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Preface
Of making many bookes there is no

end, and much studie is a weari-
nesse of the flesh.

Ecclesiastes X1I, 12,

When I first took an interest in the Geometry of Numbers, I was
struck by the absence of any book which gave the essential skeleton
of the subject as it was known to the experienced workers in the subject.
Since then the subject has developed, as will be clear from the dates
of the papers cited in the bibliography, but the need for a book remains.
This is an attempt to fill the gap. It aspires to acquaint the reader with
the main lines of development, so that he may with ease and pleasure
follow up the things which interest him in the periodical literature.
I have attempted to make the account as self-contained as possible.

References are usually given to the more recent papers dealing with
a particular topic, or to those with a good bibliography. They are given
only to enable the reader to amplify the account in the text and are
not intended to give a historical picture. To give anything like a reason-
able account of the history of the subject would have involved much
additional research.

I owe a particular debt of gratitude to Professor L. J. MORDELL,
who first introduced me to the Geometry of Numbers.

The proof-sheets have been read by Professors K. MAHLER, L.J.
MorpDELL and C. A. RoGeERrs. It is a pleasure to acknowledge their
valuable help and advice both in detecting errors and obscurities and
in suggesting improvements. Dr. V.ENNoOLA has drawn my attention to
several slips which survived into the second proofs.

I should also like to take the opportunity to thank Professor F. K.
ScuMIDT and the Springer-Verlag for accepting this book for their
celebrated yellow series and the Springer-Verlag for its readiness to
meet my typographical whims.

Cambridge, June, 1959 J. W. S. CasSELS
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Notation

An effort has been made to distinguish different types of mathemati-
cal object by the use of different alphabets. It is not necessary to
describe the scheme in full since an acquaintance with it is not pre-
supposed. However the following conventions are made throughout the
book without explicit mention.

Bold Latin letters (large and small) always denote vectors. The
dimensions is #, unless the contrary is explicitly stated: and the letter %
is not used otherwise, except in one or two places where there can be
no fear of ambiguity. The co-ordinates of a vector are denoted by the
corresponding italic letter with a suffix 1, 2, ..., n. If the bold letter
denoting the vector already has a suffix, then that is put after the
co-ordinate suffix. Thus:

a=(a,...,a,)
br: (bln "'rbnr)
X, = (Xig .., Xp0)-
The origin is always denoted by 0. The length of @ is
|®| = (23 + - + xn).
Sanserif Greek capitals, in particular A, M, N, T, denote lattices.
The notation d(A), 4(¥), V(&) for respectively the determinant
of the lattice A and for the lattice-constant and volume of a set &
will be standard, once the corresponding concepts have been introduced.
Chapters are divided into sections with titles. These sections are
subdivided, for convenience, into subsections, which are indicated by a
decimal notation. The numbering of displayed formulae starts afresh
in each subsection. The prologue is just subdivided into sections without

titles, and it was convenient to number the displayed formulae con-
secutively throughout.



Prologue

P1. We owe to MiNnkowskl the fertile observation that certain
results which can be made almost intuitive by the consideration of
figures in #n-dimensional euclidean space have far-reaching consequences
in diverse branches of number theory. For example, he simplified the
theory of units in algebraic number fields and both simplified and
extended the theory of the approximation of irrational numbers by
rational ones (Diophantine Approximation). This new branch of
number theory, which Minkowsk1 christened “The Geometry of Num-
bers”, has developed into an independent branch of number-theory
which, indeed, has many applications elsewhere but which is well worth
studying for its own sake.

In this prologue we first discuss some of the concepts and results
which will play a leading réle. The arguments we shall use are some-
times rather different from those in the main body of the text: since
here we wish to make the geometrical situation intuitive in simple cases
without necessarily giving complete proofs, while later we may need to
sacrifice picturesqueness for precision. The proofs in the text are inde-
pendent of this prologue, which may be omitted if desired.

P2. A fundamental and typical problem in the geometry of numbers
1s as follows:

Let f(xy,...,x,) be a real-valued function of the real variables
%y, ..., x,. How small can |f(uy, ..., u,)| be made by suitable choice
of the integers u;,...,u,? It may well be that one has trivially
1(0,...,0)=0, for example when f(x,, ..., x,) is a homogeneous form;
and then one excludes the set of values u,=wu,=-.-=u,=0. (The
“"homogeneous problem”.)

In general one requires estimates which are valid not merely for
individual functions f but for whole classes of functions. Thus a typical

result is that if
F(x1, 2%0) = @y 28 + 20, %, %5 + 490 %3 (1)
is a positive definite quadratic form, then there are integers #;, u, not
both 0 such that
fln, uy) < (4Df3), (2)
where
D =ay 8y, a3,

Cassels, Geometry of Numbers 1



2 Prologue

is the discriminant of the form. It is trivial that if the result is true
then it is the best possible of its kind, since

ug + gty + 05 = 1

for all pairs of integers #,, #, not both zero; and here D=3$.

Of course the positive definite binary quadratic forms are a par-
ticularly simple case. The result above was known well before the birth
of the Geometry of Numbers; and indeed we shall give a proof sub-
stantially independent of the Geometry of Numbers in Chapterll, §3.
But positive definite binary quadratic forms display a number of argu-
ments in a particularly simple way so we shall continue to use them as
examples.

P3. The result just stated could be represented graphically. An
inequality of the type
f (xl ’ x2) § k ’

where f(x,, x,) is given by (1) and % is some positive number, represents
the region # bounded by an ellipse in the (x,, x,)-plane. Thus our
result above states that & contains a point (u,, u,), other than the
origin, with integer coordinates provided that k= (4D/3)}.

A result of this kind but not so precise follows at once from a
fundamental theorem of Minkowskl. The 2-dimensional case of this
states that a region # always contains a point (u,, #,) with integral
co-ordinates other than the origin provided that it satisfies the following
three conditions.

(i} # is symmetric about the origin, that is if (x;, x,) is in # then so
is (— 2, — x,).

(i) # is convex, that is if (x,, x,) and (y,, y,) are two points of #
then the whole line segment

A+ —Ny, Ax+ (11— 24)y} (o=i=1)
joining them is also in #.
(iii) # has area greater than 4.
Any ellipse (x,, x,) <% satisfies (i) and (ii). Since its area is
__kn b
(411855 — a%,)* ~ pt’

it also satisfies (iii), provided that kAz>4D} We thus have a result
similar to (2), except that the constant ($)? is replaced by any number
greater than 4/x.

P4. It is useful to consider briefly the basic ideas behind the proof
of MiNkOWSKI'S theorem, since in the formal proofs in Chapter 3 they



Prologue 3

may be obscured by the need to obtain powerful theorems which are
as widely applicable as possible. Instead of the region #, MINKOWSKI
works with the region ¥=3Z# of points (}x,, 3x,), where (%, x,) is
in Z. Thus % is symmetric about the origin and convex: its area is
that of # and so is greater than 1. More generally, MiNxowskI considers
the set of bodies & (u,, u,) similar and similarly situated to & but
with centres at the points (u,, #,) with integer co-ordinates.

We note first that if & and & (ul, #y) overlap then?! (u,, u,) is in Z.
For let a point of overlap be (§,&,). Since (£,&,) is in & (u,, u,)

the point (&—wu,, &~—u,) must
be in .¥. Hence, by the symmetry
of &, the point (u,— &, u,—&,) is
in &. Finally, the mid-point of

(u— &, uy—&,) and (&, &) is in
S because of convexity, that is
1 1 . .

2,2 )

(24,34 is in &, and (4, u,

is in #, as required. It is clear
that &(u,, u,) overlaps & (uy, u)
when and only when & overlaps
Lty — Uy, Wy Us).
To prove MINKOWSKI'S theorem,
1t is thus enough to show that when

the % (u,, u,) do not overlap then Fig. 1

the area of each is at most 1. A

little reflection convinces one that this must be so. A formal proof
is given in Chapter 3. Another argument, which is perhaps more intuitive
is as follows, where we suppose that & is entirely contained in a square

la| =X, |x|=X.

Let U be a large integer. There are (2U +1)2 regions & (u,, u,) whose
centres (u,, u,) satisfy
| S U, |u,|<U.

These # (u,, u,) are all entirely contained in the square

In|=U+X, %= U+ X

of area
4(U + X)2
Since the & (u,, u,) are supposed not to overlap, we have
QU 1)V =4(U +X)3,

1 The converse statement is trivially true. If (uy, uy) is in A then ($u,, du,)
is in both & and & (u,, u,).

1*



4 Prologue

where V is the area of #; and so of each % («,, #,). On letting U tend
to infinity we have V<1, as required.

P5. A change in the co-ordinate system in our example of a definite
binary quadratic form f(x,, #,) leads to another point of view. We may
represent f(x,, x,) as the sum of the squares of two linear forms:

f(xl:x2) =Xf+X2) (5)
where
Xi=ax+px, X,=yx+0x (4)

and «, f, v, 0 are constants, e.g. by putting
a=a};, B=a;ia,,
y =0, 6 =at Dt

Conversely if «, §,,0 are any
real numbers with «d—fy==0 and
X;, X, are given by (4), then

(x+8,7+0)

@-p,p-)
X4 Xi=ay 25+ 281, %, %y + 450 73,

with

ayy =a? +
a, =ad+fy, (5)
ayy =2 + 0%,

is a positive definite quadratic form
with

Fig. 2 D—_—auun—a%z:(“é“ﬂ)’)z' (6)

We now consider X;, X, as a system of rectangular cartesian co-
ordinates. The points X,, X, corresponding to integers x;, x, in (4) are
then said to form a (2-dimensional) lattice A. In vector notation A is
the set of points

(X1, Xo) = w (0, p) +u2(B,9), (7)

where %,, u, run through all integer values.

We must now examine the properties of lattices more closely. Since
we consider A merely as a set of points, it can be expressed in terms
of more than one basis. For example

(«—=B.y—0), (=B —9

is another basis for A. A fixed basis («, §), (v, §) for A determines
a subdivision of the plane by two families of equidistant parallel
lines, the first family consisting of those points (X;, X;) which can be
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expressed in the form (7) with u, integral and %, only real, while for
the lines of the second family the roles of », and u, are interchanged.
In this way the plane is subdivided into parallelograms whose vertices
are just the points of A. Of course the subdivision into parallelograms
depends on the choice of basis, but we show that the area of each
parallelogram, namely

|ad — Byl

is independent of the particular basis. We can do this by showing that
the number N(X) of points of A in a large square

2(X): X=X, X=X
satisfies
NX) 1
4 X2 jed —By]

(X — o0).

Indeed a consideration along the lines of the proof of MiNKOWSKI'S
convex body theorem sketched above shows that the number of points
of A in 2(X) is roughly equal to the number of parallelograms contained
in 2(X), which again is roughly equal to the area of 2(X) divided by
the area |ad — fy| of an individual parallelogram. The strictly positive
number

d(N) =|ad —By| (8)

is called the determinant of A. As we have seen, it is independent of
the choice of basis.

P6. In terms of the new concepts we see that the statement that
there is always an integer solution of f(x,, x,) < (4D/3)} is equivalent
to the statement that every lattice A has a point, other than the origin, in

X3+ X3S (). )

On grounds of homogeneity this is again equivalent to the statement
that the open circular disc

2 X+ Xi< (10)

contains a point of every lattice A with d(A)< (3)}, and the fact that
there are forms such that equality is necessary in (2) is equivalent to
the existence of a lattice A, with determinant d(A) = (2)¢ having no
point in 2. So our problem about all definite binary quadratic forms
is equivalent to one about the single region 2 and all lattices. Similarly
consideration of the lattices with points in

| X, X, <1
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gives us information about the minima of indefinite binary quadratic
forms:

inf [ f(uy, u,)|:
4y, %, integers
not both ¢

and so on.

These considerations prompt the following definitions. A lattice A
is said to be admissible for a region (point-set) # in the (X, X,)-plane
if it contains no point of # other than perhaps the origin, if that is a
point of #. We may say then that A is #-admissible. The lower bound
A(R) of d(N) over all Z-admissible lattices is the lattice-constant of #:
if there are no #-admissible lattices we put A(R)=oc. Then any
lattice A with d(A)<4(R) certainly contains a point of # other than
the origin. An #-admissible lattice A with d(A\) =4 (%) is called critical
(for #): of course critical lattices need not exist in general.

The importance of critical lattices was already recognized by
MinkowskI. If A, is critical for # and A is obtained from A, by a
slight distortion (i.e. by making small changes in a pair of base-points)
then either A has a point in # other than the origin or d{(A}=d(A)
(or both).

As an example, let us again consider the open circular disc
2 XP4+Xic,

Suppose that A, is a critical lattice for 2. We outline a proof that a
critical lattice, if it exists, must have three pairs of points +(4,, 4,),
+(B,, By), +(C,,C,) on the boundary X%+ X:i=1 of 2. For if A,
had no points on X? - X%=1, we could obtain an Z-admissible lattice
with smaller determinant from A, by shrinking it about the origin, that
is by considering the lattice A=¢A,  of points (¢X,,tX,), where
(X1, X,) €A and 0<<¢<<1 is fixed. Then 4(A)=£d(A)<d(A,), and
clearly A would be also Z-admissible if ¢ is near enough to 1. Hence A,
contains a pair of points on X% + X3 =1, which, after a suitable rotation
of the co-ordinate system, we may suppose to be 4 (1, 0). If there were
no further points of A, on X3+ X%=1 then we could obtain a 2-
admissible lattice A of smaller determinant by shrinking A, perpendicular
to the Xj-axis, that is by taking A to be the lattice of (X|,?1X,),
(X1, X,) €A,, where ¢ is near enough to 1. Finally, if A, had only two
pairs of points +4(1,0), +(B,;, B,) on the boundary, then it is not
difficult to see that it could be slightly distorted so that (1, 0) remains
fixed but (B,, B,) moves along X} + X} =1 nearer to the X;-axis, cf.
Fig. 3.

This can be verified to decrease the determinant of the lattice
[indeed (1, 0) and (B,, B,) can be shown to be a basis for A], and for
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small distortions the distorted lattice A will still be @-admissible.
Hence a critical lattice A, (if it exists) must have three pairs of points
on Xi+X3=1:and it is easy to verify that the only lattice with three
pairs of points on X3 + X2 =1, one of them being + (1, 0), is the lattice

N’ with basis
O\\

1 1/3), o™
(1,0), (2’ 4) /,9,-/,8/

This has the vertices of
a regular hexagon

+(1,0),
+(513).
+(—4.13)
on X34 X2%=1, but no
points in X}-+X3<1.
We have thus shown
that A(D) =d (N\') = (3)}
provided that & has ‘Q ™~
a critical lattice. MIN- Fig. 3
KOWSKI showed that
critical lattices exist for a fairly wide set of regions # by, roughly speak-
ing, showing that any #-admissible lattice A can be gradually shrunk
and distorted until it becomes critical. In the text we give a more
general proof of the existence of critical lattices using concepts due to
MAHLER which turn out to have much wider significance.

Ol1,0)

P7. Another general type of problem is the typical “inhomogeneous

problem”: Let f(x,, ..., x,) be some real-valued function of the real
variables x,, ..., %,. Itisrequired to find a constant k with the following
property: If &, ..., &, are any real numbers there are integers u,, ..., «,
such that

[]‘(El—ul,...,fn—u")lék.

Questions of this sort turn up naturally, for example in the theory
of algebraic numbers. Again there is a simple geometric picture. For
simplicity let # =2. Let £ be the set of points (x,, %,) in the 2-dimen-
sional euclidean plane with

|f(x1:x2)l sk

Denote by % (u,, uy), where u,, 4, are any integers, the region similar
to # but with the displacement u,, u,; that is % (u;, u,) is the set of
points x,, %, such that

[F (%, — wy, 2, — uy)| < k.
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Then the inhomogeneous problem is clearly to choose %2 so that the
regions % (u,, #,) cover the whole plane. In general one will wish to
choose %, and so %, as small as possible so that it still has this covering
property. Here we have a contrast with the treatment of the homo-
geneous problem in § 4, where the objective was to make the regions
[there denoted by & (, v}] as large as possible but so that they did not
overlap.

In this book we shall mainly be concerned at first with the homo-
geneous problem. Only when we have a fairly complete theory of the
homogeneous problem will we discuss in Chapter XI the inhomogeneous
problem and its relation to the homogeneous one.



ChapterlI

Lattices

1.1. Introduction. In this chapter we introduce the most important
concept in the geometry of numbers, that of a lattice, and develop some
of its basic properties. The contents of this chapter, except § 2.4 and
§ 5, are fundamental for almost everything that follows.

In this book we shall be concerned only with lattices over the ring
of rational integers. A certain amount of work has been done on
lattices over complex quadratic fields, see e.g. MULLENDER (1945a) and
K. RoGERs (1955a). Many of the concepts should carry over practically
unaltered. Again, work on approximation to complex numbers by
integers of a complex quadratic field [e.g. MULLENDER (1945 a), CASSELS,
LepERMANN and MAHLER (1951a), Portou (1953 a)] and on the minima
of hermitian forms when the variables are integers in a quadratic field
[e.g. OPPENHEIM (1932a, 1936a, 1953f) and K. RoGERs (1956a)] may
be regarded as a generalization of the geometry of numbers to lattices
over complex quadratic fields. We shall not have occasion to mention
lattices over complex quadratic fields again in this book; we mention
them here only for completeness. For lattices over general algebraic
number fields see ROGERS and SWINNERTON-DYER (1958a).

1.2. Bases and sublattices. Let @, ..., a, be linearly independent
real vectors in n-dimensional real euclidean space, so that the only set of
numbers 4, ..., ¢, for which fa,+ - +f,@,=0 is t,=t,=--- =1,=0.
The set of all points

r=wa+- - +u,a, (1)
with integral #,, ..., u, is called the lattice with basis @,, ..., @,. We
note that, since a, ..., @, are linearly independent, the expression of
any vector @ in the shape (1) with real %,, ..., %, is unique. Hence if
isin A and (1) is any expression for & with real %;, ..., ,, thenu,, ..., %,
are integers. We shall make use of these remarks frequently, often
without explicit reference.

The basis is not uniquely determined by the lattice. For let a; be

the points , ..
P @;=Xv,a, (15, (<), 2)
)

where v,; are any integers with

det(v;;) = +1. (3)
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Then

a;, =2 w,;q; (4)
7
with integral w;;. It follows easily that the set of points (1) is precisely
the set of points
way + - +u,a,

’

where uy, ..., u, run through all integers; thatisa,, ..., a,and ay, ..., a,
are bases of the same lattice. We show now that every basis a; of a
lattice A may be obtained from a given basis @, in this way. For since
a, belongs to the lattice with basis @, ..., @, there are integers v;; such
that (2) holds: and since @; belongs to the lattice with basis ay, ..., a,
there are integers w;; such that (4) holds. On substituting (2) in (4)

and making use of the linear independence of the a;, we have
- 1 if 1=
W . V. =
21 {0 otherwise.
Hence
det (w;,) det (v;;) =1

and so each of the integers det (w;;) and det (v;;) must be 4-1; that is
(3) holds as required.
We denote lattices by capital sanserif Greek letters, and in particular
by A, M, N, T.
If a,...,a, and a;, ..., a, are bases of the same lattice, so that
they are related by (2) and (3), then we have
det(ay, ..., a,) =det(v,;) det(a,, ..., a,) = + det(a,,...,a,),

where, for example, det(a,, ..., @,) denotes the determinant of the
n Xn array whose j-th row is the vector @;,. Hence

d(\) =|det(ay, ..., a,)]

is independent of the particular choice of basis for A. Because of the
linear independence of a,, ..., a, we have

d(N) > o.

We call d(A) the determinant of A.

An example of a lattice is the set A of all vectors with integral
coordinates. A basis for A, is clearly the set of vectors

7—1 zeros n—j4 zeros
e, e\ .
e,-=(0,...,0,1,0,...,0> (175 9);

and so

AN =1.
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We note that the vectors of a lattice A form a group under addition:
if acA then —acA; and if @, b¢A then a -bcA. We shall see later
(Chapter I11, §4) that a lattice is the most general group of vectors in
n-dimensional space which contains » linearly independent vectors and
which satisfies the further property that there is some sphere about
the origin 0 which contains no other vector of the group except o.

1.2.2. Letay, ..., a, be vectors of a lattice M with basis b,, ..., b

¥

so that a, = Z v;;b, ()
with integers v;;. The integer 7

I=[det ()] = | Goipepell = 12l
is called the index of the vectors @,, ..., a, in M. From the last ex-
pression it is independent of the particular choice of basis for M. By
definition, I=0; and I =0 only if a,, ..., @, are linearly dependent.

If every point of the lattice A is also a point of the lattice M then
we say that A is a sublattice of M. Let @,,...,a, and b, ..., b, be
bases of A and M respectively. Then there are integers v;; such that (1)

holds, since @;2M. The index of a,, ..., @, in M, namely
_ | o ldet(a,, ..., @) _ d(A)
D =detwi)| =1qze, o] = a0 @
is called the index of Ain M. From the last expression the index depends
only on A and M, not on the choice of bases. Since a,, ..., a, are

linearly independent, we have D>0. On solving (1) for the b, and
using (2), we have Db,= Y w,a
7

7
where the w,; are integers. Hence

DMCACM, )
where DM is the lattice of Db, bcM.

It is often convenient to choose particular bases for A and M so
that (1) takes a particularly simple shape.

THEOREM I. Let A be a sublattice of M.

A. To every base by, ..., b, of M there can be found a base a,, ..., a
of N\ of the shape

a,=7v,,b,

@, = vy, b, +v,,b,

anzvf;1b1+"' +vnnbn»

where the v,; are inlegers and v,; =0 for all 1.
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B. Conversely, to every basis a;,...,a, of N\ there exists a basis
b,,...,b, of M such that (4) holds.

Proof of A. For each 7 (1=<7<#) there certainly exist points @, in
A of the shape
a,=v;,b+ -+,

where v;,,...,v;; are integers and wv;;=0, since, as we have seen,
Db,<\. We choose for a; such an element of A for which the positive
integer |v,;| is as small as possible (but not 0), and will show that

a,,...,a, are in fact a basis for A. Since @, ..., @, are in A, by con-
struction, so is every vector

wa + - +w,a,, (5)
where w,, ..., w, are integers. Suppose, if possible, that ¢ is a vector

of A not of the shape (5). Since ¢ is in M, it certainly can be expressed
in terms of b, ..., b,, and so can be written in the shape

e=14b + - +14,b,,

where 1<k=<n, $,40 and ¢, ..., !, are integers. If there are several
such e, then we choose one for which the integer % is as small as pos-
sible. Now, since v;,==0, we may choose an integer s such that

ns

[ — svpa] <|vial- (6)
The vector
C—sa, = —sv,) b+ + (B —su,)b,

is in A since ¢ and @, are; but it is not of the shape (5) since ¢ is not.
Hence ¢,—sv;,==0 by the assumption that * was chosen as small as
possible. But then (6) contradicts the assumption that the non-zero
integer v,, was chosen as small as possible. The contradiction shows
that there are no ¢ in A which cannot be put in the form (5), and so
proves part A of the theorem.

Proof of B. Let @, ..., a, be some fixed basis of A. Since DM
is a sublattice of A by (3), where D is the index of A in M, there exists
by Part A a basis Db,,..., Db, of DM of the type

Db, =w,q

Db, =w,;a, 1 wy,a, (7)

Dbnzwnlal+"' +wnnanr'

with integral w,; and w;;#0 (1=¢=#). On solving (7) for a,, ..., a,
in succession we obtain a series of equations of the type (4) but where
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at first we know only that the v,; are rational. But clearly b,,..., b,
are a basis for M and so the v;; are in fact integers, since the @, are
in M, and since the representation of any vector a in the shape

a=4b +---+14b, (4,...,t,, real numbers)

is unique by the independence of b,, ..., b,.
From this theorem we have a number of simple but useful corollaries.
COROLLARY 1. In theorem I we may suppose further that

v;; >0 (8)

and that
0=v,;<v; in case 4, (9)
0= v, <y, in case B. (10)

Proof of A. To obtain (8) it is necessary only to replace a; or b;
by —a;, — b, respectively if originally v,;<0. To obtain (9) we replace
the a, by

a; =t a4+ + L0, t+a,
where the {;; are integers to be determined. For any choice of the ¢,;
the a@; are a basis for A. We have

! r !
a,=v; b+ +v;b,
where

and, for j <7, we have
,
Ui =LVt b Vi T it Uy

For each 7 we may now choose ¢ t; i_g,---,t; in that order so that

i,8—1>»
! r
‘ 0= v <vj;=vj,
as was required.
Proof of B. Similar.

COROLLARY 2. Let ay, ..., a, be linearly independent vectors of a
lattice M. Then there is a basis by, ..., b, of M such that

a, =9, b

@y =0y, b, +v,,b,

a,, = vmlbl + -t vmmbm’
with integers v, such that

v; >0 0=y, <y, NEj<i=m). (11)
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We can choose vectors @, ,, ..., @, in M such that a,, ..., a, are
linearly independent. Corollary 2 follows now on applying Corollary 1
to the lattice A with basis a,, ..., @,.

CoroLLARY 3. Let @y, ..., a, (m<<n) be linearly independent vectors
of a lattice M. A mecessary and sufficient condition for the existence of
vectors @, .y, ..., @, tn M such that a, ..., a, is a basis is the following:
every vector ¢€M which is of the shape

c=uda +- - +u,a, (12)

with rveal u,, ..., u, necessarily has u,, ..., u, integral.

If @, ..., a, is part of a basis a,, ..., @, the condition is clearly
satisfied. Conversely if a,, ..., a,, satisfy the condition, let b,,..., b,
be the basis of M given by Corollary 2 and let v;; be the corresponding
integers. Then ¢=b,,..., b, are of the shape (12) and indeed the
coefficient of @, in the expression for b, is v;;'. Hence v;,=1 and so
v,;,=0 for ¢4, that is @;=b; (1=<¢+<m) and we may put a,=b;
(m4+1=i<n).

In some contexts we shall need the following more specialized
corollary which follows at once from Corollary 3.

CoROLLARY 4. Let by, ..., b, be a basis for a lattice M and let

c=ub + - +ub,cM.

nonS-

A necessary and sufficient condition that

b,...b,_,,¢
be part of some basis
b,....b,_,,c,¢,.4,....,C,
of M is that u,,, 4, ., ..., 4, have no common factors == 4-1.

Proof. Clear.

The following characterisation of the index of a sublattice A of a
lattice M is sometimes useful. We say that two vectors ¢, d of M are
in the same class with respect to A if ¢—d is in A. Clearly this is a
subdivision into classes: if c—d and d — e are in A, then ¢ —e isin A.

LEMMA 1. The index of the sublattice N\ of M is the number of classes
in M with respect to .

For let @, b; be bases for A and M respectively in the shape (4)
given by Theorem I. Then clearly the index D of A in M is

D=If]]v,~,~l.
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But now every e¢M is in the same class as precisely one of the vectors
b+ +4g,b, 0=¢;<vy),

as is readily verified (cf. proof of Theorem I, Corollary 1).

1.2.3. There is a useful transformation of the criterion of Theorem I,
Corollary 3, for deciding whether or not a set of vectors a, ..., a,
(m<<n) of a lattice A can be extended to a basis for A.

LEMMa 2. Let by, ..., b, be a basis for a lattice N\ and let
a;= 2 v;b, (1Li<m) ()
1<j<n

be vectors of N. A mecessary and sufficient condition that a,, ..., a,, be
extendable to a basis @y, ..., @, of N\ is that the m Xm determinants formed
by taking m columns of the array

(vi;) =ism, 1<57<n) (2)
shall not have a common factor.
The condition is certainly necessary. For let a,,.,,...,a, form a

basis with a,, ..., a,,, so that

a;= 2 v;b; (m+1=<i<n) (3)
15j=n

for some integers v;;. Since @,
of the same lattice, we have

det(v;;) = £1. (4)

(1=<i<n) and b; (1<7<mn) are bases

We may expand the determinant (4) by the first m and last (n—m)
rows [Laplace-development] and obtain

2 VW, =det (vij) . (5)

1=<r=R

where the V, are the (:;) determinants formed from columns of (2)
and W, is the (n —m) X (n —m) determinant formed from the remaining
{(n —m) columns and the (n —m) rows,

Vij m<isn, 1S7<n),

taken with an appropriate sign. Since the W, are integers, it follows
from (4) and (5) that the V, have no common factor.
The condition is also sufficient. For let ¢ be a vector of A of the
shape
c='u’lal'+_"' +umam (6)
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for real numbers #,, ..., #,. On inserting (1) in (6) we have
2 %;v;; = integer =I; (say) =70, (7)
1<igm
since by, ..., b, is a basis for A. We may solve (7) for the #;, and

indeed in a multitude of ways. For example let & be the cofactor of
vy, in the expansion of the determinant

W = det(v;)) Sism 1= m).
Then

igjsm

so Vi u, is an integer. Similarly
V, u,; = integer (1sisxm),

where V, is any m X m determinant formed from (2). Since, by hypothesis,
the V, are integers without common divisor, the #; must be integers.
Hence by Theorem I, Corollary 3 it is possible to extend a,, ..., a,, to
a basisa,,...,a,.

1.2.41, We shall now apply Lemma 2 to obtain a result of DAVEN-
PORT (1955a) about the way in which a basis for a lattice may be chosen.
This will be used only in Chapter V, §10 and then only to prove a
result on Diophantine Approximation rather aside from the main theme
of the book.

THEOREM I1. Let A be an n-dimensional lattice, let

¢ (1=isn—1)

i

be (n—1) arbitrary real vectors and let £>0 be an arbitrarily small real
number. Then for all real numbers N greater than a number Ny depending

only on N, € and the ¢, there exists a basis a,, ..., @, of N such that
|a;— Ne,| < N° M<isn—1). (1)
Here
|| = (d + - + 2t )

denotes the usual euclidean distance.

To prove Theorem II we shall need a result about the distribution
of integers prime to a given integer. We prove this first, and then
Theorem II.

LeMMA 3. For each 8>>0 there is a number k() with the following
property: Every interval of length k(8) ¢°, where q is a positive integer,
contains an inieger trime fo q.

1 §2.4 may well be omitted at a first reading
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Let
g= 11 7, (3)

1gis)
where the p; are distinct primes and the «;>>0 are integers. An integer
is prime to ¢ if and only if it is not divisible by any of #,, ..., p,;.
Consider some interval
V<usV+U (4)

of length U, where U, V are fixed integers. For j; <j,<<---<j,, where
s< ], let

My, -7,

be the number of integers » in the interval (4) which are divisible by
pi.s Pj.r ---» B;, (and perhaps also by other primes from ¢y, ..., p;). We
show next that

W=U+ 2 (=1 M, ....7) ()

s>0
<< <l

gives the number of integers « in (4) prime to ¢, where U is the number
of integers u in (4). For let the integer » be divisible by precisely »
primes p;, where r=1: say by #,,...,4,, but not by $,,,,...,%;.
Then u is one of the integers counted in M(j,...,7,) if and only if
s<rand7, ..., is one of the (:) combinations of s out of the numbers
1,2,...,7. Also u contributes 1 to U regarded as giving the number
of integers in (4). Hence the total contribution of # to (5) is

1—(1’)+<;) =(1—1) =0.

If, however, u is prime to ¢, then it contributes 1 to U but does not
contribute to the M(j,,...,7,)}; so W is the number of integers in (4)
prime to ¢, as asserted. But

R . U
‘M(h,--~,7s)— rANTY l<1,
W,

since M(sy, ...,7,) 1s the number of integers

u =j)i‘...}5j'u',

where %’ is an integer and

<u'§u
pj--#j, Pi Py

1 2

Since (5) contains 2/ summands, we have

ss0 Pic#y, j
1< <]y
Cassels, Geometry of Numbers 2

w>Ult+ D ("”; }—2/=UH(1—pL)—2fgz-JU—-2J.
i
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Hence there is an integer prime to ¢ in the required interval provided
that
U= Uylg) =4/,

If 4 is the arbitrarily small number given in the lemma, we now have

S T() 5 I (5) =40 s,
q AV AT

where the second product is taken now over all primes less than 4.
This proves the lemma.

We shall use the lemma in the following apparently more general
shape.

CoROLLARY. Let q, 0, k(0) be as in the lemma and let s, 1 be integers
of which t is prime to q. Then an interval of length greater than k(6)q°
contains an integer u such that tu s is prime fo q.

For since ¢ is prime to ¢ we may write

s =81+ 8,9
for integers s, and s,. Then

tu +s=tu-+s) +s,9q.

Since ¢ is prime to ¢ we need only choose % so that » +s, is prime to ¢;
and this is possible by the lemma.
We now revert to the proof of Theorem II. Let by, ..., b, be any
basis for A, and let the given vectors ¢; be
€= 2 yi;b (1Sisn—1) (6)
1<sisn

for real numbers y,;. We shall choose a basis
ai=Z”ﬁb;' (1=isn) (7)
i

for A such that A
viizNVii‘*‘O(Nlo): (8)

where N> 1 is the given positive number, § >0 is arbitrarily small, and
the constant implied by the O symbol may depend on 7, § and the y,;.
We shall choose the v,; so that for each < the two integers

R; = det(v;;) i1, 1571])
and
S; = det(v;;) =iz, 2571 +1)

are non-zero and without common factor.
Suppose, first, that 7 =1. We take for v;, one of the integers nearest
to Ny, which is not 0. Next we choose for v;, the integer nearest to
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Ny, which is not 0 and prime to v,;. For 1>2 we choose for v;; the
integer nearest to Ny,;. Then (8) holds for t=1 and 752 trivially
and for =1, =2 by Lemma 3, and since clearly v;,=0(N). The
integers R,=v,, and S,=v,, have the required properties.

Now suppose that I>1, and that the v;; with 1<<J have already
been constructed. For 41, I +1 we take for v,; just the nearest
integer to Ny,;. On expanding R; and §; by their last rows, we now
have '

Ry=+v, R ,+4,

Si=+v, 1S +vB+C,

where 4, B, C are integers which have already been determined. Since
R;_,is prime to S,_;, we may choose the integer v;; so that R, is not 0
and prime to 5; ;. We choose for v;; the integer nearest to Ny;; for
which this is true, so that, by the corollary to Lemma 3,

05— Ny =0(S}_;) =0(NI-19),

since S;_,;=0(N'"1), being a sum of products of I —1 numbers v;; each
of order N. Having determined v;, we now take for v, ;. the integer
nearest to Ny, ;,, such that S; is not 0 and prime to R;, so that
similarly

Ui~ Nynra= O(S‘;) =0(N'9).

This completes one stage of the induction. We have thus shown the
existence of integers v,; satisfying (8).
From (7) and (8) we have

|a,— Ne¢;| =0(N®-1?¢) (sisn—1).
The truth of the statement of the theorem now follows on taking 6 = ¢/n.

1.3. Lattices under linear transformation. It is convenient here to
consider briefly the effect of a non-singular affine transformation
x—X =ax of n-dimensional space into itself. Let the transformation
X =ax be given by

Xi= 2 oy%,  (1Si<wn), (1)

1gjsn
where

X=(X),...X,), ®=(x%,...,%,)

are corresponding points in the transformation and «;; are real numbers
such that
det (a) = det (a;;) &= 0.

Let A be a lattice and denote by aA the set of points ax, £cA.
I£ by, ..., b,is a basis for A, then the general point b =u,b,+--- +u,b,
2%
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(#y, ..., %, integers) of A has the transform

ab=a(u;b,+ - +4,b)=uab +-- +u,ad,.
Hence aA is a lattice with basis ab,,...,ab,, and
d(@N)=|det(ab,,...,ab,)|=|det(a)| |det(b,,..., b,)|=]|det(a)| d(A).

We note two particular cases. First, if £4=0 is a real number, then
the set of ¢tb, bcA is a lattice of determinant |¢]"d (/) which we shall
denote by {A. Secondly every lattice M can be put in the shape M =aA,,
where a 1s of the type (1) and A, is the lattice of integer vectors. For
if @, ..., a, is any basis for A, we may define «,; by

a1= (ali, ...,a"i).
1.4. Forms and lattices. We consider first quadratic forms. Let

1(x) :_Zl/ij"ixj (fii=1), (1)

t,]=
where

x={(x,...,%,), (2)

be a non-singular quadratic form of signature! (r, » —7); that is, there
exist independent real linear forms

X, =D d;;%; MSisn) (3)
1<j<n
such that identically
where
X=(X,....X,) (s)
and
pX)=Xi+ - + X - X7\ — - — X (6)

(for » =0, n there are no positive or negative squares respectively).
We have clearly
det(f;;) = & {det(d,;)} (7)

Conversely, if 4;; is any set of real numbers with det(d;;) #0, then (3),
(4) and (6) determine a quadratic form (1) of signature (r, n —r) and
(7) holds. We shall be concerned a great deal with the values which
/(x) takes when x,, ..., x, are integers. By (3), these are precisely the

! Many writers define the signature of a form to be the number of positive
squares less the number of negative squares in (6), i.e. 2r —n. But it is more
convenient to give explicitly the number of each kind of square than to do the
arithmetic every time.
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values which @(X) takes when X runs through the vectors of the
lattice A with basis
d;=(d;, ....d,)).

Then, by (7), we have
{d(N)}? =|det(f;)]. (8)

In this way statements about different quadratic forms of signature
(r,m —r) at integral values are equivalent to statements about the
single form @ (X) and different lattices. For later reference we formulate
a typical result as a Lemma.

LemMa 4. The following four statements about a number x are equi-
valent, where
P =XE 4 L XE— XP o~ X,

(1) In every lattice N\ there is a vector A=Fo with
| ()] = = {d (N}
(1) In every lattice N\ of determinani 1 there is a vector A0 with
) <.
(i1) In every lattice N\ of determinant d(N)<»~"% there is a vector
Azxo0 1n
lp4)=1.

(iv) For every quadratic form . [,;x; x; of signature (r, n—7) there
is an integer vector a==0 such that

|/ (@)] < | det (f,)]".

That (i), (ii) and (iii) are equivalent follows from homogeneity, since
@ (1X) =t*p(X) and since the set {A of all tX (X¢€A) is a lattice tA of
determinant |¢|d(A\); and we may choose ¢ so that *d(A) =1. That
(iii) and (iv) are equivalent follows at once from the earlier discussion
and, in particular, from (8).

The foregoing argument is quite general. For example the behaviour
for integer values of the variables of any form f(x) of degree » which
can be expressed as the product of # real linear forms:

f(.’l‘) = ” (djlxl+ +d7'nxn)

1sjsn

is equivalent to the behaviour of the function
pX)=X,... X,

at the points of an appropriate lattice A. A single function ¢(X) cor-
responds to the set of all functions f(x) that can be deduced from it
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by a real non-singular affine transformation
Xi = Z d”x, (d” real, det (d”) =*: 0) .

1.4.2. Of course the form ¢{x) and the lattice A do not determine
the function f(®) uniquely, since f(x) depends on the choice of a
particular basis for A; and we shall discuss this ambiguity here. The
transformation X,=Ydx,

7

of § 4.1 is just of the type
X=ax

discussed in § 3. Identifying these transformations we see that

A=al,,
where A, is the lattice of all integer vectors; the particular basis
d,,....d,

of A corresponding to the basis

— |

-1 n—j .
e=1\0,...,0,1,0,...,0 (1=7=<n)
of A,. Hence any other basis d, ..., d, of A is of the shape
d,=uae,

where €; is some other basis for A,. Let {’ be the form corresponding
to the basis d; as f does to d;. Then clearly there is the identical relation

fa)=1,...5) =p@xd + - +x,d,) =f(xe + - +x,e).

But now since e€; is a basis for A, we have

e = (V1js s Vng)s
where the v;; are integers and
det (v;;) = +1: (1)

so that identically

f(®) =) ()
if

= 2% (3)

7

Conversely, if the v,; are integers such that (1), (2), (3), hold then /'
and f correspond to the same lattice A. Two forms in this relationship
are said to be equivalent; they take the same set of values as the
variables run through all integral values, since, by (1) and (3), integral
@’ correspond to integral & and vice versa.
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It is sometimes useful to distinguish between det (v,;) = +1 (proper
equivalence) and det (v,;) = —1 (improper equivalence) in (1). We shall
not do this, however, since it does not correspond to anything intrinsic
in the corresponding lattices.

1.4.3. The forms f(x) and ¢(X) do not in general determine the
lattice uniquely, since for example a quadratic form f(x) of signature
(r,s) with » -s =# may be expressed in the shape

X b XX = - X

in many different ways. Let a,,...,a, and b,, ..., b, be bases of
lattices A and M respectively and suppose that

(p(; ufa,-) :(p(g u,-bi-) (1)

for all integral « =(u,, ..., u,). Since p(X) is a form, (1) is an identity
in the variables #,, ..., #,. Let w be the uniquely determined homo-
geneous transformation such that

wa;=b, (1=7<mn).

w (; u]-ai) = ); u; b,

Then

for all %, and so
¢ (X) = p(w X) (2)

for all X, by (1) and since every vector is of the shape X =} u;a;
for some real numbers %;. If the homogeneous transformation w
satisfies (2) we call it an automorph of . We have just shown that if
(1) holds there is an automorph « of ¢ such that wa;=b;. The con-
verse is, of course trivial that if w is an automorph of ¢ and wa;=b;
then (1) holds.

We shall study the automorphs of forms intensively in Chapter X.

1.5. The polar latticel. We denote the scalar product of two #-
dimensional vectors &,y by

my=x1y1+"'+xnyn' (1)
Let b,,..., b, be a basis of a lattice A. Since the b; are linearly

independent, there exist vectors b such that

1 if i=7

0 otherwise.

1 This section will not be referred to until Chapter VIII and will not be of
importance until Chapter X and XI.
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The lattice A* with basis b} is called the polar (or dual or reciprocal)
lattice of A, and b;" is the polar basis to b;. The polar lattice A* of A
is independent of the choice of the particular basis, as we now show.

LeMMA 5. The polar lattice N* of A consists of all vectors a* such
that a*a ts an integer for all @ in N. Then N is conversely the polar
lattice of N*. Further,

dN) d(A*) =1.
Suppose, first, that
a* = ub', a=2uvb,
are in A* and A respectively, so that the «;, v; are integers. Then
a*a =3 uv;
1s an integer. Now let ¢ be any vector such that ea is an integer for
all @ in A. In particular
cb,=u, (1=7=n)
is an integer. Put @*= 3 u;b}. Then
(c—a*)b;=0 (1=j=n);

and so ¢ =a* since the b, are linearly independent. This proves the
first sentence of the theorem. The second sentence follows immediately
from the first and also from (2). Finally, (2) implies that

det(b¥, ..., b¥ det(b,,...,b,) =1,
and so d(A*) d(A)=1. This concludes the proof of the lemma.

1.5.2. When y=o0 is fixed, the points @ such that yx =0 lie in a
hyperplane through o.

LeMMA 6. A necessary and sufficient condition that there be n —1
linearly independent points @y, ..., a,_, in N\ with ya,=0 (1<1<n—1)
1s that y=ta* for some real t and some a* in N\*.

Suppose first that ya,=0 (1=<:=<n—1). Then by Theorem I
Corollary 2 there is a basis b, (1=<7<#n) for A such that

@, =v;b + - +v;b; (0,50

for integers v;;. Hence yb,=0 (1=i<n—1). Let yb,=¢ Then
clearly y =tb) where b* (1<j<#) is the polar basis to b;. This proves
half the lemma.

Suppose now that y =ta*, where a*< A*. If a*=0 there is nothing
toprove. Otherwise, a*=mb;", where m is an integer and by is primitivel.

! That is, not of the shape ue®, ¢*€A* for an integer u > 1.
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Then b can be extend to a basis b for A*. Let b; be the polar basis.
Then
yb,=mtbb, =0 (2=Zj=<n).

This concludes the proof of the lemma.

Let A(a*) be the set of @ in A such that a*a =0. Clearly if @, and
a, are in A(a*), so is w,a,+ u,a, for any integers u,, #,. By Lemma 6
if @* ¢ A* there are # —1 linearly independent points of A{e*), and so
in a sense A(a@*) is an (» — 1)-dimensional lattice. The following corollary
makes those remarks more precise.

COROLLARY. Let b*=(bf, ..., b)) be a primitive point of N* and
suppose that bf==0. Then the set of (n—1)-dimensional vectors a'=
(ay, ..., a,_,) such that for some a, the vector @ =(ay, ..., a,) is in Nand
satisfies b*a=0 is an (n—1)-dimensional latticc M of determinant

d(M) =|bX|d ().

We note that M is the projection on x,=0 of the set A(b*) just
defined. Since by 0, if a, exists it is uniquely determined by 4, ...,
a,_,, and the condition b*a ==0.

We may suppose that b*=b}, where by, ..., b} is a basis for A*
and b; is the polar basis. After what was said before the enunciation
of the corollary, it is clear that the (» — 1)-dimensional vectors b; formed
by taking the first # —1 coordinates of b; are a basis for M. We now
show that

by det(by,...,b,) =det(b],...,b,_,). (1)

If in the determinant in the left the n-th coordinate x, is replaced by
byx for x=b,, ..., b,, the value of the determinant is multiplied by
by,=by. Since bb,;=0 for 1</<#n—1 and b}b,=1, the equation ()
follows at once. In particular |57 | d(A) =d(M), as required.

1.5.3. Finally we must note the effect of homogeneous linear trans-
formations on the relationship between polar pairs of lattices. Let

X=rx (1)
be a non-singular homogeneous linear transformation given by
7
where
det (t) = det (;;) 3= 0. (2)

If Y is any vector, we have
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Hence
YX =y, (3)

where
y,~=ZY,~T,-,- =s7=mn). 4)

Since det (1) == 0, by hypothesis, the equations (4) define Y as a function
of y. We write
Y =%y,

where ** is called the transformation polar to 7.

LeEMMA 7. Let % be a non-singular homogeneous linear transformation,
N a lattice, and N\ the lattice of points v, xc N\. Then the polar lattice
of TN is T*N\*, where v* and N* are respectively polar to © and A

This follows at once from Lemma § and equation (3) above, where

X=1x, Y=1*y.

Chapter II

Reduction

I1.1. Introduction. In investigating the values taken by an algebraic
form f(x) for integer values of the variables it is often useful to sub-
stitute for f a form equivalent to it (in the sense of Chapter I, § 4) which
bears a special relation to the problem under consideration. This process
is independent of the geometrical notions introduced by MINKOWSK!
and depends only on the properties of bases of lattices developed in
Chapter I. Indeed only the lattice Ay of integer vectors comes into
consideration.

It is convenient to collect together in one chapter the various
applications of reduction. The later parts of the chapter involve some
moderately heavy computation. The beginner might well omit all after
the enunciation of the results in § 4.2. Indeed the next few chapters
are practically independent of Chapter II, which might well have been
deferred until later.

In §2 we discuss the general method. In the rest of the chapter
we shall be mainly occupied in investigating

M(f) “T: ;?illf(u)l

where /(@) is a form of a special type. Definite and indefinite quadratic
forms are treated in §§ 3.4 respectively and binary cubic forms in § 5.
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The methods of this chapter have been successfully applied to

related problems: for example, when f () is indefinite, to the estimation of
inf / (u)

over integer vectors u =<0 for which f(u) is positive [either in the strict

sense f(u)>0 or the weak sense f(u)=0: two distinct problems in

general] but we shall ‘do this only for binary forms.

A table listing the known results about quadratic forms is given in
an appendix. We shall be considering quadratic forms later from other
points of view.

DavENPORT and ROGERsS (1950a) have shown that in many cases
not merely one but infinitely many integer points u exist such that
/(u) satisfies the inequalities stated. This requires deeper methods than
those used here and will be discussed in Chapter X.

It should be remarked that there is a classical theory of reduction
for indefinite binary quadratic forms which we do not discuss here.
Although it comes into the general scope of reduction as defined here,
that is the choosing of bases with special properties, it is best under-
stood after the discussion of Chapter III. It is closely related to con-
tinued fraction theory. See Chapter X, §8.

I1.2. The basic process. We first discuss the standard procedure
for positive definite forms f(x); that is for forms such that f{x)>0
for all real vectors x +o.

We note first that if f(x) is positive definite of degree 7, say, then
there is a constant x>0 such that

flx) = =|x|” (1)
for all real &, where we have written
@] = (2% + - + 2k

For on the surface of the sphere |x| =1 the continuous function f(x)
must attain its lower bound %, so x> 0; and then (1) follows by homo-
geneity. In particular, there are only a finite number of integral
vectors* u such that f(u) is less than any given number.

We now choose a basis for the lattice A, of integral vectors with
respect to the positive definite form f(x) as follows. Let e;==0 be one
of those integral vectors u for which /() is as small as possible. By the
argument of the last paragraph such wu exist, and there are only a finite
number of them. If e; were of the shape e; =k%a, azA,, where k> 1
1s an integer we should have

0<fla)="Fk"fle)) <f(ey),

* i.e. vectors whose co-ordinates are rational integers.
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contrary to the definition of e;. Hence by Corollary 3 to Theorem I of
Chapter I, we may extend e; to a basis e;, b,, ..., b, of the lattice A,
of integer vectors. We now choose €; (2<7=<#) in succession. Suppose
that e;, ..., €;_, have already been chosen and are extensible to a base
e,....,e 1,b,....b, of A,. Then e is one of the finite number of
vectors with the property that e;, ..., €; is extensible to a base of A,
and for which f(€]) is as small as possible. Such e; exist but are finite
in number, by argument used for ej. In this way we obtain a base
ey, ..., e, and for any given f(x) there are only a finite number of such
bases.

If the function f(x) is such that we may indeed choose

——— P———

-1 n—j
egzefz(o,...,O,LO,...,0) A<j=mn)

for the above basis, then f(x) is said to be reduced (in the sense of
MinkowsKi). The above proof shows that every positive definite form
is equivalent (in the sense introduced in Chapter I, § 4) to at least one
and to at most a finite number of reduced forms.

We may make the definition of a reduced form more explicit. By
Corollary 4 to Theorem I of Chapter I (or by Lemma 2 of Chapter I),

a necessary and sufficient condition that e, ..., e;_; and the integral
vector u = (u,, ..., u,) be extensible to a basis for A, is that
g.c.d (uj,...,u,) =1. (2)
Hence the form () is reduced if and only if
fty,oon,) 2](‘3;')
for all 7 and for all integers #,, ..., u, satisfying (2).

11.2.2. When the form f(®) is not definite, then there is no generally
valid procedure to replace the reduction procedure for definite forms.

If we know (or may assume) that f(u) does not assume arbitrarily
small values for integral # 3= o0 then it is possible to salvage something
of the reduction procedure. Let ¢>0 be chosen arbitrarily small. By
hypothesis,

M, = inf | f(u)| > 0.
u+o

integral
Hence we may find an integral e;==0 such that
|/(e)] = My/(1 — &).

Without loss of generality e; is not of the form ka where @ is integral
and £>1 is a rational integer. If e;, ..., €;_; have already been found,
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write
M, = inf | { (u)|
where the infimum is over all integral vectors u such thatey, ..., e_,,u
is extensible to a basis for A,. Then
A[i g M1 > 0 ’
and so we may choose e; so that ej, ..., €] is extensible to a basis and

|/ (€Dl < M;i(1 — &)
Let f'(x) be the equivalent form for which
1(€) =1'e).
|f s )| 2 (1= )| £ (e))]

for all sets of integers u,, ..., u, such that g.c.d. (%, ..., u,) =1. But,
of course, there is no reason to suppose that there are only a finite
number of f* with this property and equivalent to a given f.

An alternative procedure which is sometimes possible is to find some
other form g (&), related to our given f, which is definite and to reduce
g(x). We shall do this for binary cubic forms in § 6. This method goes
back to HERMITE, who applied it to indefinite quadratic forms as follows.

Let f(x) be an indefinite quadratic form of signature (v, n—7), so
that, as before,

Then we have

fla) =Xi+ -+ X=X~ — XL (1)
where the X are linear forms in x,,..., x,. Then
g@) =Xi+ - + X+ X7+ + X (2)

is a definite quadratic form with the same determinant, except, perhaps,
for sign. The forms X, ..., X, are not uniquely determined by f(x)
but we say that /(x) is reduced (in the sense of HERMITE) if the form
g () is reduced in the sense of MinkowsKI for some choice of X, ..., X, .
Clearly f{x) is always equivalent to a reduced form, since we may choose
any representation (1) and then apply the transformation which reduces
g(@). Reduction more or less of this kind was first introduced by
HErMITE, and has been further discussed, amongst others, by SIEGEL
(1940a), as a tool for investigating the arithmetical properties of quad-
ratic forms. In general a form f(x) is equivalent to infinitely many
HERrMITE-reduced forms, but SIEGEL shows that it is equivalent to only
finitely many if the coefficients of f(x) are all rational.

We note here that the relationship between (1) and (2) allows
estimates for the minimum of a definite form to be extended to an
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indefinite one, since clearly |f(x)] <g(x) for all real vectors @. But in
general, the information so obtained is quite weak.

I1.3. Definite quadratic forms. We shall be considering definite
quadratic forms from many different points of view in the course of
this book. Here we see what can be done by reduction methods alone.
The study of reduction is of great importance in the arithmetical theory
of quadratic forms, see WEYL (1940a) or vAN DER WAERDEN (1956a),
who give references to earlier literature. Here we are concerned only
with the minima of forms.

Let
flx, %) = fi 2 + 2f1a %1 % + oo 22
be a positive definite quadratic form. We wish to prove that there are

integers (u,, u,) == (0, 0) such that

fluy, uy) < (4D[3)%,
where

D= /11f22 - /%2
By taking an equivalent form, if need be, we may suppose that

M(f) = umuf fuy, ug) = f1,.

integers not both 0

We have
2 D
flxy, 2)) = /ll(xl + ﬁ&%) + a3
fll /11
Put #, =1 and choose for #; an integer such that
1‘13, < 1 1
RREREES )

Then, on the one hand,

T, 1) 2 ha,
and, on the other,

D
/(“1:1)§%/11+/—- (2)
11
Hence
D 3
?1'1_ g 'Z‘flll
that is
glg 4D/3;

as required. That < here cannot be replaced by < is shown by the
form

folxy, %) = 51 + 2, 2%, + 23
for which D =32 and f(%,, u,) =1 for integers (u,, u,) 3= (0, 0). It is not
difficult to show by examining when equality can occur in the above
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argument that < can be replaced by < unless f is equivalent to a
multiple of f,. We do not go into details, since we shall prove this
later more simply.

11.3.2. As HERMITE noted, this argument can be extended to prove
the following theorem.

TreOREM 1. 4 non-singular quadratic form
}_4 ft] i 7
represents a value f(u) with
[/l = @27 | D™, (1)
where w==0 15 integral and
D = det(f,;).

By the remarks at the end of §2.2 we may suppose, without loss
of generality, that f(®) is positive definite. We may now suppose, as
before, that

fu=f(w)

for all integral w3 0. Then

/(x )—/11(x1+ ”x2+ gy )+g(x2,...,.,,)

i
where g(x,, ..., x,) is a definite quadratic form of determinant DJ/f,,.
Since we may suppose the result already proved for forms in #—1
variables, there are integers u,, ..., %, not all 0 such that
4 \4(1=2) [ D \Yin—1)
Py oon, Uy) = [— .
g (u, ) ( 3 ) ( . )

Choose the integer #, so that

o By g Sy [ < L
/11 ll 2
Then
f 4\s(1=2) 7 D \Yin~1)
sfuys AL 4+ (- =
== 84 (G2
and so

fu—( )Mn Y pum.

This proves the assertion. Unfortunately, the constant ($)3*~Y is the
best possible only for » =2. We shall show below that it is not the
best possible for #» =3, and since the above proof is by induction it
cannot be best possible for n=3. It is possible to modify the argument
to give the best possible result for » =13 [for a neat version of this see
MoRDELL (1948a)], but we shall not do this. Instead we give a more
elegant, if more artificial, treatment depending on a more detailed
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examination of reduced forms which goes back essentially at least
as far as Gauss.

11.3.3. We start with the consideration of a positive definite binary
form which is reduced in the sense of MINKOWSKI:

f(xy, %) = f11 %% + 2f12% % + fo0 %5

After the substitution x;->x;, x,—>— x, if need be, we may suppose
without loss of generality that

h22 0. (1)
By the definition of reduction,
fo2=1(0,1) 2/(1,0) = f1, (2)
and
that is
2f12§f11' (3)

By (1), (2), (3) we have

4D —3f11fee=thatee — 4122 fir — 4f1,=0;
and so

fiiShifa=%D.

The sign of equality is required only when f;,=f,,=2f,,; i.e. when

/(@) =f11(x% + %, % + #3).

Before going on to ternary forms, we note that any form satisfying
(1), (2), (3) is reduced. This is a special case of the general theorem
that Minkowski-reduced forms can be characterised by a finite set of
inequalities, but here it is easy to verify directly.

Let u,, u, be integers neither of which is 0. If |u,|=|u,| we have
Fuy, u,) = |“1|{ful“1| izfm[“zl} +f22“§
2| wy|{f11] ] — 2f12| |} + footis
=4} (f1; — 2/a) + faat4i
gfll“‘2f12‘+‘f22=f(—1y1);

and if 0<<|#,| <|u,| the same inequality follows on reversing the roles
of u; and u,. Since f;;—2f,5-+/22=/s2, by (3), we have shown that
f{x) is reduced.
In particular, if ¢ is any number =$£ then the form
fr=ai+mu+ ¢+
is reduced. Since
M(t) =/(1,0) =1
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and the determinant D of f, is ¢, we see that
M(f)/Dt

may take any value t~#<($){. This is in striking contrast with the
behaviour of indefinite quadratic forms (see § 4).

For later convenience we collect what has been proved so far and
express it as a theorem.

THEOREM I1. A positive definite binary quadratic form

fuxf + 2f12%, %, +f22x§

is reduced if and only if
|22 Ehi S fes-

The three smallest values taken by f(u) for a reduced form and integral
u==0 are fiy, foo and f13— 2| fia] + oo, where

f11§f22§f11—2|f12l +f22'
For a reduced form
finf2 < 4Df3,

D=f11f22_/§2-

The ratio p =f,,/D* may take any value in the interval

where

0<e=(®*

11.3.4. We now consider ternary quadratic forms. As we shall
later be considering definite quadratic forms in a wider context
(Chapter V, §9, see also Chapter IX, §3.3) we content ourselves with
the following.

THueoreM III. A. Let
fx) = Zfiixixi (fii=1:)

be a positive definite ternary quadratic form. Then there s an integral vector
u==0 such that
fu) < (2D)},
where
D = D(f) =det(f;).
B. If f(x) is reduced, then

fllf22f33§ 2D.

Cassels, Geometry of Numbers 3
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C. The signs of equality are required when and only when f(x) s
equivalent to a multiple of

fol@®) =2 422 423 + 225+ 232, + 5, %,.

We note again that we get as good an estimate for f,,/;,f,5 as we
do for f§,. This will be put in a wider setting in Chapter VIII, § 2.

Since f,(u) is an integer we have fo(u)=1. Since D(f,) =3, this
shows that the equality signs are required for f,. Part A of the theorem
follows from the rest. Hence we need only prove Part B and that
equality in B occurs only for multiples of f,.

Following Gauss (1831a) we distinguish two cases. Suppose first
that

hafaslsn2 0.
Then after a substitution
X, = +x;

we may suppose without loss of generality that

220, [fy320, [3;320.
Write

&j=fii— 21 (fi=1Fa)- (1)

19,720

Then

for all 7 =7 since f is reduced. For example
f(1,—1,00=1/(1,0,0)
gives #5,=0. We have identically
2D — fisfashs =52 Pa1 P15+ X {h1fasPas + fasthate},  (2)

where the sum is over cyclic permutations of 1, 2,3; as is readily
verified on expressing both sides in terms of the f;; alone!. Since all
the terms on the right-hand side of (2) are non-negative, we have

fa S hafaaks=2D, )
as required.

The other case is when f,,f53/;; =0, and then we may suppose that

leéOr f23§0' f31§0'
We write now
vij =l + 245
and
w;=f(1,1,1) — fi;.
1 This is an application of LirrLEwoop’s Principle: all identities are trivial
(once they have been written down by someone else).
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Then u,;=0 and w; =0, since f is reduced. Then identically

6D — 3h1faofas = Vas¥a1 1o + } @
+ 295,13 ¥ +Z {hi(— fas) (a3 + 200) + (~— f39) Vi3 Pau)-

Again all the terms on the right-hand side are non-negative, so (3) holds.

We leave to the reader an examination of when equality can occur.
A rather tedious investigation of cases shows that it can occur only
when

/11 :fzz =f33

and either 2f,3=2f;;=2f,,= +1, or one of 2f,,, 2f;;, 2/;, vanishes and
the remaining two are equal to --1. But all these forms are equivalent
to f1,/4 (@), as is readily verified. For example,

2 2 2
¥y 2 x5 g x, +xp = foxg, %+ X5, — X))

Gauss lists several other identities which could be used instead of
those here.

I1.4. Indefinite quadratic forms. These will also be considered
again and again throughout the book from different points of view.
A table listing known results is given in Appendix A. We do not here
carry the reduction argument as far as it will go, but only far enough
to illustrate the different nature of the results from those obtained in
the definite case.

We shall continue to use the notation

M) = int |/ (),
integral

where f(x) is a form in any number of variables, and write
D = D(f) = det(f,;)

for a quadratic form 2./, x,x,=/ ().
There are two characteristic differences between the behaviour of
M(f) for definite and indefinite forms. For definite binary forms we

saw that M(f)/| D(/)|* could take any value g in an interval

0<p= (%),

where (4)* was the maximum possible value. It is not difficult to verify

that definite quadratic forms in any number of variables behave simi-

larly, cf. Chapter V, Lemma 6. The first difference in the behaviour

of indefinite quadratic forms is rather trivial: it is quite possible that

M(f) =0, and this may occur either because there is an integral u==o0

such that f(u) =0, or because there are integral u==0 such that f(u)
3*
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is arbitrarily small but not 0. The second difference is deeper: the values
of M(f)/|D(f)|* do not fill the complete interval up to the maximum
possible value.

The position for indefinite binary quadratic forms has been the
most investigated. Here a very great deal is known about the possible
values of M{f)/| D(f)|}. The greatest value is (&)}, given by the multiples
of x} +x,x,— x3. Otherwise M()< (3)}| D(f)]t. A well-known theorem
of MARKOFF (‘‘the MARKOFF cham ) states that there are only de-
numerably many possible values of M(f)/|D(f)|! greater than %. There
are certainly intervals to the left of 2 which contain no values of

HIID (/)] The author has given a proof of the Markoff chain theorem
in his Cambridge Tract [CASSELs (1956a)], to which the reader is referred
for references for the various statements made in this paragraph. Here
we shall be content with finding the two largest possible values of
M) D (]

There is a similar state of affairs for ternary quadratics but much
less is known. The most complete information is due to VENKOV (1945a)
who has found the eleven largest values of M(f)/| D(f)|}, but they do
not seem to follow any general pattern, except that they are all given
by forms with integral coefficients. There are two unsolved problems
about indefinite ternaries which appear completely intractable. It is
not known whether there are forms f with M(f)>0 which are not
multiples of integral forms; and it is not known whether the set of
values of M(f)/|D(f)|* has any limit point other than 0. These two
problems are closely related [CassELs and SWINNERTON-DYER (1955a);
see also Chapter X, Theorem XII].

This phenomenon of “‘successive minima‘‘ (not to be confused with
the “‘successive minima’ of a lattice with respect to a point set which
is discussed in Chapter VIII) occurs very widely with indefinite forms.
It takes a great many different shapes and a general theory hardly
exists*. It is not possible to predict when it occurs: for example it does
not occur in the problems discussed in § 4.5 or §5.

It is not difficult to see how ‘‘successive minima’’ can occur. An
inequality of the type |f(u)| =1, where f(x) is an indefinite form and u
is an integer vector, is really a pair of alternatives

either flu)y=1
or fu=—1.

Each of these inequalities may be regarded as a linear inequality in
the coefficients of f. If we consider a large number of different u then

* MAHLER has shown that the minima form a closed set. In fact this follows
at once from his compactness theorem of Chapter V.
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the various pairs of alternatives are a priori independent. It may turn
out, on combining the various alternatives, that some combinations of
alternatives are altogether impossible while other combinations of alter-
natives define a form f uniquely. An example may make this clearer.
Suppose that we are interested in binary quadratic forms for which
M(f)=1 and f(1,0)=1.

Such a form has the shape =& ?7/ X7
=3 AR
) = } . e Y

X Foux x4 B4, £101)=+1

(Y

A

16,0)

O ———
(4,-1), £,t)=—1

where the coefficients «

ivest AN
and f are to be investi- Tl
d. The only such form », V%/
0
qualities / 7 /
[0, = -1, /
)z 41, /
/(2’_1)2_*_1, Fig. 4

is %3 - x; 2, — 13, as the reader will easily verify. Hence any other form
with f(1, 0) =1 and M(f) =1 must satisfy at least one of the inequalities
[0, 1)=+1, f(1,1)= —1, (2, —1)< —1. The form x? +x, %, — 2% is
thus in a strong sense isolated from all other forms (1) with M(f) =1.
For example if « and # are plotted as cartesian coordinates for the
form f, a condition |f(u;, #,)| =1 excludes a strip of the plane between
two paralle]l lines. The three conditions

ozt Jfnlz1, [f2 -1 =1

exclude three strips. What is left consists of the point (1, —1) and a
number of infinite regions which are separated from the point by one
of the strips (see Fig. 4).

In the actual proofs, this general principle tends to be obscured. If f
is an indefinite form and M(f) =1 there is not necessarily an integral
vector u with |f(u)] =1, though there are integral vectors with
1=|f(u)| <1+ ¢ for any given ¢>>0, and further devices must be used
to deal with this. The difficulty is that if £> 1, then the form ¢f(x) =f'(x)
satisfies the same choice of inequalities “f(u)=1 or f(u)< —1" as the
original f(x). Here ¢ might be arbitrarily close to 1, that is, the coef-
ficients of /() might be arbitrarily close those of f(@). Hence to pin
down f(x) uniquely we must some-how make use of the normalization
M(f) =1. We do this by first finding the determinant of the form in
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question and then using this as part of our information. The actual
proofs will make the details clearer.

We shall later deal with isolation of this type from a more sophisti-
cated point of view (Chapter X). The treatment there will also help to
show why the additional devices just mentioned are effective.

11.4.2, The problem of the minimum of indefinite binary quadratics
has already been discussed in § 4.1. All we shall actually prove here
is the following.

THEOREM IV. Let
F@) = f11 2% 4 2f15 %0 Xy + foa %3 1)
be an indefinite form and

D =D(f) = h1/o2 — fia-
Then

: (2)

M) =inf|f(u1,uz)|§\ 100D

4
221

except when f is equivalent to a multiple of one of the two forms
fol®) == + %%, — 73, (3)
h(x) =i — 223 (4)
for which M(f) =1 and |D| =%, 2 respectively.
That f, and f, are exceptional is clear, since they both represent

only non-zero integers for integral w<=0. The constant -;%)— in (2)

cannot, in fact, be improved since the next form of the MARKOFF chain is
fo=527 +11x, x, — 5x3

which has D(f,) = —221/4 and can be shown to have M(f;) =5.

We now prove Theorem IV. If M(f) =0 there is nothing to prove.
Otherwise, we may suppose, without loss of generality, that

M(f) =1,

by considering ¢/ instead of f, where ¢ is a suitable number. By the
general argument of § 2.2, there is a form g(x) = g,(x) equivalent to
/(@) for which

1=[g(1,0) <(1—¢)7,

where ¢ is any given positive number in the range 0<<e<<1. Put

+g(1,0) =01 —n7,
where
0=sn=n<<e<1.
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Since the equivalent forms f and g have the same determinant D, we
may write g(x) in the shape

@) =L D] (1~ ) 2 )

where a =a, is a real number, which may be supposed to satisfy
0Sa=s} (6)

on replacing x, by 4-x,+vx, with a suitable integer v. Since M(f) =1,
we have either (s + 202
o =Dl - vz (7)
or
2
{2l | D] (1 — )k

A

—1 8)

for each pair of integers u,, u, not both 0. Of course as ¢ changes there
is no reason to suppose that for fixed u the same alternative (7) or (8)
always holds.

We consider various suitable pairs of integers %;, #, and must con-
sider various cases according as (7) or (8) holds for the integers in
question. Since we wish to single out the forms (3) and (4), we natu-
rally choose values of u such that fy(u) =41 or f,(u) = 41.

In the first place, (7) cannot hold with (u,, u,) = (0, 1) since by (6)
it would imply |D|<0, at least when % is small enough. Hence on
putting (u,, %,) =(0, 1) in (8), we have

=Dzt —n) +a ©

for all ¢ less than some g,>> 0.

We now consider the two possibilities when (u,, #,) = (1, 1). Suppose,
first, that there are arbitrarily small values of ¢ such that (7) holds.
For these ¢ we have, suppressing the suffix ¢, that

(=93 Dls—(1—n) + (1 +a) (10)
On eliminating | D| between (9) and (10) we have

2021 — 27
and so
NS} (1)

by (6). On substituting this in (9) and (10), it follows that | D} can
differ from $ at most by terms of the order of . But now |D| is in-
dependent of 7 and either =0 or >0 can be made arbitrarily
small. Hence |D|=%. We now revert to one particular g(x) =g, (x)
for which (10) is true, where now we have the additional information
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| D] = §. On substituting D =%, a=4—7 in (9), we have

0.

v

=2
Since <2, this implies 7 =0. Hence « =} and

F g (%, %) = (% + §%)2 — %xg = fo (%1, %3) -

Otherwise (10) cannot hold, when ¢ is small enough; and so for all ¢
less than some ;>0 we have (8) with u=(1, 1), that is

(A=n2D|=(1—n) + (1 +a)2 (12)

We now consider the possibilities for w=(—3, 2). Note that
f1(—3,2) =1, where /, is given by (4). If there are arbitrarily small
values of ¢ such that (7) holds with w=(—3, 2), then for these ¢

41— D] = — (1 —7) + (=3 +20) (13)
On eliminating | D| between (12) and (13) we have 4a<7, so 0<4a<y
by (6). On substituting in (12) and (13) and using the fact that =0

or 7 can be made arbitrarily small and positive, we find that | D| =2.
Finally on putting |D| =2, «=0 in (12) we get =0, so « =0 and

+g(®) =21 — 255 =}, ().

Otherwise for all ¢ less than some g>0 we must have (8) with u=
(—3,2), that is

40 —n)?*D|= (1 —n) +(—3 + 2a) (14)

But now the right-hand sides of (12) and (14) increase and decrease
respectively in 0Sa<}. If a < we use (14) and if a= {5 we use (12).
In either case we obtain [D|=2.21 + O(y), so | D|=2.21 since | D] is
independent of 7.

It is at first sight remarkable in these proofs that the inequalities
obtained show that #=0. As already mentioned, this is tied up with
the phenomenon of ““isolation” which we shall discuss more fully later.

11.4.3. We consider now the ‘“‘one-sided” problem for -indefinite
binary quadratic forms. In contrast with § 4.2 there is here no set of
successive minima. Theorem V A, which we now enunciate, is a special
case of Theorem IX of Chapter XI and is due to MAHLER.

THEOREM V. A. Let
f@) = fa 2t + 2f1a %1% + faa 23
be an indefinite quadratic form and

D =f11/22—/f2-
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Then there is an integral vector w==0 such that
0</(w) < 2|Dp. (1)

The sign of equality is required when and only when f is equivalent to a

maultiple of fo(@) =1 %5

B. For any £>0 there are infinitely many forms, not equivalent to
multiples of each other, such that

M, () = inf f(u)>(2—e)|DL @
u integral

We first prove A. That f,=x,x, is exceptional is obvious, so we
need only prove (1) and that equality can occur only when stated. As
in § 4.2, we may suppose that

M, (f) =1,

where M _ (f) is defined by (2). Hence, as in § 4.2, there is a form
2
g () =("—‘f:°‘;”~’)— — (1 —n)|D|x
equivalent to f, where
0o=a=}

and #=0 can be made arbitrarily small*. Suppose, first, that
g(—1,1)=1. Then
=Dt —af—(1—n)=n,

which is impossible if # is small enough, since | D| is independent of .
Hence g(—1,1)<0, that is

(1 —a)? 1
= —
Plz{=z s

the sign of equality being required only when « =%, # =0; that is when
() = (%1 + §42)2 — 127 = %y (3 + %) = fo (21, %, + %)
It remains to prove B. It will be shown in § 4.4 that the forms

(%) = k(x} + 2y x5) — x5

have
M, (i) =k

when £ is a positive integer. Since

|D(f| =18+ &,

* More precisely, we should work with a family of forms g,(x) as in § II 4.2.
Having once carried out this type of proof in full rigour, in the rest of this chapter
we shall be more informal.
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the ratio

M, (I D(fl*

may be arbitrarily close to 2.
Another simple proof of B would be by means of continued {ractions.

11.4.4. As an interpolation between the problems of §4.2 and 4.3
one may consider the forms f(x) such that there is no integral point
u==0in

—a<f(u)<b,

where a and & are given positive numbers.

For some values of 2 and b one may deduce the least possible value
of D(f) from the results of §4.2. For example! if

11
a=1, b=—
10

we certainly have

and so by Theorem IV either
D) =2
or { is equivalent to
t(x} + %, 2, — 23)

for some ¢. In the second case it is clearly enough that = %. The

. . 2 .
corresponding determinant is (:—;) -% << 2. Hence we have an isolated

first minimum. Note that the form with the least | D| does not take
any values in the neighbourhood of —a.

For any given values of 4 and b the techniques of §§ 4.2, 4.3 some-
times apply. For example, the minimum determinant when a =5, b =3
is | D| =24 given by 3 2} — 84%; this being isolated. The verification of
this statement is left to the reader. Here we shall prove only the follow-
ing theorem due essentially to SEGRE (1945a).

THEOREM VI. Let

() =f11xf+2/12x1x2+/22x§ (1)
have determinant
D{f) =f11/22_/§2<0- (2)
Suppose that there is no integral w== 0 such that
—a<f(u)<b, (3)

where a>0, b>0. Then
|D| = ab + 1 max(a? b?). (4)

! This remark was made to the author by Professor C. A. RoGERs.
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If b>a, the sign of equality is required when and only when

k=bla (5)
is an tnleger and
Hx) =af(x), (6)
where
fo@) = k(2] + 2, %) — 2. (7)

For 2 =1, Theorem VI is contained in Theorem IV. When % is not
an integer, an explicit improvement of (4) can be given. When % is an
integer, there is isolation and much more is in fact known [SAWYER
(1953a), TorNHEIM (1955a)]. When b=a the cases of equality may,
of course, be deduced from the theorem by interchanging a and b.

We may suppose without loss of generality that
a=1, b==k,

where at first & is not necessarily an integer. Let

c=M, ()= inf f(u),

f(u)>0
so that

c= k.

As in § 4.2 there is a form g(x) equivalent to f(x) of the shape

g@) = (mtax)?— 21—y,

1—7 ¢

where
0sa<}
and 7= 0 may be chosen arbitrarily small.
Clearly g(0,1)<c¢, so g(0,1)<—1. Hence g(1, —1)<<¢, and so
g1, —1)=< —1, that is

- c c? Y
ID|= 1_77 + (1_,])2 ('1 a) .

Hence
]D| ZcH L=k 1R

with equality only when

=0, a=% c=k,
)

glx) =fi(x).
It remains to see whether f,(x) has any integral solutions # <=0 of

— 1< fi(w) <k. )
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Since f,(1, 0) >0 but f,(1, %,) > — oo as x,— + oo, there must be some
integer v=0 such that

Ll,v) 20> f,(1,v +1).
If (8) were insoluble, we should have
hbv)2k, Lo +H1)=—1:
that is
vik—v)=20, (@v+2)(k—v)<0.
This is possible only when v =%, i.e. when % is an integer.

It remains only to show that when £ is an integer there is no integral
u3=0 such that —1<f,(u)<<k. Since the roots & of f,(#, 1) =0 are
irrational, it is impossible that f,(u) =0. Hence we must deduce a

contradiction from
0<fu(u) <k. 9)

If there are several solutions of (9) we choose one for which the integer
| #,] is as small as possible. Clearly

#; =+ 0.
We require the identities

h@) =h{(k +1) 2, — %5, —kx; + 25}
= fi{z1 + %3, b2y + (R +1) 25}
= (& 4+ 2) 1 {(B +1) % — %2} — {(k +1) 1 — 1}* — 21
= (B4 2) % (% + %) — (3%, + x5)2 — 41,
Since f,(u)>0, the last of these identities shows that
# {(k +1) 4 — 4} >0
ty (4 + ty) >0.
On writing —u for u if necessary, we thus have
>0, (Rk+Du>u>—u. (10)
From the first two identities and the minimal property of |%,|, we have
|y + sa| = 9y,

|(B +1) ) — wg| = 0y
and so, by (10),
0= u, < ku,, 0<u,.
But then
fy(w) = kol + g (kg — up) Z kui Z k.

Hence our assumption (9) was false.
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By considering f(1, v) for all integers v, the estimate (4) may be
improved when £ is not an integer. Since f, is the only form f satisfying
f(1,0)=*% and

fons—1, fLE+1)=—1,

=11 —1, f(1,k) =k,

the form f, gives an isolated first minimum when % is an integer. The
proof of these statements is left to the reader (cf. papers quoted at the
beginning of § 4.4).

11.4.5. We now consider indefinite ternary forms. As already noted
(§ 4.1) there is a set of successive minima, the first eleven having been
found by VENKOV (1945a). There is a derivation of the first four
minima due to OPPENHEIM in DIcksoN (1930a) and a neat proof of the
first minimum only by DAVENPORT (1947a). Here we shall prove only
the following result.

TueoReEM VII. Let

f@) =2 fiyxix; (1)
be an indefinite ternary quadratic form with determinant
D(f) =det(f;;) +0. (2)
Then
M() = int | ()] < |$D, o)
integral

except when | is equivalent to a multiple of
fo=11 + 2% — 25 — % 23 + 23, (4)

M(fo) =1, D(fy) z%- (5)

We first prove (5). Since f,(u) is an integer when u=-0 is integral,
it is enough to show that fy(u) 4=0. Now

4fo(u) = (20 + ug)? + (205 — uy)? — 6uij.

Further,

Hence it is enough to show that there are no integral solutions of
o + 0§ = 693

other than v =v,=v;,=0. We may suppose that v, v,, v, have no
common factor. Then clearly v, and v, must be divisible by 3. Then
v} 4 v3 must be divisible by 9, so v, is divisible by 3; a contradiction.

That the constant £ in (3) cannot be further improved is shown by

fr(@) =23 + 2, 2, — 25 — 243,
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The reader should have no difficulty in modifying the proof to show
that this is the only case when there is equality in (3) and that it is
1solated.

We may suppose as before that

M(f) =1 (6)
and, by taking — f for f if necessary, that
D <o. (7)

We have to show that f is equivalent to f, or D<< —$. It is convenient
to enunciate steps of the proof as propositions.

ProrosiTioN 1. Either

M, () = inf f(u) =1 ®)
or
D< 3. 9)

If (6) is true but (8) is false, there must be integral u such that
/{u) = — (1—mn)1, where y =0 may be chosen arbitrarily small. Hence
/(x) is equivalent to a form g(x) of the shape

(1 —mgl)=—(x+oax+Fx)"+hlx x),
where «, f§ are real numbers and the form
M@) = hyy x5 + 2hyy Xy Xy + by x5
must be positive definite. The determinant of A(x) is
hayhys — s = — (1 —7)*D = (1 —7)°| D|.

After a transformation on the variables x,, x,, we may suppose that
h(z) is reduced; and so

k= $(1—7)°| D| (10)
by Theorem II.

We now consider the indefinite binary form
Gx, %) = (1 — ) g(x, %, 0) = — (1 +ax)? + hyy 2,
of determinant — h,, . Clearly
M(G)z (1 —n) M(g) =1 —1.

Hence, by Theorem IV, either

221
hzzgm“‘n)z (11)
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or G(x, x,) is equivalent to one of #(x} 4+ x,x,—x%) or ¢(x1 —243) for
some number ¢ with |¢]=(1—mn). If the second alternative holds, we
must have t=—1, since G(1,0) =—1. Then there arc integral u,, #,
such that G(u) =+1, i.e. g(uy, 4y, 0) =(1—7)71, s0

M. (f) =M, (g) =1

since 7= 0 may be chosen arbitrarily small. Otherwise the first alter-
native, namely (11), holds, and so, by (10),

3 221\2 7
DIz —n- (35> 1

This proves the proposition.

We may now suppose that
M, (f) =1. (12)

As before, there is a form g equivalent to f such that

(1 =) g(®) = (3 +ax, +B%)" + h(x, %),

where 720 may be chosen arbitrarily small, and the form

%y, %g) = oy 43 + 2hyq Xy Xy + hay 45 (13)
is now indefinite and has determinant
hzzhas“h§3=(1_7’})3D<0- (14)
PrOPOSITION 2. If u,, u, are integers not both O, then either
Ry, u5) 2 3 — 1, (15)
or
hlug, us) < — 2+, (16)
or
—i—n=hlu,u) = — 3 +7. (17)
Further, 1f (17) holds there is an tnleger v such that
fv + 3 — (wus + fug)| < 377 (18)

We must first show that there are no integral solutions u=0 of
=24 <h(ug,u) <—§ -1,
— 3 F<hluy,u) = —1+79,
~ 1ty <h(uy,u) <2 —n.
We may clearly choose the integer %; so that respectively
1= uy +ouy + fug] < 3,
S |u oy + fus| 1,
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and
0= |y + oty + Bug] S %

Then in each case we have

(1—n) |g(w)| <1—n,
contrary to hypothesis.

Suppose that (17) holds. There is an integer ¢ and a real number
7 such that by choice of sign

aty+Pu;=t+v, 0=t<i.
We may clearly choose integers #;, #;" so that
[y + oty + Bugl =1—7
|1 + oty + Bug| =1+ 7.

Then
—n g (ur, v, 43) SO g(0), 0y, 043) +7),
and so
h(ug, uy) + (1 — )z—g(“h“z»“a) —1+7, (19)
B(ug, ) + (1 + 1) =g (ur, g, 1) 21 — . (20)

By subtracting (19) from (20) we have
t—-n=t=%
This is equivalent to (18) and so proves the proposition.

COROLLARY. If (17) holds, then u, and wu, cannot have a common
factor except 4-1.
For if uy=vuy, u;=vus, where v>>1, none of (15), (16) or (17) would
be satisfied by % (uz, us).
PROPOSITION 3. Either
D2} (21)

or, after an equivalence transformation, we may suppose that

—3t—n=h(1,00=—§ +19, (22)
h(t, =) 2§ —n, (23)
—S =, )= -5+, (24)
2, —1)S —2+7, (25)
Jo — 3] = 3, (26)
1Bl=n (27)

provided that 7 is less than some absolute constant ny>>0.
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Suppose, first, that there are no solutions of
=2+ <h(uy, u) <i-—1n.
Then, by SEGRE’s Theorem VI, we must have
[hoohss — Mes| 2 5@ =2+ 2—n) G —n) =52—-n(—2n).
Hence, by (14),
|D| ~ 5(2—n)

1—n)?

v

3
>

Otherwise by Proposition 2 there is a solution of | A(u,, #) +5| <# and
by Proposition 2, Corollary we may suppose, after a suitable trans-
formation on x,, x,, that

— 2= NSh(1,0) =hyy = —§ 4. (28)
After a further substitution of the type x,— 4 x,+vx;, where v is an
integer, we may suppose further that

0= 2hyy = hgy= — § — 1. (29)

We now consider %(u,, ;) for various choices of #,, #5. If 2(0, 1)
< —3%+#; that is hy3< —§ +, we should have

hoghgs— h33 >0,

contrary to the assumption that % is an indefinite form. Hence
hy3 > — %47, and so, by Proposition 2,

hys=h(0,1) =% —17.
But now, by (29),
R, =N 2 hgy +hyy> — § +7,

and so, by Proposition 2 again,

hos — 2hgg + by =h(1, —1) 2§ — 7. (30)
Hence
R, 1) =h(1, —1) +4hy3> — 2+
by (29).
We now consider the two remaining possibilities for 4 (1, 1) allowed by
Proposition 2. Suppose, first, that

k(1,1) =hyy+2hoy + by =3 — 1,
SO

h33

v

—n—hpz2-29.
Then, by (14),
(1 —77)3!]-)1 = his — haahys = — hyyhys,

Cassels, Geometry of Numbers 4
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SO 4

which is all we require. We may therefore suppose that

— S5 —n=EhU,1) =hyy+ 2R3+ by S — 5 + 1.

We now invoke the part of Proposition 2 referring to « and g with
(#y, #3) =(1,0) and (1, 1). Hence there are integers v’ and v’ such that

!vl+ _aISZn’
V' +3—(a+pl =37

After a substitution of x,+v'x,+ (v"'—%')x; for x, we may suppose

indeed that
|z — °‘| =31,

e+ =14n

Then
HESE

We now consider
R(2,—1) =h(1,1) + 3hgy — 6hyy S A (1, 1) < — 5 417,
We cannot have k(2, —1)= —$§ —, since then by Proposition 2 the

fractional part of 2a — 8 would be about %, while we know that 20 —f
is 140 (n). Hence

4hyy— 4hoy + a3 =h(2, —1) S — 2 +7.

This completes the proof of the assertions of Proposition 3.

We now conclude the proof of the theorem. The inequalities (22)
to (25) of Proposition 3 are linear inequalities in Ay, Ay3, Ag3. Put

hoy = — § + A7, (31)
hps=—% +un, (32)
hys =1 +wn. (33)
Then (22) to (25) become
Al =1, (34)
A=—2ptv=—1, (35)
|2 +2u+v]| =1, (36)
42 —4u+v=1. (37)
Hence 20 =(A—2u+1) +(A+2u+9) —24= —4,
3y =44 —4p +v +2(A +2p +v) — 0619,
s0

QESE
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Hence

lul<3,
by (36). Hence and by (14),

(1= 72D =his— hashys =3 + (=2 —u + 497 +0(n%). (38)
=§+0@)
But D is independent of 7, so*
D] =4,
Suppose, if possible, that ==0. On putting | D| =% in (38) we have
—A—pt+iv=—%+0@.
For small enough % this contradicts (34), (35) and (36), since they give
—A—ptir=—3A+50-2p+r) +§A +2u+y)
4787 8
Hence =0, so by (13), (26), (27), (31), (32), (33), we have
£@) = (1 + 5202 — 323 — 1y 05 + 25 = o (®).

Since g (o) is equivalent to f (), this concludes the proof of Theorem VII.

1I.5. Binary cubic forms. We must first consider briefly the
algebra associated with a binary cubic form

fla, xp) = axd +ba2x, +cxy x5 +d 3. (1)

Such a form may always be split up into linear factors with real or
complex coefficients:

(x5, %) = H (ﬁjxl + i x,) . (2)
1=5<3
With the form is associated the discriminant
Dijy = [T {9;vx— dpw;}> (3)
15j<k<3

It is easily verified that
D(f) =18abecd + b2c® — 4ac® — 4d b® — 27a%d? (4)

(see §5.2). From (3) it follows that D(f) =0 if and only if f(x;, %,)

has a repeated linear factor. Forms f with D(f) =0 are called singular.

The discriminant D(f) is an invariant of the cubic, in the sense
that if :

(%0, %) = flaxy + B xa, 7 % + 0 %y) (5)

* More precisely, we should have worked with a family of forms g, (&) as in

§ II 4.2, each form with its own n=n, and 0= <e. Then A, u, v depend on g,
but (38} is true for all sufficiently small &.

4%
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identically for some numbers «, 8, y, 8, then

D(f) = (xd—By)*D(f), (6)
as follows at once from (3) and the fact that
F'(x, %) = H(ﬁ;xl‘i"/’;xz)r (7)
7
where
& =ad;+yy, ¢ =9+ dy; 8)

In particular, D(f') =D (f) if f and /' are equivalent, since then (5) holds
for some integers «, 8,7, & with ad—fy=41.

If a, b, c,d are real, then either all the ratios zpi/ﬁ,- are real or two
of them are conjugate complex and the third is real, since roots & of
an equation f (£, 1) =0 with real coefficients occur in complex conjugate
pairs. This subdivides the real non-singular binary cubic forms into
two essentially distinct types. We show now that two forms in the
same type may be transformed into each other by a transformation of
the type (7) with real «, §,y, 8. It is enough to show that all forms f
of a given type may be transformed into an ' which is fixed for the type.
We may suppose without loss of generality that either

?;,y; are all real {9,)
or
Oy,y, are real, and P, =79,, v, =7, (9,)

in our two respective cases, where the bar denotes the complex conjugate.
Clearly these two cases are characterised by D> 0 and D <C 0 respectively.
There exist numbers 4, 4,, 4, not all 0 such that

Ay + Ay, + Ay, =0 }
1101-*—12192 +13'l93=0.

If, say, A3=0, we should have

(10)

i, — By =0,

and so D(f) =0 by (3), contrary to the hypothesis that f is non-singular.
Hence 4,4,4,#0 and we may suppose, without loss of generality, by
multiplying 4,, 4,, 4; by a common factor, that

MAis =1. (11)

We now distinguish the two cases according as (9;) or (9;) holds. If
(9,) holds, we may suppose that 4,, ,, 4, are real and put

Xj=—4(0x + ;%) 1=1,2).

?
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Then
Ay (D32, + p3%g) = Xy + X,
and so, by (11),
F(x, %) = X X, (X, + Xy). (12)

If (9,) holds, we may suppose that A,=1,, =14, and put

0 X, + 02 Xy = A4 (%%, + 9, %,)

(13)
X1+ e Xo=240x% + 1y %),
where g is a complex cube root of 1. Then, by (10},
Xy + Xy = A (P32, + py 20) (14)
and
fx, %) = X1 + X3, (15)

The coefficients «, 8,9, § in
Xi=ax,+fx, X,=yx+0ix

are real, since the two equations {13) here are complex conjugates one
of the other.

In the sense of §4 of Chapter I the values taken by non-singular
binary cubic forms are the values taken by the function

P(X) =X, Xo (X, + X,)
or
¢(X) =X} + X3

at the points of a lattice. The reader will have no difficulty in verifying
that there is a corresponding result for singular cubic forms, with

¢(X) = X1 X,,

p(X) = Xi,
according as only two or all three of the linear forms #;x,4y,x, are
multiples of each other.

It was first shown by MORDELL (1943 b} that if f is a real cubic form,
then there is an integer vector u==0 such that

=1
491"’
)= I%t (16)

?
81

according as D >0, D <0 or D =0, where ¢ is an arbitrarily small positive
number. The third case, when f(x) is singular, may be dealt with
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trivially by MiNkowsK1's theorem of the next chapter, so we do not
discuss it here. That the coefficients 49, 23 are best possible in their
respective cases is shown by the binary cubic forms

23 atx, — 2%, 45 — 43 (17
and
23— x 48 — . (18)

These have discriminants 49 and 23 respectively. Since they do not
represent 0 and represent integer values for integer vectors %, the < in
(16) cannot be replaced by <. It will be shown that < may be taken
in (16) for all forms not equivalent to (17} and (18).

The results (16) were not first obtained by reduction arguments.
DAVENPORT (1945a,b) has however given simple proofs by such
arguments.

This treatment consists in defining a binary cubic form as being
reduced if a certain definite quadratic form associated with it is reduced:
it is necessary to choose different quadratic forms according as D>0
or D< 0. DAVENPORT then shows for a reduced form that either (16)
is true with strict inequality for one of a prescribed set of u, or f(x)
is one of the forms (17), (18). We give the proof for D>0 in full but
only sketch that for D <0 since we shall later be using the case D<0
to illustrate another technique.

It was shown by DAVENPORT (1941b) that neither the 49 nor the
23 is isolated. We do not give the proof, which depends essentially on
the fact that although a cubic form f(x) is always indefinite the area
of the region

()] <1

is finite, and the forms (17}, (18) take the values 4-1 only a finite number
of times: in contrast to the situation with indefinite quadratic forms.

11.5.2. In order to enunciate DAVENPORT'S result we must first
introduce a quadratic form associated with a cubic form

Flx, %) =axi +badx,+cx x5 +dx3 (1)
=J] @x +yx), (2)
15758
namely the hessian
1 Gf \e  af af
manm) =5 (G an) — o a,;} ()
=Ax}+ Bxx,+C43, (4)

where
A=0b—-3%ac, B=bc—9ad, C=c*—13bd. {5)
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On evaluating the partial differentials by (2), a brief calculation shows
that

h(xy, %g) = 2 (Dot — Dyy)? (D %y + 11 %)%, (6)

the sum being taken over all cyclic permutations of 1, 2, 3.

We now show that the hessian is a covariant of the form f(x;, x,);
that is if a, 8, y, 6 are real numbers with

«d— By =41, (7)
then the hessian of the form f'(x,, x,) defined by

F(xy, %) = floaxyg + B ay, yx, + 0 x,)

B3, %) = hlaxy +Bxs ya+03a).

Indeed this follows at once from (6) and the expressions (7), (8) of § 5.1,
on noting that

By — hyj = (@0 — By) 9, — D)) = £ (B9 — D),
on using (7).
From either (5) or (6) we see that the determinant of A(x,, x,) is

AC— 1B =1D(). ®

In particular, 4 (x,, x,) is definite when and only when D >0, i.e. when
} is a product of three real linear forms [when the &, y; are real the form
(6) is clearly positive definite, but the converse is not so clear without
using (8)].

When the #;, y; are real, the form f was said by HERMITE to be
reduced when the definite quadratic form 4 is reduced in the sense of
MiNkowskKil,

Every form with real §;, y, is equivalent to a reduced form. For
the transformation which reduces the A(x) in MINKOWSKI’s sense also
reduces /() ; since k(@) is a covariant of f(x), as we have seen. Further,
this reduction can be carried out in only a finite number of ways since
we saw that a definite quadratic form can be reduced by only a finite
number of transformations.

11.5.3. We may now enunciate and prove DAVENPORT’S theorem:

THEoREM VIII. Let f(x) be a binary cubic form with discriminant
D> 0 which is reduced in the sense of HERMITE (§5.2). Then

min{| /(1,0 [f@A)], /] 1 == (5) . @

1 He could not put it this way, of course!
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The sign of equality 1s needed only when

FH . kg =21 F Al — 2505 — 23 (2)
or

+ (%, £ %) =23 + 223 %, — 2, 43 — 23, (3)

the + signs being independent.

DAVENPORT actually proved that if f(x,, x,) is reduced, then at least
one of the five products

11,00 £0,1)], (1,0 /(0. 1)], |f0.1)711,1)],
a0/t =1, [F0.1) 701, —1)]

is <(D/49)}, with equality only for the forms (2) and (3), as before.
We shall follow CHALK (1949) and prove another generalisation. Let

h(xy, %) =Ax%+ Bxyxy+Cab
be the hessian of f(x), so that

0SB<A<C, A>0 (4)
CHALK's result is that

min{[/(1,0)|, |#(0,1)], 1(1.1)], I/(1’_1)|}§(%)§,

with equality only for the forms (2) and (3). Since 44C — B%2=3 43,
and 44C—B*=3D(f) by (8 of §5.2, this will be a stronger result
than Theorem VIII.

We may suppose by homogeneity that
A=7. ()
We must then deduce a contradiction from
[fa,00 =1, /o) =1, |[fe.)lz=4,  [H0,—1)[21,
except for the forms (2) and (3). On writing

/() =ax:1’+bxfxz+cx1x§+dx§

these inequalities are
la|z1, |d| 21, (6)

la+b+c+d|=1, |a—b+c—d|=1. (7)
By taking — f for f we may suppose that

a=1. (8)
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We shall require the identities

A=0b-—3ac, B=bc—9ad, C=c*—3bd, (9)
from which follow
Bc—Cb=134d, Bb—Ac=3Ca. (10)
From (4), (5) and (9) we have
0=bc—9ads7. (11)

Suppose, if possible, that d>0. Then (11) gives
bc=9ad=9. (12)
If 6=¢>0 there is a contradiction with (10,) and if ¢c=5>0 there is

a contradiction with (10,), so
b<<0, ¢<0.
Then we should have
A=0b—3ac
=0+ §|acl +§|ac]
= 3(3arb2cr)h

by the inequality of the arithmetic and geometric means; and so, by
(12),

Ags(lji)*w

in contradiction with the normalization 4 =7.

Hence we may suppose that
d<o,
and so, by (11),
bes7—9ald| = —2. (13)

If 5<<0<c we have a contradiction with (10,), so

c<<0<h,
and (13) becomes
ble|=29ald| — 72 2. (14)
Further, (5) becomes
7=A=b43a|c|Zb+3]|c|. (15)

On substituting (14) in (15), we have

7z 0+ 3]c| Z b+ 6)b,
and so
1Sb<2. (16)
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Similarly we have
4
7 Z 72— + 3 ‘ Cl ]

and so
1€ —c=2. (17)

Clearly a sign of equality can hold in (16) or (17) only if
a=—d=1, bc=-—2. (18)
From (14), (16) and (17) we now have
9ald| <74 |be| =11

and so
as L, ld=s1L
9 9
But now
a—b+c—d§%—1—1+1—91<1,
and so

a—b+c—d=—1. (19)
We now consider the two possibilities for f(1, 1). If
a4+btc4d<s—1, (20)
then on adding (19) and (20) we have
a—lcl£—1, so |c|=t+ax=2.

Comparison with (17) shows that |¢| =2, and, since there is equality
in (17), we must have (18); that is

a=—d=1, b=1, c¢=—2.
Similarly, if
a+b+c+d= 41,
then
b+d=+1, so b=2;
and we have
a=—d=1, b=2, c¢=—1.

This concludes the proof of the theorem.

I1.5.4. When the binary cubic form f has discriminant D (f) <0 the
hessian form is indefinite, and so a reduction of the hessian does not
single out a finite number of reduced forms from amongst the forms
equivalent to . However, if D<0 then only one of the linear factors
of f is real, and / may be put in the shape

/‘(xl,xz)=(193x1+1p3x2)(Pxf+Qx1x2+Rx§), (1)
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where the form Px}+ Qx,x,+Rxj3 is positive definite, since it is the
product of two conjugate forms with complex coefficients. DAVENPORT
following earlier workers calls such a form reduced if the quadratic
form

Px}+ Qx 2,4+ R}
is MiNkKowsKi-reduced, that is
|Q]S PSR, (2)
and, further,
19:'."/’3 =0. 3)

The last condition may be achieved by changing the sign of x, if need
be, which does not affect (2). DAVENPORT (1945b) proves

THeoreM IX. If f(x) is binary cubic form with discriminant D (f) <0,
then there are integers w=£0 such that

|7 u)| < ‘%*.
1f, turther, f (@) is reduced, then
min[[/(1,0)[, {£(0, )], |£(1, —1)], |/(1,~2)|]§l_2?3_‘,

with equality only when
Hx, %0) = a(ad + 23 %y + 22,23 + 23).

We only sketch the proof and refer to the original memoire for the
details. We later give another proof of the first paragraph of the
theorem (Chapter I1I, Theorem VII).

We have to show that D(f)< —23 when

|f(1.0)] =1, |7(0.1)] =1,
lf4, =21, |1, —2)| =1,
i.e. when
P|'93|21» R|‘I’a|g1’ (4)
|9 —wo| (P — Q + R) 21, (42)
| ¥ — 29| (P —2Q + 4R) 21, (43)

since P—Q + R, P—2(Q + 4R are positive by the positive definiteness
of the quadratic form. For fixed &, and y,, the inequalities (2) and (4)
restrict the point P, @, R in 3-dimensional euclidean space to lie in a
certain infinite region &% bounded by planes. DAVENPORT shows,
further, that

—D(f) ={Py3 — Qs + Ry§}* 4PR — 0¥,
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and that [D(f)]! is a convex function of (P, Q,R) for fixed 3, ;.
Hence the maximum of D(f) is attained at the vertices of &, where
three of the plane faces meet [since it is easily seen that | D| > oo as
max (| P|,|Q|, | R])— oo]. The proof then follows from a rather tricky
estimation of D(f) at the vertices of &.

I1.6. Other forms. We briefly survey here results on the reduction
of forms other than those already discussed.

I1.6.2. For binary forms of degree #=4 there is more than one
invariant. For example, a binary quartic form f(x,;, x,) which is the
product of two pairs of complex conjugate linear forms may be reduced
to the shape

P(X) = p(X,, X,) = X1 + 6u X} X3 + X3,
where
Xy=oax,+ 8%, X,=yx+0dx,

for some real «, 8, y, 6 and u=pu(f) is a real number lying in

lu] <3

Two forms with different 4 cannot be transformed into each other by
a homogeneous linear transformation of the variables. Further, u(f) is
an absolute invariant in the sense that u(ff) =u (f), where ¢ is any num-
ber. Of course we still also have the discriminant

D(f) = IT (v — Ouwy)?,
1sj<k<4
where

Fxy, %) = H (0% + ;%) -
7
The problem for definite binary quartics was solved independently
by Davis (1951a) and CERNY (1952a) in the sense that they found the
best possible function y (u) of u such that every form f with invariant u

has
int f(u) Sy (W) (DY

integral

Davis (1951a) also gives some results for indefinite binary quartic
and full references to earlier work. It is no longer true, as it was for
quadratic and cubic forms, that forms f with D (f) =0 assume arbitrarily
small values. This case was completely elucidated by DAVENPORT
(1950a).

The methods of these authors combines reduction techniques with
other tools drawn from the geometry of numbers.

There does not seem to be any systematic work on binary forms of
degree greater than 4.
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11.6.3. The only other types of forms f(x,, ..., ,,) of degree n with
m>2, n>2 for which the best estimate of

M(f) = inf | f(u)|
u+o
integral
is known appear to be the ternary cubic forms with real coefficients
which are expressible as the product of three real linear forms:
fx1, 24, %) '—“1 H (19,'1 Xy +19,2x2 +19,~3x3),

<js3
where either all the ;, are real (first type) or 9y,, 5, 955 are real and
Pap="0h, (1=%=3). There is an invariant

D(f) = {dfkt (’97'1:)}2-

This is the only invariant in each type, since there are obvious real
transformations taking f into
Xl X2 X3
and
X, (X3 + X3),

respectively. The two types are distinguished by D>0 and D<0
respectively. The following two results are known:

THEOREM X. Let (%, %5, %5) be a factorisable ternary cubic form with
D(f)>0. Then there exist integers w0 such that

)| <

except when [ is equivalent to a multiple of one of the forms

D
9.1’

fao= 3+ 23+ 23— a3 2,4+ 5 47 43— 2%, 45+ 6%, X5 — 2%, X3 — X5 X3 — X Xy X,
for=+ B+ B+ 643 x—3 % 25+ 92 2 —3 %, 45 —3 %, X5 %,
for which M(f) =1 and D(f) =49, 81 respectively.

THEOREM XI. Let f(x) be a factorisable ternary cubic form with
D(f)y<0. Then there exist integers w==0 such that

D}
HCIEE
The sign of equality is needed when and only when [(x) is equivalent fo
a multiple of the form
foa =23 + 23 + 43 + 2232y — %, 245 + 2 2% — 2y 63 — 3%, %5 %,

We note that f,q, f3; and f,, are all of the shape
Norm (x; + ¢ %, +y %),
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where 1, ¢,y are a basis for the integers of a cubic field. We shall
discuss later the reasons why this might have been expected (Chapter X).
For f,4,fs1and f,; we have p =¢?, and gsatisfies the respective equations:

¢P+e*—20—-1=0,
¢ —3p—1=0,

and
P—-p—1=0.

[By Norm is meant the product of the three forms obtained from the
given one by inserting the three pairs of conjugate values for ¢ and y.]
The first equation here corresponds in an obvious way to the form in
Theorem VIII. The third equation here corresponds to the binary form

2 — xy x5 — A3

which is equivalent to that in Theorem IX on making the substitution
X >y, Xg—>— Xy — X,.

For D>0 Theorem X gives the first two successive minima and
shows that the second minimum is isolated. The first minimum in
Theorem XI is not isolated; but there is a weaker sense in which it is
isolated [DAVENPORT and ROGERS (1950a, especially Theorem 14): see
also Chapter X]. Theorem X was obtained by DAVENPORT {1943a). He
had already obtained the first minimum [DAVENPORT (1938a) and a
simpler proof in DAVENPORT (1941a)]. A slightly weaker form of
Theorem XI in which | D/23|t+ ¢ with arbitrarily small ¢>0 appears
instead of | D/23|* was given by DAVENPORT (1943 a); the full form is in
DaveNPORT and ROGERs (1950a). CHALK and RoGERS (1951 a) showed
that every factorisable ternary cubic form with D>0 is either equi-
valent to a multiple of / or to a form g(x) with

D3
l6(1,0,0)¢(0.1,01(0.0,1)] 5 (2]
This is analogue of the results about the products of the diagonal terms
of definite quadratic forms obtained in § 3.

We do not prove Theorems X and XI here, since in Chapter X,
following MorDELL, we deduce Theorems X, XI from the corresponding
results for binary cubics (in which, as the reader will have noticed, the
integers 49 and 23 also occur). It is however worth sketching the
reduction which DAVENPORT use to prove Theorem X:

Let f(x) be a factorisable ternary cubic with D > 0, where we may suppose,
without loss of generality for our purpose that M(f) =1. Hence f is equivalent

to a form g such that
g(1.0,0) = (1 —7}?,
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where 7 =0 is arbitrarily small. Hence we may write

3
(1—mg@ = JT (x + a;2+ ;%)
j=1

We consider also the quadratic form

k(®) = 2 (n + o xp -+ .Bj #g)2.

From the inequality of the arithmetic and geometric means & (u) = 3 (1 — n)§ for
all integers = 0, and it is easy to verify that in fact k(u) = 3, with equality only
when u={(1, 0, 0). Hence h(x) may be reduced in the sense of MINKOWSKI by
a transformation of the type
R T P PR P
F2 > Upz ¥yt Vaa ¥y
3> Ugg ¥ + Ug %3
where the v;; are integers and v,,vy3— vp3v5,= £ 1. Since k(x) has determinant
(1 —n)®D(f) and is reduced, we have bounds for the coefficients. The proof now
continues by an intricate and delicate chain of computations using these bounds
and the fact that |g(u)| =1 for all integers u=o.
DavENPORT’s treatment of Theorem XI starts off with a similar reduction but

the completion of the proof requires different ideas and the detailed consideration
of an intractable 2-dimensional figure.

11.6.4. The corresponding problem for the product of #>>3 homo-
geneous forms in » variables has been much worked on. Estimates
but no precise results are known, and these estimates were obtained
by other methods. We shall consider the case of large # in Chapter IX,
§ 8 The best estimates for # =4, 5 in print appear to be those of
Z1L1nNsKAS (1941 2) and GODWIN (1950a) respectively ; but GODWIN refers
to a better estimate for # =4, presumably the Vienna dissertation of
G. BoHM (1942) also mentioned in KELLER’S encyclopedia article
[KELLER (1954a)] but unavailable to me.

There is however a striking result of CHALK on the product of .the
values taken by # linear forms when these values are positive. He
shows that if L,, ..., L, are » linear forms in » variables & = (1, ..., x,)
with determinant 4 =0, then there exist integers u==0 such that

Lw>0 (1<j<n), (1)

IILw<|4]. (2)

That the implied constant 1 on the right-hand side of (2) is the best
possible is shown by the simple example L; =x;. CHALK'S theorem is
indeed more general than the form given here since it refers to the
product of inhomogeneous linear forms. Consequently we do not prove
it here, but later in Chapter XI, § 4.
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Chapter III
Theorems of BLicHFELDT and MINKOWSKI

III.1. Introduction. The whole of the geometry of numbers may
be said to have sprung from MINKOWSKI's convex body theorem. In
its crudest sense this says that if a point set % in #-dimensional euclidean
space is symmetric about the origin (i.e. contains — & when it contains x)
and convex [i.e. contains the whole line-segment

Ar+{1—Ay o=is1)

when it contains & and y] and has volume V> 2", then it contains an
integral point u other than the origin. In this way we have a link
between the “geometrical” properties of a set — convexity, symmetry
and volume — and an “arithmetical” property, namely the existence
of an integral point in &. Another form of the same theorem, which
is more general only in appearance, states that if A is a lattice of
determinant 4(A) and % is convex and symmetric about the origin,
as before, then & contains a point of A other than the origin, provided
that the volume V of % is greater than 2"d(A). In § 2 we shall prove
MiNKowsKl's theorem and some refinements. We shall not follow
Minkowskl's own proof but deduce his theorem from one of BLiCH-
FELDT, which has important applications of its own and which is
intuitively practically obvious: if a point set # has volume strictly
greater than 4 (/) then it contains two distinct points @, and x, whose
difference @, —a, belongs to A.

The theorems of BLICHFELDT and MINKOWSKI may be regarded as
statements about the characteristic functions of a set &, that is the
function y(x) which is 1 if & € & but otherwise 0. There are generalisa-
tions of the theorems of BLICHFELDT and MINKOWSKI to non-negative
functions (%) due to SIEGEL and Rapo. These we present in §3.
We do not in fact use these theorems later.

In § 4 we use MINKOWSKI’s theorem to obtain a characterisation of
a lattice which is independent of the notion of a basis: a lattice is any
set of points A in #-dimensional space which (i) contains % linearly
independent vectors, (ii) is a group under addition, i.e. if @ and y
are in A so are &4 y, and (iii) has only the origin in some sphere
x2 44 x2 <92, where > 0.

In §5 we introduce the notion of the lattice constant 4(%) of a
set &. This is a number with the property that every lattice A with
d(A)<A(¥) has a point other than o in &, while there are lattices
whose determinant d(A) is arbitrarily near to 4(%) with no other
point than o in &. In § 6 we discuss at length a method due to MORDELL
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which uses MINKOWSKI’S convex body theorem to evaluate or estimate
A(¥) for sets which may or may not be convex. The idea is, roughly
speaking, to show that if a lattice A of given determinant d(A) =4,
has no points except o in %, then at least A must have points in various
sets abutting on &. Since these points belong to A, so do linear com-
binations of them. These combinations must be either o or lie outside &.
In this way more and more information about these points of A near
& is obtained, until there is a contradiction; the contradiction showing
that every lattice A with determinant d(A) =4, has a point in .
This method is particularly effective in 2 dimensions, since the relation-
ship of the various points to each other then springs to the eye. Con-
sequently in § 6.2 we give a series of simple lemmas about 2-dimensional
lattices which are non-the-less useful tools. MORDELL’S method is
applied, amongst other things, to finding 4 (%) when & is the region

| X% 4 X3 <1. (1)

This is equivalent to finding the lower bound of the values taken by
a binary cubic form with negative discriminant. This question was
discussed but not answered in Chapter II. The proof given here is a
conflation of several given by MORDELL. It uses essentially the algebraic
background. We remark in passing that MORDELL (1946a) has shown
that the result obtained generalizes to all regions which look sufficiently
like (1). Similarly, BAMBAH (1951a) has proved a result to show that
all sets which look sufficiently like

| X1 X (X, + X,)| <1 (2)

do, in fact behave like (2). The set (2) corresponds to binary cubic
forms with positive discriminant in the same way as (1) does to those
with negative discriminant. For example BAMBAH's result applies to
regions % with hexagonal symmetry and six asymptotes at angles n[3,
the set of points between two asymptotes which do not belong to &
being convex. Compare Chapter X, §3.3.

Finally, in § 7 we use MINKOWSKI’'S theorem to obtain some results
about the representations of numbers by quadratic forms; for example
that every prime p =4m 41 can be expressed as the sum of the squares
of two integers; p =ui +uz. This is all rather aside from the main
theme of the book but the proofs are so elementary and so striking
that they deserve to be better known.

I11.1.2, It is convenient to introduce here some important defini-
tions and notions.
The length of a vector ® = (%, ..., %,), namely

(o 4o - an)h

Cassels, Geometry of Numbers 5
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will, as usual, be denoted by
It satisfies the “triangle inequality”’

|z +yl<|=| +]|y]

for all vectors ® and y. The length of a vector is not an invariant under
all unimodular transformations, unlike most of the concepts we work
with, but we shall be concerned only with the topology induced by the
metric |®| and not the metric itself. Let

yi=2w,x (1S4, /Sn) (1)
be a real transformation of determinant
det (,;) 3 0. (2)
Clearly
ly|*= ; (; oc,»]-x,)zg n3AY 2l =nd A% x|?,
where

A = max [a,’il .

Since det (a;;) 30, we may solve (1) for the x; and obtain, say,

x = Zﬂi;‘y;‘- (3)
1
Then similarly
]2 Byl
where
B = max Iﬂ,,l .

Hence there exist constants ¢;, ¢, independent of & and y such that!?

0< clél—w—i§02<oo. (4)

[yl

We shall often make use of the following consequences without
explicit reference.

LeMMA 1. Let A be a lattice in n-dimensional space. Then there exist
constants n,, n, depending only on N with the following properties

(i) It ue\, ve\ and |u—v|<n,, then w and v are identical:

(ii) The number N(R) of points of N in a sphere |x| <R is at most
7 (R 1),

Both of these statements are trivially true for the lattice A, of
points with integer coordinates. But now (cf. §3 of Chapter I) if A

1 This is a particular case of a result to be proved later (Chapter IV, Lemma 2
Corollary).
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is any lattice with basis

b= (frj,.-.8,) (1S7j=m),

then the points of A are just the points (3) with yeA,. The truth of
(i), (11) in general now follows at once from (4) and the truth of (i), (ii)
for A,.

I11.1.3. We say that a sequence of vectors &, (r=1,2,...) con-
verges to the vector &' as limit if

lim|e, —&'| =0

in the usual sense. Clearly a necessary and sufficient condition for this
is that the co-ordinates of @, should converge to the corresponding
co-ordinates of &', since clearly

max |%,| < || < nf max|x,|

for any vector & =(x,, ..., ¥,). An immediate consequence of Lemma 1
ci} is that a sequence of vectors u, of a lattice A can converge only if u,
is the same for all sufficiently large 7, say

u, =u (all »=17).

A set & of points is said to be compact if every sequence of points
x,¢ & contains a subsequence y, =, (r,<<7,<<---) which converges to
a limit in &:

limy =ye¢.
§—> 00

A classical theorem of WEIERSTRASS states that a set & in #-dimensional
euclidean space is compact if and only if it is both bounded (i.e. con-
tained in a sphere |®|<<R for some sufficiently large R) and closed
(e if X, e (1=<7r<oo) and &'=lim x, exists, then x'c &).

For the sake of completeness we give a proof of WEIERSTRASS'S theorem.
Suppose first that & is a compact set. If & were unbounded, we could find a
sequence of points &, €% such that |&,| — oo, and then it clearly cannot contain
a convergent subsequence. Hence a compact set & is bounded. If % were not
closed, we could find a sequence of points &,€ % such that lim &, = &’ is not in &.
Clearly every subsequence of the original sequence tends to ®’. Hence a compact
set & is closed. Now let & be a set which is both bounded and closed. We shall
show that & is compact. Let &, (1=<7 < o) be a sequence of points of &. We
may suppose that originally all the &, are contained in a n-dimensional cube €
of side 2R for some R. This cube may be dissected into 2" cubes of side R by
taking planes through the centre of %, parallel to the faces. For definiteness we
take the cubes of side €, to be closed, that is to include their boundary points.
At least one of the cubes of side R must contain &, for infinitely many r. Let €,
be one of these. On repeating the original process with %, instead of €, we obtain
a cube €, of side 4R contained in €, which contains &, for infinitely many 7.
And so on. In this way we obtain a sequence of cubes ¥, (0=<s< o0} of side

S‘
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21-5R, such that €, is contained in ¥ . Each ¥, contains &, for infinitely
many ». The cubes € define a point &” which is contained in all of them. We may
now find a subsequence &, tending to &’ as follows: x,, is any point of the original
sequence in %,: if n, ..., », have already been fixed with

’1<'z<"'<'s'

then r,,, is any one of the infinitely many indices r > r, such that z, is in €.
Finally, since
*'=lime,,
s—>o00 '8
the point @’ is in &, since & is assumed closed.
There is a form of WEIERSTRASS’ Theorem which is apparently

more general. Let
x, (USk=E=m 1S57r<oo)

be a sequence of sets A, of m points @,, in a compact set . Then there
is a increasing sequence 7,<7,<--- of integers such that all the limits

lima
s— 00 kry
exist and are in &. For if
mkr = (xlkn L] xnkr);

the sets A, may be represent by points X, with coordinates x;,,
(1<j<#n, 1=k<m) in nm-dimensional space. Clearly the set %, of
points X = (x;,) with

(Fapror ) €F (S ESm)

is bounded and closed if % is. Hence the points X, have a convergent
subsequence X, . Then the 7, clearly do what is required.

[Alternatively one could make use of the so-called diagonal process. First
pick out a subsequence
Ar,= Bs = (ylsr LR yms)

of the A, such that y,  is convergent. Then pick out a subsequence C;= (2, ..., 2,,))
of the B; such that z,, is convergent. The sequence 2, is also convergent, being a
subsequence of the convergent sequence y,,. And so on. After m repetitions of
the process one obtains the required subsequence.]

I11.1.4. By volume we shall mean in this book LEBESGUE measure
unless the contrary is stated. We shall however have no need of any
of the more recondite properties of measure; the sets we shall be mainly
concerned with have a volume by any definition, for example the
interiors of cubes or ellipsoids.

II1.2. BLICHFELDT’s and MINKOWSKI’s theorems. We use the no-
tation and results of Chapter I. To BLICHFELDT is due the realization
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that the following almost intuitive result forms a basis for a great
portion of the geometry of numbers [BLICHFELDT (1914a)].

THEOREM 1. Let m be a positive integer, \ a lattice with determinant
d(N), and & a point-set of volume V(S), possibly V(&) = co. Suppose
that either

V(&) >md(N), (1)
or

V(&) =md(N) (2
and & is compact. Then there exist m 1 distinct points &y, ..., ®p4q
of & such that the differences x;—x; are all in A.

Let by, ..., b, be any basis of A and let & be the generalized paral-

lelopiped of points
b+ 49,0, (0=Sy;<1, 1S7<n).
Then & has volume
V(P) =|det(b,y,...,b,)| =d(N). (3)

Every point @ in space may be put in the shape
x=u-t+v, uch, vec?,

and this expression is unique, since the points of A are just the
y:0,4+---+9,b,, where y,, ..., y, are integers.

This parallelopiped £ will play an important part later (Chapter VII}),
where it will be called a fundamental parallelopiped for A.

For each uc A let #(u) be the set of points v such that

ve?, v+uc.

Clearly the corresponding volumes V{#%(u)} satisfy
ZV{RM} =V(). 4)
“

Suppose now that the first alternative holds, namely V(¥)>md(A),

so that (4) implies
2V{RW)}>md\) =mV(P).

Since the #(u) are all contained in £, there must be at least one
point vy€ & which belongs to at least m +1 of the #(u), say

v k() (1<j<m+1),

where the u; are distinct. Then the points

2, =v,+u;
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are in % by the definition of %(u), and

T,-X,=u—u €A

TETET 40 4.

This proves the theorem for the first alternative.

Suppose now that the second alternative holds. Let ¢, (1<7< o)
be a sequence of positive numbers and

limeg, = 0.

For each 7, the set (1+¢,) % of points (14¢,)x, e clearly has
volume
M+ &) V(L) > V(L) =md(N).

Hence, by what we have already proved, there exist points

x,c(14e)S (Is7sm+1)
such that
e

o (i+7). }
By extracting suitable subsequences of the original sequences, and then

calling them ¢,, @;, again to avoid introducing new notation, we may
suppose, without loss of generality, that

w(ii) (say) :w,-,—m,-,{ )

lime, =2, (A1</<m+1)

r o0

all exist. Since & is now assumed to be compact, the &; are in .
Then, by (5),
x; — x; = limwu,(1,7).
r— 00

But now the #,(z,7) are in A. Hence (cf. §1.3) u,(+,7) is independent
of 7 from some stage onwards:

w(i,g) =w(,g) (r27).
Hence
e

x; — @ = ui,] L
i ( 7){:*:0 (14:]),}
as required.

For later reference (Chapter VII) we note that in the proof for the
first alternative we have implicitly proved the following:

COROLLARY. Let & be any set of points and let S, be the set of points
v of the fundamental parallelopiped which can be put in the shape

v=x —u, xc&, uch.
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Then
V(S =V(&).

I} no difference &, — x, between distinct points of & belongs to N then
V(%) = V().

The first paragraph is clear. The second follows since then no two
Z (u) overlap.

I11.2.2. From Theorem I we deduce almost at once the following
theorem which is due, at least! for m =1 to MiNKOWSKI (“MINKOWSKI'S
convex body theorem”).

THEOREM II. Let & be a pornt set of volume V() (possibly infinite)
which 1s symmetric® about the origin and convex®. Let m be an integer
and let N\ be a lattice of determinant d(N). Suppose that either

V() > m2*d(N),
or
V(#) = m 2*d(N)

and & s compact. Then & contains at least m pairs of points +u;
(1 <7< m) which are distinct from each other and from o.

Again we note that the possibility of infinite volume is not excluded.

Theorem I applies to the set 1% of points 12, ¢ ¥ which has
volume 27"V (). Hence there exist m 41 distinct points

jxcls  (1S7Sm41),

such that
€N

+o0 (i#f')}'

We introduce an ordering of the real vectors and write

1 1
E“’i—fa’j{

€Ty > Xy

if the first non-zero component of x,— &, is positive. We may suppose
without loss of generality that

Ty > B> > Xy g
Put
1 1
u; - ?wj — 2Ly

Then clearly
0) j:uly AR} j:um

1 The general case is apparently due to vAN DER CORPUT (1936a).
2 For the definition of these terms see §1.1.
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are all distinct. But —,, ¢ & since @, €% and & is symmetric.
Hence

U =3& + 3 (—®p11) €S

by the convexity of . This proves the theorem.
For later use we note the

COROLLARY. Let & be symmetric about the origin and convex.
A necessary and sufficient condition that & contain a point of N\ other
than o0 is that there exist two distinct poinis 2@, 1x,¢3 S whose differ-
ence 3, —Lxy 1s1n &

If & contains the point @€ A then 3% contains the two points }a
and —1a whose difference is @; which proves part of the corollary.
Conversely, as in the proof of the theorem, if 1a,, 1@, are given, then
la,—L1x, is in &.

Theorem I is the best possible of its kind for any m. For example
the convex symmetric set

lnl<m, |x|<1 (<S4,

has volume 72" but contains only m — 1 pairs of points of the lattice A,
of integral points other than o namely

4+ (%#,0,...,0) (1Su=m—1).

We shall return in Chapter IX to the general problem of finding
convex symmetric sets of volume 2%d(A) which do not contain any
lattice points other than the origin.

II1.2.3. Important examples of a convex symmetric point set are
those sets & defined by a set of inequalities of the type

lapx+ - Fa,x,|<c or =¢ (SISL),

where the a;; are real or complex numbers. Such a set is clearly sym-
metric. It is also convex, since if @, y are in &% and

z=de+(1—Ay (O=1=1),
then clearly

|2 a5 £ 4| Zayn| + 00— 4| Zayy| = max || Zay x|, |Zayy)-
1 H ? 1

For sets & of this kind one can relax the condition of compactness
in Theorem II somewhat. We enunciate the theorem for the most
important case when the a;; are all real. It will be observed that the
argument might be used for a wide class of convex sets &.
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THEOREM III. Let A be an n-dimensional lattice of determinant d ()
and let a;; (1=1,7=n) be real numbers. Suppose that' ¢;>0 (1=1=<1n)
are numbers such that

Cy...c 2 |det(a;))| d(N). (1)
Then there is a point we N\ other than o satisfying

|2 ayu] < ¢,

. (2)
|2 au] <e; (25i<n).
Suppose, first, that
det(a,;) +0.
Then (cf. Chapter I, §3) the points X = (X, ..., X,) defined by
7
form a lattice M of determinant
d(M) = |det(a,;)| d(N). (3)
The inequalities (2) become
X\ |Ec¢
Hl=a )

| X <e;, (22015 m).

These define a set & in the space of X of volume 2"¢,...c,. Hence
if there is strict inequality in (1) the theorem follows from the first
alternative in Theorem II. Let now ¢ be any number in

0<e<.

Even if there is equality in (1), there is certainly a point X,€M other
than o, with co-ordinates (X,,, ..., X,,), such that

[ Xi]Sa+e<e+1
| X;| <e; (2=isn).

But now there are only a finite number of possibilities for X,, by
Lemma 1 (ii). Since ¢ is arbitrarily small, one of those possibilities
must therefore satisfy (4). This proves the theorem unless det (a,;) =0.
But then it is readily verified that (2) defines a region of infinite volume,
and so Theorem II certainly applies.

II1.3. Generalisations to non-negative functions2, The results of
§ 2 may to some extent be generalised to non-negative functions y ()

1 ¢;> 0 follows from (1) except when det (a;;) = 0. But we do not exclude this.
2 The results of § 3 will not be used later.
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of a vector variable ®. We suppose that () is integrable and write

Vi) = [ yp@dx, (1)
— 00 <X <0
where
de =dx,...dx%,.

This notation is justified, since if y is the characteristic function of a
set &, that is,

pix) = { @

then V{y) is just the volume V(&) of &.
We now have the following simple analogue of BLICHFELDT’S
Theorem I:

1 if xe
0 otherwise,

THEOREM IV. Let p(x) be a non-negative integrable function and let
N be a lattice of determinant d(N). Then there is certainly a point v,
such that

AN 2y, +u) = Viy). (3)

uch

Before proving Theorem IV we note that it certainly implies the first
alternative form of Theorem I. For if  is the characteristic function
of a set & and V(y) = V(&) >md () for some integer m, then (3) gives

20y +u) > m,
u
and so
Zy@tuy=m+1,
u

since now y(®) is given by (2). But this means that there are m 41
distinct vectors %, such that v,+ u,c &, and this is just the conclusion
of Theorem 1.

The proof of Theorem IV follows that of Theorem I. Let b,,..., b,
be a base of A, and £, as before, the set of

Yo+ +y,b,  (0=y;<1);
so that every & is uniquely of the shape

x=v}u, ve?, ucl.

Viy) = [yp(®)de
=2 Jyu+tv)do

ueA ved

=] [Zy(u+o)dv.

veP luch

Then

Since 2 has volume V(%) =d(A), the theorem now follows at once.
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I1.3.2. SiEGEL (1935a) has given a stronger form of Theorem IV which has,
however, remained rather sterile of applications. For notational simplicity we
enunciate it only for the lattice A, of integral vectors. The function

plv)=2y(v+u) )
ueh,

is periodic by definition. Its Fourier coefficients ¢(p) =c(py, ..., P,), where peA,,
are given by

((p)= o) e 2T P gy, (2
2

where (pv) denotes the scalar product
hvy+ o+ Pry.
On substituting (1) in (2), we have
cp)= [ ylw)e P PT gy (3)

— 00 <1500
(Isisu)

since pu is an integer when peA,, u<A,. In particular,

[p(v)dv=c(o) = V(y). (4)
P

But now, by a fundamental theorem in the theory of Fourier series,
S )dv = |c(p)|* (5)
4 pen

Since @(u) =z 0 for all v, there must be some v, such that

gf P2 (v) dv = ¢ (v,) yf P(v)dv = g(vy) V(y). (6)

On substituting the definition of ¢ (v,) and the values (3), (4), (5) in (6) we have

2yt uw)=g) = Vi) + (Vi) 2| p@e 2 P® g2, (7)
uch, peA,
P+o

This is SIEGEL’s inequality.

When a general lattice A is substituted for Ay on the left-hand side of (7) then
A* must be read for A, on the right-hand side, where A* is the polar lattice of A
defined in Chapter I, § 5.

I11.3.3. We now give RADO’s generalisation of MINKOWSKI'S convex
body theorem II. [RADO (1946a), see also CasserLs (1947a).] Rapo
considered very generally a homogeneous linear mapping A of #-dimen-
sional vector space into itself given by

Xi:Zlijxj (1)
when X =2Ax. We write det(A) =det(4,,).

THEOREM V. Let y(x) be a non-negative function of the vector @ in
n-dimensional space which vanishes outside a bounded set, and suppose that

y(Ax — Ay) = min{yp(x), p(y)} (2)
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for all real vectors ® and y. Then

plo) ++ Y vz S vy 0)

uch
*o0

for any lattice N\, where
V)= | ypk)de.

— 00 <L xy <0
(1s7s9)

Before proving Theorem V we note that it does in fact imply the
first alternative part of Theorem II. Let y(®) be the characteristic
function of a convex symmetric set &, so that V(y) =V(%). For A we
merely take A& =} @, so that det (A) = (3)”. The condition (2) is certainly
satisfied, since the right-hand side of (2) is 0 unless both & and y are
in %; and then

Az —Ay=3x+3(—Yy)
is also in & by the convexity and symmetry. On the other hand the
left-hand side of (3) is p +1, where $ is the number of distinct pairs
4-u€Ain & other than o. Hence if V(y)>m2"d(A), we have 14 p>m,
that is p=m; which is the conclusion of Theorem II.
To prove Theorem V we need an elementary combinatorial lemma.

LEMMA 2. Given any sequence of distinct vectors
{2} :25,2,...,2,...,
we can construct another sequence
{w}: wy,w,,...,w,, ...

satisfying the following three conditions:
(i) wy=o0,
(1t) w,+ Lw, 1f r=s,
(141) every w, is the difference between two of the first v -1 elements
of {z}, say
wr = zl, - zm, (lyg 7, m,é 7) . (4)
We introduce an ordering of real vectors and write
T 2,

if the first non-zero coordinate of @, — 2, is positive. If x, 4, then
either &, >, or &,>x,. We construct wy, ..., w,, ... in turn, so that

w,>0 (r>0).

The vector w, is given. Suppose that w,, ..., w,_; have already been
constructed, where r=1. There is a unique permutation Ry, (0=7=7)
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of the vectors 2; (0<7=<7) so that

zku< zkl< L zk'.

The 7 vectors

2y, — 7 (]‘=1,2,-..,7')

}

are distinct from each other and from 0. Hence we may choose as ww,
one of them which is distinct also from the r —1 vectors w,, ..., w,_;.
Since w;>>0 (1<7<r) we cannot have w,=—w;. Hence the w,
do what is required.

Theorem V, will be an almost immediate consequence of the following
Lemma.

LEMMA 3. Suppose that (2) holds and that det (A} =0, so that a irans-
formation A7t reciprocal to A exists. Then

Zy(Alu + A1) <y (o) +%§Aw(“) (5)

ueh
*0

for every real vector t.
For fixed t let 2, be the sequence of vectors 2 of A such that

p(A 2 +2A 1) >0 arranged so that
P12, F A Zp (A2 AN (=) (6)

Let w, be the corresponding sequence defined by Lemma 2. We apply

(2) with
r=x, =Nz, +A1¢

y=y, z)‘—lzm,+l_lt:
where /, and m, are defined by (4). Then
min {y(x,), p(4,)} = p(Aiz, + A1) (7)
by (6), and since [, <7, m,<r. But now, by (4) again,

)\(.’l‘, - yr) =w,
and so, by (2) and (7)
p(w,) =yp(A 1z + A1),

Similarly, on interchanging @, and y,, we obtain
"p("‘ u’r) 2 #’(7\—1 zr + '1_1 t) .
Hence, since = 0, we have

ZE’K () = y(w, + go{w (w,) +y(—w,)}

Zp(A 1% + A +2 Dy (Ae, + ALY (8)

r>0

= —pAlzy + A7) + 2 p(Alu+ A,
uzh
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since every vector uc/\ with (A lu+A1E) >0 occurs as a z,. But
now (2) with y = implies that y(0) =y (&) for any &, and in particular

p(A1z A =y(0). 9

The truth of the lemma follows now at once from (8) and (9).

Finally Theorem V follows from (5) on integrating with respect to ¢
over a fundamental parallelopiped & of A defined as in §2.1. The
left-hand side becomes

f{ Zy(Alu +7\“t)} dt= [ y@Att)dl=|det(N)|V(y).
2 luzA — 00 < tj< 00
(1s7=n)
The right-hand side of (5} is independent of £ and so, on integrating
with respect to ¢, is merely multiplied by V(#) =d(A). This proves the
theorem.

Rapo (1946a) discusses the homogeneous linear transformations A
for which there is a function g (x) which is not identically 0 satisfying
(2). It turns out that A must satisfy pretty stringent conditions, and
that taking multiplication by % for A is in a sense on the borderline of
what is possible.

I11.4. Characterisation of lattices. We are now in a position to
give a characterisation of lattices in which the notion of a basis does
not appear.

THEOREM VI. A necessary and sufficient condition that a set of poinis
N in n-dimensional euclidean space be a lattice ts that it should have the
following three properties:

(i) If @ and b are in N then a-+b is in A.

(ii) N\ contains n linearly independent poinis a,, ..., a,.

(1i5) There exists a constant 7>>0 such that o is the only point of N\
in the sphere

|z <7,
where, as usual,

|| = (2 + - + 221,

By the definition and Lemma 1 every lattice satisfies (i), (ii), (iii).
It remains to show that any set A satisfying (i), (ii) and (iii) is a lattice.

We note first that it follows by induction from (i) that if ¢, ..., ¢,
are any points of A and #u,, ..., u,, are integers, then

€+ +u,c, <N
Secondly, we show that if

C; = (Crjsver Cni) (1=sjsn+1)
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are n 41 points of A, then there are integers #;, (1=<j<n 1) not all 0
such that

For by Theorem II there certainly exist points (u,, ..., #,,,) 50 of the
{n +1)-dimensional lattice A, of integral vectors in the convex sym-
metric (n 4 1)-dimensional set & of infinite volume defined by the #
inequalities

L e <un (1=ism).

1<j<n+1

Put
d=2uc,
so that trivially
] <7.

Then d =0 by property (iii}, as was required.

Now let M, be the lattice with the basis a,, ..., @, given by (ii).
Then M, is a subset of A. If A coincides with M, there is nothing to
prove. If not, there is some vector b in A but not in M;. But now,
on applying the result of the previous paragraph to the #» +1 vectors

@,,...,a, and b, there must be integers #%,, ..., #, and v not all O such
that

vb:u1a1+"'+unan' (1)

Here v=0, since @,,...,@, are linearly independent. Further,

v= 41 since b is not in M, by hypothesis. We may suppose that b is
chosen so that |v| in (1) is as small as possible. Let p be a prime divisor
of v and write
v=pv; b =uv,b.

Then

pbl = u1a1+ +unanl
where not all of u,, ..., u, are divisible by $ since b, is not in M, (because
v was chosen minimal). Without loss of generality, $ does not divide #,,
and so

lp —mu, =1

for some integers / and m. Put now

a;=la,—mb, }

a;=a;, (2=Z7<mn),
so that conversely

al:pa{ +mu2a; + - +muna; }
a=a; (257<n).

Let M, be the lattice with basis @;.
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Then M; has index $ in M,, so in particular
d(My) =pd(M)) = 3d(M,). )

But now, by (2), a basis of M, is in A and so M, is entirely contained
in A. We may now repeat the argument. If M, does not coincide with
A there is a third lattice M; which is in A and contains M, as a sublattice.
And so on. Now, by (4),

dM)=<3dM,_y) - = (@) 1dMy).
a(M,) < (n/n)",

where 7 is defined in (iii) of the enunciation of the Theorem, then, by
Theorem II, M, would contain a point d & 0 with

;| <nfn  (1=7=n)

If

contrary to hypothesis. Hence the chain of lattices M,, ..., M,, ... must
have a last, Mg; and My then coincides with A.

III.5. Lattice Constants. We must now introduce a number of new
definitions relating to lattices and points sets. The new concepts will
be subjected to a searching analysis in Chapters IV and V; here we just
prove enough to show their use and to enable applications of Min-
KOWSKI's theorem to be made.

Let & be any point set. If a lattice A has no points in & other
than o (if o is in %), then we say that A is admissible for & or
& -admissible. We call the infimum (greatest lower bound) of 4(A) for
all A-admissible lattices the lattice constant of &% and write

A(&) =infd(N) (A is ¥ -admissible).

If there are no & -admissible lattices then we say that & is of infinite
type, and write 4(%)=o0; otherwise & is of finite type and
0=A4(&)< 0. An S-admissible lattice A with d(A) =4 (%) is said
to-be critical. Critical lattices play a very prominent role in Chapter V.
Of course in general there is no reason why a general set % should have
critical lattices at all.

Our definitions do not quite correspond with those of MAHLER
(1946d, e). He is usually concerned with closed sets & and says that
A is #-admissible if no interior point of % except o belongs to A, that
is if A is admissible in our sense for the set of interior points of &.
Our usage is a compromise between MAHLER'S and that proposed by
RoGERs (1952a).

I11.5.2. The definition of 4 (%) may be stood on its head: 4 (&) is the
greatest number 4 such that every lattice A with d(A)< 4 has a point
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other than o in &. The discussion of § 4 of Chapter I shows that many
of the results of Chapter II may be interpreted as giving the value
of A(¥) for certain regions . Take for example the statement that
if f(®) = f1142 + 2f12% %, + f22%4% is a definite quadratic form and
D = f;1f22— fi2, then there are integers u = (4,, %,) = 0 such that
f(1)<(4 D/3)}, withequality only for formsequivalent tof, , (¥} + %, x5+ 23)
(Theorem II of Chapter IT). This is equivalent to the statement that
the 2-dimensional set 2 X'+ X<t (1)

has lattice constant 4(2) = (2)} and that the critical lattices are pre-
cisely those with a base b;=(b,,, by,), by=(b;;, by,) such that

(b1 %14 13 %9)2 4 (bgy %y + baa %)% = 2§ + %1 %, + 43 (2)
identically. The reader will have no difficulty in making the translation

for himself (cf. Lemma 4 of Chapter I). We can also make a geometrical
interpretation of (2). Put
by =cos®, by, =sind,
byg=cosy, by, =siny.
Then (2) is true provided that
cos@cosy +sindsiny =1,
that is provided that
d -y =t}
Hence the critical lattice has as basis two points at angular distance
73 on X3+ X3=1. A further point on X34+ X3=1is b,—b,, as is
clear from (2). It is readily verified that the six points 4 b,, 4 b,,
-+ (b,— b,) are the vertices of a regular hexagon inscribed in X} + X2 =1.
I11.5.3. In this and in the next section we shall use MINKOWSKI’S
convex body Theorem II to evaluate or estimate 4(%) for various

sets &. Theorem II is directly applicable when % is symmetric and
convex, since it asserts that then

A(F)z 27" V(). (1)

This applies for example to the circular disc 2: X} +X3<1 and gives
A(2)2nj4=0.785...., which may be compared with the exact value
(23)¥=0.866 ... obtained above.

Even if our region & is not convex or symmetric, we may obtain
estimates for A (%) below if a convex symmetric body 7 is inscribable
in it. Clearly A(&F)=4(T) if T is a subset of &, since every S-admis-
sible lattice is automatically J-admissible. Hence

A(P) = ATz 2" V(T).

Cassels, Geometry of Numbers 6
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Consider for example the region
L X, X<
This contains the convex symmetric region
T | X+ ] X, <n

by the inequality of the arithmetic and geometric means. Now J is
convex and symmetric, since it is defined by homogeneous linear in-
equalities, and its volume is
2'n"n!.
Hence
A(F) =z nn!.

We shall later obtain a rather better estimate than this (Chapter IX,
§ 8). We note the translation into the theory of forms: Let
Li(®) =2 cji%
1<:isn
be real linear forms in the n variables @ = (x,, ..., x,) with det(c,;) == 0.
Then there exists an integral u==0 such that

!
|17_7L,.(u)|g%|det(c,.,)|.

MiNKowsK!'s convex body theorem also permits the evaluation of
A(S) for sets & which are not symmetric in 0. We reproduce here,
with his kind permission, Professor MAHLER’S elegant treatment of the
simplex, hitherto unpublished!. ILet & be an open simplex in #z-di-
mensional space containing o. If the faces of & are given by the equa-
tions

Lix)=1 (0=7=1n),

where the L;(x) are linear forms, then & is the set of points satisfying
Lix)y<1 (0=7=n).
There is one non-trivial relation between the linear forms, say

2 oL@ =0
0sjsn
identically in @, where the o; are real numbers, and without loss of
generality
og > 0.

1 It is given, however, in his mimeographed lecture course, Boulder (Colorado),
U.S.A., 1950, together with other interesting results about non-symmetric sets.
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If, say, ;< 0, then % would contain the infinite ray of points & satisfying
Li@=0 L@ =0 (+01);
which is impossible, since & is a simplex. Hence
w>0 (0=7=mn).

We may suppose without loss of generality that

% =1 =mina,, (2)
1
and then
Ly(x) = — 2 o;L;(x), (3)
1</€n
where
We show that
A(S) =27"V (%), (5)

where V(%) is the volume of the parallelopiped
¢ |Lix)|<1 (1=j=n).

In the first place, if A is a lattice with d(A)<<27"V(%), then there is
a point a=F 0 of Ain%. By taking — a instead of a if necessary, we may
suppose that
Ly(a) =0,
and then
La<1 (0=7=n),

soaisin &. Hence A(F)=2""V(¥). On the other hand, we shall show
that the lattice M of points @ such that

L;(a) =u, =integer (1<j=n)
is admissible for &.
If @ is in &, we must have #,<0 (1=<j<#), and minu; = —1 if
a=o0. But then, by (4), we should have
Lo(a) = — Yo u=1;

171

and so @ is not in &. Hence o is the only point of M in &. Since
d(M)=2""V(¥), this completes the proof of (5). We note that
27" V(%) =|d,| ", where d, is the determinant of then forms Ly, ..., L,,.
By (3) and (4), d, is the least in absolute value of the determinants of
selections of # out of the n+1 forms L, ..., L,.

Estimates of 4(%) for non-convex sets % may be obtained from
Theorem I instead of Theorem II. Let # be any set such that all the

6*
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differences
Ly Ty, X ER, TR (6)

lie in &. Then
4(&L) =z VR,

since by Theorem I if d(A)<V(Z) there exist two points @, x,c#
such that x,—a,¢A; and by hypothesis &, —a,¢.&%. Of course if I
is a convex symmetric set inscribed in & we could take # =1} but
then we get just the same estimate 4(¥)=27"V(J) as by the use of
Theorem II. However MorRDELL and MULLENDER found suitable sets
Z in the case they were treating such that V(%) was greater than
27"V(J) for any convex symmetric inscribed . The increases are
usually comparatively small and obtained at the expense of some
complication. We refer the reader to MULLENDER (1948a) and the
literature quoted there for further information.

In Chapter VI are obtained upper estimates for 4(%) in terms of
V(&) which are valid for all sets (Minkowski-Hlawka Theorem and
related topics).

I11.6. A method of MORDELL. In this section we develop a method
of MorpELL for finding 4 (%) precisely for point sets & which may or
may not be convex. The method applies primarily to star bodies.
This class of sets is defined by the properties that the origin is an inner
point and any radius vector meets the boundary either not at all or in
precisely one point: in other words, if @ is any vector other than o, then
either txe.% for all £ 0 or there exists a ¢, such that tx is an inner
point of &%, a boundary point of & or not in & according as ¢<#,,
t=t, or t>t,. We now have the'rather trivial

LEMMA 4. Let & be a star body and suppose that a constant A, exisls
with the following two properties.

(1) every lattice N\ with d(N)=A, has a point other than o in or on
the boundary of .

(11) there exist lattices N, with d(\) =4, having no points other
than o in the interior of <.

Then A(F)=A,. If further, & is open, then the critical lattices are
just the .

For suppose, if possible that M is an & -admissible lattice with
d(M)<4,. Let y>1 be defined by y*d(M) =4,. Then the lattice y M
of points y&, £¢M has clearly no points in or on the boundary of &,
contrary to (i). Hence 4(¥)=4,. On the other hand (14 ¢)A, has
no points in & for any ¢>>0, where A, is one of the lattices given in (ii).

1j.e. does not contain any of its boundary points. MiNKowsk1 and following
him MAaHLER define a star body to be closed. We depart from their nomenclature.
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Hence A{#)=(1+¢€)"4,, so 4(F) =A4,. The truth of the last sentence
of the lemma is now obvious.

When the description of star-bodies by distance-functions is intro-
duced in the next chapter, Lemma 4 will fall into place as part of a
wider theory.

MorpELL’S method of finding 4 (%) for a given star-body & may
now be described. First one must make an intelligent guess 4, at 4(%):
in particular so that (ii) of Lemma 4 is true. If 4, has been correctly
chosen, then it may be possible to verify (i) and to find all the A, in
(ii) by the following general procedure, of which the details naturally
vary widely from case to case. We suppose for simplicity that & is
open. Let M be any &-admissible lattice with d(M)=4,. Then if
J,(1=7=7) 1s any collection of closed convex symmetric sets each of

VOlume V(g-]) — 2”[]0 (1§7§_7),

there must be points p,40 of M in J; for 1<7<7r. Since M is -
admissible, the p; must lie in &%;, the set of points of J which are not
in . We may now use the hypothesis that the p; are in a lattice M
of determinant 4, to obtain further points of M. Since these cannot
lie in &, this gives further information about the p,. In the end it
may be possible to show that M is one of a set of lattices A, all of which
have points on the boundary of &. Lemma 4 shows that 4(%)=4,.
Of course the power of the method depends on a suitable choice of the 7.

MorpELL’S method is at its best in dealing with 2-dimensional
regions, since for these it is easier to grasp the geometry of the figure.
Before giving some concrete examples we must therefore study the
geometry of a 2-dimensional lattice more closely.

I11.6.2. Throughout § 6.2 we denote by A a 2-dimensional lattice.
We regard vectors as coordinates of points on a 2-dimensional euclidean
plane, and use the normal geometric language to discuss their relations.
By distance we mean the usual euclidean distance. For later reference
we formulate our conclusions as lemmas.

We say that a point u of a (not necessarily 2-dimensional) lattice
is primitive if it is not of the shape u =*%u,, where u;¢A and 2> 1 is
an integer.

LEMMA 5. Let u be a primitive point of the 2-dimensional lattice A.
Then the points of N lie on lines , (r =0, +1,...) which are parallel
to ou and at a perpendicular distance

rd(N)|ul

from 1t Each line T, contains infinitely many points of N\ and these
are spaced at a distance |u|.

! As before |u| = (u2 + uf)}, that is the distance from o to u.
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This is just a re-statement in geometrical language of what is known
already. Since u is primitive, there is a point » which with u forms a
basis for A (Chapter I, Theorem I, Corollary 3). Hence

det(u,v) = +d(N),

that is the perpendicular distance from v on the line through o and u
is d(A)f|u|. But now A is just the set of points

rv4su  (r,s integers).

Clearly the points with 7 fixed but s varying lie on a line m, with the
required properties.

LEMMA 6. Let u, v be points of the 2-dimensional lattice N\ such that
0, u, v are not collinear. Then a necessary and sufficient condition that
u, v be a basis for N is that the closed?! triangle ouv should contain no
points of N other than the vertices.

The condition is clearly necessary, by Lemma 5, so we must prove
it sufficient. If there are no points of A in the triangle ouw other than
the vertices, then the same must be true of the triangles with vertices

—u,0,v—u (1)
and
—v,u—u,o0, (2)

since, for example if & is a point of A in (1), then & +u is a point of A
in triangle ouv. Similarly there can be no points of A in the images
of our first three triangles in the origin, since — @ is in A if @ is. Hence
there is no point of A in the hexagon J# with vertices +wu, +v,
=+ (v —u) except 0 and the vertices. By Theorem II

d(N) = 1V(#) = 2|det (u,v)|.
But
| det (u, v)| =Td(N),

where the integer I is the index of the points u, v in A (Chapter I, §2.2);
and so I =1, as required.
The analogue of Lemma 6 does not hold in space of dimension > 2.
LemMMA 7. Let 2 be an open parallelogram with o as centre of area
4d(N), which contains no other point of N than 0. Then N has a basis

consisting of the mid-point of ome of the sides of 2 and a point on one of
the other pair of parallel sides.

1j.e. the sides are counted as belonging to the triangle.
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After a suitable transformation of coordinates, we may suppose
that 2 is the parallelogram

2: | X, <1, |X,| <1

and that d(A) =1. By Theorem III there is certainly a point of A
other than o in | X,|<1, | X,|<1, and so A must contain a point

u=1,uy) |uy| <1.
Similarly, A must contain a point

v=(v;,1) |v]<1.
But now, since 4(A) =1, the index of (u,®) in A is

I =|det(u,v)| =1— uyv,.
But I is an integer and |u,v,|<<1. Hence I =1 and either u,=0 or
v, =0.
LEmMA 8. Let A be a lattice of determinant d () which has two points

other than o in the closed parallelogram with vertices 0,a,b,a+b and
volume (area) d(N). Then either

(1) the two points are collinear with o,
or

(1i) one of the points is @ and the other is on the line-segment b, a +b,
or

(1i1) one of the points is b and the other is on a, a +b.

For the points p, q, say, are of the type

p=ma-+mb, q=xa+4xb
where
0=m=<1, 0=x=1 (1=1,2).

The index I of p, q in A is
I =\mny— 7y%,].

Hence 7y%,— 752, =0 or 4-1; which gives the three alternatives quoted.

111.6.3. We first illustrate MORDELL’S method with an example
where the amount of subsidiary argument required is a minimum.
Let o be the cross-shaped 2-dimensional region defined by

min{|x,], |%,|} <1, max{|x,],|x,]} < 2.

We shall show that
AA) =2
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and that the only critical lattices of X" are those with the following
bases:

A, basis (1,1) and (1, —1)

A, basis (3, —3) and (-3

A; basis ($,3) and (4,3

It is readily verified that these lattices are Jf-admissible and have

determinant 2. Hence by Lemma 4, it is enough to show that any
X X -admissible lattice A with
{‘“b‘:‘ TR d(A) =2 must be one of A,
| X . Az, Aa.
. o From now on we suppose
that

d{A) =2: Ais A -admissible.

i
|
|
|
|
|
ez The convex symmetric oc-
|
: tagon

|

4

| Sttt S —— |

A jal <i,

AN / |%,] <3,

| 1 EARSEARS ;
has area

Fig. 5 Y224 (N),

and so contains a point a3=0 of A. The only points of & not in )¢~
are the four triangles with |x,|=1, |%,|=1 (see Fig.5). Hence, by
symmetry, we may suppose that A contains a point @ ={(a,, 4,) with

a: 1<a, <3, 1Za,<d, a,+a,<$. (1)
By Theorem III there is a point b0 of A in
(%] <t x| Z2.

On taking — b instead of b if necessary and using the fact that b is
not in M, we may assume that, the coordinates of b satisfy

b: |0 <1, E=h,=2. (2)
Similarly there is a point ¢ of A satisfying

c: 3<a=2, o<1, (3)
Now we show that a, b is a basis for A. We have

det(a,b) =aby—a,b;,>1-3 —3%.1=
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and det(a,b) < 3-2+3-1=32,

S0
det(a,b) =2 or 4,

since det (@, b) is an integral multiple of d(A). Suppose first, if possible,
that det{a, b) =4, so that the index of @, b in A is 2. For any integer
k>1 the points 2 1a, kb clearly lie in 2 and so are not in the /-
admissible lattice A: that is @ and b are primitive points of A. We
show now that }(b—a) is in A. Since @ is primitive there is a basis
a,d where, say, det(a,d)=d(A)=2. Than b=ua+vd for some
integers #, v; and indeed v =2 since det(a, b) =4 =2det(a, d). Then
% is odd since b is primitive, so 4(b—a) is in A as asserted. But
1(b—a) is clearly in X so we have a contradiction. Hence we can only
have
det(a, b) =2 =d(A). (4)
This gives the estimate
: (5)

since otherwise we should have the contradiction

by

\%

(S

2=a,by—ayb,>1-3+1-1.
Similarly
det(a,¢) = — 2 = —d(A) (6)
and

IV
ol
S

Co

Since a, b is a basis for A we have
c=sa-+rb

for some integers 7, s. On substituting this in (6) and using (4) we
obtain » = —1 and so
b4 c¢c=sa (8)
Le.
by+cy=sa,, by+cy=sa,. (9)
But
F<b+e<3, 1=a,<}

by (1), (2), (3); so there are only the two possibilities
s=1 or s=2.
First case s=1. From (1), (2), (3) and (9) we have

by<0, ¢;<O0. (10)

From (4), (5), (6) we have
det(e,b) =2
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hat i
that 1s Cyby— c3by = 2.

But ¢;=%, b, by (2) and (3); and 0>5,2 —, 0>¢,=—1 by (5),
(7) and (10). Hence (8) can hold only if
01=b2=‘g‘x ca=b=—4%,

which gives the lattice A,.

Second case s=2. By (1), (2), (3) and (9) we now have

b,=0, ¢;=0. (11)
We now consider the lattice-point
(dy,d) =d=(b—a) =}(b—c).
By (2), (3) and (11) we have
0=2d,=b,—¢;=—2,
0§2d2=b2-—62§ 2.

Since d cannot be in X we must have dy=—1, d,= 11; that is
¢;=>b,=2, by=c,=0. This gives a;=a,=1. Hence A=A,.

In the proof we have made use of the symmetry of the figure. Since
A, remains unchanged under transformation of J into itself, but A,
and A, may be interchanged, we have shown that A is one of A, A;, A,
as required.

II1.6.4. As a second example of MORDELL’S method we take the disc

9. B4xi<,

which we have already discussed by other means (§5.2). We take

Ay=(3)? in Lemma 4. The lattices A, certainly exist; since they can

be taken to be the lattices with a basis consisting of two of the vertices
of an inscribed regular hexagon. We shall show that if d(A)=(2)},
then A has a point other than o in 2 except when Aisa A,

There are certainly points of A in the circle
x4 a5<2,

since this has area 27> 22> 224 (A). Since A is Z-admissible, the point
must lie in 1< 2 443 < 2. After a suitable rotation of the coordinate
system we may thus suppose without loss of generality that there is
a point p =(p,, p,) in A with
p=— (DL F=p<i
But now, by Theorem III there is a point q =(g,, ¢,) other than o in
the half-open parallelogram
2 |m 437 <1, || <3
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of area 2 V§=4d(/\) (see Fig. 6). The only portion of 2 not contained
in 2 is the curvilinear triangle € cut off by the arc of the circle between
a=(1,0) and b =(% ——]/%) and the image of % in the origin. We may
suppose without loss of generality that q is in €.

Clearly both p and q are primitive, since, if either were of the shape
ku with uc/ and integer 2> 1, then # would be in 2. Further p+q,
since p,= —1/§ but |g,] <| 3. We now apply Lemma 8. From what

(-$-v¥)
=h-q =
Fig. 6

has just been proved, p, q, 0 cannot be collinear. Hence either p=b
and q lies on the line-segment between a (inclusive) and @ + b (exclusive)
or ¢ =a and p lies on the line-segment between b (inclusive) and & +b
(exclusive); and by symmetry we may suppose the second holds. Then
P — q =p —a lies between b —a (inclusive) and b (exclusive). The only
one of these points not in & is b—a. Hence also p=>b. Hence A
is the lattice generated by @ and b. Since we made an arbitrary rotation
of the coordinate system this completes the proof of the result stated.

I11.6.5. As a final application of MORDELL’S method we prove a
result about binary cubic forms which fills a gap left in Chapter II, § 5.
We use the same notation.

THEOREM VIL. If f(%,, x,) be a binary cubic form of determinant
D <0, there are integers (uy, uy) 0 such that

)= | 2

The sign of equality is needed when and only when f is equivalent to a
multiple of
23— x5 — 2.



92 Theorems of BLICHFELDT and MINKOWSKT

This is the most important part of Theorem XI of Chapter 1I, which
was left unproved. As already remarked, the form here is transformed
into the form there by the substitution x,—x;, x,— — (%4 %,). We
already noted that the exceptional form does require the sign of
equality since it has D = — 23 and represents only integers other than 0.

We must first express Theorem VII in a geometrical form. We saw
in Chapter IT that any two binary cubics with negative discriminant
can be transformed into one another. It is convenient to take X3 4+ X3
with discriminant — 27 as standard. Then Theorem VII is equivalent to

THEOREM VII A. Let A be a lattice with

4N = (2= 4, say) (1

in the two-dimensional space of vectors X =(X,, X,). Then N contains a
point other than o0 in
& | X+ X3 <1, (2)

except when N has a basis a =(a,, a,), b= (b, by) such that identically
(@ 2y — by %2)> + (@y 2y — by %,) = 23 — 2, 45 — 23, (3)

In stating the equivalence of Theorem VII and Theorem VII A we
have tacitly applied Lemma 4 to the star body &. From now on we
shall be concerned only with Theorem VII A. We use capital letters
to denote points and coordinates, except that o is still the origin.
Further, A is a lattice with 4(A) given by (1) which has no point other
than o in the set & defined by (2). The set % is shown in Fig. 7.

First, since 44<C 1, there is certainly a point P=£0 of A in the square
| X, <1, X <1. 4)

Since P does not lie in &, either P or — P must lie in the first quadrant
and we may suppose without loss of generality that

0SSP <1, 0ZEB<t. (5)
From Fig. 7 (or from elementary algebra} we must have
P +B=1. (6)

Suppose, if possible, that there were two such points, P and P’. Then
their difference P”=P — P’ satisfies (4). Hence on interchanging P
and P’ if need be, we may suppose that P’ is in the first quadrant:
of course it may coincide with P or P’. Hence

P=P P
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But now, in the obvious notation, we have P/ + P, =1, P+ P,' =1,
since neither P’ nor P is in %. Hence we should have

R+ B=(A+PR)+ (A +P)=2,

in contradiction to (5). To sum up what we have proved so far: there
is precisely one pair of points 4-P¢A other than o in the square

X2
o 2l+P

Fig. 7

| X,] <1, | X,]<1. We denote from now on by P the point of A which
satisfies (5) and (6).

We now examine more closely the lattices which satisfy (3). We
must make use of the algebra developed in Chapter 11, § 5. Let 4,, B,,
A,, B, be any numbers such that identically

(Ay 21— Byxy)* 4 (Ayxy — Byx) =2l — x x5 — 3 =fo(@) (say}. (7)
On equating the hessians of both sides, we obtain
—9(A, By — 4, B))? (A, — By %,) (A %, — By %y)

=1 Pl \2__ 2o Bh) _ 4,2 S a2
_—4—{(54’13;\2) —37;‘5;5}—2761+9x1x2+12.
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The linear factors of both sides must coincide, and so, after inter-
changing 4,, B, and 4,, B, if need be we have

9— V6
Ay % — leZZAl{xl —6ﬁ xz},

6
Ayxy — B2x2=A2{x1+ﬁ?E xg}.

On comparing the coefficients on both sides of (7), we have
A+ 43 =1
(9—1/69) 43 + (0 +/69) 43 = 0.
This determines 4%, A3 uniquely, and so A4,, 4,, B;, B, since they are
all real.

Hence there are only two lattices of the type specified in the theorem,
namely those with base

4= (Al»Az): B = (Bll Bz):
and

A=(4;,4), B=(B,By),
respectively.
The approximate values are
A;=1.014, A,== — 0.347
B,==—0.017, B,==1.0005.
All we shall in fact use are the inequalities
4:>1, A4;<0,
B,<0, B,>1. }
The signs of A,, B, are easy to establish and, since
A+ Aj=Bi+ B} =1,

by (7), the rest follows.
Comparison of discriminants on both sides of (7) gives

27("4132 - Az Bl)s =23,
and so
A4,By— 4, B, =+ 4,

where in fact the + sign holds, but we do not use this information.
Let X=7x be the transformation of the plane X =(X,, X,) into
the plane & =(x,, x,) given by

X, =A% — By, X,=Agx;— By%,.
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Then the region t1.% of points T X, X¢& is given by
|43 — 2, 23 — 3] < 1.
Further, v A is a lattice of determinant
d(x1A) =|det (x)|1d (A) =1 )

(cf. Chapter I, §3).

The region t1 % is shown in Fig. 8. The line x; =1 touches f;(x) =
%3 —x, 23— 23 =1 at x,=0 and meets it again at x,=—1. The line

02g-p

Fig. 8. fo=2}—2 2§~}

%, =1 meets x} — x, 43— ¥3 = —1 at x,=0, +1. Since no line meets a
cubic curve in more than three points, it follows readily that the whole
of the unit square

2: x| <1, m| <t

lies in 1%, except for a small region % in x,<C0, x,<<0 and the image
— % of Z in the origin.
Suppose first that (1, 0)e®1A. Since d(t1/A) =1, there are points
of TA on the line x,=1 spaced unit distance apart, by Lemma S.
Since none of these can lie in T71.% the only possibility is that T1A = A,
the lattice of points with integral co-ordinates. But then A=r<A,,
which is one of the exceptional lattices permitted by the theorem.
Similarly, if (0, 1)€t A, then A=7A,. Hence from now on we may
assume that
(1,0¢tIA,  (0,1)¢x1A. (10)

By Lemma 7, either there is a point g0 of A in the square 2,
or {1,0)€A, or (0,1)¢/A. But the second and third alternatives have
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already been disposed of, and so, since ¢ cannot lie in t71.%, we may
suppose that g is in #. Further, ¢ must be primitive, since if ¢ =#%¢q,,
with integral £>1 and q €7 1A, then q, would lie in |x,| <}, |%| <}
and so certainly! in v, contrary to the hypothesis that ©!A is
T1.%-admissible. Hence q is unique by Lemma 8.

We require another point of T A. The tangent to f,(x) =1 at

0, —1) i
0. 1) 5 — = 3m=}3.

i . : 9 —28
This meets f, () =1 again at (—2-5—, >

). Hence all of the parallelogram

2 m| <1, |m+3x%n| =3

lies in 1% except for the points 4-(0,1) and a region 7 in x,<0,
%,>0 and its image in the origin. But now, by Theorem III, there is
a point p of T1A in 2’ and, since T1A is 77! #-admissible, we may sup-
pose by (10) that p is in J. The point p is primitive since if p==£4p,
with integral £>1, then p, lies in |x| <1, |7|<%, so per1 &
An application of Lemma 8 shows that p is unique.

We note that the point 2q —p clearly lies in x,<<0, x,>—1.
Since the point g is the only point of *7'A in £, it follows that 2q —p
must lie in the region fy(z) < —1.

The next stage is to show that p and q form a basis for A. We have

0<p1<<l, —4<pp<—1, (11)
and

—1<g,;<0, —1<¢,<0. (12)
Hence
<0

det = —
et(p,q) = $19, 91P2{>_1.1_1'%>_3_

Since det(p, q) is a multiple of det(v*A) =1, the only possibilities are

det(p,q) = —1
or

det(p, q) = — 2.

In the first case, p, q are a basis. Suppose, if possible, that det(p, q)
== —2. Since p is primitive, there is a basis p, r, where det(p, )
=4d(A)=+1. Write q=up+or
where # and v are integers. Then

det(p, q) = vdet(p,r),

1 For then |/, (q))| |3+ | %] | %2]2+ | #2|* <& < 1. We shall not explicitly give
such trivial estimations later.
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so v=42. Now u must be odd, since ¢ is primitive, and so
t=3(p—qet?A
But then, by (11) and (12),
o<t,<1, —%<t,<o0;
a trivial estimation shows that |/, ()] <1, and so ¢ would be in =1.%,

contrary to hypothesis.

To sum up: there is a basis peJ, q¢Z of £ *A. The point 2q—p
lies in f,(x) < —1. There are no other points of t'A in J or Z.

We must now translate our facts about t!'A into facts about A.

We write
A=(A1:A2)» B:(BDB2)‘

The region T2 is bounded by the curve
X} +Xi=1,
the transform of /,(®) =1, and the line-segment joining the points
T0,—1) =8B, 7~(—1,—-1)=—A+B,
and so is roughly as shown in Fig. 7. The point

Q (say) =*q
lies in T &.
Similarly ©7 is bounded by X?-+4+X3=1 and the tangents at
7{(0, —1)=B and at t(1,0) =A. We now show that .7 lies in

0< X, <1, 0<X,<1. (13)

Indeed, since B,>1, the tangent to X}+ Xi=1 at B has negative
gradient and so meets X} + X3 =1 again at a point in (13). Since v
lies below this tangent, its points satisfy X,<1. Similarly, since 4,>1,
the points of .7 satisfy X;<C1. They clearly satisfy X,;>0, X,>0.

But now we saw earlier that there is only one point, P, of A in (13).
Since Tp is in v*J we must have

=p=P.

To sum up the results of our translation: there is precisely one point
Q<A in T#. This point Q together with the unique point P of A in
(13) form a basis for A. The point 2Q — P lies in X} 4+ X3< —1.

Let # be the mirror image of *# in X,+ X,=0. By symmetry
there is precisely one point L, say, of A in & : this point together with
— P forms a basis for A, and the point 2L+ P lies in X3+ X3>1.

Cassels, Geometry of Numbers 7
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But now every point of the triangle 0 LQ is in one of the regions
&,*% and . By hypothesis there is no point of A in &, and we
proved that Q, L are the only points of A in %, # respectively.
Hence Q, L forms a basis of A by Lemma 6.

We have three bases P, Q: Q, L and L, — P for A and must study
their relations. Now

det (P, Q) = det (Q, L) = det (L, —P) =d(A),

since the determinants are 4d(A) and are clearly positive. Write

P=uQ+vL.
Then
det(P, Q) =vdet(L, Q),
det (P, L) =udet(P, Q).
Hence

P=Q—L.
We have now reached a contradiction, since
20—P=2L+P,

and this point has been shown to lie both in X}+X3=1 and in
X3 4+ X3< —1. The contradiction shows that there are no &-admissible
lattices with d(A) =4, except those mentioned in the enunciation of

the theorem.

We have shown rather more. Let the line joining B and — 4+ B
(which forms part of the boundary of %) meet X,+ X,=0 in the
point (—¢, ¢). Then it is clear that our argument shows that there is
a point of every lattice A with d{A)=<4, in the bounded region

[ X3+ X3 <1, max{in], |X2|}§c,
except when A is one of the two critical lattices. That is, |X‘} —}—X‘é] <1

is boundedly reducible and indeed fully reducible in the sense of
Chapter V, § 7.

I11.7. Representation of integers by quadratic forms!. In this
section we digress to present a number of results in the arithmetic
theory of quadratic forms which can be proved very simply by the
methods of the geometry of numbers. The principle tool is the following
lemma.

LEMMA Q. Let n,m, ky, ..., k,, be positive integers and a;; (1=1=m,
1<7<mn) be integers. The set N\ of points w with integral co-ordinates

1 This section is not used later.
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satisfying the congruences?.

Zau=0 (k) (1Zi=m)
1gjsn

is a lattice with the determinani
AN Z k.. k.

That A is a lattice follows, for example, from Theorem VI. Two
points u and v of the lattice A, of all integral vectors are in the same
class with respect to A if and only if

Zaijqu Zaiivi (k:) (=1=m).
7 7

Hence the index I of A in A, that is the number of classes, is at most
Ik, so
' dN) =1d(N) <[]

(compare Lemma 1 of Chapter I).

II1.7.2. As a first example we show that every prime number
= 1(4) is the sum of the squares of two integers. For then, as is well
known, there is an integer ¢ such that

2L1=0 (p).
The set of integers (u,, u,) such that
uy=1u; (p) (1)

is, by Lemma 9, a lattice A of determinant 4(A)<p. Hence by MiN-
KowsKI's convex body Theorem II there is certainly a point of A in
the disc D: A< ap
of area V(9) =2np>22d (). Hence there are integers #,, %, not both 0
satisfying (1) and
ui +ul<2p.

But (1) implies

Wt ui=ul(l +43) =0 (p),
and so u? +u3 =p, as required. The method is readily extended to show

that a positive integer is the sum of two squares provided that it is
not divisible by a prime p= —1(4).

II1.7.3. As a second example, we shall show that every positive
integer m is of the shape

2 2, 2 2
m o= uy -+ Uy + Uz + Uy

1 By a==b (k) we mean that a — b is divisible by &.
7#
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with integral u,, u,, u,, u,. We may suppose without loss of generality
that m is not divisible by a square other than 1, so

m=2p;... 0

with distinct primes $,, ..., p,. We now show that to every prime p
there exist integers ay, b,, such that

G+ +1=0 (p). (1)
Indeed when p is odd the numbers
a? (0Sa<ip), (2)
and
—1=b  (0=b<3P) (3)

are each a set of (p +1) integers which are incongruent modulo .
Since there are only p classes modulo p, there must be some integer ¢
which is congruent to an element of each set (2) and (3), that is
ay=c=—1—"b},soay+by+1=0. If p =2, then a, =1, b,=0 will do.

We now consider (cf. DAVENPORT 1947b) the lattice of integral
U =(u,, ..., u,) which satisfy the 2g congruences

Uy = ayug +byuy (p) }
Uy = bp Uy — ApUy (#)
for p=#y, ..., p,- By Lemma 9, these form a lattice A of determinant
AN S 3. p2 = m?

(4)

Hence there is a lattice-point other than o in the set

a+x+g+ag<em
of volume
Tat(2m)? > 20m2 = 204 (N).
If u is this point, then

0 < i+ uj+us + uf<2m

and, by (1) and (4),

wi ol +ug i = (@ + 05+ ) Ui+ (@ + 05+ ) ui =0 (p)
for p=p,, ..., p,; that is m divides u? 4. +u3. This proves the result.

111.7.4. A famous theorem of LEGENDRE states that a ternary
quadratic form f(x;, x,, #;) with rational coefficients represents 0 if
obviously necessary congruence conditions are satisfied. Following
Davenport and MarsHaLL Harr (1948a) and MORDELL (1951a) we

verify this in a particular case, to which indeed the general case may
be reduced by simple arguments.
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Let
(@) =a1xi°‘ “}‘azx‘% +a3x§,

where a,, a,, a, are square-free integers no two of which have a common
factor, so a, 4,4, 1s square-free. We show that there exist integers u==o0
such that f(u) =0 provided that the following two .conditions are
satisfied

(1) there are integers A,, 4,, A; such that

a, +A§“25 0 (a3), a2+A§a3£ 0 (a), aa+A§a1_=_ 0 (ay)

and
(ii) there are integers v, v,, v, not all even such that

@03 + @35 + a3v5 = 0 (244,
where A =1 or 0 according as a,a,a, is even or odd.
Let
|ayaya5] =2%p,... 0,
where p,, ..., p, are distinct odd primes and A =1 or 0. We shall take

for A the integral vectors u = (u,, u,, u;) satisfying the following con-
gruence conditions.

(I) Let p be one of p,, ..., p,. By symmetry we may suppose that
a, =0 (p). We impose the condition
uy= Azu; (p).
Then
a0} + agui + ayui = a,ul + ayuh = (a; + a,A)ui=0 (p).
(I1,) Suppose 4 =0, so a,, 4,, a, are all odd. Now
=0 or 1 (29
for any integer v. In condition (ii) precisely one of v, v,, v; must be
even, say v;. Then
0=av + a0} +agvi=a,+a, (29).
We impose the two congruences
u=uy (2, }
u=0 (2.

Then 2 2 2 _ 2 2 _ 2
a Uy + ay Uy + agus = ayui +a,us =0 (2%).

(IIg) Suppose A=1, so one of a,, a,, a, is even, say a,. Then

2 .
a,v} +a,v3 is even, so vy, v, are both even or both odd. If »,, Uy Were

even then 2 3 2
a3v2 = — alvl - a27)2
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would be divisible by 22, so v; would be even. Hence v,, v, in (ii) must
be odd, and

O0=a} +ayv}+ a0 =a, +a, +ayvl, (29

since v2=1 (23) if v is odd. We impose the two conditions
wm=u, (2%,
ug= 31, (2). }

Then it is readily verified that

a, w4+ ayul 4+ azus =0. (29
In any case the lattice A of integers u has determinant
AN S 2472, .. p,=4|a 0505,
and the congruence conditions imply that
i+ ayus +azus =0  (mod 2*+%p, ... p, =4|a a,44)).

But now, by MINKOWSKI'S convex body theorem, there is a lattice
point not o in the ellipsoid

E: a4+ ay] %3+ | a5] 45 < 4| ayaza)
of volume

V(é) = g - 2%| ayaza,] > 23d(N).

If u==o0 is the lattice point in &, we must have a,u} + a,us -+ a;us =0,
since it is divisible by 44,4,4,; and

layuf + ayus + azus| < | ay| uf + | as| 43 + | ag| us < 4|4, a5 04|

We conclude with a couple of remarks. An obviously necessary
condition for solubility of @, 4} +a,u3 4 a;u3 =0 is that a;, a,, a5 should
not all have the same sign. We did not use this at all. Hence this
condition must be derivable from the others. The reader might verify
that this can be done by means of the law of quadratic reciprocity.

In the second place we have not merely shown the existence of a
solution, but we have shown that there is one which satisfies

l“l] u; + I%l“g + lasl“§< 41“1“2“3"

The right-hand side here may be improved to 2f|a,a,4,| by the use
of the precise Theorem III of Chapter II instead of Theorem II, as the
reader can easily verify.



Introduction 103
Chapter IV

Distance-Functions

IV.1. Introduction. In this chapter we introduce a number of
concepts which are useful tools in all that follows.

IV.1.2. A distance-function F(z) of variable vector @ is any function
which is

(i) non-negative, i.e. F(x)=0,

(i) continuous,
and

(ii1) has the homogeneity-property that

F(t®) =tF(x) (=0, real).

The set & defined by
& F(x) <1 (1)

turns out to be a star-body in the sense already introduced in the last
chapter: that is, the origin 0 is an inner point of % and a radius vector

txy (0=t< o)

either lies entirely in & [which happens when F(x,) =0] or there is a
real number #; ={F(xy)}?>0 such that i@, is an interior point of, a
boundary point of or outside of % according as {<t,, { =%, or t>1,.
In §2 we examine this relationship and show that conversely every
star-body & determines a distance function F(z) such that the set (1)
is the set of interior points of &. Since many, though not all, of the
point-sets of interest in the geometry of numbers are star-bodies, the
concept of distance-function plays an important role.

Most of the problems considered in Chapter II relate to star-bodies;
and then it is easy to write down the corresponding distance functions.
For example if f(x) is a positive definite or semi-definite! form, the set

flae) <1
corresponds to the distance-function
F(a) = {{(@@)}",

where 7 is the degree of f(x). Again, if f(@) is an indefinite form of
degree 7 and >0 is a number, then the set

—1<f®) <k

! By semi-definite we mean that f(x) = 0 for all & but f(x) = 0 for some &=+ o0.
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corresponds to the-distance function
F| @) i (@)
|H)| it f(w)

The reader will readily verify that both the functions just defined
are in fact distance-functions. One advantage of introducing distance-
functions is that some of the ideas of Chapter II can be carried over
to all star-bodies. A simple example of a 2-dimensional set which is
not a star-body is

0:

H@={ o

=
=

0<<xyx,<<t.

Clearly star-bodies . which are symmetric, i.e. have the property
that —xc% when xc & correspond to distance-functions which are
symmetric in the sense that

F(—a) =F(x).

K. MAHLER (1950a) and C. A. ROGERS (1952a) have investigated a
wider class of sets which RoGERs calls star-sets and which include the
closed star-bodies as a sub-class. A star-set is a closed set such that
txe & whenever 0=<¢t<1 and x¢.%. They are important in connection
with certain problems (“bounded reducibility’ cf. Chapter V, § 7) and
we shall mention them again; but we refer the reader to the original
memoirs for the details.

IV.1.3. Convex sets X" are important as MINKOWSKI'S convex-body
theorem shows. It turns out that the convex sets which have the origin
0 as an interior point are precisely the star-bodies whose distance-
function satisfies the inequality

Fl@®+y <Flx)+F(y).

This we prove in §3. We call such distance-functions convex.

In §4 we show that an n-dimensional convex set ¢ has a tac-
(hyper)plane! at every point @ on the boundary of J¢; that is a

(hyper)plane T ?l %4 +ee ?n Xy = k

which passes through @ and is such that " lies entirely on one side
of or in Tr; say
Pyt pax, =k (all xeX).

Clearly if there is a tangent plane to X at a, then it is the only tac-
plane. But tac-planes exist even when tangent planes do not, and they do

1 We use the words tac-plane and plane for tac-hyperplane and hyperplane.
When n =2 the corresponding thing is called a tac-line. The term supportplane
(German: Stiitzebene) is sometimes used.
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not need to be unique: for example when @ is a corner of the square
|7 | <1, x| <1.

In discussing tac-planes it is convenient to introduce the polar
body of a convex body; a notion which we shall in any case require
in Chapters VIIT and XI. Any plane T not passing through the origin
can be put in the form

R ylx1+"'+ynxn:1’

and so may be represented as a point y ={(y,, ..., ¥,) in n-dimensional
space. It turns out that the points y corresponding to planes w which
do not meet! ¢ themselves form a convex set J£"*, say, the polar of .
Further, the relationship between )" and #™* is reciprocal in the sense
that & may be obtained 2 from J"* in the same way as #™* was obtained
from .

An example of a pair of polar bodies are the generalized cube
%: max|x;| <1
and the generalized octahedron

2: Xyl =1.

It is easy to see that a plane }}y,x;=1 for fixed y can contain a point
of the interior of € only if ¥ is not in &; and vice versa. We discuss
polar sets in § 4.

There is a rich theory of convex sets but we do not prove more than
is relevant to the geometry of numbers. For the rest the reader is
referred to the report of BoNNESEN and FENCHEL (1934a) or EGGLE-
STON’s tract (1958a).

IV.2. General distance-functions. We set up now the relationship
between distance functions and star-bodies sketched in §1.2.

THEOREM I. A. If F(x) is any distance function then the set
& Flx) <1

ts an open star-body. The boundary of & is the set of points x with
F(x) =1 and points with F(x)>1 are exterior to & (that is, have a neigh-
bourhood which does not meet F).

B. Conversely any star-body T determines a unique distance-function
F(x). If & is the set of interior points of T then & is related to F(x)
in the way described in A.

1 We say that two point-sets meet if they have a point or points in common.
% Strictly speaking the set X ™** obtained from X'* coincides with X" except
possibly on the boundary. The distance-functions of # and X ** are thus the same.
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We note first that two distinct star-bodies J; and J, determine the
same distance-function F(x) if they have the same set of interior points,
but a distance-function defines precisely one open star-body, namely
F(x)<<1 and one closed star-body, namely F(x)=<1. Distinct distance-
functions F, F, always determine distinct star-bodies. For then F (x,) +
F,(x,) for some x,, say F,(®,) < F,(x,); and then there is a £ such that

F () <1< Fy(tay);

so L&, is in one star-body but not the other.
The proof of Part A of the theorem is nearly trivial. If F(zg) <1,
then, by the continuity of F(x), there is a neighbourhood

|2 — x| <7

of &, which lies in .&; so &, is an interior point of .. Here we have used
the standard notation

2] = (4 + )k

Similarly, if F(®,)>1, then there is a neighbourhood of &, which does
not meet &. Finally, if F(x,) =1, then every neighbourhood of x,
contains points {x, both with ¢>1 and {<1, for which F({xy)>1,
F(tax,) <1 respectively: and so &, is a boundary point of <.

It remains to prove B. If 7 is any star-body, we define a function
F{x) as follows:

(o) F(x)=0 if txeJ for all >0. In particular F(0) =0.

(8) If tx is not in J for all £>>0 then, by the definition of a star-
body, there is a #,=1{,(x) > 0 such that ¢x is interior to or exterior to &
according as {<C#, or t>1,; and £, is on the boundary of &. We put

F(x) = {tp ()}

Clearly, if F(x) is a distance function, then it is related. to the set & of
interior points of  in the way described. Further, it follows trivially
from the construction of F(x) that it satisfies two of the defining pro-
perties of a distance function, namely F(2)=0 and F(tx) =tF(x) for
all £>0. It remains only to show that F(x) is continuous.

We show first that F(x) is continuous at 0. By the definition of a
star-body, the origin @ is an inner point of 7, so there is an >0 such
that the sphere

e 2l <7
is contained in . Hence, if ®,5=0, the vector

ra,, t=n|x]
is certainly in 7, so
F(wmy) S n7|a|. (1)
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Since 7 is independent of @, this proves the continuity of F(x) at the
origin.
We now prove continuity at a point &;3=0. Let £¢> 0 be arbitrarily
small. The point
&, = {F(xg) + &} o, (2)

is an interior point of J by the definition of F; and so there is a
neighbourhood

i$—m1|<7]1, (3)
which lies in 7, that is, (3) implies
Flx)<1. (4)

Write
x={Fx)) + e}y, m={F(xy)+ e} n,.

Then (3) is equivalent to
|y — x| <15 (5)

and, by the homogeneity property of F(x), which we have already
proved, the inequality (4) is equivalent to

F(y) < Flg) + ¢ (6)

We have thus found a neighbourhood (5) of @, in which (6} holds.
It remains to find a neighbourhood of points ¥ in which

Fy) = F(x) —¢. (7)

It F(xy)=e, then (7) is true for all y, since F(y)=0. Otherwise one
considers the point
&y = {F(1y) — e}y,

This is an exterior point of J and then the argument goes as before.
This completes the proof of the theorem.

There is the trivial corollary of which we leave the proof to the
reader.

CoRrOLLARY. Let F{(x) and F,(x) be distance functions. The star-body
F(®)<<1 is a subset of the star-body F,(x)<<1 if and only if

E(x) < K (x) (8)
for all x.
We record for later reference two results, the first of which we have
already proved.
LEMMA 1. For every distance-function F(x) there is a constant C such
that
Flx) < C|x|
for all x.
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LEMMA 2. A necessary and sufficient condition that the star-body
F(x)<<1 be bounded is that F(x)=40 if x0. There is then a constant
¢>0 such that

Fx)=c|x| (9)
for all x.

We proved Lemma 1 above with C =#1, at least when x=40; and
it is trivial when @ =o0. If there is a &y 0 with F(x,) =0 then (x,
lies in F(x)<1 for all ¢>0, so F(x)<<1 cannot be bounded; which
proves half of Lemma 2. Suppose conversely that F(x)40 if ®@=o.
The function F(x) is continuous on the surface of the sphere || =1;
and so attains its minimum, say, at ®,. Then F(x,) > 0, by hypothesis.
Put F(xg) =c. Then F(xg)=c¢ if x| =1; and so (9) holds by homo-
geneity. This completes the proof of Lemma 2. We note that if (9)
holds, then F(x)<(1 is entirely in the sphere |a|<c™.

The following trivial corollary rids Lemma 1 of its dependence on
the particular distance-function |a|.

COROLLARY. Let F (x), F,(x) be distance-functions and let F (x)<<1
be a bounded set (i.e. F (@) =0 only for & =0). Then there is a constant C
such that
F,(x) < CF,(x)
for all x.
If, further, F,(x)<<1 is bounded, then there is a ¢>0 such that

CE@) 2 K@) 2 cF ().

The second part of the corollary may be picturesquely summed up
in the slogan “for qualitative purposes there is only one bounded
star-body”’.

I1V.3. Convex sets. A set X is convex if
te+(1—ty (0<<t<<1) (1)

is in X~ whenever @ and y are in . It is said to be strictly convex
if the points (1) are all interior points of .

We show first that if @,, ..., &, are any points of 2 and

K20, X4g=1 (1=7=7),
then
Lyt +tx X ()

This is true for » =2 by the definition of convexity, and it is true for
r>2 by induction, since we may suppose that f,4=1, and then

hay+- e, =he+ (1 —14)y,
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where
t2

1—1

y= ;Ez+...+_t'__w'€.){"
1—4

since it is of the shape (2) with » —1 summands.
Almost immediate consequences are

LEMMA 3. A convex set X~ in n-dimensional space either lies entirely
in a hyperplane
L Pllef— +ann=k
or it has interior poinis.
LemMa 4. A convex set X with a volume V() such that 0< V(A ) <o
1s bounded.
For if 2" does not lie in a hyperplane it contains # 41 points

Ty, e, Xy

which do not lie in a hyperplane. The points 3¢, ®; with £, =20, 2 ¢, =1
are just the points of the simplex with vertices »,,...,@,,,. The
whole simplex must be contained in ¢", and since a simplex has interior
points this proves Lemma 3.

In Lemma 4, we note that " cannot lie in a hyperplane if V(X¢') >0;
so we may suppose without loss of generality after a change of origin
that o is an interior point of #". There is then a number >0 such
that all the vectors

71 n—j

e N, .
ne;=(0,...,0,7,0,...,0) (1=7= %)
areinX". If a=(a,, ..., a,) be any other point of ", we shall show that
max |a;| < 7" n!) V().

1sjsn

If, say, a;==0, then the whole of the simplex with vertices o, a, ne,,
..,me, is contained in X" and has volume

()70
Since this can be at most V(Jf'), the result follows.
Finally we prove

THEOREM I1. A convex body A~ of which o is an interior point 1s a
star-body. The corresponding distance function F(x) satisfies the inequality

Fle+y) <F(x)+ Fy) (3)
for all ® and y.
Conversely if F(®) 1s a distance function for which (3) holds, then the
star-body
F(x) <1 (4)
15 COnvex.
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The converse is trivial. If F(x)<1, F(y) <1 and 0<f<1, then the
inequality (3) applied to {x and (1—1t)y gives
Fix+ (1 — )y} SF(ta) + F{(t — )y)
=tF(®) + (1 =) F(y)
<t+{1—1
=1.

It remains, then, only to verify the direct assertion of Theorem II.
We define a function F(x) as follows:

F(x) =inf £, (

(o)
~—

where the infimum is taken over all ¢ such that
i>0, txex . (6)

Since o is an interior point of ), there certainly do exist ¢ satisfying (6).
It follows at once from the definition that F(x) =0, F(0) =0; and that
F(sx) =sF(x) for all s=0. Thus F(x) will be a distance-function if
we can prove continuity. We first prove the functional inequality (3)
and then deduce continuity from (3).

Let @,y be any two vectors and s, ¢ any two positive numbers such that

sxeX, tyex . (7)
Then
rse 4+ (1 —r)tyex
if 0<<7<C1. We choose 7 so that this point is multiple of & +y, i.e.
rs=(1—rt r=t/(s+1.

Then
@y
S0
Fle+y) =l =stqs
Hence

Flx+y) =< F(x) + F(y)

since F(x), F(y) are the infima of s, ¢! over s, ¢ respectively which
satisfy (7).

The function F(®x) is continuous at o0 by the same argument as was
used for distance functions. Since o is an interior point there is a neigh-

bourhood |w]§7]: 1>0

of o contained in Jf°, and so

Flx) <n?|x|.
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The continuity at a general point &, is now immediate. We have

Fley+y) = F(xy) + F(y),
and
Flaxy) = Flxy+y) +F(—y).
Hence
| Fao + y) — F(a,)] émeF(iy) sntlyl<e

for any given £>0, provided that |y| <ne.
Finally we must verify that the set
F(x) <1

is in fact the set of interior points of #". A point & with F(x)<1 is
certainly in " since, by the definition of F(x), there is a ¢£>1 such that
teeX ; and so
r=t1¢x)+(1—1t"Yo

is in X" by convexity. Since F is continuous, the set F(x)<1 is open;
and so all its points are inner points of #". Conversely, if @ is an inner
point of X', there is a £>1 such that txe#’, and so F(x)<1 by the
definition of F(x). From the definition of F, no point & with F(x)>1
can belong to ". Points with F(x) =1 may or may not belong to ¢
but, since F(x) is a distance-function, they must be boundary-points
of .

For later reference we enunciate formally a result we have just
proved:

CorOLLARY. Let F(x) be a non-negative function of the vector @ which
satisfies the two conditions

F(tx) =tF(®) if t>o0,
Flx+y)=F(x) + F(y),

and which s continuous at 0. Then F(x) is continuous for all x; and so
1s a distance-function.

1V.3.2, The next lemma is an essential preliminary to the treat-
ment of polar bodies and tac-planes.

Lemma 5% Let A\, A; be a closed convex sets having mo point in
common. Then there is a hyperplane

. plxl+"'+pnxn=k

which separates Xy and XHy: that is all the points of A7 are on the opposite
side of T from those of X,.

! Proof given is valid only if at least one of M}, X, is closed (as otherwise there
need be no minimum distance).
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Consider the distance |#,— ,| when &,, &, run through the points
of X, X, respectively. Since X and X, are closed, this distance
attains its infinum at some points &€ X; (=1, 2); and x; $a; since
X, and ¥, have no points in common. We show that the hyperplane 1
which bisects perpendicularly the line-segment @@, will do what was
required. After a suitable rotation of the co-ordinate system and a
possible change of origin we may suppose that

x,=(—7,0,...,0), @®=(n0,...,0)
for some #>0. The plane 1 is then
T %, =0.

Suppose, if possible, that there is a point # in X] with z,=0. By con-
vexity, the point
=(1—fay+tz (0<t<1)

is in ;. The distance |2,—x,| is given by

|z, — @2 = (2 — in — £2)2 + X (t2,)?

2S1Sn
=4n* — 4(n +z)nt + 0 () <4n?,

if ¢ is small enough and strictly positive. This contradicts the definition
of &, and @;. The contradiction shows that z cannot in fact exist, and
so proves the lemma.

CoROLLARY. If o is a convex closed set and @ a point not in X,
there is a hyperplane separating A and a.

For we may put J#;=2" and take ¢, to be the set consisting of a
alone.

IV.3.3. In introducing the polar set of a given convex set ¢, we
confine attention to the case when J" is bounded and can be described
by a distance function; that is 0 is an inner point and 0<<V(X#) << oo
by Lemmas 3 and 4 and Theorem II. If the reader is interested he will
have no difficulty in extending the results to the other cases using
Lemma 2.

We write

pba :plal-*_ +Pnan

for the scalar product of two vectors p and a.

THEOREM III. Let F(x) be the distance-function associated with a
bounded convex set. For all vectors y let

F*y) = ﬁ)?—)— (1)
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Then F*(y) is the distance-function associated with a bounded convex set.
The relationship is reciprocal in the sense that

Fle
(@) = sup 7 oy

The functions F and F*, or the convex sets associated with them,
are said to be polar to each other.

We must first show that F* is well-defined. Since the body F(x) <1
1s bounded, we have F{&) == 0 if & #=0 by Lemma 2, and indeed there is a
constant ¢> 0 such that F(x)=c|x|. Since xy=<|xz||y|, it follows that

()

Fry) < cyl. (3)
Immediate consequences of the definition are that
F*(ty) =tF*@y) if (>0, 4)
and
Fry)>0 if y=+o. 5)

Now if y,, y, are any vectors, we have

F*y: ) =sup m(!?(:)yz) = SUP Fy WP g

=F*y) + F*y,).

But now (3), (4), (5) and (6) show that F*(y) is the distance-function
of a convex set, by Theorem II and its Corollary. This convex set is
bounded because of (5) and Lemma 2.

It remains only to prove (2); and here we need the convexity of
F(z), which we have not yet seriously used. If ® =0, then (2) is trivial,
so let 2,90 be fixed. From (1) we have

(6)

Flx) F*y) 2z =y (7)
for all ® and y: and so certainly
F >s o!l 8

Let £>0. Then by Lemma 5 Corollary there is a hyperplane r separating
x, from the set of @ such that

F@)< (1 —¢)F(x,). (9)

Since Tt does not pass through the origin, it may be written in the shape

™ Y, =1. (10)

Then F(x)= (1— &) F(x,) for all points ® on Tr, since T does not meet
(9); hence

F*(yo)gm, (11)

Cassels, Geometry of Numbers 8
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since one need clearly only consider the & with 2y =1 in (1), by homo-
geneity, if y =+ 0. Further,
ToYo=>1, (12)

since &, is on the other side of T from the origin, which is a point of (9).
From (11) and (12) we have

sup %‘% 2 ;O(Z:) > (1 —¢) F(z,). (13)
The required result -(2) now follows from (8) and (13), since ¢ is arbi-
trarily small.

This concludes the proof of the theorem. The reader will be able
to verify readily that the sets F(ax)<1 and F*(y)<1 are related to
each other in the way described in §1.3.

We have at once the

COROLLARY 1
Flx)F*(y) zxy

for all &,y For any y, =0 there is an xy==0 such that

F(aeo) F*(yo) = %o Yo (14)
and vice versa.

We have already noted the first inequality, which is an immediate
consequence of the definition. By symmetry it is enough to show the
existence of x,, given y,. The set # of points ® with F(x)=1 is
bounded; and it is closed since F(x) is continuous. Hence the continuous
function @y, attains its upper bound, say at &,. But we have already
seen that the upper bound is F*(y,), so (14) must hold.

We also shall need later

COROLLARY 2. Let X}, X, be convex sets with non-zero volume having
the origin as inmer point and with respective polars Ay and A3, If A,
contains A, then Ay contains H7*.

Let the corresponding distance functions be F (), F(x), F*(x),
F*(x). Then F,(x)=F (x) by Theorem I Corollary. The definition (1) of
the polar distance-function then gives immediately F*(y) <F;*(y) for ally.

The following corollary links polar distance-functions with the polar
lattices and transformations introduced in Chapter I, § V.

CorOLLARY 3. Let F(x), F*(y) be a pair of mutually polar convex
distance-functions. Let © be a homogeneous linear transformation and ©*
tis polar transformation. Then F(tx) and F*(t*y) are mutually polar.

For by the definition of t* we have txt*y =xy for all ®, y. The
truth of the corollary now follows from (1) and (2).
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IV.3.4. A hyperplane 1r through a point &, on the boundary of a
convex set " is said to be a tac-plane to £ at @, if no interior point
of A is in . The following Theorem IV is an almost immediate con-
sequence of the results of §3.3. We shall need Theorem IV in the next
chapter, but §3.3 only in Chapter VIII.

THEOREM IV. Let " be any convex body with volume V{(X') such
that 0<V(X')<<oo. Then at every point xy on the boundary of A~ there
1s at least one tac-plane. There are precisely two tac-planes to A~ parallel
to any given hyperplane .

We may suppose that o is an interior point of #". Let F(x) be the
corresponding distance function. Then F(x,) =1. By Corollary 1 to
Theorem III there is a y,= 0 with

ToYo = L (@) F*(Yo) = F*(Yo)- (1)
The plane

’

' XY, =I*(y,) (2)
thus passes through x,. By the Corollary 1 to Theorem III we have
®Yo = Fx) F* (Yo,

so F(x)=1 for all points of '. Hence T’ contains no interior point
of A", so is a tac-plane.

Any plane (2) for fixed y, is a tac-plane at some point &,. For by
Corollary 1 to Theorem III there is an a, such that (1) holds.

Hence if y, is any vector, the two planes

XYy, =F*(y,) (3)
and

XY= — F*(—y,) (4)

are both tac-planes. It is clear that they are the only tac-planes parallel
to ®y,=0. The origin lies between the hyperplanes (3) and (4), and
hence so does the whole of the interior of 4.

1V.3.5. In Chapter IX we shall need the following result.

LEMMA 6. Let A and X, be open convex sets in n-dimensional space
with
O< V(X)) <o (1=1,2).

Suppose that A and Ay have no points in common bul that @ 1is a boundary
point of both Ay and H,. Then there is a hyperplane through a which
does not meet either Ay or X, (and so is a tac-plane to both K, and Xy).

The proof follows that of Theorem III. We may suppose without
loss of generality that o is an inner point of ;. Let b be an inner
8‘
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point of )¢,. Then X] and ¢, may be described by distance-functions:
A K@) <1,
Ay Fx—b)<1.
For }<t<1 let X} (j=1, 2) be given by
A E@st,
Ay R —b)=t,
so that X} is a closed subset of #;. By Lemma 5 there is a plane
separating 7 and X;. Since ™ does not pass through the point

o0¢c X}, it has an equation

Z Pixi=1.

1si=n

Since > 1, the set X7 contains a neighbourhood |®| <7 of the origin,
where >>0. Since no points of this neighbourhood lie on T, we have

Pl =9 (1=7=mn). (1)
Since b is on the opposite side of ' from o, we have
2 Pibi>1. (2)
1<jEn

By (1) and WEIERSTRASS'S compactness theorem, there exist p; which
are the limits of p,, as ¢ tends to 1 through a sequence of values
t<ty<---<t,<--- which is the same for each j. By (2) not all the p;
are 0. The plane v’ defined by

]

clearly has all the properties required.

IV.3.6. The results of the rest of this § 3 will not be required until
Chapter VIII, but it is convenient to give them here. They show that
any two symmetric convex sets 4, and X, with finite non-zero volumes
behave similarly.

For more precise results, generalisations to convex sets which are
not symmetric, and references to the literature, see for example BaMBAH
(1955a), and for an interesting application see MAHLER (19554, b).

A closed “generalized parallelopiped” in n-dimensional space with
o as centre is the set of all points

w=tlml+"'+tnwn (1)

where @,, ..., &, are fixed linearly independent vectors and ¢, ..., ¢,
run through all real numbers in

max || S 1. ()
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A closed ‘‘generalised octahedron™ with o as centre is similarly the set
of all vectors (1), where ¢, ..., ¢, run through all numbers in

2Ll =1, (3)

We first prove the following refinement! of a result of MAHLER
(1939b).

THECREM V. Let X" be any closed symmetric convex set with volume
V(X) such that 0<<V (A} << oo. Then there exist points +x,, ..., + &, €4
such that 4 is contained 1n the parallelopiped € with faces £, (1< J<n),
where Ty is the hyperplane through the points x,;+x; (j== J). Further,
the generalized octahedron 2 with vertices +a; (1=j<mn) 1s contained
m A

The last sentence is in any case trivial by convexity. We take for
x,, ..., &, points of & such that the volume of 2 is a maximum. Such
a choice is possible since " is closed and bounded. If ) were not
contained in %, there would be a point y on the opposite side of the origin
from one of the faces 4., say on the opposite side of 1r,. Then the
generalized octahedron with vertices +w,, ..., +®,_;, 4+ y would have
greater volume than £, contrary to construction.

COROLLARY 1.

V() S V@) S al V(A),

Vv
V(Z) = (n) 1V (X).

For the left-hand inequalities are trivial, and the right-hand ones
follow from them and V(%) <«!V(2).

COROLLARY 2. Let A", & be any two closed symmetric convex sels of
finite mon-zero volume. Then there is a homogeneous linear transforma-
tion t of the variables such that

ntt A nt ¥
and
MOV S VL)< (n) V(X).

Let o, ..., @, be the points of the theorem for # and let y,, ..., ¥,

be the corresponding points for . We determine © by the equations
TY, =X (YN

Then the €, 2 of the theorem are the same for 2" and *.%. The stated

results are now trivial, since n ¢ 2.

! Suggested by Professor C. A. RoGERs, who disclaims originality. The same
method proves a corresponding result for non-symmetric bodies in which the
inscribed and circumscribed bodies are both simplexes {cf. MAHLER 1950a). There
are also results about inscribed and circumscribed ellipsoids (JoHN 1948a).



118 Distance-functions

1V.3.7. As an application of the methods and results of §3.6 we
prove the following result about the volumes and lattice constants
(Chapter III, §5.1) of polar convex sets. We again denote the lattice
constant of a set & by 4(¥).
THEOREM VI. Let A" and H'* be bounded symmetrical convex sets
which are mutually polar. Then
4" "
WéV(X) Vix* =4
and
D A A+ <1,

where D s the lattice constant of the octahedron 3 |x;| <1.

The first pair of inequality is MAHLER’S (1939a, b) and the proof
of the second pair is practically identical. When # =2 MAHLER (1948a)
has determined the best possible inequalities namely

bAoAt s,

equality on the left-hand side being necessary when ¢ is a square and
on the right when 2" is a circle. For related inequalities and references
to later work see BAMBAH (1954c¢ and 1955a).

We now prove the theorem for the lattice constants. The proof for
the volumes is similar. Let T be any homogeneous linear transformation
and t* its polar transformation, so

det (t) det (v*) =1. (1)

The bodies ¢, T*™* are mutually polar by Theorem III, Corollary 3.
Since

Az o) = | det (x)] A(ot),
it follows from (1) that

AA) A(T* %) = AAH) AHH).

Hence neither the hypotheses nor the conclusion of ‘the theorem are
affected if 2 is subjected to a homogeneous linear transformation and
X'* to the polar transformation.

Suppose first that 4" = X}, is a parallelopiped. After the application
of a suitable homogeneous linear transformation we may suppose
without loss of generality that Xf; is the unit cube

x| <1 (1575 n).
We saw already in §1.3 that X% is the generalized octahedron

Zlyl =1
1
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Hence Ay AA) = AAE) = @

by the definition of @.

Now consider a general ", which we may suppose without loss of
generality to be closed. Let € and 2 be the parallelopiped and octa-
hedron given by Theorem V so that

E>H>D. (3)

The polar of the parallelopiped € is an octahedron €* which is inscribed
in X™* by Theorem III, Corollary 2. Similarly the polar of the octa-
hedron 2 is a parallelopiped 2* and

DOA*>E*. (4)
We now show that
AD)z2PAE), (5)
where @ is given in the enunciation. By Theorem V we have

V(@) z ()1 V(). (6)

But every octahedron may be transformed into any other by a homo-
geneous linear transformation, and so the ratio 4(2)/V(2) is the same
for all octahedra 2. In particular, taking 9 to be ;|| <1, we have

A4(2) _ n'@
V@) T e
Similarly,
4% _ 1
2GR

and (5) follows from (6).

But now from (3) and (4) we have
A(A) MA*) = A(D) A(E*) = D AF) A(E*) = D2,
on applying (2) with #;=%. Similarly
A(H) A(*) = A®) A(2*) < D74(D) A(@*) =1,
on applying (2) with Ay=2*.

IV.4. Distance-functions and lattices. In the further study of the
relationship between star-bodies (and in particular convex bodies) and
lattices it is convenient to work with distance-functions rather than the
star-bodies themselves. We write

F(A) =inf F(a), (1)

ach
af+o
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for any distance function F and lattice A. In the language of § 5.1 of
Chapter III the lattice A is admissible for the star-body F(x)<k if
k< F(A) but not if 2> F(A).
We have
F(tN) = [t| F(N) (2)

for any real number {30, where ¢A is the set of ta, acA. If >0 this
follows from the property F(t®)={F(x) of distance-functions, and if
t< 0 from the further observation that A contains —a if it contains a.
In particular,
{FeN} __ {F(ANY 3)
TS an

where # is the dimension of the space. We sum up the properties of
F(A) in the following theorem, which links our present point of view
with that of §5.1 of Chapter I1I.

THEOREM VII. For any distance function F write

{FN

O(F) = sup =5y (4)
over all lattices \. Then O(F)<<oo. Further,
O(F) ={A(F)}7, (5)
where A(S) is the lattice constant of the star-body
& Flx)<1.

If A(SF) = oo, then (5) s to be interpreted as & (F) =0.

If 6(F)=£0, then the supremum in (4) may be confined to lattices
A with F(A)>0, and then, by homogeneity, to those lattices with
F(A) =1. Such lattices are admissible for & by definition, and so they
have d{A) = A(A). This shows that

8(F) < (A(#). (©)

On the other hand, if A is &-admissible then F(A)=1, and since there
are S -admissible lattices A with d(A) arbitrarily close to 4(%), by the
definition of 4(%’), we must have

6(F)2 sup {d(N}'={A(L)}™ (7)

A is $-admissible
Then (5) follows from (6} and (7).

If §(F) =0, then F(A) =0 for every A. From (7) this can hold only
if there are no %-admissible lattices, i.e. if 4(&) = oco. Conversely if
A4(&#) = oo and A is any lattice, the lattice ¢A is not S-admissible, for
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any ¢>0: tF(N) =F(tN) <A1.

Hence F(A) =0 on letting {— oo,
We note also the rather trivial

LEMMA 7. Suppose that the distance-function F(x) vanishes only for
x=0. Then every lattice \ contains a point a=F0 such that F(\) =F(a).
In particular, F(N)> 0.

For by Lemma 2 there is then a number ¢>0 such that

Flx) = clax].
Hence
F(x) < F(N\) +1 (8)
implies that
fe| < cH{F(A) 41} (9)

But now by Lemma 1 of Chapter III there are only a finite number
of points of A for which |@| is less than a given bound, and so there
are only a finite number of points & of A satisfying (9). If we take
a==0 to be one of those points for which F(a) is least, then @ enjoys
the properties required.

ChapterV

MAHLER’s compactness theorem

V.1. Introduction. So far we have been concerned with one lattice
at a time. In this chapter we are concerned with properties of sets of
lattices. We first must define what is meant by two lattices A and M
being near to each other; and this is done by means of homogeneous
linear transformations. A homogeneous linear transformation X ==x
of n-dimensional euclidean space into itself is said to be near to identity
transformation if the coefficients 7;; in

1<jsn

are near those of the identity transformation, that is if
|t —1  (1Si<n)
and
7| (=Sisn 1<i<n, i)

are all small. The lattice M is thought of as near to A if it is of the
shape TA where 7 is near the identity transformation, and where A
denotes the set of Ta, acA. Roughly speaking, M is near to A if it can
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be obtained from A by a small deformation of the underlying space.
Convergence of a sequence of lattices A, to a lattice A" may then be
defined in the obvious way.

MinkoWSKI (1904a and 1907a) already used the idea of the con-
tinuous variation of lattices to show that a bounded convex set

#: Flx)<1, (1)

where F(x) is the corresponding distance function, always has a critical
lattice A, in the sense of §5.1 of Chapter III; that is
F(A) = inf F(a) =1, (2)

ach,
+0

and (A is a minimum:

d(A) =A4(5) =F(}\1}f21d(/\).

A critical lattice A, has the property that if it is slightly distorted to
a lattice A with d(A)<<d(A) then F(A)<1; that is A has a point other
than o in &. From this, MiNnkKOowsKI obtained important properties of
critical lattices and so gave an explicit process for finding A4(%) for
convex bodies &, at least in 3-dimensional space. This was generalized
and put on a more satisfactory basis by MAHLER (1946a), who gives
general conditions under which a sequence of lattices A, should con-
tain a convergent subsequence. In this way he showed that any star
body F(a)<1 has a critical lattice if only there are any lattices A with
F(A)>0. In an important sequence of papers, MAHLER (1946a, b, c, d, e)
extended much of MiNkowsKl's work on critical lattice to general
star bodies and made other applications of his compactness criteria.
He has also [MAHLER (1949b)] considered the critical lattices of sets
which are not star bodies, but we do not go into this here.

In this chapter we first consider the properties of homogeneous
linear transformations which are needed for the treatment of convergence.
Then we prove MAHLER'S general criterion for a sequence of lattices A,
to contain a convergent subsequence. After that, we study the pro-
perties of critical lattices of sets & taking in turn general star bodies,
bounded star bodies, convex sets and spheres. As the sets become more
specialized, there is more and more precise information about the critical
lattices. Finally in § 10 we give an application to a problem in the
theory of Dophantine approximation.

V.2. Linear transformations. Convergence for lattices will be
defined in terms of homogeneous linear transformations, already intro-
duced in Chapter I, § 3. We operate in n-dimensional space with some
fixed euclidean coordinate system. If z,; is a set of »? real numbers,
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we denote by T the transformation of our space into itself given by
the equations
X;=2 1%, (i<,

1177
lsisn

where X =tx. We write det(t) =det(r;;). If det(t) =0, the trans-
formation T is singular: otherwise it is non-singular and possesses an
inverse, which we denote by 1. By o -+, where ¢ and T are trans-
formations, we mean the transformation

(6 +T)x =0 +TxX;
and by 6t we mean the transformation

(ot} =o(TE).

If o, T correspond to the matrices of coefficients g;;, and 7;;, then the
coefficients of o -+ and o 7 are clearly
;i + Ty
and
2 i Tri» 1)
1sksn

respectively. We denote the identical transformation

Xi=x (1< %)
by
We require a measure of the size of the coefficients of the matrix
of a transformation t. We write

7]} =nmax|z,;|.
Clearly
—=l| ={lv]|,
=il o
lle + =l = |[of| +]|=]|-
Further,
lle=l[ < la]l]|<]| (3)

since the coefficients of ov are given by (1). Further, if X =vx we
have trivially
max | X,| < ||| max|x. 4

From this it follows crudely that

_ |ve| <t 7| |2], (5)
since
max |x,| < |2| < nf max|x,]
1 1

for all a.
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We shall also need to use the fact that if © i1s near to the identical
transformation 1, then ©1 exists and is also near to «. This statement
is made more precise in the following lemma.

LEMMA 1. Let T =1+ be a homogeneous linear transformation with

el <1. (6)
Then « is nonsingular and
p=t—1l 7)
satisfies
< _lsl
”P”: 1_"°'H . (8)

We note first that if p exists, the inequality (8) follows at once

from (2) and (3). We have
p=1lc=0—p0;
S0
lell=llell +1leell = lloll +lellllell.

as required.

It remains to show that 7 is nonsingular; and for this it is con-
venient to use another characterization of ||t||. Put

R@=mSl5l, F) = max|s|. 9

Then F, (x) and F,(x) are convex symmetric distance-functions vanishing
only at 0, and

F(x) < F(x) (10)
for all &. Then clearly
Rtz
T|| =sup 27 1

for all homogeneous transformations t. For any & we have, by (10),
(11), that
F(x) =L(rx —ox)< F (rx) + F (o)

< F(xx) + F(ox) < F (vx) +||o|| K (x),

the last line by (11) with o for . In particular, since ||a|| <.1 by hypo-
thesis, we have F, (t®) =0 only when & =o0: that is T =0 only when
x=0: so t is nonsingular. This concludes the proof.

Our choice of ||| to represent the “size” of T is somewhat arbitrary. If F
is the distance-function of a symmetric convex bounded body, an alternative would

be to use ()
— ! . 12
Ielle = 22 e (12)

The reader will have no difficulty in verifying that (2), (3) and Lemma 1 continue
to hold when || ||f is substituted for || ||. Since we have used |x| to denote the
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size of the vector &, it might have been more tidy to use||<||s, where F,(x) =|x|,
to measure the size of T. We have chosen ||t|| because of its simpler expression
in terms of the 7;;. The choice of || || instead of some || || is, for all essential
purposes, irrelevant, since it follows from Lemma 2, Corollary of Chapter IV that

where ¢; and ¢; are numbers depending on the particular function F, but not on <.

We shall also need later two lemmas relating to distance functions
and linear transformations.

LemMmA 2. Let F(x) be a distance function such that F(2) =0 only for
x =0, and let © be a linear transformation. Then there is a number c,
depending only on F and <t such that

or all Flrx)< ¢, F(x)
or all x.
For
F(x) = F(vx)

is clearly a distance function. The result now follows at once from
Lemma 2 Corollary of Chapter IV. If « is non-singular we may apply
Lemma 2 with t7! instead of v and obtain the

COROLLARY. If v is non-singular there is a constant c, such that
Fx)Zc,Flrx).

LemMmA 3. Let F(x) be a distance function such that F(x) =0 only for
x=0. Then to every & in 0<<e<<1 there is an 1 =n(e)>0, depending
only on F and ¢, such that

F(xw)

1—337:(w)—§1+s (13)

for all homogeneous linear transformations © such that!

ll*— | <9 (14)

and all x.
By Lemma 2 of Chapter IV there exists a number ¢>0 such that
Fla)2 ola| (15)

for all . Since F(®) is continuous in the sphere |&|<2, there exists
a number 7, in 0<<7; <1 such that

|Fa,) — F(®,)| <ce,
whenever
|y — x| <my; || =2, |®y| =2,

1 As before, ¢ denotes the identical transformation.
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In particular, this is true when |x,| =1; and so, by homogeneity,
| F(®,) — Flxy)| <ce|a,), (106)
whenever
ERE ARTAE AR (17)
But now, by (5) and (14),
v2 — 2| =|(x — Y| < ni|]x — ]| o] <y
provided that ntn <n,; which we may suppose.
But then from (15) and (16) with &, =<®, x,=, we have
|Flvx) — F(x)| < e F(x),
which is equivalent to {13).
V.3. Convergence of lattices. If A is a lattice and T a non-singular

homogeneous transformation, we saw already in Chapter I, § 3 that the
set of Ta, ac is a lattice */A with determinant

d{x ) =|det(z)|d(N). (1)
If M is any other lattice, it may be put in the shape
M=xA

for some non-singular homogeneous transformation 1, and indeed in
infinitely many ways. Forifa,,...,a,, b,, ..., b, are bases for Aand M
respectively, there is a uniquely defined homogeneous linear trans-
formation 7 such that

and then
M=xA.

We say that a sequence of lattices A, (1 =7 <o) tends to the lattice
A’ if there exist homogeneous linear transformations T, such that

A =1 N (2)
and
||1‘,—1H—>O (r > o0), (3)

where t is the identity transformation and ||| is as defined in §2.
We write then

A —N.
From (1) and (3) we have immediately

d(N) —>d(N).
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If a is any non-singular homogeneous linear transformation it is also
immediate that

al, —>al\.
Indeed
al\, =at,al{al}
and
at,al —1=alr,— a’l,
S0
llaz,a — ]| <||al[[ja?]|][7, — ]| >0,
by (3) of § 2.

LEMMA 4. A necessary and sufficient condition that the sequence of
lattices N\, (1=<r<Coo) tends to N\’ is that there exist bases

T
and
b,,... b
of N,, N\ respectively, such that
bj>b; (1=j<n) (r—>x). (4)

The last limit is meant, of course, in the sense of the ordinary con-
vergence of vectors: |b] — b;| —0.

The proof of Lemma 4 is almost trivial. Suppose first that A,—~/A\’
and let 7, be the transformation satisfying (2) and (3). Choose any
basis b; for A’ and put

bj=t1,b; (1Sj<n;1=7<o0). (5)
Then by (5) of § 2 and (3), we have
6] = bj] = |(x, — ) bj| < mb||%, — || [bj] >0 (r—>co).

Suppose conversely that the bases are given satisfying (4). We may
define 7, uniquely by (5). Then clearly ||v,—1||—>0.
The following criterion is rather less trivial.

THEOREM 1. A mecessary and sufficient condition that A, — N 1is that
the following two comnditions be both satisfied:

(1) if @ €N, there are poinis @’ €\, for r =1, 2, ... such that
a—>a (r—>o0). (6)

(i1) if ¢ is not in N, there is a number >0 and an integer 74> 0,
both depending on ¢, such that

e —¢| >y (7)
for all e\, withr=7,,.
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It is quite straightforward that (i) and (ii) are satisfied when A,—A’.
In (i) we have only to put

where the =, are the transformations such that

A=zN, |x,—]|—0.
Then, as before,

||@—a'|| < nt||x, — 4| |@’| >0 (r—> o).

To prove (ii), we note that there certainly is an #,>0 such that

@ —¢|>mn (8)
for all a’¢A’. Put
n=%n- ©)
Suppose, if possible, that there is a point @€, such that
o —¢| 7. (10)
Then
@] e +7. (1)
By the definition of t, we have
a=xa (12)
for some @’c\. Then
a—a=pd, (13)
where
gy=1— Tr_l'
Now

el =0 (r—>oo)

by Lemma 1 and since ||7,—t||—>0. Hence by (5) of § 2 and (11), we
have
lo"—a'| =nt||p,[||a’| < nt]]p,||{|e| +n} <7

for all » greater than some 7,. From this and (9) and (10) we have
la'—¢|=2n=n.

This is in contradiction to (8). Hence statement (ii) of the theorem is true.

We must now show that if (i) and (ii) of the theorem are true then
A, —N. We require a lemma of some independent interest.

LeMMA §. Let ¢y, ..., ¢, be linearly independent points of a lattice \
but not a basis. Then N contains a point

d=be + - +9,¢,,
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where By, ..., 0, are numbers such that
p=max|d| =3 (14)
We first prove Lemma 5. Since ¢,, ..., ¢, is not a basis, there cer-

tainly exist points
a=0¢+ - +a,c,
in A for which a,, ..., «, are not integers. We may suppose without
loss of generality that
EESIESE)
Let ¢ be the least non-negative integer such that
2'max|o;| =}
?
Then
2'max|a;| =%,
7
and
d="2a
will do what is required. A slight refinement of the argument, which
is left to the reader, shows that the § in (14) may be replaced by } but
by no larger number.

We now revert to the proof of Theorem I. Suppose that A, and A’
satisfy (i) and (ii). Let by, ..., b, be any basis for A’. By (i) there exist
sequences of points

bi—>b;, (1<j=mn, blel). (19)

We show that bj (1=<j=<mn) is actually a basis for A, except, possibly,
for a finite number of 7. For if b7, ..., b}, is not a basis for A,, let

d,=191, ;++0nrb; (16)
be a point of A with
3 max|9; | <3 (17

which is given by Lemma 5. Since the #;, are bounded, they contain
a convergent subsequence by a classical theorem of WEIERSTRASS (cf.
§ 1.2 of Chapter III), say

11m19

"

=9, (18)

where
Py Py eer 1y e

is an increasing sequence of integers. Then
' (say) = 219 b; =limd,,
t—>o00

Cassels, Geometry of Numbers 9
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by (15), (16) and (18). Hence d'< A’ by (it} of the enunciation of the
theorem. This is a contradiction since

b s max 4] <4,

by (14) and (15), and since b; (1 <7< #) was defined to be a basis for A’".
The contradiction shows that b] is a basis for A, except for a finite
number of 7. If the b} are changed for these exceptional  so that b}
(1=7<7) is a basis for A, for all r this does not affect the limits (15).
Hence the criterion is certainly sufficient by Lemma 4.

V.3.2. In Chapter X we shall need the notion of a neighbourhood
of a lattice, and we shall mention it again in passing briefly in §9 of
this chapter.

A set & of lattices A is said to be a neighbourhood of the lattice M
if it contains all lattices

A=1tM (1)
with
lle | <n

for some %> 0 depending on the particular neighbourhood. The neigh-
bourhood € may contain other lattices A than those given by (1) and
(2); but there is some >0 such that it contains all these. If a is any
non-singular homogeneous transformation we show that the set aQ of
lattices A, AcQ is a neighbourhcod of a M. Indeed aQ contains all
lattices

N=ga(aM)
with
llo — |l <{lle|l||a|[}n;
since then
N=aA

where

AN=aloaM:
and then

latoa —tf < [[a?|||af|{]o — || <7

asin §3.1.

Clearly the sequence A, (1=<r<Coo) of lattices tends to M if and
only if every neighbourhood of M contains all but a finite number of
the A,.

Although we nowhere use it, we note that it is in fact possible to
introduce explicitly a metric into the space of all lattices. Let A and M
be two lattices and let

u=inflle —t||, »=inf||T—1,
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where the infima are over all non-singular ¢ and 7 such that

A=cM M==xA.
Put
D(M,A) = D(A, M) = max {log (1 + u), log(1 +»)}.

Then we have the triangle inequality

D(A,N) < D(A, M) + D(M, N);

since if
A=@t+p)M, M=0+p)N;
then
A= +py)N,
where
lleall = llp1 + 2 + papell = lleull + [leell +[lealilfealls
and so

log (1 + | psll) = log (1 +lpull) +log (1 +]eall)-

The neighbourhood defined above is the one associated with this
metric, since if

A=cM
with
llo i< n<t;
then
M =g0¢1A,
where
o< le—ul n
I == Ty <7
and so
DIANMy< T,
1—17

V.3.3. The continuity of the distance-function F(®) of the vector @
is reflected as a semi-continuity of the function

F(A) = in Fla) ()
*0
of the lattice A considered in §4 of Chapter IV. For certain later
applications it is useful to allow the distance-function F and the lattice A
to vary simultaneously.

THEOREM II. Let A, (1=7r<Co0) be a sequence of lattices tending to
the lattice N'. Let E (@) (1=r<<oo) be a sequence of distance functions
which converge uniformly to the distance-function F'(x) in the unit sphere
|®|<1. Then

F'(N) =z limsup E (A,). (2)

7> 00

9‘
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The proof is very simple. Since F,(tx) =¢F,(x) for {>0, the con-
vergence of F,(x) to F'(x) is uniform in any bounded set of points;
in particular, since the distance-function F'(x) is continuous by defini-
tion, if @, is any sequence of points converging to a point a’, we have

lim E (a,) = F'(a).

But by Theorem I, every point @'#=0 of A’ is the limit of points a,50
of A,. Hence
F'(@) = lim F(a,) = limsup E(A,),

7> C0 r—oo

since F,(a,)= F,(A\,). The result (2) now follows from the definition (1).

The sign of equality need not hold in (2) even when F, =F’ for all 7,
but we defer giving an example until § 10.5. However, much more
than Theorem II is true if F'(x) =0 only for & =0, i.e. if the set F'(x) <1
is bounded (Lemma 2 of Chapter IV).

COROLLARY. Suppose that the hypotheses of Theorem 11 hold and that
the only point x such that F'(x) =0 ts x =0. Then

lim F,(A)
exists and 1s equal to F'(N\').

The proof is similar to that of Lemma 3. By Lemma 2 of Chapter IV,
there is a ¢> 0 such that
F'(®) = c| x| (3)

for all ®. Let £>0 be arbitrarily small. By the uniformity of the con-
vergence of F,(x), there is an 7, such that

|E (@) — F'(@)] <ce )

for all 7=7, and all ® with |®| =1. Hence for all ® whatsoever and
r=7,, we have
|E (@) — F'(@)| <ce|a| < eF@);
so
F (x)

Fla) <1 +e. (5)

1—e<

Now let A,==,/’, where 7, are homogeneous linear transformations
such that
I, —dl >0  (r—>c)

in the language of § 2. Then

F'(t,x)

o) <{1+4+¢ (6)

1—e<
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for all 7 greater than some 7,, by Lemma 3. Hence by (6) and (5) with
1, & for T we have

E(x,x)
F'(a)

(1—g)?< <(14¢?
for all r>max(ry, 7). But now A, is just the set of ,& with xe/’,

and so!
F,
(1= 2 < (14

Since ¢ is arbitrarily small, this proves the corollary.

V.3.4. An almost immediate consequence of Theorem II, Corollary
is the following result, which shows that no bounded star body can
have successive minima in the sense of Chapter II, §4.

LEMMA 6. Let F(x) be an n-dimensional distance function which
vanishes only when @ =0 and let n) be any number for which

0 <y < 8(F) = sup LW (1)
A N

Then there exists a lattice M, such that
{F(Mﬂ)}" =nd(M,).
After Theorem VI we shall be able to replace the second < in (1)
by =.
Suppose that % satisfies (1). Then there exists a lattice N, such that
{F(N)}'>nd(N). (2)

Let by, ..., b, be any basis for N; and for 0<<e<1 let N, be the lattice
with basis

eb,,b,,....b,.
Then
d(N,) = ed(N)
and
F(N,) £ F(eb)) = ¢F(by).
Hence
{1;((':;5))} g 8n—-1 {I;(?’:l))} -0 (E > 0) . (3)

But now, by Theorem II Corollary, F(N,) is a continuous function of &.
Hence by (2) and (3) we may put M, =N, for an appropriate value of ¢.

V.3.5. For the sake of completeness we enunciate the following
lemma, which interprets the uniformity of the convergence of F (x) to

1 Note that F'(A)# 0 by Lemma 7 of Chapter IV.
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F'(x) in terms of the corresponding star bodies

% Ef@) <1 (1)
and
S Fllx) <1. (2)

Since we do not use the lemma we do not give the proof, but the reader
should have no difficulty in constructing one along the lines of the
proof of Theorem I of Chapter IV.

LeMMA 7. A necessary and sufficient condition that the sequence of
distance functions F,(x) tend to the distance-function F'(x) uniformly in
|®| <1 is that the bodies &, and ' defined by (1) and (2) have the following
properties.

(i) If e is an (inner) point of &', then there exists an >0 and an
integer v, (depending om c) such that all points x of the neighbourhood
|® —c|<n belong to &, for all v greater than r,.

(1) If ¢ is an exterior point to &' (i.e. F'(®)>1) then there is an
9>0 and ry such that no point x of the neighbourhood | — c| <n belongs
to &, for any r>7,.

V.4. Compactness for lattices. In this section we are concerned
with conditions under which an infinite sequence A, of lattices should
contain a subsequence M,=A, which converges to a lattice M’, not
necessarily belonging to the sequence.

The simplest such condition is when every lattice of the sequence
has a basis every point of which lies in some fixed sphere

|| <R (1)
and d(A,) is bounded below by a positive constant, say
dN)=x>0 (all 7). (2)

Since all the lattices have bases in (1) we may by WEIERSTRASS’ com-
pactness theorem, find a subsequénce of lattices M,=A, with bases
b}, ..., b, in (1) such that all the limits

lim bf = b
exist. By (2) we have e
|det(by, ..., by)| =tl_i’n;|det(b§, ..., b =,1_i£}od(M‘) =x>0:
and so by, ..., b, are linearly independent. Hence there exists a lattice
M’ with basis b3, ..., b, and, by Lemma 4,
M,—> M’ {t—o0).
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A slight extension of this idea gives the following theorem which
however turns out not to be very useful. We give it partly for historical
interest and partly because the lemma on which it depends will be used
later.

THEOREM III. Let A, (1 <7< o0) be an infinite sequence of n-dimen-
stonal lattices enjoying the following two properties:

(1) there exists an R such that every N, has n linearly independent
points in the sphere 2| < R.

(1) there exists a x>Q such that
diN)=x

for all ».

Then A, contains a subsequence of lattices M, for which

M’ = lim M,
t—00

exists.

The proof of Theorem III depends on the following lemma due to
MAHLER (1938a) and rediscovered by WEYL (1942a).

LEmMA 8. Let F(x) be any symmetric convex distance function and
a,,...,a, be n linearly independent points of a lattice N. Then there
exists a basis by, ..., b, of N\ for which

F(b)) < max [F(a,), }{F(ay) + - + F(@)}].

Before proving Lemma 8 we show. that Theorem III follows from it
by applying it to the convex function F(2) =|2| and to the # linearly
independent points @y, ..., @, of A, given by (i) of the theorem. Then
Lemma 8 shows that A, has a basis bj, ..., b/, with

|5 = max [ @], §{laf] + - +| @]} < nRJ2.

We have thus reduced Theorem III to the trivial case discussed at the
beginning but with # R/2 instead of R.

It remains to prove Lemma 8. By Theorem I of Chapter I there is
a basis ¢y, ..., ¢, of A such that

a =10,0,

@y =311 + V326, 3)

...........

a,=7,,6 +o 4t VunCaus
where the v;; are integers and v;,#=0. We shall take b; of the shape
b]:c7+tl’j_la’_1+"' —*—tlla]ﬁ/\, (4)



136 MAHLER'S compactness theorem

where the #; are numbers to be determined. Clearly b,,..., b, is a
basis for A for any set of numbers #; such that b;cA.

We distinguish two cases for each 7. If v;;= 41, we put b,= + a;.
This certainly has the shape (4) and

Otherwise |v,~,-|§2. On solving (3) for the ¢; we have

¢ =v5 4+ ket A, (5)
where £;; are certain real numbers. Choose £;; in (4) to be integers such
that

|kt < 3.
Then b, A and
bj=lLa;+1; a1+ +la, (6)

where

|4 = Ivﬁll <3

and
Gl =lk;tHl=3 (E<i).
Then by the convexity symmetry and homogeneity of F(x) we have
Fb)=F(;a)+ - +F(a)
= 4| Fla)) + -+ + || Flay) (7)
<#{F(@) + - + Fla)}.
This concludes the proof of the lemma.

When F(x) is the usual euclidean distance, an argument due to
REMAaK (1938a) gives a sharper result. See also VAN DER WAERDEN
(19564a).

When

Fla)sF(a) =---=F(a,), )
Lemma 8 gives

F(b;) < max (1, ;’) Fla;).

V.4.2. We owe to MAHLER (1946d, e) a criterion for the existence
of a convergent subsequence of lattices in a sequence of lattices, which
is much more fertile of applications than Theorem III, and which may
be said to have completely transformed the subject. MAHLER proved
his criterion by using the theory of successive minimal of a sphere to
show that it is equivalent to that of Theorem III. We shall give

1 Not to be confused with the ‘‘successive minima’ discussed in Chapter I1
which are quite different.
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MaHLER’s argument ! when we discuss successive minima in Chapter VIII,
but here we give a direct treatment due to CHABAUTY (1950a), who
shows that it generalizes significantly to a more general situation (sub-
groups of locally compact topological groups). MAHLER’S criterion is
expressed in

THEOREM IV. Let A, be any infinite sequence of lattices satisfying the
following two conditions

(1) A(N)YZK for all lattices N,, where K is independent of r.
(i) [N|=%x>0 for all v where x is independent of v and, as usual,
|A]l = inf |a].
ach
+0
Then A, contains a subsequence M, = N\, which converges to a limit M'.

We prove? Theorem IV by induction. The result of the j-th stage
(1=7<n) will be the following statement:

©,: There exist ; linearly independent points @, ..., @; and a sub-
sequence N, = N} (1 < < o0} of A, which satisfies the following conditions:

©;: Each point @; (1=<¢<7) is the limit of points
aicN, = N] (1)
©;": Suppose that #, <t,<--- is any increasing sequence of integers
and there exist points ¢, € N, such that

sl_i>rl;ct,=ylal+'” +y;a; (2)
with real y,, ..., %;. Then y,,...,y;, must be integers.

Before continuing the proof we note that the statement &, implies
that the lattices M, == N} converge to the lattice M’ with basis a,, ..., @,;
the parts &, and &, of corresponding respectively to (i) and (ii) of the
Theorem I. Hence it suffices to prove &,.

We do not give a separate proof of &, since that is a simple version
of the deduction of &,,, from &;. For the rest of this section we shall
assume therefore that &, holds for some 7 in 1=7<n and will deduce
&;11. The sequence N;** will be a subsequence of the sequence N, =Nj,
and the points @,, ..., @; will be the same in &; and &,,,.

A non-singular homogeneous linear transformation of the variables
does not affect either statement ©; or the hypotheses of the theorem,
though it will in general replace the K and » in (i) and (ii) by different
numbers. Hence we may suppose without loss of generality that

i—1 n—1 )

a.,.:e,:(o,...,0,1,0,...,0 1<i<y). (3)

1 The reader may prefer, instead of studying the proof here, to turn to §§ 1, 2
of Chapter VIII, which are independent of the intervening matter.
2 I now prefer the proof given by CHABAUTY (1950a) to the version given here.
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Define the number y by _
@y =K, (4)
where K is the number occurring in hypothesis (i) of the theorem. By
Theorem 111 of Chapter III, each lattice N, contains a point &30 with!

L2 (=i<y)
ISy G+1<isn).

(5)

Let ¢ be one of the finite number of points of N, other than o in (5)
for which

,max x| (6)
is a minimum. Since the ¢’ are in the bounded set (5), they contain a
convergent subsequence, say

ch— a4, (7)
where
ll< t2< cee,
Write
a;.,=(4,,...,4,), (8)
so that clearly
Al=% (=i=y) } o
[ilsy  GH1=isn).
Suppose first, if possible, that 4;,,=---=4,=0, so that @, , is linearly
dependent on @, ..., @;. We are assuming statement &; to be already
established. Hence by (7) we could apply &' with y,=4; (1=i=y)
and it would follow from (9) that 4,=:..=4,;=0, and so
lim ¢ =o.
5$—> 00

This contradicts hypothesis (ii) of the theorem, since e*cN,=A, for
some 7 and c¢*#o0. Hence the vectors a,, ..., a;;, are linearly inde-
pendent. We put [[=N,, and will show that the statement &,

now holds for Ni+1=T.

§

The statement &, is trivially true. So far as @, is concerned,
©,, follows from (7); and so far as the remaining @, (1<¢<7) are con-
cerned, &;,, follows from &; since [{'is a subsequence of N,.

It remains to prove &\,. Suppose, if possible, that there is an

increasing sequence of integers

8§ < Sg < rer < S, < e (10)
and vectors
dSm < rs,,.

1 The only property of 2 we use is 3 <2<1.
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such that Jim dn = d (say) } o
>0
=04+ + 00,
where 4, ..., d,,, are not all integers. By &/, ,, which we have already
proved, we may add integer multiples of a,, ..., @, to the right-hand

side of (11), after appropriate modification of the sequence d*». Hence
we may suppose in the first place that

|61 =4 (12)
and in the second place, by (3), that
ld|=3<? (=is<)), (13)

where, as usual, d=(d,, ..., d,). From (8) and (12) we have

i h

g, 140 =10l max 144 (14
<1 i
=4, max 14l
- (15)

We now show that this in contradiction with the definition of the vectors
¢ as the vectors & of N, in (5) other than o for which (6) is as small
as possible. Since ¢*—a,,,, we have

lim max |¢,| = max |4,], (16)
r—00 j+1<isn ‘ j+lgisn
where ,
' =(cry i Cu)-

By (13) and (15) the vector d*~ certainly lies in the region defined by
(5) when m is large enough. Further, d~¢Ny, where 7 =f_. But
now, by (14) and (16), the function (6) is certainly greater for e’ than
it is for d*» when m is large enough, which contradicts the choice of €7,
The contradiction shows that if (11) holds then 4y, ..., d;;, are all
integers; that is the statement &}, holds.

This ends the deduction of &, from &;, and so concludes the proof
of Theorem IV.

We note a form which is often useful in applications and which does
not depend on the use of the special distance-function |x|.

COROLLARY. Let F(x) be any distance function and let N, be any
infinite sequence of lattices satisfying the two conditions

(1) d(N)< K for all v, where K is independent of r.
(1) F(N,)Z=%>0 for all v, where » is independent of v and, as usual,
F(A) = inf Fla).
(A) = inf Fla)
+o0
Then N, contains a convergent subsequence.
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For by Lemma 1 of Chapter IV there isa C> 0 such that F(x) <C|x|,
and so
|A|ZCHPF(N,)=Cxe>0.

V.4.3. Ap almost immediate consequence (cf. MAHLER 1949a) of
Theorem 1V is

THEOREM V. Let & be any open set. Let £, %y, ..., S,,... be a
sequence of open subsets of & such that
(i) &, is contained in &, if r<<4,
(1i) the origin is an inner point of S,
(ti) every point x of & is in &, for some r.
Then
A(¥) = lim 4(%,).

r— 00

We recall that A(¥) is the lower bound of d(A) over &-admissible
lattices A, i.e. A having only 0 in &. Clearly

A(%) < A& ()
for all ». Suppose that
liminf A(%) < A(¥). (2)

Then there is an increasing sequence of integers 7, <<7,<--- and
lattices A,, such that

tlim ad\,) < A(S);

— 0

and A,, is & -admissible. By (ii) and Theorem IV we may extract a
convergent sequence of lattices from the A,, so that without loss of
generality

,E,To A,=N; dN)<AS).

Hence there is a point ps0 of A’ in &. By (iii) then p is in F% for
some R. By (i) and since %, is open by hypothesis, there is a neigh-
bourhood
| — p| <7 (3)
every point of which is in &, for all r= R.
But now
p=limp, peh,

by Theorem I. Hence & =p’ satisfies (3) for all » greater than some 7,.
For > max (R, »)) this means that p, is in & contrary to our assumption.
The contradiction arose from the assumption that (2) is true. Hence
the theorem is true by (1).
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When the ¥ and %, are star-bodies, Theorem V follows fairly
immediately! from Theorem II but we shall in fact apply Theorem V
when & is not a star-body in Chapter VIII. The proof of Theorem V
gives also the following corollary which is a trivial consequence of the
theorem when the & and &, are star-bodies, but which is valid when
they are not.

COROLLARY. Suppose that for 1<r<<oo there is an &,-admissible
lattice N, with
d(\) =4,

for some number A,. Then there is an S-admassible lattice Nwithd (N) =A,.

V.5. Critical lattices. Let F(x) be a distance-function. It may
well be that F(A) =0 for every lattice A, in which case we say, following
MAHLER, that the distance function and its associated star-body are of
“infinite type”. An example of a distance function of infinite type in
two dimensions Is

F(x) = |} x,|3.

Any lattice A of determinant 4(A) =d contains a point @ = (a, a,) =0
with
la)| S e,  |ay| S dje,

where &> 0 is arbitrarily small, by Minkowsk!l's convex body Theo-
rem IT of Chapter III. Then

Fla) < |ed|}

is arbitrarily small, so F(A)=0. It is not always possible to decide
whether a distance function is of finite type or not, for example, this
is not known in the case of the 5-dimensional distance functions

F(x) =[x + 25 + 23 + 23 — 5|}
and
F(@) = |# + 23 + 2 — 22 — 2%

The problem whether these functions are of infinite type or not is equi-
valent to the problem whether all indefinite quadratic forms in § vari-
ables represent arbitrarily small values (including 0) or not for integer
values of the variables (cf. §3 of Chapter I). A classical theorem of
MEYER says that if the coefficients of the form are rational then it
represents 0. Recently DAVENPORT and more recently B. J. BircH have
developed an attack on this problem but it appears to work only for

! When the & and ¥, are star-bodies, say, with distance-functions F(x) and
F, (x), the hypotheses of Theorem V imply that, for each #, F,(x) tends monotonely
to F(x). Since F,(x) and F(x) are continuous, this convergence must be uniform;
and so Theorem II applies.
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indefinite forms in more variables than 5 [see DAVENPORT (1956a) and
later work of DAVENPORT and BIrcH]. The results of Chapters VI and X
sometimes permit one to decide whether a given distance function F(x) is
of finite type or not but beyond that very little is known. For another
unsolved problem of this type with important implications see CASSELS
and SWINNERTON-DYER (1950a).

Most of the investigations in the geometry of numbers are concerned
with distance-functions I’ of finite type, i.e. not of infinite type. Then
Ay
{ d(/\)} (1)

O(F) = sup
A
s strictly positive. Then by Theorem VI of Chapter IV,

0<6(F) < oo (2)
and

S(E)A(&) =1, 3)
where A(%) is the lattice constant of the set
& Fx)<1. (4)

We recollect that a critical lattice for % is a lattice A which is
& -admissible and which has determinant 4 {A) = A(&) (Chapter 111, §5).
A general theorem of MAHLER states that a set & of the type (4) always
has critical lattices if it has admissible lattices.

THEOREM VI. Let the distance-function F(x) be of finite type. Then
there exist lattices N\ such that

FN) =1, d(N) ={8(F)}" =4(#),
where §(F) is defined in (1) and A(SF) is the lattice constant of the region
defined by (4).

The proof of Theorem VI is now quite simple. By the definition of
A(&), there exists a sequence of lattices A, such that

EA\)z1, d(A\)—>4(F). (5)

We may now apply Theorem IV Corollary 1, its conditions (i) and (i)
being satisfied by (5). Hence there exists a convergent subsequence,
and so, after a change of notation, we may suppose that

A =N
for some lattice A’. By (5) we have

A(N) = lim d(A) = A(F).

r— o0
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By (5) and Theorem 11, we have
F(N)zlimsupF(A) =1.

If F(A')>1 there would exist a real number ¢ <1 such that
FONYzZ1, dON) =0"d(N)<A(S);

in contradiction to the definition of A(%) as a lower bound. Hence
F(N) =1. This concludes the proof of the theorem.

In evaluating A(¥) for star-bodies & we may therefore confine
attention to critical lattices.

There is an alternative formulation of Theorem VI which does not
need to distinguish between the two cases é(F) =0 and §(F)>0:

COROLLARY. For every distance-function F(x) in n-dimensional space
there 1s a lattice M such that
d(M) =1
and
(F(MP = 8(F) = sup LA
(F(M)J" = 0(F) = sup =, 200,
For if §(F) =0, any lattice M with d(M) =1 will do. Otherwise
M =9 A" will do, where A’ is a critical lattice and ¢ is chosen so that

d(My=1.

V.5.2. It would be natural to assume that every critical lattice A
for a star-body
& Flx) <1

should contain a point @ with £(a) =1, but in fact this is not the case
even in 2 dimensions. Here we construct a counter-example using the
phenomenon of successive minima discussed in § 4 of Chapter II. Write

FO(;L'):|x1x2P. (1)

Theorem IV of Chapter I when translated into our present language
implies that

(BN d(A)8! 2)
except when A is a lattice A, with basis
@, =(ay,,851), Gy=(a,,a,) 3)
such that
(181, + 4 8y5) (41 a51 + Uy a5,) = k(“% +uy Uy — “g) 4)

identically in #,, u, for some number %; in which case

BN =d(A)/st. (5)
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In particular

3(Fy) =5 (©)
Now consider the distance-function
E =F 17 7, _] .
1(&3) o($)[1 + 100{lel+lx2|}z ’ (7)
so that
@) S F (@) < 15 Fy(). (®)

From (8) and (2) or (5) we have

BNps (2L apys ©)
if Aisnota A; and
BNz dN)s (10)
respectively. Since
—y[d01® oy
8 (400) <57

a critical lattice for F|(x) <1 is necessarily a A,.

We show now that equality holds in (10). After a possible inter-
change of x, and x, we may suppose that

Uy Ay + UsByp = a5, (% + W Uy)
Uy gy -+ Uy Gyy = Ag, (1) + PUy),
where
20 =145, 29=1—5} k=aya,,
on factorising the right-hand side of (4). Here

wy =—1.
Since

=041, p=yp4+1,
we have
o = oy =l

for every positive integer ¢ and certain integers #{", »{). Hence

Y (say) = (a1, 0", a5, 9) €A,

But now, since wy = — 1, we have
- | 211 23
Fl(yl) —|a11a21|4[1 + 100{lan|t101‘-i1a21w"}2 —>|a”a21|5 (t—>00)

= ki,

Hence

BN E=d(A)st.
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This with (10) gives '
{EAP =d(A)/5H.

But now if a0 is a point of A,, we have trivially
{E(@)} > {F@f=dA)s.

In particular, if k=1, so that d(A)=5=A4(%), where % is the
region F, (x)< 1, there are no points @ of A, on the boundary F (x) =1
of A,.

By an ingenious argument, again using the phenomenon of successive
minima, ROGERS (1947¢) has constructed a distance-function F(ax) such
that the critical lattice of the unbounded star-body F(x)<1 has only
one pair of points 4+a with F(4a)=1. All other points b0 of A
satisfy F(b)={ for some explicitly given ¢>1. This Is in striking
contrast with the results we shall prove in § 6 about bounded star-bodies.

V.6. Bounded star-bodies. For bounded star-bodies a great deal is
known about critical lattices. [See in particular MAHLER (d, e) and for
an extremely detailed treatment of the 2-dimensional case MAHLER
(a, b, c).] In contrast to the negative result of §5.2 we now have

THEOREM VII. Every critical lattice N\ of a bounded star body & has
n linearly independent points on the boundary of &.

For suppose not. Then there exists a basis by, ..., b, of A such that
any point
p=ub,+ - +u,b, (%, ..., u,, integers) (1)

of A on the boundary of % has #,=0. Since & is bounded, there exists
a number Y such that if a point

b+ +y,b,
with real ¥, ..., ¥, is in or on the boundary of %, then certainly
WISY  (sisn).
Now let ¢ be a number in, say,
0<e<i,
and let A, be the lattice with basis

b,..b,_, and (1-¢b,.
Consider a point

pe=u1b1+“' +un—1bn—l+un(1 —e)bn (2)

Cassels, Geometry of Numbers 10
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of A,, where u,, ..., u, are integers. If #,=0, then p, is in A; and so
is either on the boundary of & or outside . 1f
max |u,|>2Y,
1gisn
then certainly p, is outside . We need therefore consider only the
points with
max x| <2Y, u,#0. ()

But now for these #; the corresponding point p given by (1) is an
exterior point of &, since u,==0; that is some whole neighbourhood
of p lies outside #. Hence p, cannot be in & for all ¢ smaller than
some &,, which may depend in the first place on #,, ..., #,. But there
are only a finite number of #;, ..., u, to consider, by (3), and hence
A, is L-admissible if ¢ is small enough. But now

A(N) = (1 — &) d(N) = (1 — &) A(),

since A was assumed to be critical. But this contradicts the definition
of 4(#) as the lower bound of the determinants of admissible lattices.

It is only exceptionally that there can be as few as » pairs of linearly
independent points 4-a; (1<7=<#) of a critical lattice on the boundary
of &. Rather surprisingly, it is possible, however, at least when # =2,
for a star-body to have a continuous infinity of critical lattices each
with only # pairs of points on the boundary, see OLLERENSHAW (1945 a).

COROLLARY. Suppose that +a; (1=j=<n) are the only points of N\
on the boundary of . Then there exists an &, such that all points

an+£1al+ +8n—1an—l (4)
with
| <
1;];:5-1 | 67‘ = o (5)

are either in or on the boundary of .

For a,, ..., a, are linearly independent by the theorem; and so
there exists a basis by, ..., b, such that
a,=v,b+ - +v;b, (HsiZn) (6)
with integers v;; and »,;4=0. Let A, be the lattice with basis
b,....,b,_,, b],
where
bz:bn+nlbl+"'+77n—lbu—lr (7)
and #,,...,7%,-, are small real numbers. As in the proof of the theo-

rem, if max |#;| is small enough, the only points of A, which can lie
in or on the boundary of & are +a,, ..., £a,_, (which are unchanged
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by the substitution of b} for b,) and 4@}, where

"’z (Sa}’) :Unlbl + +vn,n-lbu—1+vunbz' (8)
But
d(A) = |det(by, ..., b, 1, b)) =|det(by, ..., b)| =d(A) = A(F).

Hence either @ is in &, when there is nothing more to prove, or A} is
critical, and then @ is on the boundary of % by the theorem. Since
every vector of the shape (4) can be put in the shape (8), where max |#;]|
is small if max|¢;| is small, this proves the corollary.

V.6.2. For the continued study of the points of a critical lattice
on the boundary of a bounded star-body, we need an estimate of
det(a,, ..., a,) in terms of

g  (1=7=9),

where a,, ..., @, are any #-dimensional vectors. For our present purposes
any estimate, however crude, would suffice, but, since we shall later
need a more precise estimate, we prove it here.

Lemma 9 (HapAMARD). Let ay, ..., a, be n-dimensional vectors. Then
|det(ay,...,a,)| <|ay...]a,].

We note that the simple example
i—1 n—j
et e,
aj=ei=(0,...,0,1, 0,‘..,0)
shows that < cannot in general be improved to <. The inequality is
the n-dimensional analogue of the fact that the volume of a parallelo-
piped is at most the product of the length of the sides.
If the determinant is O there is nothing to prove. Hence we may

suppose that a,,..., @, are linearly independent. We construct a
sequence of vectors ¢; (1=<7=#) such that
ce=0 (i) (1)
(scalar product of two vectors), and
&=t + - 416+ 6 (2)

for some real numbers ¢;;. Indeed if ¢;=a, and the ¢; are defined
recursively b
y by cizai—zl(a,‘ci)lc,]ﬂcj,
j<i
it is readily verified that the ¢; have the required properties. By (1)
and (2) we have
|a,‘12 =aa;, = t?1101|2 +- + t?,i—llc,'—ll2 + ]cilzg |C;|2, (3)
and
det(a,,...,a,) =det{c,,...,c,). (4)
10*
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On the other hand, on regarding the ¢,, ..., ¢, in det(¢,, ..., e,) first as
rows and then as columns and multiplying the two determinants to-
gether, we havel

{det(e,, ..., c,) 2 =det{c;e} =[] | c;]? (5)
by (1). The required inequality now follows from (3), (4) and (5).

V.6.3, We may now show that, in principle, the evaluation of 4(%)
for a bounded #-dimensional star-body & may be reduced to a finite
set of ordinary minimal problems. Except for convex bodies, for which
see § 7, this is hardly in practice a fruitful approach, though it might
well be adaptable to machine computation.

We may suppose without loss of generality that & is defined by
& Fx) <1, 1)
where F(x) is a distance-function. By Lemmas 1 and 2 of Chapter IV,
there are numbers ¢>0 and C such that
cle| = Flx)<C|x|. 2)
In particular, a lattice A admissible for & has no points in the sphere
x| <C,
and so has

dNz27"C"T, (3)

by MiNnkowsKl's convex body Theorem II of Chapter III, where V, is
the volume of the unit sphere || <1.

Now let A be a critical lattice, so that there are (at least) » linearly
independent points @,, ..., @, of A on the boundary F(®)=1 of &.
Then by (2) we have

loj<ct (=ism), (4)
and so by HADAMARD'S Lemma 9 we have
|det(ay, ..., a,)| < c". (5)
Hence in the language of Chapter I the index I of @, ..., @, in A is
__ |det{a,, ..., a,)] 2C\hyry
1= 152Gl < (22 Y0 — 1, ©)

Hence by the corollaries to Theorem I of Chapter I, there is a basis
b,, ..., b, of A such that

a;,=v,b, + - +v,;b,, ()

1 Alternatively one may observe that, by (1), ‘Z x;¢;2= X #?|¢;|? and compare
i

determinants.
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where the v,; are integers,

0= v <y (1<), (8)
and
o< [[v;=1Z1,. 9

There are thus only a finite set of possibility for the integers v;;. For
each set of integers v;;, the points @; on the boundary determine the
b,, by (6). The a, are to be chosen so as to make

a minimum, subject to no points of A being in % and, in particular,
subject to (3). Then A(&) is clearly the minimum of d(A) over the A
so obtained and over all of the finite number of choices for the v,;.

We now verify that if A is a lattice constructed with » points
a,,...,a, on the boundary and satisfying (3), (5), (6), (7), (8), (9),
and if d were any point of A in &, then d has the shape

d=ub+--+u,b,,

where bounds can be given for the integers ;. Indeed then |d|<c;
and so for each integer ; we have

|det(a,,...,a,_,,d,a,,....a)<c™"

by (4) and HADAMARD’S Lemma 9. Hence, if (3) is true, the index of
a,..,a_,,4d,a.,,..,a, in Ais at most I, for j=1,2,...,n: and
it is easily verified that this gives bounds for the %;. It is thus, in
principle, a finite problem to find 4(%).

The lattice constants of a great many 2-dimensional bounded star-
bodies have been evaluated. There is a partial list in KELLER (1954a)
to which may be added among others the bodies discussed by OLLE-
RENSHAW (1945a, b, 1953g). The treatment of bounded non-convex
body in more than 2 dimensions by such methods seems inevitably
laborious. Perhaps the only cases worked out are those of N. MULLINEUX
(1951a).

V.6.4. In the evaluation of A(%) for a given star set & it is usually
best to combine the techniques just introduced with those discussed
in Chapter III. We consider an instructive example due to N. MULLINEUX
which we shall have occasion to discuss further in § 7.

LEMMA 10. Let k be an arbitrary positive number and put
D = (k* 4 4k)t,
and

g=3%3k+2+D),
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so that
=4(k+2-D).

Let & be the 2-dimensional star-body defined by

— 1< ma,<k, |2+ x|<D.
Then
A(&) =D.

The only critical lattices have bases of one of the two following kinds
(i) the point (1, —1) and any point on x, + x2,=D
(1i) the points
p=(—gegt?), q=(=t17)

where t is any number in the range
1<i<y.

We must first verify that the lattices defined above are & -admissible.
This is certainly true for {i). We now verify it for (ii). It is readily
verified that the line x; 4+ x,=2D meets x,x,=—1 in the points

(—gte, (&—g?).

Hence the points p and q above do lie on the portion of the boundary
of & given by x; x,= —1. The point

r=p—q={}(—k+D)t, §(k+ D)t} =(r,1)
lies on
nry==~R.
Further,
0<n+ry<D,
since 1<C¢< g and
H—k+D)t+3(k+ D)t

equals D both for £=1 and for ¢ =g. Hence a lattice of type (ii) has six
points +p, 4+ ¢q, 4+ on the boundary of <. There can be no further
point of the lattice in &, since it is easy to verify that every point
of & except 47 lies either strictly between the (infinite) line A through
p and r and its image — A in o0; or strictly between the line i through
g, r and its image — p in o; for example the line A meets x x,=—1
and x,x,=£k respectively apart from p, » in the points

(gt, —gtY), {3k +D)t, 2(—k+Dr

and for both of these |x; + %,| > D.
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For later use we note that the whole of the line-segment joining
p, r must lie in & except the end points, since a line can meet a hyper-
bola %, x%,=—1 or x,%,=#% in at most two points. Hence the whole
of the closed parallelogram with vertices at o, p, r and --q must lie
in & except for p, r and —gq.

We are now in a position to prove Lemma 10. Let M be a critical
lattice. Suppose, if possible, that there is no point of M on the portion

B =—1 |m+x|<D
of the boundary of &. Then the set of points!
M: {1 —&)x+ex,, ex+ (1 — &) x5}, (%, %) €M,
for small enough &, will also be & -admissible since

{(1—e)xy+exy)+{ex+(1—e)x} =2+ 1,
and
{1 — &)z + exflex + (1 — &) %o} = w25 + (6 — %) (1 — )P Z 11 %,
Since

4(M,) = (1 — 26) (M) < A(9),

this contradicts the hypothesis that M is critical. Hence there is a
point ¢ = (g, ¢,) on the boundary x, x,= —1 of &; and, by symmetry,
we may suppose that

— ¢ 21=¢,>0.

Suppose first that g == (—1, 1). Then

(1, 92) = (— 24,47

for some ¢ in 1 <¢<g. Let us identify this ¢, with the ¢ of the lattice
N introduced earlier, and let p, » have the meanings introduced then.
Since A is admissible and M is critical, we have

dM)y<d(N).
The line A of points & with

det(x, q) =d(A)
passes through p and 7, so the line
det (2, q) = d(M) (1)

must either coincide with it or lie between it and the line through o
and q. But now q is a primitive point of M, since r1q & for any

! This argument becomes more transparent on introducing temporarily the
co-ordinates y; =} (% + %,), ¥o=1 (% — x,).
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integer > 1; and so there are points of M on the line (1) and at a distance
| q] apart. Hence there must be a point of M other than o and —gq
in the closed parallelogram with vertices at 0, —¢q, p and r. But we
have already seen that the only points of this parallelogram which are
not in & are the vertices p, » and —q. Hence either p or r is in M;
and in both cases then M coincides with A.

There remains the possibility that ¢ =(—1, 1). If the definition of
p and r is extended in the obvious way to ¢ =1, the situation remains
the same, except that now the whole line-segment joining p and r is
part of the boundary %, +x,=D of &. Hence we may deduce only
that M has a basis consisting of (—1, 1) and some point on x, + x,=D.

For this type of proof compare OLLERENSHAW (1945Db).
For later use we note that we have also proved the

CoROLLARY 1. The only critical lattices for
—1<mx,<k, |m+2x%|=D
are those of type (11), where now t is allowed also to take the value 1.

For the other lattices of type (i) have a point on —1<x,%,<<D,
|% 4 %,| =D. Here our usage differs from that of MAHLER (1946a),
since he calls a lattice admissible for a set & if it has no points other
than o in the interior of . Thus MAHLER calls the lattice of type (i)
admissible (and so critical) for the set of the corollary.

Lemma 10 may be regarded as a more precise version of Theorem IV
of Chapter II. To make the connection more clear we prove

COROLLARY 2. If k is an integer, the critical lattices of type (it) are
admissible for
— 1< 2 X< k.

For the general point of a lattice of type (ii} is
T=upP+ur,
where u,, u, are integers. Then
Xy Xy = (Uy Py + U ?y) (W o + tg7g) = — 4l + Ruyuy + Rul.

We showed in §4.4 of Chapter I that — w2 -ku,u,+kui does not
take any values strictly between —1 and 4% when % is a positive
integer and #%,, u, are integers not both 0.

V.7. Reducibility. It may happen that if & is a star-body, there is
some star-body &, which is properly contained in % but which has
the same lattice constant: A(%) =A4(%;). We say then that & is
reducible. If no such %, exists, then & is said to be irreducible. Criteria



Reducibility 153

for the reducibility of a bounded star-body have been given by MAHLER
(1946a) and ROGERs (1947a). Later, ROGERS (1952a) gave a most
ingenious example of a reducible star-body which does not contain an
irreducible star-body of the same lattice constant: but he was able to show
that if a rather wider class of point sets, which he calls ‘“‘star sets”,
is considered, then every bounded reducible star set contains anirreducible
star set. Convex 2-dimensional sets were considered in great detail by
MAHLER (1947a). Mrs. OLLERENSHAW (1953b) has shown that the
n-dimensional unit cube is irreducible for all » and that the unit sphere
is irreducible at least for < 5. She shows further that a 3-dimensional
cylinder is irreducible if its 2-dimensional base is irreducible.

We refer the reader to the papers quoted for the general theory.
The following lemma shows in a simple case the sort of ideas involved
in the proof that a star-body is irreducible.

LemMma 11. The star-body

D 2 4aE<1
is irreducible.

For suppose % is a star-body strictly contained in 2. Then there
is a point p on the boundary of £ which is not on the boundary of &.
But now (§ 6.4 of Chapter III) there is a critical lattice A of 2 having
points at +p. The only other points of A on the boundary of 2 are
the points -4 ¢q, 4+ which, together with 4 p, are at the vertices of a
regular hexagon. Since & (2, the lattice A must be admissible for &%.
But now the only points of A on the boundary of & can be 4 ¢ and +-r.
These points clearly do not satisfy the criterion of Theorem VII, Corollary.
Hence A is not critical for %, that is

A(F) <d(N) = A(D).

Since & is any star-body contained in 2, this proves the lemma.

A similar proof shows that MULLINEUX'S star-body % defined in
Lemma 10 is irreducible. Again, if p is a point on the boundary of &%
then, apart from a finite number of exceptional p, there is a critical
lattice for & which has only three pairs of points +p, 4+-q and +7r
on the boundary of .%; and the points iq', 4 cannot be the only
points on the boundary of a critical lattice of any set 7 contained in &,
The finite number of exceptional points p for which such a lattice does
not exist cannot affect the argument, since if  is properly contained
in & there are infinitely many boundary points of &% which are not
boundary points of 7.

V.7.2. If & is an unbounded star set but there is a bounded star
set J contained in & such that A(J) =A4(¥), then & is said to be



154 MAHLER'S compactness theorem

boundedly reducible. Corollary 2 of Lemma 10 shows that the 2-dimen-
sional star-body
S —A<ma,<k (1)

is boundedly reducible when % is a positive integer, since A(%,) =
A(T,), where J, is MULLINEUX'S set

Tt — A< x,<k, |% 4 x| <(R+ 4k (2)

On the other hand, %, is not boundedly reducible for every k.
Thus we saw in § 4.4 of Chapter II that the critical lattices M for &,
are admissible for |¥ %,| <}, and so have no points on z x,=—1.
But then, precisely as in the proof of Lemma 10, M cannot be critical
for a bounded set J contained in ‘7}&’ since the lattice M, of points

{(1—e)x +exy, exy+ (1 —e) %}, (%, %)M

would be admissible for J for sufficiently small e.

The proof of Theorem VII of Chapter III shows that the 2-dimen-
sional star-body
|2} + 23] <1

is boundedly reducible, since the proof used only a bounded portion
of the set. MAHLER (1946a) has developed criteria for sets of certain
types to be boundedly reducible if their critical lattices are known.
Bounded reducibility is further discussed by DAVENPORT and ROGERS
{(1950a). DavenporT and RoOGERS introduce the concept of full redu-
cibility. If J is a set contained in the set & and A4(J) =4(¥) then
clearly every lattice critical for & is also critical for Z, but in general
might have more critical lattices. For example when % is a positive
integer the sets defined in (1) and (2) have the same lattice constant,
but the critical lattices of 7, of the type (i) of the enunciation of
Lemma 10 will in general have points in &,. On the other hand, the set

T —A<ma<k, |x 45| (k4440

has no more critical lattices then &, by Lemma 10 Corollary 1. If an
unbounded set % contains a bounded set 7 with the same lattice constant
and no more critical lattices then & is said by DAVENPORT and ROGERS
(1950a) to be fully reducible. They, following MAHLER, use the concept to
show that lattices of certain types have infinitely many points in certain
regions. We shall be discussing this from a rather different point of
view later in Chapter X. We do not discuss bounded and full reducibility

1 Their definition is not quite the same as ours since they use MAHLER's defini-
tion of an admissible lattice. But it is not difficult to see that it is equivalent
to ours.
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further but refer the reader to the papers quoted. The following example
illustrates the connection with the existence of infinitely many lattice
points in sets.

LEmMMA 12. Let k be a positive integer and N a lattice with
d(N)< (R2+4k)4
Then there are infintlely many points of N in
z: — 1= %%, k. (3)
There are infinitely many points of N in
St A< %<k, (4)

except when N is critical for &,.

If A contains a point (0, x,) with x,=-0, it contains all the points
(0,7x,) (r=1,2,3,...) and so the lemma is trivially true. Otherwise it
suffices to show that for every >0 there is a point (%, x,) of A in &,
for which |x,| < ¢; and that this point is in %, unless A is critical for &,.

Let ¢ be any positive number. Then the lattice A, of points
(%1, %9) = (1X,,171X)) (Xy, Xp)eA (5)

has the same determinant as A. Hence by Lemma 10, Corollary 1
there is a point of A, in

~ 1S4, k, |5+ x| S (R 4 4k)%; (6)

and indeed in %, unless A, is critical for &,. But now the region (6)
is bounded, so all the points of (6) satisfy

ENSY

for some number y which depends only on k. Hence, by (5), the original
lattice A contains a point (X, X,)=0 such that

—I=X X, <k, | XSyt

Further, A is critical for & if and only if A, is. Since p¢7 is arbitrarily
small when ¢ is a arbitrarily large, this proves the result.

V.8. Convex bodies. For convex bodies stronger results than Theo-
rem VII hold about the lattice points of a critical lattice on the boundary.
The following theorem of SWINNERTON-DYER (1953 a) generalised an old
result of KORKINE and ZOLOTAREFF for spheres.

THEOREM VIII. Let A be a bounded open symmetric convex set in
n dimensions and let N\ be a critical lattice for . Then N has at least
Fn(n+1) pairs of points +a on the boundary of A'.
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We reproduce SWINNERTON-DYER'S elegant proof. Let b,, ..., b, be
a basis for A and let A’ be a lattice with the basis b; (1 =7 <), where
bj—b;=n 2 a.b, (1)

1g1sn

and the a@;; and 5 are real numbers to be determined later. Let
4Py, ..., £py be the only points of A on the boundary of ¢ and let
+p1, ..., =py be the points of A’ which correspond to them in an
obvious way. Let m, ..., Wy be tac-planes to )" at p,, ..., py (Theo-
rem IV of Chapter IV). If there is more than one tac-plane, we choose
one arbitrarily. We then impose on A’ the condition that p} lies in ]
for {< J<N. By (1), and since p; lies on T}, this imposes a condition
of the type
Zal=0 (1ZJZN), (2)

1gisn

1sisn
where the numbers #J depend only on the point p; and the choice of
tac-plane ;. We also impose the conditions

a;=a;  (t57). (3)

The total number of linear conditions (2) and (3) imposed on the #2

numbers a;; is 3n(n—1) +N. Hence if N<jn(n+1), there exists a

set of real numbers a;; not all 0 satisfying (2) and (3). We select any
one such solution and keep it fixed in what follows.

Since the points p; lie on tac-planes to the open set £, they do not

lie in 2¢". When |17| is small enough, there are no further points of A’

in A" other than o, by the argument of §6.1. Hence A’ is admissible
for . Since A is critical, we must then have

d(N) =|det(by,..., b,)| = |det(by,...,b,)| =d(N) =A(X);
that is
14+ann a7 Q1M
1< det a1+ am a7

anln anzn 1 +ann7]
=14+An+ 4>+ -+ A,q" (say).

Since this must be true for all sufficiently small values of |7, it follows
that

1
and
A=~ Z'aiiaji + Zﬂﬁaﬁ 20.
1<7

i<j
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Hence on using the symmetry conditions (3) we have

0=24,—A}=— 3 a%.
1<isn
15jsn
Hence a;;=0 for all + and 7; which is a contradiction. The contradiction
arises from the assumption that there are fewer than i # (s +1) pairs
of points of A on the boundary of . Hence the theorem is established.

V.8.2. For bounded symmetric convex star sets the considerations
of §6.3 about the maximum number of points of a critical lattice on
the boundary and about their index may be made much more precise,
as was shown already by Minkowski. His results apply indeed not
merely to critical but to all admissible lattices. We recollect that a
body A is strictly convex if every point tp - (1—¢)q (0<¢<1) is an
interior point of 4  whenever p and ¢ are distinct points in or on the
boundary of .

THEOREM I1X. Let A be an admissible lattice for the convex symmetric
open set A". Then there are at most (3" —1) pairs of points +a of A
on the boundary of . If A" is strictly convex, the number of pairs is at
most 2" — 1.

The proofs are very simple. Suppose first that " is strictly convex.
Let by, ..., b, be any basis for A and let

a=u1b1+"' +unbn

be a point of A on the boundary of 2#". Then not all of %,, ..., %, are
even, since otherwise }a@ would belong to A; and }e is certainly an
inner point of ". Let now

a,:u;bl 4o +u:lb”)
if possible, be another point of A on the boundary of " such that!

u;=wu; (mod 2) (1=j<n).
Then }(a +a’)eA. By the strict convexity, § (e +a') is an inner point
of X and so must be o, that is @'= —a. Hence the total number of
boundary points is at most the number of residue classes for (u,, ..., #,)
modulo 2 excluding (0, ..., 0), that is 2"—1, as required.

When K is not strictly convex one must work with congruences
modulo 3; the details are left to the reader.

THEOREM X. Let X" be a convex symmetric open n-dimensional set
and N\ an admissible lattice for X'. If @y, ..., a, are points of N\ on the

1 The notation means that u,-—u;- is divisible by 2.
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boundary of A then their index I salisfies
I<nl, (1)

There 1s inequality in (1) if A is strictly convex.

If @, ..., a, are linearly dependent, then their index is 0 and there
is nothing to prove. Otherwise, every point ¢ of A may be put in the
shape

c=va+. - +uv,.a, (2)

where vy, ..., 9, are rational numbers. The sets of numbers » such that
(2) is in A clearly form a lattice M of determinant
- 4N 4
dM) = [det(a,, ..., a,)| =17
Hence, by MiNKowsk1's convex body Theorem IT of Chapter III, there
is point v+ 0 of M such that

|oa| + -+ + || < (ml[1)" (3)
Let F be the distance function associated with ", so that
Fla;) =1 (1=7<n).

For the ceA given by (2) and (3) we thus have by the convexity and
symmetry of X, that

F(e) <|v|Fa) + - +|v,| Fla,) < (n![T)'". (4)

But F(e)=1 since A is admissible for &" and so 7<#! as required.
If I =n! and X is strictly convex we should have F(e) <1 unless both
M is a critical lattice for |v;| 4---- +|v,| <1 and every point of M on
the boundary has # —1 of the co-ordinates v, ..., v, equal to 0. But
these two requirements are incompatible by SwWINNERTON-DYER’S
Theorem VIII.

The! estimate for I in Theorem X can usually be much improved
and more information obtained about the relationship of @, ..., a, to
a basis for the lattice. Thus for # =3 we have

COROLLARY. [If X is strictly convex and n =3, then I =1 or 2. If
I=2, then }(a,+a,+az)€A.

For I<5. If I =5, then there are integers #,, %,, %, not all divisible
by 5 such that
c=1(ua, +u,a, +uzaz)cN.

1 We do not use the rest of § 3.2 later but do refer to it at the end of § 8.5.
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We may suppose that 5 does not divide %, and, by taking 2¢ instead
of ¢ if necessary, that

;= 4-1 (mod 5).

Hence by adding appropriate integer multiples of @, a,, a; to ¢ we
may suppose, without loss of generality, that

w=+1, |u|=L2, |ul=2.
But then by the strict convexity we should have
Fle) <3F(a) + §F(ay) + §F(a) =1;

a contradiction. Hence I=5. Similarly /3.

Suppose now I =4. Then there exists a base b,, b,, b, for A such
that

a, =v;; by,
@y = vy, by + 5, by,
@y = U3 by + v3, by + 3,3 b3,
where
0= v, <y (1<),
and '
V11V 033 = 4.

Then vy, =1, since otherwise a,cA and F(ia,)<F{a) =1. If vy,=1,
then either }a, or 1 (a,+a,) is in A; and again we have a contradiction.
Hence

V) =Ugp=1;, S0 U33=4.

If vy, were even, we should have either § @; or §(a,+@a,) in A; so vy,
is odd. Similarly, vy, is odd. Hence there is a point

¢ =1(ma,+ua,+a) e,

where «;, u, are odd. By adding integer multiples of a, and a, to ¢,
we may suppose that ;= 41, ;= 41. But then

F(¢) < }{F(a,) +F(a) + F(a,)} = $ <1.
Hence I+4.
Finally, when I =2 it follows, just as for I =4, that the only pos-
sibility is v;; =v;5=1, v5;=0 and v;y=2. Further, the argument that
Uy, Uy are both odd continues to hold. Hence }(a;+@a,+a,)<cA.

V.8.3. When )¢ is a bounded symmetrical strictly convex 2-dimen-
sional set, the lower bound 3 for the number of pairs of points 4@ of
a critical lattice on the boundary given by Theorem VIII coincides with
the upper bound give by Theorem IX. We have indeed
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THEOREM X1. A. Let X be an open convex symmetrical 2-dimensional
convex body. Then a critical lattice \ of A has six points +p, +q, +r
on the boundary of A such that

pt+q+r=o (1)

and any two of p, q,r is a basis for A.

B. Further, of +p, +-q, -1 are any points on the boundary of A
such that (1) holds, then the lattice M with basts P, q is admissible for A"
There are no further points of M on the boundary, except when A is a
parallelogram and two of p, q, r are mid-points of its sides.

The first part of Theorem XI is an almost immediate consequence
of the last three theorems. By Theorem VIII there are three pairs of
points +p, +¢q, 47 on the boundary of #". By Theorem IX, the index
of p,q is 1 or 2. Since £p, 3q are (inner) points of ¢, they cannot
belong to A. Hence, if the index is 2, the point 3 (p+¢q) isin A. It is
also in ¢ or on the boundary of X", the latter only if X is not strictly
convex. If the index is 2, we may thus take }(p 4 q) =¢q’ instead of q.
The index of p and q’ is 1. Hence without loss of generality the index
of p and ¢q is 1. Hence r =up 4 v¢q for some integers # and v, where
|u| <2, |v| <2, since the indexes of p, » and of ¢, r are at most 2. Not
both # and v can be even, since otherwise }r would be in A. If, say,
# =42 is even, then v=+41 is odd, and r'=3(r +vq)=%up+vq
is in or on the boundary of #". It must be on the boundary since A is
admissible. Hence by taking r’ instead of » we may suppose, without
loss of generality, that |#| =|v| =1. By changing the signs of p and g,
where necessary, we may suppose that #=v=—1, that is, that (1)
holds. This proves A.

It remains to prove B. Suppose, if possible, that the point

c=up +vq
=@—uq+(—ur
=@—v)p+(=vr
is in or on the boundary of & for some integers «, v. If, say, | u|>|v| +1.

then the point
p=ulc—vulq

would be an inner point of X', because we should have | 7| +|vu™| <1.
Hence from the three expressions for ¢ we deduce that
llul — vl =1,
Hu —v| —|ulj =1,
lu—ov| —|of| =1.
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It is easy to see that the only integral solutions of those inequalities
giving primitive lattice points distinct from +p, 4 q, 4 are

+(u,v) =(2,1), (1,2) or (1,—1).

Hence after permuting p, q, r cyclically if need be, we may suppose
that ¢=p —q is in or on the boundary of . Since now

1
p=3c—3r, q=-—3zc—3r,

the only possibility is that ¢ is a boundary point.
We now show that 2" contains the whole parallelogram £ of points

x=Ap +urq
with
max{| 4], |u[}<1.
Indeed
X =pcCc+tor,
where

le| +lol =34 —p| + 4|4 +p| =max{|4], |ul}.
But now the area V(%) of # is
V(2) = 4|det(p, q)| =44 (M).
On the other hand, by MiNKowsKI’s convex body theorem, we have
V() < 44 (M).

Since X" includes 2, and since " is open, the only possibility is that
X~ coincides with £. This concludes the proof of the theorem.
Theorem X1 gives one a ready criterion for finding the lattice constant
of 2-dimensional convex star-bodies. It is easy to see that if pis a
given point on the boundary of X", then there is precisely one hexagon
of boundary points +p, 4-q, 47 for which (1) holds. The lattice
constant of & is then the lower bound of det(p, q) for these hexagons.

V.8.4. As an application ef Theorem XI we prove

LeMMmA 13. Let & be a convex symmetric open hexagon. Then
AP =1V(9). (1)
The only critical lattice M is that which has points at the mid-poinis of
all the sides of &.
By MiNKowsKI's convex body theorem,
AL =z51V(S). (2)

Cassels, Geometry of Numbers 11
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Let the vertices of & taken in counter-clockwise order be
a —b,e,—-ab, —c.

Then the lattice M of the lemma has basis }(a—b) and 3(b—¢). It
clearly contains also 1(c—a). Hence, by Theorem XI, M is &-admis-

sible. We now show that
dM) =3V (). (3)

On dissecting & into triangles with a vertex at o, we have
— V(&) = det(a, b) + det (b, ¢) + det (e, a) = 4 det (u, v)

on putting b=a+2u, ¢=a+2v. This proves (3). Then (1) follows
from (2) and (3) since M is F-admissible.

Now let A be any critical lattice for &. Then d(A) =3V (¥). If
A did not have a point on a particular side of & there would be a sym-
metric convex set larger than % which contained no point of % except
o; which would contradict MiNKowsk1’s convex body theorem. Hence,
by Theorem XI, A has precisely 6 points +p, + ¢, 47 on the boundary
of &; one on each side. If, say, the points +p are not the mid-points
of their sides, then by rotating slightly the sides about +4p, leaving
the other pairs of sides fixed, it would be possible to find a convex
symmetric set 7 of volume V(J)> V(%) containing no points of A
except ©0; again contradicting MINKOWSKI'S convex body theorem.
Hence +p, +q, +r are the mid-points of their sides, and A =M.

It would, of course, be possible directly to compute the determinants
of all lattices having points p, q, r with p +q +r =0 on the boundary
of & and to show that M gives a minimum.

V.8.5. MinkowsKI (1904a) has extended the argument of Theorem XI to
3 dimensions and proved the following.

THEOREM XI1. To find the lattice constant A(X') of an open symmetrical convex
set X in 3 dimensions il suffices to consider the minimum of the determinants of
lattices generated by three points ay, a,, @y on the boundary of N and satisfying one
of the following three conditions:

(A) the points ay— a,, a,— ay, a;— a, are on the boundary of ¥ and — a;+ a,+ a,,
a,—a,+a,, a,+ a,—a, are outside X'.

(B) the points a,+ a,, a,+ a;, a;+ a, are on the boundary of X and a,-+a,+ ay
is outside XA'.

(C) the points @)+ a,, @)+ @y, ay+ a, and a,+ a,+ ay are on the boundary of X

We refer the reader to the original paper for the procf. Alternatively the
reader may construct a proof by combining the ideas of the proof of Theorem XI
with those at the end of § 8.2. The corresponding result in 4-dimensional space,
which is fairly complicated, has been found by K. H. WoLFF (1954a), who states
that some of the auxihary results are due to E. BRUNNGRABER (1944 a).
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MinkowskK! (1904a) used Theorem XII to find the lattice coustant of the
octahedron

[;] + [ %2] + | 2] < 1,

namely 1()/108. The lattice constants of further convex 3-dimensional bodies have
been determined by CHALX (1950a) and WHiTWORTH (1948a and 195ta). In all
cases a considerable amount of rather tedious detail is necessary.

V.9. Spheres. We now consider more particularly the n-dimensional
spheres

||z =%+ 422 <1. (1)
We denote the lattice constant of 2, by
ILL=4(2,). (2

The value of I}, is known for 1=#<38, see Appendix A. We here find
again I;, which we already found in another context in Chapter II,
Theorem III. From this the value of I} will follow almost at once by
a general theorem of MorDELL in Chapter X.

We must first prove a result for spheres which is more precise than
the mere application of Theorem X.

TueoreM XIII. Let A be a lattice admissible for 9, |®|>*<1; and
let ay, ..., a, be points of N\ on the boundary of 2,. Then the index I
of @, ...,a, satisfies

IS@NP = {A@, ) =T )
n),

For || =1 (15j=n

and so, by HaADAMARD’S Lemma 9, we have

|det(a,,...,a,)| < |q,)...|a,]| =1.
Since

the first half of (3) follows. The second half of (3) is a trivial conse-
quence of the definition of I},.

COROLLARY. If m =3 the index 1s 0 or 1.
For 2, has volume 4s/3, and so
L= ni6> %,

by MinkowsKl's convex body Theorem II of Chapter III.

THEOREM XIV.

=24
A critical lattice for D; has a basis my, my, my, such that
|y My + uymy + uymg|? = o + 13 + 0 + wyuy + uyuy + uyu,

tdentically in u,, u, and u,.
11*
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Let A be a critical lattice for 2,. By Theorem VIII there are at
least in(n +1) =6 pairs of points 4-m of A on the boundary of 2,
and by Theorem VII there is a linearly independent set of 3, say m,,
m,, m,. By Theorem XIII, m,, m,, m; is a basis for A. If

m = u;m, + u, My, + UMy
is another point of A on the boundary of 2,, the only possible value

for the u; are 0, 11 by Theorem XIII. There can be at most one such
pair +m with w,u,u,40. For if, say,

m=um; + u,m, + u;ms, Uy Upthy =0,
! ! ’ ’ ’ ’
m' =uymy + uym, + usm,, s 3 F 0,
the index |u, sy — uzu,| of my, m, m' is even, so must be 0. Similarly
! ! 1 1 ’ ’
UgUg — Ug Uy = Uy Uy — Uy Uz = Uy Uy — U %y =0,
so m’= 4+ m. Hence there must be at least one point w,m, +u,m,+u,m,

with , 4,4,=0 on the boundary of &; other than 4+ m,, +m,, +m,.
We may suppose without loss of generality that it is

my=m; —m,.

Then neither m; +m, nor m,+m,4m, can occur as boundary points,
since they would give index 2 with m; and m,. Hence at least two
of the remaining possibilities

mtm;, my4+m;,, m-—m,tm,

must occur. Since m;—m,+m, and m,—m,—m; cannot both occur,
we may suppose without loss of generality that

my;=m,—m,

occurs. Then m,-+m,; and m;—m,—m; do not occur, since they
give index 2 with m, and m,: and m, +m, cannot occur, since it gives
index 2 with m, and m;. Hence the only possibilities for 4-m, are

my;—m; or Mm,—m,+m;.

In the second of these cases take my; instead of m,. Then without loss
of generality

mg=m; —m,.
Write
g, th, u5) = |y my + uymy 4 uymy2,
where %, 4,, #; are variables, so f(u) is a quadratic form. Then
f(1,0,0) =f(0,1, 0) =7(0,0,1)
=f(1,0,—1) =f(0,1, —1) =f(1, —1,0) =1.
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Hence
/(u) =i +uj + u3 + UgUs -+ Uty + Uy Uy

with determinant D(f) =%, and so

{det (m,, m,, m;) =14,
as required.
V.9.2, Let & be a star-body and A an &-admissible lattice. We say that

A is extreme for & if there is a neighbourhood g of A, in the sense of § 3.2, in which
every S-admissible lattice M satisfies

M) = d(A).

Clearly a critical lattice is extreme; but an extreme lattice need not be critical.
Some of the results proved already extend to extreme lattices, notably SWINNERTON-
DvEeRr’s Theorem VIII.

The extreme lattices of n-dimensional spheres have been exhaustively studied.
For example there are six distinct types of extreme lattice for the 6-dimensional
sphere as was shown by BARNES {1957b). There is a general theorem of Vorono1
(1907a) which helps to characterise the extreme lattices of an »-dimensional sphere
(they are “perfect’” and “‘entactic’’). BARNES (1957a) has given an extremely
elegant proof of VoroNorI's characterisation. Unfortunately we cannot discuss
these points further here, so we refer the reader to the two papers by BarnNEs
where there are further references to the copious literature.

V.10. Applications to diophantine approximation'. The theory of
Diophantine approximation deals with the approximation of rational or
irrational numbers by rational numbers with special properties. The
geometry of numbers has many applications to Diophantine approxima-
tion. The author’s recent Cambridge Tract [CAsseELs (1957a)] deals
with Diophantine approximation and we do not intend to repeat what
was done there. We give however a theorem of DAVENPORT generalizing
work of FURTWANGLER which is an interesting application of MAHLER’S
compactness techniques.

First, we note an obvious consequence of MINKOWSKI'S linear forms
Theorem III of Chapter ITI. Let #,, ..., #, be real numbers and @ an
integer. By Theorem III of Chapter III there exist #4-1 integers
#g, ..., #,, not all 0, such that

|48 — ;| < Q7 (1=7<m), (1)

|| = Q; 2)

since #g®;—u; (1=j=n) together with %, form n-1 linear forms in
#g, ..., #, With determinant 1. Were %,=0, we should have |#;| < Q="

so ;=0 (1=j<n). Hence #,#0, and on replacing u,,..., %, by

1 Not used later in book.
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—#y, ..., —u, if need be, we may suppose that

0<u,< Q. (2)
Further, (1) may be written

1 ’
g O (1)

which shows that the w;/u, are good rational approximations to the #;,
all with the same denominator #,.

We may look at (1) and (2') from another point of view. On elimi-
nating Q0 we have

uo{lrrgl;f_lgx"]uoﬁi— u,»[}”<1. 3)
There are in fact infinitely many solutions u4>0, %,, ..., %, of (3). If
all of &, ..., &, are rational, this is trivial since then there exist integers

15>0, vy, ..., v, such that
v

= ; (<750,
and then we may put

U =1v; (07 m),

where 7 is any positive integer: and then the left-hand side of (3) is 0.
Otherwise we may suppose that ¥, is irrational. Suppose that R integral
solutions #{? (0<j<n, 1<7r<R) have already been found with «{"> 0.
Since ¢, is irrational, we may choose @ so large that

U8, — >0 (1S7SR).

For this value of @ the solution of (1) and (2') gives a solution of (3)
which is clearly not identical with any of the earlier ones.

V.10.2. For different purposes one may be interested in different
properties of the approximations #;/u, to the ;. For example, instead of

max |uyd; — u;|

1gjsn
we may wish to make

13;”(“019;' —u;)? (1) -
or

lggnluoﬁf“ | ()

small. Or again one may be interested in “‘asymmetric”’ inequalities,
of the type

—koug " Sug®; — w, S hyugtt (1S 7<n), 3)
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where k, and %, are positive numbers. All these different problems
may be brought into one general shape. Let @(x,, ..., x,) be a distance-
function of » variables. How small can!

g @™ (ug Py — uy, ..., 040, — u,)

be made for infinitely many sets of integers #,>>0 and %, ..., #,? We

write
D(®:9,...,0,) =liminfuy @ (uyd, — uy, ..., %0, —u,) (4)

ty, U4y, f‘.f’,::?ntegers
and
D(P) =8su[‘>9D(<15:z91,...,19,,); (5)
so that D(®) is the number we wish to estimate.
The non-negative function F(x,,...,x,) of n+1 real variables
defined by

O (x,,...,x,) if %20
Pz, ..., 1) = R @M m, - m) } (6)
— % D" (—x,...,—x,) I 2,0

1s a distance-function when @ is a distance function of # variables:
since it clearly has the three defining properties that it is non-negative,
continuous and satisfies

Fltx,,....,tx,) =tF(xg,..., %,)

when ¢>0. By definition, F is symmetric:

F(—xy,...,—x,) =F(x,, ..., %,). (7)
It satisfies the identity
F(t"xg, 8712y, ...,87 %) =F(x,, ..., %,) (8)

for any ¢>0, since
Dt xy, ...t x,) =121 D(xy, ..., x,).
As in § 4 of Chapter IV we write

. Frt1(A)
O(F) = SXP—d‘(T)—,

where the supremum is over all (# +1)-dimensional lattices, so that
8(F) ={A(#)},
where & is the (n + 1)-dimensional star-body
S F(xg, ..., %,) <1.
DAVENPORT’S result may now be put in the following shape.

1 By @" is meant the n-th power of @.
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THEOREM XV. Let @ and F be related as above. Then
D(®) = 6(F) (9)
always. If ®(x) =0 only for =0, then
D(®) =é(F). (10)

The first part of Theorem XV is due essentially to MAHLER and is
related to the theory of automorphic bodies which we shall study in
Chapter X. When D(®)=0, there is nothing to prove. Otherwise,
let ¢ be any positive number such that

c< D(P). (11)

Then, by the definition of D(®), there are real numbers 9, ..., 3, and
an integer U, such that

g D" (U — %y, ..., ued, —u,) =c, (12)
whenever «,, ..., u, are integers and
U2 Uy (13)
In particular, 4,,..., 9, are not all rational; and so there exists a
number x>0 such that
Y
lnél;glgx”|u00, | =Z%x>0 (14)
for all integers u,, ..., , with
0<uy s 0.
Clearly
x<3<1. (19)

Let M, be the # - 1-dimensional lattice of points
(%os o ovy %) = (tg, 4Dy — %y, ..., %y0, — 18,), (16)
where %, ..., %, run through all integers. Clearly

ad(M,) =1. (17)

The function
cln+1)
%X  1sjsn

E(x,,..., x,) =max|F(xy,..., %,),

is clearly an (n +1)-dimensional distance-function and

L(—2) =F(x) (19)
by (7). We show now that
FHM) 2e. (20)



Applications to diophantine approximation 169

Consider a point (16) of M;, where, by (19), we may suppose that #,=0.

If ;=0 but not all of #,, ..., «, are 0, then the second term of the

outer maximum in (18} is

cllin+1)
X

cl/(n+1)
o max |u]
h _]__n

> clint1) ,

by (15). If 0<u,<U,, then the second term of the outer maximum
in (18) is still =c/®+Y, by (14). If u, =T, the first term of the outer
maximum in (18) is =cY®+Y by (12). Hence in any case,

F, () = M=+

for all ¢ M, except 0. This completes the proof of (20).
For positive integers » =1, 2, ... write more generally

E(xy, ..., %,) =max|F(x,, ..., x,), cl/i":l) lr;llaxs'l|x,|} (21)
Then
F(x) < F(a) < E (=) (21')
and
lim F(x) = F(x) (22)

uniformly in any bounded set of points ®. We have the identity

E(xg,...,%,) =FE (" xq,71%,...,771%,), (23)

by (8).

Let M, be the lattice
M0 (r"x,7%,...,7%,), xecM,.

Clearly

aM,) =d(M,) =1 (24)
and

EHM,) = FrH (M) = ¢, (25)

by (17), (20) and (23). Consequently, by (21’), we have the weaker
assertion
FHM)ze>0 (1sr<o). (26)

By (24), (26) and Theorem IV Corollary, there exists a convergent
subsequence of the M,, say
M, - N.
By (24) we have
d(N) =1. (27)

Since (22) holds uniformly in any bounded set, we have

F*H1(N) 2 limsup F?*(M,) = c, (28)
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by (25) and Theorem II. Hence

n+1 n+1
FRUN) o PN

F) = =
OF) =sup—i— =gy =

Since ¢ was any positive number smaller than D(®), this proves
8(F)=D(®), the first part of Theorem XV.

The second part of Theorem XV requires quite different techniques
and uses the basis constructed in Theorem II of Chapter I. By the
Corollary to Theorem VI, there is a lattice A with

d(N) =1 (29)

and
FHH(A) = 8(F). (30)
We denote the (# 4 1)-dimensional vector (x,, ..., %,) in which x; =1

but the remaining co-ordinates are 0 by

7 n—j
ei=(0,...,0,1,0,...,0) o=7=n).

By Theorem II of Chapter I, with e =% and # +1 for #, there exists,

for all sufficiently large numbers N, a basis a,, @,, ..., @, of A such that
la,— Ne| <N} (1<7< ). (31)

Then
@=N3 e, (1=]=n), (32)

0si<n

where

|4, —1|SN"H (1=i= %) (33)
and

|t SNV (1S7=n, 0<i<n, i), (34)
Since @y, @,, ..., @, are linearly independent, there are real numbers

A¢» Ay, ..., A, such that
€=ty +4a+ - +Aa,
where we may suppose that
log 01
on taking —a, for @, if necessary. Since d(A)=1, we have now
Ao = Ay| det(ay, ..., a,)]

=|det(e,y, @y, ..., a,)|

=N"{1 +O(N}},
where the constant implied by the O depends only on #. We may

thus write
a0=[ueo—’,—‘l91¢ll+“'+ﬁnam (35)
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where 4,, ..., 9, are certain real numbers, and
p=2A'=N"{14+0(N"H}. (36)

Let ¢’ be any number such that

' < O(F).
We wish to show that
liminf u, @ (uy ¥, — 4y, ..., 480, — u,) > & (37)
for the &, ..., &, we have just constructed; provided that N is greater

than some N, which may depend on &’ and the function @. After the
first part of Theorem XV, this will complete the proof of the theorem.
If 8(F) =0 there is nothing to prove. Otherwise we may suppose without
loss of generality that

0< &' < 8(F). - (37)
To prove (37) we may clearly confine attention to integers u,, ..., u,,
if any, for which
>0, P (¥, ..., 9,) S 6(F), (38)
where we have put
;= ¥ — I=7=n). (39)

So far we have not used the fact that @(x) =0 only for & =o0.
By Lemma 2 of Chapter IV, this implies that

P(x) = c|x| = cmax{|xl|, . lxn]}
or some ¢>0. Hence, by (38), we have
A ”< -—n
“052?;‘,,'3’7' < c"O(F). (40)
We now consider the point
Y= UgQy — Uy Oy — ++- — U, 4,

of A. By (35) and (39) this is of the shape
Y =pue,+ 2 y;0;
15isn

and so, by (32), has co-ordinates (Y, ..., Y,), where

Yo=pu,+N 2 yiti, (41)
157
Y, = N 2yt (1si=n). (42)

1<jsn
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Let £ be an arbitrarily small positive number to be determined later.
By (33), (34) and Lemma 3, the inequality

(D(’Ztilyjr” Z n}’;) (14 POy, ¥

holds for all real numbers ¥, ..., y, whatsoever, provided that N is
greater than a number depending only on the number ¢ and the func-
tion @. Hence, by (42),

BY,, . V) S+ N, ..,y (43)
By (40) and (41), we have
0<Y,Su(1 4 ¢y, (all uy= Up) (44)

for some U, which will depend, of course, on N. But now Y¢A and
F**Y(A) =4(F), by hypothesis. Hence

MF) =Y, P (Y, ..., Y,), (45)
by the definition (6) of F. From (36), (37'), (43) and (44), we have
P (¥, Y Z(N") (1 +6) "7 10(F) >0 (all 4,2 U),

provided that first ¢ is chosen small enough, then N is chosen large
enough, and finally U, is chosen large enough. This concludes the proof
of (37), and so of the theorem.

V.10.3. The condition that @(x) =0 only for =0 is necessary for
the second part of Theorem XV. The case when #» =2 and

P2 (xy, xy) = |x1 %y

represents a fascinating problem of LiTTLEwoop. It is not in fact
known whether there exist numbers &, and ¥, such that

lim inf uy | ug®) — 2w, | | 4y Py — uy| >0,
YUy—> 0O

where u,, u,, u, are integers. The corresponding function F(xg, %, x,)
is given by
F3(%g, 2y, %) = |29 %1 25|

and for this we have DAVENPORT'S result that
8(F) =17,

which we shall prove in Chapter X. But it follows from work of CASSELS
and SWINNERTON-DYER (1955a) and from DAVENPORT's results about
the successive minima of F, that at least

D(®)<1/9-1.
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There is a companion result to Theorem XV, also due to DAVENPORT,
which relates to the approximation of a single linear form to 0. Here
one is concerned with

D(@:9y,...,9,) = liminf |uy+ 4O + - +u,8,| P (4, ..., u,),
max {#,], ..., 1yl =00

Up+ 1)+ o+ 1y 0y =0
Uy, ..., tiy integers

where the condition g+ 4,8+ 4+%,%,=0 may clearly be omitted
if @ is symmetric. Then Theorem XV remains valid if D(®) is replaced

by D/(®) = sup D'(®:9,,...,8.):

and the proof is substantially similar.

V.10.4. Note that we have not shown the existence in the second
part of Theorem XV of 9,, ..., 9, such that

lim inf ug " (uy ) — uy, ..., 40, — u,) = 6(F):

Uy—> 00
and indeed in general such &, ..., ¢, do not exist. When » =1, however,
a 1, does exist, as is easy to show. Here, of course, the only possibility
for the distance function @(x,) of one variable is

¢(x1)={ kx, if %20

—ix if =<0,
where % and [ are positive constants. As in the proof of the second
part of Theorem XV, we consider a lattice A with
aiN) =1, F2A) =4(F).
Let
a=(ap,a), b=/ b)
be a basis for A, where without loss of generality

h>0 aghy—aby=d(N) =1. (1)
Put
P =8 =ab,. ()

After Theorem XV it is enough to show that
lim inf u, P(ug? + u,) = 6(F).

As in the proof of Theorem XV, it is enough to consider value of %,
and ,, such that

wo| o + u,| < 26 (F), (3)
where ¢ is a constant such that ®(x)=c|x,| for all x,.

1 For example when #n=2 and @%(x, »,) = 47+ #3, as one may show by
““isolation’’ techniques. Cf. Chapter X.
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We consider now the point
Y=ua +u b= (ua,+uby, uga, +u b)) = (¥, 1))
of A. By (1) and (2), we have
D(Yy) = by Plug? + uy). (4)
But now, by (3), we have
lim o = lim (a,, + b, ﬂ) = a,— by® = bi’", (s)
%o

Uy —> 00 ¥y
by (1) and (2). But
Yo P(Y) 2 6(F);
and so
liminf uy D(uy® + u,) = 8 (F)
by (4) and (5).
In particular, Theorem IV of Chapter II shows that

lim inf uy | g ® + ;| < 574
1t,—> 00

for all #: and there exist numbers & for which the sign of equality is
required. Indeed the “successive minima’’ of Theorem IV of Chapter II
correspond to a sequence of successive minima here. The original proofs
of this used continued fractions, but there is a proof due to C. A. RoGERs
which uses the isolation techniques which will be discussed in Chapter X
and which is given in the author’s Tract (CAssELs 1957a).

V.10.5. The proof of Theorem XV gives a simple case when in-
equality necessarily occurs in Theorem II, that is, when we have a
convergent sequence of lattices,

M, > M’
and a distance function F such that
F(M’) > limsup F(M,).
77— 00
Let F be the distance-function and M, the lattices occurring in the first

half of the proof. Then
FM) =0

for all », since M, has points with x;=0. On the other hand, we con-
structed a convergent subsequence M, of the M, such that

M, —N,
where
FHYNZD(D:Dy,...,50,).

The right-hand side here may well be strictly positive, as § 10.4 shows.
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Chapter VI

The theorem of MiNnkowskI-HLAWKA

VI.1. Introduction. Hitherto we have been primarily concerned to
estimate the lattice constant 4(%) of a set ¥ from below, that is to
find numbers 4, such that every lattice A with d(A) << 4, certainly has
points other than o in . In this chapter we are concerned with estimates
for 4(&) from above; that is we wish to find numbers 4, such that
there are certainly lattices A with d(A) = 4, which have no points other
than the origin in &, i.e. are &-admissible.

Hrawka (1944a) showed that if &% is any bounded n-dimensional
set with a volume (content) V in the sense of JorDAN! and if 4,>V,
then there is a lattice A with 4(A) =4, which is admissible for . He
showed, further, that if % is a bounded symmetric star-body, then it
1s enough that

A,> V2L (), (1)
where

{(m) =1 +27"+37 "+ ()

thereby confirming a conjecture of MiNkowskI. These results were put
in a wider setting by SIEGEL (1945a). Denote by Ny (A} =N(A) the
number of points of A other than o in a set &; and by Py (A) = P(A)
the number of primitive? points of A in &. SIEGEL?® gave a very natural
way to define averages over the set of all lattices A with a fixed deter-
minant d(A) =4,. If p(A) is any function of a lattice A, let us denote
this average by

My (N} (3)
SIEGEL showed that
M Ny (N} = V() 4,, (4
and
9/3\?{Py(/\)} =V(#)(n) 4y, (5)

where % is any bounded set, not necessarily a star-body and not
necessarily convex, which possesses a volume V(%) in JORDAN’S sense.

1 This is rather more restrictive than the sense of LEBESGUE, but if the volume
is defined in the sense of JorDAN it is also defined in that of LEBESGUE and equal
to it. Let y(x) be the characteristic function of &, that is y(®) =1 if ®€S and
% (®) = 0 otherwise. Then & has a volume in the sense of JoRDAN if y (&) is integrable
in the sense of RIEMANN, and the volume is equal to the integral of y (z) over all
space.

2 That is points a€A which are not of the form @ ="%b, where bEA and
k >>1 is an integer.

3 For a particularly simple exposition of SIEGEL's averaging process, see
MaceeaTH and ROGERS (1958a).
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Hrawka's theorems follow at once from (4) and (5). If 4, >V(%¥), then,
from the definition of the average, there must certainly by (4) be at
least one lattice, say M, such that Ny(M)é%(Ny(A))<1. Since

Ng (M) is an integer, we must have N,(M) =0, so M is $-admissible.
Similarly, if & is a symmetric star-body and 4,> V{(%)[2{(n), then
there must be some lattice N for which P,(N)<2. Since & is sym-
metric, points of N, other than the origin, occur in pairs, -:-a, so
P,(N) =0. Hence & contains no primitive points of N and, being a
star-body, can contain no points of N at all other than o.

The constant {(n) occurs in (5), roughly speaking, because the
probability that a point of a lattice A chosen at random should be
primitive is {{ (#)} . More precisely, the ratio of the number of primitive
points of A to the total number of points of A in a large sphere |x| <R
tends to {{(n)}? as R— oo.

When & is convex, improvements of the Minkowski-Hlawka theo-
rem were obtained fairly soon after the original proof [see e.g. MAHLER
(1947b), DAVENPORT and ROGERS (1947a) and LEKKERKERKER (1957a)].
However, even so, the smallest value of

0 =4 (6

is not known even for 2-dimensional symmetric convex sets: though
the same conjecture was made independently by REINHARDT (1934a)
and MAHLER (1947¢) that it is attained when & is a certain “smoothed
octagon”, that is an octagon in which the corners are replaced by certain
hyperbolic arcs.

Mrs. OLLERENSHAW (1953 a) has given an example of a 2-dimensional
non-convex symmetric star-body % for which Q (%) is smaller than for
the REINHARDT-MAHLER convex octagon and constructed from it a set
which is not a star-body for which

0=13173....

It is not known whether this is the smallest possible value for a 2-dimen-
sional set.

For a long time no improvement was obtained on the Minkowski-
Hlawka theorem for general sets or for star-bodies. However, almost
simultaneously, improvements were made by RoGERs (1955a, 1955b and
1956a) and ScHMIDT (1956a and 1956b). RoGERs’s work depends on
elaborate estimates of the average

R (N (V)] 0
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for positive integers k2, where we have used the same notation as in (4).
In a later paper ROGERS (1958a), using ideas of ScHMIDT combined
with his own, shows that there is an absolute constant C such that

0() = ZES;; =2 nlog - —2logn—C @)
for all symmetric sets!, provided that the dimension # is greater than
some absolute constant #,. We shall not discuss RoGERs’s work further
but refer the reader to the original memoires. SCHMIDT, on the other
hand, uses an elegant device which is more effective than ROGERS’s
method for small dimensions but much less effective when the dimension
is large. We shall discuss it more in detail in § 4.

The work just described can be generalized in several directions.
In the first place, instead of operating with the number Ny (A) defined
above, one may consider more generally

2 i), (9)

ach
*o0

where f(z) is some function defined at all points of space and which
may be subjected to certain conditions (e.g. that it be non-negative or
Riemann-integrable). If f(x) is the characteristic function of %, then
the sum (9) is just Ny (A). Again, one may confine the sum in (9) to
primitive points of A, when there is an analogue of P,(A). In fact
most of the work so far described has dealt with generalisations of this
kind. Again, it was shown by MACBEATH and ROGERS (1955a) that the
Minkowski-Hlawka theorem extends to more general sets of points than
lattices. It is enough for A to be any set of points such that the ratio
of the number of points of the set A in the sphere |&| <R to the volume
of the sphere should tend to a finite non-zero limit d as R— oc. Indeed
(4) continues to hold with a modified definition of the mean I and with
Ay=4a7

Finally, we observe that MAHLER’S Theorem V Corollary of Chap-
ter IIT often permits the results of this chapter to be extended to un-
bounded sets & on taking %, to be the set of points of % in the sphere
|| <7.

VI.1.2. In this book we shall not consider any of these generaliza-
tions in detail. In §3 we shall prove the Minkowski-Hlawka Theorem
in its original formulation, that is, the existence of a lattice A admissible
for a symmetric star-body & with finite volume V(%) and with deter-
minant arbitrarily near to V(&). We shall use an averaging argument,
but the type of average will be chosen to facilitate the proof, not for

1 Professor ROGERs tells me that Dr. ScHMIDT has obtained an improvement
of (8) which is in course of publication in Acia Mathematica.

Cassels, Geometry of Numbers 12
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any deeper reason’. Then in § 4 we shall give an improvement of the
Minkowski-Hlawka theorem using ScHMIDT'S ideas but not carrying
the detail quite so far as he does.

The arguments of §§ 3, 4 depend on a thorough investigation of the
properties of sublattices of prime index in a lattice and this is carried
out in § 2. These investigations further enable one to prove the result
conjectured by ROGERs that if & is a symmetric star-body and
md (N) < 4(S) for some integer m and some lattice A, then ¥ contains
at least m pairs of points + @€/ other than 0. This we do in §5.

In § 6 we give an entirely different generalization of the Minkowski-
Hlawka Theorem which applies only in 2 dimensions. We show namely
that certain sets % of infinite volume (= area) are of finite type, that
is, possess admissible lattices. The proof depends on a generalization
of a theorem of MARSHALL HALL (1947a) due to the author (CasseLs
1956a).

We do not use the contents of this chapter later in the book.

VI.2, Sublattices of prime index. An important tool in the work
of both RoGERs and ScHMIDT is the existence of sublattices of a given
lattice with certain special properties. We shall use the definition and
properties of an index introduced in Chapter L.

LEMMA 1. Let p be a prime number and N\ an n-dimensional lattice.
Let ay, ..., ap be any points of N\ which are not of the shape pa, ac N\

and let ky, ..., kg be real numbers. Then there is a lattice M of index p
in N\ such that
pn-l — 1
Z k= e Z k,. (1)
a,eM 1<r<R

Let by, ..., b, be a basis for A. Let ¢, ..., ¢, be integers and
0<c<p (1Sj=n), ()
(€1, -es ) F(0,...,0). (3)

Let M(,...,¢c,) be the lattice of points % b,+---4u,b,, where
%, ..., 4, are integers, such that

uycyF s u,c, =0 (p)

Clearly M(c,, ..., ¢,) is of index p. There are p" —1 such lattices and
we now show that a point @, belongs to precisely "' —1 of them.

1 Other averaging processes have been used. For a particularly brief proof of
Theorem II using one of them, see CASSELS (1953a). It has been shown by RoGERs
(1955a) that many of the averaging processes that can be used to prove the
Minkowski-Hlawka Theorem are essentially equivalent to SIEGEL’S.
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We have
a, = vrlbl + -+ vrnbnx

where v,,...,7,, are integers not all divisible by $, by hypothesis.
Without loss of generality, »,; is not divisible by p. The congruence

Vi€t +4,0,=0 (p) (4)
then determines ¢, uniquely if ¢,, ..., c, are given subject to (2). In
particular, (4) gives ¢,=0 if already ¢,=--- =", =0; contrary to (3).

But ¢, ..., c, may be given any other of the p:"'—1 possible sets of
values stihject to (2). Hence the average of th: left-hand side of (1)
over all lattices M =M(c,, ..., c,) is given by the right-hand side, and
so (1) must be true for at least one of them.

We have at once the

COROLLARY 1. Let p be a prime number and let a,, ..., a, be p points
of A none of which is of the shape pb, be N. Then th ie is a lattice M
of index p in N which contains mone of a,, ..., a,.

For we may put k£, =1 for 1<r=<¢. For the lattice M of the theorem
we have

PR =S ﬁ" 1_1 p<1.

a,cM

The number p of points in the corollary cannot be replaced by ¢ + 1.
It is easy to see that if a,, @, are any two points of A, then at least
one of the p 41 points

@, G+ra;  (0=r=p—1)

is in each sublattice of index 4.

More generally we have the following corollary, due to ScHMIDT in
essence.

COROLLARY 2. Swuppose that the number R of points a, satisfies
pmtl g

p—1
for some integer m. Then there is a lattice M of index p in N\ such that

Sk 1_‘1’ Sk, (5)

a, €M 15r<R

R <

(i.e. n in (1) may be replaced by m).
If the dimension # of the space is < the result follows at once since

Pm—l_, - pn—1_1
T

if m>=n.

12%
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When %> m we use induction on the dimension ». We say that two
vectors @ and @’ of A, neither of the shape b, b¢ A, are proportional
mod p if there is an integer # and a vector ¢ of A such that

a=ua +pec. (6)

Clearly « is prime to $. The relationship is a symmetric one between
a and @', since there is an integer v such that v =1(p); and then

va=a +pc

or some ¢’ ¢A. Further, if a proportional both to @’ and a@”, then a’
s proportional to a”. We thus have a subdivision into classes or “rays”.
The number of rays is clearly

pr—1

p—1
Since we are now supposing that #>m, at least one of these rays
must contain no members of the set @, (1=7<R). If ¢ is in this ray,
it is of the shape € =wb where b is primitive and w is an integer prime
to . Hence the primitive point b is in the ray, and we may suppose
that b=>,, where b;, ..., b, is a basis for A. Then every point a, is
of the shape

ar=vr1b1+"' +vrnbn:

where by the construction of b,, at least one of v,,, ..., v,, is not divisible
by . Hence if we make @, correspond to the vector

a, = (v,5,...,7,,)

in the (» — 1)-dimensional lattice A, of points with integer coordinates,
then @, is not of the shape pb, beA,. Since we are assuming that the
corollary has already been proved for smaller values of #, there exist
integers ¢,, ..., ¢, such that

<ttt >k,

y = pm__ {
CytUpgtot Cntepnm0 (P) 1s7SR

The lattice M of points
ulb1+ +unbn
with
c2u2+ et U, =0 (p)
then does what is required.
VI.2.2. A refinement of the argument gives a rather more special
result than Lemma 1 in which now the %, must be non-negative.

LEMMA 2. Let p be a prime-number and N\ an n-dimensional lattice.
Let ay, ..., ag be any R+1 points of N\ which are not of the shape pb,
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be and let ky, ..., kg be non-negative real numbers. Then there is a
lattice M of index p in N such that

a,¢M
and

LkSpt 2k, (1)

a,cM 15r<R
We may choose a basis by, ..., b, for A such that
a,=1v,b,
where v, is some integer, which is not divisible by $ by hypothesis.
For integers ¢; (2<j<n) with
0=Sg<p (257=n), ()
denote by N{c,, ..., c,) the lattice of points
ulbl+"' +unbn:
where the integers #,, ..., u, satisfy
Uyt Gty + oo %, =0 (p). (3)
Clearly a¢N{(c,, ..., ¢,).
For 1<r<R, let
a,=1v,b+--+ vrnbn'
By hypothesis, not all of the integers v,,, ..., v,, are divisible by 2.
If all of v,,, ..., v,, are divisible by $, then v,, is not divisible by #:

and so @, does not belong to any N(c,, ..., ¢,). If, say, v,, is not divisible
by #, the condition

v11+‘:2v12+"' —*—C,J),,,E 0 (p)

is satisfied for precisely one value of ¢, if c, ..., c, are fixed; that is
@, belongs to precisely p*~2 of the p"~! lattices N(c,, ..., c,). Hence
if M runs through all the $"? lattices N(c,, ..., ¢,) the average value
of the left-hand side of (1) is

P2k,

where 2’ denotes that the » for which v,,, ..., v,, are all divisible by p
must be omitted. Since k2,20 for all , by hypothesis, this shows that
at least one of the lattices M=N(c,, ..., c,) satisfies (1).

VI.3. The Minkowski-Hlawka Theorem. Following ROGERS (1942b
and 1951b) we now prove the following theorem of HLAWKA.

THEOREM 1. Let f(x) be a Riemann-integrable function of the variables
T =(%,..., %,) which vanishes outside a bounded set. Let A,>0 and £>0
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be given. Then there is a lattice M of determinant A, such that

4, EZMf(a)<ff(ﬂv) dx + ¢, (1)
where e
dx=dx,...dx,.

We may suppose that f(x) vanishes outside the cube
max[xilgs (<7< n). (2)
7
Let p be a prime number and let >0 be determined by the equation

pn"=4,. 3)
We may choose p so large that

pn>S. )
Let A be the lattice of points

N(ty, ..., %), (5)

where %,, ..., 4, are integers, so
d(N) =" (6)

Now .
n" ZA/(G) <[@)dx +}¢ (7)
ac

afo

if  is small enough, by the definition of Riemann integration; and
so (7) is true when p is large enough, by (3).

A point @ of A other than o for which f(a)==0 lies in (2); and
so cannot be of the shape pb, bec A by (4). Hence we may apply
Lemma 1 where @,, ..., @z are all the points @ of A other than o at
which f(a)+0 and

k,=f(a,)
Then M has determinant
dM) =pd(N) =pn"=4,, @)
and
Tias Z220 S fa). ©)
=

Finally, (1) follows from (3), (7) and (9}, when p is chosen large enough.
As in §1 we have the
COROLLARY. Let & be a set with Jordan-volume V() and let

A, >V(F). Then there is a lattice M with d(M) = A, which is admissible
Jor &.
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For let f(x) be the characteristic function of #, and choose ¢ so
that 4,> V(%) +e¢. The number of points of M other than o in & is
then

2 fa) <ATH{V(#) + e <1,

acM
afo

by (1). Since the number is an integer, it must be 0.

VI.3.2. The result corresponding to Theorem I in which only primi-
tive points are surmmed over is:

THEOREM 11, Let f (), 4, and ¢ be as in the enunciation of Theorem 1.
Then there exists a lattice M of determinant d (M) = A, such that

£n) 4, eZ:Il‘(ﬂl)<ff(a«‘)dav +e,

where the star (*) indicates that only primitive points are to be summed
over.

We only indicate briefly the modification required to the proof of
Theorem I. In any case Theorem II is embraced in the generalization
of Theorem I to point sets A other than lattices due to MACBEATH and
ROGERs (19554a), which was discussed in § 1. The exposition still follows
ROGERS {1947b and 1951Db).

In the first place, it is trivial that a point of M in the cube (2) of
§ 3.1 is a primitive point of M if and only if it is primitive as a point
of A. Hence it is enough to show that

Jim® /(@) = £} [ (@) d. (1)
Now
2 Ha)=2 2*f(ra).
ach r=1ach

atxo

Hence by MoBIUS’ inversion formula [e.g. HARDY and WRIGHT (1938a)
Chapter XVI], we have

2*fa)=2ulr) Zfra).
ach 14 ach

a+o

0 () = 3 L)

ach

Hence
a{rn),

where, for any £>0, we have put

olf) =& 2 /(fu).

wu integral
u+o
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But now ¢ (&) is bounded for all £, and
limo(§) = /(@) dz.
The result now follows on letting p— o0, so -0, since

B (v
T A=)
Asin § 1 we have the
CoROLLARY (The ““Minkowski-Hlawka Theorem”). Let & be a bounded
symmetric star-body with volume V() and let 2L (n) 4,> V(). Then

there is a lattice M with d(M) = A, which is admissible for &.

V1.4, SCHMIDT's theorems. We are now in a position to illustrate
ScHMIDT’s method of improving the corollaries to the last two theorems.
We first give a simple example

LEMMA 3. Let & be a symmelric star-body in n-dimensions with
Jordan-volume V() and let A, be any number such that

3¢ (n) 4,> (1 + 21" V().

Then there ts a F-admisstble lattice M of determinant A, .

Let g(x) be the characteristic function of &, and let
f(@) =g (x) +2¢(2%),

so that
3 if xeid
fl@®) =31 if ze¥, ®¢3S
0 otherwise
and

[f@)de = (1 + 217" V().
Choose & so small that
3C(n) 4,> (1 + 2V {V(&) + ).

By Theorem II with 4,/2 for 4, and this ¢, there is a lattice A with
determinant

N =34,
2 fe)<6.

acA, primitive

such that

Since f(—x) =/ (x), by the symmetry of &, there is thus no primitive
point of A for which f(a) =3, and so no point of A at all in § & except o.
Further, there are at most two pairs of primitive points say 4 a,, 4-a,
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of Ain . By Lemma 1 Corollary 1, there is a lattice M of index 2
which contains neither a, nor a,. Since a,, a, are not in 1., the points
2a,, 2a, of M are not in . Hence M is &-admissible. Since

d(M) =2d(N\) = 4,,
the lattice M does what is required.

VI1.4.2. When #=2, the result of Lemma 3} is no stronger than
Theorem II Corollary.

By further elaboration, SCHMIDT (1956a) improved Lemma 3 some-
what but for values of » at all large Lemma 3 is weaker than the follow-
ing Theorem III which applies to all Jordan-measurable bounded sets
not merely symmetric star-bodies. To obtain results about symmetric
sets, Theorem III should not be applied to & directly but, say, to the
“half-set” &}, of points

xc?, x=0.
Then
V(S =1V,

and a lattice M is &}-admissible if and only if it is #-admissible. There
is thus an additional factor 2 for symmetric sets.

THEOREM III. Let & be any bounded n-dimensional Jordan-measurable
set of volume V(&) and let A, be any number such that

(t+2' (1 +37) V(&) <24, (1)
Then there is a lattice M of determinant A, having no points, except pos-
sibly 0, in &.
Let g(a) be the characteristic function of S§ and put

- /@) =g(®) +2g(2x) +3g(3x) + 6g(6). (2)
en
Ji@yde=(1+2-2""+3-3""4+6-6"") [g(®)dx

={+217) (1 +317) V(F).

By Theorem I there is thus a lattice A of determinant

a(A) = 4,/6, (3)
such that
%:A/ (@) <12. (4)

We shall construct a lattice M of index 6 in A with the required properties.

We classify the points @ of A in &, other than o, into four types
T, %,, T, and I
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(1) @ is in &, if it is not of either the shape a=2b or a =3 b with
beA.

(i) @ 1s in ¥, if it is of the shape @ =2b but not of the shape a =3 b,
with beA.

(iii) @ is in Z5 if it is of the shape @ =3 b but not of the shape a =2b,
beA.

(iv) @ is in &g if it is of the shape @ =6b, beA.

Let N, N;, N;, N; be the numbers of lattice points in the correspond-
ing classes. Then by (2) and (4) we have

Ny 43N, + 4N; + 12N, <12, (5)
since, for example, the coutribution to (4) of @€ is

1+2+3+6=12.
In particular, by (5),
Ny=o0.

Suppose, first, that N;>0. We apply Lemma 2 with p =2, taking

a, to be one of the N, points in ¥; and a,, ..., a; to be the remaining

points in ¥, (if any) together with any points in ¥,. The numbers £,

of the lemma are taken as 1 if @,¢‘¥, and 4 if @,¢¥,. Then, by Lemma 2,

there is a lattice I of index 2 which contains N/, Ny points of ¥, T,
respectively, where

M+ 4N, < 3(N, 4 4N; — 4) (6)

(the — 4 being the contribution of @, which is definitely lost). All the
points of ¥, are, of course, in I'. By (5) and (6) we have

2N +3N, + 8N, +4=11,

Hence Ny =0 and N, +N,< %, so N+ N,<3. But now by Lemma 1,
Corollary 1 there is a sublattice M of I' of index 3 which contains
none of these N+ N, points. Then M does what is required.

We may thus suppose now that
N, =0.

We now apply Lemma 1, Corollary 2 with $ =3 to the points @, with
k,=1if a,€¥T, and k=1 if @,€F,. Since there are at most

1< (3*—1)/3 —1)

points @,, we may take m =2, so, in the notation of the corollary,

pm-1—1 1

pm—1 4
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Hence there is a sublattice " of index 3 which contains Ny, N; points
of ¥,, T, respectively, where

N 43N = o (N3N =<3

1
vy
Hence N; =0 and N<2. By Lemma 1, Corollary 1, there is a sub-
lattice M of " of index 2 which contains none of these N, points. This
lattice M does what is required.

Thus in every case we have constructed a lattice M of index 6 in A
which is admissible for #. Since

d(M) =6d(A) = 4,,

the lattice M has all the required properties.

As ScumipT remarks, Theorem III can be improved somewhat at
the expense of further elaboration; but for large # is weaker than
RoGERS’ results which we referred to in § 1 and which we cannot prove
here. In particular the factor (1+2'~")(1+3"'"") on the left of (1) may
be replaced by something smaller if . is a star-body, since then a point
in r1.% is automatically in (1.7 if 1 <7,

VI.5. A conjecture of Rogers. We digress now from the general
theme of the chapter to prove a result which was conjectured by ROGERs
(1951a), who compares it with the generalization of Theorem II of
Chapter III from m =1 to m>1. It was proved by RoGERs when the
number m occurring in it is a prime and by ScHMIDT (1955a) for all
except a finite number! of m. It has been proved generally in a rather
wider context by the author (Cassers 1958a). We do not use it later.

THEOREM IV. Let & by a symmetric star-body and let N\ be a lattice
with
md(N\) < A(F), (1)

where m=>1 1s an integer. Then & contains at least m pairs 4-a of points
of A\ other than o.

Theorem IV is an immediate consequence of the following theorem
in which the reference to star-bodies disappears.

THEOREM V. Let @y, ..., ag be primitive points of a lattice N\ and let
j,  (USr<R) @

be positive integers. Then there is a lattice of index at most
ht-+ir+1=J]+1 (say) )

! For all m=< 10 and all sufficiently large m, according to the review in Mathe-
matical Reviews!
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which contains none of the points
+ie, (1Si,5j, 1S7<R). 4)

We show first that Theorem V implies Theorem IV. Suppose that
A in Theorem IV contains fewer than m pairs of points of &. Since &
is a star-body, the points of A in & can be put in the shape (4), where
the number of pairs is

J<m.

Hence by Theorem V there is a lattice M of index < in A which con-
tains none of these points, i.e. M is % -admissible. Since

AM < md(\) < AlS),

by (1), this is a contradiction to the definition of A4(%).

The proof of Theorem V depends on the following lemma, which
gives the existence of primes with certain properties. It is due to
SYLVESTER (1892a) and was rediscovered by ScHUR (1929a) who
gave a rather simpler proof. The proof is in any case rather involved,
so we do not give it here but refer the reader to the original papers.

LeMMA 4 (SYLVESTER). Let X, Y be integers and
1ISXLY.
Then there is a prime number p>X which divides one of the numbers
Y +1,...,. Y+ X.

We now prove Theorem V. Suppose first that R=1. Since @, is
primitive, it may be taken as part of a basis for A:

a=>b, b,...,b,
where # is the dimension. Clearly the lattice M of points
b+ +u,b,,
where #,, ..., 4, are integers and

=0 (J+1),
does all that is required.
‘We now consider the case when R>1 and use induction on J. Without
loss of generality

f1 = Max j,. (5)
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Let p be the prime given by SYLVESTER’S Lemma 4 with

X =min(jy,f,+ - +7g),

Y =max(jy,7,+ - +71g)-
Then
p>X=2j, (2=r=R). (6)

Since ¢ divides one of the numbers Y +1,..., Y4+ X, we have

<5

[71]+[72 - +ir <[ +7R], 7)

where for any real number x we denote by [x] in this proof the integer
such that [x]< x<[x] +1. By Lemma 2, there is a lattice [ of index p
which does not contain @, and such that

PL= 21,

a el 25rsSR

P L ®

a,el

that is

that is

By (6), if a point 7,a@, in (4) with »>1isin [, then @, is in [. Since
a, is not in [, the only points (4) with » =1 in [ are the

riffpa)  (1sias[3]). ©)

But now, by the hypothesis of the induction argument, there is a lattice
M of index at most

1+["]+Zr1,§1+[“]+[“ bt

in I which contains none of the points (4) at all. The index of M in A
is p times the index of M in I'; and so, by (7), is

< 7_1 72+ e+ jR < .
so{t+ 3] + [Pt er < v
This concludes the proof of Theorem V.

VI.6. Unbounded star-bodies. The results of §§3, 4 extend to un-
bounded star-bodies. For example we have

THEOREM VI. Let & be a bounded or unbounded symmetric star-body.
Then
A(&) S WPV, (1)
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When & is bounded this is just Theorem 1I, Corollary. When &
is unbounded it follows from Theorem 11, Corollary together with Theo-
rem V, Corollary of Chapter V.

In the same way any of the other estimates of §§ 3, 4 may be extended
to unbounded star-bodies &, or indeed, to any open sets of finite volume
of which the origin is an inner point.

V1.6.2. There certainly exist star-bodies & of finite type [i.e. with
4(F) < o] and infinite volume. A 2-dimensional example is

A | nx| <4 (1)

for which A(%,)=5% as we saw in Chapter II. More generally, in
n-dimensions the body
|2y %, <<t

is of finite type but infinite volume, since admissible lattices are given
by the norm-forms of totally real algebraic fields of degree n (see
Chapter X). In general, in more than 2 dimensions it is very difficult
to decide whether a given star-body is of finite type or not. Two 3-
dimensional examples are discussed in CASSELS and SWINNERTON-DYER
(19554}, for which a decision on this point would have interesting reper-
cussions. In 2 dimensions however there do exist general criteria which
we shall now discuss.

VI1.6.3. From now on we put!

n=2.

In an obvious sense, the body %, defined in (1) of § 6.2 has two pairs
of asymptotic arms, the asymptotes being the x, and x, axis. It is
possible to inscribe in &% arbitrarily narrow parallelograms with one
pair of sides parallel to an asymptote and area 1, for example

|%) <e, |4 <ed

In a sense % is a limiting case, since if it is possible to inscribe in a
star-body & parallelograms with centre the origin and arbitrarily large
volume (area), then & is of infinite type by MiNkowsKkI's convex body
Theorem I of Chapter 1II. Roughly speaking, any star-body with a
pair of arms wider than those of ¥ is of infinite type. We now show
that a 2-dimensional star-body may have any finite number of arms
like those of % and still remain of finite type.

1 It is customary to call 2-dimensional star-bodies ‘“‘star domains’’ but we do
not follow this usage. Similarly we may sometimes continue to speak of volume
where area is more usual.
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THEOREM VII. Let
folxy, %9) = (x5 + x3)
for some ¢>0, and let
1;(xq, x5) (1=7=))

be any finite number of indefinite quadratic forms. Suppose that the
distance-function F(x,, x,) satisfies

F2(x;, %) gog‘iig]l i, xz)l (2)
for all (x,, x,). Then the star-body
& F(x,, %) <1 (3)
1s of fimite type.

The exponent 2 in (2) is dictated by reasons of homogeneity.

We shall deduce Theorem VII from the following generalization of
a theorem of MARSHALL HALL (1947a) which is due to the author
(CasseLs 1956a).

THEOREM VIIIL. Let By, ..., Sk be any real numbers. Then there exists
a real number o such that

|l +B)ut ol > gty (USESK) (4)

for all integers u=0 and v.

We first deduce Theorem VII from Theorem VIII, and then prove
Theorem VIII in §6.4. After a suitable rotation of the co-ordinate
system, we may suppose without loss of generality that

(L0 +0  (=j=]);

and so
f;'(xl»xz) =1j(x1+19;'x2) (% + @;j %) u=s1s)) (5)
for real numbers 4;, 9;, ; such that
4i+0, GFg¢.
But now
|/j(x1: x2)| = ; min {|x2(xl + 9 xz)l , Ixz (% + @ x2)|}, (6)
where

ni =% 4|19 — ¢;] >0;
since if, for example

EA +19,x2| <+ ‘Pix2|»
then we have

[ — @) %) = [(m + 9 %0) — (3 + @ 2,)| < 2| % + @, %]
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We apply Theorem VIII where the f;, ..., fx are the #;, ¢, in some
order, so K =2]. Let a be the number given by Theorem VIII, so that

|u{(a+ﬁi)u+v}|gn>0} )
lu{le+g)u+o}l Zz9>0
or integers # =30, v, where
n={8(2] +1)3*.
Let A be the lattice of points
(%), %) = R{a% + v, 4), (8)

where #, v run through all integer values and R is a positive number
yet to be chosen. If #==0 we have, by (6) and (7)

|1 {R (o + v), Rulj = ; R*9. 9)
If however ¥ =0 but v=£0 then, by (5),
|/;(Rv, 0)| = | 4| R~ (10)
Similarly
folay, %) = e(xi +ad) = eR? (11)

for all (x,, %,)€A other than o, on distinguishing the two cases u=0
and ¥ =0, v==0in (8). We may choose R so large that the right-hand
sides of (9), (10) and (11) are all not less than 1. Then for all (x,, 1) cA
except o, we have, by (2),

F2 (5, %) 2 min | (2, 2] 2 1;

that is A is &-admissible. This concludes the proof of Theorem VII.

VI.6.4. We now prove Theorem VIII which was enunciated in
§ 6.3. Write
x = {2(K + )} (1)
We shall construct a sequence of open intervals J_,, f, J,, ... which
enjoy the following three properties:
(1) Fm4q 1S contained in S,,.
(ii),, F, is of length »~2m—2,
(iii),, the inequality
ulle+B)u+v|>3xt (ISE=SK) (2)

holds for all numbers « in #,, and for all integers v and # with

o<u= 6)
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If we can construct the £, we shall have proved Theorem VIII,
since there is a number « contained in all the intervals £, and then
(2) holds with this « for all integers »>0 and v.

We may take £ to be the interval 0<a <1, since there are no
integers u in (3) with m = —1. We thus assume that £, has already
been constructed and construct 4, ,,. By (ii),,, the open interval .,
is the set of « satisfyin

ying o <a<a 4)
for some numbers a' and a” for which
o — o =xEmE (5)

For each 2 (1=<k<K), there is at most one fraction v,/y4, in its lowest

terms such that v
(2 4p)es o<usa, ©)
k

since two fractions vfu with 0<u<x"*! differ by at least x~2"~2
By (iii),,, we have

> " 1<k K). (7)
Iet 4 be the set of « such that
o+ it Ca <o — FuTEm Y, (8)
and
”k‘(“ + 0wy + v, > et 9

for all £ in 1<A<K for which a v,/u, of the type (6) exists. Then ¥
consists of at most K 41 intervals. Their total length is

w — =TI Yyt
5

g n—zm-»z_ (K + 1)}‘——2'»-4

= (K 4+ 1)x~2m"4,
by (1), (5) and (7). We may therefore find in % an open interval %, ,
of length exactly »=2"~% Then J,,, satisfies (i),, and (ii),;;, by

construction. It remains only to verify (iii),, ;. We may clearly suppose
that # and v are coprime and that

H < U S (10)
by (i},, and (iii),,. If v/u =uv,/u, is a fraction of the type (6), then
ul(o+ By u +v| > =t (11)

for all we.f, 4, by (9). Otherwise — (%—{—ﬂk) is not in .%,, and so

1 _om—
>y 2m—4
2

% + (¢ + B4)

for all w€Sf,,,,, by (8); then (11) follows, by (10). Thus %, ,, has all
the required properties.

Cassels, Geometry of Numbers 13
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Chapter VII

The quotient space

VII.1. Introduction. Before resuming the general study of the geo-
metry of numbers, it is convenient to introduce here the concept of the
quotient space of an n-dimensional space by a lattice. This concept
plays an important réle in the discussion of inhomogeneous problems in
Chapter XI: but we shall also need it in Chapter VIII as it gives the
most natural interpretation of MINKOWSKI’S theorem about the succes-
sive minima of a convex body with respect to a lattice.

In §2 we give the definition and most important properties of a
quotient space. In §3 we prove a result which will be basic for one
topic in Chapter XI.

VII.2. General properties. Let A be a lattice in #-dimensional eu-
clidean space. Two points ¥, ¥, of the space are said to be congruent
modulo A, written

n=9 ), (1)
if the difference y;— ¥, is in A. This relationship is clearly symmetrical
iny, and y,. If

h=y, N, yw=y (N,

n=y, (N.
The points y may therefore be divided into classes y so that two points
y and y’ are congruent if and only if they are in the same class. A class y
consists of all the points y,+ @, where ¥y, is some fixed member of t)
and e runs through all points of A.

If

then

y=y (N, #F=z (N,
y+z=y+z (N).

Hence there is no ambiguity in defining the sum {3 of two classes
as the class to which y 42 belongs when y, 2 are any members of y, 3
respectively.

Similarly, if ¢ is an integer, the definition of £t as the class to which
ty belongs when ¥ is in § is unambiguous. On the other hand, if ¢ is
not an integer, it is not, in general, true that ty'={y when y'=y.
Hence ¢y for real numbers ¢ other than integers must be left undefined.

So far, of course, we have only followed the standard procedure for
finding the quotient group of an abelian group (namely the additive
group of all vectors) by a subgroup (namely the additive group of vectors
in A). We shall say that the classes t) are points of the quotient space
2|\, where # will denote the original #-dimensional euclidean space.

then clearly
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VII.2.2. Let F(x) be any distance function defined in # and put!
F(y) = inf F(y) (1)
yey
for ye(A. This is the function which will be important in inhomo-
geneous problems (Chapter XI). Note that

F(o) =0, 2)

where o is the class to which o belongs. For reference we enunciate the
principal properties of F(x}, re Z/A, in the following lemma.

Lemma 1. Let F(x) be a distance function and let F(x) be defined, as
above, for te RIN. Then

(1) F(tr) StE(x) for integers t = 0.

(1i) If F(x) is convex, then so is F(x), in the sense that

Flg+y)=F() + F(y)
for all ¢, v.
(i11) 1f F(x) =0 only for £ =0, then F(x) =0 only for y =0. Further,
Jor each YeR|N there is a ycy) such that F(y) =F(y).
(1) If F (x), K{x) are two distance function and F (x)=cF,(x) for
some number ¢ and all xeR, then F (x) <cF,(t) for all xe R
Here (iv) is an immediate consequence of the definition (1). By the

definition of a distance function, we have F(tx) =t¢F(x) for all real > 0.
Hence, if >0 is-an integer, we have

F(ty) =infF(y) < inf F(tx) = ¢tinf F(x) =t F(g).
yetx xeEg xEer

This establishes (i). The proof of (ii) is similar and may be left to the
reader.

It remains to prove (iii). Let ne %/A and let y,¢y, so that the general
element of vy is y,+a, acA. By Lemma 2 of Chapter IV, there is a
constant ¢>0 such that F(x)=c|®| for all ; and so

Flyo+a)zcly,+a| = c|laj — |y,l|.
In particular, if F(a+y,)<F(y,), we have

|} < |yo| + ¢ Fly,). (3)
There are only a finite number of acA in (3). Hence there exists an
a,< A\ such that F(y,+ a,) = Hg\ F(y,+a). By definition, F(y) =F(y,+ a,).
a
Further, F(y) =0 only if F(y,+a,) =0, that is y=n.

1 There should be no confusion with the usage of Chapter IV, since there the
arguments were lattices; and here they are classes with respect to a lattice.

13*
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VII.2.3. Let y, (1=<7< o) be a sequence of elements of Z/A. We
say that the sequence tends to by’ e Z/A if

lim |y, —y'| =0, (1)

r— 00

where, in conformity with the notation of §2.2, we have written

— inf ||
|t| = inf|x] (2)

LEMMA 2. A necessary and sufficient condition that vy,—v)' is that
there exist elements Y, €Y, and y'cy’ such that

Y-y (3)
Suppose, first, that the y,, ¥’ exist such that (3) holds. Then

o, —v|=|y.— ¥
so (1) holds, that is y,—p’.
Suppose, now, that (1) holds. By Lemma 1 (iv) there exist z,¢f,—t)’
such that
szl =|t)r_ t),l
Let ' be any element of )’ and put y,=y’ +#,. Then the y, clearly
have all the properties required.

VIL2.4. Let
b,....b, (1)

be any basis for A. Then every point & of space can be put uniquely
in the shape

w=‘£lb1+"'+§nbn (2)

for some real numbers &, ..., &,; and ®cA if and only if &, ..., &, are
integers. Hence to every vector @ there is a unique @€/ such that

y=w——a=771b1+"'+77»bn’ (3)
where

In other words, every rc¢ /A has precisely one representative yer in
the half-open parallelopiped & defined by (3) and (4). We say that
this parallelopiped is a fundamental parallelopiped for A. Different
bases b; in general give rise to different fundamental parallelopipeds.

An immediate consequence of Lemma 2 and the existence of a
fundamental parallelopiped is
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LemMA 3. The quotient space | is compact. That is, any sequence
y, (1=Sr<<oo) of elements of RN comtains a convergent subsequence.:

b, —> Y (5)

The fundamental parallelopiped £ is not compact, since although
it is bounded it is not closed. Let £ be its closure, that is the set of
points (3) with 0=, <1 (1<7<n). Let y, be the representative of y,
in #. By WEIERSTRASS'S compactness theorem (§ 1.3 of Chapter III),
there is a convergent subsequence

Y,~>Y,
where y'c¢?. Then (5) holds by Lemma 2, where y’cty’.

VII.2.5. We are now in a position to introduce a measure into the
quotient space #/A. Let S be any set of elements of Z/A. We call a
set & of elements of # a set of representatives for S if (i) for each
re$ there is precisely one x¢r which belongs to & and (ii) each x¢.%
belongs to an reS. We say that S is measurable if at least one set &
of representatives is measurable.

Let ¥ be the set of elements x€¢ % of the shape
x=y+u, yc&L, wued,

where & is any measurable set of representatives of S and & is a funda-
mental parallelopiped. By Theorem I Corollary of Chapter III, the set
&, is measurable, and

V() = V().

In particular, if &, &’ are any two measurable sets of representatives
of S, we have V(&) =V(%’). This common value will be denoted by

m($S)

and will be called the measure of S.

Clearly the measure of the whole of the quotient space is the volume
of the fundamental parallelopiped £, that is d (A).

Let v be any homogeneous mapping of n-dimensional space #Z onto
itself. In a natural way, it gives a mapping of #/A into #/xA, which
we may also denote by x. If m’ is the measure defined in Z/tA in the
way that m is defined in Z/A, then clearly

m’(xS) =|det (x)| m(S)
for any set S in #/A.
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VII.3. The sum theorem!. If C and D are two sets of points in
the quotient space #/A we denote by C+ D the set of all points

¢c+bd, where c¢eC, deD.

This section is devoted to proving

THEOREM 1. Let C and D be non-empty seis in R|N\ with measures
m(C) and m(D) respectively.

(1) If m(C) +m(D)>d(N), then C+D is the whole space Z|A.

(vi) It m{C) +m(D)<d(A), then m(C + D)= m(C) + m(D).

This theorem is due to MACBEATH (1953 a). It was discovered inde-
pendently by KNESER (1955a), who first recognized its importance for
the geometry of numbers. Theorem I is, in fact, now only part of a
much wider theory, for which see KNESER (1956a) and the literature
cited there. It falls into the same circle of ideas as the so-called “a + 8
hypothesis” about the densities of sequences of integers which was first
proved by MANN. As all this is rather aside from the main theme of
the book we do not discuss it further. It is convenient to prove Theo-

rem I here but the application to the geometry of numbers will not be
made until Chapter XI.

Part (i) of TheoremI is easy. Suppose that there is a point ¢ of
Z|N\ which does not belong to C-+D. Then none of the points

r—e¢, ceC (1)
can belong to D. We may denote the set (1) by t— C. Clearly
m{x — €) = m(C). ()
But D and ¢ — C have no points in common, so
m(z — €) + m(D) < m(@IA) = d(N). )
Then m(C) +m(D)<d(A), by (2) and (3). This proves (i).

In what follows we denote, as is conventional, by C~D and CuD
the sets of points which belong to both C and D and to either C or D
(or both) respectively. We note for further reference the identity

m(CAD) + m(Cub) = m(C) + m(D); @

which becomes clear on noting that points of C~ D occur in two sets
on each side of (4), but points of € D other than those of C~D occur

1 The results of § 3 will not be needed until Chapter XI.
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in precisely one set on each side. Further, we show that
C+D>(CAD)+(Cub) (5)
(> means “contains”). For let
aeCnD, beCuD.

Suppose b belongs to C: then we may regard a as belonging to D since
it belongs to both C and D. Hence a +b =0 +acC+D. Similarly, if b
belongs to D we regard a as belonging to C.

It follows from (4) and (5) that, if the conclusions of Theorem I are
true when C~D, CuD are read for C, D respectively, then the con-
clusions are also true for C and D themselves. This is one of the principal
ingredients of the proof. The other is provided by

LEMMA 4. There s some rc RN\ such that
d(N) m{(C +1)~D} = m(C) m(D).

Before proving Lemma 4 we complete the proof of Theorem I with
its use. Let C, D be two sets with

m(C) =yd(A), m(D)=38d(N)
and
y+0=1.

If y =0, the conclusions of the theorem certainly hold, since C is non-
empty, by hypothesis, and if ¢€C the set ¢ + D, which is contained in
C + D, has measure m(D) = m(C) + m(D). We may thus suppose without
loss of generality that

0<y=d, y+d6=1. (6)

Now let ¢ be given by Lemma 4, and put
G=(C+y~D, D ={C+yob}—r.

Write
m(C) =nd(N), m(D) =d(A),
so that
n+to=y+94,
and
n=y0

by (4) applied to C+r and D and by Lemma 4 respectively. Further,

C+D>C +Dy,
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by (5) applied to C+¢ and D. We may now repeat the process on
C,,D,. In this way we get a sequence of sets C,, D, with measures
y,d(N), 8,4 (N) respectively, such that

C+D>C,+D, (7)
and

v+ =y+4, @)

Yr =Vr-10,-1- ()

But now, by the argument used when y =0, it is certainly true that

m(C,+ D)= m(D,) = 8,d(N). (10)

It follows from (6), (8) with »—1 for  and (9), that

VSVl — v

and so
y,—>0 (r > o). (11)
Hence
6, —~>y+9o (r = o0), (12)
by (8). But
m(C+ D)= 4,d(N), (13)

by (7) and (10). In letting r— oo in (13) and using (12) we have

m(C+D)=(y+8)d(A)=m(C) +m(D)
as required.
It remains only to prove Lemma 3. We note, first, that

m{(C+t)~D} (14)

varies continuously with ¢. This is clearly true with the “well-behaved”
sets C and D to which we will wish to apply Theorem I, but it is in fact
true for all measurable C and D, see for example A. WEIL (1951a).
In the second place, in an appropriate sense, to be explained more fully
below, the average of (14) as g runs through Z/A is m(C) m(D)/d(N).
Perhaps the simplest way is to observe that we may introduce integration
in /A in the obvious way. Let @(r) be a function defined in #/A and
let f(x) be the function in &% such that

Hx) =),
when @ belongs to the class . Then we write

[o@)dy = [f(x)dx,
RN P

where 2 is a fundamental parallelopiped. Exactly as in § 2.5, one may
show that this definition is independent of the choice of fundamental
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parallelopiped 2. Let @(z), x(r) be the characteristic functions of C, D
respectively; so that

m{(C + ) ~D} =mfA<P(r) +1) z(v) dy.

Then

Jm{(C+x)nDydr=[{ [o(y+2) x(v) dz}ay. (1)
But RIA RIN eI\

Jo(o+1) 2(n) dx =1 () m(C).
RIN
Hence, on interchanging the order of integration in (15), we obtain
Jm{(C+y)~D}dgr =m(C) [ x(y) dy = m(C) m(D).
RIN RIN
Since £/ has measure

m(Z|N) =g/f/\1dg =d(N),

the truth of Lemma 4 now follows from the continuity of m{(C +) ~D}
and the connectedness of Z/A.

Chapter VIII

Successive minima

VIIIL.1. Introduction. For some purposes one requires to know not
merely that a lattice A has a point in a set &, but that it has a number
of linearly independent points in %,

Let F(x) be an n-dimensional distance function and A a lattice. If
for some integer £ in 1<% =<# and some number A the star-body

AS: Flx)<i (1)
contains % linearly independent points
a,...,a, (2)

of A, then so does u& for any u> 1, since the points (2) are also in
u. We define the %-th successive minimum A, =4,(F, A) of the dis-
tance function F with respect to the lattice! A to be the lower bound
of the numbers 4 such that 1.% contains % linearly independent lattice
points. Clearly

hERS <A, )

1 Or of the lattice with respect to the distance function.
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The numbers A, ..., 4, defined above certainly exist, since if
a,,...,a, are any # linearly independent points of A, then, trivially,
LA, S lrg;gF(ai) .

In the notation of § 4 of Chapter IV we have

Ah=F(A\ = ing\ F(a). (4)
%o
Hence, by the definition of
- F*{(A)
we have

A= 6(F)d(N (6)

The remarkable inequality
Mo A, 207N E(F)Yd(N) (7)

was discovered independently by RoGERS (1949a) and CHABAUTY
(1949a); and CHABAUTY (1949a) and MAHLER (1949a) independently
produced examples to show that if x is any number < 2#(*~1) then there
are distance-functions F and lattices A such that

Ao A, >xd(F)d(N). 8)

We shall give the elegant proof of (7) in §3 and give the construction
of the counter-example to show that it cannot be improved in the case
n = 2. The difficulties in extending the counter-example to » dimensions
are purely algebraic. It can be shown easily by means of an example
that P

1 "

0(F)d(A)

can be arbitrarily small, so there is no lower bound analogous to the
upper bound (7) [but see (13) below for symmetric convex FJ.

The inequality (7) holds with a suitable definition of the terms not
merely to star-bodies F(x)<1 but to all point sets & whatsoever.
There have been several different definitions of the successive minima
of an arbitrary set . We do not discuss these further, but refer the
reader to the papers quoted for the extensive literature.

It was shown already by MiNkowsKI (18964, § 51) that, when F(x)
is the euclidean distance ||, the inequality (7) may be replaced by

Mo A< O(F)d(N). 9)

We give his proof in § 2. More generally, it has been conjectured that
(9) holds for all symmetric convex distance functions. In § 4 we shall
show for these F that

M= (F)a(N; (10)
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which is equivalent to (9) when #=2. The inequality (10) was ap-
parently discovered by CHALK and ROGERS (1949a) and CHABAUTY
(1949a) independently. It has been shown by Woops {1956a and
1958b) that (9) continues to hold for » =3 when F is symmetric and
convex and for # =2 when F is convex but not symmetric: the proof
is distinctly intricate and we do not discuss it here. For general =
and symmetric convex F, RANKIN (1953a) indicates that the constant
2¢=1 can be replaced by a rather smaller one.

For symmetric convex functions F and any #, there is a result going
back to MINKOWSKI (1907a) which may be regarded as a substitute
for the unproved conjecture that (9) holds. In our notation, MIN-
KowsKI's convex body Theorem II of Chapter III states that

nVes2"d(N), (11)

where V; is the volume of F(x)<<1; and so A}V is the volume of the
body F(x)< 4,, which, by hypothesis, contains no point of A except o.
MiNkowsKI's theorem is that in fact

Ao A Ve < 2°d(N). (12)

The proof of (12) remains difficult. Simpler proofs than the original
have been given by DAVENPORT (1939¢) and WEYL (1942a). We follow
WEYL in § 4, since the ideas introduced will be needed in Chapter XI.

For symmetric convex F there is also an inequality
2"
b A Vez —d(N), (13)

the almost trivial proof of which is also given in § 4. From (12) and
(13) it follows that the product 4, ... A, is determined by V and d(A),
except for a factor which is bounded in terms of #.

In general, it is hopeless to expect more information about successive
minima than can be deduced from the formulae for the product 4,...4,.
For example, let 4,, ..., 4, be any numbers such that

A28, A A, =1.
Then the lattice A of points
(A, Agntg, ..o, Ay ns,) (%, ...,u,, integers)

has d(A) =1 and has successive minima 4,, ..., 4, with respect to the
distance function

F(x) = max |x

1=ign il

as is easily verified.
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VIIL.1.2. For later purposes we shall often need the following two
simple lemmas.

LEMMA 1. Let 4, ..., A, be the successive minima of a lattice N with
respect to a distance fumction F associated with a bounded star-body
F(x)<<1. Then there exist n linearly independent poinis a,, ..., a,€N
such that
(1=7<n).

If ac and F(a) <A, then a is linearly dependent on @, ..., @, _,.

For by the definition of A, there are # linearly independent points
of Ain
Fx)<1,+1. (1)

By Lemma 2 of Chapter IV, the set (1) is bounded and so contains only
a finite number of lattice points. Only these points need be considered
in the definition of the 4;. The truth of the lemma is now obvious.

LemMa 2. Let Ay, ..., A, be the successive minima of the distance
function F with respect to the lattice N. Then there is a basis

b,....b,
of N such that, for each { =1, 2, ..., n, the inequality

implies that
r=ub 4+ +u_,b_,

for integers uy, ..., ;4.
When F(x) =0 only for & =0, this is a trivial consequence of Lem-
ma 1, since we may choose b, ..., b, so that a, for each j is dependent

only on by, ..., b;, by Theorem I of Chapter L.
Otherwise a slightly more refined argument is needed. In general,
the 4; will not be all unequal, but there are numbers

< g <loorr < U,
for some s in 1 <s<#, such that

h=p it k <kZk,
where
=Ro< ly< - < h,=m.

By the definition of successive minima, there is no point of A with
F(a) <y, except, possiblyl, o. Since

Mg > }'k,’
1 For a general distance function F(a) there is, of course, no reason why 4,
should not be 0. Indeed, if F(x) =]z, ... #,|1" we have A;=---=2,=0 for the

lattice A, of points with integer coordinates.
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the are &, linearly independent points

a,,a,,...,a, (2)
of A in F(®) <pu,, and, since
o= Ay 11,

every other point of A in F(x)<<u, is linearly dependent on them.
Similarly, we may find %, linearly independent points of A in F(x) <<u,
such that every other point of A in F(&) <y, is linearly dependent on
them. Since u,< u; we may suppose that %, of these %, points are
a,, ..., a, already determined. We may thus denote by

a,.. a,

the maximal linearly independent set of points of A in F(&) < u, without
disturbing the notation (2). And so on. In this way we obtain k,_, <=
points

a,,a,,...,a; |

of A such that
Fla)<w, it sk, (s5).

By Theorem I of Chapter I there is a basis by, ..., b, of A such that,
for eachj =1, ..., k,_;, the vector a; is linearly dependent on b,, ..., b,
only. This basis clearly has all the properties required.

VIIL.2. Spheres. We first prove the results for spheres, since they
are simplest and the treatment forms the model for what follows.

THeEOREM 1. Let

Fy(x) = || (1)
and let A,, ..., A, be the successive minima of a lattice N with respect to
Fy. Then

AN S k... 3, S 8(B) d(N). @)

The left-hand side of (2) was substantially proved in Theorem XIII
of Chapter V. We have on the one hand

|det(ay, ..., a,)| =Td(A) = d(N),
where I is the index of @,, ..., @, in A, and, on the other hand,

|det(ay,...,a,)l < |ay ... |a,]

by HADAMARD'’s Lemma 9 of Chapter V. If now the @, are the linearly
independent vectors of A with F(a,;) = ; given by Lemma 1, the required
inequality follows at once.
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It remains to prove the second part of (2). Asin the proof of Lemma 9
of Chapter V, there is a set of mutually orthogonal® vectors ¢, ..., ¢,
such that

T

b =t¢,+ -+ 4,¢

for some real numbers ¢;; (n=7), where b, is the basis given by Lemma 2.
By incorporating a factor in ¢; we may suppose, without loss of generality,
that

le]2=1  (1=i<mn).

Then
Z u b, = Z;_u,t],-c,-;
and so ! e
(2wt =2 (Eiui ti)" ()
We now show that
? . (,giuj tii)zz t 4)
for all sets of integers w=o0. For let ,, ..., %, be integers, and suppose
that
u;F0, #,=0 (1>7). 5)
Then u,b,+--- 4u,b, is not dependent on b, ..., b;_,; and so
| 2% by |22 43 (5)

Further, (5) implies that all the summands in (3) and (4) with ¢> ]
are 0. Hence, and since ;=< 4; if j< J, the left-hand side of (4) is

DA Zwitipz A7 Dt =477 | Db P2,
s =4 s/ ji 7
by (3) and (5'). Hence if A" is the lattice with basis
b=t Aite + o A7 e, (1S7Sm),
we have
|2 u;bj]* 21

for every point X u;b;%=0 of A’; that is

(N =|N|z1. (©)
On the other hand,
AN) =27 A4 (N). (7)
But now
LM < sup MIE = 6(F, ®)

1We say that two vectors @, b are orthogonal if their scalar product ab
vanishes.
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by the definition of 6 (fy). The right-hand side of (2) follows now from
{6), (7) and (8). This concludes the proof of Theorem I.

VIIL.2.2. As was remarked in Chapter V, the theory of successive
minima shows that the hypotheses of Theorem II1 and IV of Chapter V
are equivalent. This we do now.

Lemma 3. The following two statements A and B about a set & of
n-dimensional lattices N\ are equivalent, where x, K, 4y, 4, are supposed
to depend on £ but not on A.

(A) there exist A,<< oo and x>0 such that d(N)<A4,, and |A|Z%x>0
for all NeQ.

(B) there exist 44> 0 and K < oo such that d(N\) = 43> 0 and the sphere
|x| <K contains n linearly independent points of N, for all NeS.

If 4,,..., A, are the successive minima of F,(x)=|x| with respect
to A, then clearly (A) and (B) are equivalent to

Ay dN=4,, A=x>0,
and
B) dNzdy>0, A=K,
respectively. We now use the inequality
AN Z ... 4,5 8(F)d(N) (1)
of Theorem I. Suppose first that (A) holds. Then

AN 2 BEN A Az (R =4, (say),

and
W (hy A ) () AN S 2 O(Fy) A, = K (say).
These are the two conditions (B).
Suppose now that (B) holds. Then

MWZ Ay AN Z K" A= (say),

and
AN=Z 4. LK =4, (say).

These are the two conditions (B).

VIII.3. General distance-functions. We first prove a lemma which
will be required later. Just in this section we denote by {x} the fractional
part of x, that is, the number such that

0= {x} <1, =x— {x} =integer.

LEmMMmA 4. Let ny, ..., 7n, be any real numbers. Then there is a
number 1 such that

Z{m—m=Eim—1). (1)

lsjsn
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For any number ¢ we have clearly

o if =0
{&} <1,
1 otherwise

m+&a={

Hence

Sk<jsn

2 Z{n,-—m}=1 2 ({mi—nmd+m—m)=<inn—1).

1Zksn 157Sn
Thus there is at least one & such that (1) holds with y =7,.
We shall require only the more specialized

CoroLLARY. Let y,, ..., u, be any numbers such that
O< S = - S .

Then there exists a real number u>0 and positive integers my, .
such that
(i) mifm; s an integer (1<7<n),

(i) wmi=p (1S7=1),
and
(445) .. = 20V (umy) . (um,).

We shall in fact take all the m; to be powers of 2, say

m":zl’ (1§7§'n).
Let
p=2" (t=7=mn)

(2)

e, My,

(3)
4

for real numbers 7;; and let 5 be the number given by Lemma 4. By
subtracting an appropriate integer from % we may suppose, by (2) and

(4), that
NEMERS - S,

If now u =2" and the integers /; are defined by
n—n =4+ {n—n,

then the numbers m; defined by (3) clearly satisfy (i) and (ii). Further,

by the lemma,

H( Hi ) = 2D b1,
e e B
which is just (iii).

VIIL.3.2, We are now in a position to prove

THEOREM I1. Let F(x) be a distance-function and 1, ..., A, its succes

stve minima with respect to a lattice \. Then

Mo A< A0V (FY(A).

(1)
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We denote by by, ..., b, the basis for A given by Lemma 2. Let
u and the integers m; be given by Lemma 4, Corollary when ;=2
and let A’ be the lattice with basis

7

b;:(,umi)‘lbi 1=7=n).
Then _
AN) = [T (um)rd(N). @)

We now show that

F(N)z1. 3)
Any point @ of A’ other than o may be put in the shape
a=ub+ - +ub;, u*0,
where #%,, ..., u; are integers. Then

(ump)a =v,b,+---+v;b,;
where

m .
w=2lu  (USi<]) y=wuo

are integers, since %; and m [m, are integers. By Lemma 2, since v;3=0,
we have
F(um;a) =z A;.

Hence
Fla)z Y =1
umy
This proves (3).
Finally,
F*(N)

by the definition of §(F). The required inequality (1) now follows from
{2}, (3), (4) and the inequality

H( 4 )gzun—n
wm;) =

i 7
of Lemma 4, Corollary.

A rather more detailed argument shows that the sign of equality
in (1) cannot hold if F(x) <1 is a bounded star-body. Then it is possible
to ensure that there are not # linearly independent points @ of A’ with
F(a) =1, so A\’ cannot be critical, and there is inequality in (4). See
ROGERS (1949a).

Cassels, Geometry of Numbers 14
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VIIL.3.3. We now show that the constant 2¢* 'V in Theorem II
cannot be improved. For reasons of algebra we treat only the case

n=2.

For general n see MAHLER (1949a) or CHABAUTY (1949a).
We first consider a point set which is not a star-body. Denote by
%’ the set of points
€. (+t0) tz2t,

and by € the set of points
€ (suy,Suy),
where
s=1; uy,u,, integers, 1, 0.

Finally, let % be the set of points which belong neither to ¢’ nor
to €". Clearly % is open, and if any point & is in &, then rz is in %
for o< | 7| <1:s0 & has some of the attributes of a star-body. We shall
later modify % slightly to obtain a set ., which actually is a star-
body.

There certainly exist % -admissible lattices A, i.e. lattices having
only the origin 0 in &. For example the lattice A, of points

(2%1 » u2) 4

where w,, u, are integers, is %-admissible, since if #,9=0 the point
(2u,, uy) is in €’ and if u,=0, but %, =0, then (2%,, u,) is in €. We
shall next show that

AS) =d(Ay) =2 (1)

that is that every -admissible lattice A has determinant d(A)=2.

Let A be any &-admissible lattice. By MINKOWSKI'S ‘convex body
Theorem II of Chapter III, there is certainly a point @ other than o
of Ain

[%|S2d(N), |%]Z3%.

This point is not in &, so must be in ¥” or ¥"" and hence has the shape
b, = (by;,0), b, %0.

We may suppose without loss of generality that b, is primitive. There
is then a vector
by = (b12, bys) CA,

which, with b,, forms a basis. Hence

birbae = +d(A) 0.
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Since b, is in the S -admissible lattice A, it must be in €’ or €, so
by4fby, = rational.

Similarly b,+ b, is in €’ or €', so (b;,+ b,,)/b,, is rational; and hence
by1/bye = rational.

There thus exists a real number £>0 and integers B,,, B;,, B,, such
that

b1=(5811:0): b2=(§Bl2,fBzz)-

Without loss of generality, B,,, B;, and B,, have no common divisor
except +1.
Let v be the product of the primes which divide B,, but not B,,.
Put
Bi, =v By, + By,.

We wish to show that Bj, is prime to B,,: and must distinguish two
cases for the prime divisors p of B,,. If  does not divide B,,, then it
divides v. If p divides B, then it does not divide By, since B,;, B;;, By,
have no non-trivial common divisor; and p does not divide v. In both
cases p does not divide By,. Hence, on replacing b, by b,+vb,, we may
suppose that B;, and B,, have no common non-trivial divisor.

Now b, is in the S-admissible lattice A, so is in €' or €. Hence
GED

since B;, and B,, have no common factor. Similarly b, is in ¢’ or €",
and so
|& By,y| = 2.

Hence

either |By,| =1, [ =2},

or [Bi|=2, |&=1.
In either case,

d(N) = | By By, 8| =2 | B 82 = 2.

This concludes the proof of (1).
We denote, as usual, by & the set of points

us pux, xS,

and by A, the lattice of points (%, #,) with integer #,, %,. Clearly if

< 27} there are no points of A, except 0 in u&; if 27*<u <1, there

are only the further points (4-1,0) of Ay in u&; while if u>1, the

points (41, 0) and (0, 4-1) are in u&. 1f & were a star-body F(x) <1,
14*
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these statements would imply that the successive minima of A, were
A=274 1, =1. Hence
M, =2 (4(F) 1 d(N);

which is the case of equality in Theorem IT if (A4(&)) is written for
d(F), the two being equal for star-bodies.

It remains now to modify & so as to obtain a bounded star-body,
in such a way that its successive minima with respect to A, remain
27%and 1, and so that its lattice constant is arbitrarily close to 2. We
do this by replacing the lines in €’ and €’ by narrow wedges.

Fig. 9. The shaded portion is % (y)

Let £>0 be arbitrarily small. For any vector y={(y;, ¥,) F0, let
¥, (y) be the set of points & for which

W, (9): mn+a¥— 5y, — nynl 2yt +ii (2

Then ¥, (y) is an infinite wedge having a vertex at y, see Fig. 9. Its
precise shape is not important. The two sides of the wedge make the
small angle +arctan ¢ with the outward radius vector from o to y.

Now let € be the set of points in #; (2}, 0) and #; (— 2%, 0) and
let €,’ be the set of points in #; (4,, #,) for any pair of integers with
1,5 0. Finally let %, be the set of points in

|®| <e? (3)

which do not lie either in €, or in €,". Clearly ¥, is a star-body, since
there are only a finite number of the wedges composing €, and €,’
which have points in common with the disc (3). Indeed, by (2) and
{3), the distance-function F,(x) associated with &, may be written down
explicitly.
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Since &, is contained in &, and since the points (424, 0), (0, 4-1)
are evidently still boundary points of %, at least when ¢ is small enough,
it follows that the two minima 4, and 4, of A, with respect to F(x)
are 274 and 1 respectively.

Further,
NL) =AY =2.
Indeed
lim A(S) = A(SF) =2

e—>0+

by Theorem V of Chapter V. Hence there exist ¢ such that
248 (E) d(Ny) =24 (A(Z))

is arbitrarily close to A;4,. This shows that for =2 the constant
28~V =24 in Theorem II cannot be improved.

VIII.4. Convex sets. We shall often have occasion to refer to the
results of §3.1—3.4 of Chapter IV and in particular to the properties
of tac-planes.

We first need a general lemma about convex functions.

LamMma 5. Let F(x) be a symmetric convex distance function associated
with a bounded convex body F(x)<<1. Let c3=0 and let T be the plane
through the origin parallel to a tac-plane at c to F (x) <F(c). Then

Fly +pse) 2 uF(y +se) (1)
for all y in T, all real s, and all pu in
o<u<1.

If s =0 there is nothing to prove. Otherwise we may suppose, by
homogeneity, that
s=1,
since sy is in T if y is. Then

Fly+e)=F(e), (2)
by the definition of a tac-plane. Then, by convexity,
Fly+e)=Fly+pe)+F{(1—p)c} }
=Fy+pc)+ (1 —p) Flo).

The required inequality (1) with s =1 now follows from (2) and (3).
We may now prove

(3)

THEOREM III. Let F(x) be a symmetric convex distance-function
associated with a bounded body F(x)<<1 and let Ay, ..., A, be the successive
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minima of a lattice N\ with respect to F. Then there is a lattice N\ with
determinant

d(N) = (2=2)am (4)
and successive minmima A; (1=<j=<n), where

Let b,, ..., b, be the basis for A given by Lemma 2. Let +¢ be
the points on the boundary of F(x) <1 at which the tac-plane is parallel
to the plane 1 through by, ..., b,_; (Theorem 1V of Chapter IV). Then
every point in space can be uniquely put in the shape

r=y+sc, Yem. (6)
We put
H“ =)»,,_1//1”,
and define A’ to be the lattice of all points
y+use, y+sesA, (7)

Then (4) clearly holds. If s<=0 in (7), the point y 4 sc is not linearly
dependent on b, ..., b,_,; and so

cob,_y;
Fly+se)z=4,.
Hence
Flytuse)zpuh,=4_y (50 (8)
by Lemma 5. On the other hand, the points of A" with s =0 are just
the points of A which are linearly dependent on b, ..., b, ;. Hence

(8) implies (5).
COROLLARY 1.
M S(F)dN).
For in the proof of the Theorem put

®= }‘l/)“n
instead of 4,_,/A,. Then (8) becomes

Fly+use)=ul,=24 (s=+0); (&)
)
Fla)z= A,
for all @’ € A\’ except 0. That is,
FNyz= 4.

Further,

ANy =pud(N) = (%) d(N). @)
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But F*N) < 8(F)d(N)

by the definition of 4(F); and then the corollary follows from (4')
and (8’).
COROLLARY 2.
1 1
Ao A s 22 UTR S(FYA(N).

We only sketch the proof. By varying u in the proof of the theorem,
we may obtain a lattice A’ with successive minima 4;, where

=2  (1sji<n), =Ry =1r;
and

Then
N N Y
aN T aN)

Hence it is enough to prove the corollary when 2, _,=4,. But it is
easy to see that if two of the numbers 7; in Lemma 4 are equal, then

the right-hand side of (1) of § 3.1 may be replaced by % (n—1)—

When this improvement is inserted in the proof of Theorem II, it gives
the corollary.

VIII.4.2. Before treating MINKOWSKI'S estimates for the product of
the successive minima of a bounded symmetric convex body in terms
of the volume we must first prove a result, which we shall also use
later, relating to convex bodies and the quotient space Z/A. We
shall use the concepts and notation of Chapter VII. As was done
there, we denote the points of # by small bold letters and those of
2|\ by small gothic letters.

THEOREM IV. Let F(x) be a convex symmetric distance-function
assoctated with a bounded convex set

& Flx) <1 (1)
of volume

Ve=V(¥). ()
Let N\ be a lattice with successive minima Ay, ..., A, with respect to F.

For real t>>0 denote by S(t) the set of weR|N\ which have at least one
representative y in tS (i.e. F(y)<t). Then the measure m{S(f)} of S(t)
satisfies the tnequality

=1V, it t<iA, l
m{SW}{ = G4 .. (%W'JV YIRS Y I 3)
=G4 GA)Ve i 124, f
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We first examine how the hypotheses and conclusion are affected
by a homogeneous linear transformation 1. Let A'=<A, F'(x) =F(z'x).
The successive minima of A’ with respect to F’ are the same as those
of A with respect to F. Clearly

Ve = | det (4)| Vi,
and by the remarks at the end of § 2.5 of Chapter VII we have
m’{xS(#)} =|det (x)| m{S(1)},

where T5(¢) is the image of $(¢) in the natural mapping of Z/A onto
Z/eN\; and m’ is the measure in #/xA. But 5(t) =S5'(#) is the set in
R/t A defined in respect of F' and A’ as S(f) was defined in terms of
F and A. Hence a homogeneous linear transformation multiplies both
sides of (3) by the same factor | det (t)].

We may therefore suppose without loss of generality that the basis
b,,..., b, for A given by Lemma 2 is just

i1 n—j
b,=e,-=(0,...,0,1,0,...,0); 4)

and that A=A, is the lattice of points with integer coordinates.
We now obtain a formula for m {§(¢)} valid when

t= 3 A4 (5)
and J=1,2,...,2—1. Let
= (%10 %n1)s Tp= (%5, .00, Xyp)
be two points of F(x)<¢<3A4;.,; and suppose that
Ty =Ty (Ao) - (6)

Th
o F(axy —x,)) S F(@) + F(@) <Ajya.

Since &, — x,¢ Ay, we have now
Xjy = %jy G>17, (7)
by (4). Further,
(xll»"')x]l)E(xl2""lx]2) (Ag)r (8)
where A/ is the J-dimensional lattice of points with integral co-ordinates.

Clearly (7) and (8) together imply (6). Denote by %#; the J-dimensional
euclidean space and by m; the measure in #,;/A]. For given (n— J)-

dimensional vector 2 =(z;,4, ..., 2,), denote by $,(¢, 2) the set of points
of #;/A] which contain representatives (x,, ..., x;)¢ £, such that
Flag, .., %5, 2541, -0, 2,) <t 9)

Then we assert that (5) implies
m{S()} = [m;{§;(t,2)}dz  (dz =dz;,,...dz,). (10)



Convex sets 217

In the first place, S;(f, 2) certainly has a /-dimensional measure, since
F(x) is continuous by its definition as a distance function. Then, if 2
runs through all (# — J)-dimensional space and y =(y,, ..., y;) runs for
each #z through a complete set of representatives for §;(¢, 2), it follows
from the equivalence of (6) to (7) and (8), that

= (Y1, Y o 2 g1r o0 20)

runs through a complete set of representatives for ${¢). We may, for
example, normalize the y by taking always 0=y,<1 (1<j<]). This
proves (10).

The next stage is to show that if s is any number =1, so

0<t<st, (11)
m;{S;(st,s2)} = m;{S;(t, ?)} (12)

for any (n — J)-dimensional vector 2. This is certainly true if the right-
hand side of (12) is 0. Otherwise, there is some J-dimensional vector

Yo= (Y10, ---» Vo) Such that

then

Fly,,2) <t
where, in an obvious notation, (o, 2) = (Y19, .-+, ¥J0> Z7415 --+» 2,): and
similarly later. Let y be any J-dimensional vector with
F(y,z) <t.
Then by the convexity and homogeneity of F(x), we have
Fly+ (s —=1)yo. 52} =F{».2) + (s —1) ¥, 2)}
SEY.2) + (s — 1) F(Yo, )
<t+(s—1)¢
=si.

Hence, if y runs through a complete set of representatives for §;(, 2),
then y + (s — 1)y, runs through representatives of distinct elements? of
S;(st, sz), when y, is kept fixed. This proves (12).

Suppose, now, that
0<t<st< 34, (13)

Then, by (10) and (12) we have
m{S(st)} = [ m;{S;(st, z)} d=
=s"J [ m;{S;(st,s2)}dz
=" [m{S,(t,2)}dz
= Im{S(),

1 Of course not every element of $;(st, sz) necessarily has a representative
of the type y+ (s—1)y,. What is important, is that distinct y mod Ab’ give
distinct y + (s — 1)y, mod /\({.

(14)
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where in the second line we have replaced 2 by sz and in the third
line we have used (12).

When

“
A
S

j'l ’ (1 5)

we have the simple equation
m{S@}=V(tS) ="V, (16)

where ¢t & is the set F(x) <t Indeed, if @, and @, are any two points
of t & with x;=x, (/,), we have

Fl@, — @) S F(y) + Fay) <20= Ay
and so ¥, = x,.

We may now prove (3). For t=%}4,, the truth of (3) follows from
(16). Suppose that (3) is already proved for t<§4;, where 1< J<n —1.
Its truth in the range $4;<¢{<44;,, then follows from (13) and (14)
with ¢ =44;. Finally, the truth of (2) for 1= 4, is trivial, since & (t,)
includes & (t,) if ,=1,: and hence m {S(f)} increases with ¢.

VIII.4.3. Theorem IV provides the kernel of the proof of the follow-
ing theorem of MINKOWSKI.

THEOREM V. Let F(x) be a symmetric convex distance-function as-
sociated with the bounded set F(x)<<1 of volume Vi. Let Ay, ..., A, be the
successive minima of a lattice \ with respect to F. Then
AN A A Ve 2%d(N). (1)

n!

In Theorem IV the measure m {S(¢)} for any ¢ can be at most the
measure of the whole space #/A, namely 4 (A). On applying this remark
when t=4%4, to the inequality (3) of §4.2 we get the right-hand side
of (1) at once.

Now let @, ..., a, be the linearly independent points of A with

F(a;) = 4;

7

given by Lemma 1. By the homogeneity and convexity of F(x), all
points
r=ta+--+t,a, (2)
such that
AR (3)

lie in F(x)<1. Hence Vz = V' where V' is the volume of the set of (2)
subject to (3). But clearly

V=2 \det(ay, ... a,)| = ZLd(N), (4)
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where [ is the index of @, ..., a, in A. This proves the left-hand side
of (1), since I =1.
CoRrROLLARY. The index I of ay, ..., a, is at most nl.

This follows from (4) and the right-hand side of (1). (Compare the
proof of Theorem X of Chapter V.)

VIIL.5. Polar convex bodies. Let A* and F* be the respective polars
of the lattice A (Chapter I, §5) and the symmetric convex distance-
function F (Chapter IV, §3). MAHLER (1939b) has shown that the
successive minima of A* with respect to F* are determined by the suc-
cessive minima of A with respect to F apart from factors which have
bounds depending only on the dimension #. Thus relationship will be
exploited in Chapter XI in the discussion of inhomogeneous problems
and is of importance in other contexts. The theorem 1is, of course,
closely related to Theorem VI of Chapter IV dealing with the lattice
constants of mutually polar convex bodies.

TrEOREM VI. Let A, ..., A, be the successive minima of a lattice N\
with respect to the symmetric convex distance-function F and let A¥, ..., A%
be the successive minima of the polar lattice \N* with respect to the distance-
function F* polar to F. Then

We attack first the left-hand inequality. By Lemma 1 there exist

linearly independent vectors a,, @* of A and A* respectively such that

Fla) =14, F*a’)=21". (2)
By Theorem III of Chapter IV we have
F(x) F*(x*) = xx*

(scalar product) for any two vectors & and x*. On applying this
x = +a;, x*= 4a¥ for any pair of indices 7,7 we have

AAf zlaal], )

since F(®) and F*(x) are symmetric. But @;a* is an integer by Lemma 5
of Chapter 1, and so
either ,,4*=1 or aa’=0. (4)

Let I be a fixed index. The vectors @ such that xzef =0 (1<:1<1)
form an (# — I)-dimensional subspace. Hence by the linear independence
of the a; there is some @; with j<n+41 —1 which does not lie in this

subspace; that is
aa’ 0
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for some ¢, 1 with
1=, jEn+1-—-1.

Then A¥ <A, L,<4,,,;, and so, by (4),
Aoni A Z A .

Since this is true for any I, this gives the left-hand inequality of (1).

We now prove the right-hand inequality in the enunciation. Let
a; (1<7=n) be as above. Then (cf. Chapter I, § 5) there are » primitive
vectors b* of A* such that

a;bf =0 (i) (5)

Since the @, are linearly independent, the n equations a,x*=0 are
satisfied only by ®*=o0: and so

abr+0 (1=izn). (6)

Hence the b} are linearly independent.

By Theorem 111, Corollary 1 of Chapter IV, there are vectors x;
such that
F(a,) F¥(b}) = x,b}. 7)

Without loss of generality
2 b =1 (1=/=n). 8)

The next stage is to show that for fixed J the determinant D, formed
from &, and the @, (== ]) has absolute value at least d(A). For fixed ],
there is a basis ¢}, ..., ¢¥ for A* with

cy =b¥. (9)
Let ¢; (1=:=m) be the polar basis, so that, by (5) and (9),

a= X v;¢; (iF]) (10)

15jsn-1

for some integers v, ;. Further,

x,=+c,+ Z te;
15jsn—1

=
for some real numbers ¢, by (8) and (9). Hence

D, =|det(a,,...,a;_;,x;,a;.,, ...,a,,)|=ldet(v,-,),-:_,|]det(cl,...,c,,)|.
i£n
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The first factor here is a non-zero integer since the @, are linearly in-
dependent; the second factor is just d(A). Thus

D;zd(N), (11)
as required.
The points
L+ 2 ta,
itJ
with

|41 Fl®)) + 2| 4| F(a) <1
i%]
lie all in the set F(x) <1 of volume V. This set of points has volume
Z.p, (Fe)) ]*7] Fla))™.
Hence, and by (11),
Vi F(z)) ];[] Fa)z 2 a(n). (12)

But F(a;) =4 and Vy[] ;=27d(A) by Theorem V, so

F(x;) = 4)/n!,
and finally
F* by <nli;t, (13)

by (7), (8). The inequality (13) holds for each integer J and for the

independent vectors b¥ of A*.

Now 4, = 4,<-.-< 1, andso, for each integer ], there are then+1—J
linearly independent vectors b*=>b} (J<j<n) of A* such that F(b*)
<n!A;'. By the definition of A},,_; it follows that

l:+1_] é 'n' }.}—1.

This is the required inequality and so concludes the proof of the theorem.

The applications of the theorem are usually only qualitative so the
magnitude of the factor #! on the right-hand side is usually irrelevant.
MAHLER (1939b) showed that the weaker inequality

}'])‘:-i-l—] é (71«')2

can be deduced very simply from the left-hand inequalities, Theorem V
and Theorem VI of Chapter IV. We have

Vidyoo A, 2% (N),
Veed¥ .22 S 27 (A%,
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and so

VFVFH). AX i< 22md(N) d(A¥).

Now

d(N) d(N\*) =1
by Lemma § of Chapter I, and

by Theorem VI of Chapter IV. Further,
I—I}‘ ln-}-] )—-}']Ani—l -7
7

for any particular J by the left-hand inequality of Theorem VI. Hence
ApA%_ ;< (n!)?, as required.

VIIL.5.2. In Chapter XI we shall also need the following result of
which the proof is similar to that of Theorem VI.

THEOREM VII. Let F(x) and F*(x) be polar symmetric convex distance
functions. Let by, ..., b, be any basis of a lattice A\ and b, ..., b} the
polar basis of the polar lattice N*. Then

2"d(N) F*(b}) < n! Ve [] F(b)) (1)
%
for each integer | =1,2,...,n i

For the deduction of (12) from (5) and (6) in § 5.1 did not depend
on the fact that the @; gave the successive minima for F. Hence (12)
of § 5.1 remains true if b; is read for a;, where x; is to be given by (7)
and (8) of § 5.1. On substituting (7) and (8) into (12) of § 5.1 the required
result follows.

CoroLLARY [M. RiEsz (1936a), K. MAHLER (1939a, b)]. Let 4,, ..., 4,
be the successive minima of F with respect to N. Then the basis b; may be
chosen so that

E(b) =4, @
2F(b) =74, (2=7=mn)

and
F(b,)F*b}) < (3)" ' (n))2 (3)

The existence of a basis b, satisfying (2) follows at once from Lemma 8
of Chapter V on defining a, there to be the linearly independent points
with F(a;) =4,. But now on multiplying (1) by F(b;) and using Theo-
rem V, we have
2"d(N F(b)) F*(b}) S n! Ve [IF(b) < (3)" ') Ve [1 ;= 2(n1)?d(N).

1550 15780
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Chapter IX
Packings

IX.1. Introduction. If % is any n-dimensional set and y a point,
we denote by & +y the set of points

L4y xTt+y, =z, (1)

By a packing of % in some other set 7 we shall mean a collection of
sets
=S +y, (2)

each of which is contained in J, and no two of which have points in
common. If J is the whole space # we speak simply of a packing
of &. If the y, in (2) run through the points of a lattice A then we
say that the packing is a lattice packing. In this chapter we examine the
consequences of these ideas for the geometry of numbers. This chapter may
be regarded as a sequel of Chapter III but we shall also require some of
the general properties of convex bodies discussed in Chapter IV. We
shall find that the general theory of packings is relevant even to strictly
lattice-theoretic problems.

There is an admirable account of the theory of packing in FEJES
To6tH (1953a) and a conspectus of the more important results in
BamBaH and ROGERs (1952a).

1X.1.2. The three following theorems show the relevance of packings
to the theory of Chapter III. We give the simple proofs here

THEOREM 1. A necessary and sufficient condition that the lastice N
give a packing of the set & is that no difference x,— @, of two distinct
points of & belong to A.

Suppose, first, that &;—x,=acA. Then the sets ¥ =% +o0 and
& +a both contain the point &, ==,+a, and so overlap. Conversely,
suppose that the sets & 4@, and % +@a, have the point ¥ in common
where @, @, are in A. Then the two points y —a,=x,, y —a,=, are
in &, and their difference @,— @, is in A.

BricHFELDT’s Theorem I of Chapter I1I shows that
V(S)<d(N)

whenever A packs &. The following theorem shows when the sign of
equality can occur. To avoid irrelevant topological considerations we
confine attention to rather special sets &.

THEOREM I1. Let & be a bounded open star-body and N a lattice with
V(#) =d(N). (1)
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(A) If A packs &, then every point in space either belongs to precisely
one set S +a, ac/\ and is not a boundary point of any other & +a,
or is a boundary point of at least two such sets & +a.

(B) If every point of space either belongs to or is a boundary point of
at least one set & +a, then N packs & .

By hypothesis, there is an R such that &% is contained in
|®| <R.

We now prove (A). Suppose, first, that A packs & and that there
is some point ¥ which is not in or on the boundary of any & +a, acA.
We may choose ¢ in the range 0<<e<C1, so small, that the sphere ¥
of points @ with

A le—yl<e (2)

is completely outside the finite number of bodies &+ @ with acA and
|a—y|<R+1. By the definition of R, the set & 4 a certainly contains
no points « of & if |a—y|=R+1. We may suppose, further, that ¢
is so small that the only point of A in |®|<2¢is 0. Let

P =SS,

be the set of points belonging to either & or %]. Clearly, if x, and wx,
are distinct points of & the difference @, —x, cannot belong to A.

Hence
V(#)SdN)

by BLICHFELDT'S Theorem I of Chapter III. But then V(&)< V(%),
which contradicts the hypothesis. Suppose now that the hypotheses
of (A) are fulfilled and that there is a point y which is on the boundary
of precisely one % +a, ac/\. Suppose, without loss of generality,
that y is on the boundary of %. As before, there is an £¢>0 such that
&, defined in (2) contains no point or boundary point of any ¥+ a
with @€/, a<0. But then the point (1+7n)y, for sufficiently small
7>>0, is in & and is not a point or boundary point of &. On taking
{1+n)y instead of y, we thus have the case first considered. No point
can belong to more than one ¥+ a, ac A by the definition of a packing.
H y were a point of ¥+ a and a boundary point of ¥+ b, where
a, be A, then there would be points in the neighbourhood of y in both
S +a and & + b, since & is open. This completes the proof of (A).

We now prove (B). If & is not packed, then, by Theorem I, there
are points ®, and &, such that

0Fa,=x, —X,cN.
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Since & is open, by hypothesis, there is an £>>0 such that both spheres

S e —x) <e,
S |e—xyl<e

are contained in . We may suppose that ¢ is so small that % and %,
have no points in common. Let %’ be the set of points which belong
to & but not to . Clearly every point in space is either an inner
point or a boundary point of &'+ a for some acA, since every point
of & is either in &’ or in ¥'+a,. Let & be the closure of &’. Since
& is a star-body and & is a subset of &, we have

V(P =V(&#)< V(&) =d(N).

This is a contradiction with the Corollary to Theorem I of Chapter II1
since we are supposing that every point, and so every point of the
fundamental parallelogram, is of the form z 4+ a where z¢ & and acA.
This completes the proof of Theorem II.

THEOREM III. A mnecessary and sufficient condition that the convex
symmetric set & admit the lattice N is that N give a lattice packing of 3 .

This follows at once from Theorem I and Theorem II, Corollary of
Chapter II1.

We shall consider only packings of convex sets & in what follows,
and we shall suppose that & is symmetric, whenever this gives any
simplification of proofs or results.

IX.1.3. MiNkOWSKI'S convex body Theorem II of Chapter III states
that if & is an #n-dimensional symmetric convex body of volume
V(&) >2"d(A), then the lattice A cannot be #-admissible. In §2 we
discuss when a lattice A, can be admissible for a convex symmetric
body of volume 2"d(A). Of course then by MINKOWSKI'S convex body

theorem we have
A(F) =27"V(¥), (1)

and the lattice A, is critical.

Even when ¢ is the cube |x,| <1 (1=7<mn), the critical lattices were
not completely known until Hajés (1942) confirmed on old conjecture
of MINKOWSKI. We quote the result here, but shall not prove it since
it depends on considerations of group-algebra remote from the other
topics in the book.

THEOREM IV. A necessary and sufficient condition that a lattice N
be critical for |x,| <1 (1=<7<n) is that, after a suitable permutation of

Cassels, Geometry of Numbers 15§
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the axes of co-ordinates, 1t has a basis of the shape
b,=(1,0, e, 0
b, = (b,2,1,0, ..., 0)
by = (by3,023,1,0,...,0)

...........

The reader will readily verify that a lattice of the stated kind has
determinant 1 and no points other than o in |x,| <1 (1=<7<n). For
the proof of the converse the reader is referred to the original paper of
Hajés (1942) and to REDEI (1955a) where there are references to the
considerable amount of later literature. We proved HaJds’ Theorem for
n =2 incidentally as Lemma 7 of Chapter III.

MiNnkowsKI (1896a) showed that any convex symmetric set & with
A(SF)=2""V(&) must have very special properties, for example that
it must be a polyhedron bounded by at most 2"— 1 pairs of hyperplane
faces. We prove this in § 2.

1X.1.4, Voronol (1908a) suggested a simple way of finding open
convex symmetric sets % such that

V(&) =d(N)

and which are packed by a given lattice A. If g(x) is any positive
definite quadratic form, the set of points such that

g(@) <infg(x +a)
«+o0

has this property. The condition
g(x) <glx+a),

for any given @, is linear in the coefficients x,, ..., x,,; so & is convex.
& is clearly symmetric. It is not difficult to verify that & is, in fact,
bounded; and that then the infimum in (1) may be replaced by a
minimum over a finite number of @ depending on A and the function
g(x), but not otherwise on the individual @. Not every open convex
symmetric & with V(%) =2"d(A\) for which A is admissible may be
obtained in this way, but Voronol was able to show that all, in a
sense, sufficiently general such & could be. Unfortunately the excluded
cases include some of great interest, such as those covered by Hajés’s
Theorem IV.

We do not discuss the case of general dimension # in this book but
deal in detail with # =2 in §3. As a byproduct we obtain a result
about the inhomogeneous problem for definite binary quadratics.
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IX.1.5. Let & be any open 2-dimensional set and % the 3-dimen-
sional set of points

C: (%, %, %) (%, x)eH |nl<i; (1)

that is, a generalized cylinder of height 2 and with cross-section ¢
Then a plane section
X3 = constant

of a lattice packing of € gives, in an obvious way, a packing of X/,
but not necessarily a lattice packing. The idea of using non-lattice
packings in this context is apparently MAHLER’S (1946g). In this way
we are led to consider non-lattice packings of 2-dimensional sets. This
we do in § 5, after some preparatory lemmas in § 4. It turns out, as
was proved independently by RoGERs (1951a) and FEjEs TotH (1950a)
[see also FEJES ToTH (1953a)] that, in a sense which will be made
precise, no packing of convex symmetric open sets is closer than the
closest lattice packing. It appears unlikely that this result extends to
higher dimensions. For a discussion of this point see FEjEs TéTH
(1953a).

In § 6 we use the packing results to show that
A(€) = A(A), (2)

when " is convex and symmetric and € is defined in (1). This result
was originally proved independently by CHALK and ROGERS (1948a)
and YEH (1948a). An example was given by ROGERs (1949b) which
shows that (2) need not hold when ¢ is a symmetric non-convex
2-dimensional star-body, and DAVENPORT and ROGERS (1950b) gave an
example to show that then the ratio A4{¥)/4(X#") may be arbitrary small.
VARNAVIDES (1948a) has shown that (2) continues to hold in one inter-
esting non-convex case. It is trivial that 4(%) < A(X) for any ¢, since
if A is a 2-dimensional admissible lattice for €, the 3-dimensional lattice
of points
(%1, %9, %) (%, %) €N, x5 = integer

is clearly admissible for € and has the same determinant as A.

There is an interesting unsolved problem in this connection. Let
A; and X, be convex symmetric bodies in #, and n, dimensions respec-
tively and let € be the (n,+ n,)-dimensional “topological product” of
X, and X;; that is the set of points

*=(y,2), YA, zcH,.
The argument above shows that
A() S A(H) A(8;). )
15
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Can it ever happen that there is strict inequality here? The cylinder
is, of course, the case #,=2, n,=1. WoobDs (1958a) has shown that there
is equality in (3) for n,=3, n,=1 when ] is a 3-dimensional sphere.

I1X.1.6. In §§ 7, 8 are given applications by BLICHFELDT techniques
based on packing considerations, or at least BLICHFELDT’S Theorem I
of Chapter III, to the estimation of the lattice constants of the sets

B4+ an<d
and
|%... %, <1

respectively. The relationship of BLICHFELDT'S results to later work
will be discussed there.

IX.2. Sets with V(&) =2"4(%). We prove here the following result
of MiNKOWSK1 (1896a).

THEOREM V. Let & be an open symmetric n-dimensional convex set
which admils a lattice N\ with d(N) =2""V(¥). Then & is defined by
m < 2" — 1 inequalities! of the shape

(Zf,-,-x,-|<1. (1)
]
For each I (A <1< m) the planes
Z/z,‘xf= 41 (2
i

give an (n—1)-dimensional pair of faces of &, and each such face
contains a point of N\ as an inner point (i.e. for each I there are lattice
points satisfying (2), and (1) for 1==1).
By Lemma 4 of Chapter IV the set & is bounded since 0<< V(&) <00,
By Theorems II and III, every point either belongs to precisely

one set
Tla): 1S +a, acA,

in which case it is not a boundary point of any J (b), beA or it is a
boundary point of at least two 7 (a). Hence every boundary point of
J(0) =} is also a boundary point of some J (a), @ o0: and, by the
boundedness of &, only a finite number of @ can occur in this way.
We note now that, for fixed @, the set of points which are on the
boundary of both J(0) and J (@) is convex. For if @, y are two such
points, the point
te+(1 -ty (0<t<t) (3)
11n fact there are at most 3” — 3 faces [GROEMER, MZ 79 (1962) 364 —375], and

both & and its faces are centrally symmetric. Estimate 3% — 1 is easy (HLawKa,
1949a). Both GrROEMER and HLawka give generalizations.
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is certainly either a boundary point of J (@) or belongs to J (a) by
convexity, and similarly for 7 (0). Hence (3) is a boundary point of
both 7 (0) and 7 (@) by Theorem II.

In particular, if # is common to the boundaries of J (0) and 7 (a)
then so is! @ —z by the symmetry of &. Hence so is also

30 =32+ 3(a —7)
a common boundary point.

Denote by
te, (1SE<K) (4)

the points ¢ of A such that the boundary of J(c) has » linearly inde-
pendent points in common? with that of J (o), and denote by

+b, (1=I<I) (5)

the remaining points b of A such that the boundaries of J(b) and
7 (0) have points in common. From what has just been shown, the
points common to the boundaries of 7 (0) and J (b;) lie in a linear
subspace of dimension at most # — 2 (not, of course, necessarily, passing
through the origin. In fact, it cannot pass through the origin).

We show now that every boundary point 2z of 7 (0) is also a boundary
point of a J(e,). The set of boundary points & of J(0) in any neigh-
bourhood

|z —x|<e (6)

of # is (n —1)-dimensional, and so cannot be exhausted by the at most
(n — 2)-dimensional sets of boundary points in common with the J(b,).
Hence there must be points in (6) which are common boundary points
of 7 (0) and a J(¢,). Thus 2 itself is a boundary point with a J (e,)
as required, since there are only a finite number of ¢,.

[More precisely, let & be F(x) < 1, where F(x) is a distance-function. We may
suppose, without loss of generality, that 2= (1, 0, ..., 0). If z is common to the
boundary of J(0) and J (b)), the common boundary points of J (o) and (b))
satisfy at least two distinct equations

nxn—1)+Xrx=o0,
iz2
and so at least one equation

There is an equation of this type for each ! for which z is on the boundary of I (b)).
If %5, ..., %, are chosen so as not to satisfy any of these conditions, and arbitrarily

1 —z is on the boundary of J (o), by symmetry, and then a—z is on the
boundary of 5 (a).

% That is, the common boundary of J(0) and J (¢) is a convex (n — 1)-dimen-
sional set with centre § ¢, by what has been already proved.
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small, then the point
HEFO, 75, o ) {1, 2, 0, 2y)
is arbitrarily close to 2 and not on the boundary of any J(b)).]

Now we consider the boundary common to (0) and I (¢,). We
saw already that ¢, is one point of the common boundary. Let

te., ie, + Yi; 1=sj=n—1) (7)

be # linearly independent points on the common boundary. (They exist
by the definition of the ¢,.) Then the points

1
3C — Yuj

are also on the common boundary, by symmetry; and hence, by con-
vexity?, so are all points

e+ 2 LYy, (8)
1sjsn—1
with
Zlyl=1. (8

Let 1, be the (hyper)plane through }¢, and the }¢,4-y,;. Clearly any
plane other than T, through }e, contains points of 7 (0); and so
must be the only tac-plane to (o) at 1¢,. The equation of 1, may be
written in the shape

2 h % =% (9)
1sjgn

since 1, cannot pass through the inner point 0 of 7 (0). The correspond-
ing tac-plane — 1r, through — }e¢, is obtained by changing the sign of
the f,; in (9). Hence every point of the open set J (o) satisfies the
inequalities

'Z/k/xj1<%' (10)

7

Further, every point y, which does not belong to J(0) is of the
shape y =ty,, where £=1 and ¥y, is a boundary point. We saw already
that every boundary point of J () is also a boundary point to some
T (+¢;) and so satisfies

+ 2% =%

for this k. Hence y,, and a fortiori y; cannot satisfy (10). Thus J (o)
is precisely the set of & which satisfy (10). Since & =27 (0), the
corresponding equations for & are (1).

1 The point (8) is

hiden)+ X 4l Gertuyy)).
1gj<n-1

where the + prefixed to y,; is the sign of ¢;, and
total -+t ol =1
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Some of the inequalities (10) may be identical, since it is quite
possible that the pairs of tac-planes 41, may be the same for distinct £.
We may suppose that (10) for 1< k<m gives a complete set of distinct
inequalities, where m< K. We saw that there is a unique tac-plane at
¢,, and so, since the planes 4, (1<I<m, I5k) are certainly tac-
planes and are distinct from 1r,, they cannot pass through e,. Hence
x =c, satisfies

lZf,jxi'<% (USi<m, l+k), (11)
7

and

(S hn| =4 (12)

To complete the proof of the theorem, it remains to show that
m=2"—1. As in the proof of Theorem IX of Chapter V, it is enough
to show that the points }(c,—e¢,) are not in A for 1<k<r<m. But
from what has just been proved, the point }(c,—¢,) certainly satisfies
IZ f,i‘< 1, for 1 <I<m, there being strict inequality for / =%,  because

7

then (11) holds for & =1e¢,, }¢, respectively. Hence 3{¢c,—¢,)¢ ¥, so
cannot be in A, since A is &-admissible by hypothesis.

1X.2.2. When # =2, it is possible to specify completely the convex
symmetric sets & with 4(%)=1V(¥).

THEOREM V1. A necessary and sufficient condition that the lattice \
be admissible for the convex open symmetric 2-dimensional set & with

V(&) =4d(N
1s that either
(i) & is a parallelogram and N is generated by a mid-point of one
side and a point on one of the other pair of sides or
(16) & is a hexagon and N is the lattice generated by the mid-points
of any two non-opposite sides. Then N contains the mid-points of all the
sides.

That & is a parallelogram or hexagon follows from Theorem V,
since 2"—1=13 for n =2. The lattices A are critical by MINKOWSKI'S
convex body theorem, The critical lattices of parallelograms and
hexagons have already been determined in Lemma 7 of Chapter III and
Lemma 13 of Chapter V respectively.

IX.3. VORONOI’s results. We already saw in §1 that if g(x) is a
positive definite quadratic form and A a lattice, then the set of points
such that

¢(w) < inf g (x + @)
ach
*o0
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form a convex symmetric body & of volume 2"4(A). We shall show
that when # =2 every symmetric convex hexagon 5 and its unique
critical lattice can be related in this way by a suitable quadratic form
g(x). On the other hand, if % is a parallelogram, then A must be the
particular critical lattice generated by the mid-points of the sides.

These results are clearly invariant under homogeneous linear trans-
formation so we may suppose without loss of generality that A=A,
is the lattice of points with integral co-ordinates and that

glxy, %) =ax}+2hx %, + bl

is reduced, in the sense that

0 —2h=ash. (1)
If u;, u, are integers not both 0, the condition
8 (%1, %g) < g% — w4y, X3 — 1y) (2)

2{u(axy + hxy) + uy(hxy + bxy)} < g(uy, uy).

Since (—#,;, — u,) occurs as well as (u;, u;), we thus have the infinitely
many conditions

2wy Xy + u, Xo| < gy, ug), (3)
where
Xi=ax+hx,, Xy=hx+bx,. (4)
In particular,
2| X[ <a
2| X, <b (5)

2| X+ Xy | <a+2h+b=c (say),
where
0<asb<c<a+b. (1)

The set 3 defined by (5) is a proper hexagon unless =0, when it
degenerates into a parallelogram. The area V(5f) of & is readily com-
puted from (4) and (5) to be

V() =4 =4d(N,).

But & is a subset of 3 and V(%) =4, by Theorem II. Hence & =,
since both are open. This implies that the infinitely many inequalities
(3) all follow from (5), which the reader may verify directly with little
trouble.

Further, every non-degenerate convex symmetric hexagon 5 with
its critical lattice may be generated in this way, as we now show. The
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hexagon is given by three inequalities

where
lj = (lli»lzi)
and
L =12+ 1%

is the scalar product. The three 2-dimensional vectors I, are linearly
dependent and, by multiplying them by suitable factors, we may suppose
without loss of generality that

L+l +L=0,
and, on re-indexing, that
WS k< k. 7)

On taking X;=Lax (j =1, 2), the inequalities (6} become
g A;=¢; q

| X, | <k
[ Xo| <k, (8)
|X1+X2| < ky.
Further,
Ry << Ry + &y,

since the hexagon 4 is not degeneratic, by hypothesis. We may identify
(8) and (5) by putting

2ky=a, 2ky,=0b, 2ky=c=a+42h+5,

though of course the x,, x, in (4) are not necessarily to be identified
with the x,, x, in (6). Let x7, x; be defined in terms of X;, X, by the
analogue

Xy=axj+hxy, X,=hx{+bx;

of {(4). On comparing with the earlier part of this section, we see that
the unique critical lattice of 5# must be given by integral values of
%1, ¥3. We may thus suppose, without loss of generality, that (¥;, %)
was in fact the original co-ordinate system (x;, x,), and then we have
the sitnation already discussed.

1X.3.2. From the results of § 3.1 we deduce the so-called “"hexagon-
lemma’’ of DirRICHLET?! which illustrates the connection between homo-
geneous and inhomogeneous problems that will be discussed in more
detail in Chapter XI.

1 For an alternative derivation of the lemma and a partial generalization to
n dimensions, see MORDELL (1956a).
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THeEOREM VII. Let
g(%y, %) = ax% 4 2hx x5 + b} (1)
be a quadratic form, reduced in the sense that
0= —2h<ash. (2)

Then to every real point o= (x,,, X3o) there 1s a point = (u,, u,) with
tnteger co-ordinates, such that

4(ab—r)g(@yg+u)sabc, c=a+2h+0. (3)
The sign of equality is requirved when and only when

2(ab — ) (@ +0) = £ {b(a + k), —a(b+h)}, (4)
where v has integral co-ordinates.

For by the results of §3.1 and by Theorem II there is certainly a
point x,-u with integral  in the closed hexagon

H: 2|X|<a, 21X,|<b, 2|X,+ X, <=c,
where
Xi=ax,+hxy, Xy=hx;+bx,. (5)

But the positive definite quadratic form g(x) can reach its maximum
in 5 only at the vertices! of . It is now readily verified that the
vertices are of the shape (4) and that the value of g(a) at all the vertices
is given by the right-hand side of (3). The calculations are facilitated
by the identity
g(Xy, — Xy) = (ab — W) g(x),

where X, X, are given by (5).

Finally, the =< in (3) cannot be replaced by < if & is any vertex
of 4, since

= i f
gl) = infg(®+u)

for the points  of #. This last remark also shows that it was sufficient
to compute g(x) at any one vertex ¥, (say) since, from the nature of a

critical lattice, all the other vertices are of the shape 4 &, + w, where w
has integral co-ordinates.

1X.3.3. Theorem VII gives yet another proof of the result that a
definite ternary quadratic form (@) represents an number a < (2D)* for
integral values of the variables not all 0, where D is the determinant
of f(x) (§ 3.4 of Chapter I1). We may suppose, without loss of generality,

1 Perhaps the easiest way to see this is to make a homogeneous linear trans-
formation y =t so that g(x) =|y|% when it is obvious.
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that f(x) is reduced in MINKOWSKI's sense (cf. Chapter II, § 2.1). We have

f@) =axd+badtoxd+ 2ha xg+ 282, %5+ 2f 2, 2, }(1)
= a (%, + ax3)? + 2k (% + o %) (%5 + B xg) + b(%y + Bxg)2 4y 43

for some «, f,y. We may suppose that #=<0. Then

0< —2h<a<h, (2)
and
f(u11u2:1)gb (3)

for all integers u,, #,, by the condition of the reduction. But now, by
Theorem VII, we may choose #,, u, so that

abla+ 2h+b)

fluy, uy, 1) §_W

Hence from (1), (3), (4) we have
4D =4(ab — h*)y = 4b(ab — A% —ab(a + 24 + b)
= —b(2h+ }a)®+3ab*— 3a%b.

+7. (4)

Now
|2+ ja| £ 4a,
by (2); and so
4D = 3ab®*— a?b=2ab* = 243,

by a further application of (2). This is the required result. Further,
using the knowledge of the cases of equality in Theorem VII, it is easily
verified that 2D =43 can occur only for forms equivalent to multiples
of the critical form

BHa s — 2 — X% — X%,

1X.4. Preparatory lemmas. In §§ 5, 6 we shall need three lemmas,
each of independent interest, which it is convenient to prove first. We
use the word polygon to mean indifferently a 2-dimensional set bounded
by a finite number of line-segments or the boundary of such a set.
Which is meant will be clear from the context. We shall say that a
convex polygon is circumscribed to a convex set J¢ if it contains )¢
and if every side of the polygon is a tac-line! of . The first lemma is
an analogue of Theorem XI of Chapter V due to REINHARDT (1934a),
and found independently by MAHLER (1947c).

LEMMA 1. Let X be a convex symmetric open 2-dimensional set. Then
ANSL) =1inf V(sF), (1)

where H runs through all symmetric circumscribed hexagons and V(H#)
1s the area of K.

1 We speak of a tac-line in 2-dimensions instead of a tac-plane.



236 Packings

Let 5 be any circumscribed hexagon and A(3#) the critical lattice
of #; so that
A{NK#)} =1V (#)

by Lemma 13 of Chapter V. But A(J#) is certainly admissible for X,
and so the left-hand side of (1) is at most equal to the right.

When X is a parallelogram, the lemma is trivial, so we suppose %
is not a parallelogram. Let M be a critical lattice for 2 so that, by
Theorem XI of Chapter V, it has precisely 6 points +p, 4+¢q, 7 on
the boundary of ¢, where p, q is a basis and

p+q+r=o.

Let 5%, be the hexagon formed by tac-lines at +p, 4 ¢, +-r to X
taking the corresponding tac-line —1r at p to the tac-line 7r taken at p,
if that is not unique, etc. Then 3 is a symmetric hexagon circum-
scribed to . The lattice M is admissible for 5, by Theorem XI of
Chapter V, and so

A(A) =d(M) 2 A(H) =V (H),
by Lemma 13 of Chapter V. This concludes the proof of Lemma 1.

1X.4.2. The following lemma due to DOWKER (1944a) relates the
areas of circumscribed polygons to a convex set ), which need not be
symmetric. We sketch the proof, for which see also FEjes ToTH (1953 a).

LEMMA 2. Suppose that there exists a circumscribed (n+1)-gon B, .y
and a circumscribed (n—1)-gon P,_, to a convex set K. Then there exisls
a circumscribed m-gon with m<n and area

<3{V(Zo) + V(2

If a,,@,, a; are three points on the boundary of X then in this
proof we mean by
2, <0< Gy

that a,, @,, @, occur in that order on traversing the boundary of X in,
say, a counter-clockwise direction.

Let the sides of 2,_, be the lines q, ..., o,_,. By definition, these
are tac-lines to . Let @; (1<j<#n—1) be a point on the boundary
of )" at which o is a tac-line. If a; is a tac-line at several points, then
we choose @, once for all. We may suppose without loss of generality
that

a4, <8< < <6 1< 6.

Similarly let B;and b, be defined with respect to &, ;, where 1 =7 =n+1.
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We distinguish two cases. Suppose, first, that three of the b, occur
between two of the a,, say,
a4, < b, < b, < by< @,

where the symbol between @, and b, means that possibly a,=b,, but

otherwise @, < b,< b,. Let &, have sides oy, By, 0, ..., a, and &, have
sides Py, s, ..., Pny1. Then
V(Zui)) + V(Z,) 2 V(Z) + VIA), (1)

as is clear from Fig. 10. Indeed the difference between the two sides
of (1) is the sum of the areas of the two 4-gons whose sides are formed
by ay, P, i, P2 and oy, oy,

By, Pg respectively. From (1) -
we have

min{V(%,), V(%,")}
SHV(Z ) V()

which proves the lemma in
this case.

The polygons %, &’
may have fewer than # sides,
since some sides of &, may
coincide with those of &, _,.
But this possibility is covered

by the enunciation of the Fig. 10. From the figure,

lemma. We shall not repeat V(Fhr) ~V(Z =Vipgr),
this remark which will apply and clearly V(#) = V(Ps1) = V(nsvw)

at a later stage in this proof Vipgr zVisvw).

and also to the proof of The point labelled a, should be labelled a,
Lemma 3.

If the first case does not happen, then, since there are two more
b’s than a’s we have, on re-indexing if necessary, that

a<b<b<a<a ,<b<b,,<a
for some s. Let &, #,’ have sides

S, Py vy Pey Aoy ey Ay
and
Bi, gy v, &g, Bst1s o os Pria
respectively. Then again
V(Z) + V(2 ) 2 V(Z) + V(Z),

the difference being the sum of the areas of the 4-gons o o, By B, and
&1 % Py Pera, see Fig. 11.
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CoroLLARY 1. Let U(n) denole the infimum of the areas of civcum-
scribed m-gons with m<n. Then
Uny=Umn —1) (2)
and

2Um) < Un —1) + Un +1). 3)

The first inequality is a trivial consequence of the definition, the
second follows at once from Lemma 2.

It is convenient to extend the definition of U(n) to non-integral
value of the argument. For
t=3 put

Uly=(1—=) Um) +1Umn+1),
if
t=n+lI, 0Z1lZ1.

CorOLLARY 2. Let u,, ..., g
be numbers such that

120 (ISr<R), Sp=1.
Then
UZpt)s ZpUt), @

7

Fig. 11. The sum of the areas of the shaded regions is

where t, (1=r<R) are any num-
ViBai) + VIBaos) ~ V(&) - V()

bers with ¢, =2 3.

The inequality follows at once from Corollary 1 if R =2 and then
follows easily for general R by induction.

By a similar argument to that used for Lemma 2 DOWKER (1944a)
proved

LemMa 3. Suppose that A is symmelric as well as being convex. Let
Py, be an 2n-gon circumscribed to H". Then there is a symmelric 2m-gon
with m=<n, also circumscribed to X" of area at most V(%,,).

Let the sides

al, ...,azn
of &%,, be tac-lines at
a,...,a,,,
where
a,,<a,<a,..<a,,<a,.
Let

Bi=Citn, b;=81,, (5)
where the bar denotes the image in the origin. Then, by symmetry,
the P, are the sides of the circumscribed polygon &,,, which is the
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image of &%,, in the origin. By the convexity and symmetry we have

a4, <a,<a,,<a;
for every j.

If 4,, is not already symmetric, we may suppose without loss of
generality that @, b, and, by changing the orientation of the indexing
if need be, that

b,<a,<b,<a,.
Then
a;, <b;, <@y, < by,,

by (5). There is thus a greatest j in # <7< 2n such that
b, <a;,<b<a,
and for this j clearly
¢ <b,<b;,Z4a,,
It is not excluded that b,,, also lies between a; and a,,,. Without
loss of generality j =#; and then

a,<b,<b,,<a,,, b,<a,<a=b,
by (5).
Let &

2ny

#,, have sides
€, Gy Busrs oo Pen and By, oo, Buy Qugrs oo Sops

so %, and %, are symmetric, by (5). Precisely as in the second case
of the proof of Lemma 2 we have

V(Zea) + V(Zaa) < V() + V(%w) = 2V(20);

and so either %, or &, satisfies the requireménts of the lemma.

COROLLARY. For convex symmetric X,
A(A) =3U(6),
where U(0) 1s the infimum of the areas of circumscribed m-gons with m=< 6.

This follows at once from Lemma 1 and Lemma 3.

IX.4.3. We shall also need EuLER’s formula for convex polyhedra
in a slightly unusual form (cf. FEjES T6TH 1953a). Let v, (1=n<N)
be points in the plane (vertices). Let A; (1=<s<5) be curves joining
one vertex to another vertex or, possibly coming back to the same
vertex (the edges). The reader may think of the A, as line-segments or
composed of a finite number of line-segments. We suppose that no
point of A, except its ends is a v, and that no two A, cross. Finally we
suppose that it is possible to get from any one vertex to any other along
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the A,. Then the whole plane is dissected by the A, into a number ¢
of connected pieces (the ‘““faces”) one of which contains all points
outside a large circle || =R. Then EULER’S formula is
LEMMa 4.
g+ N=S+42.
This may be readily verified by induction on S.

1X.5. FEJES TOTH's theorem. In this section we prove a result
due to FejES TOTH (1950a), see also FEJES ToTH (1953a). He proves
something more general and also gives interesting related results but
we give here only what is needed to treat the lattice constants of
cylinders.

THEOREM VIII. Let S be a convex open polygon with at most 6 sides.
Let A be any convex open set and suppose that the sets

A=A+, (1£7<R)

are packed in K, i.c. the A, are subsets of H and no two have points in
common. Then
RUG) = V(5),
where U(0) 1s the lower bound of the areas of m-gons circumscribed to A~
with m= 6.
The notation U(6) is in conformity with that of Lemma 2, Corollary.

FEJES TéTH'S own version of his proof is very compact, and we have
found it desirable to expand it.

IX.5.2. The stages in the proof of Theorem VIII are enunciated for
convenience as propositions.

PROPOSITION 1. Let S be a convex open 2-dimensional polygon and
let A, (1=r=R) be open convex sets packed in . Then there are open
convex polygons 2, (1<r<R) such that 2, contains X, and

(i) the 2, are packed in H#,

(it) if o is a side of 2, then either,

(71,) © is part of the boundary of 3,
or

(11,) there is a subsegment o' of O containing more than a single point
which is part of the boundary of a 2, (s=k7), and

(11i) if o is a side of H then some subsegment &' of H consisting of
more than a single point is part of the boundary of some 2,.

Note that the ¢, are not required to be similar to each other. We
shall give two proofs of proposition 1. The first is by transfinite induc-

1 Mr. H. L. DaviEs has pointed out that this Proposition is false as it stands by
giving a counter example. The proof of Theorem VIII can, however, be salvaged.
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tion (ZorN’s Lemma). It involves the minimum of geometric argument,
but is non-constructive. The second, which will only be sketched, gives
a process for constructing the 2, in a finite number of steps.

If {7} and {""'} arc two packings of R open convex sets in J¢,

we write
{7y < (A"}

if A, contains &, for 1 <7< R, not necessarily strictly. We denote the
set of all such packings by II and verify three statements about the
symbol <

(I) I {7} <{A"'} and (A"} <{H"} then {H"}={X""}, in the
sense that the sets X, and ¢, are identical for 1 <7< R. This is
trivial.

(IT) If {7} <{oA™""} and (A"} <{H""'}, then {X"} <{X"'}. This
1s again trivial.

(ITT) Suppose that Mis any subset of the set of packings I7 such that
if {7} and {o"'} are in IT then either {H"} <{A"'"} or {Jf”} <{A'}.
Condition (III) states that then there is some packing {f }in 1T (not
necessarily in H) such that {f} < {f} for all {¥”} in 1.

To prove (I1I) we take for .)f the union of X, for all {of} in I
We must verify that {f } 1s a packing of convex open sets, and do this
for the propertles in turn:

First, Jf is open. For if % is a point of .}t” then it is a point of J
for some packing {#"'} of I1. Since A, is open, a neighbourhood of 2,
is in X, and hence also in .%7,, as required.

Secondly, J?, is convex. For let 2,, 2, be any points of .%7,, say,
€], z,€ A, where {7}, ("'} are packings of I1. By the hypotheses
of (III) we may suppose, by interchanging 2, and 2, if necessary, that
{H'} <{X"}. Then 2,4, (A, . Since 2,6 X, , the whole segment

ty+(1—tey, (0St<1),

isin X;; and so in .9?,, as required.

Thirdly, 9[7, and Jﬁ have no points in common if r<=s. For suppose
2,6 X, 2o K. Then 2o X}, 2o, for some packings {"}, {# "'} in 1],
where again without loss of generality {#”} < {X"'}. Then zy¢X, CX,’,
$0 %, is common to X,  and X¥;’, contrary to the hypothesis that {"'}
is a packing. This concludes the verification of (I), (II} and (III).

We say that a packing {f*} is maximal if
Ay < {A7}

Cassels, Geometry of Numbers 16
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implies {o¢*} ={X"'}. By ZorN’s Lemma, since (I), (II), (II1) are satis-
fied, to any packing {f} there is at least one maximal packing {#*}
such that
A} <{A™3.

But it is easy to see that in a maximal packing {#™} the sets H#7 must
be polygons 2, which satisfy the conditions (i), (ii) and (iii) of Proposi-
tion 1. Since this will be clear from the constructive proof which we
give later, we do not give the detailed argument here. This concludes
the first proof of Proposition 1.

We now sketch a second, constructive, proof of Proposition 1. The
fundamental process is this. If X" is any open convex bounded set and

rd

Bounda')

Boundary of 8

Fig. 12. 2’ consists of )] together with the shaded region

P is any point not in ¢, then the open convex cover of X" and p is the
least convex set which contains ¢ and has p as a boundary point:
that is,  is the set of

tp+(1—19)gq, q<x, 0st<1.

If p is on the boundary of X", then the open convex cover of ¢ and
is just &#". Otherwise the convex cover has as boundary the two tac-
lines from p to X together with a portion of the boundary of .

If now X, ..., #y are the sets of Proposition 1, we form the-poly-
gons 2, by successively taking the convex covers of the sets J and
suitably chosen points. Let @ be any point on the boundary of J¢;
and a a tac-line at @. Consider points q on « along one direction, say,
to the right of @ (see Fig. 12). If g, is to the right of q,, then the open
convex cover of g, and X contains that of ¢, and ;. For some ¢
to the right of @ on « it is possible that the open convex cover of ]
and q overlaps some other body £} of the original packing. Since the
X, are open, there is then a p fartherst to the right along « such that
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the open convex cover of p and J; contains no points of any X, (r=1).
It is possible that p = a. We then get a new packing {2} on replacing
X, by the portion of open convex cover of ] and p which is in! .
If the open convex cover of p and ] does not meet any £, (r<=1)
for all q to the right of @, then 7 is to be the set of points in 5 which
are in the convex cover of ] and any point g to the right of @ on a.
Similarly one may consider points to the left of @ along a.

We may repeat the process on the new sets {#”'} and will indicate
how after a finite number of steps it must come to an end with polygons
2, have the properties (i), (i), (iii) of Proposition 1. We denote the
sets at the j-th stage by {X7}, so {#77!} < {¥7}. Suppose first that
there is a pair of indices 7, s such that 27 and X7 have a boundary
point @ in common. Then J+!, #7*+! are obtained from ¢, A7 by
taking o to be a common tac-line (Chapter IV, Lemma 6) to X, o7
at @ and by applying the above process both to ¢ and 47 and both
to right and left along a. Once this has been done for a pair of indices
7, s at the j-th stage we do not do it again for the same pair of indices at
a later stage. If there is no pair 7, s of indices for which X, 7 have
a common boundary point and which have not already been treated,
then there may be a body J# with a boundary point @ on the boundary
of /. If so, we take a to be the side of J# on which a lies (both sides
in turn if @ is a vertex of ) and apply the process. Again, once this
has been done for ] and a side of # we do not do it again for the
same r and the same side of 3#. Neither of the first two steps may be
allowable. Suppose that one of the 7 is not a polygon. Then a is
taken to be any point on the boundary of 7 which is not in a line-
segment forming part of the boundary of X} nor on the boundary of
A (s4=7). Finally, if all the A7 are polygons and the first two stages
are impossible, then @ is taken to be any vertex of a ¢, at which at
least one of the two sides is not also a tac-line to some X7 (s==7).

It is clear that the steps outlined above will come to an end. And
the final set of X7 is clearly a set of polygons 2, having the properties
(i), (ii), (iii) of the enunciation.

IX.5.3. The next stage is an application of EULER’s formula (Lem-
ma 4) to the configuration of Proposition 1.
ProposITION 2. Let 2, of Proposition 1 have q, sides (1=r=R).

Then?
o 3, <6R.

In the application of EULER’S formula, the faces will be the polygons
2, together with 4, the set of points not in or on the boundary of #.

! The reader is reminded that o is the set in which the X are packed.
% The proof assumes facitly that every vertex of # is a vertex of a 2,.

16*
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Lemma 4 is not immediately applicable, since not every point is in or
on the boundary of a 2,. The set of points which do not enjoy this
property is clearly open and so consists of a finite number %, ..., ¥,
of connected open sets. By (ii) and (iii) of Proposition 1, any one of
these sets, say, % cannot contain the whole of a side o of a 2,. We
now apply Lemma 4 where the “‘vertices’’ are of the following kinds

(«) the sets & (1<IS L),

(B) points not on the boundary of an % but on the boundary of
at least three 4, (0=7<R),

(y) vertices of 3.
The “edges”, for the purpose of Lemma 4, are the segments of the
sides of the 2, joining the “vertices”. Then every side of 2, gives rise
to at least 1 but possibly more “‘edges”. Let g, be the number of “‘edges”
surrounding 2,, so

4249, (1)

Since every “‘edge’ belongs to precisely two 2, (0=r<R), the number
of “edges” is
S =

o ol

gr- (2)
<r<R

Let 5 have precisely & sides, so
h=6. 3)

Every vertex of type («) or (B) above belongs to at least three 2,
(0=7r=R) and there are at most % vertices of type (). Vertices of
type (y) are on the boundary of 2, and at least one 2, (r4=0). Hence
the total number of “vertices”” N satisfies

JN<h+ 2 g, (4)
0sr=R
Finally, the number of faces ¢ is
p=R+1. (5)
From (1), (3), (4) and EULER’S
g+N=542

(Lemma 4), we get
3 ¢, <6R — 6+ 2h.

0SrER
But clearly go=¢,=#, by (1), and so, by (1), (3),
2 9,< 2 qS6R.

187<R 1<r<R

This concludes the proof of Proposition 2.
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IX.5.4. The proof of Theorem VIII is now comparatively rapid.
Let U{t) and Z,, ¢, have the meanings they had in Lemma 2, Corol-
laries 1, 2 and Propositions 1, 2. Clearly

V(2,)2Ufg) (Usr<R);
and so

V)2 ZV(2,)2 XU,

since the 2, are packed in J#.
Hence by Corollaries 1, 2 to Lemma 2 and by Proposition 2 we have
RV(#)z T R Ulg)2U(R? T ¢} 2 U).
1=r<R 1sr=R
This is just the assertion of Theorem VIII, and so concludes the
proof.

1X.6. Cylinders. We now make the application of Theorem VIII
to the lattice constants of cylinders adumbrated in §1.5.

THEOREM IX. Let X~ be a convex symmetric 2-dimensional star-body
and € the set of points

C: (%, %, %) (%, %)€X, | <1
Then
A€) = A(X).

We may suppose without loss of generality that 4", and so %, is
open since the presence or absence of boundary points does not affect
the value of the lattice constants A(¥), A(¢). It was shown already
that

A®) < A(x)

whether or not ¢ is convex, so it remains only to show that
a(N) 2 A(X) (1)

for any ¥-admissible lattice A.
We prove (1) by computing in two ways the number N =N(X) of
points of A in a large cube
%] <X (1=57<3).
In the first place we have the trivial estimate
diN N =2X3+0(X?¥ (2)
as X— oo.

By Theorem III, since A is ¥-admissible, it gives a packing of } €.
Let C be the set of N cylinders

i€ +a, (3)
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where
acA, max|a]<X. (4)
7

These cylinders are all contained in the cube

rn’axlx,-|<X+R, (5)

if $% is contained in |®|<R. We consider only the packing of the
cylinders C in (5).

For |y|<X +R, let L(y) be the number of cylinders of C which
meet the plane x, =y, that is the number of a< A satisfying (4) for which

las—y| <3
These L(y) cylinders give rise to a packing in the square
% <X+R (7=1,2)
of L(y) sets similar and similarly situated to 3¢". Hence
L) U'(6) <4(X +R)? (6)
by Theorem VIII, where U’(6) is infimum of the areas of circumscribed

m-gons to 1 ¢ with m<6.

But clearly
X+R

[ Liy)ydy=N

—X-R
from the definition of L(y). Hence
U'(6) N < 8(X + R)3, (7)

by (6)-

Since R and U’(6) are independent of X, the comparisen of (1) and
(7) as X — oo gives

adiN) = U(6).
But
U'(6) =443 H) = A(XF)

by Lemma 3, Corollary. This completes the proof of (1), and so of the
theorem.

IX.7. Packing of spheres. The unit sphere
2, |®| <1

in # dimensions has volume
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where I’ (1 + —}) is the usual gamma function. In this section we estimate

the lattice constant
I =4(92,); (2)

and are primarily interested in the behaviour of I, when # is large.

In the literature it is customary to use y, defined as the lower bound
of the constants y, such that every positive definite quadratic form
2. f;;%;x; in n variables represents a number <y, |det(f,;)|'"* (, HER-
MITE'S Constant”). By the arguments of Chapter I, §3 we have

va =12 (3)

We shall need to know the asymptotic behaviour of the volume V,.
From STIRLING’S formula! we have

lim n V" =27, (4)
where
e= (r)7L

From MiNkowskr’'s convex body Theorem and the Minkowski-
Hlawka Theorem we have

{2t} Y,z 2277, (5)

where { (n) is RIEMANN’S function. These inequalities lead by (3) and
(4) to

limsup ny, '< 2ne (6)
and
liminfny, = Lme. (7)

Of course the factor 2{(n) in (5) has no effect in (6) and might as well
have been replaced by 1. Indeed none of the improvements of the
Minkowski-Hlawka Theorem discussed in Chapter VI affect the constant
on the right-hand side of (6). On the other hand, BLICHFELDT (1929a)
has improved (7) to

liminfny, ' = me, (8)

which appears to be the best asymptotic form to date2 The argument
is a purely packing one and makes no use of the fact that only lattice
packings are relevant to (8). BLICHFELDT'S results have been improved
by RANKIN (1947a), and yet further, by a more perspicuous argument,

1 See any reputable text book on analysis, for example WHITTAKER and
WaTtsoN (1902a) Chapter XII.

2 The improvement in (8) announced by CHaBAUTY (1952a) is not correct,
see the review by RankinN in Maths. Reviews 14, §41.
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by RoGERs (1958c¢). Their methods yield considerable improvements
for small values of n, but do not improve the constant in (8).
BLICHFELDT’S methods may be applied to other sets than spheres,
see RANKIN (1949a, b, ¢) and 1955a and the literature cited there.
There is a detailed discussion of the non-lattice packings of 3-dimen-
sional spheres in FEJES T6TH (1953a), see also S. MELMORE (1947a).
I have been helped by my recollection of a seminar talk by Professor
RANKIN in Cambridge in the late 1940s on BLICHFELDT'S method.

IX.7.2. We observe first that BLICHFELDT’S Theorem I of Chapter 111
may be generalized to packings and indeed takes a quite simple shape.
Let & be any bounded n-dimensional set and suppose that the sets

S=S+x, (Sr=<R) (1)
are packed in some set . Then trivially

V(7)ZRV(Y). (2)

Suppose now that there is some function ¢ (&) of the vector variable
@ such that

i) ¢@ =0 if [®|=p  for some p
and

(i) p@)=Yo@—x)s1 for all x,

whenever (1) is a packing of <.

Let I (p) be the set of points at a distance <p from &, including
the points of J itself. Then, in the first place,

f(f)tp(w) de<V{7T(e)} (de=dx,...dx,) (3)
@
by (ii) and, on the other hand, by (i)

f(f)w(m)dw=}:f¢(m—‘mr)dw=Rf¢(m)dw=RV(<P) (say), (4)

since all points with ¢ (x—,) 30 lie in J(g). The comparison of (3)

and (4) gives
REV{T@)V(g). (s)

Of course the characteristic function of &, which is 1 on % and 0
elsewhere, has the properties (i) and (ii). With this as the function ¢,
the inequality (5) is rather weaker than (2), because we have replaced
V(T) by V{7 (0)}: though of course this can be avoided by a refinement
of the argument. BLICHFELDT observed that there are sometimes
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functions ¢ which give a better estimate than the characteristic
function.

For example, if & =2, is the sphere of unit radius, the necessary
and sufficient condition that open spheres of radius 1 and centres @,, x,
shall not overlap is | @, —a,] = 2. The following lemma may be regarded
heuristically as showing that, in a packing of spheres, a point may be
on the boundary of two spheres but cannot be too near the boundaries
of more than two spheres simultaneously.

LEMMA 4. Put

p(x) = max{0,1 — }|z|?}. (6)
Suppose that ®, (1=r=<R) are any points such that
e, —x|=2 (I<r<s<R). (7)
Then
2 oE—x,)<t (8)
1<rsSR

for all points x.
We may clearly suppose without loss of generality that
0<g@E—x)=1—%x—2a
for 1<r<R.
If y,,..., yx and y are any real numbers, we have
ROy —y)=2Z =y + Ry = 2y, 2 2Ly, — )"
14 i 4

r<s r<s

Hence, on applying this to the individual co-ordinates, since |®|*=
224+ 2%, we have

R Y |e—w|?2 ) |x,—x|t=22R(R —1),

1=rsSR r<s

by (2). But this is just the same as (8).

From this we have almost immediately

THEOREM X. Let ®, (1=<7r=<R) be poinits in the n-dimensional sphere

x| <X, 9)
and let
e, —x|=2 (<r<s<R).

Then

Rg2m (1 + —;i) (X + 28", (10)
If p{x) is as in Lemma 4, we have

V) = [e@)de= [(1— 1 |a|dz =22 (14 2]V,

Jaejt<2
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where V, is the volume of the unit sphere. The result now follows from
(5), since . (g) is now the sphere

|®] <X + 2%,

which has volume (X + 24)"V,.
CoROLLARY 1. The lattice constant I, and volume V, of the unit sphere
|| <1 satisfy
Lz27"(1+ —})_IV,,.

If A is admissible for x| <1, then the points &, of 2A satisfy the
conditions of the theorem. The number of points of 2A in

T x| <X
is
{deN}YVIT) +0(X*Y) = 27™{d (N}TXV, +0(XY).

On comparing with the theorem and letting X— o, we obtain the
required inequality.

COROLLARY 2.

liminfny,'= me,

where yr =172

This follows from Corollary 1 and (4) of § 7.1.

IX.8. The product of n linear forms. Denote by .4, the n-dimen-
sional set
Mt (%03, <1,
and let

The set A, plays an important part in algebraic number theory (see
Chapter X), but the only precise values of ¥, known are

=754 =7

given by Chapter II, Theorem IV and Chapter X, Theorem V respec-
tively. Here we shall be concerned with estimates for », when » is large
rather as in § 7. For information about what is known for n =4 or 5
see Chapter I1, § 6.4.

In Chapter I1I, § 5.3 we already gave MINKOWSKI'S estimate

nn
AHyz"
which by STIRLING’S Formula, gives

liminfy,=2e=2.71828....

n-> 00
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BLICHFELDT has given an elegant proof that
liminfy, = (2a)lel =5-30653...: (1)

and this we obtain in this section.

The estimate (1) is not the best yet found. RocErs (1950a) has
shown indeed that

li”m ior:fv,, 24n e =5.70626....
His intricate and laborious proof may be regarded as an elaboration of
BLICHFELDT’S.

Since A, has infinite volume, there is no estimate of A(.4,) above
from the Minkowski-Hlawka Theorem. Indeed, work of ScHOLZ (1938a)
on the discriminants of algebraic number fields gives some reason to
suspect that lim supv,=o0.

n— 00

In § 8.2 and 8.3 we give two lemmas and then in § 8.4 BLICHFELDT'S
proof of (1).

1X.8.2. The following Lemma of SCHUR (1918a) also occurs in the
theory of the ““transfinite diameter”” in analysis.

LEMMA 6. Let &, ..., &, be real numbers. Then
IT (& — &)< 9, (Z 5?‘)*'"""-”, (1)
i<j i
where
By = {m(m — )} AmO g2 22 2)
The continuous function ] (£;—¢&;)? of the m variables ¢; attains its
1<y
maximum, & say, on ) £=1, say at &,=u; (1<7<m). Then, by
homogeneity,
(Z 53)—§m(m—1)ﬂ (&~ 5,-)2§19 (3)
1 1<t

for all £;, with equality when (£;) =(»,). The derivative of the logarithm
of the left-hand side of (3) with respect to each variable must vanish
at the maximum (§;) = (n;); and so

1 m{m—1)n; .
= 1815 m), 4
Za - (sism) )

since X n? =1. Let

fm) =TT (n—n,) (5)

[

be a polynomial in the variable . Then (4) is

) _ m(m—1)n; (6)
2f'(n.) 2 '
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The polynomial
k() =1"(n) —m(m —N)nf(n) +m?(m —1)f(n)

is of degree at most m —1, since the coefficients of ™ vanishes. By
(5) and (6) we have k(x,) =0 (1=¢=<m); and so k(z) vanishes identically:

f'(n) —m(m —1)nf(n) +m*m —1) f(n) = 0. (7)

The difterential equation (7) determines f(7) completely in terms of, say,
(0) and f'(0). Hence we may determine the symmetric functions 3’ %}
and J] (;— 7;)* in terms of #(0) and f'(0). Since X7} =1 and the coef-
ficient of %™ in f(y) is 1, this determines f(») completely, and so also

I (i —mj*= 9. (8)

It is simpler, however, to use a more indirect approach which will now
be described.

The resultant of two polynomials, say,

e =1I1n—w), v =1I]n—4)

15is] 1575)

with highest coefficient 1 is defined to be

Rip,y) = 1177 (0, — B)) (%)
= H '/)(a:) (92)
= (—1)”17_7 ®(B;) (%)
=(—1)"7 Ry, 9). (9)
If
wln) = I n—w)
1sksK

is a third polynomial with highest coefficient 1, and if

w(m) =Ay(n) +x0) ¢0)
identically for some number A4 and polynomial y(7), then

R(p,w) =1 Rip,y), (10)
by (9,).
In particular, if f(5) is defined by (5), we have
8= IT (n,—n)t = (= Y [T /'tn)
1Si<jsSm 151Sm (11)

= (— ) Um™ R(f, f),
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where

hin) =m2 [ (n)
has highest coefficient 1. More generally, put

fuln) =B g

so that f,(n) has highest coefficient 1. Then on differentiating (7) %
times one readily obtains

(m —k —1)fryo(m) —mim — ) nfy 1 (n) +m(m —1) fr(n) =0. (12)

Hence

Rifufrss) = Rlfrsn ) = {2 Ry fred . (19)

m(m — 1)

on using the rules of operation (9,) and (10). But f,(5)=1 and
fm—1(n) =n+y for some number y (in fact y =0); so

R(fp1,fm) =1 (14)
by (9,). The required value (2) for ¢ follows now from (11), (13) and (14).

1X.8.3. We also require an estimate of the number #,, occurring in
the last Jemma.

LemMma 7. If
G,=1-2%....m"
then
limsup {m-2logG,, — }logm} < — 1.
Put
glx) =xlogx (x>0).
Then

g'(x) =logx +1
increases with x; and so
glx+1) +elx—1t) = 2¢(x) (1)

for any ¢, since if £>0 we have

glx+14) —glx) =tg'(&)
g(x) —g(x—1t) =1g'(&,),
where &, <x <&, so g'(§;) <g'(&).
In particular,

I+ 4

fgx)dx~f{gl+t+g(l—t}dt>g (2)



254 Packings

for any integer I. Thus

m-+ g
1OgG,n=2SIZS g(l)S!g(x)dx =g (m+3)>Plog(m +3) — 3(m+3)*+y,

where y is independent of m. The required estimate now follows at once.
CoRrOLLARY. If &, ={m(m— 1)}~ 4""=DG_is the number defined in
Lemma 6, then
lim sup {m~%logd,, + 3 logm} < — 1.

This is immediate. It is not difficult to see that “lim sup” may be
replaced by “lim”, but we do not need this.

1X.8.4. We can now prove BLICHFELDT'S Theorem on the product
of linear forms discussed in § 8.1.
THEOREM XI. Let v}, be the lattice constant of the set

N |x.x,] <1
Then
liminfy, = (27)tet. (1)

Let A be a lattice which is admissible for /] and let m be an integer
whose value will be settled later.

Consider the sphere

2: |x|<op,
where g is chosen so that
V(D) =md(N);
that is
"V, =md(N), (2)
where ¥, is the volume of |®|<1. By BLICHFELDT'S TheoremI of

Chapter III, there are m points @, ..., &, in £ whose differences
x;—x; all lie in A. Put

T, = (%5, e %) (tsism),

and write

Sk——Zxk, (1SkSn)

1<ism
Then
Z Sk Z |az,[2<m92,

1<ksn 1Sism

and so
< (7 2"

by the inequality of the arithmetic and geometric means.
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Now let

Then, on the one hand
'Pk é ﬁm S%m(m‘l) (4)

by Lemma 6, where &, is the number defined there. On the other hand,

IIR=11 @, —x,),

1sksn  1gi<jsm
where
Hx) =x;...%,.

The points @, —@; belong to A, which is .#~admissible; and so
|, —®) =1 (i 9).
Il Rz=1. (5)

1<ksn

Hence

On eliminating B, S, from (3), (4) and (5) we get
[ M dnm(m—1)
1= 95 (%o (©

Hence, on eliminating ¢ between (2) and (6),

{d (A)}lln = f1XeXs» (7)
where

1= m_irﬂ;l/’”(’”—l),

X = nh anl "
and

X3 = w1,
Now y, is independent of » and

lim inf 3, 2 et, (8)

by Lemma 7 Corollary. Further, y, is independent of m, and

lim g, = (2me)t (9)

#—>00

by (4) of § 7.1. Finally,
Lim y, =1 (10)
if, say, m =n— oo,
Since v, is the infimum of {d(A)}'" over #-admissible lattices, and
since the product of the right-hand sides of (8), (9) and (10) is the right-
hand side of (1), this proves the theorem, by (7).
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Chapter X

Automorphs

X.1. Introduction. A homogeneous linear transformation w is said
to be an automorph of a point set & if & is just the set of points wa,
xe¥. The automorphs of a set & evidently form a group. Many of
the point sets of interest in the geometry of numbers, or which occur
naturally in problems arising in other branches of number-theory, have
a rich group of automorphs which is reflected in the set of &-admissible
lattices. Already in the work in which he introduced the notion of
limit of a sequence of lattices, MAHLER (19464, ¢) laid the foundations
for future work and indicated some fundamental theorems. Since then
much has been done but some challenging and natural questions remain
unanswered.

MAHLER (1946d, e) considers star-bodies with groups of automor-
phisms having special properties which he calls automorphic star-bodies.
In this account we prefer in each case to state the properties of the
group of automorphs which are required to hold.

We shall say that a homogeneous linear transformation w is an
automorph of a lattice A if wA =A, that is if A is precisely the set of
wa, ac . This is really a special case of the definition at the beginning
of the chapter since A is a point set. Since

d(wA) = |det ()| d(N),
we must have
det (w) = 4-1.

We say that w is an automorph of a function f(z) of the vector x if
Hwz) =f(x),

for all ®. In particular, w is an automorph of the distance-function
F(x) if and only if it is an automorph of the star-body

& Fx) <A1,
since & and F(x) determine each other uniquely. Clearly
FlwA) =F(\)
for a lattice A if w is an automorph of the distance-function F(a), since

P =),

by definition.
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If & is any point set and T a non-singular homogeneous linear
transformation, then

Ax ) =|det(x)| 4(5),

since a lattice A is admissible for & if and only if *A is admissible
for T &.

In this chapter we shall make great use of the properties of homo-
geneous linear transformation expounded in Chapter V, § 2. In par-
ticular we write

¢=p+to, Y =po
if
pr=px+ox, Yxr=plox,
respectively for all .
X.1.2. We first give three theorems which are already in MAHLER
(1946a, b) but not all as formulated here. We give also the proofs:

their brevity shows the power of MAHLER’S techniques, particularly in
the striking Theorem III.

TueEOREM 1. Let F(x) be a distance-function with an automorph w
such that

det (w) == £-1.
Then F(N)=0 for all lattices A.
By taking w™ instead of w if need be, we may suppose that
|det (w)| < 1.

If there is a lattice A with F(A)==0, then there is a critical lattice M
for F(x)< 1, by Theorem VI of Chapter V. But then

FlwM) =FM) =1,
and
d(wM) =|det (w)| (M) < d (M),
in contradiction to the definition of a critical lattice.
For example, Theorem I shows that

EARS

is of infinite type since it has the automorphs x;—>1x, x,—>4x of de-
terminant 2. This was our example of a star-body of infinite type in
§ 5 of Chapter V.

TueoreM I1. Let F(x) be a distance-function. Suppose that every
point &, with F(xg) =1 is of the shape

Xy =wc,, (1)

Cassels, Geometry of Numbers 17
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where w is an automorph of F, and ¢, 1s in a compact set €. Then for
every lattice \ with F(N) =1 there exists a lattice M with

FM) =1, d{N) =dM)
having a point in €.
Since F(x) is continuous, the set €’ of points c€¥ with F(¢) =1 is
compact if € is compact. Since ¢, as defined in (1) has F(e,) =F(x,) =1,
we may suppose without loss of generality that

F(e) =1 (ce¥). (2
Since F(A) =1, there is a sequence of points @, ¢/, not necessarily

distinct, such that
Fla)=z1: F(a,) —1 (r > ).

Then b,= {F(a,)} @, satisfies F(b,) =1; and so
b' = w’ c'

for some automorph w, of F and some ¢,€€. Since € is compact, we
may suppose, after extracting a subsequence and re-indexing, that

c,—>cc¥ {r — o0).
Let
A=w, A,

Then, since |det (w,)| =1 by Theorem I, we have

F(N,)=FN\) =1, a(\)=d)
and
Fla,)c,cN,.

By Theorem 1V, Corollary of Chapter V, the sequence A, contains a
convergent subsequence, and so, without loss of generality,

A —>M
for some lattice M. Then
d(M) = lim d(A,) =d(N)

and o
F(M) =lim sup F(A,)) = F(\) =1 ()

=00

by Theorem II of Chapter V. Further, M contains

e = lim Fla,)c,,
7—>00

SO
F(M)S F(c) =1, (4)

by (2). From (3) and (4) we have F(M)=1. This concludes the proof.
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CoroLLARY. There is a critical lattice for F(x)<<1 having a point ¢
in € with Fc) =1.

For if A is critical so is M. This corollary is in contrast with the
example given in § 5.2 of Chapter V of a star-body no critical lattice
of which has points on the boundary. Note that the corollary does
not affirm that cvery critical lattice of F(x)< 1 has points on F(x) =1;
the author [CasseLs (1948a)] has given a rather artificial! counter-
example of a body F(x)<1 satisfying the hypotheses of Theorem II
and having critical lattices with no point on F(x) =1.

As an example of Theorem II consider the body A7 |, x,%,| <1
with its distance-function |x, x,%;|}. Here ¢ may be taken to be the
single point e=(1,1,1); since every point Xy={(%4, %54, X39) With
[ %10 %50 %30 =1 is of the shape

Z,=wCc,
where w is the automorph

X=X X; N=71=1)

of #. Hence there are critical lattices for 4 with a point at (1,1, 1).
If one is concerned only with the evaluation of 4(.4") and not with the
enumeration of all the critical lattices, it is enough to consider critical
lattices with a point at (1,1, 1).

THEOREM 111, Let the point-set T be a subset of the star-body &
with A(F) < co. Suppose that for every v there is an automorph w, of &
such that w,J contains every pont of & which 1s in || <<r. Then

MNT) = AS).
Clearly
AT < ANY).
By Theorem I we have det(w,) = 41, and so
AT) =A(w, 7))z A,
where ., is the set of points of & in |a|<7r. But
lim A(%) = A(S)

r—>00

by Theorem V of Chapter V, so 4(F) =A(%¥), as asserted.

Clearly one may formulate theorems similar to but more general
than Theorem III by making use of the full force of Theorems IT and V
of Chapter V. The argument used in the proof of Theorem IIT was
already used in the proof of Theorem XV of Chapter V.

! As Professor RoGERs remarks, it is quite likely that the 3-dimensional body
| %] max (#Z, #%) < 1 furnishes a natural example.

17*
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As an example of Theorem III one may take for &, J respectively
the sets
L | xxs) <1
and
T | xpxex| <1, |m| <e, |x5]<e,

where ¢ is any fixed positive number. Then the automorphism , may
be taken to be

X =r?gx, X,=relx,, X;=relz,,

where X =w,z. In this example one may deduce that a lattice A
with d(A) << A(¥) has infinitely many points in &. For A must have
a point in J for every ¢>0. If A has no point a3=0 with a,=a;=0,
this implies that A has infinitely many points in %; and on the other
hand, if @ =(a,, 0, 0) is in A, then all the points ma (m =1, 2,...) are
in A, so there are still infinitely many points of A in &. Indeed the
argument shows that for any ¢>0 there are infinitely many points
of Ain J. This sort of argument was already used for Lemma 12 of
Chapter V about the existence of infinitely many points in —1 <<x,x,<C%.
There we could prove rather more since this set was shown to be bound-
edly reducible. In § 7 we shall make a systematic study of when there
are infinitely many points of a lattice in a star-body following DAVEN-
PORT and ROGERS (1950a).

X.1.3. The point sets with a large group of automorphisms with
which we shall be concerned will be mainly constructed simply from an
algebraic form ¢ (x). For example ¢ (&) may be x, %,, x, %, %3, %, (%3 + %3)
or 2 +x3— x%, and the set & may be defined by

lo(@) <1 (1)

or
0= p(x) <1 {2

or
0<p(x) <1 3)

or
—k<op@<l, (4)

where % and / are positive numbers. Of course (2) and (3) are not star-
bodies. Apart from sets especially constructed from sets of the type
(1)—(4) to act as counter-examples, other sets with large groups of
automorphisms have proved intractable. For example the lattice
constant of

| 7, | max (3, x3) <1

is not known, though it would be of some interest in the theory of
simultaneous approximation and the problem has had considerable
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attention [see DAVENPORT (1952a) and CassiLs (1955a) and the refer-
ences given there].

We shall make continual use in this chapter of the results of Chap-
ter I, § 4 about the relationship of lattices to forms.

A particular kind of lattice plays a special role in connection with
sets of the type (1)—(4), where @() is an algebraic form. It is useful
to introduce some new terminology. If @(a) is an integer for all aeA
we say that @ is integral on A. If, further, ¢ (@) =0 for a¢ A only when
a =0, we will say that ¢ is non-null on A (the trivial zero at o being
disregarded). Finally, if there is some number {3=0 such that t¢ is
integral on A we say that ¢ is proportional to integral on A. Then ¢
is integral on |¢/'™A, where m is the degree of .

In many, if not all, cases where the form ¢ has infinitely many
automorphs and the critical lattices A, for one of the sets (1)—(4) are
known, it turns out that ¢ is proportional to integral on A,. Indeed
in some cases @ is proportional to integral on every known admissible
lattice, and it is suspected, but not proved, that no other admissible
lattices exist. In other cases, there certainly do exist admissible lattices
on which ¢ is not proportional to integral, but the critical lattices are
not amongst them.

Before discussing the general properties of a lattice A on which a
form! ¢ is proportional to integral and illustrating it with concrete
examples, it is convenient to prove a simple lemma.

LEMMA 1. Let >0 and m>0 be integers and let

plty, ..., u)
be arbitrarily given numbers for integers u, in

0su,sm (1<e=v). (5)

Then there is a uniquely defined polynomial | (w) of degree m in the variables
%y, ..., %, such that

fu) =y (u) (6)

for all integers w={(u,, ..., u,) m (5).
This is certainly true when r =1. For r>1 we use induction on 7.
We may write
/(u): Z u‘,‘g“(u,,...,u,_l), (7)
ospsm
where the g, are polynomials to be determined. For any fixed values
of u,,...,%,_,, the equations (6) determine uniquely the values that
must be taken by g, (%, ..., %,_,) in (5); and then there are uniquely

1 We recollect that the word “form’ implies homogeneity.
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determined polynomials taking these values, since we assume that the
lemma has already been proved with r —1 for r. Alternatively one
could observe that the determinant of the (m 4 1)" equations for the
(m +4-1)" coefficients in f(ux) have determinant

Il (v—u?"3o0.
0=Su<vsm
COROLLARY. Ifthey(u,, ..., u,) are rational, so are the coefficients in f.

This follows at once from the proof.

Now let ¢ be a form which is integral on the lattice A with basis
bl) veny bn- Put
f(u)=f(%1,---,u,,)=<p(2u,~b]-). (8)
7

By Lemma 1, Corollary, the coefficients in the form f{u) are rational.
Conversely if the coefficients in f(u) are rational, then ¢ is proportional
to integral on A.

We shall now describe in some detail what happens in some special
cases which have been extensively investigated.

Suppose, for example, that

p(@) =21 + 23 — 2,

so that f(u) in (8) is any indefinite ternary quadratic form of signature
(2,1) (cf. §4 of Chapter I}. No-one has yet been able to construct a
ternary quadratic form which can be shown not to take arbitrarily
small values for integral u, apart from the multiples of forms with
integral coefficients. OPPENHEIM (1953 b, c) has shown! that an in-
definite quadratic form which takes arbitrarily small values of one sign
also takes arbitrarily small values of the other. Such a form then takes
values in every interval, since

flru) =r*f(u)
and f(u) may be taken arbitrarily small of either sign.
The situation is much the same when

@lE) = 2,23 %5.

Then the function f(u) given by (8) is the product of three real linear
forms:

f(u) ZH(b;'1“1+b,z“2+b,'3“s)i (9)

1</s38

1 He also shows that if an indefinite quadratic form is not a multiple of a
form with integral coefficients and takes the value 0 then it also takes arbitrarily
small non-zero values for integer values of the variables if the number of variables
is greater than 5.
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and conversely every product of three linear forms (9) with
det(d;) +0

gives rise in this way to a lattice A. A classical theotem which we
shall prove in § 4 states that if the coefficients in f(u) are rational and
f(u) may be expressed as the product of three real linear forms and if,
further, f{u)=0 for integral u==o0, then

f(u) = fslla(ﬂjlul + Biathe + Biaws),

where f,,, B1,, f15 are numbers in a totally real cubic field & and g,
is the conjugate of §,, in the conjugate field &;.
On the other hand, there are certainly lattices A which are admis-
sible for
EXARS!

and on which x, x, is not proportional to integral. This follows at once
from the theory of continued fractions: alternatively it is not difficult
to modify the proof of Theorem VIII of Chapter VI,

A rather more interesting case is

@ (@) = 2, (23 + x3) . (10)
Since
P(x) = 2 (% + 7 %) (%5 — 4 %),
where 2= — 1, there is a connection with the cubic fields that are not

totally real, similar to that of x,x,x; with totally real fields: it is clas-
sical, and will be proved in § 4.4 that if x,(x2 + &%) is proportional to
integral and non-zero on A, then A arises from a cubic field. But there
certainly are other admissible lattices for

|2, (25 + #3)| < 1. (11)

Let v be any transformation X =< of the special type

Xi=mi%n
X,= Too ¥+ T3 %3
Xy = Tsa X3+ T33 %3,

where
T F0 T22 Ty — T3 732+ 0.

Then there are clearly constants C, ¢ depending on , such that

<>o>C>-——~-—--“p(”c)| =c>0
p)| —
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for all . Hence if A is admissible for |g(x)| <1, so is ¢ for some
number #; and in general ¢ (®) will not be proportional to integral on
gAifitison A

This does not exhaust the admissible lattices for x, (2} + #3)< 1. One way to
show this is to use the arithmetic-geometric mean inequality in the shape

|7 (25 + #3)| 2 2|7 % 7|

Hence any lattice admissible for |, #, 4| < % is also admissible for |z, (v} + 43| < 1;
for example 2~ ¥M has this property if #, #,#, is integral and non-null on M (i.e.
when M arises from a totally real cubic field); and it is easy to see that #, (¥ + #3)
cannot be proportional to integral on M. [In fact the #;-co-ordinates of M for
a lattice on which x, #,7, or #,(#3+ #3) is non-null and proportional to integral
determine the relevant cubic field completely and it cannot be both totally real
and not totally real.] More generally, one can construct admissible lattices by the
methods of Chapter VI, Theorem VIII, compare CasseLs (1955b) for a closely
related problem.

It is an interesting problem to decide for any given form ¢(x) if
there exist admissible lattices for a set | ()| <1 on which ¢ () is not
proportional to integral. CASSELS and SWINNERTON-DYER (1955a) have
considered the special cases @ (&) = %, %, %3 and 4% + 23 — x3, but they only
transform the problems into another one. For another line of attack,
see ROGERS (1953 b). It is reasonable to think that essentially new ideas
will be required even to cope with x, %, %, or x} 4 x% — 2.

X.1.4. An important part in the theory is played by so-called isola-
tion theorems. Their importance was first apparently recognised by
DAvENPORT and RoOGERs (1950a) though there are foreshadowings in
MAHLER (1946¢€) and indeed in REMAK (1925a). A new type of isolation
theorem is proved and exploited in CAssELs and SWINNERTON-DYER
(19554a).

The phenomenon of isolation takes various forms all of which state,
roughly speaking, that lattices in the neighbourhood of a given lattice
M, with certain exceptions, are much worse behaved than M itself.
Thus one result we shall prove is that if x, x, x, is integral and non-null
on a lattice M, then to every £>0 there is a neighbourhood & of M
in the sense of §3.2 of Chapter V, depending on &, such that

a1;1;1/’\|xlxzx,,,{ <e
*0
for all AeQ except the A of the shape ¢M, for a number ¢ This is a

particularly sweeping result. Perhaps more typical is the isolation
theorem for x,(¥3+ #3). This states that if

inf 2 2 —
J2M|x1(xz+xs)| 1,

x+0



Introduction 265

and if x,(« +x3) is proportional to integral on M, then there exists
an 7,>>0 and a neighbourhood & of M, such that

inf 5 (3 + ) <1 -y
*0
for all A€ Q except those of the type ©M, where 7 is of the special type
with 1,,=1,,=1,,=17;,=0 already discussed in §1.3. Note that for
X, %, %y, the number & could be chosen at will, whereas for x, (3 + x3)
both 7y and & are fixed by the lattice M.

All isolation theorems have the same general type of proof. In the
first place, it is shown that if the form ¢ () is, say, integral or integral
and non-null on a lattice M, then @(x) and M have a group Sy of
automorphs w in common; that is

plwz)=¢@E), woM=M.

For the special forms x,%,, %, %,%, and x,(x3 + x3) these automorphs
are given by the theory of units in algebraic number fields, and for
22 + x5 — x5 by the theory of indefinite ternary quadratic forms; but
we shall, in fact, find it easy to handle the group § without these
theories and using only MAHLER’'S compactness theorem!. A lattice A
near M, in the sense of MAHLER, is one of the shape

AN=1tM,

where T is near the identity transformation. Suppose that there is an
a,¢ M such that ¢(a,) takes some interesting value «. Then

plway) =gpla) =a, wely.

Then A contains the point Twa,. Although |t@,—@a,| is small when =
is near the identity, it does not follow that |Twa,— wa,| is uniformly
small for all w, since in general w may be chosen so that wa, is arbi-
trarily large. By suitable choice of w in &y one may then show the
existence of a point Twa, in A =1M having the properties desired in
the problem in question, unless the transformation T satisfies certain
conditions. Sometimes one must start not with one point a,, but with
several, @y, ..., @,, so as to eliminate = of different kinds. This general
attack will be clearer from the examples in § 5. Isolation theorems may
be used to discuss the existence of infinitely many lattice points in
regions, as will be shown, following DAVENPORT and ROGERs {1950a),in §7.

X.1.5. Before going on to the main subject matter of the chapter
we shall discuss in § 2 certain special forms and their groups of auto-
morphs. In § 3 we shall then discuss a method of MORDELL which shows

! One of MiNkowskI'’s first applications of the geometry of numbers was in
fact to the theory of units in algebraic fields.
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how a bound for the lattice-constant of an n-dimensional body may
be obtained from a bound for that of a related (» — 1)-dimensional body.
When the original #-dimensional body is of a special type having many
automorphs, MORDELL showed the argument can be carried a stage fur-
ther. In particular it gives the lattice constants of the 3-dimensional
sets |x, %, %) <1 and |x (23 +x3)|<1. In §8 we discuss briefly the
relevance of continued fractions to forms and bodies with automorphs
and the possibility of generalisation.

X.2. Special forms. We discuss first the automorphs of the form
@ (@) ={ 17 xi} { H (x3+k + x?+s+k)}: n=r+2s, (1)
15757 15kss

where both the possibilities 7 =0 and s=0 are permitted. We may
write

p@) =y@) =114, (2)
1gisn
where
=% (157=7)
zr+k=xr+k+1’.xr+s+k M=h<s), (3)
Zpstr ™ Frbp ™ VXt
and 2= —1. If the x; are all real, then z; is real for 1<7<7r and z,,,

and z,, ,,, are conjugate complex numbers for { <k <s; and converszly,
if the z; (1 <1< %) are of this shape then the x; are real. Let now w
be a real automorph of ¢(x). In the obvious way it gives rise to an
automorph @ of ¢ (2). Let Z=wz. Then

ITxa=11z ()

identically in z,, ..., z,, where the Z; are linear forms in z,, ..., z,. The
only possibility is that Z;=A4,z; where L =L(J) is a permutation of
1,...,nand A, ..., A, are real or complex numbers. For our purposes,
it is enough to consider the automorphs
Zi=hzy (1=15n), (5)
where
n 11 =1, (6)
1<isn

by (4). But the transformation w transforms the real point & into the
real point X=wa. Hence Z,,...,Z, are real and Z,,;,Z,,,,, are
conjugate complex, and so

A=real (1=5=57)

Avikr A,ysex conjugate complex (1A =<5s).

(7)
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Conversely, if the numbers A, satisfy (6) and (7), then (5) defines a real
automorph w of ¢(x).

We shall also need the transformation w* polar to w, that is the
transformation such that identically

ZuNn=2 XY,

1gign 1£In
when
X=wz, Y=w*y.

2;7‘13’1:;21“’1.

where 2, is given by (3) and

Now

wy=y; (1=1=7)

2wr+k=yf+k_iyr+s+k } (1Sk<8)
2W, ok =Yyer T 0 Y hstn o

Hence if w* induces the transformation @w* in the w-co-ordinates, we

must have
-1
W= "w,

where W =w*w. In particular, the transformation w* is also an auto-
morph of g (x).
X.2.2. We shall require also to know something of the automorphs

of the form
pE@) =21+ +x— 2, — - — 1, (1)

where possibly 7 ==#, so there are no negative terms. For completeness
we prove the well-known

LemMa 2. If @(@) is defined by (1) and x; is any point, then there
s an automorph w of @(x) such that, for some number t,

wx,=(0,...,0)
or

wx,=(0,...,0,%)
or

wx,=(40,...,0,1)

according as @ (®g) >0, @ (&) <0 or @(xg) =0.
This is certainly true for # =2, since then there are the well-known
automorphs X =wa® given by

X, =xc088 + xysind, X,=— x;sind + x,cos P (2
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for any real # when r =% =2, and by
Xi+Xo=k(nm+2%), Xi—Xo=Fk"(x,— 1) (3)

when 7 =1, n =2 and % may take any values except £ =0.

Next, the lemma is true when r =n. For we may suppose it proved
for » — 1. There is then an automorph w, acting only on the first n —1
co-ordinates such that

r=wTy=(%4,0...,0 1%,

for some #. Then an automorph w, acting only on the first and last
co-ordinates makes
w,x; = (4,0,...,0)

for some ¢. Then w = w,w, does what is required.

Finally, the lemma is true in general. For we may find in succession
automorphs w,, w,, w, such that for some numbers %, v we have

Ty =2y =(4,0,...,0, %17 0, %po)»

T, =w,x, = (%,0,...,0,0,...,0,0);
and then

Xy, =wyx, = (4,0,...,0) or (0,...,0,) or (40,...,0,%).

COROLLARY. If w s the automorph comstructed above, then the polar
w* s also an automorph.

It is readily verified that the polars of the special transformation (2)
and (3) are automorphs of ¢(®). The required result now follows by
induction.

[It is in fact true that if w is any automorph of @ (&) then its polar is also an
automorph. This is most easily proved using matrix theory. Let w for the nonce
denote the matrix whose elements are the coefficients in the transformation w
and let € be the matrix with 1 in the first » places on the diagonal, — 1 on the
remaining diagonal places, and 0 elsewhere. The fact that w is an automorph is
expressed by

wew=¢, (4)

where the dash (') denotes the transposed. On taking the reciprocal of (4) we
obtain
wlelwt=¢el (5)

But the polar w* of w is clearly w*=w’?; and so w* is an automorph of ¢ by
(5), since e1=¢€.]

X.3. A method of Mordell. In this section we discuss a method of
MoRDELL for estimating the lattice constant of an n-dimensional set
by reducing the problem to an (n — 1)-dimensional one.

Let & be any n-dimensional set, not for the moment necessarily
endowed with any automorphs and A a lattice. In ChapterI, §5 it
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was shown that if b is any point of the polar lattice A*, then there
are #n — 1 linearly independent points of A on the plane

Ty, b =0

(scalar product). The plane Ty, cuts & in an (# — 1)-dimensional set
. In an obvious sense, there is an {#n — 1)-dimensional lattice A,
consisting of the points of A in . Hence, if we can show that there is a
point other than o of the (» — 1)-dimensional lattice Ay in %, then there
is certainly a point other than o of A in &. If b,+0, for example, one
could project %, on to the hyperplane x,=0 and use Lemma 6 Corollary
of Chapter I. For this procedure to be effective, the vector be A* must
be chosen so as to give a good (n — 1)-dimensional problem in Tr,; and
so in general we have replaced one n-dimensional problem by another,
rather vaguer, one for the polar lattice, together with an (n—1)-
dimensional problem.

In this shape the technique has been applied by MULLENDER (19504a)
and DAVENPORT (1952a) to the enigmatic 3-dimensional starbody

| %] max (x5, x3) <1.
Making use of the known (cf. §3.3) lattice constant of the set
2| (2 + 25) <1,

they select a point b of A* for which b, (b2+ 82) is small and then treat
the 2-dimensional problem in Try,.

MoRDELL (1942a, 1943a, 1944b) observed that it is sometimes
possible to make the #-dimensional problem for the polar lattice the
same as the original problem; and then the #-dimensional problem is
reduced entirely to one or more (# — 1)-dimensional problems without
the need to solve an #n-dimensional auxiliary problem. The sets & for
which this procedure is feasible are those with a large group of auto-
morphs, so it is appropriate to discuss them in this chapter. From one
point of view it may be regarded as based on a generalization to non-
convex bodies of the results in Chapter VIII about polar convex bodies.

X.3.2. We first consider quadratic forms, for which OPPENHEIM
(1946a) has given a neat treatment following MORDELL (1944b).

TueoreM IV. Let I} =A(9, ;) be the lattice constant of the (r+s)-
dimensional star-body

G, K+ —at— A <1 (1)
Jor r=0,s=0. Then
L'E=2 2 min (74, I7H) (2)

where the first or second term is omitted if ¥ =0 or s =0 respectively.
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Write
(p(w):q)r,s(‘l.):xf+"'+xfﬂx3+l_"'~x3+5! ’ (3)
and
|l (A) =;Ef,\|¢(a)l (4)

for any lattice A. Then, by homogeneity,

{lol (N)+°

Lt =SUPm ) (5)

over all lattices A, with the natural convention that if |@|(A) =0 for
all A, then I} = oo0; as most probably happens when >0, s>0,
r+s=5 (see appendix A).

We show first that

{lot (VY =0{lo] (AN} a2, (©)
where A* is the polar lattice of A and
{=min(l,_, 1] ). (7)
It is enough to show that
{lol Ny =L ()] dHN), (8)

where b is any primitive point of A*. After Lemma 2 we may suppose
that b is one of the points

b,=(40,...,0), b,=(0,...,0,8), by=(40,...,0,), (9)

where b,, b,, b; occur only if >0, s> 0 and both >0, s > 0, respectively.
Consider first b =b,, where

p(by) =2 (10)

By the results of § 5 of Chapter 1 there is a basis @, ..., @, for A such
that
bja,=1, ba =0 Q2=7<n):

so that @,=(t"%, @;) and @,=(0, &;) for 7==1, where @; is an (n—1)-
dimensional vector. Hence the points of A in x,=0 form an (n—1)-
dimensional lattice M in the space with co-ordinates x,, ..., x, with
basis @; (2<7<n). Further,

d(N) = |det(a,,...,a,)] = || |det(as, ..., a,)| = {¢|2d(M). (11)
But now by (5) with » —1, s for 7, s we have

{lg,—r, | M} <027 a2 (M) =525 @by |2 (A) - (12)
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by (10) and (11). This proves (8) in the case b = b, since the left-hand
side of (12) is not less than {|g|(A)}'**~1. The proof of (8) in the second
case, when b = b, in (9), is similar except that the réles of  and s are
interchanged.

It remains to consider the case
b=0b=(0,...,0,1),
which occurs only when 7>0, s> 0, so
¢(b) =0.
There then exist a basis @, ..., a, of A such that
ba,=0 (2=7=n).

Introduce new co-ordinates x; by

! 7 ’ .
=X+ %, E=x—%, x=x (jF1,n),
so that
r 19 9 2 ’9
¢(w)=xlxn+x2 ++xr — Xpi1 T ™ Xypps—1s
and the points a,, ..., @, lie on x; =0. The points of A on x; =0 form

an (n — 1)-dimensional lattice M, and @ (@) with x; =0 depends only on
the # —2 variables x,, ..., x,_;. Hence |@(x)| takes arbitrarily small
values on M; for example, by the degenerate case of MINKOWSKI'S
convex body Theorem, there are points of M other than o with

=0, |x<e (@2=Zj<n—1),

where £>0 is arbitrarily small, since this set has infinite (n—1)-
dimensional volume. Hence (8) holds also when b = by; and so generally.
This concludes the proof of (6).

We may also apply (6) to the lattice A* with its determinant
d{(A*) =d*(A) and its polar lattice A:

{lel A9y <2{]g| (N}d2(N). (6)
On eliminating |@|(A*) between (6) and (6’), we obtain
{|<P| (/\)}(r+s) (r+s—2) éc—2(r+n {d(/\)}2(f+s—2)_

This implies the required result {2) on using (5) and (7).
In general there is no reason to expect there to be equality in (2),
but this sometimes happens, as in the following

COROLLARY.
I;,o =7, I; 2 =

»

s
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By Theorems III and VII of Chapter II, we have
I o= 274, I;,l =1 ,= (3

Hence the thcorem shows that I} o and I; , have at least the values
specified. The forms
i+ x50 + (o 2)* + (% + 7)* + 2}
and
22— xE xR Xy b X Ky 20 % 2%, X,

have signature (4, 0), (2, 2}, and determinants 1, 2 respectively and do
not represent members less than 1 in absolute value for integer value
of the variables not all 0, as is easily verified. This proves the corollary
on making use of the relationship between forms and lattices of Chapter I,
§ 4 (especially Lemma 4).

Again, as MORDELL observed, Theorem IV gives I3 , once I} , is
known. Again, the method of proof of Theorem IV gives the lattice
constant [1, see OPPENHEIM (1953 b)] of

0<ai+4 a2 — 23 —al <,
once that [, see DAVENPORT (1949a)] of
0<al+ x5 — 25 <1
is known. These sets are not star-bodies. It is necessary to choose the
point b of A* so that b} 4 b3 — b3 — b} is numerically small and negative.
It is possible to use MORDELL’s method to obtain information about the

critical lattices when there is equality in (2). We do not do this here
since we shall do something similar for products of linear forms in § 3.3.

X.3.3. Before applying MoRDELL’s method to ternary cubics we
must translate Theorem VIII of Chapter IT out of the language of forms
into that of lattices.

LeMMA 3. The lattice-constant of the 2-dimensional set

lp @) <1, (1)
where
p(@) = 2 %5 (2%, + %), (2

is A(T) =74 There are precisely two critical lattices, My and M,. These
lattices have only o in common.

Let 9,3, be the roots of
P+ —20—-1=0 (3)
tn some order. Then the lattice M (8,7, ;) with basis ay, a, defined by
7”'“1= (792—"493:793_191)’ 7*“2={"91("92_193):192(03—01)} (4)
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is ome of the two critical lattices. If &, 03, 0y is a permutation of §,, 3,, ¥,
then M@, 9y, 05) =MDy, 05, 34) if and only if the permutation is an
even one.

The geometrical purport of the lemma becomes clearer if new co-ordinates
1. ¥, are introduced by the equations

*1= Y1 X2=_‘12‘y1+123‘}’2,
SO _
IR T Y
1 2 2 1 2 2

In y,, y, co-ordinates, the region J has three asymptotes at an angle of 2n/3
and is carried into itself by either a rotation through 2x/3 round the origin or by a
reflection in an asymptote. The two critical lattices given by the lemma are then
each invariant under a rotation through 2s/3 and each is carried into the other
by a reflection in an asymptote. The reader may find it instructive to draw a
figure of the critical lattices each with 6 pairs of points on the boundary. For a
treatment of sets 4’ which have similar symmetry and convexity properties to
J by the geometrical methods of Chapter III see BAMBAH (1951a).

In what follows we do not introduce y,, y, as above but we do maintain the
essential cyclic symmetry between x,, x, and — x,— x,.

We note that the roots of (3) are

01=2cos—27£, 02:2cos47n, 03=2c0567”, (5)

so that &, 9,, &, are a permutation of &, 0,, ©,. We have the trivial
identities
0, =60;—~2, 0,=0;—2, 6,=05—2, 0,=1—0,— 06} etc. (6)

The value of A(J) follows at once from Theorem VIII of Chapter I1,
so it remains only to verify the statement about the critical lattices.
By Theorem VIII of Chapter II, if M is critical there is certainly a basis
a,,a, of M such that

Yl @+ u, @) = — fo(uy, uy), (7)
where
foloy, ua) = 0 — uf uy — 20y 045 + 03, (8)

for one may interchange the two elements of the base given by Theo-
rem VIII of Chapter Il or take —a, for a, (k=1,2). Let

a4, = (a1, 45,) (R=1,2), 9)
and define numbers a;, by
Ayt 83+ a3, =0 (kh=1,2). (10)
Then (7) becomes
H (@, + ajpup) = [1 (4, + O, u) . (11)
15753 isj<s

Cassels, Geometry of Numbers 18
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Hence
aj,="%;a;; (=1,23), (12)

where &, #,, ¥, is some permutation of @,, @,, ©,. From (10) and (12)
we have
Aajy =1, — 0,
Aajy =901 — ¥;40)
where #,=17,, #;=%, and 4 is some number. By (11) we have

Hai1=1,
1

} (7'=11213)» (13)

and so in fact

A2 = ("91 - 02) (02 - "93) (¥ — "91) (14)
=47, (15)

where the value +7 may either be checked directly from (5) or from
the fact that the square of the right-hand side of (14} is the discriminant
of the cubic f,(#,, #,) by definition (§ 5.1 of Chapter II). We note that
9y, ¥, ¥; determine @, and @, absolutely uniquely, by (14).

But now we have the identity

folw +v,9) = fo(—v,w).
Hence if the point a; of M (&, #,, 9;) is defined by
a,+a,+a;=0,
we have
(1 @y + uy @5) = — fo (22, %)
and so @,, @, must correspond to a permutation 9y, 9, 95 of 9y, 3,, &y;

and it cannot be the identical permutation by the last sentence of the
previous paragraph. Hence the cyclic change of bases of M (8, 3,, ¥;):

(a;, a,) — (ay, @;) — (a3, @;) — (@, @;) >

must correspond to a cyclic permutation of ¢, &#,, #;. Hence there are
at most two distinct lattices M (d,, #,, ), for the permutations &,, &;, &
of 6, 60,,0,.

It remains to show that M (8, §,, 9,) is distinct from M(6®,, ,, ;)
if 9, By, ¥ is an odd permutation of @, @,, ,. We may suppose now,
without loss of generality, that

191=02, 192=01’ 03=@3-
From (4), (6), (13) and (15), a point b of M(6,, ©,, @) has
Ay =PO) (=123, (16)

7
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where P(f) is a polynomial in the variable ¢ with (rational) integer
coefficients. We may suppose, by (3), that P(f) is of degree <2; and
then it is completely determined by any one of b,, b,, b;. If b is also in
M(©,, ©,, ©,), then it is also of the shape

7‘l‘b1=Q(92): 7§b2=Q(@1)r 7“’3:9(@3),

for some polynomial Q(¢) of degree <2 with integer coefficients. But
now P(6);) =Q(0,), and so the polynomials P(z) and Q(¢) are identical.
Hence

P(0,) = P(6)); (17)
and so

P(6;) = P(0,) = P(O), (18)
since P(@;) (j =1, 2,3) are conjugates'. Finally,

by=by=—0b—b,
by {16) and (18), and so
by =b,=0:

That is, o the only point common to M(6,, 6,, ©,) and M(6,, 6,, 6,),
as required.

X.3.4. We now apply MoORDELL's method to prove results for
% % %5 and x, (x5 +x2). These are equivalent to weaker forms of Theo-
rems X and XI of Chapter 2, where the relevant literature is cited.
We shall later prove something rather stronger by the use of isolation,
but will not prove the full force of Theorem X of Chapter 2 in this book.
The methods extend to products of # real or complex forms in » dimen-
sions in a way which will be obvious, but do not then give the exact
lattice constants [MORDELL (1941a) and (1943a)].

THEOREM V. A. The lattice constant of the 3-dimensional set

VAR AR (1)
1s A(A]) =7. Denote by N, the lattice with basis

b, =(1,1,1), b2=(’91:792»’93): b3=("9f:"9§»19§)’ (2
where &, 0, 0 are the roots of
P+ —-20—-1=0 (3)

in some order. All the critical lattices N of N| which have a point a for
which
|ayaya5| =1 (4)
L Alternatively, (17) means that P(®} —2)= P(@,); and so the polynomial
P(t2—2) — P(t) is divisible by £+ t2— 2f — 1. One may now put ¢ =@, and obtain
P(0,) = P(O),).
18*
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are of the shape
A=w N]: (S)

where w ts an automorph of A].
B. The lattice constant of

Syt |nl(d+ ) <t ©
is A(A3) =3(23)8. Denote by N, the lattice with basis

1

(1'1'1)» {'ﬂl» % (62'*'03)’ %(192 _"93)}’

1 1
{0, 5 @ +9Y, 5r 03— o),

1’ 2
where 1= —1 and O, is the real, and 9,, D, are the complex roots of
P -9 +1=0. (8)
Every critical latiice N\ for N, which possesses a point @ with
| @ (a3 +a3)| =1 9)
1s of the shape
A =W N2 N (1 0)

where w is an automorph of N5

We first prove Theorem V. A. The lattice N, given by the theorem
is certainly .#;-admissible, since a point @ of N, has co-ordinates

a;=u; + 1,9, + uz ¥} G=1,2,9), (11)
where u,, u,, u, are integers. Then a;@,a, is a rational integer by its
symmetry in 9,%,,9;. If a,4,a;=0, then one of the a; is 0, say
4+ 4y % + ;9% =0; and this is impossible unless u,=u,=u,=0, since
#, does not satisfy any equation of degree less than 3. Further,

d(Nl) = |det(b1, bz’ ba)l = |("91 - ’92) (192 - 193) (193 - ﬂl)l =7, (12)

as was verified already in the proof of Lemma 3. The lattices obtained
by different permutations of &, #,, @ in (2) all differ from each other
by an automorph of .#], namely a permutation of the co-ordinate axes.
Write
P () = %, %3 %,
and, as before,
ol () = inf|p(a)].
+o0
We show first that, for any lattice A,

{lel(NP=7{ ol (AN} N), (13)
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where A* is the polar lattice of A. The proof follows closely the pattern
of the proof of Theorem IV. It is enough to show that

{lo| (MP= 771 g(b) 8 (A), (14)

where b is any primitive point of A*.

Suppose, first, that ¢ (b) =0. Then, after applying a suitable auto-
morph of 4] furnished by § 2.1, we may suppose without loss of
generality! that

b={1,00) (15)

or
b=(1,1,0). (16)

In the first case, (15), the plane
bx =0,

which must contain two linearly independent elements of A is just the
plane x,=0, and all points on it satisfy ¢ (x) =0. Hence (14) certainly
holds in this case. In the second case, (16), there are two linearly inde-
pendent points of A on
%+ 2, =0. (17)
For these points
PE) =22 % = — X3 %y, (18)

and the 2-dimensional set |x3%,|<¢ is of infinite type for any &>0.
Hence there are certainly points @€/ other than o with |p(a)|<e.
This proves (14) in the case b is given by (16).

There remains the case when ¢ (b) =0 and so, after the application
of a suitable automorph, we may suppose that

b=(t1), t>o0, (19)
and so
p(b) = 2. (20)

We have supposed that b is primitive, and so, by Lemma 6, Corollary
of Chapter 1, the 2-dimensional set of points (x;, x,) such that

(xll X, — Xy — x2)€/\

is a lattice M of determinant

But now
Linf a0y + a)] S {7aMfi= 7R,
it } *0
1 For we may suppose that b+ 0, by=0. One gets the shape (15) or (16)
according as by=0 or b,+ 0.
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by Lemma 3, the exponent § being correct for reasons of homogeneity.
A fortiori
ol (N < 7-bab(A).
This proves (14) when b is given by (19) and (20); and so completes the
proof of (13) and (14).
On interchanging A and A* in (13) and using 4(A*) =d1(A), we

have _
{lel(AP= 72 {l9l (N} (A). (13)
On eliminating || (A*) from (13) and (13’) we obtain
lp| (N = 7714(N), 21)

s0 A(A;) <7, since N, is the set of & with |@(x)| <1; and then 4(A]) =7
since we have already exhibited an admissible lattice N,, with d(N,) =7.

It remains to consider the critical lattices A, with a point on the
boundary, and we may suppose, after the use of a suitable automorph,
that

—_—

U, 1,1)eN,  dA)=7. (22)

Clearly then the 2-dimensional lattices considered above will turn out
to be critical for the relevant 2-dimensional sets, and it is necessary
only to check that this can happen only when A =N, for a suitable
choice of #,,,,?;, where N, is defined in Theorem V. A.
We note first that
lg| (A) =772 (23)
by (13) and (13’). Hence the lattice M, of points
(%1, x9) Wwith (%, x5, — 2, — 2) e AS, (24)

which has determinant

d(M;) =d(A) =77,
must be one of the two critical lattices for
|2y 25 (%, + 25)| < 772 (25)

given by Lemma 3. But we have already seen that N, for any choice
of #,, 9,, ¥, is critical, and so the lattice

Mi = M{ (191:"92»"93)»

defined by putting N;=N, (8, ?,, %) for A, in (24), is also critical.
Clearly, by the proof of Lemma 3, both critical lattices of (25) occur as
M; (#,, 8,, ¥;) for suitable choice of &, #,, ¥;,. Hence we may suppose
without loss of generality, that

M:=M;;
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that is, the polar lattices AY and Ny are identical at least on the plane

X+ %+ %3 =0.
Let now b= (b, b,, b;) be any point of A¥ (and so of Nf) with
|60y 05] =772, b+ b+ 8,=0. (26)

Then the lattices A®, N® consisting of the points of A, and of N, re-
spectively in the plane
byx,+ boxy + byxy =0 (27)

must both be critical, in the obvious sense, for the 2-dimensional section
of |% %,%5| <1 by the hyperplane (27). By Lemma 3, there are only
two critical lattices and these have only the origin in common. Hence
AP and /\? must be identical, since (1,1, 1) belong to both lattices, by
(27). Thus A, and A, coincide on any hyperplane (27) such that the
point b satisfies (26).

But now Nf has a basis by, b, bf (say) such that b=>b{, b}
satisfies (26), for we have only to choose a suitable basis by, by for the
section of N¥ by x, 4+ x, + x;=0 and extend it to a basis for Nf. Let
b,, b,, by be the polar basis for N,. Then, on putting b =b{, by in
(25) in turn, we see that A, contains all points @ of N, such that either

bfa=0 or bla=0;
that is all points of N, of the shape either
tuy by +usby or v, by + v, by,
where u,, #,, v;, ¥, are any integers. Hence A, must contain each point
by + uy by + Uy by = (uy by + 43 bg) + (4, b, + 0by)

of N,. Since d(N,) =d(A,); we then have A,=N,, as required.

This completes the proof of Theorem V. A. That of Theorem V. B
is similar except that Theorems VII and VII A of Chapter III are used
instead of Lemma 3. The details may be left to the reader.

X.4. Existence of automorphs. In this section we prove the exist-
ence of common automorphs of a lattice A and a form g (®) which is
integral and non-null on A, and make deductions about the possible
such A in a special case.

We shall require a quantitative form of MAHLER’S compactness
criterion, Theorem IV of Chapter 5.

LEMMA 4. There is a number

Ny = Ny(n, 4,,x, &) (1)
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depending only on the integer n>0 and the numbers 4,>0, x>0, >0
with the following property: amongst any N, lattices N; (1=j<N) in
n-dimensional space such that

d(N) < 4, @
and
Al = %, (3)
there is at least one pair, say N, \;, such that
A=/ (4)

and the linear transformation t satisfies
e —uf<e flvt—fl<e, (5)

where v is the identity transformation.

We recollect that
Al = nt a], (©
*0
and that the symbol ||g|| for a linear transformation X=ox with
X;=20;,% is ||o|| =nmax |o;|.

It would be possible to modify the proof of Theorem IV given in
Chapter V but it is simpler to follow the alternative proof sketched in
§ 2.2 of Chapter VIII. We suppose we have N, lattices A;, where N,
will be determined later. By Lemma3 of Chapter VIII there is a
4,>0 and a K depending only on 4, and x, such that any A, satisfying
(2) and (3) has

d(\)=4,>0 (7)

and has # linearly independent points in the sphere
|| < K.
By Lemma 8 of Chapter V, theére is then a basis
b N

17 eee

of A; with
byl<#K  (1Si<n 1S7< N B

Let >0 be arbitrarily small, to be chosen later. Then, by (8), if N,
is greater than an N, depending only on #, %, 4,, K, that is on #, 7,
4,, x, there are two A; say A, and A,, such that

[biy— bl < (1=Si< ). 9)

Since the b;, are linearly independent, we have

”
b;s— b,y Z.Z‘lf’ﬁ b
j=
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for some numbers ¢;;. But now on solving for the ¢;; from (7), (8)
and (9), we have
loij| Sopn (1Sism, 157 ),

where g, is a number depending only on 4,K and #; a crude estimate
being
gy=nl A7 (nK)*1

obtained by estimating the elements of the matrix reciprocal to the
matrix with columns b;; (1<+=<#). Hence

ol <e

if n chosen to satisfy no,n<<e. Hence =146 has vA;=A, and
|* —1]]<e. Since A;=7"1A, we have also ||v1—t||<e, because (9) is
symmetric in Ay, A,. This concludes the proof.

X.4.2. We shall also require the following rather trivial lemma which
says, roughly, that a form @ (x) cannot be integral on too many essen-
tially distinct lattices.

LEMMA 5. Let @(x) be a form integral on a lattice A. Then there is
an n>0 depending only on @(®) and A with the following property: If
@(x) is integral on t\ and

Ie =l <=, (1)

then < is an automorph of ¢ (x).
Let ¢(x) be of degree m and let b,, ..., b, be a basis for A. If 1
satisfies (1) with sufficiently small #, we have

l(p(‘tZujbi)-—(p(Zujb,)l<1 ()
7 ?
for all integers u; such that
0OSu,<m (1<j<mn). )
Then (2) implies
i

for the integers (3), since both sides of (4) are integers. By Lemma 1,
it follows that (4) holds for all real numbers %;. Since every & is of
the shape >, u; b, with real ;, we have ¢ (var) = g (&) for all x, as required.

COROLLARY. Suppose, further, that ¢(x) is non-null on N and that
diN =4,

for some A,. Then 1 may be chosen depending only on ¢ and A, but not
otherwise on N.
For then
lp@| =1 (acA, azo);
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and so
|AZze¢>0

for some ¢ depending only on @. Hence, as in the proof of Lemma 4,
there is a basis b,, ..., b, of A with

[b|=nK (1=j=n)
for a K depending only on A, and ¢, i.e. on 4, and g. Hence all the
points Z'u:b; subject to (3) lie in a sphere
|| < n?*mK. (5)
Then (2) holds for small enough # depending only on ¢ and K, since
@ (x) is uniformly continuous in (5). Hence the corollary follows.

X.4.3. We are now in a position to prove the main theorem on the
existence of automorphs.

THEOREM VI. Let the form ¢@(x) be integral and non-null on the
lattice N\ and let & be any automorph of @(x). Suppose £>0 is given
arbitrarily small. Then there is an automorph © of p(x) with

T —1i<e, (1)
such that
w=0"“tg’ (2)

is an automorph of N for certain integers u, v with
0=u<<v. (3)

It is not excluded, of course, that w may be the identical trans-
formation.

We have
lpl (A) = inf| g (a)] 21, (4)
*0
by hypothesis, and so
lo|(@*N) =1 (5)

for all integers #. Hence
[6*Al=c>0 (©6)

for all #» and some constant ¢>0. Further,
de"N) =d(N) (7)

for all % since det(a) = -1 by Theorem I. By (6) and (7) we may apply
Lemma 3 to the 6*A (1<#<N), if N is some large enough number,
to obtain two lattices ¢“A and o"A such that

o“A =1a"A (u <) (8)
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and
v —ul<e, [lvt—dl<e. (9)

We may suppose, by choosing a smaller number instead of the ori-
ginal ¢ if necessary, that ¢<(#, where % is the number in Lemma 5,
Corollary with 4;=d(A). We may then apply Lemma §, Corollary with
o’/ instead of A and deduce from (8), (9) that = is an automorph for
@(x). Hence w defined in (2) has all the properties required.

Theorem VI becomes false if the condition that ¢(x) be non-null
on A is omitted, as is shown by the 2-dimensional example where A=A,
is the lattice of integral vectors, ¢ (®) =x,x,, and o is the automorph
%, —> 2%, ¥3—>3%,. But in more dimensions it is sometimes possible to
use the idea behind Theorem VI to construct automorphs of A even
when ¢ () may be null on A, for example, by restricting attention to
automorphs leaving fixed an element or elements of A or of the polar
lattice A*.

X.4.4. Theorem VI takes a particularly simple shape when
@ ={ IT x{ I] (21 +2.0}, ()

1gjsr 1Sk<s
where n=r-+2s, which is substantially equivalent to, but rather
stronger than, DIRICHLET’S theorem on the existence of units in an
algebraic number field. We write as usual

zr-}-k=x7+k+ixr+s+k ('1(k<8) (2)

Zopsrr = Xypp — U X poi
It is convenient to work with the 2; rather than the x;, so we shall speak
of the z; as the appropriate complex co-ordinates. We shall also say
for brevity that a set of numbers A; (1 <j=#) is compatible with ¢ (x) if
A;=real (I<i<n)
Avyrr 4,454, conjugate complex (1ZkZs).

THEOREM VII. Let @(x) be given by (1), and let 4; (1<=j=n) be

numbers compatible with ¢ (x) such that
1<i<n
Suppose that @(x) is integral on N and that £>0 is given arbitrarily
small. Then there are numbers o, compatible with ¢ (x) and an integer
m>0 such that
[Mo=t, L —1l<c (sjsw, o)
j

1<j<n
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and such that the transformation w given in the appropriate complex co-
ordinates by

iz, (175 n)

1s an automorph of A.
The automorphs of ¢ (x) were discussed in § 2.1. From what is said

there it is clear that if Z =2 is an automorph of ¢ given in the ap-
propriate complex co-ordinates and if

lle—dl<n, (4
where # is the dimension, then 7 must be of the shape

Zi=vzy (Sjsa); (5)

that is, there can be no permutation of the forms on the right-hand side:
indeed, if % is written as Z;= ) 1,,2,, the inequality (4) implies
[

|7 —1 <1, so ;€0 (ISj<4),
and the only automorphs of this kind are (5). If Z=2Az is given in
complex co-ordinates by
it follows now that A and t commute. Hence applying Theorem VI

with ¢ =A we have
w=A"%TA" =A"1,

where m =v—u. Then w does what is required.

We shall later require to know slightly more about the automorphs
w of lattices on which ¢ (®) given by (1) is integral; and it is convenient
to prove it here.

LemMa 6. Let ¢ () given by (1) be integral on N\ and let the automorph
Z =wz of N\ be given in the appropriate complex co-ordinates by

Z;=w,z (1=7<n).
Then the w; are algebraic units, that is they satisfy an equation of the type
Hoj) =0,

where
O ="+ct" - Foe, it +1=0 (©6)
for some m and c,, ..., c,_, are rational integers.

Let b,, ..., b, be a basis for A, so that

wb; = > m;,b, ()
1gkgn
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for some integers m,,. Since the w b; are a basis, we have

det(m;,) = £1.
Let
by =B -sBar)  (1=k=n) @)

in the appropriate complex co-ordinates and let B be the matrix of
which the rows are given by (8). Then (7) takes the shape

Bw=mB, (9)

where m is the matrix with elements m;, and w is the diagonal matrix
with elements w,, ..., w, on the diagonal. Hence

w=BmB,
and w,, ..., w, all satisfy the equation f(w;) =0, where

f{t) =det{tr —m),
which is of the form (6).
The two following corollaries are immediate

COROLLARY 1. wy, ..., @, satisfy the same equation of type (6) with
m=mn.

CoROLLARY 2. If w; is rational, then w;= 4-1.

Although we do not need it later it is interesting to note that Theorem VII
and Lemma 6 rapidly gives a complete characterisation of the lattices A on which
@ (x) is proportional to integral and non-null, at least when r>0. We only sketch
the proof, for details see BAcHMANN (1923a) Kap. 12.

LeMMA 7. All the lattices N on which @(x) is proportional to integral may be
obtained in the following way. Let R, ..., &, be a set of conjugate algebraic fields
of degrvee m over the field of vational numbers, where &, ..., &, ave veal and &, 4,
R, 1545 are conjugate complex (1Sk<s). Let y,y, ..., v, be lincarly independent
elements of &, over the vationals and iet ;) (1=1<n) be the conjugate of p,;, in K.
Let M be the lattice with basis

S = (V1ks 2 Vnp) (1<k<n)

in the appropriate complex co-ordinates. Then a necessary and sufficient condition
that @(x) be proportional to integral and non-null on a lattice N is that N be of the
shape
A=itM

where t is real, T is an automorph of @(x), and M is of the tvpe just described.

When r > 0, the proof is shorter than the enunciation. By applying Theorem V1I
with

h=2""1 A=1 (2<7<n),

we deduce the existence of an automorph w of g(x) and A with

w>1, o<1 (2g7<n). (10)
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Since @, ..., , all satisfy the same equation of degree #, they must all by (10)
be precisely of degree n and so conjugates. Let b, ..., b, be a basis for A and
use the notation (7), (8). Then it follows from (9) that

(ﬁ/'lx '--nﬂjn)
is an eigenvector belonging to w; of the matrix 7. But clearly m has a set of con-
jugate eigenvectors

i1 Vin)
in the fields ; generated by w;; and if these are identified with those of the enuncia-
tion it is easy to see that the lattice M has the required properties.

When » = 0, the position is more difficult since it may be impossible to achieve
that the w; are all of degree #, though it is possible to make them all of degree
in. Leta=(x,,....,a,) and b=(f,, ..., §,) be two linearly independent vectors
of A in the appropriate complex co-ordinate system. Then ¢(ua+vb) is a poly-
nomial in the variables # and v with coefficients proportional to integers, and it
vanishes for integers # and v only when u=v=0. Hence a,/f; is an algebraic
namber. Similarly, if e=(y,, ..., y,)€A is linearly independent from a and b,
then the ratios a,/y,, B,/y, are ot degree = as is also (po;+ ¢ff;)/», for any integers
p and ¢. It is not then difficult to deduce that «,/f, is in a field of degree » depending
only on A and not on the choice of @ and b; and the rest follows with some little
trouble. We do not go into details as we do not use the result.

X.5. Isolation theorems. As was stated in §1 there is a wide
variety of isolation theorems, and it hardly seems worth while to for-
mulate theorems of great generality. We shall instead consider only
three concrete cases.

We shall need the following simple Lemma which is really a simple

case of KRONECKER'S Theorem and belongs of right in Chapter XI.

LEmMA 8. Let a, 8,7y, 6 be real numbers with a6 —fy==0. Suppose
thata|Bisirrational. Thento every number £> 0 thereis ann =n(«,B,y, 0, &)
with the following property:

For any numbers A, u there are integers m, n such that
|ma +np—2 <e, |[my+nd—ul=<n.
By MinkowsKI's linear forms Theorem there are integers (m, #) %= (0, 0)

such that |ma +np| is arbitrarily small; and ma 4280 since «/f is
irrational. Hence there are integers (m,;, #n;) and (m,, n,) such that

0<|mo+mp|<e, O0<|mya+nyp|<e,

and
My Ny = Wy 1y .
Put
Xizmiocq'—njﬁ, Y, =my +mn;0 (1=1,2),
so that

| X;|<e (1=1,2), X, Y+ X,Y,.
Let g, 6 be the solution of
oX,+oX,=1, poYit+oY,=yp,
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and choose integers a, b such that

la—o|=3, [b—0|=3.
Then

|a X, +b6X,— A =|(a~ @) X+ (b — 0) Xo| S § (| K] +]|Xa]) <e,
and
' [aYi+0Y, —u| =3 (] +|Yel) =7 (say).
The lemma now follows on putting
m=am +bmy, n=an +bn,.

X.5.2. Perhaps the simplest isolation theorem is that for x,x, and
is due to C. A. RoGERSs [unpublished, but see CasseLs (1957a}, Chapter II
where an application to the “Markoff chain”, due to ROGERS, is given).

TuroreM VIIL. Let x, x, be integral and non-null on the 2-dimensional
lattice \ and let there be @, be\ such that

Gay=—a<<0<bby,=§4. (1)
Then there are numbers ng>>0, 1,>0 with the following properties:
Let © be a hinear transformation and suppose that

It —dl<m ()
and

712740, (3)
where the transformation X =vx is given by
Xi=tmut+ 7%,  Xo=1y %+ T3 %,
Then there 1s a point ¢ &= 0 of *\ such that
—a(l —7g) <cre<B(1—ma), o] <1.
We may suppose without loss of generality that

>0, b>0
and so
a, <0, by>0.

By Theorem VII, there is an automorph X=wx of A of the shape
Xi=w%, Xy=w,%,
where
O<y<ti<w,, ww,=1.
Then A contains all the points
a, = (w;"a, 07 a), b, =(w;"b,w'b,), 4)

where # is any integer, positive negative or 0.
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We must now distinguish two cases according to the sign of 7,,.
Suppose, first, that
T12> 0. (5)

Let the integer m be determined by
T 805" + T 008 > 02 14,07 "+ 14,07, (6)

as is possible, since 7,,a;,>0> T ,4,. Then

T2l gl 2 (6)
1116
Hence
wy =0(1y), (7)

where the constant implied by the O symbol may depend on a,, 4,, and
where we assume 7, in (2) chosen so that, say, |7, —1| <. Put

c=n7a,, (8)

where a,, is given by (4). Then, in the first place, it follows from (6)
and (7) that
6 =T 407 "+ 78,05 =0 (),
SO
|| <1

if 7, is chosen small enough. Secondly, it follows from (6) or (6") that

0<wye =761 — o). 9)

But now, by (7), B

e

Wy 2:721a1w2_2m‘|’722“22722“2‘*‘0(7—'12)- (10)

Put n,=%w;?. Then since a,<<0<a,, we have from (7), (9) and (10),
that
a1a5(1 —1m0) < 66,<0,

provided that 7,,, 75, are small enough and that 7,,, 7,, are near
enough to 1, which may be achieved by taking #, small enough in (2).
This concludes the proof when 7,,>0. The proof when 7,,<0 is
completely similar, except that b is used instead of a.

CoRrOLLARY. Under the hypotheses of the theorem except (3), there is
an 1, such that if
||T - l“ < "721

and T is not an automorph of x%,%,, then TN contains a point ¢ with

ayay(1 — 1) < €63 byby (1 —1,).
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For if 7 is not an automorph, then either 7,,==0 or 7, 0. If 7,50,
then the theorem applies; and if 7,,=4= 0 then the theorem can be applied
with the roles of x, and x, interchanged.

Note that Theorem VIII works with the values of x,x, at two
distinct points of A. This rather restricts its field of application. The
other isolation theorems which we shall discuss require at most knowledge
of the value of the function at only one lattice point.

X.5.3. Before discussing the isolation results for
P () = 2 %5 %3
we require a simple lemma.
LeMMA 9. Let x,x,%, be tntegral and non-null on A. To every ¢>0
there is an n>0, depending on A, with the following property:
To any numbers p>>0, 0>0 and index k=1, 2 or 3 there is an auto-
morph X =wx of N\:

Xi=wx (15753), ()

with
w;>0 (15753), Wy Wy 05 =1 2)

and
1—e< B2 <t 4, 7l"<£}<’7' 0)

For by Theorem VII there are certainly automorphs 3 and ¢ of A
defined by

%, Xi=y% (1=7=3)
respectively, with
h>1, 0<dh<1, 0<dh<t, Hdd=1,

0<1p1<1, 'w2>1, 0<Qp3<1, 1/’1’/’2'/’3:1-

Put

p;=logd;, ¢, =logy;; 4
)

hhtbetbs=01+9:+¢=0 (5)

and

P>0, $,<0, $;<0,

71<0, ¢,>0, 73<0.
Hence

P192 — Pai = P2qs — P3¢ = 0. (6)

We now show that

(1 — P2/ (g — ¢2) (7)

is irrational. If not, there would be an automorph A=23*¢"’ with
integers (#, v) (0, 0) for which, in an obvious notation, 4,=4,. But

Cassels, Geometry of Numbers 19
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then, 4, would be rational, since 4,, 4,, 45 satisfy a cubic equation with
integer coefficients by Lemma 6, Corollary 1. Hence 1,=1,=1;=1, by
Lemma 6, Corollary 2; that is

upi+vg; =0 (1=7=9),
which contradicts (6). By (6) we may now apply Lemma 8, with
A=loge, a=p—p., B=¢—q,

p=logo, y=p, 0 =gy,
and
min |log(1 + &), logy
+

or &, 7 respectively. Then
w =9" "
where m and # are given by Lemma 8, clearly has all the properties
required.
It is now a simple matter to prove
THEOREM IX. Let x,x, %, be integral and non-null on N\ and let >0

be arbitrarily small. There exists an 1,>>0, depending on g and N, such
that if

It —u<m (8)
and it is not an automorph of x,x,x5 for any number t, then the lattice
TA contains a point ¢ o0 for which

|eycacs] < g (9)

Let 7 be given by X, = > 7;;%;, when X =<a. If 7 is not an auto-

7
morph, there is a 7;,4-0 (i5=7). We shall suppose that
112:r{1:5(]1,-1-|>0, (9)

this being one of twelve possible casesl. Now A certainly does contain
some point @ with
a> 0> a,.

We shall pick one such point and keep it fixed in all that follows, so
that numbers depending only on @ and A will be said to depend only
on A, etc.
By Lemma 9 with an £>0 to be chosen later and
Q=——Z::—i:>0, o=1, k=3, (10)

1 For the maximum in (9’) may correspond to any one of the six pairs (i, )
with ¢4 7; and the maximal 7;; may be either positive or negative.
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there is an automorph w of A with

— A% 1
1—e< P <Ad+4e l<wy<y, (11)
where
n=n\zg (12)
is independent of the 7,;. Since 7,, is assumed near to 1, say | 7, — 1] <%,
it follows from (11) and w, w,w; =1 that
Mt <or <ty 0TI e <oy <y 1, (13)
where

n =n'(e, \) (14)
is independent of the 7,;.

We put
c=twact.

Then by (9'), (11) and (13), we have
ot o] =ort a7 w + 4,710, 1 437303
= wl—l{k a4, T 0+ a2112w2| + |a3113w3|}< &+ fl"%z:
where
m=mN), &=&Nz¢).

It is important that s, 1s independent of ¢&. Hence

ot o] <2xe, {15)
provided that ;, is smaller than a number depending on ¢. Similarly,
but more simply, by (9), (11) and (13),

w3 6] <wilwy|Ta 4] + | Taaas| + w5 ws| 7134

<|Ta2as| + &7,
where

& =E&(Ag);

and so
w3 '] cy| < 2a,, (16)
provided that 1, , is small enough and 7,, is near enough to 1. Similarly
wg | 5] < 2| a) (17)
if 753—1 and 7,, are small enough. From (15), (16) and (17) we have
|cicats| < 8|nyayay)e.

Since & is arbitrarily small, we may put & =8|, a,a3| ¢, where ¢, is the
number in the enunciation.
This completes the proof.

19*
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Note that we have used the full force neither-of Lemma 9 nor of
the inequalities (13).
The proofs of the following two corollaries may be left to the reader.

CoROLLARY 1. Theorem IX remains valid if |c coc5] < g is replaced
by 0<|ey6p65| < 4.

COROLLARY 2. To every g,>>0 there is an 1,>0 depending only on
N, &, such that, if
e —ul<ne

and one of 1,4, Ty, Toy, Tay 1S MOt O, then there 1s a ccx\ with
0<|eiecs] < e, o]l <1, e <1.

Corollary 1 is proved in CASSELS and SWINNERTON-DYER (1955a).
A somewhat weaker form of Corollary 2 is in DAVENPORT and RoOGERS

(1950a).
X.5.4. We now discuss
p(x) =2, (23 + 3).

As in § 4.4 it is convenient to introduce the appropriate complex co-
ordinates

H=2%, 2=ZX+i%, =% —1% (2= —1).

A transformation Z =12 corresponds to a real transformation for the
real variables @ if and only if it is of the shape

Z,~=Zk31,-kzk, (1)
where

Ti2=Tis, Ta1=Ts, Tn=7%11 Taz=7Tss, Teg=Taz (2)

and the bar (™) denotes the complex conjugate.

THEOREM X. Let

¢ (@) = x (x5 + %) 3)
be proportional to integral and non-null on N and let
A=l (Y = int | p(@)]. (@)
+o

Then there are numbers 1,>0, 1,>>0 with the following properties:

Suppose that © is a homogencous transformation in the appropriate
complex co-ordinates given by (1) and (2) such that

e — ul <o (5)
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Then
(1) If 7,=735F0, there is a c={y,,y,,ys) +0, in complex co-

ordinates, in N\ such that

|V1Y273|<A(1_772)» |)’1|<1- (6)
(1) If 150=T4,F0, there is a € =(yy, ¥y, ¥5) +0 tn TN such that
nyersl <Al —mn)),  |ya] =1yl <t (7

By Theorem VII there is an automorph Z =w=z in complex co-
ordinates of the shape

Z; =0z, www=1, o>1, ©;3=a,.

Define numbers 7>0 and y by
Wy = T2’ Wy = T‘le(x) ) W3 = T—le(_l) ’ (8)
where
() = .
If ¥ were rational, say y =wu/v, the transformation w” would have two
equal eigenvalues wj, wj, which would thus be rational and so 1,
contrary to hypothesis {cf. proof of Lemma 9). Hence y is irrational.
Thus by Lemma 8 with ¢ = }, there is a number 5,>0 with the follow-
ing property: To every pair of numbers p>>0 and yp there are integers
% and v such that
lux +v—9p| <} )
and
_ T3%
7731<T <7,. (10)

We now prove (i). Since @(x) is proportional to integral on A,
there is an @€ A of the shape

a=(n,00), w=0e@d), o={(-9), (11)
where
>0, (>0, A=«
and A is defined by (4). Put
Tie=—0¢e(y), Ty=-—o0e(—y), (12)

where ¢>0. Then ¢ is small when |t —1| is small. We now choose
integers » and v to satisfy

lux +v— (v +9) <3 (13)
[cf. (9)] and (10) with

—_ %Ty .
g - 27730_4. » (14)



294 Automorphs

so that
—2 20 T34
<L <1,
N T (15)
Since 17y, is near 1, there are two constants %', %", depending only on A
(and @), such that

o<y od<T <y ok (16)
We shall show that the point

c=tw " a=(y,y; ) (17)
satisfies the conditions of Theorem X in case (i). In the first place,
T*|n) =l m— T0l{e(@ +y—up) +e(—F—p+uy)}

=|oy1y,— 270l cos 27 (d +p — uy)| (18)
Sam(—gn) <au(—in)
by (11), (13), (15), provided that ||t — |} is small enough. Further,
T™|ys| = T7|yal S| Tarl 0 T73+4 L | 7a0] +8 | 7a| <C(1 +6) (19)

for any given ¢>>0, provided that |t — ||, and so also g, is small enough.
From (18) and (19) we then have

l717273| <oyl — - 773_2) (1+e)?<eyl*(1— 1 7]3—2) =A(1 —3 773_2)'

if ¢ was chosen suitably. Since (16) and (18) clearly imply |y;|<1 if
|®—1t|| is small enough, this completes the proof of (i) of the theorem
with 7,=3 5%

The proof of the second part is similar on considering Tw*a with
suitable positive integer ». The details may be left to the reader.

For a later application we note the

COROLLARY 1. The numbers n, and n, may be chosen so that the con-
clusion of the theorem holds uniformly for all lattices A =AM, where M
s some fixed laitice on which @ (x) is proportional to integral and non-
null and A runs through all automorphs of ¢ (x).

It is clearly enough to consider the case when Z =2z is of the type
Z;=2;z. Then w is an automorph of A if it is of M. Hence the only
non-uniformity is possibly introduced by the point @. But clearly there
is a number R depending only on w, and so only on M, such that
|w*a| <R for some k. If wa is taken for @, there is then complete
uniformity in the estimates.

COROLLARY 2. When « is any automorph of @ (@) with

0 =11, =T13 = T21 = T31»
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then
;’C}/f\l(l’("'a)l = |711|{|722| - |T23|}2A-
+0
We may suppose that 4 =1 and that a—_—F:(L 1,1). For any
integer # positive or negative we have

|p(rw e)| =|7||Te0e(uy) + Toge(—uy)|?,

where y is given by (8). By Lemma 8, we may choose # so that

| Tage(uy) + tage(—uy)
is arbitrarily near to || ty,| —|7,4l|, and the corollary follows.
Note that
d(tA
LN |l — Fral®] 2l § sl = 5l
with equality only when 7,,=0 or 7,,=0, i.e. when ¥ is an automorph
of p(x).

X.6. Applications of isolation. Following DAVENPORT and ROGERS
(1950a) we first use isolation to strengthen Theorem V. For x, (x3 + x3)
it gives the best result to date, but for x, x, x, more is known, see Theo-
rem X of Chapter II, which is not proved in this book.

TuEOREM XI. A. There is an n,>0 such that every lattice \ admis-
stble for
VAN RARS
and with
diN) <7(1 +m)
1S of the shape
A=twN,,
where t=1, w 1s an automorph of N{, and N, is defined in Theorem V.
B. There is an 1,>>0 such that every lattice N\ admissible for
Azt n (23 + )| <1
and with

d(N) <2(23) (1 +772)
1s of the shape
A=r1wN,,
where Ny is defined in Theorem V B, w is an automorph of N, and <

15 a transformation X;= ; T Xy With Typa=Ty3= Ty = T3, =0.

We first prove A by reductio ad absurdum. Suppose, if possible,
that #, does not exist. Then there exists an infinite sequence of admis-
sible lattices M, (1=<7< o), none of the shape t@wN,, and such that

a(M) 7.
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Now
1< inf |aya,a5| < 2d(M,)
acM,
+0
by Theorem V, and since M, is 4] admissible; and so there is a sequence
of points
a, = (aln Qs aar) S Mr
such that
| a1, a3, a5,| =1 (r = ).

On replacing M, by w,M,, with a suitable automorph w, of A], we may
suppose that
af=(sr:sr»sy)x S'—-)1 (T——>OO),

By MAHLER’s compactness principle, there is a convergent subsequence
of the M, which we may also call M,, say

M,— M. 1)
Then d (M) =7 and M is #;-admissible, so is critical. Further, (1,1,1)¢M
and so, by Theorem V, we have

M=39N,

where 8 is an automorph of #]. In particular, x, x, %, is integral on M.
But now

M =M
for transformations «, such that
It,—ul—>0  {r—>o0).

Since M, is A4;-admissible, the transformation t, must be of the shape
t,=1,¢, for some number ¢, and some automorph ¢, of A}, by Theo-
rem IX, provided 7 is sufficiently large. This contradicts the definition
of the M,. The contradiction proves Theorem XI A.

The proof of Theorem XI B is similar but using Theorem X instead
of Theorem IX. The details may be left to the reader. The only point
to notice is that if ¥ and w are as enunciated in the theorem, then
Tw =w’7’ for some w’, ®’ with similar properties to w and = respectively.

CorOLLARY TO THEOREM X1. B. To every e> 0 thereis ann =mn,(e) >0
such that every admissible lattice N for N, with

d(N) <$(23)4(1 4 75) (2)
s of the shape N =<wN,, where x, w are as in the theorem and

It —f<e.
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We take 7, <, for the 5, of the theorem, so that A=twN,. We
may suppose that 1;;>>0 and then, incorporating an appropriate auto-
morph in , that

T =1. 3)
Then
1 +773>%:{|T22|2_|T23|2} (4)

where we use the appropriate complex co-ordinates for T as in § 5.4.
But now

{| T2a| — | 7asl P21 (5)

by Theorem X, Corollary 2 since A is A-admissible; and so, in particular,
| 7as[® — | 725|?
{|7aal — I"ssl}T <14
Hence if 7, is small, either |7,,|/| 755| or |7a3)/| 7ae| is small; and we
may suppose the latter on incorporating in w, if necessary, the trans-
formation which interchanges x, and x;. We may further incorporate
in w a transformation of the type

X >%, Xg—>e(l) %y, xz—>e(—yx) %,

where ¢(y) =¢*™** and y is chosen to make 7,, real and positive. Then
from (4) and (5) we see that 7,,—1 and 7, are small if #; is small.
Since T33=7T,, and 7,3=7T;,, this proves the corollary by (3), and since
the remaining terms 7, are 0.

X.6.2. The following interesting result about x, x, x; has no analogue
for x, (%3 + «3), since it depends on the fact that ¢ in Theorem IX may
be chosen arbitrarily. There is, however, a corresponding result for
¥} + x3 — %3, see CASSELs and SWINNERTON-DYER (1955a).

THEOREM XII. Suppose that for some number D there are infinitely
many lattices M, (1 <7< o), admissible for

M x5 <1,
with d(M,)<D; and such that no two, M’, M", say, are of the shapc
M"'=twM', where t is a number and w an automorph of N;. Then
there is a lattice N\ admissible for A} with d(\) < D on which x, x, %, ts not
proportional to integral.

For the lattices M, have a convergent subsequence, say, without

loss of generality
M,—-A (r - o).

If %, x, x; were proportional to integral on A, then by Theorem IX and
since M, is #;-admissible, we should have for all sufficiently large »

M =twA
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for some numbers ¢, and some automorphs w, of A]. This clearly
contradicts the hypotheses of the theorem.
As stated in § 1, it is unknown whether such a D or such a A exists.

X.7. An infinity of solutions. We now prove some resuits of Da-
VENPORT and ROGERS (1950a) about the existence of infinitely many
points of a lattice in certain point-sets with groups of automorphisms.
They prove more than we do here; the reader is referred to their inter-
esting memoire for the details.

The following trivial lemma gives almost all we need for the first
type of result.

LEMMA 10. Let Q& be some group of homogeneous linear transforma-
tions w. Suppose that for every @ == 0 and every number r there is an we 2
such that

|wa|>7.
Then for every pair of numbers ¢, C with
0<c<C<oo (1)

and every number v there is a finite set of elements wy, ..., w,, of & such
that

jmax |w; x| >7 (2
si<m
for all @ in

c< |a:[ <C. (3)

This is a simple application of the HEINE-BOREL covering theorem.
The infinitely many open sets ., (w) of points & such that |wz|>7
cover the compact set (3). Hence a finite covering may be selected from
the 7, (w).

THEOREM XIII. Let the boundedly reducible! star-body & have a group
Q of automorphisms w such that to every & =0 and every r there is an
weS such that [wx|>r. Then to.every integer k>0 there is a bounded
set &, contained in F such that every lattice A with d(N) <A(S) has at
least k points in F, other than o.

That ¢ exists is equivalent to the statement that % is boundedly
reducible. We suppose %, has been found and deduce the existence of
&+1- We may suppose without loss of generality that &, is the set
of points of .% in some sphere

Further, there is a positive number ¢,<C such that the entire sphere
|| < (k+1)c (4)
! For definition, see Chapter V, § 7.2.
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is contained in . We denote by &, the set of points of & in

|z| < Cyiv, (5)
where
Cpr1>max {Cy, (k+1) ¢}

is so large that (5) contains all the sets w; ! % (1=<7=m), where the e,
are given by Lemma 10 with ¢=¢, and »r =C=C,. We must verify
that %, has the required properties.

By hypothesis, if 4(A)<A(S) there are % points of A in & other
than 0. If one of them, say @, is in || <c,, then all the points

la  (1<I<k+1)

are in |®|<C,,, and in &, so in &, ,,, as required. Otherwise, there
is a point b of A in &, for which

c=¢=|b|SC=C,.

Hence there is an automorph w; of the set wy, ..., w, such that
|w; b|>C. Hence b¢w;'%;. But now, since w; is an automorph,
we have
|det w;| =1,
and so
dw;A) =d(A) <A(¥).

Hence by the defining property of &, there are £ points of w; A in ¥,
that is there are £ points of A in w;'%,. These together with b give
k +1 points of A in &, ,, as required.

CoROLLARY. When & 1s fully reducible?, the conclusions of Theo-
rem XIII continue fo hold when d(N) =A(SF), provided that N is not a
critical lattice of & .

For the existence of ¥ is equivalent to the statement that & is
fully reducible, and the induction now goes as before.

When the star-body & is not boundedly reducible only slightly less
than Theorem XIII is true.

THeoREM XIV. Let & be a star-body and A, any number in
o< < A(Z).

Then to every integer k there is a bounded star-body &, (depending also
on Ay) such that every lattice with d(N)< A, has at least k points other
than o in &,.

We may suppose that % is open. Suppose, if possible, that for
every integer 7 there is a lattice A, with d(A,) <4, which contains no

! For definition, see Chapter V, § 7.2.
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point other than o of & in |®|<7. Then MAHLER’S compactness
theorem applies, and there is a lattice A’ which is the limit of a conver-
gent subsequence of A,. Since d(A')< 4, and A’ is #-admissible, this
contradicts the definition of A4(%). The contradiction shows that %
exists. The induction from &, to &, , then goes exactly as for Theo-
rem XIII.

X.7.2, Where they apply, isolation theorems may give stronger
results than those § 7.1, as the following example shows.

THEOREM XV. Put
(@) = 2 (23 + 25). (1)
There is a number 1y>>0 such that every lattice \ has one of the following
two properties.
(i) there is a number t such that the set of x,-co-ordinates of tA is
identical with the set of x,-co-ordinates of the critical lattice Ny of | @ ()] <1

occurring tn the enunciation of Theorem V B, or (i) for every >0 there
is a point @0 of N\ such that

lp@ls Zr—n)d®), [al<e. 2

We will choose 7, later in the course of the proof. Suppose that (ii)
is false for some particular A and &. For integers r =1, 2, ..., let A, be
the set of points (r2x;, 77 %y, 7 %), (%, %5, #5)€A. Then there is a
convergent subsequence

M,=A,—>M, (3)

and M is admissible for

I%%+@KE%M—WHM

Hence by Theorem XI B, Corollary for any given g we may choose
7o =1 (&) so small that
M=ttwN, [t—1<s, (4)

where T, w are as in Theorem XI B and ¢ is some number. We take
for g, the number 7, which occurs in the enunciation of Theorem X
and its Corollary when M=N,. By (3) and (4) we now have

M, =to,w A, (5)
for some o, such that

flor — i < &,
for all sufficiently large k. Clearly M, does not contain any points
¢ = (1,72, 72) with [,| <1 and |y172y3|<—(£)7 (1—no) d(A) if 7 is suf-
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ficiently large. Hence, by Theorem XI and its Corollary, if %, is small
enough, there is a 0 =0, such that ¢,,=0,;=0 in the obvious notation;
indeed this happens for all sufficiently large k. But then, by (5) this
implies that (i) holds. This concludes the proof of the Theorem.

There is a similar result where | 4, < ¢ in (2) is replaced by a3 + a3 <e,
cf. DAVENPORT and ROGERS (1950a).

X.8. Local methods. For many questions concerning indefinite
quadratic forms the appropriate tool is the theory of continued fractions.
We only mention the topic briefly here since the application to specific
problems not infrequently involves detailed calculation. Continued
fractions appear very naturally from the point of view of the geometry
of numbers. We sketch the connection here and refer the reader to
the author’s Cambridge Tract [CASSELs (1957a)], where they are intro-
duced in a similar spirit!in a slightly different context, for a fuller treat-
ment and references. There a knowledge of the geometry of numbers
could not be assumed. For another account of the relationship of
continued fractions to quadratic forms see, for example, DICKSON (1929a).

Characteristic applications of local methods are MARKOFF's original
treatment of his chain theorem (MARKOFF 1879a), [there is an account
in DicksoN (1930a); compare Chapter 1I, §4)], the paper of BLANEY
(1957a) that will be discussed in Chapter XI, §4, and the paper of
BARNES (1951a). But applications are almost everywhere dense in the
literature.

Let us suppose for convenience that the 2-dimensional lattice A has
no point except 0 on either axis. Then no two distinct points of A have
the same x,-co-ordinate or the same x,-co-ordinate. There certainly
exist points &y= (%4, ¥¢) 0f A such that e is the only point of A in

|| <lxol, %] <|x20]-

Let 4@ = 4 (%, %3;) 0 be the points in |x,|<|%,| for which |x,]
is least. Then there is no point except o in

EARSENYS EARSEE (1)
and a fortiori in
AR E N EA R E

We may then repeat the process with @, instead of @, to obtain a se-
quence of points ®,, ®,, ... . Similarly we may start with 2, and inter-
change the roles of x, and #, to obtain a sequence of points ®_;, x_,, ... .
There is thus a sequence of

& = (%, %) (—oo<i<x)

1 Which goes back to Ferix KLEIN (1895a and 1896a).
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such that there is no point of A except o in

lal <logl, Jxe] <|x 4l (1)

Clearly a necessary and sufficient condition that a point y<A should
occur as +&; for some j is that there should be no point of A except o
in|x;] <|51], |*o] <|9.|. Hence the sequence of pairs +; is completely
determined by A, although the particular pair chosen to be +a, is,
of course, arbitrary. If w is any automorph of x; x, then the sequence
of pairs for wA is either fwa;, if w does not interchange the axes of
co-ordinates, or +wa_; (i.e. in the reverse order) if it does.

Since there is no point of A in (1) except o, there is no point of A
in the closed triangle with vertices o, &;,x;,; except the vertices;
and so @;, &, , is a basis of A for each j, by Lemma 6 of Chapter IIL
We must now introduce an asymmetry between the x;- and x,-axes to
study the relationship between the various bases @;, x;,,. We choose
x; to be that point of the pair ta@; for which

Xe; >0 (all 7). (2)

Then
Xy %, 01 <0, (3)
since otherwise &;,,—®; would lie in (1). Since both @, ,,®; and

7 7
&;, &, are bases, we must have

Ty £ Xjy =4, (4)
for some integer a;. Since
Xo 41> Xgj 2> %p j1s
we must have
a; > 0.

Then we must have the — sign in (4), since
|21, i1l <I2;] <I%,-ls

and (3) holds for every j. Hence there is a sequence of integers a;>0
such that

wi+1 - .’1,'7-_1 == a, .’157.

It may be shown that if two lattices have the same sequence of integers
a; then they are identical up to a transformation of the type

X > Wy Xy, Xy Wy Xy,

Further, to every sequence of positive integers a; there is a lattice.

Hence it is natural in 2-dimensional lattice problems about x,x, to
consider not the lattice A itself simply, but the sequence a;. It turns
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out that the behaviour of any particular basis, say @;, ®;;,, of A is
influenced very strongly by the value of a; for j near to J but only
very weakly by a, for j remote from J. In many problems it is possible
to study the behaviour of only a few a; at a time. Hence the name
“local methods”.

It would be interesting if local methods could be successfully extended
to problems in more than 2 dimensions, for example to problems relating
to x, max (%, x3), %, (22 +3), 23 +x% — 23 or x,x,%,. The difficulty is
not to find the analogues of the &; but to devise techniques to cope
with their interrelations. Continued fractions have however been
generalized to 2-dimensional lattices over a complex quadratic field,
i.e. substantially to certain special 4-dimensional lattices, see PoirTou
(1953 a) and the references there given.

Chapter XI

Inhomogeneous problems

XI.1. Introduction. As previously, we say that points &, and x, are
congruent modulo A, written

where A is a lattice, to mean that &, —a,€A. The set of points @ con-
gruent to a given point &, modulo A is called a grid® ®: A will be called
the lattice of the grid and we shall call

4(®) =d(A)

the determinant of the grid. The characteristic inhomogeneous problem
of the geometry of numbers is to find conditions under which a grid
has a point in a given set #.

There is a wide variety of different problems. Thus one may be
concerned with all grids of given determinant 4(®) or one may have
information about the lattice A. Many of the fundamental techniques
for inhomogeneous problems are natural extension of those for lattices
[compactness theorems and so on; for bodies with automorphs see
SWINNERTON-DYER (1954a)]. For some specialized problems some
extremely powerful and delicate techniques have been developed which
would take too much space to discuss properly. Hence this last chapter
will have more the character of a report and less that of a detailed
exposition.

1 Other terms are inhomogeneous lattice or non-homogeneous lattice.
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XI.1.2. The following simple result due to MACBEATH (1951a) helps
to fix ideas.

THEOREM 1. Let the set & have finite volume V{SF) and let £>0 be
given arbitrarily small. Then there are grids & with d(®) =& having no
point in &.

We may choose R so large that the portion of & in |®|=R has
volume <<1e. Let A be the lattice with basis

b,=(4R,0,0,...,0)
b, = (0,9,0,0, ..., 0)
by =(0,0,7,0,...,0) (1)

...........

where
4Ry =¢. (2)

Every point @, of space is congruent modulo A to precisely one point
of the parallelopiped
b, 4+ b
.@: {yl 1+ +yn n} (3)

(—3=y;<3)

The volume of 2 is V(#) =d(N)=e¢, by (2). If a point ®'=3y;b;
of # is congruent modulo A to a point @, in |2,| <R, then clearly
|91]<1. Hence the set of points of & with this property has measure
at most 1¢. But now the set of points @, of &% with |a,] > R has volume
at most & by construction; and hence so has the set of points &" of
2 which are congruent to at least such one point (compare the proof
of Theorem I of Chapter ITI). Thus the set of points of & congruent
to a point of & has measure at most &+ je<e=TV(#). There is
thus a point @,€4 which is not congruent to any point of &. The
grid ® of all points congruent to &, modulo A clearly has all the proper-
ties required.

X1.1.3. We shall mainly be concerned with star-bodies % defined

by a distance-function,
& F(x)<1. (1)

For any lattice A and any point ®, we write!

m(my) =m(xy, ) = inf Flx), 2)

ax=ax,(A)

1 So m (xy) = F(z,) in the notation of Chapter VII § 2.2, where f; is the element
of the quotient space to which a, belongs.
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and
1(N) = supm (@, A). (3)
Clearly n
pEN) =t nN (4)
for any {==0.

The infimum in (2) need not be attained, though it c]earlif is attained
when the set I'(®)<<1 is bounded. The function m(®,) need not be
continuous, but it is semi-continuous:

lim sup m () < m (). (5)

X —> &y =
Indeed given any £>0 there is a point @€/ such that

Flxy+ a) <m(xy) + ¢,
and then
Flx+a)<m(x)+e¢

for all  in a neighbourhood of @,, by the continuity of F(x); so
m(x)<<m(%y) +& in this neighbourhood. Again, when F(®)<1 is
bounded, the function m () is readily seen to be continuous. The reader
will be able to supply the proofs of the positive statements just made
on the lines of the proof of the semi-continuity of the function F(A)
in Chapter V, §3.3. Examples to show that the infimum in (2) need
not be attained and that m (&) need not be continuous are provided in
2 dimensions for certain lattices A when F(a) =|x, x,|}. This case has
implications in the theory of algebraic numbers and has been extensively
investigated both because of this and because of its intrinsic interest;
sce BARNES and SWINNERTON-DYER (19524, b and 1954a) and BARNES
(1954a), where there are extensive references to earlier work. There is
some work on similar lines for |x,%,%|} (n=3), but it has not been
carried so far, see DAVENPORT (1947c), CLARKE (1951a) and SAMET
(1954a, b).

From the definition (2) it follows that m(x) may be regarded as
defined on the quotient space %A (compare Chapter VII). Since this
is compact, it follows from (5) that the supremum in (3) is always
attained; that is, there is an @, such that

(N = m,, N).

Of course the infimum in (2) need not then be attained for a;=,.
With unbounded sets F(x)<1 there may be again a phenomenon of
successive minima; that is, it may happen that

sup m(xy) < u(N).
m(a,) £ u(N)
Cassels, Geometry of Numbers 20
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Indeed some rather elaborate patterns of successive minima have been
found, see the papers of BARNES and SWINNERTON-DYER just quoted.

The quotient

{n(N}"
is unchanged on replacing A by tA, by (4). We shall write
— inf MY
b(F)—JRfT(/T, (7)

where possibly b(F) =0. If the set F(x) <1 has finite volume V., we
now show that
b(F) 2 Vi, ®)

Let A be some lattice and ¢>0 be arbitrarily small. There is a point
x, congruent to any given point &, and satisfying

Flx) <p(N) +e. 9)

Hence the set (9) must have volume at least d(A). Since the volume
of the set of points @, satisfying (9) is

{lu'(/\) + 8}” VF:
the required result (8) follows.
We shall show in §3 that if the body F(x)<1 is bounded, the
infimum in (7) is attained; that is there is a lattice M such that
{#(M)}" =>(F)dM).

We shall treat the estimation of d(F) for convex distance-functions
F in § 2 where the relevant literature will also be discussed.

When Vi = oo it is, of course, still possible that d(F)>0. In par-
ticular, DAVENPORT (1951 a) showed this to be the case for the 2-dimen-
sional distance-function

F(x) = |x, x,|%. (10)
His estimate,

b(F) = 1
was improved to

d(F) = 5

by the author [CASSELS (1952a)], with a probably simpler proof. This
has recently been improved by Ennora (1958a) to

D(F) = (164 6) ' = gob5—»

by a modification of DAVENPORT'S original method. On the other hand,
Miss PrtMAN (1958a) has shown that

bF) =+
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More recently!, she has obtained an even smaller upper bound for
b (F).

The problem of determining b (F) for F given by (10) is closely related
to the problem of determining the real quadratic numberfields with a
Euclidean algorithm. DAVENPORT extended his work to number-fields
of two other types corresponding to

Fé=x (x5 +23) and Ft= (s + 23) (2«3 + 23).

These results were proved by the author [CAssELS (1952a)] much more
simply and with a better estimate of b (F).

Hirawka (1954c) has generalized these results to any distance-
function F(x) in # variables which may be put in the shape

{F(m)}” = {E— (xl» e x;)}, {Fn—r (xr+1 ryrre xn)}”—"

where F,,F,_, are - and (»—r)-dimensional distance-functions such
that the star-bodies F, () <1 and F,_, (®) <1 are bounded. We do not
prove these results here. A closely related problem is treated in the
author’s tract [CassELS (1957a) Chapter V, § 6], where there are further
references.

In general it appears to be a difficult problem to decide whether
b (F) =0. Thus it does not appear to be known whether this happens for?

Fla) =] +x— a4t n=3
or
F(®) = |2, %5 2,3 n=3.

X1.1.4. It follows at once from MacBeaTH’s Theorem I that

— {e (A"
DF) = Sl/l\p (A

is oo whenever Vp<<oo. In §4 we shall be concerned with D(F) for
F=|%...x,|'"

It was conjectured by MiNKowsKI that D{F)==2"", but this has been
proved only for #=2,3,4. We shall give references and a further
discussion in § 4. We shall also give a result of CHALK about the set

KXy X, =1 % >0 I=1=n)

(not a star-body!) and quote other work about sets defined in term
of x,...%,.
! ] am grateful to Miss PITMAN for allowing me to refer to this unpublished work,
now published. Acta Arithmetica 6 (1960), 37 —46.
2 The first case has been settled by LE.S. BArNEs [J. Austral. Math. Soc.
2 (1961/62) 9—10), who shows that b (F) = 0.
20*
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The value of D(F) for
F@)=|n+x— x5t (n=3)

has been found by DAVENPORT (1948a) who showed it to be isolated
and the investigation of the successive minima was carried further by
BARNES (1956a). More recently BircH (1958a) has found D(F) for

St Ry A =27,
for all »=2. Estimates for

with 7> 0, » —7r>>0 have been given by BLANEY (1948a) and improved
by RoGErs (1952a) and Miss FoSTER (1956a). All the work just
described is of course equivalent to finding the best possible constant

Nys such that sup inf |f(u + “o)l < ,7"3|D|1/n

u, real w integral
for all indefinite quadratic forms f of signature (r, s) with  +s =# and
with determinant D. We shall not discuss this work further in this
book but refer the reader to the original memoires.

XI1.1.5. For some functions F(x) there are inequalities, valid for

all A, connecting
#(N)=sup inf F(x)

x, E=x,(N)
and

E(N) =21’r€1£\F(w)
*o0

or, more generally connecting u(A) and the successive minima of F(x)
with respect to A. When F(x) is convex, there are further relations
with the corresponding quantities for the polar distance-function F*(x)
and the polar lattice A*. These relations go under the general name of
transference theorems?! (Ubertragungssitze). Thus DIRICHLET’S hexagon
Theorem VII of Chapter IX may be regarded as a very precise trans-
ference theorem for |x§ +x§|5. We shall discuss transference theorems
for convex functions F(x) in §3. Much interesting work has been done
on transference theorems for the non-convex F(x) defined by

Fa)y =|n...x| 11

where n =725, but here we can only refer the reader to the paper
of DAVENPORT and SwINNERTON-DYER (1955a), where references are
given to earlier work. There is a striking related result in SWINNERTON-
DvER (1954a).

1kss (xr+h + xr+s+k)

! Presumably because information is transferred from one problem to another.



Convex sets 309

There is a further type of result which may most appropriately be
mentioned here since they are transference theorems of a sort. BARNES
(1950a) showed that if

F(a) =[x, %}

and if A has the basis a,, a, then
2u(N) < max{F(a,), F(ay), miin Fla, + a,)}.

Other results of this general kind are known, see BAmBAH and K. ROGERS
(1955a) and the references given there. In particular, K. RoGERS (1953 a)
showed that BARNES' result is true for all distance-functions F(x) such
that F(x) <1 has the same general appearance as |%, x,|<<1. The proofs
are all elementary and tend to involve a tedious splitting of cases. We
do not discuss them further in this book.

XI1.2. Convex sets. In 2 dimensions the problem of finding b (F) in
the notation of (7) of § 1.3 for convex functions F is completely solved
by the following result [BaMBAH and ROGERS (1952a)].

THEOREM lI. Let & be a closed 2-dimensional convex set and A, some
number. A necessary and sufficient condition that there exist a lattice N\
with d(N\) = A, such that every point is congruent modulo N to a point
of & 1is that there exist a convex hexagon® 3 inscribed in &, which is
symmetrical about some point and has an arvea V(#)=A4,.

Note that & is not required to be symmetrical about any point.

Suppose, first, that # exists. We may take the centre of 5 as
origin 0. Let A be a critical lattice for 2. Then d(A) =V () =4,,
by Lemma 13 of Chapter V. Hence by Theorems II, IIT of Chapter IX
applied to 2 5, and since 5 is closed, every point is congruent modulo A
to a point of 5, and so of &.

Suppose now that there exists a A such that every point is congruent
modulo A to some point of &. If % is unbounded, there is clearly
nothing to prove, so we may suppose without loss of generality that %
is bounded. We shall construct the hexagon 5# in stages. Suppose, first,
that there is an @ 3=0¢ A such that & and & 4 @ haveinner pointsin com-
mon. By taking 2°a with suitable integer s = 0 instead of @, we may sup-
pose without loss of generality that % + 2a and % have no inner points
in common. Then there exist points cand d on the boundary both of &
and & +a such that the portion of the boundary of & between ¢
and d (taken in an anti-clockwise direction, say) lies in &+ a and the
portion of the boundary of & +a between d and ¢ lies in &. Then
¢—a and d —a are common to the boundaries of &% and ¥ —a. Let

1 A parallelogram being allowed as a degenerate hexagon.
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4, be the portion of & lying between the line joining ¢ and d and the
line joining ¢ —a and d —a, and taken closed; i.e. including the points
of & on those lines. Then clearly & is convex and every point of the
plane is congruent modulo A to a point of % . After a finite number
of steps (since % is bounded) we obtain a closed convex set J (&
such that every point is congruent modulo A to a point of J~ but no
two sets J and J +a, a< A have inner points in common. Then every
boundary point of 4 is also a boundary point of 7 4@ for some a0
in A. Since J and J 4@ are convex, this common boundary is either
a point or a line-segment. Since .J is bounded, only a finite number
of @ come into consideration, and so J is a convex polygon. We must
now show that it is symmetric about some point. Let the vertices of
J beg,, ..., c,, where the line segment ¢;c;, is the common boundary
of 7 and  +a;, a;cA. Then the line-segment (¢;—@;) (¢; 1, — @) is the
common boundary of J and J —a;. Hence m is even, m =21, and

Oy = —a,

€11 =Cu1— &, Ciy=C—a.
Hence
1 — 1
3lei+eiy) =3(Ci+ €414

for each 7, so e={(e;+¢;,,) is independent of j. Clearly J is sym-
metric about e.

We may suppose without loss of generality that e=eo. Then A
gives a lattice packing of 4 (or, more precisely, of the interior of J7)
and every point is congruent to some point of J modulo A. Hence &
is a hexagon by Theorems II and VI of Chapter IX. This concludes the
proof of Theorem II.

Using known results about hexagons inscribed in convex sets, BAMBAH
and RoGERs (1952a) deduce in our notation (§1.3) that

1S VpoF) <3

for a convex 2-dimensional distance-function F inequality and the
stronger inequality

1S Vb (F) < 22

(¥8)

f F is symmetric. The equalities on the right-hand side are attained
when F(x)<<1 is a triangle and a circle respectively. The left-hand
inequality, which is valid whether F is convex or not, was obtained
in §1.3.

There is a theory of lattice coverings and non-lattice coverings which
is closely analogous to the theory of packings discussed in Chapter I1X.



Convex sets 311

For details in 2 dimensions see FEjEs ToTH (1950a and 1953a) and
BampaH and RoGERS (1952a).

Not much is known about d(F) in more than 2 dimensions. When
F(x)<1 is the unit 3-dimensional sphere, the precise value has been
found by BAMBAH (1954 b), and other proofs have been given by BARNES
{1956b) and FEw (1956a); but all proofs are fairly complicated. The
4-dimensional sphere has been considered by BamBaH (1954a), who
obtains an estimate for d(F) and gives a conjecture for the correct
value. Estimates for d(F) above and below and also for the corres-
ponding number for non lattice coverings have been obtained for
n-dimensional spheres, see BAMBAH and DAVENPORT (1952a), DAVEN-
PORT (1952b) and WartsoN (1956a) for the lattice case, and ERDOS
and RoGERs (1953 a) and RoGERsS (1957a) for the non-lattice case, the
last treating general convex sets. Very recently ROGERS (1959a) has
obtained much stronger results by more powerful methods.

X1.2.2.! RoGERS (1950b) has given an elegant proof of the following
result relating b (F) to the function

o {F(N}"
F) = sup =)

introduced in § 4 of Chapter IV.

TueoreM II1.
b(F) = 27" 3" 8(F)

Jor all symmetric convex n-dimensional distance-functions which vanish
only at the origin.

ROGERS {1950b) also proved a similar result for non-lattice packings
and coverings, and indeed with the smaller constant 27! instead of
27"3"~1 Before proving Theorem III we note the following

COROLLARY.
Ved(F) <3771,

where Vi is the volume of F(x) <1.

For Vp4(F)<2" by MINKOWSKI'S convex body theorem.
RoGERS proves Theorem III by considering a critical lattice M for F,
that 1s
FM)=1, (M) ={6(F)}™ (1)

We use the notation of §1.3; in particular

s = 1 f .
7 (a) IEILI“(M) F(x)

} When = is at all large, the results of this section are superseded by RoGERs
(1959a).



312 Inhomogeneous problems

As was shown in § 1.3, there is then a point ®, such that
m(x,) = sup 7 (%)
= (M) @
=4

(say).

Then

m3ax) = p,
and so, since F(x)<1 is bounded, there is an a¢M such that

F3z, —a)=m(3x) S .
Then
Fle,—za)=3p<p, (3)
and so 3a is not in M.
Let A be the lattice of points

b+%a, beM, r = integer,

S0
d(N) = $d(M).
Hence
{F(IN} < 6(F)d(N) = §4(F) d(M)

by the definition of §(F); that is, there exists a point b + -;»a#o of A
such that
4 I 1
{F(b + ?a)} sLomam). (4)
We may suppose without loss of generality that =0 or 4+1. If r =0,

we have b=0, and so
Fby=FM) =1,

and (1) and (4) are in contradiction. Hence » = 41, and
F(b+ia)=F{btxF (x,—ja)}
2Fb+tax)—Flx —ja)
2p— 34

— 2
=3H,

by (2) and (3).
On substituting (5) in (4) we obtain
/‘" ~nan-—-1
YT < 273" 14(F). (6)

Since the left-hand side of (6) is at most d(F), by the definition of b(F)
as an infimum (§ 1.3), the theorem follows.
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XI1.3. Transference theorems for convex sets. In this section we
consider for a symmetric convex n-dimensional distance function F which
vanishes only at o the relationships between the function

p=p(N) =sup inf F(x) (1)

T, x=y(N)

discussed in § 1 and the successive minima Ay, ..., 4, of F with respect
to A which were discussed in Chapter VIIL.

We first prove the inequality
MS2uS A+t A, 2

Let b,, ..., b, be any basis for A. Then by the definition of x and the
fact that F(x)<1 is bounded, there are vectors ¢;¢/AA such that

F(3b,—¢)=p.
Hence the vectors d;=b,;— 2¢; all satisfy
F(d)=2pu.

Since the d; are linearly independent, as is easily seen® by considering
congruences modulo 2, the left-hand side of (2) follows.

We now prove the right-hand side of (2). There are linearly in-
dependent vectors @; of A such that

Fla,) =4,.
Every vector &, is thus of the shape
xy=§a+ - +&,a,
for some real numbers &,,...,&,. Put

a=wua -+ - t+u,a,,

where
lv, =&l =4,
and u,, ..., u, are integers. Then, clearly,
F(zy—a) =F (3 (§;—w) a}}
?
< 2| —u| Flay)
7
=iZ Fl(a;)

=1
=321
! For suppose that Zr,' d;= o, where the #; are integers which, without loss
7
of generality, may be supposed to have no common factor. Then X7, b;=23%7; ¢;.
i

Since the b; are a basis, all the 7; must be even. A contradiction!
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This proves the right-hand side of (2).
On making use of the inequalities

Z AN Ve S 24N 3)

of Theorem V of Chapter VIII, we may deduce estimates for u above
and below in terms of
A =1infF(a) = F(A).
ato
€A

From the left-hand sides of (2) and (3), and since

}‘1§}'2§"'§}‘n» (4)
we have
ZANSVe ™ ()
On the other hand, the maximum of 4,+ ... 4+ A, for given A, and pro-
duct 4, ... 4, is clearly attained when 4, =24,=-.-=4,_,. Hence, by (2)
and (3),
Veli Hou—(n— 1)} < 2% (N). (6)

Both the inequalities (5) and (6) may be improved. The problem
of obtaining an estimate above for x4 in terms of A, is an old one which
has been attacked by many methods. The latest result due to KNESER
(1955a) and BircH (1956a) will be proved as Theorem V. The inequality
(5) has attracted much less attention. We sketch a proof of an improve-
ment due to Birca (1956b), as Theorem IV. BIRCH actually proves
something slightly stronger than Theorem IV and gives examples to
show that it cannot be much further improved.

THEOREM IV.
W Vez L d(N

for convex symmetric n-dimensional distance-functions.

BircH’s proof is very simple. We may suppose after a suitable
homogeneous linear transformation that A=A is the lattice of points
with integer co-ordinates, and that

F(0,...,0,1) = 4,.
Let J be the (# —1)-dimensional projection of the set
ns: Flxysp

on to the hyperplane x,=0. Then every point with x,=0 is congruent
modulo A, to a point of J, so J has (n—1)-dimensional volume
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V,_1(7)=1. Further, u& contains the points
+(0,...,0,u/4).

Some elementary geometry! now shows that the volume of y% must
be at least

>2 ¢ 7> 2H
V(lu ‘Sp)= n }'l Vn—l(‘/) ‘nll .

v

Since V(u¥)=u"Vg, and since we have assumed that A=A, so
d(A\) =1, the truth of the theorem follows.

THEOREM V. Let

_2"aN _
where g 1s an inleger and 0=s <<1. Then

p=dh(g+#0). 8
Further

provided that Q=n.

Note that ¢-+#*=Q and ¢g=1 by (3). The inequality (8) is
KNESER’S (1955a)2 and (9) is BIRCH’S, though the remark that (9) holds
already for Q= n is KNESER'S [see BIRCH (1956a)]. BIRCH proves similar
results involving other minima 4,,...,4,_,.

Before proceeding to the proof we note that (9) cannot be further

improved3. Let
F(x) =max{|x,|,...,|x,|},

and let A be the lattice of points
(U3, ., %,y_4,Qu,),

where Q is any number =1 and #,, ..., #, run through all integers.
Clearly
ll =1 VF = 2”,

and so @ is in fact the number given by (7). Further, u =10, as is seen
by considering
x,=(0,...,0,30).

! The details are given in the author’s tract [CassELs (1957a)] page 84 Lemma 1.
The easiest way is to replace &: F(x)< 1 by a body of the same volume symmetric
in x,=0, on replacing for each (x,...,x, ;) the segment of », such that
(%,..-, ¥,)€S by the one of equal length symmetric in »,=0 (STEINER sym-
metrization). The result is trivial for the symmetrized set.

2 Professor KNESER tells me that he can show that < can be substituted
for < in (8) except when Q is an integer.

3 BamBaH (1958a) shows that (8) and (9) may sometimes be improved if d(F)
is known.
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It was long conjectured that (9) was valid for all @, but the following
example, due to KNESER and BIRcH (see BIrRcH 1956a), shows that in
fact the weaker inequality (8) cannot be improved for 1< Q<C2. Let

F(x) =max{|x],...,|x,|},
and let A be the lattice of points
(y— eUy, Uy — EUg, ..., U, _y— EW,, %, + £2%;)

where 0=<¢<1 is fixed and 4, ..., , runs through all integers (note
the change of sign in the last co-ordinate). Then

AN =1+¢", Yh=--=1,=1, pu=3(1+29),

as is readily verified. No case appears to be known when (9) is false
and Q=2.

Now to the proof of Theorem V. We work in the quotient space
Z|N and use the notation of Chapter VII and of Theorem IV of Chap-
ter VIII. In particular, we denote by S(¢) the set of points ty of Z/A
which have representatives y in % such that F(y)<¢. By Theorem IV
of Chapter VIII the measure m{S(f)} satisfies

=0V, if <3, (10)
=AW if LN SESIA,. (11)

m{s(0) {

We shall also need the inequality
m{S(t, + &)} = min[m {5(4,)} + m {S(t,)}, d(N)], (12)

for any ¢220, £,==0. This follows at once from the “Sum Theorem”,
Theorem I of Chapter VII. Indeed, S (¢,+7,) contains the sum S(4) 4 S (),
where addition of sets is as defined in §3 of Chapter VII, since
F(y,+y,) <t +1, if Fyy)<t, and F(y,) <t,.

We also remark that u is the lower bound of the numbers ¢ such
that m{S(®)}=d(A). Clearly m{S(t)} =d(A) if every point of & is
congruent modulo A to a point & with F(x)<¢. Conversely, suppose
that m{S(f)} =4(N\). Let £>0 be arbitrarily small. Then m {S(g)}>0
by (10), and so every point of ZJA belongs to S{f,)+ S(e) CS({,+ &) by
the first part of the “Sum Theorem” I of Chapter VII.

We now prove (8) very simply. By (10) we have
m{SEL)} = Gh)" Ve = 0d(N)

and

m{S(Ex" )} =% (FA)" Ve = Q7 d(N).
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Hence, by repeated use of (12), we have
m[S{}A(g +#")}] 2 g m{SGA} + m{SE*"4);
=(g+# Q1dA)
=d(N),
as required.
To prove (9) we need (11) as well as (10), where now
Q0=n.
We must distinguish two cases. Suppose first that
Q }‘lg n }'n .
Then 2u =<4, Q by (2), which proves (9) in this case. Otherwise, by (11),
2 n
m{s(Z- 2 = L G2 ve=an,
by the definition (7) of Q. Hence, by repeated use of (12), we have
m{SEQL)}=d(N),

which completes the proof of (9).

X1.3.2. We are now in a position to prove the result enunciated
in §1.3 that when the star-body F(®) <1 is bounded, then b (F) is an
attained minimum, that is, in the notation of § 1.3, there exists a lattice
M such that

{u (M)} — b(F) — inf {u (N}
A

a(M) a(h)

We must use the transference theorem of §3.1 to ensure that we
may apply MAHLER’S compactness criterion. Write

Fy(ax) =[],
so that
Flx)=zcE(@®), ¢>0

for some ¢ and all ®, since F(x)<1 is bounded. Hence clearly
KON S p(A),

where the superfix ® indicates that the quantity is relative to F,. In
particular, if u(A) is bounded above for some set € of lattices A, then
so is u@(A\); and hence A is bounded below a strictly positive number
by Theorem IV [or by the weaker inequality (5) of §3.1]; that is

|A| = inf | a|
ach

+0
is bounded below,
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Now we select a sequence of lattices A, (1=7<Co0) not necessarily
distinct such that
a(h,) =1
and

{nA)}'—>d(F).

From what was proved in the last paragraph, |A,| is bounded below
by a positive number. Hence by MAHLER’S compactness criterion there
is a convergent subsequence; without loss of generality

A, —M.

Then M clearly has the properties required.

X1.3.3. Let A and A* be polar lattices in the sense of Chapter I,
§ 5. It was there shown that a necessary and sufficient condition that
a point & belong to A is that the scalar product ®a* be an integer for
all a*c A*. We develop now what may be regarded as a quantitative
generalization of this statement. For a real number & we denote by
&l the difference between & and the nearest integer either above or
below taken positively, that is
lell =, inf  |&—m|.
m=0, +1, +2,...
There will be no possibility of confusion with the notation ||t|| where ¢
is a homogeneous linear transformation.

THEOREM V1. Let F(x) be a symmetric convex n-dimensional distance
function corvesponding to a bounded set F(x) <1 and let F*(x) be the polar
distance-function. Let \ and N\* be polar lattices. For any point x, write

m(xy) = _inf(A)F (®) (1)
and '
- | a* !
K = 0 2
('1'0) a%‘éy\. F*(a*) ’ ( )
EX]

where a*x, denotes the scalar product. Then

[ 2} mi) = Ko < miao). §

The precise values of the constants in (3) are immaterial: what
matters is that the ratio K (a,)/m (x,) lies between constants. Theorem VI
goes back in essence to KHINTCHINE (1948a). KRONECKER’S Theorem
follows from it in a few lines [compare Chapter V, § 8 of the author’s
tract (CASSELS 1957a), where a less general form of Theorem VI is
given].
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We first prove the right-hand side of (3). Let
&, = xy (). (4)
Then x,a* differs from ax,a* by the integer (@, —x,)a* and so
llzoa*|| = ||, a*|| < |, @*]. ()

But now, by the definition of a polar function (Theorem III of Chap-
ter IV), and since F(x) is symmetric, we have

|® a*| < F(x,) F*(a*). (6)
Hence

||z, a*|| < Fl,) F*(a¥), (7)
and so

I, a*|| < m () F*(a*), (8)

on taking the infimum of the right-hand side of (7) over all &= axy(A).
This is just the right-hand side of (3).

To prove the left-hand side of (3) we need the dual bases b; and b*
of Theorem VII, Corollary of Chapter VIII, for which

F(b)F*bY) < (3" (nl)  (1Sjsn). o)
Let x, be any point, so that
®y=§ by +--- +&,b,

for some real numbers §;. Then, by (2),

&1l = 1167 @0l = K (o) F*(Bf) (10)
for 1<7=n. Choose integers «, so that
lu; — &1 =11l (11)
and let
= —u)b+ -+ (& —u)b,,
so

Then by (9), (10) and (11),
m(a) < F(a,)
< X & —w| F(b)
i
SIS
< K(@y) X FHb') F(b))

=L ()2 K(x,),

2n—1

which is the left-hand side of (3).
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XI1.3.4. In this section we prove a rather specialized transference
theorem which we shall need in § 4. The proof uses the so-called tech-
nique of the additional variable which has often been used with success?.
For example, the best result in the direction of Theorem V until the
work of KNESER was proved by HLAWKA (1952a) using this technique.
[Tt is reproduced in the author’s tract (CASSELS 1957a) in a special case. ]

LEmMA 1. Let Fy(x) =|x|, where ® =(%,, %5, %3) 15 a 3-dimensional
vector. Let Ay, Ay, A5 be the successive minima of a lattice A with respect
to Fy and let

u=sup inf F(x).
@, @=x,(N)

Then
By (kY
and
4B+ B+ <37 (2)

We first prove (2). There are linearly independent points a; of A
such that |a7| =A;. Let ¢;,¢,,¢; be a set of mutually orthogonal
vectors such that

;e
a,=c
@ =15,¢,+ Cy (3)
a3 =103,C; + U3, C; 1 €

for real numbers »;;. Then

le,|2< a2 = 4 (1=7<3). (4)

But now, if @, is any point, it is possible to choose integers u,, #,, #,
successively in that order, so that

Xy =Ty + Uy @y + 1y @+ U@y =€+ 6+ G5 ¢4,
where the numbers §; satisfy

I5l=3  (1=7=3).
Hence

|2} =& e |2+ + Bl + B+ A)

by (4). This establishes (2).
We now construct a 4-dimensional lattice M as follows. There is a
point &, such that

p=pN) = inf |a|. (5)

1 Apparently first used by MorDELL (1937a).
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Let the number g be defined by

o*+ut=1, (6)
S0
=g 25 (7)
by (2). Then M is the set of all 4-dimensional points
X =(x,0u), (8)

in an obvious notation, where % runs through all integers and the vector
x satisfies the congruence
T=uxy(N. (9)
Clearly
d(M) =pd(N).
If XcM and u <=0 we have
| X[*=][* + o*u? = 43

by (5) and (6) or by (7) according as # =41 or |#|>1. The values
taken by |X| with =0 and X¢M are precisely those taken by ||
with &eA. Hence the four successive minima of the function | X| with
respect to M are Ay, 4,, 45, 4,, where 1, 4,, 4; are the minima of |x|
with respect to A, as already defined, and

=

(Indeed A,=2,, but we do not need that.)
By TheoremI of Chapter VIII and Theorem IV, Corollary of
Chapter X, we have
WA < hdy A hy
=L dM)
= 2d (M)
=204d(N),
where I , is the lattice-constant of the 4-dimensional sphere | X | <1. On

eliminating g between (6) and (10), we obtain the required inequality (1).
We shall actually need Lemma 1 in the following shape:

(10)

CoROLLARY. To every poimt &, there is a point &, =xy (N\) such that

VS LIOIY
o= 3 )

In the first place,
3eted=cteteted=4 (12)

for every number e>>0 by the inequality of the arithmetic and geometric
mean. Hence it follows from (1) that u? is at most equal to the
Cassels, Geometry of Numbers 21
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righthand side of (11), on using (12) with
-] 4N }i
B { Midgds)
But now, since |&|<1 is bounded, there is certainly an @, such that
|| = inf |&| < p;
FE¥.N
and the corollary follows.

XI1.4. Product of n linear forms. Let

E(x) =|x... 2, (1)
Asin §1.4 we put
- — sup Ny _
p(N)=sup inf E(x), Dy=sup-r-. (2)

There is a famous conjecture of MINKOWSKI that
D=2 (3)

That ©; =27" follows at once by considering the case when A=A,
in (2) is the lattice of points with integer co-ordinates and xy=(3, ..., 3).
Clearly then F(x,) =1 for all ® = x,(A;), and d(A;) =

It is well known that

(a (MY = 277a(N)

if A is a sublattice of the integer lattice A,. The proof is simple. The
lattice A has a basis
b, = (by;,..-,4;,0,...,0),

where the b;; are integers and b;;0, &;;==0 for s>>j. For any real
numbers (%, ..., %,,) We can thus choose integers #,, ..., %, in order,
so that

|”7 11+ -+, 7n+x70|<1’|b77|

For ®&;=u,b,4--- +u4,b,+x,, we then have
{F(wl)}"é {% l blll}' ) {% lbnnl} = 2—-nd(/\) ’
as required.

The conjecture (3) has been proved only for n=2,3,4. A great
many proofs of (3) for » =2 for have been given; we shall present one in
§ 4.2 due to SAwYER. This has the advantage that it gives naturally a

result for the “‘asymmetric” distance function!
Rlxg x|t i xx,2 0}
Hayxolt if xmx,<0)’

F.(@ ={

1 Of course F, ;(x)< 1 is symmetric about o; but it is not symmetric in the
four quadrants.
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where % and / are positive numbers. These arise quite naturally even in
originally symmetric problems; indeed the result we shall prove was
first obtained by DAVENPORT (1948a) as a tool in his work on the *‘sym-
metric”’ problem for indefinite ternary quadratic forms. Further results
about F,; have been obtained, notably by BLANEY (1950a), BARNES
and SWINNERTON-DYER (1954a) and, as an adjunct to another investiga-
tion, by BARNES (1956a). We refer the reader to these papers for further
details.

When n =3, MINKOWSKI'S conjecture (3) was proved by REMAK
(19234, b) and a simplified proof was given by DAVENPORT (1939a).
We give DAVENPORT’S proof in § 4.3, having already paved the way in
§3.4. A proof for n =13 using different ideas has been given by BIrcH
and SWINNERTON-DYER (1956a).

When #n =4 a proof of (3) has been given by Dyson (1948a) following
the same general line as REMAK's proof. It is an extremely powerful
piece of work and requires tools from topology as well as from number-
theory proper.

For n> 4 only estimates for 9, are known. It was shown by TscHE-
BOTAREW (1934a) that

®l g 2—n/2’

and this was improved by MORDELL (1940a) and by DAVENPORT (1946a)
to
D1 é "7" 2_"/2:

where 7, s a number <1 such that #,—(2¢—1)? as #—> co. Recently
Woops (1958¢) has shown that TSCHEBOTAREW'S result may be im-
proved simply by using BLICHFELDT’s theorem instead of MINKOWSKI'S
convex body theorem. MORDELL (1959a) remarks that this improvement
can be combined with the earlier techniques. In particular, DAVENPORT'S
7, can be replaced by a number which is asymptotically 47, for large #.
We give TSCHEBOTAREW'’S result with its impressively simple proof in
§4.4.

Some further results of a general nature are known about this
problem. BIRCH and SWINNERTON-DYER (1956a) have shown that

{m Ny =27 (A)

for all lattices A in a certain neighbourhood of the integer lattice A,,
and give some other facts relating to the general conjecture. The author
(CasseLs 1952b) has shown that for any >0 and every » there are
infinitely many lattices A such that

Nz 27— g d(N)

21%
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and such that no two lattices A, A’ of the set are of the type A'=twA,
where ¢ is real and w an automorph of F (x); so if MINKOWSKI'S con-
jecture is true then the first minimum is certainly not isolated. RoGERs
(1954¢) has investigated the least number u;(A) such that for every
£>0 and every ®, there are ¢nfinitely many solutions of

E@)<um(N+e a=(N),

and obtained general conditions for A under which u; (A) =, (A).

CHALK (1947a, b) has obtained the complete answer for what may
be regarded as an extreme asymmetric version of MINKOWSKI’'S problem.
He shows namely that for any lattice A and any point &, there is an
Zy= (%14, ---, %n1) =&y (A) such that

%;1> 0 =5 n), 4
Xppeee X1 S A(N). (5

That < in (5) cannot always be replaced by < is shown by the simple
example when A=A, is the lattice of integer vectors and &y=0. The
case # =2 was obtained by DAVENPORT and HEILBRONN (1947a). When
n =2, BLANEY (1957a) has given an interesting strengthened form:
namely that for every @, there is an @, = (%,,, %5,) = &, (A) such that

and
(126t — 1) d(N) S %y %5, S A(N),

where the < on the left cannot be replaced by < for a certain lattice
A. The proof is a classic example of the local methods discussed in
general terms in § 8 of Chapter X. CorLE (1952a) has shown that to
every &, there is an @, =, such that

%i1>0 U=s7=n—1)
and
xll“‘xn——l,llxnll =3d(N).

CHALK (1947Db) discusses when for given @, there are infinitely many
@, =&, (N\) satisfying (4) and (5). The principle behind the proof of
CHALK’S theorem is similar to TSCHEBOTAREFF’S, and we prove it in
§ 4.4. The idea has been put in a much more general form by MACBEATH
{(1952a) and C. A. RoGERs (1954b), but we do not go into that here.

X1.4.2, The proof of MINKOWSKI'S conjecture in 2-dimensions may
be made to depend on the following lemma due to DELAUNAY (1G47a).
He used it as a tool to investigate g, (A) (in the notation of § 4.1) for
individual 2-dimensional lattices A; and the so-called “‘algorithm of the
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divided cell” has been exploited further by BARNES and SWINNERTON-
DyER (1954a), and BARNES (1954a, 1956c). It was remarked by
DELAUNAY (1947a) that the lemma does not generalize to 3 or more
dimensions; and the same counter-example in 3 dimensions was given
by BIRCH (1957a) in ignorance of DELAUNAY’S example.

LemMa 2. Let A be a 2-dimensional lattice and let x, be a point not
congruent modulo N\ to a point on either co-ordinate axis. Then there are
4 points x,, Ty, T3, &,, each congruent to x, modulo N\, where x; is in the
7-th quadrant, so that

&y + &y =Ty + 5 (1)

and X,—x,, X;— &, 1S a basis for A.

The four points x;, &,, &;, &, forms a “divided cell” of the grid &
of points @ =, (A). Simpler proofs of Lemma 2 have been given by
BamBaH (1955b) and REDEI (1959a). We follow REDELI.

The proof depends on the following two propositions.

ProrosITION 1. Let Yy, ¥Y,, Ys, Y be four points of & such that the
quadrilateral y,Y,YsYy, 15 convex and contains no other point of ® in its
interior or boundary. Then Y, Y, Y, Y, ts a parallelogram and y,—y,,
Ya— Y, 1s a basis for A.

This follows almost at once from Chapter III, Lemma 6.

PROPOSITION 2. Let T be a jine containing points of & in 3 quadrants.
Let y, be a point of ® in the remaining quadrant. Suppose that there are
poinis Yy, Y of & on T such that y,, Y,, Y, are the only points of the closed
triangle Y, Y, y; in ©. Then Lemma 2 s true.

For the line m’ through y, and parallel to T also contains points
of ® in three quadrants. It is then easy to pick out a divided cell with
a pair of opposite sides on T and T’

We now revert to the proof of Lemma 2. We can find 4 points
2, %y, %3, 4, With 2; in the j-th quadrant, such that the (not necesarily
convex) closed quadrilateral 2, 2, 2,2, contains as few points of & as
possible. The following three cases are all that can occur.

(i) The quadrilateral 2, 2, 2, 2, is convex. It is then a split parallelo-
gram by Proposition 1.

(i) Three of the points 2y, 2, 23, 2, are collinear. If, say, 2,, 2,, 2,
are on a line m, then Lemma 2 follows from Proposition 2 applied to
2, and .

(iii) One point, say 2;, is an inner point of the convex cover of the
remaining three. By the minimal defining property of 2, z,, 2;, 2,
any point of @ in the closed quadrilateral 2, 2, 2, 2, other thanz,, 2, 2,
must be in the first quadrant; and such points exist since 2, is one.
We may thus choose a point ¢ of ® in the first quadrant and in the
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triangle 2, 2, ,, such that the only points of @ in the closed triangle
2, 23 t are the vertices. Lemma 2 now follows from Proposition 2 on
putting
Yh=2, Y=2, Y=t

Since we have now disposed of all three cases, this concludes the
proof of Lemma 2.

CoroLLARY. If ;= (%}, %,,) then

H |25 % 4| < 278 {d (A}

7

For the area of the divided cell is d(A). It is also the sum of the
areas of the four triangles 7 with vertices 0, &;, @; ., (1S 7= 4; &y =x,).
But now the area of 7 is

%{|x17‘x2,;+1| + |x1,7'+1"27'|}»

2d(\) = Z {x1ix2,;'+1‘ + Z |x27- xx,,‘+1| -
7 i

and so

The required inequality now follows on applying the inequality of the
arithmetic and geometric means to the 8 terms on the right-hand side.

We can now prove DAVENPORT'S generalization of MINKOWSKI'S
conjecture for n=2.

THEOREM VII. Let o, o be positive numbers and
16p0=1.

Then to every 2-dimensional point &, and every lattice N there is a point
x'=x, (A} such that

—edN S KBS ad(A). @)

The case p =0 =1 is, of course, MINKOWSKI'S conjecture! for # =2.

When @, is congruent to a point on an axis modulo A, there is nothing
to prove. Otherwise we show that one of the four points ®; (1<7<4)
given by Lemma 2 will do. If not, we should have

|%11%21] >0 d(N), |%3%5] >0d(N),
[0 %20| > 0d(N),  |%1a%aa] > 0d(N);

which is in contradiction with Lemma 2, Corollary.

The reader should not find it difficult to verify that when p =0=1%}
the only case when the equality signs are needed in (2) is when
A =twAjandxy=tw(},3) (\), wheret > 0, wisanautomorphof x, ¥;and

1 Proved by MinkowsKI in this case.
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Agis the lattice of integers. DAVENPORT (1948a) showed that the equality
signs may be needed when g=3¢. On the other hand it follows from
CHALK'S Theorem of § 4.4 that something stronger is certainly true if
e>1 or 0>1; and BLANEY (1950a) has given stronger results which
cover the cases when p or ¢ is near 1.

XI1.4.3. We now give the REMAK-DAVENPORT proof of MINKOWSKI'S
conjecture in 3 dimensions, which depends on the following

LEMMA 3. Let N be any 3-dimensional lattice. Then there exist
numbers p;>0, (1=7=13) such that there are no points of N\ other than o
in the ellipsoid

S A+ p%ith<t, (1)
but there are three linearly independent poinis of N on the boundary of €.

We call the ellipsoid & free if 0 is the only point of A in it. We shall
assume that a free ellipsoid cannot have three linearly independent
points of A on the boundary, for some particular lattice A, and will
ultimately deduce a contradiction.

We note first that
Pt (%)2{d N}y2>o0 2)

for any free ellipsoid, by MINKOWSKI'S convex body theorem: the
constant in (2) is not important; all that is important is that it is positive.

Secondly, if +a,, +a,, +a, are three linearly dependent pairs of
points of A on the boundary of a free ellipsoid, we must have

tote,t+a;=o0

for some choice of the three 4- signs, since the 1+ @, lie on a plane through
the origin and so are points of a 2-dimensional lattice on the boundary
of an ellipse which contains no point of the lattice (Theorem XI of
Chapter V).

Thirdly, under our hypothesis, if there are two pairs of points
+a, and +a, of A on the boundary of a free ellipsoid, they cannot
both lie in the same co-ordinate plane, say, x,=0. For then we should
have

bediy +psaii =1, @, =(0,ay,ay)

poade + 1’3“32 =1, @y=/(0,4y;,43)-

If $, is decreased but p,, p; kept constant, the points a,, @, remain on
the boundary and the volume of the ellipsoid increases. Ultimately
there must come a third point on the boundary for some value of #,,
since it is impossible to decrease p, to 0 without a point of A entering
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the ellipsoid, by (2). Hence for some p, the ellipsoid is free but there
are points @,, a,, @, on the boundary, where a; is not on x,=0. This
contradicts the hypothesis whose absurdity we wished to prove.

Fourthly we show (on our hypothesis) that if there is a free
ellipsoid (1) with the points 4@a,, +-a,¢/ on the boundary, then there
is one with +a,, +a, and +(a,+a,) on the boundary. For put
a;=a,+a,, a,=a,—a,, and write

a;=(a,;, ay;, a3;) (1=7=4).

Then

(3)

=1 1 =1,2
P1a§i+1’2“;i+?53“§1’{ v ) }

There are numbers ¢, ¢,, ¢; not all 0 such that
Q101+ 9283+ 95 3= 0 (=12, (4)

and after a change of sign, if need be, we may suppose without loss of
generality that?
qla?4-|-qza§4+qaa§420- (5)

We now consider the ellipsoids

(b +tq1) 2+ (pe+1q,) 5+ (ps+1g5) 3 =1
where
{=0.

Since at least one of ¢y, ¢,, ¢; is negative by (4), as ¢ increases from 0
the inequality (2) with p,+t¢; for p; must fail for some ¢; so there
must be some value of ¢ at which for the first time a lattice point enters
the ellipse &. This cannot be a,, by (5), and so must be 4-a;= + (a,+a,)
by the second remark; which concludes the proof of the fourth remark.

We now prove the lemma. It is clear that we can obtain free ellipsoids
with two pairs of points +@,, 4@,/ on the boundary by varying the
parameters p, appropriately. By the fourth remark, there is then a free
ellipse with a,, a,, a,+a, on the boundary. Then by the fourth remark
applied to @, and a;+a, there is a free ellipse with a,, a,+a, and
2a,+a, on the boundary. By induction, there is an ellipsoid

PR+ B 4+ B A <1
with a,, na,+a,, (n+1) a,+a, on the boundary. In particular,
P (nayy + a1 + pL7 (nay; 4 a50)2 + B0 (a31 +a50)2=1.  (6)

11t is readily verified that there cannot be equality in (5), since the deter-
minant of the three forms in ¢, g,, ¢; in (4) and (5) does not vanish. But we do
not need this.
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We distinguish three cases. Suppose, first, that a,,540, 2,5, 0, 23,3=0.
Then, by (6),
>0 ((=123) (n—>o0),

in contradiction to (2). Suppose now that precisely one of a,,, a,,, a5,
vanishes, say, a,;,=0, 43,750, 43,F0. Then by the third remark above
we have 4,,#+0, and so

P Sai<oo, P00 (1=2,3),

again in contradiction to (2). Finally, suppose that two of a,;, a5, a5,
vanish, say, a,,=4a5,=0=ay,. Then a,,4=0=Fa,,, and so

i’]"”)éaf_ZZ (]:112): :(’n)_)o,

again in contradiction with (2). Since we have reached a contradiction
in every case, we have proved the absurdity of our initial hypothesis
and so the lemma is true.

MINKOWSKI'S conjecture for # =3 now follows in a few lines from
Lemma 3 and Lemma 1 Corollary.

THEOREM VIII. Let A\ be any 3-dimensional lattice and xy any point.
Then there is an ® =%y, Xp1, Xa1) =2y (N) such that

|x11x21x31|§%d(/\). (7)

Let $y, ps, P4 be the numbers given by Lemma 3, so that A has no
point in p, 4} +$,%3 +p,¥3<<1, but three linearly independent points
on the boundary. Hence the three successive minima of A with respect
to the distance-function

Fx) = (p x4+ Paxs+ ps xg); (8)
are

11=12=}»3=1. (9)
We may now apply Lemma 1 Corollary to the lattice M of points

(P%xlii’%xz:?%xa): (%1, %5, 23) €N,

with determinant
d (M) = (Pl ) 753)} d(/\)

and with successive minima with respect to || given by (9). Hence to
any ®, there is a congruent &; such that

3 ( d(M) %
2 A1+ be xgl + Psxgl = Y {ﬁi}

= % (Pr P2 Pa)* {‘Z (/\)}3,

The required inequality (7) now follows at once from (10) and from the
inequality of the arithmetic and geometric means.

(10)
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The reader should have no difficulty in showing that the sign of
equality in (7) is required only when A =fwA, for some number {5-0,
and some automorph @ of x, x, x,, where A, is the lattice of points with
integral co-ordinates; and then only for x,=twqy(3,3,3) (A). Note
that to have equality in (7) one must have equality in both applications
of the inequality of the arithmetic and geometric means; that going
from Lemma 1 to Lemma 1 Corollary and that going from (10) to (7).

X1.4.4. We now prove! the theorems of TSCHEBOTAREW and CHALK.
Since CHALK’s theorem is slightly simpler, we prove that first.

THEOREM IX. Let A be an n-dimensional lattice and x4 a point.

Then there is an &y=(%yq, ..., yy) =, (N} such that
;>0 (175 ), (1)
Hyper- X = d(N). (2)

There certainly is a point ®,=(x,, ..., %,,) =&, (A) for which
%>0  (1=7=mn). (3)
If J] x,,<d(N), then we may put & =a,. Otherwise we have
I %2> a(h), )

and so, by MINKOWSKI’S convex body theorem, there is a point a0
of A such that
laj| <|xs| (1=7=n). (5)

By considering 2"a instead of @ with a suitably chosen integer r=0,
we may suppose, further, that

|25 = %1252 (6)
for at least one integer /. Then the two points
X, +a=ut=(zf,..., x¥)

are both congruent to @, and lie in the quadrant »,>0 (1=7<#).
Further,

IIIx;IIIx;z x;.‘g——a; Si
H x}z 4
b

since by (5) and (6) every factor on the right-hand side is <1, and one

at least is <2. Hence choosing for @, that one of &% for which [] x;
is least, we have

%3>0  (1=7=7); Il %js< @RI 5.
! 7

1 Following MACBEATH (1952a), but in our special cases the argument can be
simplified.
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If J] x;3<d(N), then we may put &, =a;. Otherwise we repeat the
process with x; instead of &, and obtain an @, with

xi4>0 (1§7§n)' ijd— %in73—4Hx;2
7

And so on. Clearly an @, is reached in a bounded number of steps,
with a bound that can be given explicitly in terms of H %;2. This
concludes the proof.

A similar idea gives TSCHEBOTAREW’S
THEOREM X. Let A be any n-dimensional lattice, ¢ an arbitrarily

small number and @y a point. Then there 1s a point &)= (%yq, ..., X,1) =X,
(N), such that

|21y X | S 27+ £) A (). (7)
Let ¢ be the number such that
7"+ &)t =1, (8)
SO
0<t<2h )

If JT |%0]=(27"*+¢) d(N), there is nothing to prove, so we may
i
suppose that

X —n/2
Irjlx70|>(2 + &) d(N) } (10)

=td(N).

By MinkowskI's convex body theorem, there is a point a==0 in A for
which
| =tlxe]  (1=7=m). (11)

As in the proof of Theorem IX, we may suppose, on taking 2'a@ with
suitable integer » =0, that

lay| = 3¢{x5| (12)
for some J. Put

x*r=x,+a,
so that

————I’Ixﬂ’w ( a,,,) (13)
I]»Ixfﬂ v x’?o .
But
—M<t—f<1- LSt
by (9) and (11). Further,
:

1—p<y— A
"

1p
4

£1—
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by (12). Hence, on taking for &, that one of &* for which J[|x,] isleast,

we have
Hle2| = 5H|"1‘0|r
i i

where
st=max{[1— 2|, |1—}&|}<1.

As in the proof of IX we reach an @, satisfying (7) after a finite
number of steps, the number of steps being bounded by a number
depending only on #, JT |%,0| and &. This concludes the proof.

7

Appendix

In this appendix we list the lattice constants of some sets connected
with quadratic forms and give further references and some additional
comments. We write

2 2 2 2
':vr,s(w) =%+ + 2 — X+l " Xy,

and denote by I; | the lattice constant of the set

|, <1
in n-dimensional space, where

n=r-4s.

Results about definite forms are usually given in terms of y, where
yn=I ¢ . The first 8 values are known:

n=1, 7n=% 7n=2 ri=4

=8, yi=%, ri=64 p=2"
The value of y, is trivial; the values of y,,y;, 7, have been found
in this book (Chapter II, Theorems II, ITI and Chapter X, Theorem IV,
Corollary). For references and a list of the corresponding critical forms
see CHAUNDY (1946a), who gives proofs that p§ =28, ] =219/3; but
CHAUNDY’S proofs contain a lacuna. Presumably his line of argument
would lead to incorrect results by # =12; see COXETER and TopD (1953 a)
for a special form in 12 variables.

For indefinite forms we have

11?1 =’Z‘
112?1 ‘—‘111?2 = %
=%
I:;?l = E?s = %
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due to Hurwitz, MARKOFF, OPPENHEIM and OPPENHEIM respectively,
the proofs being reproduced in Dickson (1930a). We have proved all
except the last line in the book (Chapter II, Theorems IV, VII and
Chapter X, Theorem IV, Corollary). All are isolated. The successive
minima of |¢, ,| <1 are the MARKOFF Chain (see Chapter 2, §4). The
first 41 minima for | @, ;| <1 and the first 7 minima for | @, ,| <1 have
been given by VENKOV (1945a) and OPPENHEIM (1934a) respectively.
It is conjectured that |g, ,|<1 is of infinite type when #>0, s>0,
r+s=6, see DAVENPORT (1956a)'.

Let B, , be the lattice constant of

0< @, <1
Then
B11:
Bzx*i, Bl2_‘
322—115: Bzzl,l_sy 313*253

The value of B, , is given by Theorem V of Chapter II. The results in
the second row are due to DAVENPORT (1949a); both are isolated and
something is known about further minima, see OPPENHEIM (1953 a).
The results in the third row are due to OPPENHEIM (1953b) and again
something is known about successive minima. In all cases the critical
lattice has points a=o0 at which ¢, (a) =0.

Let 4, | be the lattice constant of

0=¢g,  <1.
Then
Ailz%,
A%,1=%, Aiz:%

Afe=7g, Az, Al.zq.

The value of 4, , follows at once from Theorem VI of Chapter II. The
rest are due to BARNES (1955a) and BARNES and OPPENHEIM (1955a).

If a quadratic form in # =3 variables takes arbitrarily small non-zero
values of one sign then it also takes arbitrarily small values of the
other sign. If a quadratic form represents 0, has two of its coefficients
in an irrational ratio and has #=§ variables, then it takes arbitrarily
small values of both signs (OPPENHEIM 1953 c, d).

! For later work on this problem, mainly due to DaveENPORT and BIRCH, see
RipouT (1958a).
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admissible 6, 80

— (in sense of MAHLER) 152

affine transformation 19

automorphs, automorphic star bodies
256

basis (of lattice) 9
BLICHFELDT'S theorem 69
boundedly reducible 154

class: see congruence class
compact 67

compatible 283

congruent 194, 303
congruence class 194
continued fractions 301
convergence (of lattices) 126
convex (point set) 2, 64

— (distance function) 104
critical 6, 80, 141, 142

— (in sense of MAHLER) 152
cube (generalised) 105
cylinder (generalised) 227

determinant viii, 5, 123
distance function 103
divided cell 325

equivalent (forms) 22, 23
extreme 165

finite type 80, 141
fully reducible 154
fundamental parallelopiped 69, 196

grid 303

hexagon lemma (of DIRICHLET) 233
hessian 54
homogeneous problem 1

improper equivalence 23

infinite type 80, 141

infinitely many lattice points in a set
155, 298

inhomogeneous problem 7

invariant 51

isolation 38, 286

Jordan-volume 175

lattice viii, 9

—~— (inhomogeneous) 303f.n.

lattice-constant viii, 64, 80

linear transformation: see affine trans-
formation

length (of vector) viii, 66

LiTTLEWOOD’s principle 34

LitTLEWOOD’S problem 172
local methods 301

MARKOFF chain 36

meet (of two point sets) 105f.n.
metric (in space of lattices) 130
MiNkowsK1's convex body theorem 71
— linear forms theorem 73

non-null (function non-null on a lattice)
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non-singular: see singular

octahedron (generalised) 105, 117
orthogonal 206f.n.

packing, lattice packing 223
parallelopiped (generalised) 116
polar basis 23

— convex body 105, 113

— distance function 113, 114
— lattice 23

— transformation 26, 114
primitive (lattice point) 24, 85
proper equivalence 23
proportional to integral 261

quotient space 194

reducible 153, 154
reduction in sense of MINKOWSKI 28

semi-definite 103f.n.

signature (of quadratic form) 20

simplex (lattice constant of) 82

singular cubic forms 51

— transformations 123

star body 84

— set 104, 153

sublattice 9

successive minima (for homogeneous
minimum of quadratic forms) 36

— (of distance function with respect to
lattice) 201

— (inhomogeneous problems) 305

support-plane: see tac-plane

SYLVESTER's lemma 188

symmetric (point set) 2, 64
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transference theorems 308, 313

transformation: see affine transforma-
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triangle inequality 66, 104
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