\ is either ±wzi' if w does not interchange the axes of 
co-ordinates, or ±wz_i (i.e. in the reverse order) if it does. 

Since there is no point of /\ in (1) except 0, there is no point of /\ 
in the closed triangle with vertices 0, zi' zi +l except the vertices; 
and so zi' zi+l is a basis of /\ for each i, by Lemma 6 of Chapter III. 
We must now introduce an asymmetry between the XI - and x2-axes to 
study the relationship between the various bases zi' zi+l' We choose 
zi to be that point of the pair ±zi for which 

(all i) . (2) 
Then 

(3) 

since otherwise zi+l-zi would lie in (1). Since both Zi-l, Zj and 
zi' zi +1 are bases, we must have 

(4) 

for some integer ai' Since 

x2,i+l> x2,i > X 2, i-I' 
we must have 

ai > O. 

Then we must have the - sign in (4), since 

IXI,i+l1 < IXlil < IXI,i-II, 

and (3) holds for every i. Hence there is a sequence of integers aj> 0 
such that 

Zj+l - Zi-l = ajzi' 

It may be shown that if two lattices have the same sequence of integers 
ai then they are identical up to a transformation of the type 

Further, to every sequence of positive integers aj there is a lattice. 
Hence it is natural in 2-dimensional lattice problems about Xl X2 to 

consider not the lattice /\ itself simply, but the sequence ai' It turns 
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out that the behaviour of any particular basis, say :£J' :£1+1' of A is 
influenced very strongly by the value of aj for j near to ] but only 
very weakly by a;. for i remote from]. In many problems it is possible 
to study the behaviour of only a few aj at a time. Hence the name 
"local methods". 

It would be interesting if local methods could be successfully extended 
to problems in more than 2 dimensions, for example to problems relating 
to Xl max (x:, x:), Xl (x~ + x~), x~ + x~ - x~ or Xl X2 %3 • The difficulty is 
not to find the analogues of the xi but to devise techniques to cope 
with their interrelations. Continued fractions have however been 
generalized to 2-dimensional lattices over a complex quadratic field, 
i. e. substantially to certain special 4-dimensional lattices, see POITOU 

(1953a) and the references there given. 

Chapter XI 

Inhomogeneous problems 

XLt. Introduction. As previously, we say that points:£1 and:£2 are 
congruent modulo A, written 

:£1 = :£2 (A) , 

where A is a lattice, to mean that x1- :£2E A The set of points :£ con­
gruent to a given point :£0 modulo A is called a grid 1 @: A will be called 
the lattice of the grid and we shall call 

d(@) = d(A) 

the determinant of the grid. The characteristic inhomogeneous problem 
of the geometry of numbers is to find conditions under which a grid 
has a point in a given set 9'. 

There is a wide variety of different problems. Thus one may be 
concerned with all grids of given determinant d (@) or one may have 
information about the lattice A Many of the fundamental techniques 
for inhomogeneous problems are natural extension of those for lattices 
[compactness theorems and so on; for bodies with automorphs see 
SWINNERTON-DYER (1954a)J. For some specialized problems some 
extremely powerful and delicate techniques have been developed which 
would take too much space to discuss properly. Hence this last chapter 
will have more the character ofa report and less that of a detailed 
exposition. 

1 Other terms are inhomogeneous lattice or non-homogeneous lattice. 
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XI.l.2. The following simple result due to MACBEATH (1951 a) helps 
to fix ideas. 

THEOREM I. Let the set Y' have finite volume V(Y') and let e>O be 
given arbitrarily small. Then there are grids @ with d (@) = e having no 
point in Y'. 

We may choose R so large that the portion of Y' in l:rl ~R has 
volume < ie. Let A be the lattice with basis 

where 

b1 = (4 R. o. o ..... 0) 

b2 = (0. 'Y}. O. O •...• 0) 

b3 = (0. o. 'Y}, O •...• 0) 

b,. = (0.0.0, ...• 0, 'Y}). 

(1 ) 

(2) 

Every point :r1 of space is congruent modulo " to precisely one point 
of the parallelopiped 

f!J: {Ylbl+ ... +Ynb,,} 
(-j ~ Yj <j). 

The volume of f!J is V(f!J) =d(") =e. by (2). If a point :r'=Lyibj 
of f!J is congruent modulo " to a point ir1 in I ir11 ~ R, then clearly 
IY~I ~i· Hence the set of points of f!J with this property has measure 
at most j e. But now the set of points ir2 of Y' with I ir21 > R has volume 
at most ie by construction; and hence so has the set of points ir" of 
f!J which are congruent to at least such one point (compare the proof 
of Theorem I of Chapter III). Thus the set of points of f!J congruent 
to a point of [I' has measure at most ie + ie< e = V(f!J). There is 
thus a point iroEf!J which is not congruent to any point of [1'. The 
grid @ of all points congruent to iro modulo A clearly has all the proper­
ties required. 

Xl.l.3. We shall mainly be concerned with star-bodies [I' defined 
by a distance-function. 

[1': F(ir) < 1. (1 ) 

For any lattice" and any point :ro we write l 

(2) 

1 So m (~o) = F(~o) in the notation of Chapter VII § 2.2, where ~o is the element 
of the quotient space to which ~o belongs. 
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and 
It (/\) = sup m (:ro,/\)' (3) 

or, 

Clearly 
,u (t /\) = I till (/\) (4) 

for any t =F O. 

The infimum in (2) need not be attained, though it clearly is attained 
when the set F(~) < 1 is bounded. The function m (~o) need not be 
continuous, but it is semi-continuous: 

lim sup m (~) ~ m (~o) . (5) 
.e-+,r, 

Indeed given any 8>0 there is a point aE/\ such that 

and then 
F(~ + a) < m(:ro) + 8 

for all ~ in a neighbourhood of ~o, by the continuity of F(;J!); so 
m (~) < m (~o) + 8 in this neighbourhood. Again, when F(~) < 1 is 
bounded, the function m (~) is readily seen to be continuous. The reader 
will be able to supply the proofs of the positive statements just made 
on the lines of the proof of the semi-continuity of the function F(/\) 
in Chapter V, § 3.3. Examples to show that the infimum in (2) need 
not be attained and that m (~) need not be continuous are provided in 
2 dimensions for certain lattices /\ when F(~) = I Xl X21l. This case has 
implications in the theory of algebraic numbers and has been extensively 
investigated both because of this and because of its intrinsic interest; 
see BARNES and SWINNERTON-DYER (1952a, band 1954a) and BARNES 
(1954a), where there are extensive references to earlier work. There is 
some work on similar lines for IX1 X2X31l (n=3), but it has not been 
carried so far, see DAVENPORT (1947c), CLARKE (1951 a) and SAMET 
(1954a, b). 

From the definition (2) it follows that m (~) may be regarded as 
defined on the quotient space al//\ (compare Chapter VII). Since this 
is compact, it follows from (5) that the supremum in (3) is always 
attained; that is, there is an ~l such that 

Of course the infimum in (2) need not then be attained for ~l=~O' 
With unbounded sets F(~) < 1 there may be again a phenomenon of 
successive minima; that is, it may happen that 

sup m (:ro) < ,u (/\) . 
m(.r.l *I'(A) 

Cassels, Geometry of N urn bers 20 



306 Inhomogeneous problems 

Indeed some rather elaborate patterns of successive minima have been 
found, see the papers of BARNES and SWINNERTON-DYER just quoted. 

The quotient 
{fl (A))" 

d(A) 

is unchanged on replacing A by tA, by (4). We shall write 

b(F) = inf {fI(A)}" 
A d(A) , 

(6) 

(7) 

where possibly b (F) = O. If the set F(:r) < 1 has finite volume ~o', we 
now show that 

(8) 

Let A be some lattice and e> 0 be arbitrarily small. There is a point 
:rl congruent to any given point :ro and satisfying 

F(:rl) < fl (A) + e. (9) 

Hence the set (9) must have volume at least d (A). Since the volume 
of the set of points :rl satisfying (9) is 

{fleA) + e}" VF , 

the required result (8) follows. 

We shall show in § 3 that if the body F(:r) < 1 is bounded, the 
infimum in (7) is attained; that is there is a lattice M such that 

{p (M)}" = b (F) d (M) . 

We shall treat the estimation of b (F) for convex distance-functions 
F in § 2 where the relevant literature will also be discussed. 

When VF = 00 it is, of course, still possible that b (F) > O. In par­
ticular, DAVENPORT (1951 a) showed this to be the case for the 2-dimen­
sional distance-function 

(10) 
His estimate, 

was improved to 
b(F) ~ 451'2 

by the author [CASSELS (1952a)], with a probably simpler proof. This 
has recently been improved by ENNOLA (1958a) to 

b(F)~(16+6~)-I= 30.!, ... , 
by a modification of DAVENPORT'S original method. On the other hand, 
Miss PITMAN (1958a) has shown that 

b(F)~~2 
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More recently I, she has obtained an even smaller upper bound for 
b(F). 

The problem of determining b (F) for F given by (10) is closely related 
to the problem of determining the real quadratic numberfields with a 
Euclidean algorithm. DAVENPORT extended his work to number-fields 
of two other types corresponding to 

P=XI(X~+X~) and p= (x~+x~)(x~+x:). 

These results were proved by the author [CASSELS (1952a)] much more 
simply and with a better estimate of b (F). 

HLAWKA (1954c) has generalized these results to any distance­
function F(;x:) in n variables which may be put in the shape 

{F(;x:)}" = {F, (Xl' "., x,)}, {F,,_, (X'+l' "., x,,)}"-', 

where F" F" _, are r- and (n - r)-dimensional distance-functions such 
that the star-bodies F, (;x:) < 1 and F..-, (;x:) < 1 are bounded. We do not 
prove these results here. A closely related problem is treated in the 
author's tract [CASSELS (1957a) Chapter V, § 6], where there are further 
references. 

In general it appears to be a difficult problem to decide whether 
b (F) = O. Thus it does not appear to be known whether this happens for 2 

F(;x:) = Ix~ + x~ - xW n = 3 
or 

n =3. 
XI. 1.4. It follows at once from MACBEATH'S Theorem I that 

~(F) = sup {p(AW 
A d(A) 

IS 00 whenever VF<oo. In § 4 we shall be concerned with ~(F) for 

F = Ixl ... x"I I !". 

It was conjectured by MINKOWSKI that ~(F) =2-", but this has been 
proved only for n =2,3,4. We shall give references and a further 
discussion in § 4. We shall also give a result of CHALK about the set 

XIX2."X,,~1 Xj>O (1~i~n) 

(not a star-body!) and quote other work about sets defined in term 
of Xl'" X". 

1 I am grateful to Miss PITMAN for allowing me to refer to this unpublished work. 
now published. Acta Arithmetica 6 (1960). 37-46. 

2 The first case has been settled by E. S. BARNES [J. Austral. Math. Soc. 
2 (1961/62) 9-10]. who shows that b(F) =0. 

20· 
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The value of ~ (F) for 

F(3!) = Ix~ + x~ - xW (n = 3) 

has been found by DAVENPORT (1948a) who showed it to be isolated 
and the investigation of the successive minima was carried further by 
BARNES (1956a). More recently BIRCH (1958a) has found ~(F) for 

F(3!) = Ix~ + ... + x~ - x~+l - ... - x~,li 

for all r~ 2. Estimates for 

(n = 2r), 

F(3!) = Ix~ + ... + x~ - X~+l - ... - x!ll 
with r>O, n-r>O have been given by BLANEY (1948a) and improved 
by ROGERS (1952a) and Miss FOSTER (1956a). All the work just 
described is of course equivalent to finding the best possible constant 
rj"s such that 

sup inf I/(u+uo)l~rj"sIDII/" 
U o real U integral 

for all indefinite quadratic forms I of signature (r, s) with r +s =n and 
with determinant D. We shall not discuss this work further in this 
book but refer the reader to the original memoires. 

XI.1.S. For some functions F(3!) there are inequalities, valid for 
all 1\, connecting 

p (1\) = sup inf F(3!) 
"'. ",=",.(A) 

and 
F(I\) = inf F(x) 

"'EA 

or, more generally connecting fl (1\) and the successive minima of F(3!} 
with respect to I\. When F(3!) is convex, there are further relations 
with the corresponding quantities for the polar distance-function F*(3!} 
and the polar lattice 1\*. These relations go under the general name of 
transference theorems l (Obertragungssatze). Thus DIRICHLET'S hexagon 
Theorem VII of Chapter IX may be regarded as a very precise trans­
ference theorem for I x~ + xW. We shall discuss transference theorems 
for convex functions F(3!) in § 3. Much interesting work has been done 
on transference theorems for the non-convex F(3!) defined by 

{F(3!)}" = Ixl ... x,1 II (X~+k + x~+s+k), l;i;k;i;s 

where n=r+2s, but here we can only refer the reader to the paper 
of DAVENPORT and SWINNERTON-DYER (1955a), where references are 
given to earlier work. There is a striking related result in SWINNERTON­
DYER (1954a). 

1 Presumably because information is transferred from one problem to another. 
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There is a further type of result which may most appropriately be 
mentioned here since they are transference theorems of a sort. BARNES 
(1950a) showed that if 

and if A has the basis "t, a2 then 

2f1(A) ~ max {F(a1) , F(a2) , minF(al ± a2)}. 
± 

Other results of this general kind are known, see BAMBAH and K. ROGERS 
(1955 a) and the references given there. In particular, K. ROGERS (1953 a) 
showed that BARNES' result is true for all distance-functions F(~) such 
that F(~) < 1 has the same general appearance as I Xl x2 1 < 1. The proofs 
are all elementary and tend to involve a tedious splitting of cases. We 
do not discuss them further in this book. 

XI.2. Convex sets. In 2 dimensions the problem of finding 11 (F) in 
the notation of (7) of § 1.3 for convex functions F is completely solved 
by the following result [BAM BAH and ROGERS (1952a)]. 

THEOREM II. Let Y' be a closed 2-dimensional convex set and .11 some 
number. A necessary and sufficient condition that there exist a lattice A 
with d (A) = .11 such that every point is congruent modulo A to a point 
of .9' is that there exist a convex hexagon 1 .?If inscribed in .9', which is 
symmetrical about some point and has an area V(.?If) =.11. 

Note that Y' is not required to be symmetrical about any point. 
Suppose, first, that .?If exists. We may take the centre of .?If as 

origin o. Let A be a critical lattice for 2.?1f. Then d (A) = V(.?If) = .11, 
by Lemma 13 of Chapter V. Hence by Theorems II, III of Chapter IX 
applied to 2 Jt', and since Jt'is closed, every point is congruent modulo A 
to a point of .?If, and so of Y'. 

Suppose now that there exists a A such that every point is congruent 
modulo A to some point of Y'. If Y' is unbounded, there is clearly 
nothing to prove, so we may suppose without loss of generality that Y' 
is bounded. We shall construct the hexagon.?lf in stages. Suppose, first, 
that there is ana=l=oEA such that Y'andY' +ahaveinnerpointsincom­
mono By taking 2s a with suitable integer s ~ 0 instead of a, we may sup­
pose without loss of generality that Y' + 2a and Y' have no inner points 
in common. Then there exist points c and d on the boundary both of Y' 
and Y' + a such that the portion of the boundary of Y' between c 
and d (taken in an anti-clockwise direction, say) lies in Y' +a and the 
portion of the boundary of Y' + a between d and c lies in Y'. Then 
c - a and d - a are common to the boundaries of Y' and Y' - a. Let 

1 A parallelogram being allowed as a degenerate hexagon. 
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~ be the portion of f/' lying between the line joining C and d and the 
Jine joining C - a and d - a. and taken closed; i.e. including the points 
of f/' on those lines. Then clearly ~ is convex and every point of the 
plane is congruent modulo A to a point of ~. After a finite number 
of steps (since f/' is bounded) we obtain a closed convex set .r ( f/' 
such that every point is congruent modulo A to a point of .r but no 
two sets.r and.r +a. aEA have inner points in common. Then every 
boundary point of .r is also a boundary point of .r + a for some a ==1= 0 

in A. Since.r and .r + a are convex. this common boundary is either 
a point or a line-segment. Since.r is bounded. only a finite number 
of a come into consideration. and so .r is a convex polygon. We must 
now show that it is symmetric about some point. Let the vertices of 
.r be cl ..... c .... where the line segment cici+l is the common boundary 
of.r and.r +ai • aiEl\. Then the line-segment (ci-aj) (Cj+l- aj) is the 
common boundary of .r and .r - a;. Hence m is even. m = 2l. and 

Hence 
t(C; + Ci+/) = t (C;+l + ci+l+ /) 

for each i. so e =t(cj+c;+I) is independent of i. Clearly.r is sym­
metric about e. 

We may suppose without loss of generality that e =0. Then A 
gives a lattice packing of .r (or. more precisely. of the interior of .r) 
and every point is congruent to some point of .r modulo I\. Hence.r 
is a hexagon by Theorems II and VI of Chapter IX. This concludes the 
proof of Theorem II. 

Using known results about hexagons inscribed in convex sets. BAMBAH 

and ROGERS (1952a) deduce in our notation (§ 1.3) that 

1;£ ~bW);£ i 
for a convex 2-dimensional distance-function F inequality and the 
stronger inequality 

f F is symmetric. The equalities on the right-hand side are attained 
when F(z) < 1 is a triangle and a circle respectively. The left-hand 
inequality. which is valid whether F is convex or not. was obtained 
in § 1.3. 

There is a theory of lattice coverings and non-lattice coverings which 
is closely analogous to the theory of packings discussed in Chapter IX. 
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For details in 2 dimensions see FEJES T6TH (1950a and 1953a) and 
BAM BAH and ROGERS (1952a). 

Not much is known about b(F) in more than 2 dimensions. When 
F(x) < 1 is the unit 3-dimensional sphere, the precise value has been 
found by BAM BAH (1954 b), and other proofs have been given by BARNES 
(1956b) and FEW (1956a); but all proofs are fairly complicated. The 
4-dimensional sphere has been considered by BAMBAH (1954a), who 
obtains an estimate for b (F) and gives a conjecture for the correct 
value. Estimates for b (F) above and below and also for the corres­
ponding number for non lattice coverings have been obtained for 
n-dimensional spheres, see BAMBAH and DAVENPORT (1952a), DAVEN­
PORT (1952b) and WATSON (1956a) for the lattice case, and ERDOS 
and ROGERS (1953 a) and ROGERS (1957 a) for the non-lattice case, the 
last treating general convex sets. Very recently ROGERS (1959a) has 
obtained much stronger results by more powerful methods. 

XI.2.2.1 ROGERS (1950b) has given an elegant proof of the following 
result relating b (F) to the function 

c5(F) = sup {F(A)}" 
A d(A) 

introduced in § 4 of Chapter IV. 

THEOREM III. 
b (F) ~ r" 3,,-1 c5 (F) 

for all symmetric convex n-dimensional distance-functions which vanish 
only at the origin. 

ROGERS (1950b) also proved a similar result for non-lattice packings 
and coverings, and indeed with the smaller constant 2-1 instead of 
2-"3,,-1. Before proving Theorem III we note the following 

COROLLARY. 
VFb(F) ~ 3"-1, 

where VF is the volume of F(x) < 1. 

For VF c5 (F) ~ 2" by MINKOWSKI'S convex body theorem. 
ROGERS proves Theorem III by considering a critical lattice M for F, 

that is 
F(M) = 1, d(M) = {c5(F)}-1. (1 ) 

We use the notation of § 1.3; in particular 

m (xo) = inf F(x) . 
or 5 or.(M) 

1 When n is at all large, the results of this section are superseded by ROGERS 

(1959 a). 
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As was shown in § 1.3, there is then a point :r1 such that 

m (:r1) = sup 'In (:ro) I 
al, 

= fl(M) 

= fl (say). 
Then 

m (3 :r1) -;£ fl ' 

and so, since F(:r) < 1 is bounded, there is an aE M such that 

F(3:r1 - a) = m (3:r1) ~ fl. 
Then 

and so 1a is not in M. 
Let A be the lattice of points 

b + ; a, bEM, r = integer, 

so 
d(A) = td(M). 

Hence 
{F(A)}" -;£ 15 (F) d (A) = 115 (F) d (M) 

(2) 

(3) 

by the definition of 15 (F) ; that is, there exists a point b + ...':-a+o of A 
such that 3 

{F(b + ; a)}"-;£; 6(F)d(M). (4) 

We may suppose without loss of generality that r=O or ±1. If '=0, 
we have b+o, and so 

F(b) ~ F(M) = 1, 

and (1) and (4) are in contradiction. Hence r= ±1, and 

by (2) and (3). 

F(b ± 1a) = F {b ±:r1 =t= (:rl -la)} I 
~ F(b ± :r1) - F(:rl -la) 

~,u-1,u 

= ifl, 

On substituting (5) in (4) we obtain 

L-;;;; r"3,,-115(F) 
d(M) . 

(S) 

(6) 

Since the left-hand side of (6) is at most b (F), by the definition of b (F) 
as an infimum (§ 1.3), the theorem follows. 
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XL3. Transference theorems for convex sets. In this section we 
consider for a symmetric convex n-dimensional distance function F which 
vanishes only at 0 the relationships between the function 

fl = fl (1\) = sup inf F(x) 
or, or = or, (J\) 

(1) 

discussed in § 1 and the successive minima AI' ... , All of F with respect 
to 1\ which were discussed in Chapter VIII. 

We first prove the inequality 

(2) 

Let b1 , ••• , b" be any basis for I\. Then by the definition of fl and the 
fact that F(x) < 1 is bounded, there are vectors cjEI\ such that 

F(t bj - cj ) ~ fl. 

Hence the vectors d j = b j - 2cj all satisfy 

F(dj ) ~ 2fl· 

Since the d j are linearly independent, as is easily seen1 by considering 
congruences modulo 2, the left-hand side of (2) follows. 

We now prove the right-hand side of (2). There are linearly in­
dependent vectors aj of 1\ such that 

F(u,) = Aj • 

Every vector Xo is thus of the shape 

xO=~lal + ... +~lIall 

for some real numbers ~1"'" ~". Put 

where 
IUj-~jl ~t, 

and U 1 , ... , u" are integers. Then, clearly, 

F(xo - a) = F {L (~j - ui ) aj} 
I 

~ L I~i - ujl F(aj ) 
j 

~t LF(aj ) 

=t LAj • 

1 For suppose that ~ rj d j = 0, where the 1'; are integers which, without loss 
j 

of generality, may be supposed to have no common factor. Then ~ I'j bj = 2~ I'j ('j' 
j 

Since the bj are a basis, all the I'j must be even. A contradiction! 
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This proves the right-hand side of (2). 

On making use of the inequalities 

of Theorem V of Chapter VIII. we may deduce estimates for p above 
and below in terms of 

Al = inf F(a} = F(A}. 
"*0 

Ell 

From the left-hand sides of (2) and (3). and since 

1.1~ A2~ ... ~ I. ... 
we have 

(4) 

(5) 

On the other hand. the maximum of Al + ... + I." for given Al and pro­
duct At ... ).,. is clearly attained when Al = 1.2= ... = 1. .. - 1. Hence. by (2) 
and (3). 

(6) 

Both the inequalities (5) and (6) may be improved. The problem 
of obtaining an estimate above for p in terms of Al is an old one which 
has been attacked by many methods. The latest result due to KNESER 
(1955a) and BIRCH (1956a) will be proved as Theorem V. The inequality 
(5) has attracted much less attention. We sketch a proof of an improve­
ment due to BIRCH (1956b). as Theorem IV. BIRCH actually proves 
something slightly stronger than Theorem IV and gives examples to 
show that it cannot be much further improved. 

THEOREM IV. 

for convex symmetric n-dimensional distance-functions. 
BIRCH'S proof is very simple. We may suppose after a suitable 

homogeneous linear transformation that A = Ao is the lattice of points 
with integer co-ordinates. and that 

F(O • ...• O. 1} = AI. 

Let ~ be the (n -i}-dimensional projection of the set 

fl!/: F(~) ~ p 

on to the hyperplane x" = o. Then every point with x .. = 0 is congruent 
modulo Ao to a point of ~. so ~ has (n -1}-dimensional volume 



Transference theorems for convex sets 

v.. -1 (ff) ~ 1. Further, fl!/' contains the points 

± (O, ... ,0, fl!AI). 

315 

Some elementary geometry 1 now shows that the volume of fl!/' must 
be at least 

V{u!/') ;;:::: ~. £ . v: 1 (ff);;:::: 2p. 
r - n Al ,,- - n~ • 

Since V{fl!/') =fl"VF , and since we have assumed that A=Ao, so 
d (A) = 1, the truth of the theorem follows. 

THEOREM V. Let 
Q= 2"~(1\) =q+" 

Al VF 

where q is an integer and 0;;;;,,<1. Then 

fl ;;;; tAl (q + ,,11") . 
Further 

provided that Q ~ n. 

(7) 

(8) 

(9) 

Note that q +,,1/"~ Q and q~ 1 by (3). The inequality (8) is 
KNESER'S (1955 a) 2 and (9) is BIRCH'S, though the remark that (9) holds 
already for Q~n is KNESER'S [see BIRCH (1956a)]. BIRCH proves similar 
results involving other minima A2 , ••• , A"-I. 

Before proceeding to the proof we note that (9) cannot be further 
improved 3. Let 

F(~) = max {lXII, ... , Ix"I}, 
and let A be the lattice of points 

(~, .•• , Un_I, Qu,,), 

where Q is any number ~ 1 and u1 , ••• , u" run through all integers. 
Clearly 

Al=1 VF =2"; 

and so Q is in fact the number given by (7). Further, fl =tQ, as is seen 
by considering 

~o = (0, ... , 0, t Q) . 

1 The details are given in the author's tract [CASSELS (1957a)] page 84 Lemma 1. 
The easiest way is to replace f/': F(z) < 1 by a body of the same volume symmetric 
in x,,=O. on replacing for each (Xl' ...• xn- I ) the segment of xn such that 
(Xl' ...• X,,) E f/' by the one of equal length symmetric in x,,= 0 (STEINER sym­
metrization). The result is trivial for the symmetrized set. 

2 Professor KNESER tells me that he can show that < can be substituted 
for ~ in (8) except when Q is an integer. 

3 BAMBAH (1958a) shows that (8) and (9) may sometimes be improved if i5(F) 
is known. 
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It was long conjectured that (9) was valid for all Q, but the following 
example, due to KNESER and BIRCH (see BIRCH 1956a), shows that in 
fact the weaker inequality (8) cannot be improved for 1 ~ Q < 2. Let 

and let A be the lattice of points 

where O~ e< 1 is fixed and ul , ... , u" runs through all integers (note 
the change of sign in the last co-ordinate). Then 

d(A)=1+e", Al =···=A,,=1, p,=t(1+e}, 

as is readily verified. No case appears to be known when (9) is false 
and Q~2. 

Now to the proof of Theorem V. We work in the quotient space 
Bt/A and use the notation of Chapter VII and of Theorem IV of Chap­
ter VIII. In particular, we denote by S (t) the set of points t) of Bt/A 
which have representatives Y in Bl such that F(y) < t. By Theorem IV 
of Chapter VIII the measure m{S(t}} satisfies 

{ = t"lj- if t ~ tAl. 
m{S(t)} -:?t(.!A)"-lV, if .!A~t~.!A. 

- II 1 F II 1- - II 1\ 

We shall also need the inequality 

(10) 

(11) 

for any 1x~0, t2~0. This follows at once from the "Sum Theorem", 
Theorem I of Chapter VII. Indeed, S (Ix + t2) contains the sum S (Ix) + S (ta) , 
where addition of sets is as defined in § 3 of Chapter VII, since 
F(Yl+YZ)<Ix+ts if F(Yl) <Ix and F(Ya)<ta. 

We also remark that p, is the lower bound of the numbers t such 
that m{S(t)}=d(A). Clearly m{S(t)}=d(A) if every point of Bl is 
congruent modulo A to a point ~ with F(~)<t. Conversely, suppose 
that m{S(to)}=d(A). Let e>O be arbitrarily small. Then m {S(e)}>O 
by (10). and so every point of Bl/A belongs to S(to)+S(e) (S(to+e) by 
the first part of the "Sum Theorem" I of Chapter VII. 

We now prove (8) very simply. By (10) we have 

m{S(tAl)} = (tA.S'VF = Q-1d(A) 
and 
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Hence, by repeated use of (12), we have 

m [5 a;'l (q + "lin)}] ~ q m {5 (t;'l)} + m {5 (t ,,11" ;'1)} 

= (q + X) Q-ld(A) 

=d(A), 
as required. 

To prove (9) we need (11) as well as (10), where now 

Q~n. 

We must distinguish two cases. Suppose first that 

Q Al~ nAn' 
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Then 2/-l;S Al Q by (2), which proves (9) in this case. Otherwise, by (11), 

m {5(~ . ~~)} ~ ~ (iAit VF = d(A)jn, 

by the definition (7) of Q. Hence, by repeated use of (12), we have 

m {5 (tQ AI)} ~ d (A), 

which completes the proof of (9). 

XI.3.2. We are now in a position to prove the result enunciated 
in § 1. 3 that when the star-body F(x) < 1 is bounded, then b (F) is an 
attained minimum, that is, in the notation of § 1. 3, there exists a lattice 
M such that 

{,u (MW = b (F) = inf {,u (t\W 
d(M) /\ d(t\) • 

We must use the transference theorem of § 3.1 to ensure that we 
may apply MAHLER'S compactness criterion. Write 

so that 
F(x) ~ cFa(x) , .c> 0 

for some c and all x, since F(x) < 1 is bounded. Hence clearly 

/-l(O)(A) ;S c-l/-l (A) , 

where the superfix (0) indicates that the quantity is relative to Fa. In 
particular, if /-l (A) is bounded above for some set 2 of lattices A, then 
so is ",(0) (A); and hence AiO) is bounded below a strictly positive number 
by Theorem IV [or by the weaker inequality (5) of § 3.1]; that is 

is bounded below. 

IAI = inf lal 
aE/\ 

,*,0 
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N ow we select a sequence of lattices /\T (1 ~ r < 00) not necessarily 
distinct such that 

d(/\T) = 1 
and 

{,u (/\T)}n --* b (F) . 

From what was proved in the last paragraph, 1/\,1 is bounded below 
by a positive number. Hence by MAHLER'S compactness criterion there 
is a convergent subsequence; without loss of generality 

/\, --* M. 

Then M clearly has the properties required. 

XI.3.3. Let /\ and /\* be polar lattices in the sense of Chapter I, 
§ 5. It was there shown that a necessary and sufficient condition that 
a point x belong to /\ is that the scalar product xa* be an integer for 
all a*E/\*. We develop now what may be regarded as a quantitative 
generalization of this statement. For a real number; we denote by 
11;11 the difference between; and the nearest integer either above or 
below taken positively, that is 

II; II = inf I; - mi· 
m=O, ±1, ±2, ... 

There will be no possibility of confusion with the notation II 't II where 't 
is a homogeneous linear transformation. 

THEOREM VI. Let F(x) be a symmetric convex n-dimensional distance 
function corresponding to a bounded set F(x) < 1 and let F*(x) be the polar 
distance-function. Let /\ and /\* be polar lattices. For any point xo write 

and 
K(x) = sup II a* xoll ° a"EN F*(a*) , 

~o 

where a* xo denotes the scalar product. Then 

(1 ) 

(2) 

0) 

The precise values of the constants in (3) are immaterial: what 
matters is that the ratio K(xo)/m (xo) lies between constants. Theorem VI 
goes back in essence to KHINTCHINE (1948a). KRONECKER'S Theorem 
follows from it in a few lines [compare Chapter V, § 8 of the author's 
tract (CASSELS 1957a), where a less general form of Theorem VI is 
given]. 
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We first prove the right-hand side of (3). Let 

:1)1 == :1)0 (A) . 

Then :1)1 a* differs from :l)oa* by the integer (:1)1 - :1)0) a* and so 

II:I)oa* II = 11:1)1 a* II ~ 1:1)1 a* I· 
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(4) 

(5) 

But now, by the definition of a polar function (Theorem III of Chap­
ter IV), and since F(:I)) is symmetric, we have 

Hence 

and so 
! 1:1)0 a* II ~ m (:1)0) F*(a*) , 

(6) 

(7) 

(8) 

on taking the infimum of the right-hand side of (7) over all:l)1 == :1)0 (A). 
This is just the right-hand side of (3). 

To prove the left-hand side of (3) we need the dual bases bi and b;* 
of Theorem VII, Corollary of Chapter VIII, for which 

F(bi)F*(b;)~(t)"-I(n!)2 (1~i~n). (9) 

Let :1)0 be any point, so that 

:1)0 = ~1 b1 + ... + ~"b" 
for some real numbers ~i' Then, by (2), 

II~ill = lib! :1)011 ~ K(:I)o) F*(bf) 

for 1 ~i ~ n. Choose integers ui so that 

IUi-~il =1I~ill. 
and let 

so 

Then by (9), (10) and (11), 

m (:1)0) ~ F(:I)1) 

~ L I~i - uil F(b j ) 
j 

= L II~iIlF(bj) 
j 

~ K(:I)o) L F*(bf) F(bj ) 
j 

= 2"~1 (n !)2 K(:I)o). 

which is the left-hand side of (3). 

(10) 

(11) 
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XI.3.4. In this section we prove a rather specialized transference 
theorem which we shall need in § 4. The proof uses the so-called tech­
nique of the additional variable which has often been used with success l . 

For example, the best result in the direction of Theorem V until the 
work of KNESER was proved by HLAWKA (1952a) using this technique. 
[It is reproduced in the author's tract (CASSELS 1957a) in a special case.] 

LEMMA 1. Let Fa (~) = I ~ I, where ~ = (Xl' X 2 , x3) is a 3-dimensional 
vector. Let AI' A2' A3 be the successive minima 0/ a lattice A with respect 
to Fa and let 

It = sup inf Fa (~) . 
z, z=z.(A) 

Then 

(1 ) 

and 
(2) 

We first prove (2). There are linearly independent points aj of A 
such that I a,l = Ai' Let cl , c2 , c3 be a set of mutually orthogonal 
vectors such that 

a1 = cl I 
a2 = V2l c1 + c2 

a3 = V31 c1 + V32 C2 + c3 

0) 

for real numbers vii' Then 

(1~i~3)· (4) 

But now, if ~o is any point, it is possible to choose integers "3' "2,"1 
successively in that order, so that 

~1 = ~o +"1 a1 + "2 a2 + "3"a = ~1 C1 + ~2C2 + ~3 c3 , 

where the numbers ~i satisfy 

(1~i~3)· 
Hence 

I~~I = ~~ I c112 + ... +~: I c312 ~ i (A~ + ~ + A:) 

by (4). This establishes (2). 
We now construct a 4-dimensionallattice M as follows. There is a 

point ~o such that 
fl = fl (A) = inf 1 ~ I· 

z=z.(A) 
(5) 

1 Apparently first used by MORDELL (1937a). 
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Let the number e be defined by 

e2 +,tt2 = At 
so 

e ~ lA.a. 
by (2). Then M is the set of all 4-dimensional points 

X = (a:. eu). 
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(6) 

(7) 

(8) 

in an obvious notation. where u runs through all integers and the vector 
a: satisfies the congruence 

(9) 
Clearl} 

d(M) =ed(A). 
If XEM and u*,0 we have 

IXI2 = 1a:12 + e2u2 ~ A= 

by (5) and (6) or by (7) according as u = ± 1 or lui> 1. The values 
taken by I X I with u = 0 and X E M are precisely those taken by I a: I 
with a:EA Hence the four successive minima of the function IXI with 
respect to M are AI. A2 • A.a. A4 • where AI. A2 • Aa are the minima of 1a:1 
with respect to A. as already defined. and 

A4 ~ A.a. 
(Indeed A4=A.a. but we do not need that.) 

By Theorem I of Chapter VIII and Theorem IV. Corollary of 
Chapter X. we have 

AI A2A:;£ AI A2Aa A4j 
;;£ 14:01 d (M) 

= 2d(M) 

= 2e d (A). 

(10) 

where r.. 0 is the lattice-constant of the 4-dimensional sphere I X 1< 1. On 
eliminating e between (6) and (10). we obtain the required inequality (i). 

We shall actually need Lemma 1 in the following shape: 

COROLLARY. To every point a:o there is a point a; = a:o (A) such that 

1 ~_12:::;;:~A2{~}i (11) 
""'l -4 3 Al A2 A3 • 

In the first place. 

3 e + e-3 = e + e + e + e-3 ~ 4 (12) 

for every number e> 0 by the inequality of the arithmetic and geometric 
mean. Hence it follows from (1) that 1'2 is at most equal to the 

Cassels, Geometry of Numbers 21 
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righthand side of (11). on using (12) with 

{ d(l\) }i 
e= ).1).2).3 • 

But now. since I zl < 1 is bounded. there is certainly an Z1 such that 

IZll = int I zl ~ p.; z_z, 
and the corollary follows. 

XI.4. Product of n linear forms. Let 

~ (z) = Ixl •.. x"I I ,,,. 

As in § 1.4 we put 

f-ll (A) = sup int ~ (z) • 
z, z .. z,(A) 

l) = sup (PI (I\))" 
1 A d(l\) • 

There is a famous conjecture of MINKOWSKI that 

l)l = 2-". 

(1 ) 

(2) 

That ~ ~ 2-" follows at once by considering the case when A =Ao 
in (2) is the lattice of points with integer co-ordinates andzo= (t ..... t). 
Clearly then ~(zo) ~t for all z = zo(I\,). and d(Ao) =1-

It is well known that 

{p.I(A)}" ~ 2-"d(A) 

if A is a sublattice of the integer lattice 1\,. The proof is simple. The 
lattice A has a basis 

b; = (bl ; •.•.• bi; • O •...• 0) • 

where the bii are integers and bi;=I=O. bi;==O for i>i. For any real 
numbers (XlO •.•.• x"o) we can thus choose integers u l • •..• u". in order. 
so that 

Iu;b jj + ... +u"b; .. +xiol ~jlbiil· 

For zl=Utbl +··· +u"b,,+zo. we then have 

as required. 
The conjecture (3) has been proved only for n = 2. 3. 4. A great 

many proofs of (3) for n = 2 for have been given; we shall present one in 
§ 4.2 due to SAWYER. This has the advantage that it gives naturally a 
result for the .. asymmetric" distance function I 

{k IXI x2 11 if Xl x2 ~ O} 1\ ,(z) = . 
, llx1 X2 1i if X1X2~0 

10f course Fk,/(a:) < 1 is symmetric about 0; but it is not symmetric in the 
four quadrants. 
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where k and l are positive numbers. These arise quite naturally even in 
originally symmetric problems; indeed the result we shall prove was 
first obtained by DAVENPORT (1948a) as a tool in his work on the "sym­
metric" problem for indefinite ternary quadratic forms. Further results 
about F;. I have been obtained, notably by BLANEY (1950a), BARNES 
and SWI~NERTON-DYER (19S4a) and, as an adjunct to anotherinvestiga­
tion, by BARNES (1956a). We refer the reader to these papers for further 
details. 

When n = 3, MINKOWSKI'S conjecture (3) was proved by REMAK 
(1923 a, b) and a simplified proof was given by DAVENPORT (1939a). 
We give DAVENPORT'S proof in § 4.3, having already paved the way in 
§ 3.4. A proof for n = 3 using different ideas has been given by BIRCH 
and SWINNERTON-DYER (1956a). 

When n =4 a proof of (3) has been given by DYSON (1948a) following 
the same general line as REMAK'S proof. It is an extremely powerful 
piece of work and requires tools from topology as well as from number­
theory proper. 

For n>4 only estimates for '1)1 are known. It was shown by TSCHE­
BOTAREW (1934a) that 

and this was improved by MORDELL (1940a) and by DAVENPORT (1946a) 
to 

where 'YJ .. s a number <1 such that 'YJ .. ---*(2e-1J-1 as n---*oo. Recently 
WOODS (1958c) has shown that TSCHEBOTAREW'S result may be im­
proved simply by using BLICHFELDT'S theorem instead of MINKOWSKI'S 
convex body theorem. MORDELL (1959a) remarks that this improvement 
can be combined with the earlier techniques. In particular, DAVENPORT'S 
'YJn can be replaced by a number which is asymptotically t'YJ .. for large 'YJ. 
We give TSCHEBOTAREW'S result with its impressively simple proof in 
§ 4.4. 

Some further results of a general nature are known about this 
problem. BIRCH and SWINNERTON-DYER (1956a) have shown that 

for all lattices 1\ in a certain neighbourhood of the integer lattice 1\0' 
and give some other facts relating to the general conjecture. The author 
(CASSELS 1952b) has shown that for any 8>0 and every n there are 
infinitely many lattices 1\ such that 

21* 
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and such that no two lattices A, A' of the set are of the type A' = t CJ) A, 
where t is real and CJ) an automorph of 1\(~); so if MINKOWSKI'S con­
jecture is true then the first minimum is certainly not isolated. ROGERS 
(1954c) has investigated the least number ,u~ (A) such that for every 
e> 0 and every ~o there are infinitely many solutions of 

1\ (~) < ,u~ (1\) + e 

and obtained general conditions for 1\ under which ,u~ (A) =,udl\). 
CHALK (1947a, b) has obtained the complete answer for what may 

be regarded as an extreme asymmetric version of MINKOWSKI'S problem. 
He shows namely that for any lattice 1\ and any point ~o there is an 
~1 = (XlI' .•. , X" 1) = ~o (1\) such that 

(1~i~n), 

X11 ••• X"l ~ d (1\). 

(4) 

(5) 

That ~ in (5) cannot always be replaced by < is shown by the simple 
example when 1\ =1\0 is the lattice of integer vectors and ~o=o. The 
case n =2 was obtained by DAVENPORT and HEILBRONN (1947a). When 
n=2, BLANEY (1957a) has given an interesting strengthened form: 
namely that for every ~o there is an ~1 = (xu, x2l) = ~o (1\) such that 

(i = 1,2) 
and 

i (126* - 11) d(/\) ~ XII X21 ~ d (1\), 

where the ~ on the left cannot be replaced by < for a certain lattice 
A The proof is a classic example of the local methods discussed in 
general terms in § 8 of Chapter X. COLE (1952a) has shown that to 
every ~o there is an ~1 = ~o such that 

(1~i~n-1) 
and 

X11 ••• x"_1,1Ix"11 ~ id (1\). 

CHALK (1947b) discusses when for given ~o there are infinitely many 
~1 = ~o (1\) satisfying (4) and (5). The principle behind the proof of 
CHALK'S theorem is similar to TSCHEBOTAREFF'S, and we prove it in 
§ 4.4. The idea has been put in a much more general form by MACBEATH 
(1952a) and C. A. ROGERS (1954b), but we do not go into that here. 

XI.4.2. The proof of MINKOWSKI'S conjecture in 2-dimensions may 
be made to depend on the following lemma due to DELAUNAY (1947a). 
He used it as a tool to investigate ,Ill (1\) (in the notation of § 4.1) for 
individual 2-dimensionallattices 1\; and the so-called "algorithm of the 
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divided cell" has been exploited further by BARNES and SWINNERTON­
DYER (1954a), and BARNES (1954a, 1956c). It was remarked by 
DELAUNAY (1947a) that the lemma does not generalize to 3 or more 
dimensions; and the same counter-example in 3 dimensions was given 
by BIRCH (1Q57a) in ignorance of DELAUNAY'S example. 

LEMMA 2. Let /\ be a 2-dimensional lattice and let Xo be a point not 
congruent modulo /\ to a point on either co-ordinate axis. Then there are 
4 points :11., x 2 , x 3 , x" each congruent to Xo modulo I\, where x; is in the 
j-th quadrant, so that 

(1 ) 

and x2 - Xl' X3 - Xl is a basis lor I\. 
The four points Xl' X 2 , X 3 , X, forms a "divided cell" -of the grid @ 

of points X == Xo (/\). Simpler proofs of Lemma 2 have been given by 
BAMBAH (1955b) and REDEl (1959a). We followREDEI. 

The proof depends on the following two propositions. 

PROPOSITION 1. Let YI' Y2' Y3' y, be lour points 0/ @ such that the 
quadrilateral YIY2Y3Y' is convex and contains no other point 0/ @ in its 
interior or boundary. Then Yl Y2 Y3 y, is a parallelogram and Y2- Yl' 

Y3- YI is a basis lor I\. 
This follows almost at once from Chapter III, Lemma 6. 

PROPOSITION 2. Let TI be a tine containing points 0/ @ in 3 quadrants. 
Let Yl be a point 0/ @ in the remaining quadrant. Suppose that there are 
points Y2' Y3 0/ @ on TI such that Yl' Y2' Y3 are the only points 0/ the closed 
triangle YI Y2 Y3 in @. Then Lemma 2 1:S true. 

For the line TI' through YI and parallel to TI also contains points 
of @ in three quadrants. It is then easy to pick out a divided cell with 
a pair of opposite -sides on TI and TI'. 

We now revert to the proof of Lemma 2. We can find 4 points 
Zl' Z2.' Z3' Z" with z; in the j-th quadrant, such that the (not necesarily 
convex) closed quadrilateral Zl Z2 Z3 z, contains as few points of @ as 
possible. The following three cases are all that can occur. 

(i) The quadrilateral Zl Z2 Z3 Z, is convex. It is then a split parallelo­
gram by Proposition 1. 

(ii) Three of the points Zl' Z2' Z3' z, are collinear. If, say, Z2' za, z, 
are on a line TI, then Lemma 2 follows from Proposition 2 applied to 
Zl and TI. 

(iii) One point, say Zl' is an inner point of the convex cover of the 
remaining three. By the minimal defining property of Zl' Z2' za, z" 
any point of @ in the closed quadrilateral Zl Z2 za z, other than Z2' za, z, 
must be in the first quadrant; and such points exist since Zl is one. 
We may thus choose a point t of @ in the first quadrant and in the 
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triangle Z2 Zs z" such that the only points of @ in the closed triangle 
Z2 Zs t are the vertices. Lemma 2 now follows from Proposition 2 on 
putting 

YI = zS, Y2 = Z2' Ys= t. 

Since we have now disposed of all three cases, this concludes the 
proof of Lemma 2. 

COROLLARY. II zi = (xli' X2i) then 

1IIxlix2il ~z-8{d(A)}'. 
i 

For the area of the divided cell is d(A). It is also the sum of the 
areas of the four triangles $f with vertices 0, zi' iri +1 (1 ~ i ~ 4; irs = irl). 
But now the area of $f is 

Hlxli X2,i+11 + IXI ,i+1 X2il}, 
and so 

2d(A) = L IXli x2,i+11 + L IX2i XI ,i+1l· 
i i 

The required inequality now follows on applying the inequality of the 
arithmetic and geometric means to the 8 terms on the right-hand side. 

We can now prove DAVENPORT'S generalization of MINKOWSKI'S 
conjecture for n = 2. 

THEOREM VII. Let (J, (J be positive numbers and 

16eO"~1. 

Then to every 2-dimensional point Zo and every lattice A there is a point 
ir' = iro (A) such that 

- (J d (A) ~ x~ x~ ~ a d (A). (2) 

The case e=a=i is, of course, MINKOWSKI'S conjecturel for n=2. 
When Zo is congruent to a point on an axis modulo A, there is nothing 

to prove. Otherwise we show that one of the four points iri (1~i~4) 
given by Lemma 2 will do. If not, we should have 

IXll X21 1 > ad (A), 

IXl2 xul > (J d (A), 

IX13X231 > ad(A), 

IX14 Xul > (Jd(A); 

which is in contradiction with Lemma 2, Corollary. 

The reader should not find it difficult to verify that when (J =a = 1 
the only case when the equality signs are needed in (2) is when 
A =twAoandiro= tw ('Lt) (A), wheret > 0, wisanautomorphofxl x2 and 

1 Proved by MINKOWSKI in this case. 
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Ao is the lattice of integers. DAVENPORT (1948 a) showed that the equality 
signs may be needed when e=FO'. On the other hand it follows from 
CHALK'S Theorem of § 4.4 that something stronger is certainly true if 
e>1 or 0'>1; and BLANEY (1950a) has given stronger results which 
cover the cases when e or 0' is near 1. 

XI.4.3. We now give the REMAK-DAVENPORT proof of MINKOWSKI'S 
conjecture in 3 dimensions, which depends on the following 

LEMMA 3. Let A be any 3-dimensional lattice. Then there exist 
numbers Pj>O, (1 ~i~3) such that there are no points 0/ A other than 0 

in the ellipsoid 
(1) 

but there are three linearly independent points 0/ A on the boundary 0/ tf. 
We call the ellipsoid tf free if 0 is the only point of A in it. We shall 

assume that a free ellipsoid cannot have three linearly independent 
points of A on the boundary, for some particular lattice A, and will 
ultimately deduce a contradiction. 

We note first that 

P1P2P3~(~r{d(A)}-2>0 (2) 

for any free ellipsoid, by MINKOWSKI'S convex body theorem: the 
constant in (2) is not important; all that is important is that it is positive. 

Secondly, if ±fIt, ±oa, ±Os are three linearly dependent pairs of 
points of A on the boundary of a free ellipsoid, we must have 

for some choice of the three ± signs, since the ±OJ lie on a plane through 
the origin and so are points of a2-dimensionallattice on the boundary 
of an ellipse which contains no point of the lattice (Theorem XI of 
Chapter V). 

Thirdly, under our hypothesis, if there are two pairs of points 
± fit and ± 02 of A on the boundary of a free ellipsoid, they cannot 
both lie in the same co-ordinate plane, say, x1=0. For then we should 
have 

p2a~1 + P3a~1 = 1, 01 = (0, an, as1) 
p2a~2 + Paa~2 = 1, 02 = (0, au, as2)· 

If P1 is decreased but Pa, Pa kept constant, the points 01' Os remain on 
the boundary and the volume of the ellipsoid increases. Ultimately 
there must come a third point on the boundary for some value of P1' 
since it is impossible to decrease P1 to ° without a point of A entering 
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the ellipsoid. by (2). Hence for some PI the ellipsoid is free but there 
are points a,.. az. as on the boundary. where as is not on x1=0. This 
contradicts the hypothesis whose absurdity we wished to prove. 

Fourthly we show (on our hypothesis) that if there is a free 
ellipsoid (1) with the points ±a1 • ±azEA on the boundary. then there 
is one with ±a,.. ±az and ± (a,. +a2) on the boundary. For put 
as=a,.+a2 • a4=a,.-aZ' and write 

Then 
(1~i~4). 

(f=1.2) } 

(f=3.4). 

There are numbers ql. qz. q3 not all 0 such that 

(i = 1.2). (4) 

and after a change of sign. if need be. we may suppose without loss of 
generality thatl 

qla~4 + qza~4 + q3a~4 ~ O. (5) 

We now consider the ellipsoids 

(PI + t ql) ~ + (PI + t qz) ~ + (P3 + t q3) x~ = 1 
where 

t~o. 

Since at least one of ql. qz. q3 is negative by (4). as t increases from 0 
the inequality (2) with Pi+tqi for Pi must fail for some t; so there 
must be some value of t at which for the first time a lattice point enters 
the ellipse 8. This cannot be a4 • by (5). and so must be ±as= ± (a,. +az) 
by the second remark; which concludes the proof of the fourth remark. 

We now prove the lemma. It is clear that we can obtain free ellipsoids 
with two pairs of points ±a,.. ±azEA on the boundary by varying the 
parameters Pi appropriately. By the fourth remark. there is then a free 
ellipse with a,.. al' a,.+az on the boundary. Then by the fourth remark 
applied to a,. and a,. +az there is a free ellipse with a,.. a,. +az and 
2a1 + az on the boundary. By induction. there is an ellipsoid 

pin) ~ + p~n) x: + p~n) x~ < 1 

with a,.. n a,. +az• (n + 1) a,. +az on the boundary. In particular. 

pin) (nau + ~z)z+ p~n)(na21 + a22)2+p~n)(naal + aaz)z= 1. (6) 

1 It is readily verified that there cannot be equality in (5). since the deter­
minant of the three forms in q1' qat qa in (4) and (5) does not vanish. But we do 
not need this. 
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We distinguish three cases. Suppose, first, that an =1= 0, a 21 =l=O, a31=1=O. 
Then, by (6), 

(j=1,2,3) (n-+oo), 

in contradiction to (2). Suppose now that precisely one of an, a 21 , aal 
vanishes, say, an=U, a21 =1=O, a31 =1=O. Then by the third remark above 
we have a12=1= 0, and so 

(j = 2, 3), 

again in contradiction to (2). Finally, suppose that two of an, a 21 , aal 

vanish, say, an =a21 =O=l=aai' Then al2 =1= 0=1= a22 , and so 

P(n) < a:- 2 
1 = 12 (j = 1,2), p~n) -+ 0, 

again in contradiction with (2). Since we have reached a contradiction 
in every case, we have proved the absurdity of our initial hypothesis 
and so the lemma is true. 

MINKOWSKI'S conjecture for n = 3 now follows in a few lines from 
Lemma 3 and Lemma 1 Corollary. 

THEOREM VIII. Let A be any 3-dimensionallattice and Xo any point. 
Then there is an Xl = (xn, x21 , xal) == Xo (A) such that 

(7) 

Let PI' P2' Pa be the numbers given by Lemma 3, so that A has no 
point in Pl x~ + P2 x~ + Pa x~ < 1, but three linearly independent points 
on the boundary. Hence the three successive minima of A with respect 
to the distance-function 

F(x) = (PI xi + P2 x~ + Pa x~)~ 
are 

(8) 

(9) 

We may now apply Lemma 1 Corollary to the lattice M of points 

(Pi Xl' PR x2 , pg Xa), (Xl' x2 , Xa) E A, 
with determinant 

d (M) = (PI P2 Pa)! d (A) 

and with successive minima with respect to I xl given by (9). 
any Xo there is a congruent Xl such that 

p. xl. +P,r.. +p,r.. '" : W~U' ) 
= - (PIP2Pa)i{d(A)}i. 

4 

Hence to 

(10) 

The required inequality (7) now follows at once from (10) and from the 
inequality of the arithmetic and geometric means. 
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The reader should have no difficulty in showing that the sign of 
equality in (7) is required only when A =twAo for some number t=j=0, 
and some automorph w of "1"2"3, where Ao is the lattice of points with 
integral co-ordinates; and then only for ~o==two(-Lt,t) (A). Note 
that to have equality in (7) one must have equality in both applications 
of the inequality of the arithmetic and geometric means; that going 
from Lemma 1 to Lemma 1 Corollary and that going from (10) to (7). 

XI.4.4. We now prove 1 the theorems of TSCHEBOTAREW and CHALK. 
Since CHALK'S theorem is slightly simpler, we prove that first. 

THEOREM IX. Let A be an n-dimensional lattice and ~o a point. 
Then there is an ~1 = ("11' ... , "nl) == ~o (A) such that 

";1>0 (1~i~n), (1) 

"l1 ... "nl~d(A). (2) 

There certainly is a point ~2 = ("12' ... , "n 2) = ~o (A) for which 

";2>0 (1~i~n). (3) 

If II "i2~d(A), then we may put ~1=~2' Otherwise we have 

II ";2> d(A), (4) 

and so, by MINKOWSKI'S convex body theorem, there is a point a=!=o 
of A such that 

(1~i~n). (5) 

By considering 2'a instead of a with a suitably chosen integer r~O, 
we may suppose, further, that 

la,1 ~tl"'21 (6) 

for at least one integer J. Then the two points 

~2 ± a = ~± = ("i', .. " ,,;=) 
are both congruent to ~o and lie in the quadrant ";>0 (1~i~n). 
Further, 

II xt II X7 (I I ) 
; '; 1 =II x;l-a, :5:~ 

II X, x~ -4' 
; ,. ; " 

since by (5) and (6) every factor on the right-hand side is ~ 1, and one 
at least is ~ 1. Hence choosing for ~3 that one of ~± for which II x; 
is least, we have 

"i3>0 (1~i~n); II "i3 ~ (1)6 II "j2" 
; i 

1 Following MACBEATH (1952a), but in our special cases the argument can be 
simplified. 
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If IT xi3~d(A). then we may put :1:1 =:1:3 , Otherwise we repeat the 
process with :1:3 instead of :1:2 and obtain an :1:, with 

(1~i~n); IT xi' ~ (l)l IT xi3 ~! II X,2' 
iii 

And so on. Clearly an :1:1 is reached in a bounded number of steps, 
with a bound that can be given explicitly in terms of II xi 2' This 
concludes the proof. i 

A similar idea gives TSCHEBOTAREW'S 

THEOREM X. Let A be any n-dimensional lattice, e an arbitrarily 
small number and :1:0 a point. Then there is a point :1:1 = (X11' "', xn1) =:1:0 

(A), such that 
IX11 ••. xn1 1 ~ (rn/2 + e) d(I\). 

Let t be the number such that 

(2- n/2 + e) tn = 1 , 
so 

(7) 

(8) 

(9) 

If IT IXiol~(rn/2+e) d(I\), there is nothing to prove, so we may 
i 

suppose that 
VIXiOI > (rn/2+e)d(l\) } 

= t-nd(I\). 
(10) 

By MINKOWSKI'S convex body theorem, there is a point a=!=o in 1\ for 
which 

(1~i~n). (11) 

As in the proof of Theorem IX, we may suppose, on taking 2'a with 
suitable integer r~O, that 

(12) 
for some J. Put 

:I:± =:1:0 ±a, 
so that 

If xi If Xi ( a~ ) 
1 , =II 1 __ ' n x. x •. 

. 10 ,10 
1 

(13) 

But 
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by (12). Hence, on taking for z,. that one of z± for which II I xi I is least, 
we have 

where 
52 = max {I 1 - t21, 11- it21}< 1. 

As in the proof of IX we reach an ZI satisfying (7) after a finite 
number of steps, the number of steps being bounded by a number 
depending only on n, II IXiOI and E. This concludes the proof. 

i 

Appendix 

In this appendix we list the lattice constants of some sets connected 
with quadratic forms and give further references and some additional 
comments. We write 

~"s(z) = x~ + ... + x~ - x~+1 - ... - x~+s, 

and denote by r"s the lattice constant of the set 

I ~"sl < 1 
in n-dimensional space, where 

n=r+5. 

Results about definite forms are usually given in terms of 1' .. where 
1': = r,;:o·. The first 8 values are known: 

I'~ = 1, 

I'~ = 8, 

I'~ = t, 
1': = ~:-, 

I'~ = 2, 

I'~ = 64, 

The value of 1'1 is trivial; the values of 1'2,1'3'1', have been found 
in this book (Chapter II, Theorems II,. III and Chapter X, Theorem IV, 
Corollary). For references and a list of the corresponding critical forms 
see CHAUNDY (1946a), who gives proofs that 1':=28, l'~g=2J.°/3; but 
CHAUNDY'S proofs contain a lacuna. Presumably his line of argument 
would lead to incorrect results by n = 12; see COXETER and TODD (1953 a) 
for a special form in 12 variables. 

For indefinite forms we have 

n2 _5 .lI,I-4" 

1;~1 = I;.~2 = ! 
I~~2 =! 
To2 nll 7 3,1 =.lI,3 = 4" 
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due to HURWITZ, MARKOFF, OPPENHEIM and OPPENHEIM respectively, 
the proofs being reproduced in DICKSON (1930a). We have proved all 
except the last line in the book (Chapter II, Theorems IV, VII and 
Chapter X, Theorem IV, Corollary). All are isolated. The successive 
minima of I fIJI, I I < 1 are the MARKOFF Chain (see Chapter 2, § 4). The 
first 11 minima for I flJ2,II < 1 and the first 7 minima for I flJ2, 21 < 1 have 
been given by VENKOV (1945a) and OPPENHEIM (1934a) respectively. 
It is conjectured that I fIJ" sl < 1 is of infinite type when r>O, s>O, 
r +s~ 5, see DAVENPORT (1956a)l. 

Let B" s be the lattice constant of 

Then 
0< fIJ"s < 1. 

B2 I 
1,1 =4; 

B2 1 
2,1 =4;, 

The value of BI,I is given by Theorem V of Chapter II. The results in 
the second row are due to DAVENPORT (1949a); both are isolated and 
something is known about further minima, see OPPENHEIM (1953a). 
The results in the third row are due to OPPENHEIM (1953 b) and again 
something is known about successive minima. In all cases the critical 
lattice has points a=F0 at which fIJ"s(a) =0. 

Let A"s be the lattice constant of 

O~fIJ"s<1. 
Then 

A2 81 
2,2 = 64-' Aa2 1> .2I , = a2' Ata~-~-. 

The value of Al I follows at once from Theorem VI of Chapter II. The 
rest are due to BARNES (1955a) and BARNES and OPPENHEIM (1955a). 

If a quadratic form in n~ 3 variables takes arbitrarily small non-zero 
values of one sign then it also takes arbitrarily small values of the 
other sign. If a quadratic form represents 0, has two of its coefficients 
in an irrational ratio and has n~ 5 variables, then it takes arbitrarily 
small values of both signs (OPPENHEIM 1953c, d). 

1 For later work on this problem, mainly due to DAVENPORT and BIRCH, see 
RIDOUT (1958a). 
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- (for cubic forms) 51 
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- (in sense of MAHLER) 152 
affine transformation 19 
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256 

basis (of lattice) 9 
BLICHFELDT'S theorem 69 
boundedly reducible 154 

class: see congruence class 
compact 67 
compatible 283 
congruent 194, 303 
congruence class 194 
continued fractions 301 
con vergence (of lattices) 126 
convex (point set) 2, 64 
- (distance function) 104 
critical 6, 80, 141, 142 
- (in sense of MAHLER) 152 
cube (generalised) 105 
cylinder (generalised) 227 

determinant viii, 5, 123 
distance function 103 
divided cell 325 

equivalent (forms) 22, 23 
extreme 165 

finite type 80, 141 
fully reducible 154 
fundamental parallelopiped 69, 196 

grid 303 

hexagon lemma (of DIRICHLET) 233 
hessian 54 
homogeneous problem 1 

improper equivalence 23 
infinite type 80, 141 
infinitely many lattice points in a set 

155,298 
inhomogeneous problem 7 
invariant 51 
isolation 38, 286 

Jordan-volume 175 

lattice viii, 9 
- (inhomogeneous) 303£.n. 
lattice-constant viii, 64, 80 
linear transformation: see affine trans­

formation 
length (of vector) viii, 66 
LITTLEWOOD'S principle 34 

LITTLEWOOD'S problem 172 
local methods 301 

MARKOFF chain 36 
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MINKOWSKI'S convex body theorem 71 
- linear forms theorem 73 

non-null (function non-null on a lattice) 
261 . 

non-singular: see singular 
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orthogonal 206f. n. 

packing, lattice packing 223 
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polar basis 23 
- convex body 105, 113 
- distance function 113, 114 
- lattice 23 
- transformation 26, 114 
primitive (lattice point) 24, 85 
proper equivalence 23 
proportional to integral 261 

quotient space 194 
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reduction in sense of MINKOWSKI 28 

semi-definite 103 f. n. 
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singular cubic forms 51 
- transformations 123 
star body 84 
- set 104, 153 
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minimum of quadratic forms) 36 
(of distance function with respect to 
lattice) 201 

- (inhomogeneous problems) 305 
support-plane: see tac-plane 
SYLVESTER'S lemma 188 
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transference theorems 308, 313 
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