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Preface to the third edition

In the past few years, graph theory has established itself as an important
mathematical tool in a wide variety of subjects, ranging from opera-
tional research and linguistics to chemistry and genetics; at the same
time it has also emerged as a worthwhile mathematical discipline in its
own right. For some time there has been a need for an inexpensive
introductory text on the subject, suitable both for mathematicians
taking courses in graph theory and also for non-specialists wishing to
learn the subject as quickly as possible. It is my hope that this book goes
some of the way towards filling this need. The only prerequisites to
reading it are a basic knowledge of elementary set theory and matrix
theory.

The contents of this book may be conveniently divided into four
parts. The first of these, consisting of the first four chapters, provides a
basic foundation course containing such topics as connectedness, trees,
and Eulerian and Hamiltonian paths and circuits. This is then followed
by two chapters on planar graphs and colouring, with special reference
to problems relating to the four-colour theorem. The third part
(Chapters 7 and 8) deals with the theory of directed graphs and with
transversal theory, relating these fields to such subjects as Markov
chains and network flows. The book ends with a chapter on matroid
theory which is intended to tie together the material of the previous
chapters as well as to introduce some recent developments in the subject.

Throughout the book I have attempted to restrict the text to basic
material only, using the exercises as a means for introducing further
material of lesser importance. The result of this is that there are about
250 exercises, some of which are designed to test understanding of the
text, but many of which are intended to introduce you to new results and
ideas. You are urged to read through, and become familiar with, every
exercise whether or not you work through all of them in detail. The more
difficult exercises are indicated by an asterisk (*).

There are several parts of the book which may be omitted on a first
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reading, either because of their difficulty or because the material they
contain is not referred to later in the book; a star % is used to designate
the beginning and end of such sections. I have used the symbol // to
indicate the end (or absence) of a proof, and bold-face type is used for all
definitions. Finally, the number of elements in a set S will be denoted
throughout by |S|, and the empty set will be denoted by @.

A substantial number of changes have been made in this edition. In
particular, many of the exercises have been substantially rewritten, and
some of the terminology has been changed to fit in with current usage.
Many of these changes have arisen as a result of critical comments by a
number of people. I should like to take this opportunity of thanking
them for their helpful remarks.

Finally I should like to express my thanks: to my former students,
but for whom this book would have been completed a year earlier; to Mr
William Shakespeare and others, for their apt and witty comments at the
beginning of each chapter; and most of all to my wife, Joy, for many
things which have nothing at all to do with graph theory.

R.J.W.
January 1985
The Open University
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Introduction

The last thing one discovers in writing a book is what to put first.

Blaise Pascal

The object of this introductory chapter is to provide (by means of simple
examples) an intuitive background to the material to be presented more
formally in succeeding chapters. Terms which appear here in bold-face
type are to be thought of more as descriptions than as definitions—the
idea is that having met the words in an intuitive setting, you will not find
them totally unfamiliar when you meet them again in more formal
surroundings. We advise you to read this chapter quickly—and then to
forget all about it!

§1 What is a graph?

Let us begin by considering Figs. 1.1 and 1.2 which depict, respectively,
part of an electrical network and part of a road map. Itis clear that either

P Q

Fig. 1.1 Fig. 1.2

of them can be represented diagrammatically by means of points and
lines asin Fig. 1.3. The points P, Q, R, S and T are called vertices and the
lines are called edges; the whole diagram is called a graph. (Note that the
intersection of the lines PS and QT is not a vertex of the graph since it
does not correspond to the meeting of two wires or to a cross-roads.)
The degree of a vertex is the number of edges which have that vertex as
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an endpoint, and corresponds in Fig. 1.2 to the number of roads at an
intersection; thus the degree of the vertex Q is four.

Clearly the graph in Fig. 1.3 can also represent other situations. For
example, if P, Q, R, S and T represent football teams, then the existence
of an edge might correspond to the playing of a game between the teams
as its endpoints (so that in Fig. 1.3, P has played against .S but not
against R). In this case, the degree of a vertex is the number of games
played by the corresponding team.

P Q ; 3
E_ Z |
% R
S
T S
Fig. 1.3 Fig. 1.4

An alternative way of depicting the above situations is given by the
graph in Fig. 1.4. Here we have removed the ‘crossing’ of the lines PS
and QT by drawing the line PS outside the rectangle PQST. Note that
the resulting graph still tells us how the electrical network is wired up,
whether there is a direct road from one intersection to another and
which football teams have played which. The only information we have
lost concerns ‘metrical’ properties (length of road, straightness of wire,
etc.).

S
Fig. 1.5

The point we are trying to make is that a graph is a representative of
a set of points and of the way they are joined up, and that for our
purposes any metrical properties are irrelevant. From this point of view,
any two graphs which represent the same situation (such as the ones
shown in Figs. 1.3 and 1.4) will be regarded as essentially the same
graph. More precisely, we shall say that two graphs are isomorphic if
there is a one-one correspondence between their vertices which has the
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property that two vertices are joined by an edge in one graph if and only
if the corresponding vertices are joined by an edge in the other. Another
graph isomorphic to the graphs in Figs. 1.3 and 1.4 is shown in Fig. 1.5;
note that in this graph all idea of space and distance has gone, although
we can still tell at a glance which points are joined by a wire or a road.

It is worth pointing out that the graph we have been discussing so far
is a particularly ‘simple’ graph, in the sense that there is never more than
one edge joining a given pair of vertices. Suppose, now, that in Fig. 1.5
the roads joining Q and S, and S and T, have too much traffic to carry;
then the situation could be eased by building extra roads joining these
points, and the resulting diagram would look like Fig. 1.6. (The edges
joining Q and S, or S and T, are called multiple edges.) If in addition
we wish to build a car park at P, then this could be indicated on the
graph by drawing an edge from P to itself, usually called a loop (see Fig.
1.7). In this book, a graph will in general contain loops and multiple
edges; graphs containing no loops or multiple edges (such as the graph in
Fig. 1.5) will be referred to as simple graphs.

Q Q
S S
Fig. 1.6 Fig. 1.7

The study of directed graphs (or digraphs, as we shall usually
abbreviate them) arises out of the question, ‘what happens if all of the
roads are one-way streets?” An example of a digraph is given in Fig. 1.8,
the directions of the one-way streets being indicated by arrows. (In this
particular example, there would be utter chaos at 7, but that does not
stop us from studying such situations!) Note that if not all of the streets
are one-way, then we can obtain a digraph by drawing for each two-way

Q

Fig. 1.8
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road two directed edges, one in each direction. We shall be discussing
digraphs in some detail in Chapter 7.

Much of graph theory involves the study of walks of various kinds,
a walk being essentially a sequence of edges, one following on after
another; thus, for example, in Fig. 1.5 P—»Q— Risa ‘way of getting from
Pto R’ and isa walk of length two, and similarly P»S—Q—T—S—Ris
a walk of length five. A walk in which no vertex appears more than once
is a path; for example, P—T—S— R is a path. For obvious reasons, a
path of the form Q—S—T—Q is called a circuit.

In general, given two vertices v and w in a graph, it is not always
possible to find a path connecting them (see Fig. 1.9); such a path will
exist only when the graph is ‘in one piece’. We can make this clearer by
considering the graph whose vertices are the stations of the London
Underground and the New York Subway, and whose edges are the
various lines joining them; it is obviously impossible to get from
Trafalgar Square to Grand Central Station using only edges of the
graph. On the other hand, if we confine our attention to the stations and
lines of the London Underground, then we can get from any station to
any other. A graph in which any two vertices are connected by a path is
called a connected graph; such graphs will be discussed in Chapter 3.

Much of Chapters 3 and 4 will be devoted to the study of graphs
containing a walk or walks having some particular property. In Chapter
3, for example, we shall be discussing graphs which contain walks which
include every edge or every vertex exactly once, ending up at the initial
vertex; such graphs will be called Eulerian and Hamiltonian graphs
respectively. For example, the graph in Fig. 1.5 is Hamiltonian (a
possible walk being P—»Q— R—S—T—P) but is not quite Eulerian,
since any walk which includes every edge exactly once (e.g.
P>Q->T-»P->S—>R—->Q-»S—-T) must end up at a vertex different
from the initial vertex.

We shall also be interested in connected graphs in which there is
only one path connecting each pair of vertices; such graphs are called
trees (generalizing the idea of a family tree) and will be considered in
Chapter 4. We shall see that a tree can be defined as a connected graph
which contains no circuits (see Fig. 1.10).

Fig. 1.9 Fig. 1.10
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To change the subject a little, you will recall that when we were
discussing Fig. 1.3, we pointed out that there are graphs (such as Figs.
1.4 and 1.5) which are isomorphic to the graph under consideration but
which contain no crossings. Any graph which can be redrawn in this way
without crossings is called a planar graph. In Chapter S we shall give
several criteria for planarity, some of which will involve the properties of
subgraphs of the graph in question, and others of which will involve the
fundamental notion of duality.

Planar graphs also play an important role in colouring problems. To
motivate such problems, let us return to our ‘road-map’ graph, and let us
suppose that Shell, Esso, BP, and Gulf wish to put up five garages
between them at P, Q, R, S and T. Let us further assume that for
economic reasons no company wishes to erect two garages at neigh-
bouring corners. Then one solution would be for Shell to build at P, Esso
to build at @, BP at S, and Gulf at T, leaving either Shell or Gulf to build
at R. However, if Guif decides to back out of the whole agreement, then
it is clearly impossible for the other three companies to erect the garages
in the specified manner. ‘

This problem will be discussed in more colourful language in
Chapter 6 where we investigate the question of whether the vertices of a
given simple graph can be coloured using k given colours in such a way
that every edge of the graph has endpoints of different colours. If the
graph happens to be planar, then we shall see that it is always possible to
colour its vertices in the above-mentioned way if five colours are
available. Moreover, it has recently been proved that the same is true if
only four colours are available—this is the famous four-colour theorem.
(A possibly more familiar version of this theorem is that if we have a map
with several countries on it, then it is always possible to colour the
countries of the map with four colours in such a way that no two
neighbouring countries share the same colour.)

In Chapter 8 we shall investigate various combinatorial problems,
including the celebrated marriage problem which asks under what
conditions a collection of boys, each of whom knows several girls, can be
married off in such a way that each boy marries a girl he knows. This
problem can be easily expressed in the language of transversal theory, a
very important branch of combinatorial mathematics which we discuss
in §26. It will turn out that these topics are closely related to the problem
of finding the number of paths connecting two given vertices in a graph
or digraph, subject to the restriction that no two of the paths have an
edge in common.

We conclude Chapter 8 with a discussion of network flows and
transportation problems. To describe these problems, we suppose that
Fig. 1.5 represents part of an electrical network made up of wires of
different materials; the problem is then to find out how large a current
can safely be passed through the entire network from P to R, given the
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various currents which each separate wire can take without burning out.
Alternatively, we can think of P as a factory and R as a market and the
edges of the graph as various channels through which goods can be sent;
in this case we want to know how much can be sent from the factory to
the market, given the capacities of the various channels.

We end the book with a chapter on the theory of matroids; this
chapter is intended to tie together the material of the previous chapters
as well as to satisfy the maxim ‘be wise—generalize!” In fact, matroid
theory is essentially the study of sets with ‘independence structures’
defined on them, generalizing not only properties of linear independence
in vector spaces but also several of the results in graph theory obtained
earlier in the book. However, as we shall see, matroid theory is far from
being ‘generalization for generalization’s sake’. On the contrary, it gives
us a deeper insight into several graph-theoretical problems as well as
including among its applications simple proofs of results in transversal
theory which are awkward to prove by more traditional methods.
Matroid theory has played an important réle in the development of
combinatorial theory in recent years, and we have included it in our
book for this reason.

We hope that this introductory chapter has been useful to you in
setting the stage and describing some of the things which lie ahead. We
now embark upon a formal treatment of the subject.

Exercises 1

(1a) Write down the number of vertices, the number of edges, and the degree of
each vertex for:
(i) the graph fig. 1.3;
(ii) the graph in Fig. 1.11.

A B c - P Q R
D E F S T
Fig. 1.11 Fig. 1.12

(1b) Draw the graph which represents the road system in Fig. 1.12, and write
down the number of vertices, the number of edges and the degree of each
vertex.

(Ic) Figure 1.13 represents the chemical molecules of methane (CH,) and
propane (C,H,).
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(i) Regarding these diagrams as graphs, what can you say about the
vertices representing carbon atoms (C) and hydrogen atoms (H)?

(ii) There are two different chemical molecules with the chemical
formula C,H, ,. Draw thegraphs which correspond to these molecules.

H

H H H
| |7
H— C —H H-——C—CI:—C—H
| | |
H H H H
methane propane
Fig. 1.13
John
T ]
Joe Jean Jane Jill
| |
Jenny Kenny Bill Ben
Fig. 1.14

(1d) Draw the graph which corresponds to the family tree in Fig. 1.14.

(le)  John likes Joan, Jean and Jane, Joe likes Jane and Joan, and Jean and
Joan like each other. Draw a digraph which illustrates these relationships
between John, Joan, Jean, Jane and Joe.

(1f)  Snakes eat frogs and birds eat spiders; birds and spiders both eat insects;
frogs eat snails, spiders and insects. Draw a digraph which represents this
predatory behaviour.
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Definitions and examples

I hate definitions!

Benjamin Disraeli

In this chapter, the foundations are laid for a proper study of graph
theory. §2 formalizes some of the basic definitions mentioned in Chapter
1 and §3 provides a variety of examples. Diagrams are used throughout
to clarify the material, and the justification for their use is given in §4. A
description of some typical applications of the theory is deferred until we
have more machinery at our disposal (§§8, 11).

§2. Definitions

We shall begin by defining a simple graph G to be a pair (V(G), E(G)),
where V(G) is a non-empty finite set of elements called vertices (or nodes,
or points), and E(G) is a finite set of unordered pairs of distinct elements
of V(G) called edges (or lines); V(G) is sometimes called the vertex-set
and E(G) the edge-set of G. For example, Fig. 2.1 represents the simple
graph G whose vertex-set V(G) is the set {u, v, w, z}, and whose edge-set

v w

Fig. 2.1

E(G) consists of the pairs {u, v}, {v, w}, {u, w} and {w, z}. The edge {v, w}
is said to join the vertices v and w, and will usually be abbreviated to vw.
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Note that since E(G) is a set, rather than a family,T there can never be
more than one edge joining a given pair of vertices of a simple graph.

It turns out that many of the results which can be proved about
simple graphs may be extended without difficulty to more general
objects in which two vertices may have more than one edge joining them.
In addition, it is often convenient to remove the restriction that any edge
must join two distinct vertices, and allow the existence of loops—i.e.,
edges joining vertices to themselves. The resulting object, in which loops
and multiple edges are allowed, is then called a general graph—or,
simple, a graph (see Fig. 2.2). We emphasize the fact that every simple
graph is a graph, but not every graph is a simple graph.

Fig. 2.2

More formally, a graph G is defined to be a pair (V(G), E(G)), where
V(G) is a non-empty finite set of elements called vertices, and E(G) is a
finite family of unordered pairs of (not necessarily distinct) elements of
V(G) called edges; note that the use of the word ‘family’ permits the
existence of multiple edges. We shall call ¥(G) the vertex-set and E(G)
the edge-family of G. Thus in Fig. 2.2, ¥(G) is the set {u, v, w, z} and E(G)
is the family consisting of the edges {u, v}, {v, v}, {v, v}, {v, w}, {v, w}, {v, W},
{u, w}, {u, w} and {w, z}. Any edge of the form {v, w} is said to join the
vertices v and w, and will again be abbreviated to vw. Note that each loop
vv joins the vertex v to itself. Although in this book we shall sometimes
have to restrict ourselves to simple graphs, we shall wherever possible
prove our results for graphs in general.

A subject related to graph theory is the study of digraphs
(sometimes called directed graphs or networks, although we shall be
using the word ‘network’ in a slightly different sense). A digraph D is
defined to be a pair (V(D), A(D)), where V(D) is a non-empty finite set of
elements called vertices, and A(D) is a finite family of ordered pairs of
elements of V(D) called arcs. An arc whose first element is v and whose
second element is w is called an arc from v to w and is written (v, w), or
simply vw; note that two arcs of the form vw and wv are different. Fig. 2.3
represents a digraph whose arcs are uv, vv, vw, wo, wu and wz, the

+ We use the word ‘family’ to mean a collection of elements, some of which may occur
several times; for example, {a, b, ¢} is a set, but (a, g, ¢, b, a, c) is a family.
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ordering of the vertices in an arc being indicated by an arrow. If D has no
loops, and if the arcs of D are all distinct (so that 4(D) is a set, rather
than a family), then D is called a simple digraph; for example, the digraph
in Fig. 1.8 is simple, whereas the digraph in Fig. 2.3 is not.

v w

Fig. 2.3

Digraphs will be studied in further detail in Chapter 7. In the
meantime, we shall be content to point out that although graphs and
digraphs are essentially different objects, a graph can in certain
circumstances be thought of as a digraph in which there are two arcs,
one in each direction, corresponding to each edge (see Fig. 2.4).

Fig. 2.4

Remark on terminology

The language of graph theory is decidedly non-standard—every author
has his own terminology. In this book we are using essentially the
terminology of Bondy and Murty.” Several graph theorists, however,
use the term ‘graph’ to mean what we have called a simple graph. It is
also common, especially when discussing applications, to see the word
‘graph’ used for what we have called a digraph. To make matters worse,
one sometimes sees the term ‘graph’ used for the object which results if,
in the definition of a graph, we remove the restriction that the vertex-set
and edge-family must both be finite. (If they are in fact both infinite, then
we get what we call an infinite graph; we defer a study of infinite graphs
until §16.) It should be emphasized that any of the above definitions of a
graphis perfectly valid, provided that one is always consistent; we repeat
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that in this book, all graphs are finite and undirected, loops and multiple
edges being allowed unless specifically excluded.

Before giving examples of some important types of graph (in §3), it
will be convenient to introduce a few more simple definitions.

Two vertices v and w of a graph G are said to be adjacent if thereis an
edge joining them (i.e. there is an edge of the form vw); the vertices v and
w are then said to be incident to such an edge. Similarly, two distinct
edges of G are adjacent if they have at least one vertex in common. The
degree (or valency) of a vertex v of G is the number of edges incident to v,
and is written p(v); in calculating the degree of a vertex v, we shall (unless
otherwise stated) make the convention that a loop at v contributes two
(rather than one) to the degree of v. Any vertex of degree zero is called an
isolated vertex and a vertex of degree one is an end-vertex. Thus the
graph in Fig. 2.2 has one end-vertex, one vertex of degree three, one of
degree six and one of degree eight.

It is easy to see that if we add up the degrees of all the vertices of a
graph, then the result is an even number—in fact, twice the number of
edges—since each edge contributes exactly two to the sum. This result,
known two hundred years ago to Euler, is often called the handshaking
lemma since it implies that if several people shake hands, the total
number of hands shaken must be even—precisely because two hands are
involved in each handshake. An immediate corollary of the hand-
shaking lemma is that in any graph the number of vertices of odd degree
must be even. The analogue of this result for digraphs will be presented in
§23.

Fig. 2.5

Two graphs G, and G, are isomorphic if there is a one-one
correspondence between the vertices of G, and those of G, with the
property that the number of edges joining any two vertices of G, is equal
to the number of edges joining the corresponding vertices of G,. Thus
the two graphs shown in Fig. 2.5 are isomorphic under the correspon-
dence u<s I, vesm, wesn, x > p, y <> q, z+> r; note that there are only
six vertices—the other points at which edges cross are not vertices. A
subgraph of a graph G is simply a graph, all of whose vertices belong to
V(G) and all of whose edges belong to E(G). Thus the graph in Fig. 2.1 is



12 Definitions and examples

a subgraph of the graph in Fig. 2.4, but is not a subgraph of either graph
in Fig. 2.5 since the latter graphs contain no ‘triangle’.

Although it is often very convenient to represent a graph by a
diagram of points joined by lines,- such a representation may be
unsuitable if we wish to store a large graph in a computer. An alternative
representation which is useful in such cases is by means of a matrix.

If G is a graph with vertex-set {1, 2, . . ., n}, we define its adjacency
matrix 4 to be the n X n matrix whose #j-th entry is the number of edges
joining vertex i and vertex j. If, in addition, the edges are labelled {1, 2,

. .. m}, we define the incidence matrix M to be the n x m matrix whose
ij-th entry is 1 if vertex i is incident to edge j, and 0 otherwise. Fig. 2.6
gives an example of a graph G with its adjacency and incidence matrices.

0101 100100
1012 110011
0101 M 011000
1210 001111

Fig. 2.6

% As a change from definitions, we conclude this section by looking at a
puzzle which has been popular recently, and which has been marketed
under the name of ‘Instant Insanity’. It concerns four cubes whose faces
are coloured red, blue, green and yellow in such a way that each cube
contains at least one face of each colour, as in Fig. 2.7. The problem is to
pile these cubes up on top of each other in such a way that each of the
four 4 x 1 sides of the resulting stack shows a face of each colour.
Although the cubes can be stacked in thousands of different ways, only
one way leads to a solution of the problem.

O on on on
IR[v[c|8] [r]¥][B]c] [B]B[R]Y] [G]Y

Fig. 2.7

RG]

In order to solve this problem, we represent each cube by a graph on
four vertices, one vertex corresponding to each colour; in each such
graph, two vertices are adjacent if and only if the cube in question has the
corresponding colours on opposite faces. The graphs corresponding to
the cubes of Fig. 2.7 are shown in Fig. 2.8.

We shall find it convenient to superimpose these graphs to form a
new graph G (Fig. 2.9). Since every solution of the puzzle has two faces
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Fig. 2.9

of each colour on each of the two pairs of opposite sides of the 4 x 1
stack, it is not difficult to see that the required solution is obtained by
finding two subgraphs H, and H, of G which

(a) have no edges in common,
(b) contain exactly one edge from each cube, and
(¢) contain only vertices of degree two.

2

pol
=
=
=
/c}

~ 7= /=
lol=)

2 Y G 4 Y
Front & back Left & right

Fig. 2.10 Fi

.1

o
N
-

The subgraphs corresponding to our particular example are shown
in Fig.2.10. H, and H, then represent the colours appearing on the front-
and-back and on the left-and-right sides of the 4 x 1 stack. The solution
can now be read off from these subgraphs (Fig. 2.11).%

Exercises 2

(2a) Write down the vertex-set and edge-set of each graph in Fig. 2.5.
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(2b) Draw
({) a simple graph,
(i) a non-simple graph with no loops,
(iif) a non-simple graph with no multiple edges, each having 5 vertices
each having 5 vertices and 8 edges.
(2¢) (i) Draw a graph on six vertices whose degrees are 5, S, 5, 5, 3, 3; does
there exist a simple graph with these degrees?
(ii) How are your answers to part (i) changed if the degrees are §, 5, 4, 3, 3,
2?

(2d) Verif}" that the handshaking lemma holds for the graphs in Figs 2.1 and
2.5.
(2¢) Find, up to isomorphism, all the simple graphs on three or four vertices.
(2f) (i) Bysuitably lettering the vertices, show that the two graphs in Fig. 2.12
are isomorphic.
(if) Explain why the two graphs in Fig. 2.13 are not isomorphic.

PNy

Fig. 2.13

(2g) Classify the following statements as true or false:
(7)) any two isomorphic graphs have the same number of vertices and the
same number of edges;
(ii) any two graphs with the same number of vertices and the same
number of edges are isomorphic.

(2h) Which of the graphs in Fig. 2.14 are subgraphs of the graphs in Fig. 2.5?

NBEIR OIS,

Fig. 2.14
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(2i) If G is a graph without loops, what can you say about
(/) the sum of the entriesin any row or column of the adjacency matrix of
G?
(i/) the sum of the entries in any row of the incidence matrix of G?
(iii) the sum of the entries in any column of the incidence matrix of G?
(*2j) Let G be a simple graph with at least two vertices. Prove that G must
contain two or more vertices of the same degree.
(2k) Explain why conditions (a), () and (c) on page 13 are relevant to the
solution of ‘Instant Insanity’.
(*21) Find a solution of ‘Instant Insanity’ with the set of cubes in Fig. 2.15.
(There are several solutions.)

[v] [G] [v] [v]
[R{G[B]R] [Rc|B]G] [R][Y[R]B] [R|G|R]Y]
Y| R G B ]

Fig. 2.15

(*2m) If G is a simple graph with edge-set E(G), the vector space associated withG
is the vector space over the field of integers modulo 2, whose elements are
subsets of E(G). The sum E @ F of two sets E, F of edges is defined as the
set of edges in E or F but not both, and scalar multiplication is defined by
1.E=E and 0.E= @. Show that this does define a vector space, and find a
basis for it.

§3. Examples of graphs

In this section we shall examine some important types of graph. You are
advised to become familiar with them since they will appear frequently
in examples and exercises.

Null graphs

A graph whose edge-set is empty is called a null graph (or totally-
disconnected graph). We shall denote the null graph on n vertices by N,;
N, isshownin Fig. 3.1. Note that ina null graph, every vertex is isolated.
Null graphs are not very interesting.

o] o
Fig. 3.1 Fig. 3.2 Fig. 3.3
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Complete graphs

A simple graph in which every pair of distinct vertices are adjacent is
called a complete graph. The complete graph on # vertices is usually
denoted by K,; K, and K, are shown in Figs 3.2 and 3.3. You should
check that K, has exactly 1n(n— 1) edges.

Regular graphs

A graph in which every vertex has the same degree is called a regular
graph; if every vertex has degree r, the graph is called regular of degree r.
Of particular importance in colouring problems (to be discussed in
Chapter 6) are the cubic (or trivalent) graphs which are regular graphs of
degree three (for example, Figs 2.5 and 3.2). Another well-known
example of a cubic graph is the so-called Petersen graph shown earlier in
Fig. 2.12. Note that every null graph is regular of degree zero, and that
the complete graph K,, is regular of degree n — 1. Note also that if G has n
vertices and is regular of degree r, then G has 1rn edges.

cube octahedron dodecahedron icosahedron

Fig. 3.4

Platonic graphs

Of special interest among the regular graphs are the so-called Platonic
graphs, the graphs formed by the vertices and edges of the five regular
(Platonic) solids—the tetrahedron, cube, octahedron, dodecahedron
and icosahedron. The tetrahedral graph is K, (see Fig. 3.2), and the
graphs of the cube, octahedron, dodecahedron and icosahedron are
shown in Fig. 3.4.

Bipartite graphs

Suppose that the vertex-set of a graph G can be split into two disjoint sets
V, and V,, in such a way that every edge of G joins a vertex of ¥, to a
vertex of V, (see Fig. 3.5). G is then said to be a bipartite graph, which we
denote by G(V,, V,) if we wish to specify the two sets involved. An
alternative way of thinking of a bipartite graph is in terms of colouring
its vertices with two colours, say red and blue—a graph is bipartite if we
can colour each vertex red or blue in such a way that every edge has a red
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end and a blue end. It is worth emphasizing that in a bipartite graph
G(V,, V,), it is not necessarily true that every vertex of V, is joined to
every vertex of V; if, however, this does happen, and if G is simple, then
G is called a complete bipartite graph, usually denoted by K, , where r and
s are the numbers of vertices in ¥, and V, respectively. For example,
Fig. 3.6 represents K, 3, and two drawings of K; ; appeared in Fig. 2.5.
Note that K,  has r+ s vertices and rs edges. A complete bipartite graph
of the form K| , is called a star graph, K| ; being shown in Fig. 3.7.

vi

V2

Fig. 3.5 Fig. 3.6

Fig. 3.7

The k-cubes

Of special interest among the bipartite graphs are the k-cubes. The k-
cube Q, is the graph whose vertices correspond to the sequences (a,, 4,
.. ., a), where each ;=0 or 1, and whose edges join those sequences
which differ in just one place. Note that the graph of the cube is simply
the graph Q, (see Fig. 3.8). You should check that O, has 2* vertices and
k2*¥~ 1 edges, and is regular of degree k.

Fig. 3.9



18  Definitions and examples
The union of two graphs

There are several ways of combining two graphs to make a larger graph;
we shall illustrate one of these. If the two graphs are taken to be
G,=(MG,), E(G,)) and G,=(V(G,), E(G,)), where ¥(G,) and V(G,)
are assumed to be disjoint, then their union G,UG, is defined as the
graph with vertex-set ¥(G,)UV(G,) and edge-family E(G,)UE(G,) (see
Fig. 3.9).

Deletions and contractions

If e is an edge of a graph G, we denote by G — e the graph obtained from
G by deleting the edge e; more generally, if Fis any set of edges in G, we
denote by G — F the graph obtained by deleting the edges in F. Similarly,
if v is a vertex of G, we denote by G— v the graph obtained from G by
deleting the vertex v together with the edges incident to v; more
generally, if S is any set of vertices in G, we denote by G— S the graph
obtained by deleting the vertices in S and all edges incident to any of
them. We also denote by G\e the graph obtained by taking an edge e and
‘contracting’ it—in other words, removing ¢ and identifying its ends v
and w in such a way that the resulting vertex is incident to those edges
(other than e) which were originally incident to v or w. A contraction of G
is then defined to be any graph which results from G after a succession of
such edge-contractions. Note that K is a contraction of the Petersen
graph (by contracting the five edges which connect the inner pentagon to
the outer one); we also express this by saying that the Petersen graph is
contractible to K. Some deletions and contractions are shown in Fig.
3.10.

(4]
€
<
£

E
z

Fig. 3.10
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Connected graphs

As you have probably noticed, almost all the graphs we have discussed
so far have been ‘in one piece’, the main exceptions being the null graphs
N,(n22) and the union of graphs, both of which consist of ‘bits which
are not joined together’. We can formalize this distinction by defining a
graph to be connected if it cannot be expressed as the union of two
graphs; otherwise it is disconnected. It is clear that any disconnected
graph G can be expressed as the union of a finite number of connected
graphs—each of these connected graphs is called a (connected) compo-
nent of G. (A graph with three components is shown in Fig. 3.11.) When
proving results about graphs in general, it is often possible and
convenient to obtain the corresponding results for connected graphs,
and then apply them to each component separately.

ZNO&

Fig. 3.11 Fig. 3.12

Circuit graphs and wheels

A connected graph which is regular of degree two is called a circuit
graph, the circuit graph on » vertices being denoted by C,. The graph
obtained from C, _, by joining each vertex to a new vertex v is called the
wheel on n vertices, and is written W,. Fig. 3.12 shows Cg and W¢; W,
appeared in Fig. 3.2.

The complement of a simple graph

Let G be a simple graph with vertex-set V(G). The complement G of G is
the simple graph which has V(G) as its vertex-set, and in which two
vertices are adjacent if and only if they are nor adjacent in G. It follows
that if G has n vertices, then G can be constructed by removing from X,
all the edges of G (G being regarded as a subgraph of K,)). Note that the
complement of a complete graph is a null graph, and that the
complement of a complete bipartite graph is the union of two complete
graphs.
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Exercises 3

(3a)

(3b)

(o)
(3d)

(3e)

(30

(g)

(3h)

(*31)

(*3j)

3
Draw the following graphs: ’ :
(i) the null graph N; T
(i) the complete graph Kg; R B S
(iii) the complete bipartite graph K 4; - oD

(#v) the union of the star K, ; and the wheel W;
(v) the complement of the circuit graph Cs.
How many edges has each of the following graphs:
() Kqo; (i) K 43 (i) Qas (iv) W32
Draw all simple cubic graphs with at most eight vertices.
Give an example (if it exists) of each of the following:
(i) a bipartite graph which is regular of degree 5;
(ii) a cubic graph with eleven vertices;
(iii) a Platonic graph which is bipartite;
(iv) a graph (other than K, K, , or Q,) which is regular of degree 4.
The complete tripartite graph X, , , consists of three sets of vertices (of sizes
r, s and ¢), with an edge joining two vertices if and only if they lie in
different sets. Draw the graphs K, , , and Kj ; ,, and write down the
number of edges of K; , 5.
Let G be a graph with n vertices and m edges, and let v be a vertex of G of
degree k and e be an edge of G. How many vertices and edges have G —v,
G —e and G\e?
A simple graph which is isomorphic to its complement is called self-
complementary.
(?) Show that if G is self-complementary, then G has 4k or 4k+1
vertices, where k is an integer.
(#7) Find all self-complementary graphs with four and five vertices.
(iii) Find a self-complementary graph with eight vertices.
The line graph L(G) of a simple graph G is the graph whose vertices are in
one-one correspondence with the edges of G, two vertices of L(G) being
adjacent if and only if the corresponding edges of G are adjacent.
(i) Show that K; and K ; have the same line graph.
(éi) Find an expression for the number of edges of L(G) in terms of the
degrees of the vertices of G.
(#ii) Show that if G is regular of degree k, then L(G) is regular of degree
2k—2.
(iv) Show that L(K) is the complement of the Petersen graph.
Show that, in a gathering of six people, either there are three people who
all know each other or there are three people none of whom knows either
of the other two.
An automorphism ¢ of a simple graph G is a one-one mapping of the
vertex-set of G onto itself with the property that ¢(v) and ¢@(w) are
adjacent if and only if v and w are. The automorphism group I'(G) of G is
the group of automorphisms of G under composition.
(i) Show that the groups I'(G) and I'(G) are isomorphic.
(i) Find the groups I'(K,), I'(K, ;) and I'(C,).
(iii) Use the results of parts (i) and (ii) and exercise 3h(iv) to find the
automorphism group of the Petersen graph.
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§4. Embeddings of graphs

Up to now we have been using diagrams to represent graphs, a vertex
being represented by a point or small circle, and an edge by a line or
curve. Such diagrams are very useful for investigating the properties of
particular graphs, and it is natural to ask what it actually means to
‘represent’ a graph by a diagram, and whether all graphs can be so
represented. If you are quite happy drawing pictures and are not
concerned with the justification for doing so, you may omit this section
for the time being, secure in the knowledge that everything you do is all
right—but you may need to refer back here when you reach Chapter 5.
*What we should like to be able to do is to draw graphs in some
space—the plane or Euclidean 3-space, for example—in such a way that
there are no ‘crossings’ (a term which will be defined formally later on,
but whose intuitive meaning is clear). For example, Fig. 4.1 represents
K, but it contains a crossing; we may wish to find a representation (e.g.
Fig. 3.2) which contains no crossings. We shall see in fact that every
graph can be drawn without crossings in 3-space, but that such a
drawing is not always possible in the plane. In particular, as we shall
show in §12, K and K ; (Figs 3.3 and 2.5) cannot be drawn in the plane
without crossings.

EURPANY

Fig. 4.1 Fig. 4.2

Before defining an embedding of a graph, we remind you that a
Jordan curve (or Jordan arc) in the plane is a continuous curve which
does not intersect itself, and a closed Jordan curve is one whose end-
points coincide (see Fig. 4.2). Jordan curves can similarly be defined in 3-
space, or on the surface of such bodies as the sphere and the torus. Later
on, we shall be using a form of the famous Jordan curve theorem which
states that if % is a closed Jordan curve in the plane, and if x and y are
two distinct points of &, then any Jordan curve connecting x and y must
either lie completely inside % (except, of course, for the points x and y),
lie completely outside & (with the same exceptions), or intersect ¢ at
some point other than x and y (see Fig. 4.3). (For further details about
the Jordan curve theorem and related topics see, for example, Apostol.?)

We are now ready to define an embedding of a graph in a given
space; the spaces we have in mind are those in which Jordan curves can
be defined, but we shall be primarily concerned with the plane and 3-
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x®y x@ x@
Fig. 4.3

space. A graph G can be embedded (or has an embedding) in a given space
if it is isomorphic to a graph drawn in the space with points representing
vertices of G and Jordan curves representing edges in such a way that
there are no crossings. In this definition, a crossing is said to occur if
either

(i) the Jordan curves corresponding to two edges intersect at a point
which corresponds to no vertex, or

(ii) the Jordan curve corresponding to an edge passes through a point
which corresponds to a vertex which is not incident to that edge.
(Case (ii) is illustrated in Fig. 4.4; note that the vertex v is not incident to
the edges ¢, and e,.)

Fig. 4.4

We shall now prove the principal result of this section—that every
graph can be drawn without crossings in 3-space.

THEOREM 4A.  Every graph can be embedded in Euclidean 3-space.

Proof. We shall give an explicit construction for the embedding.
First place the vertices of the graph at distinct points of the x-axis; then
for each edge, choose a plane through the x-axis in such a way that
distinct edges of the graph correspond to distinct planes. (This can
always be done since there are only finitely many edges.)

The desired embedding is then obtained as follows: for each loop of
the graph we draw in the corresponding plane a circle passing through
the relevant vertex; for each edge joining two distinct vertices we draw in
the corresponding plane a semicircle connecting these two vertices.
Clearly none of these curves can intersect since they lie in different
planes. The result now follows immediately.//

Theorem 4A gives us the justification we were seeking for using
diagrams to depict graphs; we simply take a three-dimensional repres-
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entation and project it down onto the plane, making sure that no two
vertices are projected into the same point. In general, of course, such a
method will lead to crossings, but in some cases we will get diagrams
with no crossings. This can arise only when the graph in question can be
embedded in the plane; such a graph is called a planar graph. Planar
graphs will be studied in some detail in Chapter 5 but we have met
several examples already, e.g. K, the null graphs, the Platonic graphs,
the circuit graphs, the wheels and the star graphs.

Fig. 4.5

We conclude this section by proving a simple result which will be
needed later on. The proof will involve the following definition: if Gis a
graph embedded in some space, then a point x of the space is said to be
disjoint from G if x represents neither a vertex of G nor a point which lies
on an edge of G.

THEOREM4B. A graph is planar if and only if it can be embedded on
the surface of a sphere.

Proof. Let G be a graph embedded on the surface of a sphere.
Place the sphere on a plane in such a way that the ‘north pole’ N (the
point diametrically opposite the point of contact) is disjoint from G. The
desired planar representation is then obtained by stereographic projec-
tion from N (see Fig. 4.5). The converse is similar and will be left as an
exercise.//

Exercises 4

(4a) Show, by drawing, that the following graphs are planar:
(i) the null graph N;
(i) the star graph K 4;
(iii) the wheel W;
(iv) the graph of the octahedron;
(v) the complete bipartite graph K, ;.
(4b) Show how the graph in Fig. 4.6 can be embedded in the plane.
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Fig. 4.6

{ (4c) (i) Prove that every subgraph of a planar graph is planar.
(i) Assuming that K5 and K;; are non-planar, determine which
complete graphs and complete bipartite graphs are planar.

.(4d) Verify Theorem 48 for the complete bipartite graph K, ;,.

(4e) Verify that K and Kj , can each be embedded on the surface of a torus
(see Fig. 14.1).

(*4f) By placing the vertices at the points (1, 1, 1), (2, 22, 23),(3,32,3%),...,
prove that any simple graph can be embedded in Euclidean 3-space in
such a way that all of its edges are represented by straight lines.

(*4g) Let G be a planar graph with vertex-set {v,,. . . ,v,},andletp,,. . .,p, be
any ndistinct points in the plane. Give a heuristic argument to show that G
can be embedded in the plane in such a way that the point p; represents the
vertex v; for each i. %
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Paths and circuits

... So many paths that wind and wind,
While just the art of being kind
Is all the sad world needs.

Ella Wheeler Wilcox

Now that we have a reasonable armoury of graphs at our disposal, we
can start looking at their properties. In order to do this, we need some:
definitions which describe ways of ‘going from one vertex to another’. In
§5, we shall give these definitions, and prove some results on connected-
ness. §6 and §7 are devoted to a rather more detailed study of two
particular types of graph, those which contain walks which include every
edge, and those which contain circuits which include every vertex. We
conclude this chapter with some applications of paths and circuits.

§5. More definitions

Given any graph G, a walk in G is a finite sequence of edges of the form
Voly, U102, ¢« 0y Up—1Um

(also denoted by vo—v,—v,—. . .—v,). It is clear that a walk has the
property that any two consecutive edges are either adjacent or identical;
however, an arbitrary sequence of edges of G which has this property is
not necessarily a walk (e.g. consider a star graph, and take its edges in
any order). A walk trivially determines a sequence of vertices vy, v, . . .,
v,,; we call v, the initial vertex and v,, the final vertex of the walk, and
speak of a walk from v, to v,,. Note thatif v, is any vertex, then the ‘trivial
walk’ which contains no edges is a walk from v, to v,. The number of
edges in a walk is called its length; for example, in Fig. 5.1, vs>w—ox—y
—z—z—y—wis a walk of length seven from v to w.

The concept of a walk is too general for our purposes, so we shall
impose some further restrictions. A walk in which all the edges are
distinct is called a trail; if, in addition, the vertices v,, v, . . . , v, are
distinct (except, possibly, v, =v,,), then the trail is calléd a path. A path
or trail is closed if v, =v,,, and a closed path containing at least one edge
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is called a circuit. Note that in particular any loop or any pair of multiple
edges form a circuit.

Remark. This is another instance of widely differing terminology
by various authors. A walk appears in the literature as an edge-sequence,
route, path or edge-progression; a trail appears as a path, semi-simple
path, or chain; a path as a chain, arc, simple path or simple chain; a
closed trail as a cyclic path, re-entrant path or circuit; and a circuit as a
cycle, elementary cycle, circular path or simple circuit!

y
Fig. 5.1

In order to clarify the above concepts, let us again consider Fig. 5.1.
We see thatvow—-x—>y—z—sz—xisatrail, v>w—ox—y—zisapath, v
—-w—ox—y—ozox—visaclosed trail, and vow—-x—y—visacircuit. A
circuit of length three (such as v>w—x—v) is called a triangle.

It is interesting to note that if G is any bipartite graph, then every
circuit of G has even length. We shall prove this result here, leaving the
proof of the converse result to the reader (exercise 5g).

THEOREM 5A. If G(Vy, V,) is a bipartite graph, then every circuit
has even length.

Proof. Let v,—v,—...—v,—v, be a circuit in G(V,, V,), and
assume (without loss of generality) that v,eV/,. Then since G(V,, V) is
bipartite, v,eV,, vV, and so on. It follows that v, is in V,, and hence
that the circuit has even length.//

We can also give an alternative, and possibly more useful, definition
of a connected graph. A graph G is said to be connected if, given any pair
of vertices v, w of G, there is a path from v to w. An arbitrary graph can
split up into disjoint connected subgraphs called (connected) components
by defining an equivalence relation on the vertex-set of G, two vertices
being equivalent (or connected) if there is a path from one to the other;
we leave it to you to verify that the connectedness of vertices is in fact an
equivalence relation, and that each of the required components can be
obtained by taking the vertices in an equivalence class and the edges
incident to them. Clearly a connected graph has only one component; a
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graph with more than one component is called disconnected. We shall
now prove that these definitions are consistent with the ones given in §3.

THEOREM 5B. A graph is connected in the above sense if and only if
it is connected in the sense of §3.

Proof.=>Let G be a graph which is connected in the above sense. If G

is the union of two (disjoint) subgraphs, and if v and w are two vertices,
one from each subgraph, then any path from v to w must contain an edge
which is incident to a vertex of each subgraph,; since no such edge exists,
we have a contradiction.
« Now suppose that G is connected in the sense of §3, and suppose that
there is no path connecting a given pair of vertices v and w; if we define
connected components as above, then v and w will lie in different
components. We can then express G as the union of two graphs, one of
which is the component containing v and the other of which is the union
of the remaining components; this establishes the required contra-
diction.//

Now that we know what connectedness means, it is natural to try to
find out something about connected graphs. One direction of interest is
to investigate bounds for the number of edges of a simple graph on n
vertices with a given number of components. If such a graph is
connected, it seems reasonable to expect that the graph has fewest edges
when it has no circuits—such a graph is called a tree—and most edges
when it is a complete graph; this would imply that the number of edges
must lie between n— 1 and in(n— 1). We shall, in fact, prove a stronger
theorem which includes this result as a special case.

THEOREM 5C. Let G be a simple graph on n vertices; if G has k
components, then the number m of edges of G satisfies

n—k<m<i(n—k)n—k+1).

Proof. To prove that m=n— k, we use induction on the number of
edges of G, the result being trivial if G is a null graph. If G contains as few
edges as possible (say m,), then the removal of any edge of G must
increase the number of components by one, and the graph which
remains will have n vertices, k+ 1 components, and m,—1 edges. It
follows from the induction hypothesis that my—1=2n—(k+1), from
which we immediately deduce that my=n—k, as required.

To prove the upper bound, we can assume that each component of
G is a complete graph. Suppose, then, that there are two components C;
and C; with n; and n; vertices respectively, where n; 2 n;> 1. If we replace
C;and C; by complete graphs on n;+ 1 and n;— 1 vertices, then the total
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number of vertices remains unchanged, and the number of edges is
increased by

@+ Dn,—nin;— D} = Hnn;— 1)~ (n;— D(#;—2)}=n,—n;+1,

which is positive. It follows that in order to attain the maximum number
of edges, G must consist of a complete graph on n—k + 1 vertices and
k—1isolated vertices. The result now follows immediately.//

COROLLARY 5D. Any simple graph with n vertices and more than
Y(n—1)(n—2) edges is connected.//

Another approach used in the study of connected graphs is to ask
the question, ‘how connected is a connected graph? One possible
interpretation of this question is to ask how many edges or vertices must
be removed from the graph in order to disconnect it. We conclude this
section with some definitions which are useful when discussing such a
question.

A disconnecting set of a connected graph G is a set of edges of G
whose removal disconnects G; for example, in the graph of Fig. 5.2, the
sets {e}, e,, es} and {es, e, €, eg} are both disconnecting sets of G, the

W, €3 Y w y
€| 4 € s €4
€7
v & X & -z v € X z
Fig. 5.2 Fig. 5.3

disconnected graph left after removal of the second of these being shown
in Fig. 5.3. We further define a cutset to be any disconnecting set, no
proper subset of which is a disconnecting set; thus, in the example just
given, only the second disconnecting set is actually a cutset. It is clear
that the removal of the edges in a cutset always leaves a graph with
exactly two components. If a cutset contains only one edge e, we shall
call e a bridge or an isthmus (see Fig. 5.4). These definitions can clearly be
extended to disconnected graphs: if G is any graph, then a disconnecting

P~ P

Fig. 54 Fig.5.5
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set of G is a set of edges whose removal increases the number of
components of G; a cutset of G is then simply a disconnecting set, no
proper subset of which is a disconnecting set.

If G is connected, we define the edge-connectivity A(G) of G to be the
size of the smallest cutset in G; in other words, A(G) is the smallest
number of edges we can delete in order to disconnect G. For example, if
G is the graph of Fig. 5.2, then A(G)=2, corresponding to the cutset
{e,, e,}. We also say that G is k-edge-connected if A(G) =k, so that the
graph of Fig. 5.2 is 2-edge-connected, but not 3-edge-connected.

It is also very useful to define the analogous concepts for the
removal of vertices, rather than edges. A separating set of a connected
graph G is a set of vertices of G whose deletion disconnects G (recall that
when we delete a vertex we also remove its incident edges); for example,
in the graph of Fig. 5.2, the sets {w, x} and {w, x, y} are separating sets
of G. If a separating set contains only one vertex v, we call v a cut-vertex,
or articulation vertex (see Fig. 5.5). These definitions extend immediately
to disconnected graphs, just as above.

If G is connected, we define the (vertex-) connectivity x(G) of G to be
the size of the smallest separating set in G; in other words, x(G) is the
smallest number of vertices we can delete in order to disconnect G. For
example, if G is the graph of Fig. 5.2, then k(G) =2, corresponding to the
separating set {w, x}. We also say that G is k-connected if k(G)=k, so
that the graph of Fig. 5.5 is 1-connected, but not 2-connected. It can be
proved that if G is any connected graph, then k(G) £ A(G) (see, for
example, Bondy and Murty?).

Finally, we remark that there is a striking and unexpected similarity
between the properties of circuits and those of cutsets; the reader will
recognise this if he looks at such exercises as 5k, 51, 5m, 6h and 9k. The
reason for this will be revealed in Chapter 9, when everything will
suddenly become clear!

Exercises 5

(5a) In the Petersen graph, find
(i) a trail of length 5;
(if) a path of length 9;
(iii) circuits of lengths, 5, 6, 8 and 9;
(iv) cutsets with 3, 4 and 5 edges.

(5b) The girth of a graph is the length of its shortest circuit. Find the girths of
) K,; (ii) K, s; (i) Cq; (iv) Wy; (v) Qs; (vi) the Petersen graph; (vii) the
graph of the dodecahedron.

(5¢) Find x(G) and A(G) for each of the following graphs G: (i) Cg; (i) W;
(i) Ky, 75 (v) Qa-

(5d) () Let G be a connected graph with smallest degree k. Show that

MG)<k.
(ii) Constructa graph G with smallest degree k for which 1(G) < A(G) <k.
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(5¢) (i) Provethata graph G is 2-connected if and only if each pair of vertices

of G are contained in a common circuit.

(ii) Write down a corresponding statement for a 2-edge-connected
graph.

(5f) Prove that if G is a simple graph, then G and G cannot both be
disconnected.

(52) Prove the converse of Theorem 7a—that if every circuit of a graph G has
even length, then G is bipartite.

(5h) Let G be a connected graph with vertex-set {v,, v, . . . , v,} and m edges.

() If A is the adjacency matrix of G, prove that the number of walks of
length 2 from v, to v; is the ij-th entry of the matrix A2.

(if) Deduce that 2m =trace (A2), the sum of the diagonal entries of A2,

(51) Ina connected graph, the distance d(v,w) from v to w is the length of the
shortest path from v to w.

(@) If d(v,w)=2, show that there exists a vertex z such that
d(v,2) + d(z,w) = d(v,w).

(i) In the Petersen graph, show that d(v,w)=1 or 2 for any distinct
vertices v and w.

(*5j) Turan’s extremal theorem: Let G be a simple graph on 2k vertices which
contains no triangles. Show (by induction on k) that G has at most k2
edges, and give an example of a graph for which this upper bound is
achieved.

(*5k) (i) Prove that,if two distinct circuits of a graph G each contain an edge e,

then G has a circuit which does not contain e.

(if) Prove a similar result with ‘circuit’ replaced throughout by ‘cutset’.

(*51) (i) Prove thatif Cisa circuit and C* is a cutset of a connected graph G,

then C and C* have an even number of edges in common.

(i) Provethatif Sisany set of edges of G with an even number of edges in
common with each cutset of G, then S may be split up into edge-
disjoint circuits.

(*5m) A set E of edges of a graph G is said to be independent if E contains no
circuit of G. Prove that

(i) every subset of an independent set is independent;

(if) If Iand J are independent sets of edges with [J] > |1], then there exists
an edge e which is in J but not in J with the property that 7 U{e} is an
independent set.

Show also that (i) and (i) still hold if we replace the word ‘circuit’ by
‘cutset’.

§6. Eulerian graphs

A connected graph G is called Eulerian if there exists a closed trail which
includes every edge of G; such a trail is then called an Eulerian trail. Note
that the definition requires each edge to be traversed once and once only.
G is semi-Eulerian if we remove the restriction that the trail must be
closed; thus every Eulerian graph is semi-Eulerian. Figs 6.1, 6.2 and 6.3
show graphs which are non-Eulerian, semi-Eulerian and Eulerian,
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Fig. 6.1 Fig. 6.2 Fig. 6.3

respectively. Note that the assumption that G is connected is merely a
technicality introduced in order to avoid the trivial case of a graph
containing several isolated vertices.

Problems on Eulerian graphs frequently appear in books on
recreational mathematics—a typical problem might ask whether a given
diagram can be drawn without lifting one’s pencil from the paper and
without repeating any lines. The name ‘Eulerian’ arises from the fact
that Euler was the first person to solve the famous Konigsberg bridges
problem which asked whether it is possible to cross each of the seven
bridges in Fig. 6.4 exactly once and return to your starting-point. This is
equivalent to asking whether the graph in Fig. 6.5 has an Eulerian trail
(it hasn’t!). A translation of Euler’s paper, and a discussion of various
related topics, may be found in Biggs, Lloyd and Wilson.*

C

Fig. 6.4 Fig. 6.5

One question which immediately arises is ‘can one find necessary
and sufficient conditions for a graph to be Eulerian?’ Before providing a
complete answer to this question in Theorem 6B, we prove a simple
lemma.

LEMMA 6A. If G is a graph in which the degree of every vertex is at
least two, then G contains a circuit.

Proof. If G contains any loops or multiple edges, the result is
trivial; we can therefore suppose that G is a simple graph. Let » be any
vertex of G. We can construct a walk v—v, —»v,—. . . inductively by
choosing v, to be any vertex adjacent to v, and for i= 1 choosing v;; , to
be any vertex adjacent to v; except v (the existence of such a vertex
v;+, being guaranteed by our hypothesis). Since G has only finitely many
vertices, we must eventually choose a vertex which has been chosen
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before. If v, is the first such vertex, then that part of the walk which lies
between the two occurrences of v, is the required circuit.//

THEOREM 6B. A connected graph G is Eulerian if and only if the
degree of every vertex of G is even.

Proof.= Suppose that P is an Eulerian trail of G. Whenever P
passes through any vertex, there is a contribution of two towards the
degree of that vertex. Since every edge occurs exactly once in P, every
vertex must have even degree.

« The proofis by induction on the number of edges of G. Suppose the
degree of each vertex is even. Since G is connected, every vertex has
degree at least two, and so by the above lemma, G contains a circuit C. If

Fig. 6.6

C contains every edge of G, the proof is complete. If not, we remove from
G the edges of C to form a new (possibly disconnected) graph H which
has fewer edges than G and in which every vertex still has even degree. By
the induction hypothesis, each component of H has an Eulerian trail.
Since each component of H has at least one vertex in common with C, by
connectedness, we obtain the required Eulerian trail of G by following
the edges of C until a non-isolated vertex of H is reached, tracing the
Eulerian trail of the component of H which contains that vertex, and
then continuing along the edges of C until we reach a vertex belonging to
another component of H, and so on. The whole process terminates when
we get back to the initial vertex (see Fig. 6.6).//

The proof just given can be easily modified to prove the following
two results. We omit the details.

COROLLARY 6C. A connected graph is Eulerian if and only if its
edge-family can be split up into disjoint circuits.||

COROLLARY 6D. A connected graph is semi-Eulerian if and only if
there are 0 or 2 vertices of odd degree.//
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We remark that if a semi-Eulerian graph has exactly two vertices of
odd degree, then any semi-Eulerian trail (in the obvious sense) must
have one of them as initial vertex and the other as final vertex. By the
handshaking lemma, a graph cannot have exactly one vertex of odd
degree.

To conclude our discussion of Eulerian graphs, we now give an
algorithm for constructing an Eulerian trail in a given Eulerian graph.
The method is known as Fleury’s algorithm.

THEOREM 6E. Let G be an Eulerian graph. Then the following
construction is always possible, and produces an Eulerian trail of G.
Start at any vertex u and traverse the edges in an arbitrary manner, subject
only to the following rules:

(i) erase the edges as they are traversed, and if any isolated vertices
result erase them too;

(ii) at each stage, use a bridge only if there is no alternative.

* Proof. We shall show first that at each stage the construction may be
carried out. Suppose that we have just reached a vertex v; then if v#u,
the subgraph H which still remains is connected and contains only two
vertices of odd degree—namely, # and v. In order to show that the
construction can be carried out, we must show that the removal of the
next edge does not disconnect H—or equivalently, that vis incident to at
most one bridge. But if this is not the case, then there exists a bridge vw
with the property that the component K of H — vw containing w does not

contain u (see Fig. 6.7). Since the vertex w has odd degree in K, some
other vertex of K must also have odd degree, giving the required
contradiction. If v=u, the proof is almost identical, as long as there are
still edges incident with u.
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It remains only to show that the construction always yields a
complete Eulerian trail. But this is clear, since there can be no edges of G
remaining untraversed when the last edge incident to u is used, since
otherwise the removal of some earlier edge adjacent to one of these edges
would have disconnected the graph, contradicting (if).//%*

Exercises 6

(6a) Which of the following graphs are Eulerian? semi-Eulerian?
(/) the complete graph K;
(i) the complete bipartite graph K, ;;
(iii) the graph of the cube;
(iv) the graph of the octahedron;
(v) the Petersen graph.
(6b) (/) For which values of n is K, Eulerian?
(if) Which complete bipartite graphs are Eulerian?
(iii) Which Platonic graphs are Eulerian?
(iv) For which values of n is the wheel W, Eulerian?
(v) For which values of & is the k-cube Q, Eulerian?
(6c) Let G be a connected graph with k(> 0) vertices of odd degree.
(/) Show that the minimum number of trails, which have no edges in
common and which together include every edge of G, is 1k.
(ii)y How many continuous pen-strokes are needed to draw the diagram
in Fig. 6.8 without repeating any line?

Fig. 6.8 Fig. 6.9

(6d) Use Fleury’s algorithm to produce an Eulerian trail for the graph shown
in Fig. 6.9.

(6e) (i) Isit possible for a knight to travel around a chessboard in such a way
that every possible move occurs exactly once? (A move between two
squares ‘occurs’ if it is traversed in either direction.)

(i)) Repeat part (i) for a king and a rook. Interpret your solutions in
graph-theoretical terms.

(6f) (i) Show that the line graph of a simple Eulerian graph is Eulerian.

(i) Ifthe line graph of a simple graph G is Eulerian, must G be Eulerian?

(6g) An Eulerian graph is randomly traceable from a vertex v if, whenever we

start from v and traverse the graph in an arbitrary way never using any
edge twice, we eventually obtain an Eulerian trail.
(i) Show that the graph in Fig. 6.10 is randomly traceable.
(if) Give an example of an Eulerian graph which is not randomly
traceable.
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(iii) Why might a randomly traceable graph be suitable for the layout of
an exhibition?

Fig. 6.10

(*6h) Let V be the vector space associated with a graph G (see exercise 2m).
(/) Use Corollary 6C to show that if C and D are circuits of G, then their
sum C@®D can be written as a union of edge-disjoint circuits.
(ii) Deduce that the set of such unions of circuits of G forms a subspace
W of V (called the circuit subspace of G), and find its dimension.
(iif) Show that the set of unions of edge-disjoint cutsets of G forms a
subspace W of V (called the cutset subspace of G), and find its
dimension.

§7. Hamiltonian graphs

In the previous section we discussed the problem of whether there exists
a closed trail which includes every edge of a given connected graph G. A
similar problem we can consider is whether there exists a closed trail
which passes exactly once through each vertex of G. Itis clear that such a
trail must be a circuit (excluding the trivial case in which G is the graph
N,). If such a circuit exists, it is called a Hamiltonian circuit, and G is
called a Hamiltonian graph. A graph which contains a path which passes
through every vertex is called semi-Hamiltonian; note that every
Hamiltonian graph is semi-Hamiltonian. Figs 7.1, 7.2 and 7.3 show
graphs which are non-Hamiltonian, semi-Hamiltonian and Hamil-
tonian, respectively.

Fig. 7.1 Fig. 7.2 Fig. 7.3
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The name ‘Hamiltonian circuit’ arises from the fact that Sir William
Hamilton investigated the existence of such circuits in the dodecahedral
graph (although a more general problem had been studied earlier by the
Rev. T. P. Kirkman); such a circuit is shown in Fig. 7.4, heavy lines
denoting its edges.

Fig. 7.4

In Theorem 68 we obtained a necessary and sufficient condition for
a connected graph to be Eulerian, and it is perhaps reasonable to expect
that we can obtain a similar characterization for Hamiltonian graphs.
As it happens, the finding of such a characterization is one of the major
unsolved problems of graph theory! In fact, little is known in general
about Hamiltonian graphs. Most existing theorems have the form, ‘if G
has enough edges, then G is Hamiltonian’. Probably the most celebrated
of these isdue to G. A. Dirac, and known, reasonably enough, as Dirac’s
theorem. We shall deduce it from the following more general result, due
to O. Ore:

THEOREM 7A. If G is a simple graph with n( = 3) vertices, and if
p(v)+ p(w) = n for each pair of non-adjacent vertices v and w, then G is
Hamiltonian.

Proof. We shall assume the theorem false, and derive a contradic-
tion. So let G be a non-Hamiltonian graph with »n vertices, satisfying the
given condition on the vertex-degrees. By adding extra edges if
necessary, we may assume that G is ‘only just’ non-Hamiltonian, in the
sense that the addition of any further edge results in a Hamiltonian
graph. (Note that adding an extra edge does not violate the condition on
the vertex-degrees.) It follows that G contains a path v, —»v,—. . .—>v,
which includes every vertex. But since G is non-Hamiltonian, the vertices
v, and v, are not adjacent, and so p(v,)+ p(v,) = n. It follows that there
must be some vertex v; adjacent to v, with the property that v;,_, is
adjacent to v, (see Fig. 7.5). But this gives us the required contradiction,
since

ViU .o DU, >0, . . DV D00,

is then a Hamiltonian circuit.//
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Fig. 7.5

COROLLARY 7B (Dirac 1952). If G is a simple graph with n(Z 3)
vertices, and if p(v) = n for every vertex v, then G is Hamiltonian.

Proof. The result follows immediately from Theorem 7a since
p(v)+ p(w)=n for every pair of vertices v and w (whether adjacent or

not).//

Exercises 7

(7a) Which of the following graphs are Hamiltonian? semi-Hamiltonian?
(/) the complete graph K;
(ii) the complete bipartite graph K 3;
(iii) the graph of the octahedron;
(iv) the wheel W;
(v) the 4-cube Q,.
(7b) (i) For which values of n is K, Hamiltonian?
(i/) Which complete bipartite graphs are Hamiltonian?
(iiiy Which Platonic graphs are Hamiltonian?
(iv) For which values of n is the wheel W, Hamiltonian?
(v) For which values of & is the k-cube Q, Hamiltonian?
(7c) Show that the ‘Grotzsch graph’ in Fig. 7.6 is Hamiltonian.

Fig. 7.6 Fig. 7.7

(7d) (i) Prove that, if G is a bipartite graph with an odd number of vertices,
then G is non-Hamiltonian.

(if) Deduce that the graph in Fig. 7.7 is non-Hamiltonian.

(iii) Show that if 7 is odd, it is not possible for a knight to visit all the
squares of an n x n chessboard exactly once and return to its starting
point.

(7e) Give an example to show that, in the statement of Dirac’s theorem, the
condition ‘p(v) = 4n’ cannot be replaced by ‘p)zin—1.
(7f) (i) Let G be a graph with n vertices and 4(n—1)(n—2)+2 edges. Use
Theorem 7a to prove that G is Hamiltonian.
(ii) Give an example of a non-Hamiltonian graph with n vertices and
I(n—1)(n—2)+ 1 edges.
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(*7g) Prove that the Petersen graph is non-Hamiltonian.
(*7h) Let G be a Hamiltonian graph and let S be any set of k vertices in G. Prove
that the graph G — S has at most kK components.
(*7i) (i) Show that there exist four Hamiltonian circuits in K, with the
property that no two of them have an edge in common.
(if) What is the maximum number of edge-disjoint Hamiltonian circuits
in Ky 4y?

§8. Some applications

Although we are primarily concerned in this book with the theory of
graphs, it is high time that we mentioned some possible applications.
After all, most of the important advances in the subject arose as a result
of attempts to solve particular practical problems—Euler and the
bridges of Konigsberg, Cayley and the enumeration of chemical
molecules (§11), and Kirchhoff’s work on electrical networks (§11), to
name but three. Much of the present-day interest in the subject is due to
the fact that, quite apart from being an elegant mathematical discipline
in its own right, graph theory is playing an ever-increasing role in such a
wide range of subjects as electrical engineering and linguistics, oper-
ational research and crystallography, probability and genetics, and
sociology, geography and numerical analysis.

It is inappropriate in a book of this size to try to discuss a large
number of applications in any kind of detail; for this, we refer the reader
to the excellent account in Deo,!! or to Berge,* Bondy and Murty,” or
Wilson and Beineke.?® These books include a variety of different
applications, often with algorithms or flow-charts, for the solution of
particular problems.

In the present section we shall briefly describe three problems which
relate to the material of this chapter—namely, the shortest path
problem, the Chinese postman problem and the travelling salesman
problem. In later sections we shall be discussing the use of graphs and
digraphs in, for example, the enumeration of chemical molecules (§11),
electrical networks (§11), timetabling problems (§§21, 27), critical path
analysis (§22), Markov chains (§24), and the problem of finding maximal
flows in transportation networks (§29).

The shortest path problem

Let us suppose that we have a ‘map’ of the form shown in Fig. 8.1, in
which the letters A-L refer to towns which are connected by roads. If the
lengths of these roads are as marked on the diagram, what is the length
of the shortest path from A4 to L?
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Fig. 8.1

~ There are several remarks we can make concerning this problem.
First of all we note that an upper bound for the answer may easily be
obtained by taking any path from 4 to L and calculating its length. For
example, the paths A»B—»D—>G—J—-Land A>C—>F—I->K-L both
have total length 18, so that the length of the shortest path cannot
possibly exceed 18. Secondly, note that the numbers in the diagram need
not necessarily refer to the lengths of the various roads, but could
equally well refer to the time taken to travel along the roads, or to the
cost involved in doing so. It follows that if we can find a method for
solving the shortest path problem in its original formulation, then we
can apply the same method to find the quickest or the cheapest route.
Note finally that we can express this problem in graph-theoretic terms by
regarding the diagram as a connected graph in which a non-negative real
number has been assigned to each edge. Such a graph s called a weighted
graph, and the number assigned to each edge e is called the weight of e,
denoted by w(e). The problem is then to find a path from 4 to L with
minimum total weight. Note that if we have a weighted graph in which
each edge has weight one, then the problem reduces to that of finding the
length of the shortest path from A to L in the graph-theoretic
sense—that is, the smallest number of edges needed in going from A to L.

There are several methods which can be used to solve this problem.
Possibly the simplest of these is to make a model of the map by knotting
together pieces of string whose lengths are proportional to the lengths of
the roads. In order to find the shortest path, we take hold of the knots
corresponding to 4 and L—and pull tight!

However, there is a more mathematical way of approaching this
problem. Essentially the idea is to move across the graph from left to
right, associating with each vertex ¥ a number /() indicating the
shortest distance from A4 to V. In practice, this means that when we reach
a vertex such as J in Fig. 8.1, then /(J) will be either (G)+ 5 or I(H) +5,
whichever is the smaller.

To apply the method, we assign A4 the label 0 and give B, E and C the
temporary labels (A)+ 3, (A)+9, I(4)+2—that is, 3, 9 and 2. We next
take the smallest of these, and write (C)=2. C is now permanently
labelled 2.
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The next step is to look at the vertices adjacent to C. We assign Fthe
temporary label /(C)+9=11, and we can lower the temporary label at £
to /[(C)+ 6=_8. The smallest temporary label is now 3 (at B), so we write
I(B)=3.

Now we look at the vertices adjacent to B. We assign D the
temporary label /(B)+2=15, and we can lower the temporary label at E
to /(B)+4=". The smallest temporary label is now 5 (at D), so we write
KD)=5.

Continuing in this way, we successively obtain the permanent labels
EY=7, (G)=8, (H)=9, I(F)=10, I(D=12, I())=13, (K)=14,
I(L)=17. It follows that the shortest path from A4 to L haslength 17. Itis
shown in Fig. 8.2, with circled numbers representing the labels at the
vertices.
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In §22 we shall see how this method can be adapted to yield the
longest path in a digraph, and we shall indicate its use in critical path
analysis.

The Chinese postman problem

In this problem, discussed by the Chinese mathematician Mei-ko Kwan,
a postman wishes to deliver all of his letters in such a way that he covers
the least possible total distance and then returns to his starting point. He
must obviously traverse each of the roads in his route at least once, but
he clearly wishes to avoid covering too many roads more than once.

This problem can be reformulated in terms of weighted graphs,
where the graph corresponds to the network of roads, and the weight of
each edge corresponds to the length of the corresponding road. In this
reformulation, the requirement is to find a closed walk which includes
every edge at least once, and has least possible total weight.

Itis clear that if the graph in question is Eulerian, then any Eulerian
trail is a closed walk of the required type. Such an Eulerian trail can be
found by Fleury’s algorithm (see §6). If the graph is not Eulerian, then
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the problem is much harder, although a good algorithm for this solution
is known. To illustrate the ideas involved, we shall look at a special
case— that in which'there are exactly two vertices of odd degree (see Fig.
8.3).

Fig. 8.3 Fig. 8.4

Since vertices B and E are the only vertices of odd degree, we can
find a semi-Eulerian trail from Bto E covering each edge exactly once. In
order to return to the starting point, covering the least possible distance,
we now find the shortest path from E to B using the method described
. above. The solution of the Chinese postman problem is then obtained by
taking this shortest path E—F—A— B together with the original semi-
Eulerian trail, giving a total distance of 13+64=77. Note that if we
combine the shortest path and the semi-Eulerian trail, we get an
Eulerian graph (see Fig. 8.4).

A fuller discussion of the Chinese postman problem can be found in
Bondy and Murty.”

The travelling salesman problem

In this problem, a travelling salesman wishes to visit several given cities
“and return to his starting point, in such a way that he covers the least
possible total distance. For example, if there are five cities 4, B, C, D and
E, and if the distances are as given in Fig. 8.5, then the shortest possible
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route is A»B-»D—-E—C—A, giving a total distance of 26, as can be
seen by inspection. .

Note that this problem can also be reformulated in terms of
weighted graphs; in this case, the requirement is to find a Hamiltonian
circuit of least possible total weight in a weighted complete graph. Note
also that, just as in the shortest path problem, the numbers can equally
well refer to the time taken to travel between the cities, or to the cost
involved in doing so. It follows that if we can find an efficient algorithm
for solving the travelling salesman problem in its original formulation,
then we can apply the same algorithm to find the quickest or the cheapest
route. «

One possible algorithm would be to calculate the total distance for
all of the possible Hamiltonian circuits, but this turns out to be far too
complicated for more than about four or five cities. Various other
algorithms have been proposed, but they either take too long to apply,
or are too complicated to carry out. On the other hand, there are some
quite effective procedures which can tell us approximately what the
shortest distance is. One of these procedures will be described in §11.

Exercises 8

(8a) Use the shortest path algorithm to find a shortest path from 4 to G in the
weighted graph of Fig. 8.6.
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(8b) Use the shortest path algorithm to find the shortest path from L to 4 in
Fig. 8.1, and check that your answer agrees with that given in Fig. 8.2.

(8¢c) Show how the shortest path algorithm can be adapted to yield the longest
path from 4 to Lin Fig. 8.1. '

(8d) « Solve the Chinese postman prob\lcm for the weighted graph of Fig. 8.7.

(8¢) Solve the travelling salesman problem for the weighted graph of Fig. 8.8.

(80) Find the Hamiltonian circuit of grearest weight in the graph of Fig. 8.5.

(*8g) Find the shortest path from S to each of the other vertices in the weighted
graph of Fig. 8.9.
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Trees

A fool sees not the same tree that a wise man sees.

William Blake

We are all familiar with the idea of a family tree; in this chapter, we shall
be studying trees in general, with special reference to spanning trees in a
connected graph and (in §10) to Cayley’s celebrated result on the
enumeration of labelled trees. The chapter concludes with a section on
some further applications.

§9. Elementary properties of trees

A forest is defined to be a graph which contains no circuits, and a
connected forest is called a tree; for example, Fig. 9.1 shows a forest with
four components, each of which is a tree.t Note that trees and forests are
by definition simple graphs.

R~ A

Fig. 9.1

In many ways a tree is the simplest non-trivial type of graph; as we
shall see in Theorem 94, it has several ‘nice’ properties such as the fact
that any two verticés are connected by a unique path. In trying to prove a
general result or test a general conjecture in graph theory, it is sometimes
convenient to start by trying to prove the corresponding result for a tree;
in fact, there are several conjectures which have not been proved for
arbitrary graphs but which are known to be true for trees.

+The last tree in Fig. 9.1 is particularly well known for its bark.
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The following theorem lists some simple properties of trees:

THEOREM 9A. Let T be a graph with n vertices. Then the following
statements are equivalent:

(i) Tisatree;
(iiy T contains no circuits, and has n— 1 edges;
(iii) T is connected, and has n— 1 edges;
(iv) T is connected, and every edge is a bridge;
(v) any two vertices of T are connected by exactly one path;
(vi) T contains no circuits, but the addition of any new edge
creates exactly one circuit.

Proof. Ifn=1,allsix results are trivial. We shall therefore assume
that n=2.

(i)=(ii). Since T contains no circuits, by definition, it follows that
the removal of any edge disconnects T'into two graphs, each of whichisa
tree. It follows by induction that the number of edges in each of these
two trees is one fewer than the number of vertices, from which we deduce
that the total number of edges of T'is n—1.

(i))=>(iii). If T is disconnected, then each component of T is a
connected graph with no circuits and hence, by the previous part, the
number of vertices in each component exceeds by one the number of
edges. It follows that the total number of vertices of T exceeds the total
number of edges by at least two, contradicting the fact that Thasn—1
edges.

(iif)=>(iv). The removal of any edge results in a graph with n vertices
and n— 2 edges, which must be disconnected by Theorem 5c.

(iv)=>(v). Since T is connected, each pair of vertices is connected by
at least one path. If a given pair of vertices is connected by two paths,
then they enclose a circuit, which contradicts the fact that every edgeis a
bridge.

(v)=(vi). If T contained a circuit, then any two vertices in the circuit
would be connected by at least two paths, contradicting (v). If an edge e
is added to T, then, since the vertices incident to e are already connected
in 7T, a circuit will be created; the fact that only one circuit is obtained
follows from exercise Sk.

(vi)=(i). Suppose that T is disconnected. If to T we add any edge
which joins a vertex of one component to a vertex in another, then no
circuit will be created.//

COROLLARY 9B. Let G be a forest with n vertices and k compo-
nents; then G has n—k edges.
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Proof. Apply the above statement (iii) to each component of G.//

Note that by the handshaking lemma, the sum of the degrees of all
the n vertices of a tree is equal to twice the number of edges (=2n—2); it
follows that if n =2, a tree on n vertices always contains at least two end-
vertices.

Given any connected graph G, we can choose a circuit and remove
one of its edges, the resulting graph remaining connected. We repeat this
procedure with one of the remaining circuits, continuing until there are
no circuits left. The graph which remains will be a tree which connects all
the vertices of G; it is called a spanning tree of G. An example of a graph
and one of its spanning trees appears in Figs 9.2 and 9.3.

Fig. 9.2 Fig. 9.3

More generally, if G now denotes an arbitrary graph with » vertices,
m edges and k& components, we can carry out the above procedure on
each component of G, the result being called a spanning forest. The
number of edges removed in the process is called the circuit rank (or
cyclomatic number) of G, and is denoted by y(G); note that
Y(Gy=m—n+ k, which is a non-negative integer by Theorem 5c. It is
convenient also to define the cutset rank (or component rank) of G to be
the number of edges in a spanning forest; it is denoted by é(G) and is
equal to n — k. Some properties of the cutset rank are given in exercise 9j.

Before proceeding, we shall prove a couple of simple results
concerning spanning forests. In this theorem, the complement of a
spanning forest T of a (not necessarily simple) graph G is simply the
graph obtained from G by removing the edges of 7.

THEOREM 9c. If' T is any spanning forest of a graph G, then

(i) every cutset of G has an edge in common with T;
(ii) every circuit of G has an edge in common with the com-
plement of T.

Proof. (i) Let C* be a cutset of G, the removal of which splits one
of the components of G into two subgraphs H and K. Then since T'is a
spanning forest, 7’ must contain an edge joining a vertex of H to a vertex
of K; this edge is the required edge.

(ii) Let C be a circuit of G which has no edge in common with the
complement of 7. Then C must be contained in 7, which is a
contradiction.//



Elementary properties of trees 47

Closely linked with the idea of a spanning forest 7 of a graph G is the
concept of the fundamental system of circuits associated with T, formed
as follows: if we add to T any edge of G not contained in 7, then by
statement (vi) of Theorem 9A we get a unique circuit. The set of all
circuits formed in this way (i.e., by adding separately each edge of G not
contained in 7) is called the fundamental system of circuits associated
with T. Sometimes we are not interested in the particular spanning forest
chosen, and refer simply to a fundamental system of circuits of G. In any
case, it is clear that the circuits in a given fundamental system must be
distinct, and that the number of such circuits must be equal to the circuit
rank of G. Fig. 9.4 shows the fundamental system of circuits of the graph
shown in Fig. 9.2 associated with the spanning tree of Fig. 9.3.

v v v w v w
Fig. 9.4

In the light of our remarks at the end of §5, we may hope to be able to
define a fundamental system of cutsets of a graph G associated with a
given spanning forest T, we shall now show that this is indeed the case.
By statement (iv) of Theorem 94, the removal of any edge of T divides
the set of vertices of T into two disjoint sets ¥, and V,. The set of all
edges of G joining a vertex of V', with one of V, is a cutset of G, and the
set of all cutsets obtained in this way (i.c. by removing separately each
edge of T)is called the fundamental system of cutsets associated with 7" It
is clear that the cutsets in a given fundamental system must be distinct,
and that the number of such cutsets must be equal to the cutset rank of
G. The fundamental system of cutsets of the graph in Fig. 9.2 associated
with the spanning tree of Fig. 9.3 is {e,, es}, {e, es, €5, €g},
{es, eq, €4, €g} and {e,, eq, €g}.

Exercises 9

(9a) Show, by drawing, that there are (up to isomorphism) three trees on 5
vertices, six trees on 6 vertices and eleven trees on 7 vertices.

(9b) (i) Prove that every tree is a bipartite graph.
(if) Which trees are complete bipartite graphs?

(9c) Draw all the spanning trees in the graphs in Fig. 9.5.

(9d) Find the fundamental systems of circuits and cutsets of the graph in Fig.
9.6 associated with the spanning tree shown.

(9¢) Calculate the circuit and cutset ranks of (i) K; (if) K 3; (ii) W; (iv) Ng;
(v) the Petersen graph.
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Fig. 9.5 Fig. 9.6

(90 Let G be a connected graph. What can you say about

(i) an edge of G which appears in every spanning tree?

(ii) an edge of G which appears in no spanning tree?

(9g) If Gisaconnected graph, a centre of G is a vertex v with the property that
the maximum of the distances between v and the other vertices of G is as
small as possible. By successively removing end-vertices, prove that every
tree has either one centre or two adjacent centres.

(*9h) (i) Let C* be a set of edges of a graph G. Show that, if C* has an edge in

common with any spanning forest of G, then C* contains a cutset.
(ify Obtain a corresponding result for circuits.

(*9i) Let T, and T, be spanning trees of a connected graph G.

(i) Show that, if eis any edge of T, then there exists an edge f of T, such
that (T, — {e})U{f} (the graph obtained from 7; on replacing e by f) is
also a spanning tree.

(it) Deduce that T’ can be ‘transformed’ into T, by replacing the edges of
T, one at a time by edges of T, in such a way that a spanning tree is
obtained at each stage.

(*9j) Show that if H and K are subgraphs of a graph G, and if HUK and HNK
are defined in the natural way, then the cutset rank & satisfies:

() 0<E(H)<|E(H)| (the number of edges of H);

(i) if H is a subgraph of K, then é(H) < &(K);
(iif) S(HUK)+ E(HNK) <E(H) + 4(K).

(*9k) Let ¥ be the vector space associated with a simple connected graph G, and
let T be a spanning tree of G.

(/) Show that the fundamental system of circuits associated with T
forms a basis for the circuit subspace W.

(if) Obtain a corresponding result for the cutset subspace W.
(itiy Deduce that the dimensions of W and W are ¥(G) and &G),
respectively.

§10. The enumeration of trees

The subject of graph enumeration is concerned with the problem of
finding out how many non-isomorphic graphs there are which possess a
given property. The subject was initiated in the 1850s by Cayley, who
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later applied it to the problem of enumerating alkanes C,H,, ., with a
given number of carbon atoms. As he realized, and as you will see in §11,
this problem can be expressed as the problem of counting the number of
trees in which the degree of every vertex is either four or one.

Many of the standard problems of graph enumeration have been
solved. For example, it is possible to calculate the number of graphs,
digraphs, connected graphs, trees and Eulerian graphs, containing a
given number of vertices and edges; the corresponding results for planar
graphs and Hamiltonian graphs have, however, not yet been obtained.
Most of the known results can be obtained by using a fundamental
enumeration theorem due to Pdlya, a good account of which may be
found in Harary and Palmer!¢; unfortunately, in almost every case it is
impossible to express these results by means of simple formulae. For
tables of some known results, you are referred to the Appendix.

This section is devoted primarily to two proofs of a famous result,
usually attributed to Cayley, on the number of labelled trees with a given
number of vertices. In this context, a labelled graph on n vertices is
essentially a graph in which the vertices are ‘labelled” with the integers
from 1 to n. More precisely, we define a labelling of a graph G on n
vertices to be a one-one mapping from the vertex-set of G onto the set
{1, ..., n}; alabelled graph is then a pair (G, ¢), where G is a graph and
@ is a labelling of G. We shall frequently refer to theintegers 1, . . . , nas
the labels of G, and denote the verticesof Gby vy, . . . , v,. Furthermore,
we shall say that two labelled graphs (G,, ¢,) and (G,, ¢,) are
isomorphic if there exists an isomorphism between G, and G, which
preserves the labelling of the vertices.

In order to clarify these definitions, let us consider Fig. 10.1, which
shows various ways of labelling a tree with four vertices. On closer
inspection, we see that the second labelled tree is simply the reverse of
the first one, and it follows that these two labelled trees must be
isomorphic; on the other hand, neither of them is isomorphic to the third
labelled tree, as can be seen by looking at the degree of the vertex 3. It
follows that the total number of ways of labelling this particular tree
must be 1(4!) = 12, since the reverse of any labelling does not resultin a
new one. Similarly, the total number of ways of labelling the tree shown
in Fig. 10.2 must be four, since the central vertex may be labelled in four
different ways, and each one determines the labelling. It follows that the

Fig. 10.1 Fig. 10.2
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total number of (non-isomorphic) labelled trees on four vertices is
sixteen. We now prove Cayley’s theorem which generalizes this result to
labelled trees with n vertices.

THEOREM 10A (Cayley 1889). There are n"~ 2 distinct labelled trees
on n vertices.

Remark. The proofs we are about to give are due to Priifer and
Clarke; for several other proofs, see Moon.2°

First proof. We shall establish a one-one correspondence between
the set of labelled trees of order n and the set of all ordered symbols
(ay, a, . . ., a,.,), whereeach a;is an integer satisfying 1 <a; <n. Since
there are precisely n"~2 such symbols, the result will then follow
immediately. We shall assume that n 2 3, since the result is trivial if n < 2.

In order to establish the required correspondence, we first let Tbe a
labelled tree of order n, and show how the symbol can be assigned. If b,
is the smallest label assigned to any of the end-vertices, we let a, be the
label of the vertex adjacent to the vertex b,. We then remove the vertex
b, and its incident edge, leaving a labelled tree of order n— 1. If we now
let b, be the smallest label assigned to any of the end-vertices of our new
tree, and let a, be the label of the vertex adjacent to the vertex b,, we can
then remove the vertex &, and its incident edge, as before. Proceeding in
this way until there are only two vertices left gives us the required symbol
(ay, ay, . . ., a,_,). For example, if T is the labelled tree in Fig. 10.3,
then b, =2, a,=6; b,=3, a,=5; by=4, a,=6; b,=6, a,=5; b;=5,
a;=1. The required 5-tuple is therefore (6, 5, 6, 5, 1).

Fig. 10.3

In order to establish the reverse correspondence, we take a symbol
(a,,...,a,_,), let b, be the smallest number which does not appear in
it, and join the vertices a; and b,. We then remove a, from the symbol,
and remove the number b, from consideration, and proceed as before.
In this way we can build up the tree, edge by edge. For example, if we
start with the symbol (6, 5, 6, 5, 1), then b, =2, b,=3, b3;=4, b,=6,
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bs=5,and the corresponding edges are 62, 53, 64, 56, 15; we conclude by
joining the last two vertices not yet crossed out—in this case, 1 and 7.

It is a straightforward matter to check that if we start with any
labelled tree, find the corresponding symbol, and then find the labelled
tree corresponding to that symbol, then we always obtain the tree we
started from. The required correspondence is therefore established, and
the result follows.//

Second proof. Let T(n, k) denote the number of labelled trees on n
vertices in which a given vertex (v, say) has degree k. We shall derive an
expression for T(n, k), and the result will then follow on summing from
k=1tok=n—1.

Let A be any labelled tree in which p(v) =k — 1. The removal from A
of any edge wz which is not incident to v leaves two subtrees, one of
which contains v and either w or z (et us say, w), and the other of which
contains z. If we now join the vertices v and z, we obtain a labelled tree B
in which p(v)=k (see Fig. 10.4). We shall call a pair (4, B) of labelled
trees a linkage if B can be obtained from A by the above construction.
Our aim is to count the total number of possible linkages (4, B).

Fig. 10.4

Since 4 may be chosen in any of T(n, k — 1) ways, and Bis uniquely
defined by the edge wz which may be chosen in (n—1)— k—1)=n—k
ways, the total number of linkages (4, B)isclearly (n— k)T(n, k—1).0On
the other hand, let B be a labelled tree in which p(v)=k, and let
T,, ..., T, be the subtrees obtained from B by removing the vertex v
and every edge incident to v; then we can obtain a labelled tree 4 for
which p(v)=k — 1 by removing from B just one of these edges (vw;, say,
where w, lies in T;) and joining w; to any vertex u of any other subtree T;
(see Fig. 10.5). It is clear that the corresponding pair (4, B) of labelled
treesis a linkage, and that all linkages may be obtained in this way. Since
Bmay be chosenin T(n, k) ways, and the number of ways of joining w; to
vertices in any other T is (n— 1) —n; (where n; denotes the number of
vertices of T}), it follows that the total number of linkages (4, B)is

T(n, k){(n—1—-n)+. .. +(n—1—n)}=n—1k—1)Th, k),

sincen, +...+n,=n—1.
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We have thus shown that
(n—k)I(n, k—1)=(n—1)k—1)T(n, k).

On iterating this result, and using the obvious fact that T(n, n—1)=1,
we deduce immediately that

T(n, k)=<Z:f>(n— 1kt

On summing over all possible values of k, it follows that the number 71(n)
of labelled trees on n vertices is given by

n—1

o n—2
T(n)= Z T(n, k): Z( )(n_l)n—k—l
k=1 i\k—1
={(n_1)+1}"_2=n"-2.//

COROLLARY 10B. The number of spanning trees of K, is n"~ 2.

Proof. To every labelled tree on n vertices there corresponds (in a
unique way) a spanning tree of K,,. Conversely, every spanning tree of K,
gives rise to a unique labelled tree on n vertices.//

We conclude this section by stating an important result which can
be used to calculate the number of spanning trees in any connected
simple graph. It is usually known as the matrix-tree theorem and its
proof may be found in Harary:!#

THEOREM 10C. Let G be a connected simple graph with vertex-set
{vy, .. ., v,}, and let M= (m;;) be the n x n matrix in which my= p(v;),
m;;= — 1 if v; and v; are adjacent, and m;;= 0 otherwise. Then the number
of spanning trees of G is equal to the cofactor of any element of M.//
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Exercises 10

(10a) Verify directly that there are exactly 125 labelled trees on five vertices.
(10b) (i) Show that there are exactly 2"~ 172 Jabelled simple graphs on n
vertices.
(ii) How many of these have exactly m edges?
(10c) In the first proof of Cayley’s theorem, find:
(i) the labelled trees corresponding to the sequences (1, 2, 3, 4) and
@3, 3, 3, 3);
(if) the sequences corresponding to the labelled trees in Fig. 10.6.

0

=G

S

O
0
IN

Fig. 10.6

(10d) (i) Find the number of trees on n vertices in which a given vertex is an
end-vertex.
(i)) Deduce that, if nis large, the probability that a given vertex of a tree
with n vertices is an end-vertex is approximately e !.
(10e) How many spanning trees has K, ;?
(10f) Let 7(G) be the number of spanning trees in a connected graph G.
(9) Prove that, for any edge e, 1(G) =1(G — e) + 1(G\e).
(i) Use this result to calculate 1(K, ;).
(*10g) Use the matrix-tree theorem to prove Cayley’s theorem.
(*10h) Let 7T(n) be the number of labelled trees on n vertices.
(i) By counting the number of ways of joining a labelled tree on k
vertices and one on n— k vertices, prove that

n—-1

n
2n—1)T(m)= Y. (k)k(n —k)T(k)T(n— k).

k=1
(if) Deduce the identity
n—1

y (:)k"“(n—k)""“‘ =2n— "2,

k=1

§11. More applications

In §8 we looked at three problems which arise in the area of operational
research—the shortest path problem, the Chinese postman problem and
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the travelling salesman problem. In this section we shall consider three
further applications, taken respectively from operational research,
organic chemistry and electrical network theory, and each involving the
use of trees.

The minimum connector problem

Let us suppose that we wish to build a railway network connecting n
given cities in such a way that a passenger can travel from any city to any
other. If we assume for economic reasons that the amount of track used
must be a minimum, then it is clear that the graph formed by taking the n
cities as vertices and the connecting rails as edges must be a tree. The
problem is to find an efficient algorithm for deciding which of the n" ™2
possible trees connecting these cities uses the least amount of track,

assuming that the distances between the various pairs of cities are
known (see Fig. 11.1).

As before, we can reformulate the problem in terms of weighted
graphs. We shall denote the weight of the edge e by w(e), and our
problem is to find the spanning tree T with least possible total weight
W(T). Unlike some of the problems we considered earlier, there is a
simple algorithm which provides the solution. It is known as the greedy
algorithm or Kruskal’s algorithm and is described in the following
theorem:

THEOREM L1A. Let G be a connected graph with n vertices. Then the
following construction gives a solution of the minimum connector problem:
(i) let e, be an edge of G of smallest weight;
(ii) define e,, es, . . ., e,—, by choosing at each stage an edge (not
previously chosen) of smallest possible weight, subject to the condition that
it forms no circuit with the previous edges e;.
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The required spanning tree is then the subgraph T of G whose edges are
€1y ooy €y 1.

Remark. Y ou should verify that if G is the graph shown in Fig. 11.1,
then this construction yields: e, = 4B, e, = BD, e;= DE, e, = BC.

Proof. The fact that T is a spanning tree of G follows immediately
from statement (ii) of Theorem 94, it remains only to show that the total
weight of T is a minimum. In order to do this, we suppose that Sis a
spanning tree of G with the property that W(S) < W(T). If ¢, is the first
edge in the above sequence which does not lie in S, then the subgraph of
G formed by adding e, to S contains a unique circuit C containing the
edge e,. Since C clearly contains an edge e lying in S but not in T, it
follows that the subgraph obtained from S on replacing e by e, is still a
spanning tree (§’, say). But by the construction, w(e;) <w(e), and so
W(S") < W(S), and S’ has one more edge in common with T than S. It
follows on repeating this procedure that we can change Sinto 7, one step
at a time, with the total weight decreasing at each stage; hence W(T)
< W(S), giving us the required contradiction.//

An interesting application of the greedy algorithm is its use in
obtaining a lower bound for the solution of the travelling salesman
problem. If we take any Hamiltonian circuit in a weighted complete
graph and remove any vertex v, then we get a semi-Hamiltonian path,
and such a path must be a spanning tree. So any solution of the travelling
salesman problem must consist of a spanning tree of this type together
with two edges incident to v. It follows that if we take the weight of a
minimum-weight spanning tree (which is obtained by the greedy
algorithm) and add the two smallest weights of edges incident to v, then
we get a lower bound for the solution of the travelling salesman
problem. For example, if we take the weighted graph of Fig. 11.1 and
remove the vertex C, then the remaining weighted graph has the four
vertices 4, B, D and E. In this case, the minimum-weight spanning tree
joining these four vertices is the tree whose edges are AB, BD and DE,
with total weight 10, and the two edges of minimum weight incident to C
are CB and CA (or CE) with total weight 15, so that the required lower
bound for the travelling salesman problem is 25. Since the correct
answer in this case is 26, it can be seen that this approach to the travelling
salesman problem can yield surprisingly good results.

Enumeration of chemical molecules

One of the earliest examples of the use of trees was in problems relating
to the enumeration of chemical molecules. If we have a hydrocarbon
(that is, a molecule consisting only of carbon atoms and hydrogen
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atoms), then we can represent it as a graph in which each carbon atom
appears as a vertex of degree four, and each hydrogen atom appears asa
vertex of degree one. The graphs of butane and isobutane are shown in
Fig. 11.2; note that although they both have the same chemical formula
C,H,,, they are different molecules because the atoms are arranged
differently within the molecule. These two molecules form part of a
general class of molecules known as the alkanes or paraffins, with
chemical formula C,H,,, ,, and it is natural to ask how many different
molecules there are having this formula.

In order to answer this question, we notice first that the graph of any
molecule with formula C,H,,,, must be a tree, by Theorem 9A(iii),
since it is connected and has n+(2n+2)=3n+2 vertices and
+{4n+(2n+2)} =3n+1 edges. Note also that the molecule is deter-
mined completely once we know how the carbon atoms are arranged,
since hydrogen atoms can then be added in such a way as to bring the
degree of each carbon vertex to four. It follows that we can discard the
hydrogen atoms (see Fig. 11.3), and the problem reduces to that of

I
H H H H H—C—H
L | oo
H—C—C—C—C—H C
H H
A A
H H H H PN PasN
H H H H
Fig. 11.2 Fig. 11.3

determining the number of trees with n vertices, each of which has degree
four or less. This problem was solved by Cayley in 1875, by counting the
number of ways in which trees can be built up from their centre(s) (see
exercise 9g). The details of this argument are too complicated to describe
here, but may be found in Biggs, Lloyd and Wilson.> Much of Cayley’s
work has since been superseded by G. Polya and others, with the result
that many chemical series have been enumerated using graph-
theoretical techniques.

Electrical networks

Suppose that we are given the electrical network in Fig. 11.4, and we
wish to determine the current in each wire. In order to do this, we assign
arbitrary directions to the current in each wire, as in Fig. 11.5, and apply
‘Kirchhoff’s laws’>

(i) the algebraic sum of the currents at each vertex is zero;
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(i) the total voltage in each circuit is the algebraic sum of the products
® ,f the currents i, and resistances R, in that circuit.

Fig. 11.5

Applying Kirchhoff’s second law to the circuits VXYV, VWYV and
VWYXV gives, respectively:

i,R,+i,R,=E; isRy+i,Ra—i,R,=0; iyR,+i3Ry+i,R,=E.
Since the last of these three equations is simply the sum of the first two, it
gives us no further information. Similarly, if we have the corresponding
equations for the circuits VWYV and WZYW, we can deduce the

~ equation for the circuit VWZYV. It would clearly save a lot of work if we

could find a set of circuits which give us all the information we need
without any redundancy, and this can be done by using the concept of a
fundamental system of circuits, introduced in §9. In our particular
example, we can take the fundamental system of circuits shown in Fig.
9.4, and we get the following equations:

for the circuit VXYV :i,R,+i,R,=E,

for the circuit VYZV :i,R,+isRs+igRs=0,

for the circuit VWZV :i3R;+isRs+i;R;=0,

for the circuit VYWZV: i,R,— iR, +isRs+i,R,=0,
and the equations arising from Kirchhoff’s first law are:

for the vertex X :ip—i;=0,

for the vertex V' i, —i,—iy+is=0,

for the vertex W: iy—i,—i,=0,

for the vertex Z :is—ig—i,=0.
These eight equations can then be solved to give the eight currents
i, - . . » i7. For example, if E=12, and if each wire has unit resistance
(that is, R;= 1 for each i), then the solution is as given in Fig. 11.6.
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Exercises 11

(11a)

Use the greedy algorithm to find a minimum-weight spanning tree in the
graphs shown in Figs 11.7 and 11.8.

(11b)

(11c)
(11d)

(lle)
(11f)
(11g)

(11h)

(*11i)

Fig. 11.7

Show that if every edge of a weighted graph G has the same weight, then
the greedy algorithm gives a method for constructing a spanning tree in

Describe an alternative algorithm for the minimum connector problem,
involving the removal from the graph of edges of greatest weight.
() How would you adapt the greedy algorithm to find a maximum-

weight spanning tree?

(it) Find such a spanning tree for the weighted graphs in Figs 11.1 and
11.7.

In the travelling salesman problem on page 55, what lower bounds do

you get if you remove the vertices, 4, B, D and E, instead of C?

Show that, for each value of n, the graph associated with the alcohol

C,H,,+10H is a tree (oxygen has valency two).

Find the number of chemical molecules with the formulae CsH,, and

CeH 4, and draw them.

Verify the currents in Fig. 11.6 by applying Kirchhoff’s laws to the

fundamental circuits associated with the spanning tree with edges VX,

VW, WZ and YZ.

Write down and solve Kirchhoff’s equations for the network of Fig. 11.9,

in which the numbers refer to the various resistances.
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Planarity and duality

Flattery will get you nowhere.

Popular saying

We now embark upon a study of topological graph theory, in which the
study of graph theory becomes inextricably tied up with topological
notions such as planarity, genus, etc. In §4 it was proved that every graph
can be embedded (i.e., drawn without crossings) in three-dimensional
space. We now investigate conditions under which a graph can be
embedded in the plane and other surfaces. In §12 we prove the existence
of graphs which are not planar, and state Kuratowski’s famous
characterization of planar graphs. Euler’s formula relating the numbers
of vertices, edges and faces of a plane graph is then proved in §13, and
generalized to graphs embedded in other surfaces in §14. The following
section is devoted to a study of duality, and the chapter concludes with a
section on infinite graphs.

§12. Planar graphs

A plane graph is a graph drawn in the plane in such a way that no two
edges (or rather, the curves representing them) intersect geometrically
except at a vertex to which they are both incident; a planar graph is one
which is isomorphic to a plane graph. In the language of §4, this amounts
to saying that a graph is planar if it can be embedded in the plane, and
that any such embedding is a plane graph; for example, all three graphs
in Fig. 12.1 are planar, but only the second and third are plane.

X A

Fig. 12.1
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One question which arises from the example just given and from
exercise 4f is whether a planar graph can always be drawn in the plane in
such a way that all of its edges are represented by straight lines.
Although this is clearly false for graphs containing loops or multiple
edges, it is in fact true for simple graphs, as was proved by Wagner in
1936. The interested reader should consult Chartrand and Lesniak'° for
further details.

Not all graphs are planar, as the following theorem shows:

THEOREM 12A. K and K 3 are non-planar.

Remark. We shall be giving two proofs of this result. The first one,
which is presented here, depends on the Jordan curve theorem in the
form in which it was given in §4. The second proof, which we defer until
the next section, will appear as a corollary of Euler’s formula.

Proof. Suppose that K is planar. Since K5 contains a circuit of
length five (which we shall take as v>w—x—y—z—v), any plane
embedding can without loss of generality be assumed to contain this
circuit drawn in the form of a regular pentagon (as in Fig. 12.2). By the

Jordan curve theorem, the edge zw must lie either wholly inside the
pentagon or wholly outside it. (The third possibility, namely that the
edge has a point in common with the pentagon, does not arise since we
are assuming a plane embedding.) We shall deal with the case in which
zw lies inside the pentagon—the other case is similar and will be left to
the reader. Since the edges vx and vy do not cross the edge zw, they must
both lie outside the pentagon; the situation is now as in Fig. 12.3. But the
edge xz cannot cross the edge vy and so must lie inside the pentagon, and
similarly the edge wy must also lie inside the pentagon. Since the edges
wy and xz must then cross, we obtain the required contradiction.

A similar, but easier, argument is used to show that Kj ; is non-
planar; we simply draw a hexagonal circuit u—»v—ow—ox—>y—>z-u in
Fig. 12.4, and show (using the Jordan curve theorem) that two of the
edges ux, vy and wz must both lie inside or outside the hexagon, and
hence must cross.//
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Fig. 124

It is clear that every subgraph of a planar graph is planar, and that
every graph which contains a non-planar graph as a subgraph must itself
be non-planar. From this we immediately deduce that any graph which
contains K or K; 5 as a subgraph cannot be planar. It turns out that K
and K, , are essentially the only non-planar graphs, in the sense that
every non-planar graph ‘contains’ one of them. To make this statement
more precise, we need the concept of ‘homeomorphic graphs’.

Two graphs are homeomorphic (or identical to within vertices of
degree two) if they can both be obtained from the same graph by
inserting new vertices of degree two into its edges; for example, the
graphs shown in Fig. 12.5 are homeomorphic, and so are any two circuit
graphs. Note that the homeomorphism of graphs is an equivalence
relation.

Fig. 12.5

It is clear that the introduction of the term ‘homeomorphic’ is
merely a technicality—the insertion or deletion of vertices of degree two
isirrelevant to any considerations of planarity. However, it enables us to
state the following important result which is known as Kuratowski’s
theorem and which gives a necessary and sufficient condition for a graph
to be planar.

THEOREM 128 (Kuratowski 1930). A4 graph is planar if and only if
it contains no subgraph homeomorphic to Ks or K3 3.//

The proof of Kuratowski’s theorem is rather long and involved, and
for this reason we have decided to omit it (see Bondy and Murty,” or
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Harary'*). We shall, however, use Kuratowski’s theorem to obtain
another criterion for planarity; it involves the idea of contractibility,
introduced in §3:

THEOREM 12C. A graph is planar if and only if it contains no
subgraph which is contractible to K5 or K 3.

*Sketchof proof. < Assume first that the graph G is non-planar; then by
Kuratowski’s theorem, G contains a subgraph H which is
homeomorphic to K5 or K; ;. On successively contracting edges of H
which are incident to at least one vertex of degree two, we see
immediately that H is contractible to K or Kj ;.

= Now assume that G contains a subgraph H which is contractible
to K3 3, and let the vertex v of Kj 5 arise from the contraction of the
subgraph H, of H (see Fig. 12.6). The vertex vis incident in K , to three
edges e,, e, and e,; when regarded as edges of H, these edges are incident

Fig. 12.6

to three (not necessarily distinct) vertices v,, v, and v; of H,. If v, v, and
vy are distinct, we can find a vertex w of H, and three paths from w to
these vertices, these paths intersecting only at w. A similar construction
can be made if the vertices are not distinct, the paths degenerating in this
case to single vertices. It follows that we can replace the subgraph H, by
a vertex w and three paths leading out of it. If this construction is carried
out for each vertex of K; 3, and the resulting paths joined up with the
corresponding edges of Kj ,, the resulting subgraph will clearly be
homeomorphic to K; 3, showing (by Kuratowski’s theorem) that G is
non-planar (see Fig. 12.7).
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A similar argument can be carried out if G contains a subgraph
which is contractible to K. In this case the details are more complicated,
since the subgraph we obtain by the above process can be
homeomorphic to K5 or K ;. The details can be found in Chartrand and
Lesniak.'%//%

We conclude this section by introducing the ‘crossing-number’ of a
graph. If we try to draw K or K, ; on the plane, then at least one
crossing of edges must occur, since these graphs are not planar.
However, as Fig. 12.8 shows, it is not necessary to use more than one
crossing, and we express this by saying that K and K ; have crossing-
number 1. More generally, the crossing-number ¢r(G) of a graph G is the
smallest possible number of crossings occurring when G is drawn in the
plane. Thus the crossing-number can be used to measure how ‘un-
planar’ G is; for example, the crossing-number of a planar graph is zero,
and cr(Ks)=cr(K; ;)= 1. Note that, as in §4, the word ‘crossing’ always
refers to the intersection of just two edges; crossings of three or more
edges are not permitted.

Fig. 12.8

Exercises 12
Some simpler exercises on planar graphs can be found at the end of §4 (page 23).

(12a)  Three unfriendly neighbours use the same water, oil and treacle wells. In
order to avoid meeting, they decide to build non-crossing paths from
each of their houses to each of the three wells. Can this be done?

(12b) (i) For which values of k is the k-cube Q planar?

(i)) For which values of r, s and ¢ is the complete tripartite graph X,
planar?

(12c) Prove that the Petersen graph is non-planar

({) by using Theorem 128;
(if) by using Theorem 12c.
(12d) Give an example of
(i) a non-planar graph which is not homeomorphic to K or Kj ;;
(i) a non-planar graph which is not contractible to K or Kj 3.
Why does the existence of these graphs not contradict Theorems 12B and
12¢?
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(12¢) (i) Prove that the homeomorphism of graphs is an equivalence
relation.
(i) If two homeomorphic graphs have n; vertices and m; edges (i=1, 2),
show that

m,—n,=m,—n,.

(12f) A graph G is outerplanar if G can be embedded in the plane in such a way
that all of its vertices lie on the exterior boundary.
(i) Show that K, and K, 5 are not outerplanar.
(i) Deduce that if G is an outerplanar graph, then G contains no
subgraph homeomorphic or contractible to K, or K, ;.
(In fact, the converse result also holds, yielding a Kuratowski-type
criterion for a graph to be outerplanar.)
(12g) Show that K, 5 and the Petersen graph each have crossing-number 2.
(*12h) If r and s are both even, show that

cr(K, ) <tsrs(r—2)(s—2),
and obtain corresponding results when r and/or s is odd. (Hint: place the
r vertices along the x-axis with }r vertices on each side of the origin, and
place the s vertices along the y-axis in a similar way—now count the
crossings.)

§13. Euler’s formula for plane graphs

In this section we shall prove a theorem relating the numbers of vertices,
edges and faces of a given connected plane graph G. Before defining
exactly what is meant by a ‘face’ of G, we recall that a point x of the plane
is said to be ‘disjoint from G’ if x represents neither a vertex of G nor a
point which lies on an edge of G.

If x is a point of the plane disjoint from G, we define the face (of G)
containing x to be the set of all points of the plane which can be reached
from x by a Jordan curve all of whose points are disjoint from G.
Alternatively, we can say that two points x and y of the plane are
equivalent if they are both disjoint from G and can be joined by a Jordan
curve all of whose points are disjoint from G (Fig. 13.1). This is an
equivalence relation on the points of the plane disjoint from G, and the
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corresponding equivalence classes are called the faces of G. Notg tha}t
one face is unbounded; it is called the infinite face. For example, if G is
the graph of Fig. 13.2, then G has four faces, f, being the infinite face. If
you feel that our definition of a face is too pedantic, you may safely rely
on your intuition.

Fig. 13.2

It is important to realize that there is nothing special about the
infinite face—in fact, any face can be chosen as the infinite face. To see
this, we use Theorem 4B to map the graph onto the surface of a sphere.
We now rotate the sphere so that the point of projection (i.e. the north
pole) lies inside the face we want as the infinite face, and then project the
graph down onto the plane which is tangent to the sphere at the south
pole. The chosen face is now the infinite face. Fig. 13.3 shows a
representation of the graph of Fig. 13.2 in which the infinite face is f3.
From now on, we shall feel free to talk interchangeably about graphs
embedded in the plane and graphs drawn on the surface of a sphere.

Fig. 13.3

We now state and prove Euler’s formula which tells us that whatever
plane embedding of a graph we take, the number of faces always remains
the same and is given by a simple formula; an alternative proof will be
outlined in exercise 13k.

THEOREM 134 (Euler 1750). Let G be a connected plane graph, and
let n, m and f denote respectively the number of vertices, edges and faces of
G. Then

n—-m+f=2.
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Proof. The proof is by induction on the number of edges of G. If
m=0, then n=1 (since G is connected) and f=1 (the infinite face); the
theorem is therefore true in this case.

Now suppose that the theorem is true for all graphs with at most
m—1 edges, and let G be a graph with m edges. If G is a tree, then
m=n—1and f=1,s0 thatn—m+ f=2, asrequired. If Gis not a tree, let
e be an edge contained in some circuit of G. Then G— e is a connected
plane graph with »n vertices, m—1 edges, and f—1 faces, so that
n—(m—1)+(f—1)=2, by the induction hypothesis. It follows that
n—m+f=2, as required.//

This result is often called the ‘polyhedron formula’ since it relates
the numbers of vertices, edges and faces of a convex polyhedron; this can
easily be seen by projecting the polyhedron out onto the surface of its
circumsphere, and then using Theorem 48B. The resulting plane graphis a
3-connected graph in which every face is bounded by a polygon—such a
graph is called a polyhedral graph (see Fig. 13.4). For convenience we
restate Theorem 13a for such graphs.

Fig. 13.4

COROLLARY 13B. Let G be a polyhedral graph; then, with the
above notation,

n—m+f=2//

Euler’s formula can easily be extended to disconnected graphs:

COROLLARY 13c. Let G be a plane graph with n vertices, m edges,
[ffaces and k components; then

n—m+f=k+1.

Proof. The result follows immediately on applying Euler’s formula
to each component separately, remembering not to count the infinite
face more than once.//

All of the results mentioned so far in this section apply to arbitrary
plane graphs; we must now restrict ourselves to simple graphs.



Euler’s formula for plane graphs 67

COROLLARY 13D. (i) If G is a connected simple planar graph with
n (=3) vertices and m edges, then m<3n—6.
(ii) If, in addition, G has no triangles, then m<2n—4.

Proof. (i) We can assume without loss of generality that G is a plane
graph. Since every face is bounded by at least three edges, it follows on
counting up the edges around each face that 3f< 2m (the factor 2 arising
from the fact that every edge bounds at most two faces). We obtain the
required result by combining this inequality with Euler’s formula.

(i) This part follows in the same way, except that the inequality 3f
<2mis replaced by 4f<2m.//

This corollary can be used to give an alternative proof of Theorem
12A.

COROLLARY 13E. K, and K, 5 are non-planar.

Proof. If K is planar then, applying part (i) of Corollary 13D, we
obtain 10 <9, which is clearly a contradiction. If K} 5 is planar then,
applying part (i) of Corollary 13D, we obtain 9 <8, which is also a
contradiction.//

A similar argument is used to prove the following theorem which
will be useful when we come to study the colouring of graphs.

THEOREM 13F.  Every simple planar graph contains a vertex whose
degree is at most five.

Proof. Without loss of generality we can assume the graph to be
plane and connected, and to contain at least three vertices. If every
vertex has degree at least six, then with the above notation we have
6n<2m (i.e., 3n<m). It then follows immediately from part (i) of
Corollary 13D that 3n < 3n— 6, an obvious contradiction.//

We conclude this section with a few remarks on the ‘thickness’ of a
graph. In electrical engineering, parts of networks are sometimes printed
on one side of a non-conducting plate, and are called ‘printed circuits’.
Since the wires are not insulated, they cannot cross and the correspond-
ing graphs must be planar. For a general network, it is of importance to
know how many printed circuits are needed to complete the entire
network; to this end, we define the thickness of a graph G (denoted by
#(G)) to be the smallest number of planar graphs which can be
superimposed to form G. Like the crossing-number, the thickness is a
measure of how ‘un-planar’ a graph is; for example, the thickness of a
planar graph is one, and of K5 and Kj ; is two.
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As we shall see, a lower bound for the thickness of a graph may
easily be obtained using Euler’s formula; what is rather surprising is that
this rather trivial lower bound frequently turns out to be the correct
value, as may be verified in special cases by direct construction. In
deriving this lower bound, we shall use the symbols [x| and [x] to denote
respectively the largest integer not greater than x and the smallest integer
not less than x (so that, for example, |3]=[3]=3; |z]=3; [r]=4); note
that [x]= —|—x].

THEOREM 13G. Let G be a simple graph with n( = 3) vertices and m
edges; then the thickness (G) of G satisfies the following inequalities:

m m+3n—7
HG)z {?6]; HG)2 l:m‘ J

Proof. The first part is an immediate application of part (i) of
Corollary 13D, the brackets arising from the fact that the thickness must
be an integer. The second part follows from the first by using the easily-
proved relation [a/b]=|(a+b—1)/b] (where a and b denote positive
integers).//

Exercises 13

(13a) Verify Euler’s formula for
(i) the wheel Wy;
(if) the graph of the octahedron;
(iii) the graph of Fig. 13.4;
(iv) the complete bipartite graph K, ,.
(13b) Redraw the graph of Fig. 13.2 with
(9) f, as the infinite face;
(ii) f, as the infinite face.
(13c) (i) Use Euler’s formula to prove that if G is a connected plane graph of
girth 5 then, with the above notation, m <3(n—2).
(ii) Deduce that the Petersen graph is non-planar.
(iij) Obtain an inequality, generalizing that in part (i), for connected
plane graphs of girth r.
(13d) Let G be a polyhedron (or polyhedral graph), all of whose faces are
bounded by pentagons and hexagons.
(?) Use Euler’s formula to show that G must have at least 12 pentagonal
faces.
(i) If, in addition, there are exactly three faces meeting at each vertex,
prove that G has exactly 12 pentagonal faces.
(13e) Let G be a simple plane graph with less than 12 faces, in which every
vertex has degree at least 3.
(i) Use Euler’s formula to prove that G has a face bounded by at most
four edges.
(ii) Give an example to show that the result of part (i) is false if G has 12
faces.
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(13f) (i) Let G be a simple connected cubic plane graph and let ¢, be the
number of k-sided faces. By counting the number of vertices and
edges in G, prove that

303420, 0s— @, 205— .. .=12.

(ii) Deduce that G has at least one face bounded by at most five edges.
(13g) Let G be a simple graph with at least 11 vertices and let G denote its
complement.
(i) Prove that G and G cannot both be planar. (In fact, a similar result
holds if 11 is replaced by 9.)
(i) Find a graph G with 8 vertices such that G and G are both planar.
(13h) Find the thickness of
(i) the Petersen graph;
(i) the 4-cube Q,.
(13i) (i) Show that the thickness of K, satisfies #(K,) =[5 (n + 7).
(ii) Use the results of exercise (13g) to show that equality holds if n <8,
but not if n="9 or 10. (In fact, equality holds for all n other than 9 or
10.)

(*13j) (i) Use part (i) of Corollary 13D to prove that

rs ]
2Ar+s)—4 7§
and verify that equality holds for #(Kj; 3).
(i) If r is even, show that #(K,,)<3r, and deduce from part (i) that
KK, )=14rif s>3(r—2)%
(*13k) Let G be a polyhedral graph and let W be the circuit subspace of G.

(i) Show that the polygons bounding the finite faces of G form a basis
for W.

(ii) Deduce Corollary 13B.

t(Kr.s) > [

§14. Graphs on other surfaces

*In the previous two sections we considered graphs drawn in the plane
or (equivalently) on the surface of a sphere. We shall now make a few
remarks on the embedding of graphs on other surfaces—for example,
the torus. It is easy to see that K and K, ; can be drawn without
crossings on the surface of a torus, and it is natural to ask whether there
are analogues of Euler’s formula and Kuratowski’s theorem for graphs
drawn on such surfaces.

The torus can be thought of as a sphere with one ‘handle’ (Fig. 14.1).
More generally, a surface is said to be of genus g if it is topologically
homeomorphic to a sphere with g handles. (If you are unfamiliar with
these terms, think of graphs drawn on the surface of a doughnut with g
holes in it.) Thus the genus of a sphere is zero, and of a torus is one.
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A graph which can be drawn without crossings on a surface of genus
g, but not on one of genus g — 1, is called a graph of genus g. Thus K and
K3, 5 are graphs of genus one (also called toroidal graphs). We must check
that the genus of a graph is well defined.

Fig. 14.1

THEOREM 14A. The genus of a graph is well defined, and does not
exceed the crossing-number.

Proof. To show that the genus is well defined, it is sufficient to find
an upper bound for it. This is done by drawing the graph on the surface
of a sphere in such a way that the number of crossings is as small as
possible, and is therefore equal to the crossing-number c. At each
crossing, we construct a ‘bridge’ (see Fig. 1.2, on page 1) and run one
edge over the bridge and the other under it. Since each bridge can be
regarded as a handle, we have embedded the graph on the surface of a
sphere with ¢ handles. It follows that the genus is well defined, and does
not exceed c.//

At the time of writing there is no complete analogue of
Kuratowski’s theorem for surfaces of genus g, although it is known that
there exists, for each value of g, a finite collection of ‘forbidden’
subgraphs of genus g, corresponding to the forbidden subgraphs K and
K, ; for graphs of genus zero. In the case of Euler’s formula we are more
fortunate, since there is a natural generalization for graphs of genus g. In
this generalization, a face of a graph of genus g is defined in the obvious
way—namely, in terms of Jordan curves drawn on the surface; we
assume that all faces are simply-connected.

THEOREM 14B. Let G be a connected graph of genus g, with n
vertices, m edges and f faces. Then n—m+ f=2—2g.

Sketch of proof. We shall outline the main steps in the proof,
omitting the details.

(i) Without loss of generality, we may assume that G is drawn on
the surface of a sphere with g handles. We can also assume that the
curves A (see Fig. 14.1) at which the handles meet the sphere are in fact
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circuits of G (by shrinking those circuits which contain these curves in
their interior).

(ii) We next disconnect each handle at one end, in such a way that
the handle has a free end E and the sphere has a corresponding hole H.
We may assume that the circuit corresponding to the end of the handle
appears at both the free end E and at the other end, since the additional
vertices and edges required for this exactly balance each other, leaving
n—m+funchanged.

(iii)y We complete the proof by telescoping each of these handles,
leaving a sphere with 2g holes in it. Note that this telescoping process
does not change the value of n—m+f. But for a sphere, n—m+f=2,
and hence for a sphere with 2g holes in it, n—m+f=2—2g. The result
now follows immediately.//

COROLLARY l4c. The genus g(G) of a simple graph G withn (= 4)
vertices and m edges satisfies the inequality

8(G)2[§ (m~=3n)+1].

Proof. Since every face is bounded by at least three edges, we have
(as in the proof of Corollary 13D) 3f<2m. The result follows by
substituting this inequality into Theorem 148, and using the fact that the
genus of a graph must be an integer.//

As in the case of the thickness of a graph, little is known about the
problem of finding the genus of an arbitrary graph. The usual method is
to use Corollary 14c to obtain a lower bound for the genus, and then to
try to obtain the required embedding by direct construction.

One case of particular historical importance is that of the genus of
the complete graphs. Corollary 14c tells us that the genus of K, satisfies

K Z[§Gn(n—1)—3m)+1]=[{3(n—3)n—4)
Heawood asserted in 1890 that the inequality just obtained is in fact an

equality, and this was finally proved in 1968 by Ringel and Youngs after
a long and difficult struggle.

THEOREM 14D (Ringel and Youngs 1968).
g(K,)=[{z(n=3)(n—4).

Remark. This will not be proved here; you should consult Ringel*2
for a discussion and proof of this theorem.//

Further results concerning the embedding of graphs on these
surfaces, as well as a discussion of the embedding of graphs on ‘non-
orientable’ surfaces (such as the projective plane and the Mdbius strip),
can be found in Beineke and Wilson.3
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Exercises 14

(14a) The surface of a torus can be regarded as a rectangle in which opposite
edges have been identified (see Fig. 14.2). Use this representation to find
embeddings of K5 and K ; on the torus.

Fig. 14.2

(14b) Using the representation of exercise 14a, show that the Petersen graph
has genus 1.
(14c) (i) Calculate g(K,) and g(K;,).
(if) Give an example of a complete graph of genus 2.
(14d) (i) Use Theorem 14D to prove that there is no value of n for which
g(K)=1.
(i) What is the next integer which is not the genus of any complete
graph?
(14e) (i) Give an example of a planar graph which is regular of degree 4 and
every face of which is a triangle.
(i) Show that there is no graph of genus g> 1 with these properties.
(14f) (i) Obtain a lower bound analogous to that of Corollary 14c, for a
graph containing no triangles.
(ii) Deduce that g(K, ;) =[4(r — 2)(s — 2)]. (In fact, Ringel has shown that
this is an equality.)
(*14g) (i) Let G be a non-planar graph which can be embedded on a Mébius
strip. Prove that, with the usual notation, n—m+f=0.
(#1) Show how K5 and K 3 can be embedded on the surface of a Mébius
strip. %

§15. Dual graphs

In Theorems 12B and 12¢ we gave necessary and sufficient conditions for
a graph to be planar—namely, that it contains no subgraph which is
homeomorphic or contractible to X, or K3 3. Our aim is now to discuss
conditions of a rather different kind. These will involve the concept of
duality.

Given a plane graph G, we shall construct another graph G* called
the (geometric-)dual of G. The construction is in two stages:
(?) inside each face F; of G we choose a point v;*—these points are the
vertices of G*;
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(i) corresponding to each edge e of G we draw a line e* which crosses e
(but no other edge of G), and joins the vertices v;* which lie in the faces F;
adjoining e—these lines are the edges of G*.

This procedure is illustrated in Fig. 15.1, the vertices v;* being
represented by crosses, the edges e of G by solid lines and the edges e* of
G* by dashed lines. Note that an end-vertex of G gives rise to a loop of
G*, as does any bridge. Note also that if two faces of G have more than
one edge in common, then G* contains multiple edges.

It should be noted that the geometric idea of duality is a very old
one. For example, the “fifteenth book of Euclid’, written about 500-600
A.D., remarks that the dual of a cube is an octahedron, and that the dual
of a dodecahedron is an icosahedron (see exercise 15b).

It is clear that any two graphs formed from G in this way must be
isomorphic; this is why we called G* ‘the dual of G’ instead of ‘a dual of
(. On the other hand, it should be pointed out that if G is isomorphic to
H, it does not necessarily follow that G* is isomorphic to H*; an example
which demonstrates this is given in exercise 15e.

If G is not only plane, but connected as well, then G* is plane and
connected and there are simple relations connecting the numbers of
vertices, edges and faces of G and G*.

LEMMA 15A. Let G be a plane connected graph with n vertices, m
edges and f faces, and let its geometric-dual G* have n* vertices, m* edges
and f* faces. Then n* =f, m*=m and f* =n.

Proof. The first two relations are direct consequences of the
definition of G*. The third relation follows immediately on substituting
these two relations into Euler’s formula applied to both G and G*.//

Since the dual G* of a plane graph G is also a plane graph, we can
repeat the construction described above to form the dual of G*, denoted
by G**. If G is connected, then the relationship between G** and G is
particularly simple, as we now show.
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THEOREM 15B. Let G be a plane connected graph. Then G** is
isomorphic to G.

Proof. The result follows almost immediately from the fact that the
construction which gives rise to G* from G can be reversed to give G
from G*; for example, in Fig. 15.1 the graph G is the dual of the graph
G*. We need to check only that a face of G* cannot contain more than
one vertex of G—it certainly contains at least one—and this follows
immediately from the relations n**=/*=n, where n** denotes the
number of vertices of G**.//

If G now denotes any planar graph, then a dual of G can be defined
by taking any plane embedding and forming its geometric-dual, but
uniqueness does not in general hold. Since duals have been defined only
for planar graphs, it is trivially true to say that a graph is planar if and
only ifit has a dual. On the other hand, if we are given an arbitrary graph
we have no way of telling from the above whether or not it is planar. It is
obviously desirable to find a definition of duality which generalizes the
geometric-dual and at the same time enables us (in principle, at least) to
determine whether or not a given graph is planar.

One such definition exploits the relationship under duality between
the circuits and cutsets of a planar graph G. We shall first describe this
relationship and then use it to obtain the definition we seek. An
alternative definition will be given in exercise 15k.

THEOREM 15C. Let G be a planar graph and G* be a geometric-dual
of G. Then a set of edges in G forms a circuit in G if and only if the
corresponding set of edges of G* forms a cutset in G*.

Proof. We can assume without loss of generality that G is a
connected plane graph. If Cis a circuit in G, then C encloses one or more
of the finite faces of G, and thus contains in its interior a non-empty set S
of vertices of G*. It follows immediately that those edges of G* which
cross the edges of C form a cutset of G* whose removal disconnects G*
into two subgraphs, one with vertex-set S and the other containing those
vertices which do not lie in S (see Fig. 15.2). The converse implication is
similar, and will be omitted.//

COROLLARY 15D. A set of edges of G forms a cutset in G if and only
if the corresponding set of edges of G* forms a circuit in G*.

Proof. The result follows immediately on applying Theorem 15c to
G* and using Theorem 15B.//

Using Theorem 15c as motivation, we can now give an abstract
definition of duality. Note that this definition does not invoke any
special properties of planar graphs, but concerns only the relationship
between two graphs.
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Fig. 15.3

We shall say that a graph G* is an abstract-dual of a graph G if there
is a one-one correspondence between the edges of G and those of G* with
the property that a set of edges of G forms a circuit in G if and only if the
corresponding set of edges of G* forms a cutset in G*. For example, Fig.
15.3 shows a graph and its abstract-dual, with corresponding edges
sharing the same letter.

It is clear from Theorem 15c¢ that the concept of an abstract-dual
generalizes that of a geometric-dual, in the sense that if G is a planar
graph and G* is a geometric-dual of G, then G* is an abstract-dual of G.
What we should like to be able to do is to obtain analogues for abstract-
duals of some of the results on geometric-duals. We shall be content with
just one of these here—the analogue for abstract-duals of Theorem 158.

THEOREM 15E.  If G* is an abstract-dual of G, then G is an abstract-
dual of G*.

Remark. Note that we do not require that G should be connected.

Proof. Let Cbe a cutset of G and let C* denote the corresponding set
of edges of G*; it will be sufficient to show that C* is a circuit of G*. By
the first part of exercise S, C has an even number of edges in common
with any circuit of G, and so C* must have an even number of edges in
common with any cutset of G*. It follows from the second part of
exercise 51 that C* must be either a single circuit in G* or an edge-disjoint
union of two or more circuits. But the second possibility cannot occur,
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since one can show similarly that circuits in G* correspond to edge-
disjoint unions of cutsets in G, and so C would then be an edge-disjoint
union of two or more cutsets, rather than just a single cutset.//

Although the definition of an abstract-dual seems at first sight
rather strange, it turns out to have the properties required of it. We saw
in Theorem 15c that a planar graph has an abstract-dual (e.g. any
geometric-dual), and we now show that the converse result is
true—namely, that any graph which has an abstract-dual must be
planar. In other words, we now have an abstract definition of duality
which generalizes the geometric-dual and which characterizes planar
graphs. It will turn out, in fact, that the definition of an abstract-dual is a
natural consequence of the study of duality in matroid theory (see §32).

THEOREM 15F. A graph is planar if and only if it has an abstract-
dual.

Remark. There are several proofs of this result. We shall be
presenting a particularly simple one (due to T. D. Parsons) which uses
Kuratowski’s theorem.

Sketch of proof. As mentioned above, it is sufficient to prove that if
Gis a graph which has an abstract-dual G*, then G is planar. The proofis
in four steps:

(/) We note first that if an edge e is removed from G, then the
abstract-dual of the remaining graph may be obtained from G* by
simply contracting the corresponding edge e*. On repeating this
procedure, it follows immediately that if G has an abstract-dual, then so
does any subgraph of G.

(i) We next observe that if G has an abstract-dual, and G’ is
homeomorphic to G, then G’ also has an abstract-dual. This follows
from the fact that the insertion or removal in G of a vertex of degree two
results in the addition or deletion of a ‘multiple edge’ in G*.

(iif) The third step is to show that neither K5 nor K, ; has an
abstract-dual. If G* is a dual of K ;, then since K; ; contains only
circuits of length four or six and no cutsets with only two edges, it
follows that G* contains no multiple edges, and that every vertex of G*
must have degree at least four. Hence G* must contain at least five
vertices, and thus at least .5.4 = 10 edges, which is a contradiction. The
argument for K is similar, and will be omitted.

(iv) Suppose, now, that G is a non-planar graph which has an
abstract-dual G*. Then by Kuratowski’s theorem, G contains a
subgraph H homeomorphic to K or K5 3. It follows from (i) and (ii) that
H, and hence also K, or K3 3, must have an abstract-dual, contradicting

(#@i)./]
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Exercises 15

(15a) Find the duals of the graphs in Fig. 15.4 and verify Lemma 154 for these
duals.

==

Fig. 15.4

(15b) Show that the dual of the cube graph is the octahedron graph, and that
the dual of the dodecahedron graph is the icosahedron graph.

(15¢) Show that the dual of a wheel is a wheel.

(15d) Use duality to prove that there exists no plane graph with five faces, each
pair of which share an edge in common.

(15¢) Show that the graphs in Fig. 15.5 are isomorphic, but that their
geometric-duals are non-isomorphic.

<] <D

Fig. 15.5

(15f) (i) Give an example to show that if G is a disconnected plane graph,
then G** is not isomorphic to G.
(ii) Prove the result of part (i) in general.
(15g) Dualize the results of exercises 13d and 13e.
(15h) Prove thatif G is a 3-connected plane graph, then its geometric-dual is a
simple graph.
(151)) Let G be a connected plane graph. Using Theorem 5A and Corollary 6c,
prove that G is bipartite if and only if its dual G* is Eulerian.
(*15)) (i) Give an example to show that if G is a connected plane graph, then
any spanning tree in G corresponds to the complement of a
spanning tree in G*.
(i) Prove the result of part (i) in general.
(*15k) A graph G* is a Whitney-dual of G if there is a one-one correspondence
between E(G) and E(G*) such that, if H is a subgraph of G with
V(H)= V(G), then the corresponding subgraph H* of G* satisfies

YH)+ EH*) =G,

where A* is obtained from G* by deleting the edges of H*, and y and & are
defined as in §9.



78  Planarity and duality

(7)) Show that this generalizes the idea of a geometric-dual.
(if) Prove thatif G* is a Whitney-dual of G, then G is a Whitney-dual of
G*.
(The name ‘Whitney dual’ arises since H. Whitney proved that a graph is
planar if and only if it has such a dual.)

§16. Infinite graphs

*In this section we show how some of the definitions given in previous
sections can be extended to infinite graphs. As you may recall, an infinite
graph G is a pair (V(G), E(G)), where V(G) is an infinite set of elements
called vertices, and E(G) is an infinite family of unordered pairs of
elements of V(G) called edges. If V(G) and E(G) are both countably
infinite, then G is said to be a countable graph. Note that we have
excluded from these definitions the possibility of V(G) being infinite but
E(G) finite (such objects being merely finite graphs together with
infinitely many isolated vertices), or of E(G) being infinite but V(G) finite
(such objects being essentially finite graphs but with infinitely many
loops or multiple edges).

Several of the definitions given earlier (‘adjacent’, ‘incident’,
‘isomorphic’, ‘subgraph’, ‘connected’, ‘planar’, etc.) generalize im-
mediately to infinite graphs. The degree of a vertex v of an infinite graph
is defined to be the cardinality of the set of edges incident to v, and may
be finite or infinite. An infinite graph all of whose vertices have finite
degree is called locally-finite, two important examples being the infinite
square lattice and the infinite triangular lattice, shown in Figs 16.1 and

RN N\ N\ .\

Fig. 16.1 Fig. 16.2

16.2. We similarly define a locally-countable infinite graph to be one in
which each vertex has countable degree. With these definitions, we now
prove the following simple, but fundamental, resuit.
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THEOREM 16A. Every connected locally-countable infinite graph is
a countable graph.

Proof. Let v be any vertex of such an infinite graph, and let 4, be the
set of vertices adjacent to v, 4, the set of all vertices adjacent to a vertex
of A4,, and so on. By hypothesis, 4, is countable, and hence so are 4,,
As, ... (using the fact that the union of a countable collection of
countable sets is countable). Hence {v}, 4,, 4,, . . . is a sequence of sets
whose union is countable. Moreover, this sequence contains every
vertex of the infinite graph, by connectedness, and the result follows.//

COROLLARY 16B. Every connected locally-finite infinite graph is a
countable graph./|

We can also extend to an infinite graph G the concept of a walk,
there being essentially three different types:

(i) afinite walk in G is defined exactly as in §5;
(if) a one-way infinite walk in G with initial vertex v, is an infinite

sequence of edges of the form vgv,, v105, . . . ;
(iii) a two-way infinite walk in G is an infinite sequence of edges of
the form ..., v_,v_, v_ vg, VoVy, V1035 - - - .

One-way and two-way infinite trails and paths are defined in the
obvious way, as are such terms as the length of a path and the distance
between vertices. The following result, known as Kénig’s lemma, tells us
that infinite paths are not difficult to come by:

THEOREM 16C (Konig 1927). Let G be a connected locally-finite
infinite graph. Then for any vertex v of G, there exists a one-way infinite
path with initial vertex v.

Proof. If z is any vertex of G other than v, then there is a non-trivial
path from v to z. It follows that there are infinitely many paths in G with
initial vertex v. Since the degree of v is finite, there must be infinitely
many of these paths which start with the same edge. If vv, is such an
edge, then we can repeat this procedure for the vertex v, and thus obtain
a new vertex v, and a corresponding edge v,v,. By carrying on in this
way, we obtain the one-way infinite path v—v,—v, ... .//

The importance of Konig’s lemma is that it allows us to deduce
results about infinite graphs from the corresponding results for finite
graphs. The following theorem may be regarded as a typical example:

THEOREM 16D. Let G be a countable graph, every finite subgraph of
which is planar. Then G is planar.
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Proof. Since G is countable, its vertices may be enumerated as v,, v,,

3, . . . . We now construct a strictly increasing sequence G, =G, G,
< . . .of subgraphs of G, by taking G, to be the subgraph whose vertices
are precisely vy, . . . , v, and whose edges are those edges of G which join

two of these vertices. Then, assuming the result that G; can be embedded
in the plane in only a finite number (m(i), say) of topologically distinct
ways, we can construct another infinite graph H whose vertices w;; (i2 1,
1 <j<m(i)) correspond to the various embeddings of the graphs G;, and
whose edges join those vertices w;; and w,; for which k=i+1 and the
plane embedding corresponding to wy, ‘extends’ (in an obvious sense)
the embedding corresponding to w;;. Since H is clearly connected and
locally-finite, it follows from Konig’s lemma that H contains a one-way
infinite path. Since G is countable, this infinite path gives the required
plane embedding of the whole of G.//

It is worth pointing out that if we assume further axioms of set
theory (in particular, the uncountable version of the axiom of choice),
then various results such as the one just proved can be extended to
infinite graphs which are not necessarily countable.

We conclude this digression on infinite graphs with a brief
discussion on infinite Eulerian graphs. It seems natural to say that a
connected infinite graph G is Eulerian if there exists a two-way infinite
trail which includes every edge of G; such an infinite trail is then called a
(two-way) Eulerian trail. Note that these definitions require G to be
countable. The following theorems give further conditions which are
necessary for an infinite graph to be Eulerian.

THEOREM 16E. Let G be a connected countable graph which is
Eulerian. Then
() G has no vertices of odd degree; _
(ii) for every finite subgraph H of G, the infinite graph H (obtained by
deleting from G the edges of H) has at most two infinite connected
components; _
(#ii) if, in addition, every vertex of H has even degree, then H has exactly
one infinite connected component.

Proof. (i) Suppose that Pis an Eulerian trail. Then by the argument
given in the proof of Theorem 6B, every vertex of G must have either
even or infinite degree.

(i) Let P be split up into three subtrails P_, P, and P, in such a
way that P is a finite trail containing every edge of H (and possibly
other edges as well), and P_ and P, are both one-way infinite trails.
Then the infinite graph K formed by the edges of P_ and P, and the
vertices incident to them, has at most two infinite components. Since &
is obtained by adding only a finite set of edges to K, the result follows.
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(iif) Let the initial and final vertices of P, be v and w; we wish to
show that v and w are connected in H. If v=w, this is obvious. If not,
then the result follows on applying Corollary 6D to the graph obtained
by removing from P, the edges of H, this graph having exactly two
vertices (v and w) of odd degree, by hypothesis.//

It turns out that the conditions given in the previous theorem are not
only necessary but also sufficient. We state this result formally in the
following theorem; its proof lies beyond the scope of this book, but may
be found in Ore.?!

THEOREM 16F. Let G be a connected countable graph. Then G is
Eulerian if and only if the conditions (i), (ii) and (iii) of Theorem IGE are
satisfied.||

Exercises 16

(16a) Give an example of each of the following:
(i) an infinite graph with infinitely many end-vertices;
(i) an infinite graph with uncountably many vertices and edges;
(iif) an infinite connected cubic graph;
(iv) an infinite bipartite graph;
(v) an infinite non-planar graph;
(vi) an infinite tree.

(16b) Show by an example that the conclusion of Kénig’s lemma is false if we
omit the condition that the infinite graph is locally-finite.

(16c) Use the proof of Theorem 4a to show that an infinite graph G can be
embedded in Euclidean 3-space if ¥(G) and E(G) can each be put in one-
one correspondence with a subset of the set of real numbers.

(*16d) (i) Find an Eulerian trail in the infinite square lattice S.

(i) Verify that S satisfies the conditions of Theorem 16E.

(*16e) Repeat exercise 16d for the infinite triangular lattice.

(*16f) Show that the infinite square lattice contains both one-way and two-way
infinite paths passing exactly once through each vertex.%
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The colouring of graphs

With colours fairer painted their foul ends.

William Shakespeare (The Tempest)

In this chapter we investigate the colouring of graphs and maps, with
special reference to the four-colour theorem and related topics. We start
in §17 by discussing under what conditions the vertices of a graph can be
painted in such a way that every edge is incident to vertices of different
colours. This discussion spills over into the following section where a
major theorem are proved. §19 is devoted to the relationship between
the colouring of graphs and the colouring of maps, and both of these are
then related in §20 to problems concerning the colouring of the edges of a
graph. All of this material is essentially qualitative, asking whether
graphs can be coloured under certain circumstances, rather than in how
many ways the colouring can be done. We conclude with a discussion of
this second question (using chromatic polynomials) in §21.

§17. The chromatic number

If G is a graph without loops, then G is said to be K-colourable if to each
of its vertices we can assign one of k colours in such a way that no two
adjacent vertices have the same colour. If G is k-colourable, but not
(k — 1)-colourable, we say that G is k-chromatic, or that the chromatic
number of G (denoted by x(G)) is k. Fig. 17.1 shows a graph which is 4-

B

Fig. 17.1
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chromatic, and hence k-colourable if k >4; the colours are denoted by
Greek letters. For convenience, we shall assume that all graphs
mentioned in §17 and §18 contain no loops; we may however allow
multiple edges, since they are irrelevant to our discussion.

It is clear that y(K,)=n, and hence we can easily construct graphs
with arbitrarily high chromatic number. At the other end of the scale, it
is easy to see that y(G)=1 if and only if G is a null graph, and that
¥(G)=2 if and only if G is a non-null bipartite graph. It follows from
Theorem 54 and exercise 5g that if G is not a null graph, then y(G)=2if
and only if G contains no circuits of odd length. Note, in particular, that
every tree with at least two vertices is 2-chromatic, as is any circuit graph
with an even number of vertices.

It is not known under what conditions a graph is 3-chromatic,
although it is easy to give examples of such graphs. These examples
include the circuit graphs with an odd number of vertices, the wheels
with an odd number of vertices, and the Petersen graph. The wheels with
an even number of vertices are 4-chromatic.

There is little we can say about the chromatic number of an
arbitrary graph. If the graph has n vertices, then obviously its chromatic
number does not exceed n, and if the graph contains X, as a subgraph,
then its chromatic number cannot be less than r, but these results do not
take us very far. If, however, we know the degree of every vertex of the
graph, we can usually make significant progress.

THEOREM 17A. If G is a graph whose largest vertex-degree is p,
then G is (p + 1)-colourable.

Proof. The proof is by induction on the number of vertices of G. Let
G be a graph with n vertices. Then if we delete any vertex v (and the edges
incident to it), the graph which remains is a graph with n—1 vertices
whose largest vertex-degree is at most p.. By our induction hypothesis,
this graph is (p+1)-colourable. A (p+ 1)-colouring for G is then
obtained by colouring v with a different colour from the (at most p)
vertices adjacent to v.//

By more careful treatment this theorem can be strengthened a little
to give the following result which is known as Brooks’ theorem,; its proof
will be given in the next section.

THEOREM 178 (Brooks 1941). If G is a simple connected graph
which is not a complete graph, and if the largest vertex-degree of G is
p(Z3), then G is p-colourable.|/ '

Both of these theorems are useful if the degrees of all the vertices are
approximately equal. For example, we can immediately deduce from
Theorem 174 that every cubic graph is 4-colourable, and from Theorem
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178 that every connected cubic graph (apart from K) is in fact 3-
colourable. On the other hand, if our graph has a few vertices with rather
large degrees, then these theorems tell us very little. This is illustrated
very well by the star graph K, , which by Brooks’ theorem is s-
colourable, but which is in fact 2-chromatic. There is at present no really
effective way of avoiding this situation, although there are techniques
which help a litile. :

This rather depressing situation does not arise if we restrict our
attention to planar graphs. In fact, we can prove very easily the rather
strong result that every planar graph is 6-colourable.

THEOREM 17C. Every planar graph is 6-colourable.

Proof. The proof is very similar to that of Theorem 17A. We prove
the theorem by induction on the number of vertices, the result being
trivial for planar graphs with fewer than seven vertices. Suppose then
that G is a planar graph with » vertices, and that all planar graphs with
n—1 vertices are 6-colourable. Without loss of generality, G can be
assumed to be a simple graph, and so, by Theorem 13F, contains a vertex
v with degree at most five. If we delete v, then the graph which remains
has n—1 vertices and is thus 6-colourable. A 6-colouring of G is then
obtained by colouring v with a different colour from the (at most five)
vertices adjacent to v.//

As with Theorem 17a this result can be made even stronger by more
careful treatment, the result being called the five-colour theorem:

THEOREM 17D.  Every planar graph is 5-colourable.

Proof. The method of proof is similar to that of Theorem 17c,
although the details are more complicated. We prove the theorem by
induction on the number of vertices, the result being trivial for planar
graphs with fewer than six vertices. Suppose then that G is a planar
graph with n vertices, and that all planar graphs with less than n vertices
are 5-colourable. We can assume that G is a simple plane graph and that,
by Theorem 13F, G contains a vertex v with degree at most five. As
before, the deletion of v leaves us with a graph with n — 1 vertices which is
thus 5-colourable. Our aim is to colour v in one of our five colours, so
completing the 5-colouring of G.

If p(v) <5, then v can be coloured with any colour not assumed by
the (at most four) vertices adjacent to v, completing the proof in this
case. We thus suppose that p(v)=S5, and that the vertices vy, . . ., vs
which are adjacent to v are arranged around v in clockwise order as in
Fig. 17.2. If the vertices vy, . . . , vs are all mutually adjacent, then G
must contain the non-planar graph K5 as a subgraph, which is
impossible. So at least two of the vertices v; (say, v; and v;) are not
adjacent.
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We now contract the two edges vv, and vv,. The resulting graphis a
plane graph with less than n vertices, and is thus 5-colourable. We now
reinstate the two edges, giving both v, and v; the colour originally
assigned to v. A 5-colouring of G is then obtained by colouring v with a
different colour from the (at most four) colours assigned to the vertices

v.//

Vs

Vi v,

Fig. 17.2

It is natural to ask whether this result can be strengthened further,
and this question leads us to what was formerly one of the most famous
unsolved problems in the whole of mathematics—the ‘four-colour
problem’. This problem, in an alternative formulation (see §19), was first
posed in 1852, and was eventually settled by K. Appel and W. Haken in
1976. Their proof, which took them four years and a substantial amount
of computer time, ultimately depends on a complicated extension of the
ideas used in the proof of the five-colour theorem. Further information
about this proof can be found in Saaty and Kainen,2* or in Beineke and
Wilson.3 We conclude this section with a formal statement of what is
now known as the four-colour theorem:

THEOREM 17E.  Every planar graph is 4-colourable.//

Exercises 17
(17a) Find the chromatic numbers of the graphs in Fig. 17.3.

Fig. 17.3
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(17b) What is the chromatic number of
(i) each of the Platonic graphs?
(ii) the Petersen graph?
(iii) the complete tripartite graph X, , ,?
(iv) the k-cube Q,?

(17¢) Compare the bound for the chromatic number given by Brooks’

theorem, with the correct value, for
(i) the Petersen graph;
(ii) the k-cube Q,.

(17d) Let G be a simple graph with n vertices, which is regular of degree 4. By
considering the number of vertices which can be assigned the same
colour, prove that x(G) =>n/(n—d).

(17¢) Let G be a simple planar graph containing no triangles.

(i) Use Euler’s formula to show that G contains a vertex whose degree
is at most 3.

(i) Use induction to deduce that G is 4-colourable. (In fact, it can be
proved that G is 3-colourable.)

(*17f) Generalize the results of the previous exercise to the cases where

() G has girth r;
(i) G has thickness ¢.

(17g) Try to prove the four-colour theorem by adapting the above proof of the
five-colour theorem. At what point does the proof fail?

(*17h) A graph G is k-critical if y(G) = k and if the deletion of any vertex yields a
graph with smaller chromatic number.

(i) Find all 2-critical and 3-critical graphs.
(i) Give an example of a 4-critical graph.
(iif) Prove that if G is k-critical, then
(a) every vertex of G has degree at least k— 1;
(b) G has no cut-vertices.

(*17i) Let G be a countable graph, every finite subgraph of which is

k-colourable.
(i) Use Konig’s lemma to prove that G is k-colourable.
(i) Deduce that every countable planar graph is 4-colourable.

§18. A proof of Brooks’ theorem

*In order to avoid disturbing the continuity, we deferred the proof of
Brooks’ theorem (Theorem 17B). This proof will now be given.

THEOREM 17B. If G is a simple connected graph which is not a
complete graph, and if the largest vertex-degree of G is p( 2 3), then G is p-
colourable.

Proof. The proof will as usual be by induction on the number of
vertices of G. Suppose that G has n vertices; then if any vertex of G has
degree less than p, the proof may be completed by imitating the proof of
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Theorem 17a. We can thus suppose without loss of generality that G is
regular of degree p.

We now choose any vertex v and delete it. The graph which remains
is a graph with n— 1 vertices whose largest vertex-degree is at most p. By
our induction hypothesis, this graph is p-colourable. Our aim is now to
colour v with one of the p colours. We can suppose that the vertices
vy, - - ., v, which are adjacent to v are arranged around v in clockwise
order, and that they are coloured with distinct colours ¢,, . . . , c,, since
otherwise there would be a spare colour which could be used to colour v.

We now define H;; (i#j, 1 <i, j< p) to be the subgraph of G whose
vertices are all those vertices coloured c; or c; and whose edges are all
those edges incident to one vertex coloured c; and one vertex coloured c;.
If the vertices v; and v; lie in different components of H;;, we can
interchange the colours of all the vertices in the component of H;;
containing v;. The result of this recolouring is that v; and v; both have
colour c;, enabling v to be coloured with colour ;. We may thus assume
that, given any i and j, v; and v; are connected by a path which lies
entirely in H;;. We shall denote the component of H;; containing v;and v;
by C;..

I{ is clear that if v, were adjacent to more than one vertex with colour
¢j» then there would be a colour (other than ¢;) which was not assumed by
any of the vertices adjacent to v;. In this case v; could be recoloured using
this colour, enabling v to be coloured with colour ¢;. If this does not
happen, then we can use a similar argument to show that every vertex of
C;; (other than v; and v;) must have degree two; for if w is the first vertex
of the path from v; to v; which has degree greater than two, then w can be
recoloured using a colour different from c; or c;, thereby destroying the
property that v; and v; are connected by a path lying entirely in C;;. We
can thus assume that for any i, j, the component C;; consists only of a
path from v, to v;.

We now remark that two paths of the form C;; and Cj, (where i #1)
can be assumed to intersect only at v;, since if w is another point of
intersection, then w can be recoloured using a colour different from ¢;, ¢;
or ¢;, contradicting the fact that »; and v; are connected by a path.

To complete the proof, we choose two vertices v; and v; which are
not adjacent, and let w be the vertex with colour ¢; which is adjacent to v;.
If C;, is a path (for some /#j), we can interchange the colours of the
vertices in this path without affecting the colouring of the rest of the
graph. But if we perform this interchange, then w would be a vertex
common to the paths C;; and Cj, which is a contradiction. This
contradiction establishes the theorem.//

Exercises 18

(18a) Draw diagrams to illustrate the arguments in the last three paragraphs of
the above proof.x
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§19. The colouring of maps

The four-colour problem arose historically in connexion with the
colouring of maps. If we have a map containing several countries, we
may wish to know how many colours are needed to colour the various
countries in such a way that no two neighbouring countries share the
same colour. Possibly the most familiar form of the four-colour theorem
is the statement that every map can be coloured using only four colours.

In order to make this statement more precise, we must say exactly
what we mean by a ‘map’. In the colouring problems we shall be
considering, it is necessary to ensure that the two colours on etther side
of an edge are different, and so we shall need to exclude maps in which
there is a bridge. It is convenient, therefore, to define a map to be a
connected plane graph containing no bridges. (Note that we do not
exclude loops or multiple edges when defining a map; the exclusion of
bridges corresponds, as we shall see, to the exclusion of loops in §17.)

We can now define a map to be k-colourable(f) if its faces can be
coloured with k colours in such a way that no two adjacent faces (i.e.,
faces whose boundaries have an edge in common) have the same colour.
If there is any possibility of confusion, we shall also use ‘k-colourable(v)’
to mean k-colourable in the usual sense. As an example, we note that the
map shown in Fig. 19.1 is 3-colourable(f) and 4-colourable(v).

The four-colour theorem for maps may now be stated simply as the
statement that every map is 4-colourable(f). We shall prove the
equivalence of the two forms of the four-colour theorem in Corollary
19c. In the meantime, we shall investigate the conditions under which a
map can be coloured using two colours. It turns out that these
conditions take a particularly simple form.

Fig. 19.1

THEOREM 19A. A map G is 2-colourable(f) if and only if G is an
Eulerian graph.

First proof.=> For any vertex v of G, the faces surrounding v must be
even in number since they can be coloured using two colours. It follows
that every vertex has even degree and so, by Theorem 6B, G is Eulerian.
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<= We shall describe a method for actually colouring the faces of G.
Choose any face F and colour it red; draw a Jordan curve from a point x
in F to a point in any other face, making sure that the curve passes
through no vertex of G. If the curve from x to a point in face F’ crosses an
even number of edges, colour F’ red; otherwise colour it blue (see Fig.
19.2). The fact that the colouring is well defined can be shown by taking
a ‘circuit’ consisting of two such Jordan curves and proving that this
circuit crosses an even number of edges of G, using the fact that every
vertex has an even number of edges incident to it.//

Fig. 19.2

< A simpler proof of Theorem 19A can, and will, be given by
translating the problem into one of colouring the vertices of the dual
graph. We shall first prove a theorem justifying this procedure, and will
then illustrate it by giving our alternative proof of Theorem 194 and by
proving the equivalence of the two forms of the four-colour theorem.

THEOREM 19B.  Let G be a planar graph without loops, and let G* be
a geometric-dual of G. Then G is k-colourable(v) if and only if G* is k-
colourable(f).

Proof.= We may assume that G is plane and connected, so that G*
is a map. If we have a k-colouring(v) for G, then since every face of G*
contains a unique vertex of G, we can k-colour the faces of G* in such a
way that each face inherits the colour of the vertex it contains. The fact
that no two adjacent faces of G* have the same colour follows
immediately from the fact that the vertices of G which they contain are
adjacent in G and so are differently coloured. Thus G* is k-colourable(f).
Suppose now that we have a k-colouring(f) of G*. Then since every
vertex of G is contained in a face of G*, we can k-colour the vertices of G
in such a way that each vertex inherits the colour of the face containing
it. The fact that no two adjacent vertices of G have the same colour
follows immediately by reasoning similar to the above.//

It follows from this result that we can dualize any theorem on the
colouring of the vertices of a planar graph to give a theorem on the
colouring of the faces of a map, and conversely. As an example of this,
consider Theorem 19a.
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THEOREM 19A. A4 map G is 2-colourable(f) if and only if G is an
Eulerian graph.

Second proof. Since (by exercise 151) the dual of an Eulerian planar
graph is a bipartite planar graph and conversely, it is sufficient to show
that a planar graph without loops is 2-colourable(v) if and only if it is
bipartite; but this is obvious.//

We can similarly prove the equivalence of the two forms of the four-
colour theorem.

COROLLARY 19c. The four-colour theorem for maps is equivalent
to the four-colour theorem for planar graphs.

Proof.= Let G be a planar graph without loops, and assume
without loss of generality that G is plane and connected. Then its
geometric-dual G* is a map, and the 4-colourability(v) of G follows
immediately from the fact that this map is 4-colourable(f), using
Theorem 198.
<= Conversely, let G be a map and let G* be its geometric-dual. Then G*
is a planar graph without loops and is therefore 4-colourable(v). It
follows immediately that G is 4-colourable(y).//

Duality can also be used to prove the following theorem:

THEOREM 19D. Let G be a map which is cubic. Then G is 3-
colourable(f) if and only if every face is bounded by an even number of
edges.

Proof.=> Given any face F of G, the faces of G which surround F
must alternate in colour. It follows that there must be an even number of
them, and hence that every face is bounded by an even number of edges.
< We shall prove the dual result—if G is a connected plane graph
without loops, every face of which is a triangle and every vertex of which
has even degree (i.e. G is Eulerian), then G is 3-colourable(v). We shall
. denote the three colours by «a, f and y.

By Theorem 194, since G is Eulerian, the faces of G can be coloured
with two colours, say red and blue. The required 3-colouring of the
vertices of G is then obtained by first colouring the vertices of any red
face, the colouring being such that the colours «, § and y appear in
clockwise order, and then colouring the vertices of the surrounding
faces, the colours «, B and y appearing in clockwise order around a face if
and only if that face is red (see Fig. 19.3). This colouring of the vertices
can be extended to the whole graph, thus proving the theorem.//
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a

Fig. 19.3

In the above theorem, the map was assumed to be cubic. In fact, we
can often remove this condition without loss of generality. Our next
theorem is a good example of this:

THEOREM 19€. In order to prove the four-colour theorem, it is
sufficient to prove that every cubic map is 4-colourable(f).

Proof. By Corollary 19c, it is sufficient to prove that the 4-
colourability(f) of every cubic map implies the 4-colourability(f) of any
map.

Let G be any map. Then if G contains any vertices of degree two,
these vertices can be removed without affecting the colouring. It
therefore remains only to show how one can eliminate any vertices of
degree four or more. But if v is such a vertex, then we can stick a ‘patch’
over v (i.e. draw around v a closed Jordan curve which surrounds no
vertex except v) as in Fig. 19.4. Repeating this for every vertex of degree
greater than three, we obtain a cubic map which is 4-colourable(f) by

Fig. 19.4

hypothesis. The required 4-colouring of the faces of G may then be
obtained by shrinking each patch down to a single vertex and reinstating
every vertex of degree two.//

Exercises 19

(19a) Consider the following map, in which the countries are to be coloured
red, blue, green and yellow.
() Show that country 4 must be red.
(if) What colour is country B?
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(19b) Find the minimum number of colours needed to colour the faces of each
of the Platonic graphs.

(19¢) Give an example of a plane graph which is both 2-colourable(f) and 2-
colourable(v).

(19d) The plane is divided into a finite number of regions by drawing infinite
straight lines in an arbitrary manner. Show (in two different ways) that
these regions can be 2-coloured.

(19¢) By dualizing the proof of Theorem 17c, prove the six-colour theorem for
maps.

(*19f) By dualizing the proof of Theorem 17D, prove the five-colour theorem
for maps.

(*19g) Let G be a simple plane graph with fewer than twelve faces, and suppose
that every vertex of G has degree at least three.

(i) Use exercise (13e) to prove that G is 4-colourable(f).
(i) Dualize the result of part (i).
(*19h) (i) Prove that, if a toroidal graph is embedded on the surface of a torus,
then its faces can be coloured using seven colours.
(i) Find a toroidal graph whose faces cannot be coloured with six
colours.

§20. Edge-colourings

This section is devoted to a study of the colouring of the edges of a
graph. It turns out that the four-colour theorem for planar graphs is
equivalent to a theorem concerning edge-colourings of cubic maps.

A graph G is said to be k-colourable(e) (or k-edge-colourable) if its
edges can be coloured with k colours in such a way that no two adjacent
edges have the same colour. If G is k-colourable(e) but not (k— 1)-
colourable(e), we say that the chromatic index (or edge-chromatic
number) of G is k, and write y'(G)=k. Fig. 20.1 shows a graph G for
which y'(G)=4.

It is clear that if p denotes the largest vertex-degree of G, then y'(G)
= p. The following result, known as Vizing’s theorem, gives surprisingly
sharp bounds for the chromatic index of a simple graph G; its proof may
be found in Bondy and Murty’ or Fiorini and Wilson.!3
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Fig. 20.1 Fig. 20.2

THEOREM 20A (Vizing 1964). If G is a simple graph whose largest
vertex-degree is p, then p< y'(G)<p+1.//

It is an unsolved problem to specify exactly which graphs have
chromatic index p and which have p + 1. However, the results for some
particular types of graph can easily be found. For example, x'(C,)=2 or
3 depending on whether n is even or odd, and x'(W,)=n—1 (if n24).
The corresponding results for complete graphs can also be calculated, as
we now show.

THEOREM20B. y'(K,)=nifnisodd(n#1),and y'(K,)=n—1ifnis
. even.

Proof. If n is odd, then the edges of K, can be n-coloured by placing
the vertices of K, in the form of a regular n-gon, colouring the edges
around the boundary (using a different colour for each edge), and then
colouring every remaining edge with the same colour as that used for the
boundary which is parallel to it (see Fig. 20.2). The fact that K, is not
(n— 1)-colourable(e) follows immediately from the observation that the
largest possible number of edges of the same colour is 3(n— 1), so that K,
has at most $(n—1)x'(K,) edges.

Fig. 20.3

If n(=4) is even, then K, can be obtained by joining a complete
(n—1)-graph K,_, to a single vertex. If the edges of K,_, are then
coloured using the method described above, there will be one colour
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missing at each vertex, and these missing colours will all be different. The
colouring of the edges of K, can thus be completed by colouring the
remaining edges with these missing colours (see Fig. 20.3). Finally, if
n=2, then the result is trivial.//

We now show the connexion between the four-colour theorem and
the colouring of the edges of a graph. It is this connexion which accounts
for much of the interest in edge-colourings.

THEOREM 20C. The four-colour theorem is equivalent to the
statement that y'(G)=3 for every cubic map G.

Proof.= Suppose that we are given a 4-colouring of the faces of G,
where the colours are denoted by a=(1, 0), f=(0, 1), y=(1, 1), and
6=(0, 0). A 3-colouring of the edges of G can then be obtained by
colouring each edge e with the colour obtained by adding together the
colours of the two faces adjoining e, this addition being carried out
modulo 2. For example, if e adjoins two faces coloured a and y, then e is
coloured B, since (1, 0)+ (1, 1)=(0, 1). Note that the colour § cannot
occur in this edge-colouring since the two faces adjoining each edge must
be distinct. Moreover, it is clearly impossible for any two adjacent edges
to share the same colour. We thus have the required edge-colouring (see
Fig. 20.4).

Fig. 20.4

< Suppose now that we are given a 3-colouring of the edges of G; then
there will be an edge of each colour at each vertex. The subgraph
determined by those edges which are coloured o or f is regular of degree
two, and so the faces of this subgraph can be coloured with two colours
which we shall call 0 and 1 (using an obvious extension of Theorem 19a
to disconnected graphs). In a similar way, the faces of the subgraph
determined by those edges which are coloured « or y can be coloured
with the colours 0 and 1. It follows that we can assign to each face of G
two coordinates (x, y), where x and y are each 0 or 1. Since the
coordinates assigned to two adjacent faces of G must differ in at least one
place, it follows that these coordinates (1, 0), (0, 1), (1, 1), (0, 0), give
the required 4-colouring of the faces of G.//
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We conclude this section with a famous theorem of Kdnig on the
chromatic index of a bipartite graph.

THEOREM 20D. If G is a bipartite graph with maximum vertex-
degree p, then y'(G)=p.

Remark. The method of proof is somewhat similar to that given in
§18—namely, we consider a two-coloured subgraph H,, and inter-
change the colours.

Proof. We use induction on the number of edges of G. It is clearly
sufficient to prove that if all but one of the edges of G have been coloured
with at most p colours, then there is a p-colouring of the edges of G.

So suppose that each edge of G has been coloured, except for the
edge vw. Then there is at least one colour missing at the vertex v, and at
least one colour missing at the vertex w. If there is some colour missing
from both v and w, then the result follows by colouring the edge vw with
this colour. If this is not the case, then let « be a colour missing at v, and
be a colour missing at w, and let H,; be the connected subgraph of G
consisting of the vertex w and all those edges and vertices of G which can
be reached from w by a path consisting entirely of edges coloured a or 8.
Since G is bipartite, the subgraph H,; cannot contain the vertex v, and so
we can interchange the colours o and g in this subgraph without
affecting v or the rest of the colouring. The edge vw can now be coloured
a, thereby completing the colouring of the edges of G.//

COROLLARY 20E. x'(K, ) =max(r, 5).//

Exercises 20
(20a) Find the chromatic index of the graphs in Fig. 20.5.

Fig. 20.5

(20b) For each of the following graphs, find (a) the lower and upper bounds for
¥'(G) given by Vizing’s theorem, and () the correct value of y'(G):
(i) the circuit graph C;
(ii) the complete graph Kg;
(iii) the complete bipartite graph K, ¢.
(20c) What is the chromatic index of each of the Platonic graphs?
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(20d) By exhibiting an explicit colouring for the edges of K,,, give an
alternative proof of Corollary 20E.
(20¢) If G is a cubic Hamiltonian graph, prove that y'(G)=3.
(20f) (i) By considering the possible 3-colourings of the outer 5-circuit,
prove that the Petersen graph has chromatic index 4.
(i) Use part (i) and exercise 20e to deduce that the Petersen graph is
non-Hamiltonian.
(*20g) Let G be a simple graph with an odd number of vertices. If G is regular of
degree p, prove that y'(G)=p+ 1.
(*20h) (i) Let G be a simple graph which is not a null graph. Prove that
1'(G)= x(L(G)), where L(G) is the line graph of G.
(i) By combining part (i) with Brooks’ theorem, prove Vizing’s
theorem in the case p=3.

§21. Chromatic polynomials

We conclude this chapter with a nostalgic glance at vertex-colourings. In
this section we shall associate with any graph a function which will tell
us, among other things, whether or not the graph is 4-colourable. By
investigating this function, we may hope to gain some useful infor-
mation about the four-colour theorem. Without loss of generality, we
shall restrict our attention to simple graphs.

Let G be a simple graph, and let P(k) denote the number of ways of
colouring the vertices of G with k colours in such a way that no two
adjacent vertices have the same colour; P will be called (for the time
being) the chromatic function of G. For example, if G is the graph shown
in Fig. 21.1, then Pgk)=k(k—1)? since the middle vertex can be
coloured in k ways, and the end-vertices can then each be coloured in
any of k — 1 ways. This result can be extended to show that if T'is any tree
with n vertices, then P(k)=k(k—1)"" . Similarly, if G is the complete
graph K, then Pg(k) = k(k — 1)(k — 2); this can be extended to give the
result Po(k)=k(k—1)(k—2) ... (k—n+1)if G is the graph K,.

O O —0
Fig. 21.1

Itisclear that if k<y(G), then Pg(k)=0,and thatifk=>y(G), then
Ps(k)>0. Note also that the four-colour theorems is equivalent to the
statement: if G is a simple planar graph, then Pg(4) > 0.

If we are given an arbitrary simple graph, it is difficult in general to
obtain the chromatic function by inspection. The following theorem and
corollary give us a systematic method for obtaining the chromatic
function of a simple graph in terms of the chromatic functions of null
graphs.
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THEOREM 21A. Let G be a simple graph, and let G, and G, be the
graphs obtained from G by deleting and contracting an edge e. Then

PG(k)=PGl(k)_PGZ(k)~

(As an illustration of this theorem, let G be the graph shown in Fig. 21.2;
the corresponding graphs G, and G, are shown in Fig. 21.3, and the
theorem states that

k(k = D)k — 2)(k = 3)=k(k — 1)(k — 2)> — k(k — 1)(k— 2).)

Proof. Let e = vw. The number of k-colourings of G, in which v and
w have different colours is unchanged if the edge e is drawn joining v and
w, and is therefore equal to P4(k). Similarly, the number of k-colourings
of G, in which v and w have the same colour is unchanged if v and w are
identified, and is therefore equal to P, (k). The total number P (k) of k-
colourings of G, is therefore Pg(k)+ P (k), as required.//

G G, G,
Fig. 21.2 Fig. 21.3

COROLLARY 21B. The chromatic function of a simple graph is a
polynomial.

Proof. The procedure described in the above theorem may be
repeated by choosing edges in G, and G, and deleting and contracting
them in the manner described above, the result being four new graphs.
We now repeat the above procedure for these new graphs, and so on.
The process terminates when no edges remain—in other words, when
each graphis a null graph. Since the chromatic function of a null graph is
a polynomial (=k’", where r is the number of vertices), it follows by
repeated application of Theorem 214 that the chromatic function of the
graph G must be a sum of polynomials and so must itself be a
polynomial.//

A worked example to illustrate the procedure just described will be
given later in the section. In practice, it is unnecessary to reduce each
graph to a null graph—it is enough to reduce each graph to graphs
whose chromatic functions you already know, such as trees.

In the light of Corollary 21B, we can now call P(k) the chromatic
polynomial of G. It is easy to see from the proof just given that if G has n
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vertices, then Pg(k) is of degree n, since no new vertices are introduced at
any stage. Moreover, since the construction yields only one null graph
on n vertices, the coefficient of k" is one. It can also be shown (see exercise
21f) that the coefficient of k" ! is —m where m is the number of edges of
G, and that the coefficients alternate in sign. If there are no colours
available, then we cannot colour the graph and so the constant term of
the chromatic polynomial must be zero.

Fig. 21.4

It is high time that we gave an example to illustrate the above ideas.
We shall use Theorem 214 to find the chromatic polynomial of the graph
G shown in Fig. 21.4 and shall then verify that this polynomial has the
form k> — 7k* + ak3 — bk? + ck (a, b, c positive constants) as the previous
paragraph tells us that it must. It is customary at each stage to draw the
graph itself, rather than write its chromatic polynomial; for example,
instead of writing Py(k)= Pg (k) — PGz(k), where G, G, and G, denote
the graphs of Fi igs 21.2 and 21.3, it 1s convenient to wrlte down the
‘equation’ given in Fig. 21.5.

<P-<

Fig. 21.5

With this convention, and ignoring multiple edges as we proceed, we
have

Ay

€

€

=53

-U-A
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Thus

Po(k)=k(k— 1)* = 3k(k — 1)* + 2k(k — 1)2 + k(k — 1)(k - 2)
= k> — Tk* + 18k> — 20k + 8k.

Note that this result has the required form k°—7k*+ ak®—bk® + ck,
where a, b, ¢ are positive constants.

We conclude this chapter with a few remarks to indicate how a study
of chromatic polynomials and colourability is related to such subjects as
timetabling. Suppose, for example, that we have to arrange the times at
which certain lectures are to be given, knowing that some particular
lectures cannot be given at the same time (since there may be students
who wish to attend both of them); our aim is to find out whether it is
possible to construct a timetable which takes account of this. This is
done by constructing a graph whose vertices denote the various lectures
and whose edges join those pairs of lectures which cannot be scheduled
for the same time. If to each time available for lectures we associate a
colour, then a colouring of the vertices of the graph corresponds to a
successful scheduling of all the lectures—that is, to a timetable. In this
case, a knowledge of the chromatic polynomial of the graph will tell us
whether the scheduling is possible, and if so, how many possible ways
there are of doing it.

Exercises 21

(21a) Write down the chromatic polynomials of
(i) the complete graph Kj;
(ii) the star graph K, 5;
(iii) the path graph Pg.
In how many ways can these graphs be coloured with 7 colours?
(21b) (i) Find the chromatic polynomials of the six connected simple graphs
on four vertices.
(i) Verify that each of the polynomials in part () has the form

k*—mk3 + ak? — bk,

where m is the number of edges and a and b are positive constants.
(21c) Find the chromatic polynomials of
(i) the complete bipartite graph X, s;
(&) the circuit graph Cs.
(*21d) (i) Prove that the chromatic polynomial of K, ; is

k(k— 1y +k(k— 1)(k—2).
(ii) Prove that the chromatic polynomial of C,, is
k—=1)"+(—1)"(k—1).

(2le) Prove that if G is a disconnected simple graph, then P is the product of
the chromatic polynomials of its components. What can you say about
the degree of the lowest non-vanishing term?
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(*21f) Let G be a simple graph with n vertices and m edges. Use induction on m,
together with Theorem 214, to prove that
(i) the coefficient of k"~ !is —m;
(if) the coefficients of P;(k) alternate in sign.
(21g) (i) Use the results of exercises 2le and 21f to prove that if
Pgk)=k(k— )", then G must be a tree on n vertices.
(if) Find three graphs with chromatic polynomial

kS —4k*+6k>— 4k + k.
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Digraphs

By indirections find directions out.

William Shakespeare (Hamlet)

This chapter and the following one deal with the theory of digraphs and
some of its applications. We begin in §22 with the basic definitions, and
then discuss under what conditions one can ‘direct’ the edges of a graph
in such a way that the resulting digraph is strongly-connected. This is
followed by a brief discussion of critical path analysis, and then, in §23,
by a discussion of Eulerian and Hamiltonian trails and circuits, with
particular reference to tournaments. We conclude the chapter with a
study of the classification of states of a Markov chain from a digraph
point of view.

§22. Definitions

We begin by recalling some of the definitions of §2. A digraph D is
defined to be a pair (V(D), A(D)), where V(D) is a non-empty finite set of
clements called vertices, and 4(D) is a finite family of ordered pairs of
elements of V(D) called arcs; V(D) and A(D) are called the vertex-set and
arc-family of D. Thus Fig. 22.1 represents a digraph whose arcs are uv,
oo, vw, vw, wo, wu and zw, the ordering of the vertices in an arc being
indicated by an arrow. If D is a digraph, the graph obtained from D by
‘removing the arrows’ (i.e., by replacing each arc of the form vw by a
corresponding edge vw) is called the underlying graph of D (see Fig. 22.2).

u z u Z

v w

Fig. 22.1 Fig. 22.2
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We also say that D is a simple digraph if the arcs of D are all distinct, and
if there are no ‘loops’ (arcs of the form vv). Note that the underlying
graph of a simple digraph need not be a simple graph (see Fig. 1.8).

We can imitate many of the definitions given in §2 for graphs. For
example, two vertices v and w of a digraph D are said to be adjacent if
there is an arc in A(D) of the form vw or wo; the vertices v and w are then
said to be incident to any such arc. If D has vertex-set {v,, . . . , v,}, the
adjacency matrix of D is the n X n matrix A = (a;;), where a;;is the number
of arcs from v; to v, Two digraphs are isomorphic if there is an
isomorphism between their underlying graphs which preserves the
ordering of the vertices in each arc. Note, in particular, that the digraphs
shown in Figs 2.3 and 22.1 are not isomorphic.

There are also natural generalizations to digraphs of some of the
definitions given in §5. A walk in a digraph D is a finite sequence of arcs
of the form vgv,, vyv,, . . ., U, 10, We shall sometimes write this
sequence as vo—v; - . . . =0, and speak of a walk from v, to v,,. In an
analogous way we can define directed trails, directed paths and directed
circuits or, simply, trails, paths and circuits, if there is no possibility of
confusion. Note that although a trail cannot contain a given arc yw more
than once, it can contain both vw and wv; for example, in Fig. 22.1, z»w

—v-ow—uis a trail.

We are now in a position to define connectedness. More precisely,
we shall define here the two most natural and useful types of connected
digraph, corresponding to whether or not we wish to take account of the
direction of the arcs. These definitions are the natural extensions to
digraphs of the definitions of connectedness given in §3 and §5.

A digraph D is said to be connected (or weakly-connected) if it
cannot be expressed as the union of two disjoint digraphs, defined in the
obvious way; this is equivalent to saying that the underlying graph of D
is a connected graph. Suppose, in addition, that for any two vertices v
and w of D there is a path from v to w; then D is called strongly-
connected. It is clear that every strongly-connected digraph is connected,
but the converse is not true— Fig. 22.1 shows a connected digraph which
is not strongly-connected since there is no path from v to z.

The distinction between a connected digraph and a strongly-
connected one may become clearer if we consider the road map of a city,
all of whose streets are one-way. To say that the road map is connected is
to say that we can drive from any part of the city to any other, ignoring
the direction of the one-way streets as we go. If the map is strongly-
connected, then we can drive from any part of the city to any other,
always going the ‘right way’ down the one-way streets.

It is clearly important that a one-way system should be strongly-
connected, and a natural question to ask is, ‘when can we impose a one-
way system on a street map in such a way that we can drive from any part
of the city to any other? If, for example, the city consists of two parts
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connected only by a bridge, then we can never impose such a one-way
system on the city, since whatever direction we give to the bridge, one
part of the city will be cut off. (Note that this includes the case in which
we have a cul-de-sac.) If, on the other hand, there are no bridges, then we
can always impose such a one-way system; this result will be stated
formally in Theorem 22A. v

For convenience, we shall define a graph G to be orientable if every
edge of G (regarded as a pair of vertices) can be ordered in such a way
that the resulting digraph is strongly-connected. This process of
ordering the edges will be described as ‘orienting the graph’ or ‘directing
the edges’. For example, if G is the graph shown in Fig. 22.3, then G can
be oriented to give the strongly-connected digraph of Fig. 22.4.

Fig. 22.3 Fig. 22.4

It is easy to see that any Eulerian graph is orientable, since we
merely follow any Eulerian trail directing the edges in the direction of the
trail as we go. We now give a necessary and sufficient condition (due to
H. E. Robbins) for a graph to be orientable.

THEOREM 22A. Let G be a connected graph. Then G is orientable if
and only if each edge of G is contained in at least one circuit.

Proof. The necessity of the condition is clear. To prove the
sufficiency, we choose any circuit C and orient its edges cyclically (in
either of the two possible ways). If every edge of G is contained in C, the
proof is complete. If not, we choose any edge e which is not in C but
which is adjacent to an edge of C. By hypothesis, the edge e is contained
in some circuit C’ (say) whose edges we may direct cyclically (with the
exception of those edges which have already been directed—i.e., those
edges of C’ which lie also in C). It is not difficult to convince oneself that
the resulting digraph is strongly-connected; the situation is illustrated in
Fig. 22.5, dashed lines denoting edges of C'. We proceed in this way, at
each stage directing at least one new edge, until the whole graph is
oriented. Since, at each stage, the digraph remains strongly-connected,
the result follows.//

We conclude this section by discussing a ‘critical path’ problem
relating to the scheduling of a series of operations. Suppose that we have
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Fig. 22.5

a job to perform (such as the building of a house), and that this job can
be divided into a number of smaller operations (such as laying the
foundations, putting on the roof, doing the wiring, etc.). Since several of
these operations can be performed simultaneously, whereas some may
need to be completed before others can be started, it would clearly be
useful if we could find an efficient method for determining which jobs
should be performed at which times so that the entire job is completed in
minimum time.

In order to solve this problem, we construct a ‘weighted digraph’ (or
network, as we shall usually call it) in which the arcs represent the length
of time taken for each operation. Such a network is given in Fig. 22.6,
where the vertex A4 represents the beginning of the job, and the vertex L
represents its completion. Since the entire job cannot be completed until
each of the paths from A to L has been traversed, the problem reduces to

Fig. 22.6

that of finding the longest path from A to L. This may be accomplished
by using a technique known as PERT (Programme Evaluation and
Review Technique), which is very similar to that used for the shortest
path problem (§8), except that as we move across the digraph from left to
right, we associate to each vertex ¥ a number (V) indicating the length
of the longest path from A4 to V. So for the digraph of Fig. 22.6, we
assign:

to vertex A4, the number 0;

to vertex B, the number /(4) + 3—that is, 3;
to vertex C, the number /(4) +2—that is, 2;
to vertex D, the number /(B) + 2—that is, 5;
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to vertex E, the number max{/(4)+9, I(B) + 4, (C) + 6}—that is, 9;
to vertex F, the number /[(C)+9—that is, 11;

to vertex G, the number max{/{(D)+ 3, I(E) + 1}—that is, 10;

to vertex H, the number max{{(E)+ 2, {(F)+ 1} —that is, 12;

to vertex 7, the number /(F)+2—that is, 13;

to vertex J, the number max{{(G) + 5, I(H)+ 5} —that is, 17;

to vertex K, the number max{{(H)+ 6, I(I)+ 2} —that is, 18;

to vertex L, the number max{{(H)+9, {J)+ 5, (K) + 3} —that s, 22.

(As in the shortest path problem, we can keep track of these
numbers by writing them next to the vertex they represent.) Note that,
unlike the problem we considered in §8, there is no ‘zig-zagging’, since
the arcs are all directed from left to right. It follows that the longest path
(the so-called critical path) has length 22, and is given by Fig. 22.7. The
job cannot therefore be completed until time 22. '

@ T T 2 @1 2 K

Fig. 22.7

We can now calculate the latest time by which any given operation
must be completed if the work is not to be delayed.

Working backwards from L, we see that we must reach K by time
22—-3=19, J by time 22—5=17, H by time min{17—35, 22-9,
19—6}=12, and so on. Given this information, the required schedule
can then be worked out.

Exercises 22
(22a) Two of the digraphs in Fig. 22.8 are isomorphic. Which two are they?

7y A

< Fig. 22.8

(22b) Let D be a simple digraph with » vertices and m arcs.
() If D is connected, prove that n— 1 <m<n(n—1).
(i) Obtain corresponding bounds for m if D is strongly-connected.
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(22c) Write down adjacency matrices for the digraphs in Figs 22.1 and 22.4.
(22d) The converse D of a digraph D is obtained by reversing the direction of
every arc of D.
(?) Give an example of a digraph which is isomorphic to its converse.
(ii) What is the connexion between the adjacency matrices of D and D?
(22e) (i) Without using Theorem 224, prove that every Hamiltonian graph is
orientable.
(i) Show, by finding an orientation for each, that K, (n>3) and X,
(r, s 22) are orientable.
(@ii) Find orientations for the Petersen graph and the graph of the
dodecahedron.
(22f) In the above scheduling problem, calculate the latest times at which we
can reach the vertices G, E and B.
(22g) Find the longest path from A to G in the network of Fig. 22.9.

&7

Fig. 22.9

§23. Eulerian digraphs and tournaments

In this section we shall attempt to obtain digraph analogues of some of
the results of §§6 and 7. This will lead us to the study of Hamiltonian
circuits in a particular type of digraph called a tournament.

A connected digraph D is called Eulerian if there exists a closed trail
which includes every arc of D; such a trail is called an Eulerian trail. For
example, the digraph shown in Fig. 23.1 is not Eulerian, although its
underlying graph is an Eulerian graph. Our first aim is to give a
necessary and sufficient condition (analogous to the one given in
Theorem 6B) for a connected digraph to be Eulerian. It is easy to see that
one necessary ¢ondition is that the digraph is strongly-connected.

u

Fig. 23.1
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We shall need some preliminary definitions. If v is a vertex of a
digraph D, we define the out-degree of v (denoted by p(v), with the arrow
‘pointing away from’ v) to be the number of arcs of D of the form vw;
similarly, the in-degree of v (denoted by p(v)) is the number of arcs of D
of the form wv. It follows immediately that the sum of the in-degrees of
all the vertices of D is equal to the sum of their out-degrees, since each
arc of D contributes exactly one to each sum; we shall call this result the
handshaking di-lemma!

For later convenience, we further define a source of D-+to be a vertex
whose in- degree is zero, and a sink of D to be one whose out-degree is
zero; thus, in Fig. 23.1, vis a source and wis a sink. Note that an Eulerian
digraph (other than the trivial one containing no arcs) can contain no
sources or sinks. —

We are now in a position to state the basic theorem on Eulerian
digraphs.

THEOREM 23A. A connected digraph is Eulerian if and only if
p{v)y="p(v) for each vertex v of D.

Froof. The proof is entirely analogous to the proof of Theorem 6B
and will be left as an exercise.//

We shall leave it to you to Jefine a semi-Eulerian digraph, and to
prove results analogous to Corollaries 6c and 6D.

The corresponding study of Hamiltonian digraphs is, as may be
expected, rather less successful than the Eulerian case. A digraph D is
called Hamiltonian if there is a circuit which includes every vertex of D; a
digraph which contains a path passing through every vertex is called
semi-Hamiltonian. Very little is known about Hamiltonian digraphs,
and in fact some theorems on Hamiltonian graphs do not seem to
generalize easily (if at all) to digraphs. It is natural to ask whether there is
a generalization to digraphs of Dirac’s theorem (Corallary 7B). One such
generalization is due to Ghouila—Houri; its proof is considerably more
diﬂicult7than that of Dirac’s theorem, and may be found in Bondy and
Murty.

THEOREM 23B. Let D be a strongly-connected digraph with n
vertices. If p(v)y=in and p(v)=3in for each vertex v, then D is
Hamiltonian.||

It seems that results in this direction are not going to come very
easily, and so we might consider instead what kinds of digraphs are
Hamiltonian. In this respect, certain digraphs are particularly
important—namely, the tournaments—the results in this case taking a
very simple form.
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A tournament is a digraph in which any two vertices are joined by
exactly one arc (see Fig. 23.2). The reason for the name ‘tournament’ is
that the digraph can be used to record the result of a tennis tournament
or any other game in which draws are not allowed. In Fig. 23.2, for
example, team z beat team w, but was beaten by team v, etc.

v

Fig. 23.2

Because of the possibility that a tournament has a source or a sink,
tournaments are not in general Hamiltonian. However, the following
theorem (due to L. Rédei and P. Camion) shows that every tournament
is ‘nearly Hamiltonian’.

THEOREM 23C. (i) Every tournament is semi- Hamiltonian;
(ii) every strongly-connected tournament is Hamiltonian.

Proof. (i) The statement is clearly true if the tournament has less
than four vertices. We shall prove the result by induction on the number
of vertices, and will assume that every tournament on 7 vertices is semi-
Hamiltonian. Let T be a tournament on n+ 1 vertices, and let 7" be the
tournament on # vertices obtained by removing from 7 a vertex v and
every arc incident to v. Then, by the induction hypothesis, 7* has a semi-
Hamiltonian path v, »v,— . . . —v,. There are three cases to consider:

(1) if vv, is an arc in T, then the required path is

VoV DV L D,

(2) if vo, is not an arc in T (which means that v,v is) and if there
exists an i such that vv;is an arcin T, then choosing i to be the first such, it
is clear that the required path is (see Fig. 23.3)

R e S A e e

(3) if there is no arc in T of the form vv,, then the required path is

R e I
(i) We shall prove the stronger result that a strongly-connected
tournament 7" on n vertices contains circuits of length 3, 4, . . . | n.

To show that 7 contains a circuit of length three, let v be any vertex
of T, and let W be the set of all vertices w such that vwisanarcin T, and
Z be the set of all vertices z such that zv is an arc. Since T is strongly-
connected, W and Z must both be non-empty, and there must be an arc
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Fig. 23.3 Fig. 23.4

in T of the form w'z’ where w' is in W and 2’ is in Z (see Fig. 23.4). The
required circuit of length three is then vow'—z' - 0.

It remains only to show that if there is a circuit of length k(k <n),
then there is one of length k+ 1. Letv; — . . . = v,— v, be such a circuit.
Suppose first that there exists a vertex v not contained in this circuit, with
the property that there exist arcs in T of the form vv; and of the form vjv.
Then there must be a vertex v; such that both v;_ ;v and vv; are arcs in 7.
The required circuit is then

Vo0, ... o U ... U, (see Fig. 23.5).

]

Y v,

Ykl

Fig. 23.5 Fig. 23.6

If no vertex exists with the above-mentioned property, then the set of
vertices not contained in the circuit may be divided into two disjoint sets
W and Z, where Wis the set of vertices w such that v,wis an arc for each i,
and Z is the set of vertices z such that zv; is an arc for each i. Since T is
strongly-connected, W and Z must both be non-empty, and there must
be an arc in T of the form w'z’ where w' is in W and z' is in Z. The
required circuit is then
v oW =z s3> . .. >, — v, (see Fig. 23.6).//

Exercises 23

(23a) Verify the handshaking dilemma for the digraph of Fig. 22.1 and the
tournament of Fig. 23.2.
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(23b) In the tournament of Fig. 23.7, find
(i) circuits of length 3, 4 and 5;
(ii) an Eulerian trail;
(iii) a Hamiltonian circuit.

Fig. 23.7

(23c) Provethat a tournament cannot have more than one source or more than
one sink.

(23d) Let T be a tournament on »n vertices. If £ denotes a summation over all
the vertices of T, prove that
() Zp(M=Zp(v); (i) Zp(v)*=Zp(v)*.

(23e) Let D be the digraph whose vertices are the pairs of integers 11, 12,13, 21,
22,23, 31, 32, 33, and whose arcs join ij to k/ if and only if j=k. Find an
Eulerian trail in D and use it to obtain a circular arrangement of nine 1s,
nine 2s and nine 3s in which each of the 27 possible triples (111, 233, etc.)
occurs exactly once.

(Problems of this kind arise in communication theory.)

(23f) A tournament T is called irreducible if it is impossible to split the set of
vertices of T into two disjoint sets V', and ¥V, in such a way that every arc
joining a vertex of V| and a vertex of V, is directed from ¥V, to V,.

(i) Give an example of an irreducible tournament.
(i) Show that a tournament is irreducible if and only if it is strongly-
connected.

(23g) A tournament is called transitive if the existence of arcs uv and vw implies
the existence of the arc uw.

(i) Give an example of a transitive tournament.
(i) Show that in a transitive tournament the teams can be ranked so
that each team beats all the teams which follow it in the ranking.
(iii) Deduce that a transitive tournament with at least two vertices
cannot be strongly-connected. ’

(*23h) Thescore of a vertex of a tournament is its out-degree; the score-sequence
of a tournament is the sequence formed by arranging the scores of its
vertices in non-decreasing order (so that, for example, the score-
sequence of the tournament in Fig. 23.2 is (0, 2, 2, 2, 4)). Show that if

(Sy» - - . , 8,) is the score-sequence of a tournament 7, then
(@) s;+ ... +s,=in(n—1);
(ii) for any positive integer k>n, s, + . .. +s,=4k(k— 1), with strict

inequality for all k if and only if T is strongly-connected;
(éii) Tis transitive if and only if s,=k —1 for each k.
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§24. Markov chains

*As the reader has already seen, digraphs turn up in a variety of ‘real-
life’ situations. In this section we describe a not very deep but
nonetheless instructive application of digraph theory to the study of
finite Markov chains. Another application—the study of flows in
networks—will be discussed in the next chapter. The reader who is
interested in further applications is referred to Deo,'! or Wilson and
Beineke. 26

The study of Markov chains has arisen in a wide variety of areas
ranging from genetics and statistics to computing and sociology.
However, for ease of presentation we shall consider a much more trivial
problem, that of the drunkard who is standing directly between his two
favourite pubs, ‘The Markov Chain’ and ‘The Source and Sink’ (see Fig.
24.1). Every minute he either staggers ten metres towards the first pub

&
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(with probability 1) or towards the second pub (with probability ) or
else he stays where he is (with probability+)—such a procedure is called
a one-dimensional random walk. We shall assume also that the two pubs
are ‘absorbing’ in the sense that if he arrives at either of them he stays
there. Given the distance between the two pubs and his initial position,
there are several questions we can ask. For example, we can ask which
pub he is more likely to end up at, and how long he is likely to take
getting there.

In order to study the problem of the drunkard in more detail, let us
suppose that the two pubs are fifty metres apart and that our friend is
initially twenty metres from ‘The Source and Sink’. If we denote the
various places at which he can stop by E,, . . ., Es, where E; and Eg
denote the two pubs, then his initial position E, can be described by the
vector x=(0, 0, 0, 1, 0, 0), in which the i-th component is the proba-
bility that he is initially at E;. Furthermore, the probabllltles of his
position after one minute are gwen by the vector (0, 0,4, %, 3 , 0), and
after two minutes by (0, 4,4, 42,5, 5). It is clearly going to be
awkward to calculate directly the probability of his being at a given place
after k minutes, and it turns out that the most convenient way of doing
this is to introduce the transition matrix. '



112 Digraphs

Let p;; be the probability that he moves from E; to E ';in one minute;
then, for example, p,, =% and p,,=0. These probabilities p, ; are called
the transition probabilities, and the 6 x 6 matrix P= (p, ;) is known as the
transition matrix (see Fig. 24.2); note that every entry of P is non-
negative and that the sum of the entries in any row is one. It now follows
that if x is the initial row vector defined above, then the probabilities of
his position after one minute are given by the row vector xP, and after k
minutes by the vector xP*. In other words, the i-th component of xP*
represents the probability that he is at E; after X minutes have elapsed.
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We can generalize these ideas somewhat by defining a probability
vector to be a row vector whose entries are all non-negative and have
unit sum. A transition matrix is then defined to be a square matrix, each
of whose rows is a probability vector. We can now define a finite Markov
chain (or simply, a chain) as a pair (P,x) where P is an n X n transition
matrix and xisa 1 X nrow vector. If every entry p;; of Pis regarded as the
(transition) probability of getting from a position E; to a position E;, and
x is regarded as an initial probability vector, then this definition ties up
with the classical definition of a finite discrete stationary Markov chain
to be found in books on probability (see, for example, Feller!?). The
positions E; are usually referred to as the states of the chain, and the aim
of this section is to describe various ways of classifying them.

For the remainder of this section we shall be primarily concerned
with whether or not we can get from a given state to another state, and if
so, what is the shortest time in which this can be done. (For example, in
the problem of the drunkard, we can get from E, to E, in three minutes,
but it is impossible to get from E, to E,.) It follows that we shall be
primarily concerned not with the actual probabilities p, ; but with
whether or not they are positive, and it is at least reasonable to hope that
we may be able to represent the whole set-up by a digraph in which the
vertices correspond to the states and in which the arcs tell us whether we
can go from one state to another in one minute. More precisely, if each
state E; is represented by a corresponding vertex v;, then the required
digraph is obtained by drawing an arc from v; to v; if and only if pij#0;
alternatively, the digraph may be defined in terms of its adjacency matrix
by replacing each non-zero entry of the matrix P by one. We shall refer
to this digraph as the associated digraph of the Markov chain; the
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Fig. 24.3

associated digraph of the one-dimensional random walk is shown in Fig.
24.3. As a further example, if we are given a chain whose transition
matrix is the matrix of Fig. 24.4, then its associated digraph is as shown
in Fig. 24.5.

It is now clear that we can get from a state E; to a state E; in a
Markov chain if and only if there is a path from v; to v; in the associated
digraph, and the least possible time taken is then the length of the
shortest such path. A Markov chain in which we can get from any state
to any other is called an irreducible chain. Clearly a Markov chain is
irreducible if and only if its associated digraph is strongly-connected.
Note that neither of the chains described above is irreducible.
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In investigating these matters further, it is usual to make a
distinction between those states to which we keep on returning however
long we continue, and those which we visit a few times and then never
return to. More formally, if on starting at E; the probability of returning
to E; at some later stage is 1, then E; is called a persistent (or recurrent)
state; otherwise E; is called transient. For example, in the problem of the
drunkard, E; and E, are trivially persistent, whereas the other states are
transient. In more complicated examples, the calculation of the relevant
probabilities can become very tricky, and it is often easier to classify the
states by analysing the associated digraph of the chain. It is not difficult
to see that a state E; is persistent if and only if the existence of a path
from v; to v; in the associated digraph implies the existence of a path
from v; to v;. In Fig. 24.5 there is a path from v, to v, but no path from v,
tov,. It follows that E| is transient, and similarly so is E; E,, E,, E5 and
Eg are persistent. A state (such as E,) from which we can get to no other
state is called an absorbing state.
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An alternative way of classifying states is in terms of their
periodicity. A state E; of a Markov chain is called periodic of period t
(t#1)if it is possible to return to E; only after a period of time which is a
multiple of #; if no such ¢ exists, then E; is called aperiodic. Clearly every
state E; for which p;; # 0 is aperiodic; it follows that every absorbing state
is aperiodic. In the problem of the drunkard the absorbing states E; and
E¢ are not the only aperiodic states—in fact, every state is aperiodic. On
the other hand, in the second example, the absorbing state E, is the only
aperiodic state, since E; and E; are periodic of period two and E,, E;
and E, are periodic of period three. In digraph terms, it is easy to see that
astate E, is periodic of period ¢ if and only if in the associated digraph the
length of every closed trail containing v; is a multiple of 7.

Finally, for the sake of completeness, we shall call a state of a finite
Markov chain an ergodic state if it is both persistent and aperiodic, and if
every state is ergodic then we shall call the chain an ergodic chain. For
many purposes ergodic chains are the most important and desirable
chains to deal with. An example of such a chain will be given in exercise
24b.

Exercises 24

(24a) (i) Suppose that, in the problem of the drunkard, the right-hand pub
ejects him as soon as he gets there. Write down the resulting
transition matrix and its associated digraph, and re-classify the
states.

(ij) How would your answers to part (§) be changed if both pubs eject
him?

(24b) A game is played with a die by 5 people around a circular table. If the
player with the die throws an odd number, he passes the die to the player
on his left; if he throws a 2 or 4, he passes it two places to his right; if he
throws a 6, he keeps the die and throws again.

(i) Write down the corresponding transition matrix and its associated
digraph.

(i) Show thateach state is persistent and aperiodic, and deduce that the
corresponding Markov chain is ergodic.

(24c) (i) Prove that, if P and Q are transition matrices, then so is PQ.

(i) What is the connection between the associated digraphs of P and Q
and that of PQ?

(*24d) (i) Prove that every finite Markov chain has at least one persistent
state.

(ii) Deduce that if a finite Markov chain is irreducible then every state is
persistent.
(iii) Show how infinite Markov chains can be defined, and construct one
in which every state is transient. %
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Matching, marriage and
Menger’s theorem

They drew all manner of things—everything that begins with an M—.

Lewis Carroll

The results of this chapter are more combinatorial in nature than those
of the preceding chapters, although we shall see that they are in fact very
closely connected with graph theory. We begin with a discussion of
Philip Hall’s well-known ‘marriage’ theorem in several different con-
texts, including some of its applications to such topics as the construc-
tion of latin squares and timetabling problems. This is followed in §28 by
a theorem due to Menger on the number of disjoint paths connecting a
given pair of vertices in a graph. In §29 we present an alternative
formulation of Menger’s theorem, known as the max-flow min-cut
theorem, which is of fundamental importance in connexion with
network flows and transportation problems.

§25. Hall’s ‘marriage’ theorem

The marriage theorem, proved in 1935 by Philip Hall, answers the
following question, known as the marriage problem: if we have a finite set
of boys each of whom knows several girls, under what conditions can we
marry off the boys in such a way that each boy marries a girl he knows?
For example, if there are four boys {b,, b,, b,, b,} and five girls
{g1> 82> &3> 84> &5}, and the relationships are as shown in Fig. 25.1, then
a possible solution is for b, to marry g,, b, to marry g,, b5 to marry g,,
and b, to marry g,.

boy | girlsknown by boy
by 8 & &
> 8
b, & & &
by |& &
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8
by g
b,
bs &
by 84
8s

Fig. 25.2

This problem can be represented graphically by taking G to be the
bipartite graph in which the vertex-set is divided into two disjoint sets V',
and V, (corresponding to the boys and girls respectively) and in which
every edge joins a boy to a girl he knows; Fig. 25.2 shows the graph G
corresponding to the situation in Fig. 25.1.

A complete matching from V; to V, in a bipartite graph G(V,, V) is
a one-one correspondence between the vertices in ¥, and a subset of the
vertices in V,, with the property that corresponding vertices are joined.
It is clear that the marriage problem can be expressed in graph-theoretic
terms in the form: i G=G(V,, V,) is a bipartite graph, when does there
exist a complete matching from V to V, in G?’

Returning to ‘matrimonial terminology’, it is clear that a necessary
condition for the solution of the marriage problem is that every k boys
know (collectively) at least k girls, for all integers k satisfying 1 <k <m,
where m denotes the total number of boys. We refer to this condition as
the marriage condition. That it is a necessary condition follows
immediately from the fact that if it were not true for a given set of k boys,
then we could not marry off the boys in that set, let alone the others.

What is at first sight surprising is that the marriage condition also
turns out to be sufficient. This is the content of Hall’s ‘marriage’ theorem.
Because of its importance we shall give three proofs, the first of which is
due to Halmos and Vaughan.

THEOREM 25A (P. Hall 1935). A4 necessary and sufficient condition
for a solution of the marriage problem is that every set of k boys
collectively know at least k girls (1 £k Sm).

Remark. Although this theorem is couched in the somewhat
frivolous terms of the marriage problem, it applies equally well to more
serious problems. For example, it gives a necessary and sufficient
condition for the solution of the personnel assignment problem in which
various applicants must be assigned to jobs for which they are variously
qualified. A simple example of this problem is given in exercise 25b.

Proof. The condition is obviously necessary, as was pointed out
above. To prove sufficiency, we shall use induction, and assume that the
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theorem is true if the number of boys is less than m. (The theorem is
clearly true if m=1.) Suppose then that there are m boys; there are two
cases to consider:

(/) Suppose first that every k boys (where k <m) collectively know
at least k+ 1 girls (so that the condition is always true ‘with one girl to
spare’). Then if we take any boy and marry him to any girl he knows, the
original condition remains true for the other m—1 boys. These m—1
boys can now be married off by induction, completing the proof in this
case.

(ii) Suppose now that there is a set of k boys (k<m) who
collectively know exactly k girls. Then these k boys can be married off by
induction, leaving m — k boys. But any collection of 4 of these m — k boys
(h£m— k) must know af least 4 of the remaining girls, since otherwise
these & boys together with the above collection of k boys would
collectively know fewer than A +k girls, contrary to our assumption. It
follows that the original condition applies to the m—k boys. They can
therefore be married off by induction in such a way that everyone is
happy and the proof is complete.//

We can also state Hall’s theorem in the language of matchings in a
bipartite graph; we remind you that the number of elements in a
set Sis denoted by |S].

COROLLARY 25B. Let G=G(V,, V,) be a bipartite graph, and for
every subset A of 'V, let p(A) be the set of those vertices of V , which are
adjacent to at least one vertex in A. Then a complete matching from V| to
V, exists if and only if |A| < |@(A)| for each subset A of V.

Proof. The proof of this corollary is simply a translation into graph-
theoretic terminology of the above proof.//

Exercises 25

(25a) Suppose that three boys a, b, ¢ know four girls w, x, y, z as in the
following table:

boy girls known by boy
a w, y, Z

b X,z

¢ X,y

(i) Draw the bipartite graph corresponding to this table of
relationships.

(i)) Find five different solutions of the corresponding marriage
problem.

(iii) Check the marriage condition for this problem.
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(25b) A building contractor advertises for a bricklayer, a carpenter, a plumber
and a toolmaker. He has five applicants—one for the job of bricklayer,
one for that of carpenter, one for those of bricklayer and plumber, and
two for those of plumber and toolmaker.

(?) Draw the corresponding bipartite graph.
(i) Check whether the marriage condition holds for this problem. Can
all of the jobs be filled by qualified people?

(25¢) Explain why the graph in Fig. 25.3 has no complete matching from ¥, to
V,. When does the marriage condition fail?

Vi \!

Fig. 25.3

(25d) (The ‘harem problem’.) Let B be a set of boys, and suppose that each boy
in B wishes to marry more than one of his girl friends. Find a necessary
and sufficient condition for the harem problem to have a solution. (Hint:
replace each boy by several identical copies of himself, and then use
Hall’s theorem.)

(25¢) Prove that if G=G(V,, V,) is a bipartite graph in which the degree of
every vertex in V is not less than the degree of every vertex in ¥, then G
has a complete matching.

(*25f) (i) Use the marriage condition to show that if every boy has r (> 1) girl
friends and every girl has r boy friends, then the marriage problem
has a solution.

(i) Use the result of part (i) to prove that if G is a bipartite graph which
is regular of degree r, then G has a complete matching. Deduce that
the chromatic index of G is r.

(*25g) Suppose that the marriage condition is satisfied, and that each of the m
boys knows at least ¢ girls. Show, by induction on m, that the marriages
canbe arranged in at least 7! waysif t <m, and in at least #!/(t — m)! ways if
t>m.

§26. Transversal theory

This section is devoted to an alternative proof of Hall’s theorem, given in
the language of transversal theory. We shall leave the translation of this
proof into matching or marriage terminology as an exercise.

You will remember that in our example in the previous section (see
Fig. 25.1) the sets of girls known by the four boys were {g,, g4, gs},{21}>
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{22, &3> 84}» {82> &4}, and that a solution of the marriage problem was
obtained by finding four distinct g’s, one from each of these sets of girls.
In general, if E is a non-empty finite set, and & =(S;, . .., Sp) is a
family of (not necessarily distinct) non-empty subsets of E, then a
transversal (or system of distinct representatives) of .&” is a set of m
distinct elements of E, one from each set S;.

To take another example, suppose E={l, 2, 3, 4, 5, 6}, and let
S:=8,={1,2},8;=5,={2, 3}, Ss={1, 4, 5, 6}. Then it is impossible
to find five distinct elements of E, one from each subset S;; in other
words, the family. = (S|, . . . , Ss) has no transversal. Note, however,
that the subfamily .&'=(S,, S,, S3, Ss) hasa transversal—for example,
{1, 2, 3, 4}. We call a transversal of a subfamily of & a partial
transversal of .%”; in this example .&” has several partial transversals
({1, 2, 3, 6}, {2, 3, 6}, {1, 5}, O, etc.). It is clear that any subset of a
partial transversal is a partial transversal.

A natural question to ask is, ‘under what conditions does a given
family of subsets of a set have a transversal?” The connexion between
this problem and the marriage problem is easily seen by taking F to be
the set of girls, and S; to be the set of girls known by boy b, (1<i<m). A
transversal in this case is then simply a set of m girls, one corresponding
to (and known by) each boy. It follows that Theorem 25A gives a
necessary and sufficient condition for a given family of sets to have a
transversal. We restate Hall’s theorem in this form, and give an
alternative proof due to R. Rado.

THEOREM 26A. Let E be a non-empty (finite set, and
F=(Sy, - . ., S,) be a family of non-empty subsets of E. Then < has a
transversal if and only if the union of any k of the subsets S; contains at
least k elements (1 <k £m).

* Proof. The necessity of the condition is clear. To prove the sufficiency,
we shall show that if one of the subsets (S, say) contains more than one
element, then we can remove an element from S, without altering the
condition. By repeating this procedure, we can eventually reduce the
problem to the case in which each subset contains only one element, the
proof then being trivial.

It remains only to show the validity of the ‘reduction procedure’. So,
suppose that S, contains elements x and y, the removal of either of
which invalidates the condition. Then there are subsets 4 and B of
{2, 3, ..., m} with the property that |P|<|4| and |Q| <|B|, where

P= .UAS!'U(SI_{X}) and Q= L%Sju(Sl—{y}).

Then
IPUQ!=|.UBS,-U~5’1| and |PUQ[=| |J Sj.

jeAv JjeAnB
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The required contradiction now follows since
|4 +|B|z|P|+|Q|
=|PUQI+|PNQI
U Sus,

jeAYB

= +

s
jeAnB
>(]4UB|+ 1)+ |ANB| (by Hall’s condition)
=|4|+|B|+1.//

The beauty of this proof lies in the fact that essentially only one step
is involved, in contrast to the Halmos—Vaughan proof which involves
the consideration of two separate cases. It is, however, more awkward to
express this proof in the intuitive and appealing language of
matrimony!

Before proceeding to some applications of Hall’s theorem, we shall
find it convenient to state two corollaries; these will be needed in §33. In
marriage terminology the first of these corollaries gives us a condition
under which at least 7 boys can marry girls known to them.

COROLLARY 26B. If E and & are as before, then & has a partial
transversal of size t if and only if the union of any k of the subsets S;
contains at least k+ t —m elements.

Sketch of proof. The result follows on applying Theorem 264 to the
family.” =(S,UD, . . ., S,JD), where D is any set disjoint from E and
containing m — t elements. Note that.% has a partial transversal of size
if and only if .%*’ has a transversal.//

COROLLARY26C. IfEand & are as before, andif X is any subset of
E, then X contains a partial transversal of & of size t if and only if, for
every subset A of {1, . . . , m},

(US,-)nXIgMHz—m.

JjeA

Sketch of proof. The result follows on applying the previous
corollary to the family &y =(SnX, . . ., SunX).//

Exercises 26

(26a) Decide which of the following families of subsets of E= {1, ..., 5} have
transversals, and list all the partial transversals of those which have no
transversal:

@ ({1}, {2, 3}, {1,2}, {1, 3}, {1. 4, 5});
() (11,2}, {2, 3}, {4, 5}, {4, 5});
@i (1,3} {2, 3, {1, 2, (3});
vy ({1,3,4}, {1,4,5},{2,3,5}, {2,4,5)).
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(26b) Repeat exercise 26a for the set {T, H, E, O, R, Y} and the following

families of subsets:

@) (T}, {H, T}, (E, 0}, (E, R}, {H, E});

iiy ({H},{H,T},{E, T}, {E, H});
(i) ([T, H}, {H, 0, R}, (T, ¥}, {H, R)):
(iv) ({H. O). {H, O}, {H, T}, {H}). ,

(26c) Let E be the set of letters in the word MATROIDS. Show that the family
(STAR, ROAD, MOAT, RIOT, RIDS, DAMS, MIST) of subsets of E
has exactly eight transversals.

(26d) Let E be the set {1, 2, ..., 50}. How many distinct transversals has the
family ({1, 2}, {2, 3}, {3, 4}, .. ., {50, 1})?

(26e) Verify the statements of Corollaries 268 and 26C when E={a, b, ¢, d, e},
S =({a,c, e}, {b,d}, {b, d}, {b,d}), and X={a, b, c}.

6f) Let E={0, O, ¢, A, *}and & =0, O, O} {C, A}, {A}, {A},
{08, O, *x}).

(9) List all the subsets of F for which the marriage condition is not
satisfied.
(if) Verify the statement of Corollary 26B.
(26g) Rewrite
(i) the statements of Corollaries 268 and 26¢ in marriage terminology;
(i) the Halmos—Vaughan proof of Hall’s theorem in the language of
transversal theory.
(*26h) Let E and.% have their usual meanings, let T, and T, be transversals of
&, and let x be an element of T',.

(?) Show that there exists an element y of T, such that (T; — {x})U{y}
(the set obtained from T, on replacing x by y) is also a transversal
of .&.

(i) Compare this result with exercise 9i.
(This result will be in Chapter 9).

(*26i) The rank p(A) of a subset 4 of E is the number of elements in the largest
partial transversal of .~ contained in 4.

(i) Show that
(@) 0<p(A)<|A];

(b) if A= B< E, then p(A) < p(B);

(¢) if A, BS E, then p(AUB)+ p(ANB) < p(A) + p(B).
(i) Compare these results with exercise 9j.
(This result will also be needed in Chapter 9.)

(*26j) Let. % be a family consisting of m non-empty subsets of E, and let 4 be a
subset of E. By applying Hall’s theorem to the family consisting of .
together with | E| —m copies of E— A, prove that there exists a transversal
of &~ containing A if and only if

(i) 5 has a transversal;

(ii) A is a partial transversal of .5.
(A simpler proof, using matroid theory, will be given in §33.)

(*26k) Let E be a countable set, and let ~=(S,, S,, . . .) be a countable family
of non-empty finite subsets of E.

() Defining a transversal of .5”in the natural way, show (using K6nig’s
lemma) that 5" has a transversal if and only if the union of any k
subsets .S; contains at least k elements, for all finite k.
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(ii) By considering the example E={1,2,3, ...}, S,=E, S,={1},
S3=4{2},5,={3}, .. ., show that the result of part (i) is false if not
all of the S; are finite.

§27. Applications of Hall’s theorem

*In this section we apply Hall’s theorem to problems concerning the
construction of Latin squares, the elements of a (0, 1)-matrix, and the
existence of a common transversal of two families of subsets of a given
set. We shall see that the last of these applications is of relevance in
timetabling problems.

Latin squares

An m X n latin rectangle is an m X n matrix M= (m,;) whose entries are
integers satisfying:

() 1=my=n;

(i) no two entries in any row or in any column are equal.

Note that (i) and (ii) imply that m < n; if m= n, then the latin rectangle is
called a latin square. For example, Figs 27.1 and 27.2 show a 3 x 5 latin
rectangle and a 5% 5 latin square. We can ask the following question:
given an m X n latin rectangle with m <n, when can we adjoin n—m new
rows in such a way that a latin square is produced? Surprisingly, the
answer is ‘always’!

12345

24153
12345 35214
(24153 43521
3521 51432
Fig. 27.1 Fig. 27.2

THEOREM 27A. Let M be an m X n latin rectangle with m<n. Then
M can be extended to a latin square by the addition of n—m new rows.

Proof. We shall prove that M can be extended to an (m + 1) X nlatin
rectangle; by repeating the procedure involved, we eventually obtain a
latin square.

Let E={1,2,...,n},and & =(Sy, ..., S,), where S; denotes the set
consisting of those elements of E which do not occur in the i-th column of
M. If we can prove that . has a transversal, then the proof is complete,
since the elements in this transversal will form the additional row. By
Hall’s theorem, it is sufficient to show that the union of any & of the S;
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contains at least k distinct elements. But this is obvious, since such a
union contains (n — m)k elements altogether (including repetitions), and
if there were fewer than k distinct elements, then at least one of them
would have to appear more than n—m times. Since each element occurs
exactly n —m times, we have the required contradiction.//

(0, 1)-Matrices

An alternative way of studying transversals of a family
F=(Sy, ..., S,)of non-empty subsets of a set E={e,, ..., ¢,} isto
study the incidence matrix of the family—the m X n matrix 4=(g;)) in
which g;;=1ife;€ S;, and a;;=0 otherwise. We shall call such a matrix, in
which every entryis O or 1, a (0, 1)-matrix. If we define the term rank of 4
to be the largest number of 1’s of 4, no two of which lie in the same row
or column, then.%” has a transversal if and only if the term rank of A is m.
Moreover, the term rank of A is precisely the number of elements in a
partial transversal of largest possible size. We now prove, as a second
application of Hall’s theorem, a famous result on (0, 1)-matrices known
as the Konig-Egervary theorem.

THEOREM 278 (K6nig-Egervary 1931).  The term rank of a (0, 1)-
matrix A is equal to the minimum number p of rows and columns which
together contain all the 1’s of A.

Remark. As an illustration of the theorem, consider the matrix of
Fig. 27.3 which is the incidence matrix of the second family & described
on page 000. Clearly the term rank and u are both four.

Proof. It is obvious that the term rank cannot exceed u. To prove
equality, we can suppose without loss of generality that all of the 1’s of 4
are contained in r rows nd s columns (where r + s = u), and that the order
of the rows and columns is such that 4 contains, in the bottom left-hand
corner, an (m—r) X (n—s) submatrix consisting entirely of zeros (Fig.
27.4). If i<r, define S; to be the set of integers j<n—ssuch thatq;;= 1.1t

e € e € € &€

S, 1 0 0 00
S i1 @o o0 0 o
n-s s

st o110 0 SN |

1 r
ss\o 1 @ o 0 _r\(_;l_%_g__

' m-r
S 0 0@ 1 ! ]
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is a straightforward exercise to check that the union of any k of the S;
contains at least k integers, and hence that the family ~*=(S,, ..., S,)
has a transversal. It follows that the submatrix M of 4 contains a set of r
I’s, no two of which lie in the same row or column,; similarly, the matrix
Ncontains a set of s 1’s with the same property. Hence 4 contains a set of
r+s 1’s, no two of which lie in the same row or column. This shows that
u cannot exceed the term rank, as required.//

We have just proved the Konig—Egervary theorem using Hall’s
theorem. It is even easier to prove Hall’s theorem wusing the
Konig-Egervary theorem (see exercise 27¢). It follows that the two
theorems are, in some sense, equivalent. Later on in this chapter we shall
be proving Menger’s theorem and the max-flow min-cut theorem, both
of which can also be shown to be equivalent to Hall’s theorem.

Common transversals

We conclude this section with a brief discussion of common transver-
sals. If E is a non-empty finite set and & =(S,;, ..., S,) and
7 =(T,, ..., T,)are two families of non-empty subsets of E, it is of
interest to know when there exists a common transversal for .% and
7 —i.e., a set of m distinct elements of E which form a transversal of
both & and .7 In timetabling problems, for example, if E denotes the
set of times at which lectures may be given, the sets S; denote the times
that m given professors are willing to lecture, and the sets T; denote the
times that m lecture rooms are available, then the finding of a common
transversal of .%” and .7 enables us to assign each professor to an
available lecture room at a time suitable to him.

We can in fact give a necessary and sufficient condition for two
families to have a common transversal; note that Theorem 27¢ reduces
to Hall’s theorem if we put 7;,=E for 1 £j<m.

THEOREM 27C. Let E be a non-empty finite set, and let & =
Sy, ..., Sy and T =(T,, ..., T,) be two families of non-empty
subsets of E. Then . and 7 have a common transversal if and only if, for
all subsets A and Bof {1, 2, . . ., m},

(Ls)llr)

Sketch of proof. Consider the family 22 ={U,;} of subsets of
EU{1, ..., m} (assuming E and {1, . . ., m} to be disjoint), where the
indexing set is also EU{1, . . ., m} and where U;=S; if i€{l, . . . , m}
and U;={i}U{j:ieT;} if ieE.

|4l +|B—m.
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It is not difficult to verify that % and .7 have a common transversal
if and only if 2 has a transversal. The result then follows on applying
Hall’s theorem to the family %".//

It is not known under what conditions there exists a common
transversal for three families of non-empty subsets of a set, and the
problem of finding such conditions seems to be very difficult. Many
attempts to solve this problem use matroid theory. In fact, as we shall see
in the next chapter, several problems in transversal theory (for example,
exercise 26j and Theorem 27¢) become much simpler when looked at
from this viewpoint. Further results in transversal theory may also be
found in Mirsky'® or Bryant and Perfect.’

Exercises 27

(27a) Give an example of a 5x 8 Latin rectangle and a 6 x 6 Latin square.
(27b) Find two ways of completing the following Latin rectangle to a 5x5
Latin square.
1 2 3 45
531 2 4)

(27¢) () Use the result of exercise 25g to prove that if m<n,thenanmxn
latin rectangle can be extended to an (m+ 1) X n latin rectangle in at
least (n—m)! ways.

(i) Deduce that the number of nxn latin squares is at least

nl(n—1)1 ... 1.
(27d) Verify the Konig-Egervary theorem for the following matrices
001 01 011 01
1 01 11 and 0 01 00
01100 01111
0 00 01 1 1.0 01

(*27e) By regarding a (0, 1)-matrix as the incidence matrix of a family of
subsets, show how the Konig-Egervary theorem can be used to prove
Hall’s theorem.

(27f) Let E={a, b, ¢, d, ¢} and let. = ({a, c, €}, {a, b}, {c, d}) and T =({d},
{a, e}, {a, b, d}).

(i) Find a common transversal of .%’and .7

(i) Verify the condition of Theorem 27c.

(27g) Repeat exercise 27f for the families.& =({a, b, d}, {c, e}, {a, e}) and
7 =({e. d). {b}, {b. c, e}).

(*27h) Let G be a finite group and H be a subgroup of G. Use Theorem 27c to
show that if

G=x,HUx,HU . .. Ux,H=Hy UHy,U ... UHy,

are left and right coset decompositions of G with respect to H, then there
exist elements z,, . . . , z,, in G such that

G=z,HUz,HU . ..Uz, H=Hz\UHz,U . .. UHz,.
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§28. Menger’s theorem

We now discuss a theorem which turns out to be closely related to Hall’s
theorem, and which has very far-reaching practical applications. This
theorem is due to Menger and concerns the number of paths connecting
two given vertices v and w in a graph G. We might need, for example, to
find the maximum number of paths from v to w, no two of which have an
edge in common—such paths are called edge-disjoint paths. Alternat-
ively, we may want to find the maximum number of paths from v to w, no
two of which have a vertex in common (except, of course, v and
w)—these are called vertex-disjoint paths. (In the graph of Fig. 28.1,
there are clearly four edge-disjoint paths and two vertex-disjoint ones.)

Analogously, we can ask for the maximum number of vertex-disjoint or
arc-disjoint paths from a vertex v to a vertex w in a digraph. In this case
we can, without loss of generality, take v to be a source and w to be a
sink. We shall be concentrating primarily on graphs, the corresponding
discussion for digraphs being left to you.

In order to investigate these problems, we shall need some further
definitions. We shall assume throughout that G is a connected graph and
that vand w are given distinct vertices of G. A vw-disconnecting set of G is
a set E of edges of G with the property that any path from v to w includes
an edge of E; note that a vw-disconnecting set is a disconnecting set of G.
Similarly, a vw-separating set of G is a set S of vertices (not including v or
w) with the property that any path from v to w passes through a vertex of
S. In Fig. 28.1, for example, the sets E, = {ps, gs, ty, tz} and E,= {uw,
xw, yw, zw}arevw-disconnectingsets,and V, = {s,r}and V, ={p,q,y,z} are
vw-separating sets.

In order to count the number of edge-disjoint paths from v to w, we
first note that if E is a vw-disconnecting set containing k edges, then the
number of edge-disjoint paths cannot possibly exceed k, since otherwise
some edge in E would be included in more than one path. If, moreover, E
is a vw-disconnecting set of smallest possible size, then it turns out that
the number of edge-disjoint paths is actually equal to k, and that
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consequently there is exactly one edge of E in each such path. This result
is known as the edge-form of Menger’s theorem, although it was in fact
first proved by Ford and Fulkerson in 1955.

THEOREM 28A. The maximum number of edge-disjoint paths
connecting two distinct vertices v and w of a connected graph G is equal to
the minimum number k of edges in a vw-disconnecting set.

Remark. The proof we are about to give is non-constructive, in the
sense that if we are given G, it will not provide us with a systematic way
of obtaining k edge-disjoint paths, or even of finding the value of k. An
algorithm which can be used to solve these problems will be given in the
next section.

Proof. As we have just pointed out, the maximum number of edge-
disjoint paths connecting v and w cannot exceed the minimum number
of edges in a vw-disconnecting set. We shall use induction on the number
of edges of G to prove that these numbers are actually equal. Suppose
that the number of edges of G is m, and that the theorem is true for all
graphs with fewer than m edges. There are two cases to consider:

(/) We suppose first that there exists a vw-disconnecting set E of
minimum size k, with the property that not all of its edges are incident to
v, and not all of them are incident to w; for example, in the graph of Fig.
28.1, the set E, defined above would be such a vw-disconnecting set. The
removal from G of the edges in E leaves two disjoint subgraphs V" and W
containing v and w, respectively. We now define two new graphs G, and
G, as follows: G, is obtained from G by contracting every edge of V' (i.e.,
by shrinking ¥ down to v) and G, is obtained similarly by contracting
every edge of W. (The graphs G, and G, obtained from Fig. 28.1 are
shown in Fig. 28.2; the dashed lines denote edges of E.) Since G, and G,
have fewer edges than G, and since E is clearly a vw-disconnecting set of
minimum size for both G, and G,, the induction hypothesis tells us that
there are k edge-disjoint paths in G, from v to w, and similarly for G,.
The required k edge-disjoint paths in G are then obtained by combining
these paths in the obvious way.

Fig. 28.2
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(i) We now suppose that every vw-disconnecting set of minimum
size k consists only of edges which are all incident to v or all incident to w;
for example, in Fig. 28.1, the set E, is such a vw-disconnecting set. We
can assume without loss of generality that every edge of G is contained in
a vw-disconnecting set of size k, since otherwise its removal would not
affect the value of k and we could use the induction hypothesis to obtain
k edge-disjoint paths. It follows that if P is any path from v to w, then P
must consist either of a single edge or of two edges, and can thus contain
at most one edge of any vw-disconnecting set of size k. By removing from
G the edges of P, we obtain a graph which contains at least k — 1 edge-
disjoint paths (by the induction hypothesis). These paths, together with
P, give the required k paths in G.//

We turn now to the other problem mentioned at the beginning of the
section—namely, to find the number of vertex-disjoint paths from v to
w. (It was actually this problem which Menger himself solved, although
his name is usually given to both Theorem 284 and Theorem 28B). What
is at first sight rather surprising is that not only does its solution have a
form very similar to Theorem 284, but also the proof of Theorem 28a
goes through with only minor changes, mainly involving the replace-
ment of such terms as ‘edge-disjoint’ and ‘incident’ by ‘vertex-disjoint’
and ‘adjacent’. We now state the vertex-form of Menger’s theorem —its
proof will be omitted.

THEOREM 28B (Menger 1927). The maximum number of vertex-
disjoint paths connecting two distinct non-adjacent vertices v and w of a
graph G is equal to the minimum number of vertices in a vw-separating
set.//

Using Theorems 28a and 28B we can immediately deduce the
following necessary and sufficient conditions for a graph to be k-
connected and k-edge-connected:

COROLLARY 28C. A graph G is k-edge-connected if and only ifany
two distinct vertices of G are connected by at least k edge-disjoint paths.||

COROLLARY 28D. A graph G with at least k+ 1 vertices is k-
connected if and only if any two distinct vertices of G are connected by at
least k vertex-disjoint paths.|/

As we pointed out earlier, the above discussion can be modified to
give the number of vertex-disjoint or arc-disjoint paths in a digraph in
terms of disconnecting sets and separating sets. In this case, a vw-
disconnecting set is a set 4 of arcs with the property that every path from
v to wincludes an arc in 4. Once again the corresponding theorem takes
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a form very similar to Theorem 284, and the proof goes through almost
word for word. We state it formally as the integrity theorem; the reason
for this name will become apparent in the following section.

THEOREM 28E (Integrity theorem). The maximum number of arc-
disjoint paths from a vertex v to a vertex w in a digraph D is equal to the
minimum number of arcs in a vw-disconnecting set.|/

As an example of the integrity theorem, we let D be the digraph
shown in Fig. 28.3. It is straightforward to verify that there are six arc-
disjoint paths from v to w; a corresponding vw-disconnecting set is
indicated by dashed lines.

As the reader can see, these diagrams are likely to become very
cumbersome as the number of arcs joining pairs of adjacent vertices
increases. This can be overcome by drawing just one arc and writing next

to it the number of arcs there should be (see Fig. 28.4). This seemingly
innocent remark turns out to be fundamental in the study of network
flows and transportation problems, which will be discussed in the
following section.

We end this section by proving that Hall’s theorem can be deduced
from Menger’s theorem. We shall prove the version of Hall’s theorem
that appears in Corollary 258.
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THEOREM 28F. Menger’s theorem implies Hall’s theorem.

Proof. Let G=G(V, V,) be a bipartite graph. We have to prove that
if |4 <|p(A)| for each subset A of ¥, (using the notation of Corollary
25B), then there exists a complete matching from ¥, to V. This is done
by applying the vertex-form of Menger’s theorem (Theorem 288) to the
graph obtained by adjoining to G a vertex v adjacent to every vertex in
V, and a vertex w adjacent to every vertex in ¥V, (see Fig. 28.5). Since a
complete matching from ¥V, to V, exists if and only if the number of
vertex-disjoint paths from v to w is equal to the number of vertices in
V,(=k, say), it is enough to show that every vw-separating set contains
at least k vertices.

Let S be a vw-separating set, consisting of a subset 4 of V, and a
subset B of V,. Since AUB is a vw-separating set, there can be no edges
joining a vertex of ¥, — A to a vertex of ¥/, — B, and hence o(V', — A)< B.
It follows that |V,—A|<|p(Vi—A)|Z|Bl, and so [S|=|4|+|B|
>|V,|=k, as required.//

Exercises 28

(28a) (i) Verify the edge-form of Menger’s theorem (Theorem 284) for the
graphs in Fig. 28.6.
(if) Verify the vertex-form of Menger’s theorem (Theorem 288) for the
same graphs.

@ @
Fig. 28.6

(28b) Verify Theorems 284 and 288 for the Petersen graph in the following two
cases: '
(i) when v and w are adjacent vertices;
(i) when v and w are not adjacent.
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(28c) Prove Theorem 288 in detail.
(28d) Verify Corollary 28c for the following graphs:
O Ws; (i) Kya; (i) Qs
(28¢) Verify Corollary 28D for the following graphs:
() K35 (ii) K; 3.4 (iii) the graph of the octahedron.
(28f)  Verify the integrity theorem for the digraphs in Fig. 28.7.

Fig. 28.7

§29. Network flows

Our society today is largely governed by networks—transportation,
communication, the distribution of goods, etc.—and the mathematical
analysis of such networks has become a subject of fundamental
importance. In this section we shall attempt to show by means of simple
examples that network analysis is essentially equivalent to the study of
digraphs.

A manufacturer of home computers wants to send several boxes of
computers to a given market. We shall assume that there are various
channels through which the boxes can be sent, and that these channels
are as shown in Fig. 29.1 (with v representing the manufacturer and w
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the market). The numbers appEaﬁng on the diagram refer to the
maximum loads which may be passed through the corresponding
channels. The manufacturer is clearly interested in finding the maximum
number of boxes he can send through the network without exceeding the
permitted capacity of any channel.

Fig. 29.1 can also be used to describe other situations. For example,
if each arc of the digraph represents a one-way street and the number
associated with each street refers to the maximum possible flow of traffic
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(in vehicles per hour) along that street, then we may want to find the
greatest possible number of vehicles which can travel from v to w in one
hour. Alternatively, we can regard the diagram as depicting an electrical
network, the problem then being to find the maximum current which can
safely be passed through the network given the currents at which the
individual wires burn out.

Using these examples as motivation, we may now define a network
N to be a weighted digraph—that is, a digraph to each arc a of which has
been assigned a non-negative real number (a) called its capacity.
Equivalently, a network may be defined as a pair (D, y) where D is a
digraph and y is a function from the arc-set of D to the set of non-
negative real numbers. The out-degree p(x) of a vertex x is then defined
to be the sum of the capacities of the arcs of the form xz, and the in-
degree p(x) is similarly defined. For example, in the network of Fig. 29.1,
P (v)=8andp(x)= 10. Itis clear that the analogue of the handshaking di-
lemma then takes the following form: the sum of the out-degrees of the
vertices of a network is equal to the sum of the in-degrees. In the following,
we shall always assume (unless otherwise stated) that the digraph D
contains exactly one source v and one sink w. The general case of several
sources and sinks (corresponding in the first example above to more
than one manufacturer and market) may be easily reduced to this special
case (see exercise 29d).

Given a network N=(D, ), we define a flow in N to be a function ¢
which assigns to each arc a of D a non-negative real number ¢(a) (called
the flow in a) in such a way that
(i) for any arc a, g(a) =< y(a);

(i) with respect to the network (D, ¢), the out-degree and in-degree of
any vertex (other than v or w) are equal.

Informally this means that the flow in any arc cannot exceed its capacity,
and that the ‘total flow’ into any vertex (other than v or w) is equal to the
‘total flow’ out of it. Fig. 29.2 gives a possible flow for the network of
Fig. 29.1. Another flow is the zero flow in which the flow in every arc is
zero, any other flow being called a non-zero flow. For convenience, we
shall say that an arc a for which ¢(a)=y(a) is called saturated; in Fig.
29.2, the arcs vz, xz, yz, xw and zw are saturated, the remaining arcs
being called unsaturated.
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It follows from the handshaking di-lemma that the sum of the flows
in the arcs incident to v is equal to the sum of the flows in the arcs
incident to w; this sum is called the value of the flow. Prompted by the
examples considered at the beginning of this section, we shall be
primarily interested in those flows whose value is as large as
possible—the so-called maximum flows; you can easily check that the
flow of Fig. 29.2 is a maximum flow for the network of Fig. 29.1, and
that its value is six. Note that in general a network can have several
different maximum flows but that their values must all be equal.

The study of maximum flows in a network N= (D, ¥) is closely tied
up with the concept of a cut , which is simply a set A of arcs of D with the
property that every path from v to wincludes an arcin 4. In other words,
a cut in a network is merely a vw-disconnecting set in the corresponding
digraph D. The capacity of a cut is then defined to be the sum of the
capacities of the arcs in the cut. We shall be concerned mainly with those
cuts whose capacity is as small as possible, the so-called minimum cuts; in
Fig. 29.3, an example of a minimum cut is provided by the arcs vz, xz, yz
and xw, the capacity of this cut being six.

It is clear that the value of any flow cannot exceed the capacity of
any cut, and hence that the value of any maximum flow cannot exceed
the capacity of any minimum cut. What is not immediately clear is that
these last two numbers are always equal. This famous result is known as
the max-flow min-cut theorem, and was first proved by Ford and
Fuikerson in 1955. We shall present two proofs. The first one shows that
the max-flow min-cut theorem is essentially equivalent to Menger’s
theorem, whereas the second one is a direct proof.

THEOREM 29A (Max-flow min-cut theorem). [In any network, the
value of any maximum flow is equal to the capacity of any minimum cut.

Remark. In applying this theorem it is frequently simplest to find a
flow and a cut with the property that the value of the flow is equal to the
capacity of the cut. It follows from the theorem that the flow must be a
maximum flow and that the cut must be a minimum cut. Note that if all
the capacities are integers, then the value of a maximum flow will also be
an integer. This important fact turns out to be very useful in certain
applications of network flows.

First proof. We shall suppose, to begin with, that the capacity of
every arc is an integer. In this case, the network can be regarded as a
digraph D in which the capacities represent the number of arcs
connecting the various vertices (see Figs 28.3 and 28.4). The value of a
maximum flow then corresponds to the total number of arc-disjoint
paths from v to win D, and the capacity of a minimum cut refers to the
minimum number of arcs in a vw-disconnecting set of D. The result now
follows immediately from the integrity theorem (Theorem 28E).
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The extension of this result to networks in which all the capacities
are rational numbers is effected simply by multiplying all these
capacities by a suitable integer d to make them integral (e.g. the least
common multiple of the denominators of the capacities). We then have
the case described in the previous paragraph, and the result follows on
dividing by d.

Finally, if some of the capacities are irrational numbers, then the
theorem is proved by approximating these capacities as closely as we
please by rationals and using the result of the previous paragraph. By
carefully choosing these rationals, we can always ensure that the value of
any maximum flow and the capacity of any minimum cut are each
altered by an amount which we can make as small as we wish. The
precise details of this argument will be left as an exercise. In practical
examples, of course, such irrational capacities would rarely occur since
the capacities would generally be given in decimal form.//

Second proof. We now give a direct proof of the max-flow min-cut
theorem. Note, as remarked above, that since the value of any maximum
flow cannot exceed the capacity of any minimum cut, it is sufficient to prove
the existence of a cut whose capacity is equal to the value of a given
maximum flow.

Let ¢ be a maximum flow. We define two sets V" and W of vertices of
the network as follows: if G denotes the underlying graph of the digraph
D of the network, then a vertex z of the network is contained in V if and
only if there exists in G a path v=v,—>v,>0,> ... >v,_;>v,=z,
with the property that each edge vv;,, corresponds either to an arc
v;v; + , which is unsaturated, or to an arc v;, ,v; which carries a non-zero
flow. (Note that v is trivially contained in V.) The set W then consists of
all those vertices which do not lie in V. For example, in Fig. 29.2, the set
V consists of the vertices v, x and y, and the set W consists of the vertices
z and w.

We shall now show that W is non-empty, and that in particular it
contains the vertex w. If this is not so, then w is in ¥V, and hence there
exists in G a path v—v, —»v,—> ... -v,_,;—>w of the above type. We
now choose a positive number ¢ satisfying the following two conditions:
(7)) ¢ must not exceed any of the amounts needed to saturate the arcs of
the first type;

(i)) ¢ must not exceed the flow in any of the arcs of the second type.

It is now easy to see that if we increase by ¢ the flow in the arcs of the first
type and decrease by ¢ the flow in the arcs of the second type, then the
effect will be to increase the value of the flow to ¢+ But this
contradicts our assumption that ¢ is a maximum flow, and it therefore
follows that w is contained in W.

To complete the argument, we let E denote the set of all arcs of the
form xz, where xisin ¥ and zis in W. Clearly E is a cut. Moreover, it is
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easy to see that every arc xz of E is saturated, since otherwise z would
also be an element of V. Similarly, one can show that every arc zx carries
a zero flow. It follows that the capacity of E must be equal to
the value of ¢, and that E is therefore the required cut.//

*The max-flow min-cut theorem provides a useful check on the
maximality or otherwise of a given flow, as long as the network is fairly
simple. In practice, of course, the networks one has to deal with are large
and complicated, and it will in general be difficult to find a maximum
flow by inspection. We conclude this section with a method for finding a
maximum flow in any network with integral capacities. The extension of
this method to networks with rational capacities is trivial and will be
omitted.

Suppose then that we are given a network N= (D, ¢). The finding of
a maximum flow in N involves three steps:

Step 1. We first find by inspection a flow ¢ whose value is non-zero
(if one exists). For example, if N is the network of Fig. 29.4, then a
suitable flow would be the flow shown in Fig. 29.5. It is worth pointing
out that the larger we can make the value of our initial flow ¢, the easier
the subsequent steps will be.

Step 2. We next construct from N a new network N’ obtained by
reversing the direction of the flow ¢. More precisely, any arc a for which
¢@(a) =0 appears in N’ with its original capacity, but any arc a for which
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@(a)#0 is replaced by an arc a with capacity y(a) — ¢(a) together with
an arc in the direction opposite to a with capacity ¢(a). In our particular
example, the network N’ takes the form shown in Fig. 29.6; note that v is
no longer a source and w no longer a sink.
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Step 3. If in the network N’ we can find a non-zero flow from v to w,
then this flow can be added to the original flow ¢ to give a flow ¢’ of
larger value in N. We can now repeat Step 2 using our new flow ¢’ in
place of ¢ in the construction of the network N’. On continuing this
procedure, we will eventually end up with a network N’ which contains
no non-zero flow. The corresponding flow ¢ will then be a maximum
flow, as can easily be shown. In Fig. 29.6, for example, there is a non-
zero flow in which the flow in the arcs vu, uz, zx, xy and ywis 1 and in the
remaining arcs is zero. Adding this to the flow of Fig. 29.5 results in the
flow shown in Fig. 29.7, which may easily be shown to be maximum by
repeating Step 2. We have thus obtained the required maximum flow.%

In this section we have been able only to scratch the surface of this
very diverse and important subject. If you wish to pursue these topics
further, you should consult Lawler.!”

Exercises 29

(29a) Consider the network in Fig. 29.8.
(f) List all the cuts in this network, and find a minimum cut.
(i) Find a maximum flow, and verify the max-flow min-cut theorem for
this network.

C

Fig. 29.9

(29b) Repeat exercise 29a for the network in Fig. 29.9.

(29¢) Show that the flows of Figs 29.2 and 29.7 are maximum flows for the
networks of Figs 29.1 and 29.4, and verify the max-flow min-cut theorem
in each case.
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(29d) (/) Show how the analysis of the flows in a network with several sources
and sinks can be reduced to the standard case by the addition of a
new ‘source vertex’ and a new ‘sink vertex’.

(i) Tlustrate your answer to part (i) with reference to the network in
Fig. 29.10.

20 4

@® 3 d
Fig. 29.10 Fig. 29.11

(29¢) (i) How would you reduce to the standard case a network problem in
which
(a) some arcs are replaced by edges with a flow in either direction?
(b) some vertices are assigned ‘capacities’, giving the maximum
flow permitted through those vertices?
(i) Tlustrate your answers to part (i) with reference to the network in
Fig. 29.11.
(29f) Verify the max-flow min-cut theorem for the network of Fig. 22.6.
(29¢) Find a flow with value 20 in the network of Fig. 29.12.

Fig. 29.12

(*29h) Show how the max-flow min-cut theorem can be used to prove
(i) Hall’s theorem;
(ii) Theorem 27C on common transversals.
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Matroid theory

The first of earthly blessings, independence.
Edward Gibbon

In this chapter we shall investigate the rather unexpected similarity
between certain results in graph theory and their analogues in transver-
sal theory (for example, exercises 9i and 26h, or exercises 9j and 26i). In
order to do this it is convenient to introduce the idea of a matroid, first
studied in 1935 by Whitney. As we shall see, a matroid is essentially a set
with an ‘independence structure’ defined on it, where the notion of
independence generalizes not only that of independence in graphs (as
defined in exercise Sm) but also that of linear independence in vector
spaces. The link with transversal theory is then provided by exercise 26h.
In §32 we shall show how to define duality in matroids in such a way as to
explain the similarity between the properties of circuits and cutsets in a
graph. It will follow from this that the rather unintuitive definition of an
abstract-dual of a graph (§15) arises as a natural consequence of matroid
duality. In the final section, we shall show how matroids can be used to
give ‘easy’ proofs of results in transversal theory, and will conclude with
matroid proofs of two deep results in graph theory. Throughout this
chapter we shall be content to state results without proof where
convenient. The omitted proofs may be found in Welsh.?>

§30. Introduction to matroids

In §9 we defined a spanning tree in a connected graph G to be a connected
subgraph of G which contains no circuits and which includes every
vertex of G. It is clear that a spanning tree cannot contain any other
spanning tree as a proper subgraph. It can also be shown (see exercise 9i)
that if B; and B, are spanning trees of G and e is any edge of B,, then we
can find an edge f'in B, with the property that (B, — {e})U{f} (i.e., the
graph obtained from B, on replacing e by ) is also a spanning tree of G.

Analogous results hold also in the theory of vector spaces and in
transversal theory. If Vis a vector space and if B, and B, are bases of V,
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then given any element e of B;, we can find an element f of B, with the
property that (B, —{e})U{f} is also a basis of V. The corresponding
result in transversal theory appears in exercise 26h. Using these three
examples as motivation, we can now given our first definition of a
matroid.

A matroid M is a pair (E, @), where Eis a non-empty finite set and @
is a non-empty collection of subsets of E (called bases) satisfying the
following properties:

(@) no base properly contains another base;

(&ii)if B, and B, are bases and if e is any element of B,, then there s
an element f of B, with the property that (B, —{e})U{f} is also a base.

By repeatedly using propery (&), it is a straightforward exercise to
show that any two bases of a matroid M contain the same number of
elements (see exercise 30e); this number is called the rank of M.

As we indicated above, a matroid can be associated in a natural way
with any graph G by letting E be the set of edges of G and taking as bases
the edges of the spanning forests of G; for reasons which will appear
later, this matroid is called the circuit matroid of G and is denoted by
M(G). Similarly, if E is a finite set of vectors in a vector space V, then we
can define a matroid on E by taking as bases all linearly independent
subsets of E which span the same subspace as E; a matroid obtained in
this way is called a vector matroid. We shall consider such matroids in
further detail later.

A subset of E will be called independent if it is contained in some base
of the matroid M. It follows that the bases of M are precisely the
maximal independent sets (i.e. those independent sets which are
contained in no larger independent set), and hence that any matroid is
uniquely defined by specifying its independent sets. In the case of a
vector matroid, a subset of Eis independent if and only if its elements are
linearly independent when regarded as vectors in the vector space.
Similarly, if G is a graph, then the independent sets of M(G) are simply
those sets of edges of G which contain no circuit—in other words the
edge-sets of the forests contained in G.

Since a matroid can be completely described by listing its independ-
ent sets, it seems reasonable to ask whether there is a simple definition of
a matroid in terms of its independent sets. One such definition will now
be given; you can find a proof of the equivalence of this definition and
the above one in Welsh.2$

A matroid M is a pair (E, #),where E is a non-empty finite set, and
_# is a non-empty collection of subsets of E (called independent sets)
satisfying the following properties:

(£ i) any subset of an independent set is independent;

(7 ii) if I and J are independent sets with |J]> |/}, then there is an
element e contained in J but not in 7, such that IU{e} is independent.

(Note that with this definition, a base is defined to be any maximal
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independent set; property (£ ii) can then be used repeatedly to show that
any independent set can be extended to a base.)

If M=(E, #)is a matroid defined in terms of its independent sets,
then a subset of E is said to be dependent if it is not independent; a
minimal dependent set is called a circuit. Note that if M(G) is the circuit
matroid of a graph G, then the circuits of M(G) are precisely the circuits
of G. It is clear that since a subset of E is independent if and only if it
contains no circuits, a matroid can be defined in terms of its circuits. One
such definition, generalizing to matroids the result of exercise 5k, is
given in exercise 30g.

Before proceeding to some examples of matroids, it will be
convenient to give one further definition of a matroid. This definition, in
terms of a rank function p, is essentially the one given by Whitney in his
pioneering paper of 1935.

If M=(FE, #)is a matroid defined in terms of its independent sets,
and if A is a subset of E, then the size of the largest independent set
contained in A is called the rank of 4 and is denoted by p(4). Note that
the previously-defined rank of M is then equal to p(E). Since a subset 4
of Eisindependent if and only if p(4) =|A4]|, it follows that a matroid may
be defined in terms of its rank function, as we now show.

THEOREM 30A. A matroid may be defined as a pair (E, p), where E
is a non-empty finite set, and p is an integer-valued function defined on the
set of subsets of E and satisfying:

(pi) 0Z p(A) 4|, for every subset A of E;

(pii) if A< BS E, then p(A) < p(B),

(piii) for any A, B E, p(AUB) + p(A(\B) £ p(A4) + p(B).

Remark. Note that this is the extension to matroids of the results of
exercise 9j and 26i.

Proof. We assume first that M = (E,. ) is a matroid defined in terms
of its independent sets; we wish to prove properties (p i)—(p iii). Clearly
(pi) and (pii) are trivial. To prove (piii), we let X be a base (i.e., a
maximal independent subset) of 4()B. Since X is an independent subset
of A, X can be extended to a base Y of 4, and then (in a similar way) to a
base Z of AUB. Since XU(Z — Y) is clearly an independent subset of B, it
follows that

pP(B)Z p(XU(Z - Y))=|X]+|Z|—|Y]
=p(ANB)+ p(AUB) — p(A),

as required.

Conversely, let M =(E, p) be a matroid defined in terms of a rank
function p, and define a subset 4 of E to be independent if and only if
p(A)=|A|. Itis then a straightforward matter to prove property (.#i). To
prove (_#ii), let I and J be independent sets with |J} > |1, and suppose



Introduction to matroids 141

that p({U{e})= k for each element e which lies in J but notin . If e and f
are two such elements, then

p(IULe} Ui £ pUUel) + pU{H) — p(D=F;

it follows that p(/U{e}U{f})=k. We now continue this procedure,
adding one new element of J at a time. Since at each stage the rank has
value k, we conclude that p(IUJ)=k, and hence (by p ii) that p(J) <k,
which is a contradiction. It follows that there exists an element fwhich is
in J but not in I with the property that p(IU{f)=k+1.//

We conclude this section with two simple definitions. A loop of a
matroid M = (E, p)is anelement e of E satisfying p({e})=0, and a pair of
parallel elements of M is a pair {e, f} of elements of E which are not loops
and which satisfy p({e, f})=1. You should verify that if M is the circuit
matroid of a graph G, then the loops and parallel elements of M
correspond to loops and multiple edges of G.

Exercises 30

(30a) Let E={a, b, ¢, d, e}. Find matroids on E for which
(i) Eis the only base;

(ii) the empty set is the only base;
(iii) the bases are those subsets of E containing exactly three elements.
For each matroid, write down the independent sets, the circuits (if there
are any) and the rank function.
(This question will be answered in the next section.)

(30b) Let G, and G, be the graphs shown in Fig. 30.1. Write down the bases,
circuits and independent sets cf the circuit matroids M(G,) and M(G,).

Fig. 30.1

(30c) Let M be the matroid on the set E={a, b, ¢, d} whose bases are {a, b},
{a, c}, {a, d}, {b, c}, {b, d} and {c, d}. Write down the circuits of M, and
deduce that there is no graph G which has M as its circuit matroid.

(30d) Let E={l, 2, 3, 4, 5, 6} and =(S,, S,, S5, S4 Ss), where
S,=8,={1,2},8;=S5,={2, 3}, Ss={1, 4, 5, 6}.

(i) Write down the partial transversals of ., and check that they form
the independent sets of a matroid on E.

(i) Write down the bases and circuits of this matroid.

(30e)  Use properties (i) and (& ii) to prove that

({) any two bases of a matroid on a set E have the same number of
elements;

(i) if A<SE, then any two maximal independent subsets of A4 have the
same number of elements.
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(30f)  Show how the definition of a fundamental system of circuits in a graph
may be extended to matroids.

(*30g) Show that a matroid M can be defined as a pair (E, #), where E is a non-
empty finite set, and Zis a collection of non-empty subsets of E (called
circuits) satisfying the following properties:

(?) no circuit properly contains another circuit;
(ii) if C, and C, are two distinct circuits each containing an element e,
then there exists a circuit in C,UC, which does not contain E.
(30h) (i) Use the result of exercise 5k to show that the cutsets of a graph
satisfy conditions (i) and (i) of the previous exercise.
(ify Write down the bases of the corresponding matroids for the graphs
of Fig. 30.1.

(*30i) State and prove a matroid analogue of the greedy algorithm (Theorem

114).

§31. Examples of matroids

In this section we shall examine several important types of matroid.

Trivial matroids

Given any non-empty finite set E, we can define on it a matroid whose
only independent set is the empty set. This matroid is called the trivial
matroid on E, and is clearly a matroid of rank zero.

Discrete matroids

At the other extreme is the discrete matroid on £, in which every subset of
Eisindependent. Note that the discrete matroid on E has only one base,
namely Fitself, and that the rank of any subset A4 is simply the number of
elements in 4.

Uniform matroids

Both of the previous examples are special cases of the k-uniform matroid
on E, whose bases are those subsets of E which contain exactly k
elements. It follows that the independent sets are those subsets of E
containing not more than k elements, and that the rank of any subset 4
is either | 4| or k, whichever is smaller. Note that the trivial matroid on E
is 0-uniform and that the discrete matroid is | E]-uniform.
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Before developing the examples described in the previous section, it
will be convenient to formalize the idea of isomorphism between
matroids. Two matroids M, =(E,, .7,) and M,=(E,, .*,) are said to
be isomorphic if there is a one-one correspondence between the sets £,
and E, which preserves independence—in other words, a set of elements
of E, is independent in M, if and only if the corresponding set of
elements of E, isindependent in M,. As an example, note that the circuit
matroids of the three graphs in Fig. 31.1 are all isomorphic. We
emphasize the fact that, although matroid isomorphism preserves
circuits, cutsets and the number of edges in a graph, it does not in general
preserve connectedness, the number of vertices, or their degrees.

o 0
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Fig. 31.1

Using the above definition of isomorphism, we can now define
graphic, transversal and representable matroids.

Graphic matroids

As we saw in the previous section, we can define a matroid M(G) on the
set of edges of a graph G by taking the circuits of G as the circuits of the
matroid. M(G) is then called the circuit matroid of G and its rank
function is simply the cutset rank & (see exercise 9j). It is a reasonable
question to ask whether a given matroid M is the circuit matroid of some
graph—in other words, whether there exists a graph G such that M is
isomorphic to M(G). Such matroids are called graphic matroids, and a
characterization of them will be given in the next section. As an example
of a graphic matroid, consider the matroid M on the set {1, 2, 3} whose
independent sets are @, {1}, {2}, {3}, {1, 2}, and {1, 3}; clearly M is
isomorphic to the circuit matroid of the graph shown in Fig. 31.2. It can
be shown, however, that non-graphic matroids exist. A simple example
is the 2-uniform matroid on a set of four elements, as you were asked to
show in exercise 30c.
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Cographic matroids

Given a graph G, the circuit matroid M(G) is not the only matroid which
can be defined on the set of edges of G. Because of the similarity between
the properties of circuits and of cutsets in a graph, it is reasonable to
hope that a matroid can be constructed by taking the cutsets of G as
circuits of the matroid. We saw in exercise 30h that this construction
does in fact define a matroid, and we shall refer to it as the cutset matroid
of G, written M*(G). Note that a set of edges of G is independent if and
only if it contains no cutset of G. We shall tall a matroid M cographic if
there exists a graph G such that M is isomorphic to M*(G); the reason for
the name ‘cographic’ will appear in the next section.

Planar matroids

A matroid which is both graphic and cographic is called a planar
matroid. We shall indicate the connexion between planar matroids and
planar graphs in the next section.

Representable matroids

Since the definition of a matroid is partly motivated by the idea of linear
independence in vector spaces, it is of interest to investigate those
matroids which arise as vector matroids associated with some set of
vectors in a vector space over a given field. More precisely, given a
matroid M on a set E, we shall say that M is representable over a field F if
there exist a vector space V over F and a map ¢ from E to V, with the
property that a subset 4 of Eis independent in M if and only if ¢ is one-
one on 4 and @(A4) is linearly independent in V. (Note that this amounts
to saying that if we ignore loops and parallel elements, then M is
isomorphic to a vector matroid defined in some vector space over F.) Of
particular importance are those matroids which are representable over
the field of integers modulo two—such matroids will be called binary
matroids. For convenience, we often say simply that M is a representable
matroid if there exists some field Fsuch that M is representable over F. It
turns out that some matroids are representable over every field (the so-
called regular matroids), some representable over no field and some
representable only over some restricted class of fields.

It is not difficult to show that if G is a graph, then its circuit matroid
M(G) is a binary matroid. To see this, we associate with each edge of G
the corresponding row in the incidence matrix of G, regarded as a vector
each of whose components is zero or one. Note that if a set of edges of G
form a circuit, then the sum (modulo two) of the corresponding vectors
is zero.
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An example of a binary matroid which is neither graphic nor
cographic is the Fano matroid, described at the end of this section.

Transversal matroids

Our next example provides the link between matroid theory and
transversal theory. We recall from exercises 26h, 26i, and 30d that if Eis
a non-empty finite set and if &= (S,, . . . , S,)is a family of non-empty
subsets of E, then the partial transversals of ~may be taken as the
independent sets of a matroid on E. Any matroid obtained in this way
(for a suitable choice of E and %) is called a transversal matroid and is
denoted by M(S,, ..., S,). For example, the graphic matroid M
described above is a transversal matroid on the set {1, 2, 3}, since its
independent sets are the partial transversals of the family &= (S,, S,),
where S; = {1} and S, = {2, 3}. Note that the rank of a subset 4 of E'is
the size of the largest partial transversal contained in 4. An example of a
matroid which is not transversal will be given in exercise 31le.

It can be proved that every transversal matroid is representable over
some field, but is binary if and only if it is graphic. Further results on
transversal matroids will be discussed in §33.

Restrictions and contractions

In graph theory it is often possible to investigate the properties of a
graph by looking at its subgraphs or by considering the graph obtained
by contracting some of its edges. We shall find it useful to define the
corresponding notions in matroid theory. If M is a matroid defined on a
set E and if 4 is a subset of E, then the restriction of M to A (denoted by
M X A) is the matroid whose circuits are precisely those circuits of M
which are contained in 4. Similarly, we define the contraction of M to 4
(denoted by M . A)as the matroid whose circuits are obtained by taking
the minimal members of the collection {C;\4}, where the C; denote
circuits of M. (A simpler definition will be given in exercise 32g.) We
leave it to you to verify that these are in fact matroids, and that they
correspond to the deletion and contraction of edges in a graph. A
matroid obtained from M by a succession of restrictions and contrac-
tions is called a minor of M.

Bipartite and Eulerian matroids

We conclude this section by showing how bipartite and Eulerian
matroids may be defined. Since the usual definitions of bipartite and



146 Matroid theory

Eulerian graphs as given in §3 and §6 are unsuitable for matroid
generalization, we must find alternative characterizations of these
graphs. In the case of bipartite graphs, exercise 5g comes to our
rescue—a bipartite matroid is a matroid, every circuit of which contains
an even number of elements. For Eulerian graphs we use Corollary 6
and define a matroid on a set E to be an Eulerian matroid if E can be
expressed as the union of disjoint circuits. In the next section we shall see
that Eulerian matroids and bipartite matroids are (in a sense to be made
precise) dual concepts, as one might expect from exercise 15i.

The Fano matroid

The Fano matroid F is the matroid defined on the set
E={1,2,3,4,5,6, 7} whose bases are all those subsets of E with three
clements except {l1,2,4}, {2,3,5}, {3,4,6}, {4,5 7}, {5 6,1},
{6, 7, 2} and {7, 1, 3}. This matroid can be represented geometrically by
Fig. 31.3, the bases being precisely those sets of three elements which do
not lie on a line. It can be shown that F is binary and Eulerian, but is not
graphic, cographic, transversal or regular.

Fig. 31.3

Exercises 31

(31a) Let E={a, b}. Show that up to isomorphism there are exactly four
matroids on E, and list their bases, independent sets and circuits.
(31b) Let E={a, b, c}. Show that up to isomorphism there are exactly eight
matroids on E, and list their bases, independent sets and circuits.
(31c) Let E be a set of n elements. Show that, up to isomorphism,
(i) the number of matroids on E is at most 2% ; .
(ii) the number of transversal matroids on E is at most 2"".
(31d) Let G, and G, be the graphs of Fig. 30.1.
(i) Are M(G,) and M(G,) transversal matroids?
(ii) Are M*(G,) and M*(G,) transversal matroids?
(3le) Show that M(K,) is not a transversal matroid.
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(31f) Show that every uniform matroid is a transversal matroid.
(31g) Show that the graphic matroids M(Ks) and M(K, ;) are not cographic.
(31h) Describe the circuits of the Fano matroid.
(31i) Let M be a matroid on a set E, and let A < B< E. Prove that
() (MxB)yx A=M x A;
(i) (M.B).A=M . A.
(*31j) Prove that, if M satisfies any of the following properties, then so does any
minor of M:
(i) graphic; (i) cographic; (i) binary; (iv) regular.

§32. Matroids and graph theory

We come now to a study of duality in matroids, our aim being to show
how several of the results which appeared earlier in the book seem far
more natural when looked at in this light. We shall see, for example, that
the rather artificial definition of an abstract-dual of a planar graph (see
§15) arises as a direct consequence of the corresponding definition of a
matroid-dual. The point we shall be trying to get across is that not only
do various concepts in matroid theory generalize their counterparts in
graph theory—they frequently simplify them as well.

We start by recalling from our examination of cographic matroids
that we can form a matroid M*(G) on the set of edges of a graph G by
taking as circuits of M*(G) the cutsets of G. In view of Theorem 15c it
would seem sensible to choose our definition of the dual of a matroid in
such a way as to make this matroid the dual of the circuit matroid M(G)
of G.

This may be achieved as follows: if M = (E, p) is a matroid defined in
terms of its rank function, we define the dual matroid of M, denoted by
M*, to be the matroid on E whose rank function p* is given by the
expression

p*(A)=|A|+ p(E— A)— p(E), for ACE.

We must first verify that p* actually is the rank function of a matroid on
E.

THEOREM 32A. M*=(E, p*) is a matroid on E.

Proof. We verify the properties (pi) and (piii) of §30, for the
function p*. The proof of (p ii) is equally straightforward, and will be
left as an exercise.

To prove (p i), we note first that p(E— A) < p(E), and hence that
p*(A) <|A|. Also, by (p iii) applied to the function p, we have p(E) + p(Q)
< p(A)+ p(E— A), and hence that

p(E)— p(E—A) = p(A) =|4].

It follows immediately that p*(A)=0O.
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To prove (p iii), we have, for any A, BS E,

p*(AUB)+ p*(ANB)=|AUB|+|ANB|+ p(E—(AUB))
_ +p(E=(ANB)~2p(E)
=|4|+|B|+ p((E— A)((E— B))
+ p((E—~ A)U(E— B))—2p(E)
14|+ |Bl+ p(E—A)+ p(E— B)—2p(E)
(by (p iii), applied to p)
= p*(A4)+ p*(B), as required.//

Although the above definition seems highly contrived, it turns out
that the bases of M* can be described very simply in terms of the bases of
M, as we now show:

THEOREM 32B. The bases of M* are precisely the complements of
the bases of M.

Remark. This result is often used to define M*.

Proof. We shall show that if B* is a base of M*, then E— B* is a base
of M; the converse result is obtained by simply reversing the argument.

Since B* is independent in M*, |B*|=p*(B*), and hence
p(E— B*)=p(E). It thus remains only to prove that E— B* is independ-
entin M. But this follows immediately from the fact that p*(B*) = p*(E),
on using the above expression for p*.//

As an immediate consequence of the above definition, we observe
that, in contrast to the duality of planar graphs, every matroid has a dual
and this dual is unique. It also follows immediately from Theorem 32B
that the double-dual M** is equal to M. In fact, as we shall see, this
completely trivial result is the natural generalization to matroids of the
(non-trivial) results of Theorems 158 and 15E.

We shall now show that the cutset matroid M*(G) of a graph Gis the
dual of the circuit matroid M(G):

THEOREM 32C. If G is a graph, then M*(G)=(M(G))*.

Proof. Since the circuits of M*(G) are the cutsets of G, we must
check that C* is a circuit of (M(G))* if and only if C* is a cutset of G.

Suppose first that C* is a cutset of G. If C* is independent in
(M(G))*, then C* can be extended to a base B* of (M(G))*. It follows
that C*(\(E— B*)is empty, contradicting the result of Theorem 9c since
E— B* is a spanning forest of G. It follows that C* is a dependent set in
(M(G))*. and thus contains a circuit of (M(G))*.

If, on the other hand, D* is a circuit of (M(G))*, then D* is not
contained in any base of (M(G))*. It follows that D* intersects every
base of M(G)—i.e., every spanning forest of G. Hence, by the result of
exercise 9h, D* contains a cutset. The result follows.//
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Before proceeding further, it will be convenient to introduce some
more terminology. We shall say that a set of elements of a matroid M
form a cocircuit of M if they form a circuit of M*. Note that in view of
Theorem 32C the cocircuits of the circuit matroid of a graph G are
precisely the cutsets of G. We can similarly define a cobase of M to be a
base of M*, with corresponding definitions for corank, co-independent
set, etc. We shall also say that a matroid M is cographic if and only if its
dual M* is graphic, and in view of Theorem 32c this definition agrees
with the one given in the previous section. The reason for introducing
this ‘co-notation’ is that we may now restrict ourselves to a single
matroid M without having to bring in M*. To illustrate this, we shall
prove the analogue for matroids of Theorem 9c.

THEOREM 32D. Every cocircuit of a matroid intersects every base.

Proof. Let C* be a cocircuit of a matroid M, and suppose that there
exists a base B of M with the property that C*(\B is empty. Then C* is
contained in E— B, and so C* is a circuit of M* which is contained in a
base of M*. This contradiction establishes the result.//

COROLLARY 32E. Every circuit of a matroid intersects every
cobase.

Proof. Apply the result of Theorem 32D to the matroid M*.//

Note that by taking a matroid point of view, the two results in
Theorem 9¢ turn out to be dual forms of a single result. Thus, instead of
proving two results in graph theory (as we had to in §9), it is sufficient to
prove a single result in matroid theory and then use duality. Not only
does this represent a considerable saving of time and effort, it also gives
us greater insight into several of the problems we have encountered
earlier in the book. One example of this is the often-mentioned similarity
between the properties of circuits and cutsets. Another is a deeper
understanding of duality in planar graphs.

As a further example of the simplification introduced by matroid
theory, let us look again at exercise 5k. A straightforward proof of this
result would involve two separate operations—a proof for circuits and a
different proof for cutsets. If, however, we prove the matroid analogue
of the result for circuits (as stated in exercise 30g), then we can simply
apply it to the matroid M*(G), and immediately obtain the correspond-
ing result for cutsets. Conversely, we can use duality to deduce the result
for circuits from the result for cutsets.

Let us now turn our attention to planar graphs, and in particular to
the problem of showing how the definitions of a geometric-dual and an
abstract-dual of a graph arise as consequences of duality in matroids. It
can also be shown that the Whitney-dual of a graph, introduced in
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exercise 15k, arises as a consequence of matroid duality. The equation
given in exercise 15k is simply a restatement of the expression for p*
given at the beginning of this section.

We shall start with the abstract-dual:

THEOREM 32F. If G* is an abstract-dual of a graph G, then M(G*)
is isomorphic to (M(G))*.

Proof. Since G* is an abstract-dual of G, there is a one-one
correspondence between the edges of G and those of G* with the
property that circuits in G correspond to cutsets in G* and conversely. It
follows immediately from this that the circuits of M(G) correspond to
the cocircuits of M(G*), and hence, by Theorem 32c, that M(G*) is
isomorphic to M*(G), as required.//

COROLLARY 32G. If G* is a geometric-dual of a connected planar
graph G, then M(G*) is isomorphic to (M(G))*.

Proof. This result follows immediately from Theorems 32F and
15¢.//

Note that (as remarked before) a planar graph can have several
different duals, whereas a matroid can have only one. The reason for this
is the easily-checked fact that if G* and G* are two (possibly non-
isomorphic) duals of G, then the circuit matroids of G* and G* are
isomorphic matroids.

We conclude this section by giving an answer to the question, ‘under
what conditions is a given matroid M graphic? It is not difficult to find
necessary conditions. For example, it follows from our discussion of
representable matroids (§31) that such a matroid must be binary.
Furthermore, by exercise 31j and our discussion of the Fano matroid F,
itisclear that M cannot contain as a minor any of the matroids M*(Ks5),
M*(K; 3), For F*. It was shown in the following deep theorem by Tutte
that these necessary conditions are in fact sufficient. The proof of this
result is too difficult to be given here (see Welsh?%),

THEOREM 32H (Tutte 1958). A matroid M is graphic if and only if it
is binary and contains no minor isomorphic to M*(Ks), M*(K 3), F or

On applying Theorem 32H to M*, and using the fact that the dual of
a binary matroid is binary, we obtain necessary and sufficient conditions
for a matroid to be cographic.

COROLLARY 321. 4 matroid M is cographic if and only if it is
binary and contains no minor isomorphic to M(Ks), M(K; 5), For F*.//
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Tutte also proved that a binary matroid is regular if and only if it
contains no minor isomorphic to F or F*. By combining this result with
the results of Theorem 32H and Corollary 321, we immediately deduce
the following matroid analogue of Kuratowski’s theorem (Theorem
12¢).

THEOREM 32J. A matroid is planar if and only if it is regular and
contains no minor isomorphic to M(Ks), M(K, 3) or their duals.|[

Exercises 32

(32a) (i) Show that the dual of a discrete matroid is a trivial matroid.
(i) What is the dual of the k-uniform matroid on a set of n elements?
(32b) Find the duals of the eight matroids on the set E= {a, b, ¢}, obtained in
exercise 31b.
(32c) Verify property (pii) of §30 for the function p*.
(32d) Verify the result of Theorem 32 for the graph K.
(32e) What are the cocircuits and cobases of
(i) the 3-uniform matroid on a set of nine elements;
(i) the circuit matroids of the graphs in Fig. 30.1;
(iif) the circuit matroid of the graph in Fig. 31.2;
(iv) the Fano matroid?
(32f) Show by an example that the dual of a transversal matroid is not
necessarily transversal.
(32g) Show that the contraction matroid M . Aisthe matroid whose cocircuits
are precisely those cocircuits of M which are contained in 4.
(*32h) Show that if C is any circuit and C* is any cocircuit in a matroid, then
|[CNC*|#1.
(This is the generalization to matroids of exercise 51.)
(*32i) Let M be a binary matroid on a set E.
(i) Prove that if M is an Eulerian matroid, then M* is bipartite.
(if) Use induction on |E] to prove the converse result.
(iif) By considering the 5-uniform matroid on a set of eleven elements,
show that the word ‘binary’ cannot be omitted.
(This exercise generalizes exercise 151.)

§33. Matroids and transversal theory

We showed in the previous section that there is a close connexion
between results in matroid theory and in graph theory. The connexion
between matroid theory and transversal theory will now be described.
Our first aim is to show how the proofs of several of the earlier results on
transversal theory may be considerably simplified by taking a matroid-
theoretic point of view.

You will recall that if E is a non-empty finite set and
F=(S,, . . ., S,)isafamily of non-empty subsets of E, then the partial
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transversals of % may be taken as the independent sets of a matroid on
E, denoted by M(S,, . . ., S,). In this matroid, the rank of a subset 4 of
Eis simply the size of the largest partial transversal of % contained in 4.

Our first example of the use of matroids in transversal theory is a
proof of the result of exercise 26j that a family .5 of subsets of E has a
transversal containing a given subset 4 if and only if (i) & has a
transversal, and (ii) A is a partial transversal of .5 It is clear that both of
these conditions are necessary. To prove that they are sufficient, it is
enough to observe that since A4 is a partial transversal of .%, 4 must be an
independent set in the transversal matroid M determined by . and so
can be extended to a base of M. Since & has a transversal, every base of
M must be a transversal of .>, and the result follows immediately. If you
have worked through exercise 26h, you will realize how much simpler
this argument is.

Before showing how matroid theory can be used to simplify the
proof of Theorem 27c on the existence of a common transversal of two
families of subsets of a set E, we shall prove a natural extension to
matroids of Hall’s theorem. We recall that if % is a family of subsets of
E, then Hall’s theorem gave a necessary and sufficient condition for .~ to
have a transversal. If we also have a matroid structure defined on E, then
itis reasonable to ask whether there is a corresponding condition for the
existence of an independent transversal—i.e., a transversal of &* which is
also an independent set in the matroid. The following theorem, known
as Rado’s theorem, answers this question.

THEOREM 33A (Rado 1942). Let M be a matroid on a set E, and let
F=(Sy, . ., S,) be a family of non-empty subsets of E. Then . has an
independent transversal if and only if the union of any k of the subsets S;
contains an independent set of size at least k, for | <k <m.

Remark. If M is the discrete matroid on E, then this theorem reduces
to Hall’s theorem as stated in Theorem 26A.

Proof. We shall imitate the proof of Theorem 26A. As before, the
necessity of the condition is clear, and it is thus sufficient to prove that if
one of the subsets (S, say) contains more than one element, then we can
remove an element from S, without altering the condition. By repeating
this procedure, we eventually reduce the problem to the case in which
each subset contains only one element, the proof then being trivial.

To show the validity of the reduction procedure, we suppose that S,
contains elements x and y, the removal of either of which invalidates the
condition. Then there are subsets A and B of {2, 3, . . ., m} with the
property that

p(P)<|A4| and p(Q)=Z|Bl,

where
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P= _QiS,.u(S1 —{x}), and Q= ugsju(sl = {).
Je Jje

Then

p(PUQ)=p(~UBS,~uSI) and  p(PNQ)Zp( | S).

Jjedu jeAnB

The required contradiction now follows, since
|4l +1B| 2 p(P) + p(Q)

2 p(PUQ) + p(PNQ)
> p<. Y BSfUSl)+ p<_ v BS">

>(|4UB|+ 1)+|ANB]| (by Hall’s condition)
=|A|+|B|+ 1./

By imitating the proof of Corollary 268, we immediately obtain the
following result:

COROLLARY 33B. With the above notation, & has an independent
partial transversal of size t if and only if the union of any k of the subsets S,
contains an independent set of size at least k+t—m.//

We can now give a matroid-theoretic proof of Theorem 27¢ on the
existence of a common transversal of two families of subsets of a given
set.

THEOREM 27c. Let E be a non-empty finite set, and let

=S, ..., Sy and F=(T,, ..., T,) be two families of non-empty
subsets of E. Then . and & have a common transversal if and only if, for
all subsets A and B of {1, 2, . .., m},

>|A|+|B|—m.

(w3

Proof. Let M= (E, p) be the matroid whose independent sets are
precisely the partial transversals of the family .. Then .%’and 9 have a
common transversal if and only if .7 has an independent transversal.
But by Theorem 334, thisis so if and only if the union of any k of the sets
T; contains an independent set of size at least k¥ (for 1 £k <m)—in other
words, if and only if the union of any k of the sets T; contains a partial
transversal of .57 of size k. The result now follows from Corollary 26c.//

We conclude this section with some results on the union of
matroids. If M, M,, . . . , M, are matroids on the same set E, then we
can define a new matroid M,UM,U ... UM,, called their union, by
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taking as independent sets all possible unions of an independent set in
M, an independent setin M,, . . . , and an independent set in M,. The
rank of this matroid is given by the following theorem, whose proof may
be found in Welsh?®:

THEOREM 33c. IfM,, ..., M, are matroids on a set E with rank
Junctions p,, ..., p, respectively, then the rank function p of
MU ...UM, is given by

p(X)zznijrr]{pl(A)+ oA+ X - A1)

This result yields two deep results in graph theory, as we now show:

COROLLARY33D. Let M=(E, p) be amatroid. Then M contains k
disjoint bases if and only if, for each subset A of E,

kp(4)+|E— A|2 kp(E).

Proof. M contains k disjoint bases if and only if the union of k copies
of the matroid M has rank at least kp(E). The result now follows
immediately from Theorem 33c.//

COROLLARY 33e. Let M=(E, p) be a matroid. Then E can be
expressed as the union of k independent sets if and only if, for each subset A
of E, kp(A4) 2 |A|.

Proof. In this case, the union of k copies of the matroid M has rank
|E]. Tt thus follows immediately from Theorem 33c that kp(A4)+ |E— A|
=|E|, as required.//

If we apply these last corollaries to the circuit matroid M(G) of a
graph G, we immediately obtain necessary and sufficient conditions for
G to contain k edge-disjoint spanning forests, and for G to split up into k
forests. It turns out, in fact, that these results are not at all easy to obtain
by more direct methods, and we have thus once again demonstrated the
power of the theory of matroids in solving problems in graph theory.

THEOREM 33F. A graph G contains k edge-disjoint spanning forests
if and only if, for any subgraph H of G,
k(E(G) — &(H)) =m(G) — m(H),
where m(H) and m(G) denote the number of edges of H and G
respectively.//

THEOREM 33G. A graph G may be split up into k forests if and only
if, for any subgraph H of G, kE(H)=Zm(H).//
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Exercises 33

(33a) Verify Rado’s theorem when M is the Fano matroid, as described on
page 146, and &= ({1}, {1, 2}, {2, 4, 5}).

(33b) Verify Corollary 33D when M is the 3-uniform matroid on a set of 8
elements.

(33¢) Verify Corollary 33 when M is the 4-uniform matroid on a set of 9
elements.

(*33d) By modifying the Halmos—Vaughan proof of Hall’s theorem (see §25),
give an alternative proof of Theorem 33A.

(33¢) Show that a matroid M is a transversal matroid if and only if M can be
expressed as the union of matroids of rank 1.

(33f) Dualize the results of Theorems 33F and 33G to obtain two further results
in graph theory.



Postscript

Only a little more

I have to write,

Then I'll give o’er

And bid the world Goodnight.

Robert Herrick

Although we have now almost reached the end of the book, we have by
no means reached the end of the subject. It is our hope that many of you
will wish to continue your graph-theoretic studies, and for this reason,
we thought it might be helpful if we suggested possible directions for
further reading.

If you are interested primarily in ‘pure’ graph theory, you should
consult the books by Chartrand and Lesniak,'® Berge,* Bondy and
Murty,” Harary,'* and Ore.?! Also worth reading are the specialist
books of Harary and Palmer'® on enumeration, Moon'®:2° on tourna-
ments and trees, Ringel?? on the genus of graphs, Fiorini and Wilson!?
on edge-colourings of graphs, and Saaty and KainenZ* on general
colouring problems. Surveys on a wide variety of topics in graph theory
may also be found in Beineke and Wilson.® For a discussion of the
various applications of graph theory, you are recommended to look at
the surveys in Wilson and Beineke,?% and the books of Berge,* Harary,
Norman and Cartwright!s (digraphs), Lawler!” (operations research),
and Roberts?? (social sciences). For a general all-round introduction to
combinatorial theory, including techniques of enumeration and block
designs, there are good books by Bogart,® Anderson,! and Brualdi.® For
material on transversal theory and matroids you should consult
Lawler,!” Mirsky,!8 Bryant and Perfect,” and Welsh.25

Sooner or later, you may need to refer to mathematical journals
rather than to books. There are a large number of journals which
frequently include papers in graph theory and related fields, and there
are even some—for example, the Journal of Graph Theory, the Journal of
Combinatorial Theory, the European Journal of Combinatorics, Ars
Combinatoria, and Discrete Mathematics—which are aimed at special-
ists in these fields.

Finally, if you are interested in the history of graph theory, there is
an excellent account in Biggs, Lloyd and Wilson® (although T say it
myself?). In this book, as well as the historical and biographical material,
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there are about forty lengthy extracts from the most important papers in
the history of the subject. You would be well advised to spend some time
reading through these original papers.

Here is my journey'’s end.

William Shakespeare (Macbeth)
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I copied all the letters in a big round hand.

W. S. Gilbert
A adjacency matrix
A(D) arc-family of D
B base of M
C, circuit graph
cr(G) crossing-number of G
D digraph
E non-empty finite set
E(G) - edge-set of G
f number of faces
- F Fano matroid
g genus
G graph
G complement of G
G* dual of G
GV, Vsy) bipartite graph
G,UG, union of graphs
I independent set of M
k number of com-
ponents
K, complete graph,
K, complete bipartite
graph
K, . complete tripartite
graph
L(G) line graph of G
m number of edges
M matroid
M* dual matroid
MA contraction matroid
Mx A restriction matroid
M(G) circuit matroid
M(S,,..., S,) transversal matroid
n number of vertices

N, null graph

chromatic poly-
nomial of G

k-cube,

thickness of G

tree

vertices of G

walk

vector space
associated with G
vertex-set of D
vertex-set of G
circuit subspace of G
cutset subspace of G
wheel

colours

circuit rank of G
automorphism group
of G

connectivity of G
edge-connectivity of G
cutset rank of G
largest vertex-degree
of G

rank function of M
rank function of M*
degree of v

in-degree of v
out-degree of v
chromatic number of G
chromatic index of G
bases of M

circuits of M
independent sets of M
family of subsets
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I've got a little list.
W. S. Gilbert

Absorbing state, 113
Abstract-dual, 75
Adjacency matrix of digraph, 101
Adjacency matrix of graph, 12
Adjacent, 11, 101
Algorithm, 33, 55, 135
Aperiodic state, 114
Appel, K. 85
Applications, 38, 53, 104, 111, 131
Arc, 9, 101
Arc-family, 101
Articulation vertex, 29
Associated digraph, 112
Automorphism, 20

group, 20

Base of matroid, 139
Binary matroid, 144
Bipartite graph, 16
Bipartite matroid, 146
Bridge, 28

Brooks’ theorem, 83, 86

Camion, P. 108

Capacity of an arc, 132
Capacity of a cut, 133
Cayley, A. 48, 56

Cayley’s theorem, 50

Centre of a graph, 48

Chain, Markov, 112
Chemical molecules, 55
Chinese postman problem, 40
Chromatic index, 92

Chromatic number, 82
Chromatic polynomial, 97
Circuit graph, 19
Circuit matroid, 139, 143
Circuit of a digraph, 102
Circuit of a graph, 26
Circuit of a matroid, 140, 142
Circuit rank, 46
Circuit subspace, 35
Clarke, L. E. 50
Closed Jordan curve, 21
Closed path, 25
Cobase, 149
Cocircuit, 149
Cographic matroid, 144, 149
Co-independent set, 149
Coloured cubes, 12
Colouring a graph, 82
Common transversal, 124
Complement of a graph, 19, 46
Complete bipartite graph, 17
Complete graph, 16
Complete matching, 116
Common tripartite graph, 20
Component of a graph, 19, 26
Component rank, 46
Connected component, 19, 26
Connected digraph, 102
Connected graph, 19, 26
Connectivity, 29
Contractible, 18
Contraction, 18

matroid, 145



Converse digraph, 106
Corank, 149
Countable graph, 78
Counting graphs, 48, 55
Critical graph, 86
Critical path, 105

analysis, 38, 104
Crossing, 22
Crossing-number, 63
Cube graph, 16, 17
Cubic graph, 16
Curve, Jordan, 21
Cut, 133
Cutset, 28, 29

matroid, 144

rank, 46

subspace, 35
Cut-vertex, 29
Cyclomatic number, 46

Degree of a vertex, 11, 78
Deletion, 18

Dependent set, 140
Diagrams, 21

Digraph, 9, 101

Dirac’s theorem, 36
Directed graph, 9
Disconnected graph, 19, 27
Disconnecting set, 28, 127
Discrete matroid, 142
Disjoint paths, 126
Disjoint from G, 23
Distance in a graph, 30
Distinct representatives, 119
Dodecahedral graph, 16, 36
Doughnut, 69

Dual graph, 72

Dual matroid, 147

Edge, 8,9, 78
Edge-chromatic number, 92
Edge-connectivity, 29
Edge-contraction, 18
Edge-disjoint paths, 126
Edge-family, 9

Edge sequence, 26
Edge-set, 8

Electrical networks, 56
Embedding, 22, 59
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End-vertex, 11
Enumeration, 48, 55
Ergodic chain, 114
Ergodic state, 114
Euclid, 73

Euler, L. 11, 31, 65
Eulerian digraph, 106
Eulerian graph, 30
Eulerian infinite graph, 80
Eulerian matroid, 146
Eulerian trail, 30, 80, 106
Euler’s formula, 65
Extremal theorem, 30

Face of a graph, 64, 65
Family, 9
of subsets, 119
Fano matroid, 146
Final vertex, 25
Finite Markov chain, 112
Finite walk, 79
Five-colour theorem, 84
Fleury’s algorithm, 33
Flow in a network, 132
Ford, L. R. 127, 133
Forest, 44
Four-colour theorem, 85, 88
Fulkerson, D. R. 127, 133
Fundamental system of circuits, 47
Fundamental system of cutsets, 47

General graph, 9
Genus of a graph, 70
Geometric-dual, 72
Ghouila-Houri, A. 107
Girth, 29

Graph, 9

Graphic matroid, 143
Greedy algorithm, 54
Grétzsch graph, 37
Group of a graph, 20

Haken, W. 85

Hall’s theorem, 116
Halmos, P. R. 116
Hamilton, W. R. 36
Hamiltonian circuit, 35, 107
Hamiltonian digraph, 107
Hamiltonian graph, 35
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Handshaking di-lemma, 107
Handshaking lemma, 11
Harem problem, 118
Heawood, P. J. 71
Homeomorphic graphs, 61
Hydrocarbons, 55

Icosahedral graph, 16

Identaical to within vertices of degree
two, 61

Incidence matrix, 12, 123

Incident, 11, 101

In-degree, 107, 132

Independent edges, 30

Independent set, 139

Independent transversal, 152

Index, chromatic, 92

Infinite face, 65

Infinite graph, 10, 78

Infinite square lattice, 78

Infinite walk, 79

Initial vertex, 25, 79

Instant insanity, 12

Integrity theorem, 129

Irreducible Markov chain, 113

Irreducible tournament, 110

Isolated vertex, 11

Isomorphic digraphs, 102

Isomorphic graphs, 11

Isomorphic labelled graphs, 49

Isomorphic matroids, 143

Isthmus, 28

Join, 8,9
Jordan curve, 21
theorem, 21, 60

k-chromatic, 82
k-colourable, 82
k-colourable(e), 92
k-colourable(/), 88
k-connected, 29
k-critical, 86

k-cube, 17
k-edge-colourable, 92
k-edge-connected, 29
Kirchhoff’s laws, 56
Kirkman, T. P. 36
Konig-Egervary theorem, 123

Konigsberg bridges problem, 31
Konig’s lemma, 79

Kruskal’s algorithm, 54
k-uniform matroid, 142
Kuratowski’s theorem, 61

Label, 49
Labelled graph, 49
Labelling, 49
Latin rectangle, 122
Latin square, 122
Lattice, square, 78
Length of a walk, 25
Line, 8

graph, 20
Linkage, 51
Locally-countable graph, 78
Locally-finite graph, 78
Longest path problem, 104
Loop, 9

of a matroid, 141

Map, 88

Map-colouring, 88

Markov chain, 112

Marriage problem, 115
Marriage theorem, 116
Matching, 116

Matrix of a graph, 12
Matrix-tree theorem, 52
Matroid, 139

Matroid duality, 147

Max-flow min-cut theorem, 133
Maximum flow, 133

Mei-ko Kwan, 40

Menger’s theorem, 127
Minimum connector problem, 53
Minimum cut, 133

Minor, 145

Mobius strip, 71

Multiple edges, 9

Network, 104, 132
flow, 132

Node, 8

Null graph, 15

Octahedral graph, 16
One-way infinite walk, 79



Ore’s theorem, 36
Oriental graph, 103
Out-degree, 107, 132
Outerplanar graph, 64

Parallel elements, 141
Parsons, T. D. 76
Partial transversal, 119
Path, 25, 102

Periodic state, 114
Persistent state, 113

Personnel assignment problem, 116

PERT, 104
Petersen graph, 16
Planar graph, 23, 59
Planar matroid, 144
Plane graph, 59
Platonic graphs, 16
Point, 8
Poélya, G. 56
Polyhedral graph, 66
Polyhedron formula, 65
Printed circuits, 67
Probability vector, 112
Problem of cubes, 12
Program Evaluation and Review
Technique, 104
Priifer, H. 50

Rado, R. 119
Rado’s theorem, 152
Random walk, 111
Randomly traceable graph, 34
Rank, 46, 121, 140
function, 140
of a matroid, 139
Recurrent state, 113
Rédei, L. 108
Regular graph, 16
Regular matroid, 144
Representable matroid, 144
Restriction matroid, 145
Ringel-Youngs’ theorem, 71
Robbins, H. E. 103

Saturated arc, 132

Score, 110

Score-sequence, 110
Self-complementary graph, 20

Index of definitions

Semi-Eulerian graph, 30, 81

Semi-Hamiltonian digraph, 107

Semi-Hamiltonian graph, 35

Separating set, 29, 126

Shortest path problem, 38

Simple digraph, 10, 100

Simple graph, 8

Sink, 107

Six-colour theorem, 84

Source, 107

Spanning forest, 46

Spanning tree, 46

Square lattice, 78

Star graph, 17

State of Markov chain, 112

Strongly-connected digraph, 102

Subgraph, 11

System of distinct representatives,
119

Table of graphs, 158
Term rank, 123
Terminology, 10, 26
Tetrahedral graph, 16
Thickness, 67
Timetabling problems, 99, 124
Topology, 59
Toroidal graph, 70
Torus, 69
Totally-disconnected graph, 15
Tournament, 108
Trail, 25, 102
Transient state, 113
Transition matrix, 112
Transition probabilities, 112
Transitive tournament, 110
Transversal, 119

matroid, 145

165

Travelling salesman problem, 41, 55

Treacle, 63

Tree, 27, 44

Triangle, 26

Triangular lattice, 78
Trivalent graph, 16

Trivial matroid, 142

Turan’s extremal theorem, 30
Tutte’s theorem, 150
Two-way infinite walk, 79
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Underlying graph, 101
Uniform matroid, 142
Union of graphs, 18
Union of matroids, 153
Unsaturated arc, 132

Valency, 11
Value of a flow, 133
Vaughan, H. E. 116
Vector matroid, 139
Vector space associated with a
graph, 15
Vertex, 8,9, 101
Vertex-connectivity, 29
Vertex-disjoint paths, 126
Vertex-set, 8, 9, 78, 101
Vizing’s theorem, 92
vw-disconnecting set, 126

vw-separating set, 126

Wagner, K. 60

Walk, 25, 79, 102

Walk, random, 111
Weakly-connected digraph, 102
Weight of an edge, 39
Weighted digraph, 104, 132
Weighted graph, 39

Wheel, 19

Whitney, H. 78

Whitney-dual, 77

Youngs, J. W.T. 71

Zero flow, 132
Zero-one matrix, 12, 123
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Graph Theory has recently emerged as a subject in its own right,
as well as being an important mathematical tool in such diverse
subjects as operational research, chemistry, sociology and
genetics. Robin Wilson's book has been widely used as a text for
both undergraduate and graduate mathematics courses, and as
a readable introduction to the subjéct for non-mathematicians.

The opening chapters provide a basic foundation course,
containing such topics as trees, Eulerian and Hamiltonian
graphs, planar graphs, and colouring, with special reference to
the four-colour theorem. Following, there are two chapters on
directed graphs and transversal theory, relating these areas to
such subjects as Markov chains and network flows. Finally,
there is a chapter on matroid theory, which is used to consoli-
date some of the material from earlier chapters.

For this new edition, in addition to improvements in the text, the
exercises have been completely revised, and there is now a full
range of problems of varying difficulty. A Solutions Manual is
available.

Robin Wilson is a Senior Lecturer in Mathematics at the Open
University.
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