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Preface

The fine work of both the Mathematical Association of America and the
National Council of Teachers of Mathematics through support from the
National Science Foundation is beginning to be evidenced in the improved
mathematics background of the students entering the colleges and uni-
versities. Because of this they are more receptive to mathematical concepts
new to them, more critical and more open-minded. This revision is written
for this new generation of prospective teachers with their greater sophisti-
cation and background.

The third edition of Theory of Arithmetic includes minor changes in the
first three chapters. They are the introduction of new concepts, the dele-
tion of less important material, the improvement of problem sets, and the
rearrangement of material.

A major change has been made in Chapters 4 and 5. They now are
combined to form a complete treatment of the whole numbers, including
number systems in bases other than ten. Algorithms are introduced in
bases other than ten to add interest and to provide motivation for their
study.

Major changes have been made in the last three chapters. The material
dealing with the rational number and real number systems has been
reorganized and rewritten to provide better continuity and teachability.
Topics from geometry have been revised and expanded to include
topological concepts of the kind that are being taught in elementary
schools in several countries of Europe today.

Other changes that were suggested by many interested users also have
been made. As with the previous editions, the third edition appeals to
plausible reason rather than to rigor.

The primary objective of this textbook remains unchanged. It is still the
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desire of the authors to provide the elementary teacher with the back-
ground necessary to teach mathematics in the elementary school. The
curriculum in the elementary school is not restricted to arithmetic but
includes other topics in mathematics as well. Accurate knowledge of the
subject matter is still considered to be an essential prerequisite to good
teaching.

Beginning with a short historical development which includes systems of
numeration, the material covers an introduction to the language of sets
and the fundamental concept of relations. The material on relations was
extremely new to the elementary teachers at the time of the first edition.
The stronger background of the present students permits a more formal
development. The language of sets and the concept of relations are then
used to develop both the algebraic and order properties of the systems of
whole numbers, integers, rationals, and reals. The latter portion of the
book is devoted to a treatment of geometry designed as background
material for the elementary teacher made particularly appropriate by the
inclusion of topics of motivational and historical interest.

. By formulating precise definitions and by simple, but accurate, presen-

tation of fundamental ideas, Theory of Arithmetic makes sophisticated
concepts of modern mathematics accessible to the practicing and pros-
pective teacher, :

The problems and examples are a particularly significant feature of the
revision. An adequate number of carefully selected problems have been
thoroughly classroom tested and found to be challenging, informative,
and helpful to the students. The problems have been purposely distri-
buted throughout each chapter to encourage the students to check their
comprehension before proceeding on to new concepts. This format is
also well suited for homework assignments and for testing. Problem
arrangement and selection permit the book to be used in a wide variety of
classroom situations ranging from small controlled sections to large
lecture sections. Particular attention has been given to problems which
stress basic understanding of fundamental concepts as well as problems
to test proficiency in computational techniques.

The material is presented in sufficient detail so that it can be taught to
students who have had the usual college preparatory mathematics. Chap-
ters 2 through 7 include the key ideas in the development of this material
and should serve as the core of any course for which this book is used as a
text. Under the quarter system the first eight chapters, minus a few select-
ed topics, have proven adequate for a five-hour one-quarter course. Time
allotted to the topics including time for review and examination, has been
essentially as follows:

Hours 1-4. Chapters 1 and 2, with most of the time spent on the lan-
guage of sets.

Hours 5-10. Chapter 3, with a careful treatment of relations and their
properties.
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Hours 11-28. Chapter 4, introduction to operations and the first devel-
opment of a number system with emphasis on the development of a
complete understanding of the place-value system of numeration.

Hours 24-33. Chapter 5, extension of the concepts of the system of
whole numbers to the set of integers with careful consideration of
prime factorization, the division algorithm, the Euclidean algorithm,
and related topics.

Hours 34-42. Chapter 6, with emphasis on understanding the rational
number as an element of the rational number system, rational num-
bers as equivalence classes, the concept of denseness, and the usual
interpretations of rational numbers.

Hours 43-48. Chapter 7, with emphasis on decimal approximations, the
real numbers as infinite decimals, completeness, the real line, and the
approximation of square roots.

By careful consideration of all topics of the first seven chapters and
inclusion of Chapter 8 this could be extended to a three-hour, two-quarter
sequence. Under the semester system, the material is adequate for a four-
or five-hour, one-semester course.

In regard to the arrangement of the material in the text, each chapter
consists of several sections and possibly subsections. These are identified
by a number followed by a period, then a number or a combination of
numbers and a letter. The first number identifies the chapter and the one
following the period identifies the section or subsection. For example, the
symbol 5.7 is used to identify Chapter 5, Section 7; the symbol 5.7a identi-
fies the first subsection of that section. Definitions and exercises are num-
bered in a similar-manner for easy reference. Definition 5.5a is the first
definition of Section 5, Chapter 5. References to other material mentioned
briefly in the context are listed completely in alphabetical order at the end
of each chapter. Answers to selected exercises appear at the end of the
book.

We wish to acknowledge the constructive criticism and suggestions re-
ceived from the many mathematicians and mathematics educators who
have used and/or reviewed the book. In particular, we wish to express our
appreciation to Professor Roy Dubisch, University of Washington, for his
critical examination and careful editing. Special acknowledgment should
be given to the Committee on Educational Media Writing Group of the
Mathematical Association of America and the National Council of
Teachers of Mathematics Writing Group, both of which made use of the
first edition of Theory of Arithmetic as a reference and source book. The
experience gained from participating in these writing groups is no doubt
reflected in this revision. We also wish to express our appreciation to the
publishers for their helpful assistance and guidance and to the many
students who over the years have assisted in the development of this
material. i

We have made every effort to incorporate the helpful suggestions of
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users in this revision and feel that the result is a much improved textbook.
We will certainly appreciate suggestions and criticisms, as with the first
edition, and hope they will be forthcoming as they were in the past.

Joun A. PETERSON
January 1971 Josepn HASHISAKI
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The Origin of Numerals and
Systems of Numeration

1.1 INTRODUCTION

This book treats arithmetic as a unification of several distinct concepts.
In the beginning, the recognition and realization that there are systems of
numeration for naming numbers, on the one hand, and algebraic systems
that provide structures within which we operate, on the other hand, will
prove helpful in understanding this way of presenting the theory of
arithmetic. More important, it hopefully will help the prospective teacher
to identify difficulties that the elementary student is having and to offer a
clue as to how to help the students overcome their problems.

System of Structure of
numeration number systems

By a system of numeration we mean a set of symbols that is used according to
some established scheme for assigning numerals or number symbols to numbers.
In order to appreciate the significance and role of the system of numera-
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tion in arithmetic, try to multiply two numbers written in Roman numerals
without converting to the decimal system.

MMMDCXCVII
X MCCCLXXIX

Indeed, what we do in a given computation does depend on what a
particular set of number symbols means. On the other hand, what we are
permitted to do in arithmetic is something like what we are permitted to
do and are not permitted to do in such games as monopoly or baseball.
Most games of this kind are played according to a set of rules, and it is the
rules that determine the structure of the particular game.

Slow-pitch ball and baseball are different, but they are more alike than
baseball and football. They have different structures and yet they have
structures that are more alike than when compared to football. We shall
discuss structure in terms of a set of objects, things to do, and rules.

1.2 SYSTEMS OF NUMERATION

Our study begins with a brief summary of the history of numerals and
systems of numeration. These are like the alphabet for the arithmetician,
and some knowledge of their origin leads to a better understanding of
their use. We are also interested in other systems of numeration because
the algorithms—the “how to do” of arithmetic computations—depend
very much on the system used for naming numbers. '

Statements about the origin of the concept of numbers must necessarily
be conjectural. It seems logical to assume that man always had some
intuitive notion of “more than” and “less than.” In the development of
civilization, the quantitative aspects of the environment dictated the
development of some means of answering the question, “How many?”’
This can be done without numerals. Some sort of tally system is all that is
needed to answer this question. The tally system might involve pebbles
in a bag, sticks tied in a bundle, notches cut in a stick, knots tied in a rope,
or marks in the sand. Whatever the type of device used to form the refer-
ence set, the principle involved is the same, namely, a matching between
the objects being counted and the reference set. The set consisting of the
fingers of the hands was, and for some purposes still is, the most conven-
ient reference set. From this, man developed a set of words to use as a
more convenient reference set for keeping track of ‘“how many.” The
next step was from the oral words to written words, then to symbols and
the development of systems of numeration.

A system of numeration is a set of symbols and a scheme for assigning
numerals, or number symbols, to numbers. In order to understand better
and appreciate our own system of numeration, we shall investigate some
other systems that have been, or are now, used. We shall be interested
not so much in the particular symbolism of each system as in the principles
and concepts involved.

2 The Origin of Numerals and Systems of Numeration / cH1



All systems of numeration have certain characteristics in common. The
number of basic symbols is finite, varying from as few as two in some
systems to thirty or more in others.

Example 1

The basic symbols in the Roman system of numeration are I, V, X,
L, G, D, and M. The basic symbols in the system of numeration we use
are0,1,2,3,4,5,6,7,8,and 9.

Since the number of basic symbols must necessarily be finite and the
number of numbers to be symbolized is infinite, it is necessary at times to
use the same symbol more than once in the representation of a number.
This is true with every system of numeration but, in some systems, the
symbol may have a different meaning.

Every system possesses a symbol for the number “one.” In some
systems, subsequent numbers are written by repeated use of this symbol.
The idea of grouping objects is essential to a systematic way of keeping
track of things, and special symbols for these groups evolved into the
idea of a base. This puts a bound on the number of times the one-symbol
had to be used. In other systems distinct single-character symbols are used
to represent subsequent numbers up to a certain number. Then a
symbol of two or more characters is introduced.

In addition, there are underlying principles that play varying roles in
different systems and certain concepts that occur in some and not in
others. The concepts and principles are important and, once understood,
allow us to invent new symbols and to construct other systems of numera-
tion. These principles form our basis for classifying the systems of
numeration. We consider several systems with these thoughts in mind.

Students have often asked if they are expected to memorize the
symbols and their meanings in the systems of numeration used as illus-
trations in the following sections. This is not at all necessary. The numera-
tion systems are chosen to illustrate underlying principles and concepts.

1.3 ADDITIVE SYSTEMS OF NUMERATION

Additive systems of numeration are characterized as those systems that
rely primarily on the additive principle to determine the number repre-
sented by a given set of symbols. They have symbols for the number one,
for the base, and powers of the base, and sometimes for multiples of
powers of the base. The repetitive principle, that is, repeated use of the same
symbol, is used in representing numbers between powers of the base.
The number represented by a particular set of symbols is simply the sum
of the numbers each symbol of the set represents. This is the additive
principle.

To clarify these underlying principles, let us examine some examples.

1.3 / ADDITIVE SYSTEMS OF NUMERATION 3



1.3a. The Egyptian Hieroglyphic System

The Egyptian hieroglyphic system dates back as early as 3000 B.c. and
was used for some 2000 years. Table 1 is a partial list of the symbols used,
with the decimal equivalents and a word description.

' Table 1 Egyptian Hieroglyphics

Hindu-Arabic

or Decimal  Egyptian Description

1 ! A staff (vertical stroke)
10 n A heel bone (arch)
100 D A scroll (coiled rope)
1000 Z A lotus flower
10,000 ¢ A pointing finger

100,000 N A bourbot fish (tadpole)

1,000,000 ﬁ A man in astonishment

These symbols are used to represent a number in the same way that
coins and bills are used to make up a given sum of money. The one-
symbol is used repeatedly to represent the numbers one through nine.
Essentially this amounts to constructing a representative set for a match-
ing between the objects being counted and the repeated one-symbols. The
other symbols represent a compounding of the previous symbols, and any
number is expressed by using these symbols additively. Consider the
following examples:

Example 1
312, means 1000+1000+100+10+10+1+1+1+1, which is
2124 as a decimal numeral.

Example 2

:I'l' 93 means 1,000,000+ 1+1+1+1+1+1+ 100+ 1000+ 10, which
is 1,001,116 as a decimal numeral.

Example 3
raanil - means 10410+ 10+ 10+ 10+ 10+ 10+ 10+ 1+ 1+ 1+ 1+ 1+ 1

+ 1, which is 87 as a decimal numeral.

Note that in a simply additive system of numeration such as this, the order
in which the symbols appear is immaterial.

Addition and subtraction of numbers written in Egyptian numerals are
as easy as making change. Multiplication and division must have been
somewhat difficult with their cumbersome system, especially without
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pencil and paper. The Egyptians had methods for performing these
operations. Also, fractions were understood and used by Egyptians
(see Eves, pp. 39-40). We do not present the details of computation in the
various systems here, for our interest is primarily in the properties of the
systems of numeration in comparison with our own system.

To summarize, the Egyptian hieroglyphic system possesses the follow-
ing properties. The symbols are hieroglyphs and as many as 45 of six
different symbols are required to represent numbers to and including
100,000. The repetitive principle is used in representing numbers between
one and the base, which is ten, and between powers of the base. The
additive principle applies to any set of symbols to determine the number
represented.

Exercise1.3a

1. Express the following in Egyptian numerals:

(a) 77 (b) 629 (¢) 90,909
(d) 2,507,916 (e) 2124 (f) 1,001,116
(g) 808

2. Write the decimal equivalent of the following Egyptian numerals:
(@) 200 Kgg gg (ON{&IN €554

(b) ‘)&QQIHK (d) g‘)& Rl

nnn NN (AT

3. Write in Egyptian numerals:

(a) the sum of (a) and (b) of problem 2.
(b) the sum of (a) and (c) of problem 2.
(c) the sum of (b) and (d) of problem 2.

4., Which of the numbers represented by the numerals of problem 2 is
the largest and which the smallest?

1.3b The Roman System

The Roman numerals and system of numeration date from the time
of the ancient Romans. These numerals were commonly used in book-
keeping in European countries until the eighteenth century, although the
decimal numerals were generally known as early as 1000. The introduc-
tion of the printing press saw a rapid change in the use of the decimal
numerals, although the Roman numerals continued to be used in some
schools until about 1600, and still are to a limited extentXExamples are
numerals on a clock face, chapter numbers in a book, and section num-
bers in an outline.

Much has been written about Roman notation. It is not our purpose to
examine the system in detail but simply to look at some of the general
characteristics (see Newman, pp. 447-449).

1.3 /ADDITIVE SYSTEMS OF NUMERATION 5



As now used, the symbols for Roman numerals are summarized in
Table 2.

Table 2 Roman Numerals

Decimal 1 10 100 1000
5 50 500
Roman 1 X C M

The Roman system is also essentially an additive system of numeration
in that a number designated by a set of symbols is simply the sum of the
numbers represented by each of the symbols in the set.

Unlike the Egyptian system where the arrangement of the symbols
had no special meaning, the Roman system uses the concept of order in
its scheme. As with the decimal system Roman numerals are written with
the symbol for the larger number to the left in any set of symbols which
represents a number. Exceptions will be noted later.

A symbol with a bar above it indicates the number represented by that
symbol multiplied by 1000. A double bar means multiplication by one
thousand thousand or 1,000,000. This is an example of the multiplicative
principle.

Example 1

MDCCCLXII = 1000+ 500+ 100+ 1004+ 100+ 50+ 10+ 1+ 1.
= 1862 in the decimal system.

With so few symbols in an additive system, a great deal of repetition is
necessary to express some large numbers. For example, the decimal
numeral 387 is written CCCLXXXVII. How many symbols would be
necessary to designate the number that in decimal numerals is written
as 88887

Present-day use of the Roman system also involves the subtractive prin-
ciple. This principle states that if a symbol of a smaller number precedes
a symbol of a larger number, the two are considered as a pair. The num-
ber represented by the pair is the larger number minus the smaller
number. Today this principle is restricted to the numerals for four and
nine, forty and ninety, four hundred and nine hundred, etc. Table 3
summarizes this property.

Table3 Roman Numeral Subtractive Principle

IV =1I11 XL = XXXX CDh=CcCcCC
IX = VIIII XC= LXXXX CM = DCCCC

6 The Origin of Numerals and Systems of Numeration / cnn



Any extension of its use to more than pairs of symbols could lead to
ambiguous results; for example, IXC could be interpreted as 100—9, or
as 100— 10— 1, resulting in a designation for 91 or 89, depending on the
interpretation. Note that the subtractive principle depends on the order
of the symbols.

In summary, the Roman system possesses the following properties. The
symbols are, at present, letters of the alphabet and as many as 20 of the
different symbols along with the multiplicative principle are required to
represent numbers to and including 100,000. The repetitive principle
is used in representing numbers between those for which distinct sym-
bols are available. This system is what might be called a modified base
ten system in that intermediate symbols are introduced for five, fifty,
and five hundred. The additive principle applies, as does the subtractive
principle. The multiplicative principle is also used in representing large
numbers. The ordering of the symbols is an essential part of the scheme.

Exercise1.3b

1. Express the following in Roman numerals:

(a) 26 (b). 39 (©) 49
(d) 342 (e) 431 (f) 449
(g 1551  (h) 1961 (i) 2409

2. Express each of the following in decimal numerals:

(a) XXXVII (b) XLIX (c) XCIV
(d) CCCLXII  (e) CDLVII (f) DCXLIV
(g) MCLI (h) MCMXLV (i) MMCMXCIX

3. State some advantages of the Roman system over the Egyptian system.

4. For numbers less than 1000, the addition facts for the Roman system
are:

I =V VvV =X
XXXXX =L LL=C
CCCCC=D DD=M

(a) Add: MDCCCLXII+ CXLIV

(Note: Here itis helpful to write CXLIV as CXXXXIIII.)
(b) Add: MDXII + DCVII
(¢) Subtract: MCCVI —DCLXIII

5. (a) What follows MCMXLIX? (b) What follows MCM?
6. Which number is larger, MMCMXXIX or MMDCCXXIX?

7. Double each number in Exercise 2.

1.3 |/ ADDITIVE SYSTEMS OF NUMERATION 7



1.3¢c The lonic Greek System
The Ionic Greek numeral system was also a system of the additive type
but with a more complicated scheme involving many more symbols. It
consisted of the 24 letters of the Greek alphabet plus three additional
symbols for the obsolete digamma, sampi, and koppa. Initially capital
letters were used, later the small letters. The system necessitated memoriz-
ing the set of symbols given in Table 4.

Table 4 lonic Green Numerals

1 a alpha 10 . iota 100 p rho

2 B beta 20 k kappa 200 o sigma

3 vy gamma 30 A lambda 300 7 tau

4 & delta 40 w mu 400 v upsilon

5 € epsilon 50 v nu 500 ¢ phi

6 obsolete digamma 60 ¢ xi 600 x chi

7  zeta 70 o omicron 700 ¢ psi

8 m eta 80 7 pi 800 w omega

9 ¢ theta 90 obsolete koppa 900 obsolete sampi

With this system numbers could be written in a more compact form,
although still of the additive type, for example,

Ay=33 x &€ =665 mmn = 88

For the multiples of 1000 the first nine symbols were used with a ““prime,”
thus: o’ = 1000, B8’ = 2000, etc. For 10,000 M was used, and the multi-
plicative principle was applied for larger numbers; for example, M =
20,000; {LMB vv B = 72,452.

Note that there are advantages and disadvantages in the Ionic Greek
system over the other systems we have discussed. The principal advantage
is the economy of symbols. For numbers up to 1000 the number of
symbols required to express a number is the same as in the decimal
system of numeration. The principle disadvantages are that there are so
many symbols to memorize and that they are letters of the alphabet and
may be confused with words.

Characterization of this system includes the following facts. The
symbols are letters of an early Greek alphabet, 27 in number, and as many
as 6 of these along with the multiplicative principle are required to
represent numbers up to and including 100,000. This is a base ten system,
and the additive principle applies. It is noteworthy that the repetitive use
of the symbols is not as marked in the Greek system of numeration com-
pared to others, but this particular feature comes at the cost of having so
many different symbols.

Exercise 1.3¢

In the following, use d for digamma, & for koppa, and s for sampi.

8 The Origin of Numerals and Systems of Numeration / cha



1. Express the following decimal numerals in the Ionic Greek system:

(a) 36 (b) 39 (c) 49
(d) 342 (e) 431 (f) 449
(g) 1551 (h) 1961 (i) 2409

2. Express the following Ionic Greek numerals in decimal notation:
(@) pd (b) m¢ (© xvy

(d) o8 (e) pop £) pry
(g) dvhe (h) O'Yke (i) eMd PEL

3. State some advantages and disadvantages, in addition to those pre-
viously mentioned, of the Ionic Greek system as compared to the Roman
and Egyptian systems of numeration.

4. What number follows (a) emy? (b) ¢pupB?
5. Which is the largest and which the smallest in the following set?

{x£8, xmm, xv8}

6. Double each number in Exercise 2, (a), (d), (g) and write the result in
Greek numerals.

1.4 MULTIPLICATIVE SYSTEMS OF NUMERATION

In these systems symbols are chosen for one, two, three, etc., up to the
base, and another set chosen to represent powers of the base. These
symbols are then used with the multiplicative and additive principles to
represent any number.

1.4a The Chinese-Japanese System

The traditional Chinese-Japanese numeral system is of this type. A
partial list of symbols with an example appears in Table 5.

Table 5 Chinese-Japanese Numerals

1 —_ ichi 10 + ju 2,345
2 = i 100 & hyaku = 2600
3 = san 1000 F sen F
4 B3 shi =

300
5 B g B
6 K roku &)

40
7 shichi +
8 /N hachi 5 } 5
9 N ku

14 / MULTIPLICATIVE SYSTEMS OF NUMERATION 9



Exercise 1.4a

1. Express the following decimal numerals in the Japanese system:

(a) 42 (b) 54 (c) 36
(d) 125 (e) 246 (f) 782
(g) 2146 (h) 1984 (i) 5469

2. Express the following Japanese numerals as decimal numerals:

@ = ® t ©35
+ + e
P tv
@D ©F 0%
F z 5
= [5]
3 = o
v T L
5

3. List some of the advantages and disadvantages of the Japanese system
as compared to the systems previously mentioned.

4. Construct the tables of elementary facts for addition and multiplica-
tion for the Japanese system of numeration.

1.5 PLACE-VALUE SYSTEMS OF NUMERATION

This is the type of system of numeration with which we are most
familiar, for “our” system, the decimal system with Hindu-Arabic sym-
bols, is a place-value system. In this type of system, symbols are chosen
for zero, one, two, etc., up to, but not including, the base. In the decimal
system these symbols are referred to as digits. For a system of base “5”
there are “b” such symbols. Then any number can be expressed uniquely
as a sum of terms, each of which is one of the basic symbols times a power
of the base. The power of the base by which each of the basic symbols is to
be multiplied is determined by its placement in relation to a reference
point. In the decimal system this is called the decimal point.

1.5a The Hindu-Arabic Symbols

The symbols we use in our present-day arithmetic are referred to as
Hindu-Arabic—Hindu since they were probably originated by the
Hindus, and Arabic because they came to Europe in the Arabic language.
The earliest preserved examples of our present numerals are found on
some stone columns in India dating from about 250 B.c. Other early
examples are found among records cut about 100 B.C. on the walls of a
cave in a hill near Poona, India, and in some inscriptions of about A.p.
200 carved in the caves at Nasik, India. These early examples contain no
zero and do not employ place value. Place value, however, and also zero,
must have been introduced before A.p. 800, for the Persian mathematic-
ian al-Khorarizmi describes such a completed system in a book dated

10 The Origin of Numerals and Systems of Numeration [ cHa



A.D. 825. Just how the new numerals were transmitted to Europe is not
historically clear. Probably they were brought by traders and travelers.
The Arabs invaded the Iberian Peninsula in A.p. 711 and, no doubt,
introduced the new symbols to the Spaniards.
In a book written in Spain, dated A.p. 976, the 7
following set of symbols was recorded: 9 87(‘\} % Z I
Changes in the shape of the symbols from the
earliest known form to those in use today can be attributed primarily to
the scribes who did the copy work. With the advent of the printing press
at about the middle of the fifteenth century the symbols were fairly well
standardized, only slight changes in form having occurred since then.
Consider the individual symbols: it is quite clear that the symbol for
“one,” 1, was a natural outgrowth of such things as one tally, one stick,
etc. The symbol for “two” probably began as || or=. The former followed
a rather natural evolution from || to N to &/, which is the symbol for two
used in the present-day Arabic language. Similarly, the latter symbol
may have changed from =toZ, and then to 2, which is the symbol we
use. The symbol for “three” possibly changed from {|| toWto M to w,
which is again the present-day-symbol used in the Arabic language, or
from = to Z to 3, our present-day symbol. To conjecture the origin of the
symbol we use for “four” is much more difficult. The Arabic symbol for
four, €, is the only symbol involving four joined straight lines for the
number four. Little is known or conjectured about the origin of the other
symbols. The table on page 454 of Newman, Vol. I, gives an interesting
comparison of the shapes of the Hindu-Arabic symbols from the twelfth
century to the advent of the printing press in the fifteenth.

1.5b Exponents

Since it is easier and more convenient to use exponential notation in
discussing place-value systems, we review exponents briefly at this time.

You may recall that the idea of exponent is a convention in notation
that we adopted by definition. Just as it is easier to write 5n instead of
n+n+n+ntn, so we also agreed to write 10® instead of 10-10- 10.
The numeral “3” is called the exponent and the numeral ““10” is called the
base. In general, " means b-b-b-b...to n factors. The superscript
“n” is called the exponent and the “b” is called the base. The whole symbol,
“b",”" is called a power of the base, b.

For convenience we review some simple consequences of our conven-
tion of writing b” instead of b-b-b-b...to n factors. Rather than prove
the results, which requires the use of mathematical induction and the
associative law for multiplication, we simply state the results without
proof and cite a few examples to make the general statements seem
plausible. (In the following a # 0.)

l am-gt= am+n

9. (am)n= a™n,
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If we define

and

then

Example 1
32.33=(3-3)3-3-3)=83-3-3-3-3)=3%

Example 2
P=22)=02-2-2)2-2-2)=(2-2:2:2-2-2)= 26,

Example 3

Case 1. 1fmis greater thann,

Case2. Ifm=n,

a a-a-a

a3

a‘a-a
Case3. Ifmislessthanmn,

2
a a*a 1
padip = =g23=g1

a® a-a-a a

Cases 2 and 3 of Example 3 illustrate the desirability of the definitions
that for any nonzero a, a=1 and a "= 1/a™ For a discussion of the
case where a is permitted to be 0 in a’ see the article by Herbert E.
Vaughan in The Mathematics Teacher, cited in the references at the end of

this chapter.
Example 4
1
What is 1077 107t = —=0.1
10
1 1
What is 47%? 42 == _
42 16

12

Exercise 1.5b
1. Simplify each of the following:
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(@) 10°-10*  (b) (a)°
(c) 27- 22 (d) 3082

2. Find the value of:

@) 10*-102  (b) 22
(c) 371 (d) 472
(e) 272-8 (£) 10 - 102

3. Find the value of:

@ G)? (b) (8%?
(© 3% (d) (22
(e) 929

1.5¢ The Decimal System

The decimal system uses the ten Hindu-Arabic symbols, 0, 1, 2, 3, 4,
5,6, 7, 8, 9, and this includes a symbol for zero. It has base ten and is a
place-value system. Any number may be expressed as a sequence of sym-
bols and is interpreted as a sum of terms made up of these symbols times
the appropriate power of ten. The power of ten is determined by the
position or place the symbol occupies with reference to the decimal point.
If the decimal point is omitted, as is usually the case with whole numbers,
it is understood that the reference point is immediately to the right of
the sequence of digits; for example, the symbols “241"” and ““241.” repre-
sent the same number.

Table 6 is an abbreviated table of place values for numbers in the
decimal system.

When we see the numeral 386 we recognize that the 6 is in the units
position and the place it occupies becomes the reference position for
determining the place values associated with the other digits. Another
way of indicating the reference point or reference position is to put a dot

Table6 Place Values

10°  1,000,000,000 billions

108 100,000,000 hundred millions
107 10,000,000 ten millions

108 1,000,000 millions

10° 100,000 hundred thousands
10% 10,000 ten thousands
108 1000 thousands

102 100 hundreds

101 10 tens

10° 1 units

10! 0.1 tenths

1072 0.01 hundredths

1073 0.001 thousandths

etc.
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immediately after the 6, that is, 386., which serves to identify the units
position. The numerals “386” and “386.”” are names for the same number.
The dot actually serves two purposes: the first as mentioned previously, is
to indicate the units position, and the other will be discussed in Section
6.13. This dot is called the decimal point. It is used in the United States and
England, but the English write it higher in the line of print than we do. In
other European countries a comma is used instead.
A symbol such as 2145.67 is interpreted as

2145.67=2-10°+1-102°4+4-10'+5-10°+6 - 107+ 7 - 1072

The sum of multiples of powers of the base is called the expanded form,
or polynomial form, of the numeral.

The chief advantage of the decimal system of numeration over the
systems we have discussed previously is its economy of symbols and its
adaptability to computation.

Exercise1.5¢
1. Write 1,020,304 in expanded form.

. Write 12 in expanded form.

2

3. Write 10 in expanded form.

4. Write 10,000 in expanded form.
5

. What is the meaning attached to the digit 3 in the numeral
3457 4357  453?
6. Simplify each of the following:

(@) 2°-98 (b) 57 - 5e

© (a2t (@) (7 ey
m? (f) B3*+b%,b+# 0

() ﬁ,m?é() (g) x?+x%,x#0

7. Find the value of

(@) 10°-10®  (b) 32- 23
(C) 23 _20 (d) 32 . 6—2
(e)y ™71 (f) 5°% - 5727
(g) 87120 (h) a3+a’ a0
1.5d Expanding and Reading Large Numbers

Example 1
56,146,929 =5 - 107+6 - 105+ 1 - 10°+4 - 10*+6 - 10°+9 - 10?
+2-10'+9 - 10°.

3,050,060,992 =3 - 10°+0- 108+5 - 10"+ 0-10+0 - 10°+6 - 10*+0 - 10?
+9-102+9-10*+2 - 10°

14 The Origin of Numerals and Systems of Numeration / cn1




The first number in Example 1 is read “fifty-six million, one hundred
forty-six thousand, nine hundred twenty-nine.” The commas are used to
mark off groups of three digits. These groups of three digits are called
periods. This grouping facilitates reading the numbers. Starting with the
first group on the right and reading toward the left, we have hundreds,
thousands, millions, billions, trillions, quadrillions, quintillions, and so
forth.

Very large and very small numbers are usually written in what is called
the scientific notation. In this notation the numbers are expressed as some
number greater than or equal to one but less than ten, times the approp-
riate power of ten. For example, 1,000,000 could be written as 1 - 108
23,000,000,000 is simply 2.3 - 10'°. The speed of light is approximately
3 - 10'° cm/sec. This would be read ‘“‘three times ten to the tenth centi-
meters per second.”

The following are given as examples of physical constants presented in
scientific notation:

Velocity of light 2.99776 - 10" cm/sec
Avogadro number 6.0228 - 1023/mole
Velocity of sound 3.3 - 10* cm/sec (approx.)
An Angstrom unit 108 cm

Constant of gravitation 6.673 - 1078 dyne
Electronic charge 4.803 - 107" esu

Mass of electron 9.107 - 10728 grams

Mass of hydrogen atom 1.673 - 1072* grams

Exercisel.5d

1. Write the following numbers in expanded form:

@) 12 (b) 121

(c) 302 (d) 10,504
(e) 10,000  (f) 9090

(® 11 (h) 1,001,001

2. Write the following in two different forms:
Example: 10! - 10> = 10'*+2 = 10% or 10* - 10> = 10 - 100 = 1000.

(@) 10°-10°  (b) 10°-10°
(€ 103-107  (d) 10 - 10"
(e) 2592 (f) 22- 22

(g) 20 . 21 (h) 210 . 210

3. Write the numbers given in problem 1 in

(a) the Roman system of numeration.
(b) the Egyptian system of numeration.
(c) the Ionic Greek system of numeration.
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4. The sum of the digits of a two-digit number is 10. If the digits are
interchanged, the number thus formed is 54 less than the original
number. Find the number.

5. In a two-digit number, the units digit is three times the tens digit. If
the digits are interchanged, the number is increased by 18. Find the
number.

6. Carry out the following calculations in scientific notation:

(@) 3-10°(2-107) = >

(b) (8- 10%)= (2 108) = ?

(© (6-10%)3-1071%) = >?

(d) Using the speed of light as approximately 3 - 10'° cm/sec and one
mile as approximately 1.6 - 10° cm, determine the speed of lightin
miles per second.

7. Write the following numbers using scientific notation:

(a) 0.0000065 (b) 0.000000087
(c) eight billionths (d) 5,700,000,000,000
(e) 6,000,000,000,000 (f) twenty-one trillionths

8. Write the following numbers in standard notation:

(a) 8.7 10° (b) 6.23 - 107
(c) 8.7-1078 (d) 6.02-10%
(e) 5-107° (f) 1.08 - 1077

9. Multiply the following, expressing the product in scientific notation
and in standard form:

(a) (107)(10°) (b) (107)(107%)
(©) (107%)(10°) (d) (3.75 - 1075)(2.24 - 10°)
(e) (7.25 - 10°)(2.16 - 107%)  (f) (6.75 - 10°)(2.42 - 107%)

1.6 THE COUNTING BOARD

Initially man knew but one use for numbers, namely, for counting
objects. The development of addition, subtraction, and multiplication
was gradual and, since the symbols were awkward to work with, special
devices were invented to aid in computation.

The Romans used a counting table, or counting board, on which lines
were drawn, each line representing units, tens, hundreds, and so on—
with the space between lines representing fives, fifties, five hundreds,
and so on. They tallied with small round discs. By placing these on the
lines and between the lines they were able to register any number they
pleased, and, by adding additional discs and simplifying, they were able
to carry out addition problems. A schematic diagram of their counting
board would appear somewhat like Figure 1. The number represented in
the schematic diagram would be 2837 in decimal notation.
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M- 1,000's
D O 500's
O AT A, 100's
L 50's
X -5 10s
v O 5's
155 I's

Figure 1. Roman counting board.

The Roman merchants displayed and sold their goods over these
counting tables. The words counting table were shortened to counter. This
is the origin of the word we employ for the fixtures in stores that are
used to display goods.

It is interesting to note that in the use of their counting board the
Romans essentially had a place-value system of numeration, but they did
not recognize it as such.

1.7 THE ABACUS

The devices developed by various peoples of the world to aid in
computation differed in appearance and, to some extent, in design. The
most popular, however, appear to have the same underlying scheme and
are classified as some form of the abacus. Basically the scheme was that
lines, grooves, or rods were used to represent units and the powers of
the base. Counters or beads were then placed on the lines, grooves, or
rods to designate how many of each of the units and powers of the base
were to be used in representing a number. These counters were not
removed from the device. Instead their position indicated whether they
were to be counted or not in the representation of a number.

The Roman abacus was a bronze or wood board. Grooves were cut in
the board and small round pebbles placed in these grooves to represent
numbers. These pebbles were called calculi, which is the plural of calculus.
This tells us the origin of the word calculate and of the word calculus when
it designates a mathematical discipline.

A schematic diagram of the Roman abacus is given in Figure 2. In this
diagram a symbol with a bar above it indicates the number represented
by that symbol multiplied by 1000. The double bar indicates multiplica-
tion by 1,000,000. Beads placed at the bottom of the groove, toward the
operator, were in the neutral position and were not to be counted. Beads
placed at the top of the groove were in the “active” position and were
to be counted. The number, in our system of numeration, indicated by
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Figure 2. Roman abacus.

the position of the beads in Figure 2 would be

1000+ 500 + 200 + 50 + 20+ 3 + 3+ % = 1773%.

The abacus developed by the Chinese, called the suan pan, was of the
rod and bead variety. A dividing bar separated sets of two beads and five
beads on each bar. Each bead above the bar had associated with it a value
five times that of a bead below the bar on the same rod. The active
position for the beads was toward the dividing bar. Beads toward the
outside were in the passive, or neutral, position. Figure 3 shows a typical

Figure 3. Chinese abacus.
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arrangement for the suan pan with the number 2347 designated by the
beads. It is interesting to note that the suan pan is still in general use by the
Chinese.

The abacus developed by the Japanese, called the soroban, is very
similar to that of the Chinese except that instead of the five-two bead
arrangement on each rod, the Japanese model is generally of the four-one
or five-one bead arrangement. Figure 4 shows a typical arrangement with
the number 27,483 indicated.

Figure 4. Japanese abacus.

Most of us, when we think of the abacus, associate it primarily with the
Orient. Actually the abacus, in one form or another, was used throughout
Europe and Asia until people became acquainted with and accepted the
decimal system of numeration and associated methods of computation.
This change did not take place rapidly. There were those who favored
the use of other systems of numeration and the use of the abacus in
computation. They were called the abacists. Opposed to these were the
advocates of the decimal system with its algorithms, or procedures, for
computation. They were called the algorists. It took approximately 500

. years for the algorists to gain general acceptance of their techniques in

computation. But by the year 1600 they had achieved their goal and had
established the arithmetic techniques which have remained in general
use up to the present time.

The abacus was then placed in a semiretired status, but this ancient
device is finding its way back into the classrooms of today. Teachers are
finding it helpful in the teaching of place value, addition, and subtraction.
With the advancements made in recent years in the field of computers,
it may be interesting to note that the abacus may be classified as one of
the first ““digital computers”.

Exercise 1.7
1. Write 385 and 583 in
(ay Egyptian hieroglyphics (b) Traditional Japanese

(c) Ionic Greek
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2. How many different symbols must one memorize in order to write
numbers less than 1000 in

(a) Ionic Greek? (b) Roman?

3. Systems of numeration can be characterized to a certain extent by
whether or not they possess the following properties:

(a) Additive (b) Symbol for zero
(c) Subtractive (d) Multiplicative
(e) Place value (f) Repetition

They may be further characterized by

(a) Number of symbols (b) Type of symbols
(c) Base
Give the characteristics of the systems studied in this chapter.
4. (a) In a place value system, base two, let 0 denote zero and 1 denote
one. Write the first 25 numbers in this system.

(b) What are the decimal numerals of the numbers written as follows
in the base two system?

10101, 10001000, 1110011, 1001101

5. What reason(s) would you give to the parents of a youngster to
justify the teaching of number systems other than our own?

(a) They help in the understanding of our own system of numeration.

(b) A youngster should know how to compute in more than one
system of numeration because it is required by state law.

(c) They help a youngster develop an appreciation of our own system
of numeration.

(d) They show the youngster the advantages of our system of numera-
tion.

6. Why are we studying the Egyptian and Greek systems of numeration?
7. Simplify:

(a) (25 . 34)(23 . 32) —
(b) (23 . 3—2)(2—4 . 35) e

8. What is the double of (a) 5000? (b) 22°? (c) 1087
9. What is one half of (a) 21°? (b) 10'2?
10. What is meant by a system of numeration?

11. All systems of numeration have certain characteristics in common.
List a few.

12. Use the symbols I, O, A, and.[® to represent the decimal numbers
1, 4, 16, and 64 respectively, and let the symbols O, I, L, and F represent
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the decimal numbers 0, 1, 2, and 3. Use whatever symbols are necessary to
write the decimal numbers 25, 100, and 197 in

() an additive system.
(b) a multiplicative system.
(c) a place-value system.

13. (a) In an additive system, base five, let 1, 5, 5%, and 5° be represented
by I, L, F, and E. Express the numbers 360, 252, 78, and 33 in this
system.

(b) In a place-value system, base five, let 0, 1, 2, 3, and 4 be repre-
sented by O, I, L, F, and E. Express the numbers 360, 252, 78, and
33 in this system.

14. The great pyramid of Gizeh was erected about 2900 B.c. In order to
appreciate some of the engineering and mathematical problems which
had to be solved using the hieroglyphic numerals, write a report on the
pyramids and, in particular, include some statistics on the largest of
them.
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Sets

2.1 INTRODUCTION

There is much in arithmetic that is clear and concise, simply and easy
to understand, interesting and intriguing. At the same time, as it is usually
taught, there is much that is not clearly understood by the teachers and
difficult for them to explain and, unfortunately, widely accepted as being
difficult to master. Many people would be reluctant to confess that they
did poorly in English or history but readily admit that they never could do
arithmetic. This attitude is due primarily to vague and incorrect presen-
tation of fundamental concepts. We hope to promote understanding and
interest by being reasonably precise in their presentation and by replacing
vagueness with clarity. We begin with a fundamental notion in mathe-
matics, the idea of a set.

2.2 SETS
In everyday life we use such words as collection, class, group, set:

a collection of stamps or coins
a set of dishes

a group of boys

the class of ’67

These words are used intuitively and freely without any thought of defin-
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ing them. They are used synonymously, and the same word may be used
in a variety of situations. It is in this spirit that the mathematician uses
the word “set.” The word set will be used to denote a collection of objects
that we shall call elements of the set.

Example 1

In a set of crayons, each crayon is an element of the set of crayons. In a
set of dishes, each dish is an element of the set of dishes. In a set of positive
integers, each integer is an element of the set of positive integers. In a set
of ideas, each idea is an element of the set of ideas.

The notion of a set of elements is a creation of the mind (an idea). The
mind unconsciously organizes objects into sets. The process starts at a very
early age. A child is shown a picture of a horse or sees a horse, and when
the animal has been given the name horse, all similar animals are readily
distinguished and identified as horses. The word horses then can be
thought of as the name of a very large set. Each element of this set is a par-
ticular horse. Different sets with different elements will be brought to
mind by such words as cows, cars, people, schools, students, etc. As soon as the
words are spoken or read, particular elements of each set come to mind. One
can speak of a rancher in Montana, a professional baseball player, a teach-
er. Each is an arbitrary element of a set and it is the generic element that is
the object of interest. In other situations one might speak of the people
in Montana, the professional baseball players, the school teachers. In each
of these, the set is the object of interest.

The decision as to membership, that is, whether or not a particular
element belongs to a set, is quite easy to make for some sets. For others
it is much more difficult. As an example, suppose we were discussing the
set of even natural numbers (consisting of 2, 4, 6, 8, and so on). Given a
particular number, it is easy to decide whether or not it is an element of
the set of even natural numbers. Thus 16 is an element of the set and 17
is not; 52 is an element of the set and 113 is not. The set of even natural
numbers is one of the type for which there is an easily tested criterion for
belonging and for which there is a definite procedure for determining
whether or not a given object is in the set.

As an example of the other type, consider the set of all people in
Chicago who are ill. Even if we knew all the people in Chicago and were
qualified as doctors of medicine we might have difficulty in making decis-
ions as to whether a certain resident of Chicago belonged to the set under
discussion or not.

In mathematics we can usually be quite precise in establishing the
criterion for belonging when we speak of sets. It is well to bear in mind,
however, that there are sets for which deciding membership is difhcult.
If you are discussing a set with someone else, be sure that you both have
the same criterion for making your decisions as to membership.
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2.2a Set Notation

Let us adopt the convention of using capital letters to represent sets
and small leters to represents elements of a set. Thus we may refer to the
set X consisting of the elements which we might label a, b, ¢, etc. The
symbol

a€X

shall mean “the object a is a member of the sét X,” or “the object a belongs
to the set X,” or simply “a is in X.”” We shall also read this as “a is an
element of the set X.”” The symbol

a & X
represents the negation “a is not an element of X.”

A set might be specified by listing its elements. Thus the pictured set
A (see Figure 1) consists of an apple, an orange, a pencil, and a table. The
pictured set B consists of four books. This method of specifying a set is
expressed by the notation used in the following examples:

C=1{24,6, 8}.

Figure 1

This is interpreted, “C is a name for the set consisting of the elements
2, 4,6, 8.” This is also read “the set C is composed of the elements 2, 4, 6,
and 8.” (Note that the symbol = is used in the sense of “‘is a name for.”)

D= {x,y,z2}.
D is a name for the set consisting of the elements x, y, and z.
E=1{1,2,3,...,20}.

E is a name for the set consisting of the first 20 natural numbers. The
dots in the listing of the set E mean that the sequence of natural numbers
is to continue to, and include, 20.

A set might also be specified by giving a criterion for belonging to the
set. This is usually done by describing a common property of the elements,
for example: the set X consists of the set of all red-haired people; the set
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Y consists of all red-haired men; the set Z consists of all red-haired men
in Montana. Notice that increasing the number of conditions or proper-
ties that an element must have in order to be a member of a set tends to
decrease the size of the set. ’

We also use the following “‘set builder” notation to indicate sets:

A = {x|x has a certain property}.

We read this, “4 is the set of all x such that x has a certain property.”
(Here we have shortened “is a name for” to ““is.”

The symbol x is called a variable. Some writers refer to it as a pronumeral
because it is a symbol related to a numeral in the same way that a pronoun
is related to a noun. It is used to denote any element of a particular set.
The set is called the domain of the variable. We will specify the domain
unless the set is easily understood from the context. We will use generally
letters from the last part of the alphabet as variables. The statement
“x has a certain property” is a condition on the variable x.

Exercise2.2
The set of whole numbersis {0,1,2,3,4,5,6,7,...}.

1. What is the difference between 32 and {32}?

2. Classify each set as to whether it is easy or difficult to establish mem-
bership, and tabulate the elements of the set if possible.

(a) All months of the year that have exactly 30 days.
(b) All months of the year that have exactly 29 days.
(c) Alleven integers greater than 43.
(d) Allintegers that are perfect squares and less than 61.
(e) All numbers whose squares are zero.
(f) The five students not attending the University of Montana who
learned the most in high school.
(g) All good boys.
(h) All fractions between zero and one.
(i) All healthy men in Chicago.

3. (a) List ten elements in the following set:
X = {m|m = 2k and k is a whole number}.

(b) Isit easy to determine membership in this set?
(c) What are elements of this set called?

(d) What is the domain of the variable £?

(e) What is the condition on the variable m?

4. (a) List ten elements in the following set:
Y = {n|n=2k+1 and k is a whole number}.

(b) What are the elements of this set called?
(c) Whatis the domain of the variable &?
(d) What is the condition on the variable n?
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2.3 SUBSETS
We often find elements of one set which are also elements of another.

If all the elements of one are also elements of another we have a special
useful relationship which we define as follows.

Definition 2.3a. The set A is a subset of the set B if every element of
A is an element of B.

We use the symbol 4 C B to denote this. This is usually read “4 is a
subset of B.” Notice that the possibility that 4 and B are different names
for the same set is not excluded.

Example 1

LetA=1{1,2,3,4,5,6}and B=1{1,2,3,4,5,6,7,8,9}; then 4 is a sub-
set of B, for every element of 4 is an element of B.

B

1,2,3,4,5,6,7,8,9
N

A4

Example 2
IfA=1{4,3,5},B=1{3,5,4},thend4 C B.

Example 3

Let A be the set consisting of all people in the United States and let B
be the set consisting of all the students in the first grade in the United
States. B is a subset of 4. If we let C be the set consisting of the girls in
the first grade in the United States, then C is a subset of B. Notice also
that Cis a subset of 4.

According to our definition,

1. A C Aand
9. IfC C Band B C A,thenC C 4.

Definition 2.3b. The set A is a proper subset of B if every element
of 4 is an element of B, but at least one element of B is not an
element of 4.

We use the symbol 4 C B to denote this. This is read, “‘4 is properly
contained in B.” This can also be written B D A4 and is read “B properly
contains A4.”

Example 4

Let A= {a,b}. The sets {a} and {b} are proper subsets of 4. Notice
that they are also subsets of 4. On the other hand, the set {a, b} is a sub-
set but not a proper subset.
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The word animals refers to a set of living
objects. The word horses refers to another set of Animals
living objects. The statement that every horse is
an animal is the same as the statement that the
set of horses is a subset of the set of animals.
Figure 2 will help you visualize these sets.
Notice that this is a pairing of the terms ‘“‘ani-
mals” and “horses” ina particular way, that is, the
set of horses is related to the set of animals. The set Figure 2
of horses is “included” in the set of animals. We
say that the set of horses is related to the set of
animals by inclusion, and we use the notation

{horses} C {animals}.

Inclusion is a relation between sets in the same way that ““is a relative
of”’ is a relation between people.

Example 5

F = {n|n is a whole number and is divisible by 4}.
R = {y|yis a whole number and y = 32}.
S = {x|x is a whole number, x is even, and x is between 30 and 34}.

Note that the domain of the variable # in the set F is the set of whole
numbers. There are two conditions on the variable in F. What are they?
What are the conditions on the variable x in the set $? Notice that R and
§ are both sets which consist of the same element 32. (This is sometimes
read as ‘“‘singleton 32.”)

We have indicated two ways of specifying sets. It may happen that the
same set may be specified in several different ways. We need some cri-
terion for determining whether a set specified in one way is the same, or
distinct from, a set specified in another way.

Definition 2.3c. Two sets, A and B, are the same if every element
of 4 is an element of B and every element of B is an element of A.
We denote this 4 = B.

From the definition it follows that A = Bif 4 C Band B C A.

According to this criterion, the sets R and S of Example 5 are the same:
R=S.

Example 6

Let A=1{a,b,3,7} and B={3,b,a,7}. Then A = B. It is also true that
A C BandthatB C A.

Example 7

Let C={a,b,a,a} and D = {a, b}. Then C = D. Itis also true that C C D
and thatD C C.

Notice in Example 7 that every element in the set C is in the set D and
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every element in the set D is in the set C; therefore C = D. It will be our
practice to treat the same letter or same number or same object which
appears more than once in any listing of the elements of a set as only one
letter or one number or one object. For instance, the letter a appears
in the listing of the elements of the set C three times. For our purposes,
the set C has only two distinct elements. In some of the textbooks for
kindergarten and primary, this practice seemingly does not prevail. To
simplify the art work, a set of three rabbits or four triangles will have
drawings identical in appearance representing the three rabbits or the
four triangles. However, the practice is to treat the rabbits, the triangles,
or other objects as being distinct. This does not lead to learning wrong
concepts since at that level the objects are used for counting, matching,
etc., and not to teach inclusion relationships between sets. (For an ex-
cellent discussion of set equality see the article of that name by Prof. Roy
Dubisch in the May 1966 issue of The Arithmetic Teacher.)

2.3a The Empty Set
It will be useful to introduce a new set called the empty set (or void set)
which we denote by @ or { }. The empty set @ is the set that has no ele-
ments. Its occurrence seems natural and convenient if we consider the
following examples.

Example 1

Let A = {s|s is a student under 21 years of age}
and B = {s|sis astudent over 21 years of age}.

The set of elements common to both 4 and B is empty; that is, there
is no student who is both under 21 years of age and over 21 years of age.

Example 2
LetA={a,b,c} and B={1,2,3}.
The set of elements common to both 4 and B is empty.

Example 3

LetA={0,1,2,3} and B = {0, 4, 5, 6}.

The set of elements common to both 4 and B is {0}. Itis not the empty
set. It is the set containing the number zero.

Two sets, X and Y, which have no elements in common are said to be
disjoint (see Definition 2.4c).

2.3h The Universal Set

In discussions of sets we will have in mind some fixed class of objects to
which the discussion is limited, and the sets we mention will be sets of
elements from this fixed class. The fixed class is referred to as the univer-
sal set or the universe. The universal set is not the same for all problems.
When discussing sets consisting of natural numbers, the universal set
could be the set of all natural numbers. In other problems the universal
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set may be the set of all people, the set of all students, the set of all real
numbers, etc. We designate the universal set by the symbol U.

2.3¢c Counting Subsets

Counting is not always as easy as it may appear. Some problems involv-
ing counting may be difficult because of the extremely large numbers
involved, whereas other problems involving counting may be difficult
because the “‘things” being counted may be hard to distinguish.

The man who, in return for a favor to the king, modestly asked for one
grain of wheat on the first square of a checker board, two grains on the
second, four on the third, each time doubling the amount on the previous
square for the 64 squares on the checker board, posed a problem of the
first type.

Counting subsets of a given set could be a problem of the second type
without some helpful hints. It is particularly useful to observe the follow-
ing principle.

If an event can occur in M ways and, after it has occurred in any one of
these ways, a second event can occur in N ways, then the two successive
events can occur in M - N ways.

Example 1

If there are two routes from city 4 to city B and three routes from city
B to city C, then there are six routes from 4 to C. The six routes identified
by number and letter are (1, a), (1, ), (1,¢), (2,a), (2, b), (2, ¢) (see Figure

3).
1 a
< R
2 c
Figure 3

In counting subsets of a set with n elements, an “‘event” will be “placing
an element.” This event can occur in two ways: either place the element
in a subset or do not place an element in a subset. After the first element
has been disposed of, the second element is placed. This can also be done
in two ways. Since there are n elements, there are

2:2---2=2"
[ ——
n factors

ways of forming subsets of a set with n elements. If the choice “do not
place” is made for each of the elements of the set, the resulting set is the
empty set. If the choice “place” is made for each of the elements of the
set, the resulting set is the set itself. Therefore, when we say there are 2"
subsets of a set of n elements, this includes the empty set and the set itself.
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Exercise2.3

1.

D G W N

7.

LetP={2,3,5,7};S={2};0=13,5,7}; 0 ={ }.

(a) Which of the sets are subsets of the set P?

(b) Which are proper subsets?

(c) Which sets are subsets but not proper subsets?
(d) How many subsets has the set P?

. IsS € P? Explain.
. Is§S C P? Explain.
. Is§ € §? Explain.
. Is§ € §? Explain.
. Consider theset S = {0, 1,2, 3,4,5,6,7, 8}.

(a) Select a subset of S so that each number in the subset is even; odd.

(b) Select a subset of S that contains all the numbers in § that are
multiples of 3; of 1.

(c) Select a subset of S that contains all the numbers in S that added
to 3 give 5; that added to 3 give 2; that added to 3 give a number
in S; that added to 0 give a number in §; that added to 4 give a
number notin §.

(d) Select a subset of S so that twice each number in the subset is
not in S; three times each number in the subsetisin S.

(e) Select a subset of S so that five more than twice each number
in the subsetisin S.

Let S be the set of all even numbers and T the set of all odd numbers.

Use the set-builder notation to specify the sets S and 7.

8.

How many committees can you form if you have three people to

choose from?

9.

How many committees can you form if you have four people to

choose from?

10.

11.

12.

(@) Is0 € @?

b) Is¢ € ¢?

(c) If Aisaset,is # asubsetof 4?
(d) Is ¢ asubset of ¢#?

(a) Specify the singleton set {George Washington} in three different
ways.

(b) Specify the set {2, 4, 6, 8} in two different ways.

(c) Specify theset {4, 2, 8, 6} in two different ways.

(d) What can you say about the set consisting of the girls who are
graduates of West Point Military Academy?

(e) Is the set, whose only element is the empty set, empty? That is,

is{g} =02

Read the article, ‘Set Equality”’, by Dubisch. (See references.)
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2.4 NEW SETS FROM OLD

Because we can do more than just discuss them, sets are of mathemati-
cal interest. We shall see how to construct new sets in terms of given sets,
thereby defining operations involving sets.

2.4a Union of Sets

Definition 2.4a. The union of two sets, A and B, is the set of all
elements that are in 4, or in B, or in both.

We denote this 4 U B. (Note that this is the inclusive use of “‘or.”) An
element will belong to 4 U B if the element belongs to 4, or B, or both.
In our set-builder notation

A U B = {x|xis an element of 4 or B or both}.

Example 1
Let A= {a,b,¢} and B={1,5,a,x,y}; then4 U B={a,b,¢, 1,5,x,3}.

Example 2

Let A = {x|xis a student in the freshman class}, and
B = {x|x is a freshman boy}; then
A U B = {x|xis astudent in the freshman class} = 4.

2.4b Intersection of Sets

Definition 2.4b. The intersection of two sets, A4 and B, is the set of
all elements that are in both 4 and B.

We denote this 4 N B. An element will belong to 4 N B if it belongs
to both 4 and B. In our set-builder notation

A N B= {x|xis an elementof A and B }.

In Example 1, Section 2.4a, 4 N B = {a}. In Example 2, 4 N B= B,
which denotes that the intersection of the set which consists of all the
freshman boys with the set consisting of all the freshmen is the set of
all freshman boys.

Definition 2.4c. Two sets X and Y, whose intersection is the empty
set are said to be disjoint, that is, the sets X and Y are disjoint if
XNny=4g.

Example 1

Let A=1{1,2,3,4,5}, B=1{3,4,5,6,7,8,9}, and C={11,12}; then
ANB=1{3%45},4NC=¢,and BN C= @. 4 and C are disjoint. B
and C are disjoint.
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Example 2

In the diagrams in Figure 4 let A be the set of all points inside and on
the circle marked 4; let B be the set of all points inside and on the circle
marked B; and let C be the set of all points inside and on the circle
marked C.

These diagrams are called Venn diagrams. The sets corresponding to
the intersection and union of the various sets are shaded and marked.

Exercise2.4

Draw Venn diagrams as in Figure 4 and shade the regions corre-
sponding to the following unions and intersections. Label each diagram.
When you have finished, decide which of the symbols in problems 1
through 12 represent the same sets.

ANB BncC

ANC (ANB)NC AUB
Figure 4
1.AN B NCO) 2.(AUB)UC 3. AU (BUCQC)
4. BN A 5 ANB 6. CUB
7. BUC 8. AN BUCOC) 9. AU B NC)

10. ANB)UMANC) 1L (AUB)NAUC) 12.(ANB)NC

13. In each of the following diagrams, give the symbolic description
of the set indicated by the shaded region. Make it as simple as possible.

B 2 4
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14. In planning for a birthday party for her daughter, Mrs. Jones made
a list of the children according to their preferences in refreshments. It

was as follows:

Ice Cream Cake
Tom Ted Ted Tobe
Jim  Jack Tim Jane
Joan June  John Sono
Sam Tim Jill Jan

Apples
Sue Jack
Ted John
Jil  June
Sara Tim

There were no two children with the same name.

(a) List the names of the children who like both ice cream and cake.
(b) List the names of the children who like both ice cream and apples.
(c) List the names of the children who like both cake and apples.

(d) List the names of the children who like all three.

(e) Illustrate these sets with Venn diagrams.

2.5 THE COMPLEMENT OF A SET

Definition 2.5. If A is a subset of the universal set U, the set of all
elements of U that are not in 4 is called the complement of A.

We use the symbol 4’ to signify the complement of 4.

Example 1

If U is the set of students in a university and M is the subset consisting
of the men students, then M’ is the set of women students.

Example 2
LetU=1{a,b,c,d, e}, and
A={a,e,c}; then

A =1{b,d}.

In general, if

AU B=U,and
AN B=4,

then 4 and B are complementary sets, and

A" =B, and
B'=4.
In particular,

U'=@,and
B =U.
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2.6 MEMBERSHIP TABLES

Earlier we described set membership. It is convenient for the purpose
of identifying equality of compound statements involving sets to intro-
duce the concept of membership table.

Let x be an arbitrary member of the universal set U; and let 4, B, C, and
so on, be subsets of U. Then the element x in U can be related to a par-
ticular subset of U in exactly one of two ways: it either belongs or it does
not belong to that set. Thatis,ifx € Uand4 C U,thenx € dorx & A,
but not both. Thus, according to our way of counting established in sec-
tion 2.3c, if we have two subsets of U there are 2% or 4 possibilities. Three
subsets would give us 23 or 8 possibilities. The possibilities for member-
ship in two subsets of the universe along with the membership table (Table
1) for the basic set operations appears in Figure 4.

Table 1
Possibilities
for Union Intersection Complement
membership of of of
forx € U Aand B Aand B A

XEA x€EB x€(AUB) x€(ANB) x €A

G
RS
CESREES
NN
= o

Each symbol in the columns tells whether the statement above it is true
or false. For example, if an arbitrary element x € U is a member of the
set 4, the letter T appears; if it is not, the letter F appears. Reading across
the first row tells us that if an arbitrary element of the universe is an ele-
ment of A and an element of B, then it is an element of 4 U B, but it is
not an element of the complement of 4.

Example 1

Construct the membership table for4 N (B U C)andfor (4 N B) U
(A N C)and draw a conclusion about these sets (Table 2).

The first three columns of Table 2 indicate the eight possibilities for
membership in the three subsets of U. The other columns were con-
structed in order from left to right to indicate membership in the com-
binations of sets we are interested in. We note that the membership table
for A N (B U C) is identical with that for (4 N B) U (4 N C). We
concludethat4 N (B U C)=(A NB)U (4N C).
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Table 2

xEA xEB x€EC xEBUC) xEANBUC) xEANB) x€(ANC) xE (4N B)UdNC)

o B B e

o o B R

T TR T < T

o R R

R

o o R

o B B e

i nlal el R R
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Exercise 2.6

1. Translate the following into verbal statements:
@ AU Ad=A4,AU @ =4,and4 U U=U.
(b AUB D AandA4 U B D B.

(¢) IfC C Aand C C B,thenC C 4 U B.
(d)4 U B=4difandonlyif4 D B.

e ANA=A,ANU=A,andAd NG =¢.
(f)ANBCAand4d N B C B.

(g) IfC C AandC C B,thenC C 4 N B.
(hy4A N B=Aif,andonlyif, 4 C B.

2. Find the union and the intersection for each of the following pairs
of sets:
(a) A={1,3,5},B=1{2,4} (b) 4=1{1,3,5},B=1{1,3,5}
() A=1{1,3,5},B={1,2,3} (d) 4=1{2,8,4},B={2,4}
A4=1{2,3}, B={1,23} (f) 4=1{2,4,6},B={2,3,5}

3. Let U be the set of natural numbers {1,2,3,4, ...}, E the set of even
natural numbers, 4 the set of odd natural numbers, and B the set {1, 2, 3,
4,5,6}. Perform the following set calculations giving each result in two
ways: by tabulation (perhaps incomplete) and by description.

(@ EU U (b) EU 4 (c) AU B
(d)EUB e ENU f)EN A
(8 ANB (h EN B () (AUB)NE

G)AUBNE) (KENAUB () EN(4UB)

4. Whatis4 N Bif
(a) A and B are disjoint? (b) A and B are identical?
(c) 4 C B? (dy 4 D B?
(e) A and B overlap?

5. Whatis4 U Bif
(a) 4 and B are disjoint? (b) A4 and B are identical?
(c) A C B? (dy 4 D B?
(e) 4 and B overlap?

6. Let U={1,2,3,4,5}, C={1,3}, and 4 and B be nonempty sets.
Find 4 in each of the following:
() AUB=U,ANB=@,andB={1}.
(b)4cCB,AUB={1,5},andd N C=4¢.
() ANB={3},4 UB=1{2,3,4},andB U C={1,2,3}.
(d) 4 and B are disjoint, B and C are disjoint, and the union of 4 and B
is the set {1, 2}.
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7. In the following diagram, let U be the U

set of all points inside and on the rectangle
and let 4, B, and C denote the points inside "Q
and on the circles as marked. Use slanted "‘

lines to indicate the set A'; use lines slanted v
in another direction to indicate the set
B'. Now draw a similar figure and shade
the set (4 U B)'. Verify that

(@ (AUB)Y=A4" NB’ byAaucCy=4"NncC
(c) Verify these equalities using membership tables.

8. Follow the instructions of problem 7 and diagram (4 N B)', A',
and B’.

(a) Howare(4 N B)',A’, and B’ related?
(b) Whatis(4 U B U C)'?
(d) Test your conclusions with membership tables.

9. How many subsets can a set with five elements have? How many
proper subsets?

10. An oversimplified human blood classification may be considered
as accomplished in three tests, the A4-test, the B-test, and the Rh-test, to
each of which a person’s blood either reacts or does not react. Let us desig-
nate these tests 4, B, and RA, respectively. Let A be the set of people whose
blood reacts to the A-test, B the set of people whose blood reacts to the B-
test, and RH the set of people whose blood reacts to the Rh-test.

(a) Whatis meantby A N B N RH'?
(b) Whatis meantby (A’) N B N RH'?

Under this oversimplified classification there are eight mutually ex-
clusive classes into which people fall by blood groups as indicated in
the following table:

Sets of People International  Sets of Tests Approximate
Classified by Designationof  to which Percent of
Blood Group Blood Group  People React Population*

A'NB'NRH O Positive {Rh} 38

A'N B N RH O Negative {} 7

A N B NRH A Positive {4, Rh} 31

A NB NRHA A Negative {4} 6

A'NB N RH B Positive {B, Rh} 11

A'NB NRH B Negative {B} 2

A NB NRH ABPositive {4, B, Rh} 4

A NB N RH  AB Negative {4,B} 1

*Hyland Reference Manual of Immunohematology.
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Let D be the set of tests to which a prospective donor’s blood reacts and
let R be the set of tests to which a prospective recipient’s blood reacts.
One of the conditions for a safe transfusion expressed in set language
isD C R.

(c) Who is a potential donor for a person of theset A N B N RH'?
(d) Who is a potential donor for a person of theset A’ N B N RH'?

Although “‘universal donor” and “universal recipient” are terms
which are not completely accepted in present-day hematology, under
our oversimplified classification the following questions are meaningful:

(€) A “‘universal donor” belongs to which set of people?

(f) A “universal donor’s” blood reacts to which set of tests?
(g) A ‘“‘universal recipient” belongs to which set of people?

(h) A “‘universal recipient’s” blood reacts to which set of tests?

2.7 THE CARTESIAN PRODUCT OF SETS

The Cartesian product of two sets 4 and B is quite unlike the sets4 U B
and A N B. The elements of the Cartesian product are not elements from
A nor elements from B but rather what we call ordered pairs.

Ordered pairs occur quite naturally. We encounter ordered pairs when
locating places on maps. Highway maps usually have a sequence of
numerals spaced equally along one border of the map, say the bottom
border, and a sequence of letters equally spaced along one of the vertical
borders. A list of the towns will have after each name a number and a
letter. For instance, on a map of Montana we find Missoula— 4-D. Follow-
ing along the lower border until we find the numeral 4, we then move
along a vertical line until we are opposite the letter D on the vertical
border. Missoula is located in this way by the pair (4, D). The 4 is called
the first component of the ordered pair, and D is called the second com-
ponent. On road maps, letters and numerals are used to strengthen the
concept of the ordered pair. The labels on the borders of military maps
are usually numerals. Thus a hill may be designated by the ordered pair
(705, 600). It is understood that one reads the first component along the
horizontal edge and the second component along the vertical edge. In
this way the ordered pair locates a single point. If the pair (705, 600) were
not understood to be an ordered pair, we would have to check the pair
(600, 705) as a possibility for locating the hill.

Definition 2.7a. The Cartesian product of the sets A and B is the
set of all ordered pairs (a, b)) where the element in the first place,
a, is an element of 4 and the element in the second place, b, is an
element of B.

In order to distinguish the elements of the Cartesian product from
one another and to avoid duplication, we must establish a criterion for
“sameness.” When are two elements the same?
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Definition 2.7b. Ordered pairs of the Cartesian product are the
same, and we write (@, b) = (¢c,d) if and only if e = cand b = d.

We denote the Cartesian product of sets 4 and B by the symbol 4 X B,
and we read this as “‘the Cartesian product of 4 and B” or simply as “4
cross B”. In our notation

AXB=1{(a,b)|laisin4and bisin B}.

Example 1

Let A= {a, b} and let B={0,1,2}. Some elements of the set 4 XB
are (b, 2), (a, 1), and (b, 0). Is the ordered pair (1, a) an element of 4 X B?
It is not because the first place element 1 is not in 4 nor is the second
place element a in B. Does (a, a) belong to 4 X B? No, because the second
place member of the ordered pair does not belong to B. Write a complete
list of the elements of 4 X B.

Example 2

Let A be the set consisting of the whole numbers 1 through 9. What
are some elements of the Cartesian product 4 X 4? Is (1,1) an element
of A X A? Yes; in fact,

AXA={(n,m)|ncanbe any of 1,2,3,4,5,6,7,8,9, and m can be any of
1,2,3,4,5,6,7,8,9}.

Example 3

The following type of question appears on tests. Draw a line from
each word in the column labeled 4 to a word with the opposite meaning
in the column labeled B.

A4 B
good small
large light
dark bad

up
smooth

In this question, one is simply specifying certain elements of the Car-
tesian product of A4 and B such as (good, bad), (large, small), (dark, light).

The Cartesian product of any two sets may be represented pictorially
using perpendicular lines and the same scheme used by map makers.
Along the horizontal axis we label equally spaced points with the elements
of the first set and equally spaced points along the vertical line with ele-
ments of the second set. Following the usual convention, we read along
the horizontal axis first and then along the vertical axis. The pictorial
representation of the Cartesian product of the sets 4 = {a, b,c} and B =
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AxB

N (a,9) (5,9 €9
L_l@o (,6) ©6)
B | l@9 (.5 ©5)
NS ®,1) @1
P 5 ¢
A

(1,5,6,9} would be the points whose addresses or coordinates are the
ordered pairs of 4 X B.
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Exercise2.7

1. Let A = {blue, green, gray} and let B = {31, 43, 47, 59}. Tabulate the
set A X B.

2. (a) List the subsets of E = {0, 1}.
(b) WhatisEX g7
(¢c) Whatis E X {2}?

3. Specify each of the following sets in another way:

(a) X = {n|n is a whole number and has remainder 0 when divided
by 2}.

(b) Y = {m|mis a whole number and is not a multiple of 2}.

(¢) Z = {k|k is a whole number and has remainder 1 when divided
by 2}.

(d) W= {p|p=2nand nis a whole number}.

4. Let the sets 4, B, and C be the points inside and on the circle, as in
Example 2, Section 2.4b. Draw Venn diagrams of the following sets:

(a ANB byANBNC
©AUBNCY (dANBYUMANDCIC)

5. LetA = {a, b, c,d}. How many subsets has 4 X 4?

6. LetA=1{1,2,3},B=1{2,8,4},C={8,4,5},and D= {4, 5, 6}. Tabu-
late each of the following sets:

(@ 4N B by BN C

(©04AdNnCcC (dANBNC

(€ (ANB)N(CND) (f) (AXA) N (BXB)

(8) (4 N BYX(4 N B) (h) (CXC) N (DXD)

(i) (C N DYX(C N D) (j) What can you say about (f) and (g)?
(k) What can you say about (h) and (i)?
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7. Whatdoes4 N (B U C) equal if

(a) Aand B are disjoint? (b) Bisidenticalto C?
(c 4 CC? (d) 4ADBANCH#H.)
(e) Cisthe empty set?

8. Let X=1{a, b, ¢}, A= {a}, B={b}, C={c}, D= {a, b}, E={a, c},
F={b,c}. ThenS={@,4,B,C,D,E, F, X} is the family of all subsets of
X, sometimes called the power set of X. Insert the correct element of §
in each square of the following tables:

Uul|e|4|B|C|D|E|F|X N4 B|C|D|E|F|X
0 2
A A
B B
C C
D D
E E
F F
X X

9. Illustrate that 4 N (B U C)=(4 N B) U (4 N C) by the use of
Venn diagrams, such as in Figure 4.

10. In problem 14, Exercise 2.4, let I denote the children who like ice
cream, C denote the children who like cake, and 4 denote the children
who like apples. Describe each of the following sets by listing the names
in each.

@lIna4 (b)CﬂA

©CNnI C\RASY|
@Indnc ¢ cud
(@Iuduc

How many children attended the party?

11. You, as a representative of a company selling soft drinks, are in-
terested in putting soft-drink dispensers in the Student Union. The
company is interested in finding out how many people like orange soda,
grape soda, and strawberry soda. You hire a boy for $50 to poll 1000
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students. He is to count only those who indicate a liking for at least one
of the drinks. You observe your helper and see him drinking coffee in
the lounge most of the time. Later he comes to you with the results of
his poll as follows:

Orange 596
Grape 710
Strawberry 427
Strawberry and Orange 274
Orange and Grape 430
Grape and Strawberry 309
All three 212

You have serious doubts about how he obtained these figures, but you
are willing to pay him the $50 if the figures “‘add up.” Would you pay
him? Use a Venn diagram to help you solve this problem.
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Relations and Their Properties

3.1 INTRODUCTION

In mathematics, the concept of relation is extremely powerful and
useful. Its power lies in its simplicity and its usefulness lies in its generality.
A formal treatment of this concept as a mathematical object is of recent
origin, even though mathematical relations have been subject to intensive
investigation for a long time. In particular, the treatment of relations as
sets of ordered pairs has not been universal and certainly not yet widely
adopted. However, the realization of just how basic and fundamental this
concept is in arithmetic and in mathematics is recognized and unchal-
lenged. If anything is to be labeled “‘new math” in the elementary curric-
ulum, the concept of relation must be included. The study of inequalities
and the introduction to the concept of functions are “new’” and both
are special cases of the broader concept of relation.

The concept of relation is introduced early because special instances
of relations, such as equals and equivalence relations, are helpful to the
clear understanding of the abstraction called number, of fractions as
rational numbers, as well as other aspects of mathematics. Precise knowl-
edge of other relations, such as “order” and “‘inequalities,” is essential
to the orderly development and correct mathematical treatment of the
numbers we use. Finally, the modern approach of arithmetic emphasizes
the algebraic structure, the patterns and properties associated with the
algebraic operations. The importance and the role of the order properties
of the numbers and the notions which derive from them will be given
adequate treatment in this book.

43



3.2 RELATIONS

Objects and ideas are seldom thought of or spoken of alone. They
occur in thought and in speech with other objects and other ideas. Con-
sciously or subconsciously we associate, we compare, we classify, we evalu-
ate, and in so doing, we think or speak of objects in the light of relations
they bear to other objects. That is, much of human activity is concerned
with pairing elements of sets according to some condition, some rule, or
some formula. This pairing of elements of sets according to some criterion
is what is meant by a relation.

When we compare, we are pairing things according to some specific
condition or criterion.

John is taller than Susan.

Itis colder in West Yellowstone than at Denver.
The Dow-Jones industrial average was lower today.
Set A is a subset of set B.

When we classify, we are pairing in such a way as to form nonover-
lapping, identifiable sets.

Roses are red and violets are blue.
That is a rhododendron, not a camellia.
That car is like this car. They are both 1925 Model T Fords.

When we evaluate, we are pairing objects and things to a particular
ordered set.

Helen is a B student.
The Yankees are in the second division.
He charged 47 dollars for his labor.

Different as these examples cited may appear to be, each is a specific
instance of a relation, a pairing of objects according to some criterion. We are
interested in the relations as well as the things which are related.

3.3 PROPERTIES OF RELATIONS

In order to recognize and identify the properties of relations we wish
to consider enough examples so that we can observe that some relations
have these particular properties and others do not (Table 1). For some
of the relations we appeal to the reader’s intuition for the conditions or
criteria for the relations to hold true. For others we shall be more precise
because of their importance in mathematics.

3.3a The Reflexive Property

The pairing of objects can be described in many ways, and we have
used terminology that suggests the relation. Using this language we note
that some relations pair an object with itself. For example, grass ‘‘is the
same color as” grass; the set 4 “is a subset of” the set 4. For other rela-
tions this is not true. The relation “is a daughter of” does not have this
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Table 1

Criteria
Set on which or
Relation Defined Symbol Condition
“is a daughter of ” People None Understood
“is the same color as” Objects None Understood
*“is a subset of ”’ Sets - See Definition 2.3a

“is parallel to”

“is less than”

“divides”

“divides”

“is equal to”

““is a classmate of ”’

“is taller than”

Straight lines in I

Whole numbers <

Whole numbers |

Natural numbers |

Sets =

Childrenin a graded None
elementary school

People None

No points in common
or all points
in common

a < bif thereisa
nonzero whole number
ksuchthata+k=1>

alb if there is a unique
whole number % such
that b = ak

ajbif there is a unique
natural number % such
that b = ak

See Definition 2.3c

Understood

Understood

property. Neither does the relation “is taller than.” The relations that
pair an object with itself are said to have the reflexive property.

Definition 3.3a. We say that the relation ® is reflexive if it is true
that each element x of the set S in which the relation is defined is
related to itself; that is, ® is reflexive if x ® x forallxin S.

Example 1

Let us define a relation @ in the set consisting of the students in a class

in the following way. A student in a class, whom we may call x, will bear
this relation to a student, y, if they are the same height. Here we might
encounter ambiguity in interpretation, that is, what do we mean by
“same height?”” To avoid such complications let us say that heights shall
be expressed to the nearest half inch. We may symbolize our relation,
x @ y. We can readily see from the definition of this relation that for
any student x,x @ x. The relation as defined is reflexive, or the relation
@ possesses the reflexive property.

We appeal to the reader’s tolerance to permit us to say that such state-
ments as “‘a boy ‘is a classmate of” himself”’ and “an orange ‘is the same
color as’ itself” are true.

Does the relation “is parallel to” have the reflexive property?
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Does the relation “divides” in the natural numbers have the reflexive
property?

Does the relation “divides” in the whole numbers have the reflexive
property?

Which of the other relations in Table 1 have this property?

3.3b The Transitive Property of Relations

The statements “quantities equal to the same quantity are equal to
each other” and “lines parallel to the same line are parallel to each other”
are familiar to the reader. More generally, the statement *things related
to the same thing are related to each other” exemplifies the transitive
property of relations. A less common but more useful way of expressing
this property is to say, for elements a, b, and ¢ in a set in which the relation
is defined, that if ¢ “is related to” b and b “‘is related to’’ ¢, then a *“is related
to” c.

Definition 3.3b. A relation ® is said to be transitive if the hypothesis
that a is related to b and b is related to ¢ leads to the conclusion
that a is related to ¢; that is, ® is transitive if a ® b and b ® ¢
implies a ® ¢.

Example 1

The relation “is taller than” has this property. If we know that Roy
“is taller than” John and John “is taller than” Bill, we can conclude
that Roy “is taller than” Bill.

Does the relation ““is the daughter of ”” have the transitive property?
Does the relation “is the same color as’ have the transitive property?
Does the relation ““is a subset of ”” have the transitive property?
Which of the other relations in Table 1 have the transitive property?

3.3c The Symmetric Property of Relations

Refer back to Table 1, and note that it is not true that if Mary “is the
daughter of” John, then John “is the daughter of” Mary. In fact it is
not only untrue but it even sounds ridiculous! On the other hand, it is
true that if Mary’s eyes “‘are the same color as” John’s, then John’s eyes
“are the same color as” Mary’s. The relation “is the same color as”’ has
a property that “is a daughter of” does not. The relation ‘‘is a classmate
of” also has this property. The relation “is a subset of ” does not. This
property is called the symmetric property.

Definition 3.3¢c. A relation ® defined on a set S has the symmetric
property if for any elements a and 4 in S, whenever a ® b, then

b® a.

Does the relation ‘‘is parallel to”” have the symmetric property?
Does the relation “is less than” have the symmetric property?
Which of the other relations in Table 1 have the symmetric property?
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Exercise 3.3c

Make a list of the relations in Table 1 and indicate which properties
each relation possesses.

3.4 EQUIVALENCE RELATIONS

The discussion of the relations in the previous section shows that rela-
tions can be quite distinct and yet can share certain properties. The proper-
ties that we have so far attributed to relations are the reflexive property, the
symmetric property, and the transitive property. If we use the symbol ® to
represent an arbitrary relation, and g, b, and ¢ to represent any elements
of aset S, then

1. ®isreflexiveifa ® aforallain S.
2. ®is symmetric if whenever ¢ ® b, then b ® a.
3. ®is transitive if whenever ¢ ® band b ® ¢, thena ® c.

The relation “is the same color as” is reflexive, symmetric, and transi-
tive. The ordinary equals relation that you have been using in mathe-
matics has all three of these properties.

In general, there are many other relations that exhibit these three
properties. Because of the role such relations play in mathematics, they
have been given a special name.

Definition 3.4a. Any relation ® that is reflexive, symmetric, and
transitive is called an equivalence relation.

Example 1

Let us consider the set S consisting of all animals and define a rela-
tion in this set in the following way:

An animal x is related to an animal y and we shall use the language x
“is the same species as” y if they are of the same species. We shall assume
that ““a dog is the same species as a dog” is a true statement.

The relation “is the same species as” is an equivalence relation. It is
reflexive since an animal “‘is the same species as”” himself. It is symmetric
because if a first animal is the same specie as a second animal, then the
second animal is the same species as the first. It is transitive because if
a first animal is related to a second and the second animal is related to
a third, then they are all of the same species and the first animal is related
to the third.

This relation partitions the animals into classes which, in this case, are
called species.

Any equivalence relation ® defined in a set S has the effect of partition-
ing the set into disjoint subsets, or classes, which are called equivalence
classes. In the foregoing example the equivalence classes are the species.

Definition 3.4b. If ® is an equivalence relation in a set S and a is
in S, the equivalence class of a is defined as the set of all elements
of S which are related to a. That is, [a] = {x € S|x ® a}.
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Also, [a] = {xin S|a ® x} since an equivalence relation is symmetric.

Notice that a is in [a], since a ® a because an equivalence relation is
reflexive.

Notice also that if « is in [b], then b is in [a] because an equivalence
relation is symmetric.

Finally, note that if ¢ belongs to both [a] and [6] then, since ¢ ® ¢ and
¢ ® b, it would follow that a ® b by the transitivity of an equivalence
relation. This implies that [a] = [b].

Thus, if [a] and [b] are equivalence classes, either [a] = [b] or [a] and [b]
are disjoint, thatis, [a] N [6] =@.

Exercise 3.4

1. Let the relation @ be defined on the set of students in a particular
school. Student x is related to student y by the relation @ if, and only if,
x is taller than y. Jim © Tom if and only if Jim is taller than Tom. Which
of the “R, §, T” properties does the relation @ have?

2. Let the relation ® be defined on the set of natural numbers as follows:
The number m is related to the number 7 if either both are even or both
are odd. We write m ® = if, and only if, m and n are both even or m and
n are both odd. Which of the “R, S, T” properties does the relation ®
have?

3. Let the relation © be defined on the set of people living in a par-
ticular city. Let person x be related to person y if x is a son or daughter
of y. We write x © y if, and only if, x is a child of y. Which of the “R, S, T
properties does © have?

4. Let the relation = be defined on the set consisting of the natural
numbers and 0 as follows: m = n if m and » have the same remainder
when divided by 7. List the “R, §, T”’ properties of the relation =,

5. What can you say about the numbers related to 0 in the last problem?
6. Let the relation = be defined on the set consisting of the natural
numbers and 0 as follows: m = n if they have the same remainder when

divided by 2. What can you say about the numbers related to 0?7 What
can you say about the numbers related to 1?

Example 3

The relation in problem 6, Exercise 3.4, is an equivalence relation.
It is the same relation as the one defined in problem 2 of the same sec-
tion. The class to which 5 belongs is [5]. The class to which 4 belongs is
[4]. Notice that 5 is also in the class [1], that is, [1] = [5]. There are really
only two classes, the even numbers [0] and the odd numbers [1].

Example 4

The relation in problem 4, Exercise 3.4, (n = m if m and n have the
same remainder when divided by 7) is an equivalence relation. We use
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this example to illustrate the effect of an equivalence relation defined
on a set. We write the natural numbers and zero in an array as follows:

0, 7,14,21,28, ...
1, 8,15,22,29,...
2, 9,16,23,30, ...
3,10,17,24,31, . ..
4,11,18,25,32, ...
5,12,19,26,33, ...
6,13,20,27,34, ...

Notice that all the numbers in each row are related to each other, that is,
each row is an equivalence class. There are exactly seven classes, for
there are only seven possible remainders when a natural number is
divided by 7. Every number is accounted for so every number belongs
to some class. Notice also that the classes are disjoint in pairs. This is
what we mean by a partition of a set.

Hence we see, as stated previously, that an equivalence relation has
the effect of partitioning a set into disjoint subsets.* The converse is also
true, namely, that any partition of a set into disjoint subsets determines
a relation that is an equivalence relation. This fact will not be exploited
at this time.

3.5 ONE-TO-ONE CORRESPONDENCE

Definition 3.5a. Two sets, A and B, are said to be in one-to-one corre-
spondence if each element of 4 can be “paired” to an element of
B and each element of B can be “paired” to an element of 4 in
such a way that distinct elements of A are paired to distinct ele-
ments of B and distinct elements of B are paired to distinct ele-
mentsof A,orif A=B=4.

If A and B can be put into one-to-one correspondence in one way, they
can be put into one-to-one correspondence in at least one other way unless
A has fewer than two elements.

Example 1

Let A= {a,b,c,d, e},and let B = {1, 5,4, 2, 6}. One possible one-to-one
correspondence would be: a < 1, b <> 6, c <> 2, d <> 5, and ¢ <> 4. An-
other wouldbe:a < 5,b < 2,c < 1,d <> 4,and e < 6.

Experiments have shown that the concept of one-to-one correspon-
dence cannot be taken too much for granted. In several tests with children
it was observed that when two sets in which the elements were arranged

*The formal definition of a partition includes the requirement of disjointness. We mention
the requirement specifically here for clarity only.
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in some orderly fashion were shown, the children responded correctly
to questions about one-to-one correspondences. When the sets were
shown with the elements in a disorderly array, many students responded
incorrectly; also, when the number of elements in the sets were increased
substantially, similar responses were observed.

Exercise 3.5a

1. Indicate how at least two other one-to-one correspondences could be
established between the sets 4 and B of Example 1, Section 3.5.

2. How many one-to-one correspondences are possible between sets A4
and B of Example 1, Section 3.5? (Hint: In how many ways can a be
“matched” to an element of B? After a has been matched, in how many
ways can b be matched to the remaining elements of B?)

3. Using the definition of “‘divides,” show that
@ 7135 (b) 8/72  (c) 3|51  (d) 9|9

4. Give a counterexample different from the one in Section 3.3c to show
that the relation ““divides” is not symmetric.

5. Let N={1,2,3,4,5,...,n,...} and E={2,4,6,8,...2n,...}. Re-
call that the dots are to indicate the sequence is to go on and on. Define
a one-to-one correspondence for these two sets.

6. Let the set A consist of the letters of the word “marbles.” Describe a
one-to-one correspondence of the set 4 with itself so that the resultant
set again constitutes a word.

7. How many one-to-one correspondences are possible between the set
in problem 6 and itself? (Each such correspondence is called a permuta-
tion.)

8. If we allow ten seconds to write down a permutation different from
all previously written permutations of the first 15 letters of the alphabet,
how long would it take to write down all possible permutations of the 15
letters? (Try to estimate the time required before you carry out the
computation.)

Definition 3.5b. Two sets A and B are “matched,”* or satisfy the
matching relation, if they can be placed in one-to-one corre-
spondence.

We shall use the symbol “1-1” to stand for “one-to-one correspon-
dence.”

This matching process is of fundamental importance in mathematics
and is introduced in the first year of a child’s formal education. You may

*Some authors use the term “equivalent” where we use the term “matched.” We believe
that the term “‘matched” is more appropriate at this time.
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recall from your own experience pictures containing, for example, three
rabbits and three children. The child is asked to show how to distribute
the rabbits so that each child has just one rabbit by drawing lines from
each rabbit to a child. This is a 1-1 process. The matching relation is
reflexive, symmetric, and transitive. The student is asked to verify this.

Exercise 3.5b

1. Verify that the matching relation is an equivalence relation.

2. Let S be the students in the Lincoln Grade School. Let the relation be
“same age as,” and, again, it is to be understood that a person is the same
age as himself. Also, let us agree to specify ages to the nearest year.
Verify that this is an equivalence relation and describe the equivalence
classes.

3. Consider the set of problem 2 and let the relation be “same sex as.”
Verify that this is also an equivalence relation and describe the equiv-
alence classes.

4, Let J=1{...,-8,—2,—1,0,1,2,3,...}, where the dots indicate that
the numbers continue indefinitely in both directions. On this set let us
define the relation “‘is a multiple of ”’; as follows: For m and n inf,m"“isa
multiple of ” n if there is a unique % in J such that m = n - k. Assume that
0=n-0 for any n, and —n = n - (—1) for any n. Is this relation an equiv-
alence relation? ’

5. On the set J of problem 4 let us define a relation as follows. If m and
n are elements of ], m is related to n if their difference is a multiple of 4
(see problem 4). For example, 9 is related to 5 because 9 —5 =4, and 4
is a multiple of 4. Also 25 is related to 41 because their difference is 16,
and 16 is a multiple of 4. Is this relation an equivalence relation? If so,
describe the equivalence classes.

6. What do you mean when you say that 1+1+1+1=4? 2+2=4?
I1+3=4? 14+3=3+1? §=4 65—-1=4

3.6 THE CARDINAL NUMBER OF A SET

The one-to-one correspondence or matching relation is an equivalence
relation. It partitions the sets of all objects into equivalence classes. The
singleton sets have the common property of “oneness.” The sets with two
objects have the common property of “twoness.” The sets with three
objects have the common property of “threeness.” Thus every set has a
name associated with it. This is not a profound notion. In fact, it is the
idea used to teach children to count. The teacher points to pictures of
sets of 3 rabbits, 3 children, 3 hats, and so forth, each time saying the word
“three,” and the idea of “‘threeness” is impressed on the child at an early
age. It does not take long for a child to learn to say the words one, two,

36 / THE CARDINAL NUMBER OF A SET 51



three, four, five, six, seven, eight, nine, and ten. It takes more time for a
child to learn the meaning of the words.

Counting probably had its origin in keeping track of possessions, but
this was possible without numerals. Pebbles in a bag, notches on a stick,
and knots in a rope are some of the devices that have been used in
“keeping tally” (see Newman). The essential idea was the one-to-one
correspondence between the set being counted and the objects in the
representative set or counting set. Man’s recognition of what 2 pebbles,
2 shells, 2 notches, 2 knots, etc., have in common marked the real begin-
ning of arithmetic. Certain words in our language seem to suggest that
at one time man did not recognize, and give a single name to, the common
property of matched sets. The words brace (of pheasants), yoke (of oxen),
pair (of dice), couple, and others that convey the idea of “twoness” are
examples.

When the abstraction of “‘twoness,” ‘‘threeness,” etc., was realized,
that is, that the same identifying word or symbol could be used for all
matched sets, the next step was to give names to these abstractions. The
abstractions themselves are called numbers, and the names or symbols
that we give them are called numerals. Thus when one counts a set of
objects by calling off the number words, “one, two, three, . ..,” he is prac-
tically doing what the primitive man did when he put pebbles in the skin
bag. A one-to-one correspondence is established between the counted
objects and the number words.

One difference should be noted. It was immaterial which pebble was put
in or taken out of the bag first, second, third, and so on, but the number
words must be used in a prescribed order.

9 < i)

Definition 3.6. A nonempty set S will be said to have cardinal n, or
cardinal number n, if and only if there exists a one-to-one corre-
spondence between the elements in the set S and the set {1, 2, 3,
4,...,n}. The empty set @ is said to have cardinal 0.

If S is a set, then n(S) denotes the cardinal number of S, or the cardinal
of S. Itisread “nof S.”

Example 1

If$={1,2,3,4,5,6}, then n(S) = 6.
If4={a,b,c,d,e.f, g h, i}, then n(4) = 9.
IfB={a,b.c.d} and C = {c,d, e,f}, thenn(B U C)=6.

We can define finiteness using these notions. We say that a set is finite if
there is a natural number 7 such that the set can be put in a one-to-one
correspondence with the set {1, 2, 3,4, ..., n}. Otherwise we say the set is
infinite.

The ideas presented in the last few paragraphs are discussed more fully
in Chapter 4.
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Exercise 3.6

In the following, let 4 be the set of dots inside the oval marked 4, let B
be the set of dots inside the oval marked B, let C be the set of dots inside
the oval marked C, and let D be the set of dots inside the oval marked D.

¢ D

A L ] * L ] [ ]

B : : L ] L ] [ ]
1. n(d)=? 2. n(B)=">?
3. n(C) =2 4. n(D)=">
5. m(A4 U B)=>2 6. n(d U C)=>
7. n(4 0 B)="? 8. n(B N D)=>
9. Verify thatn(4 U C) = n(4) +n(C)—n(4 N C).

10.
12.
11.
13.

Verity that n(4 U B) = n(4)+ n(B).
Find n(4 X 4). Compare with n(4) - n(4).
Find n(4 X B). Compare with n(4) - n(B).

A group of people were interviewed and it was found that

25 like candy 37 like movies
12 like television 9 like candy and movies
4 like movies and television 7 like candy and television

2 like candy, television, and movies

How many were interviewed?

14.

If a traveler can go from Seattle to Chicago by three distinct routes

and from Chicago to New York by four distinct routes, how many distinct
routes are there between Seattle and New York?

15.

Use the idea in problem 14 to count the number of 1-1 corresponden-

ces from the set {a, b, ¢, d} to the set {x, y, z, w}.

16. LetS = {a, b, ¢}

@nlS)=>2 (b) n(SX@)=7?
OnSx{0ph=">
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3.7 MORE ON RELATIONS IN GENERAL

In our treatment of relations in the previous sections, we did not
attempt to define relation formally. Instead, we adopted an intuitive
approach to the concept of relation by citing many examples of relations,
each of which was a pairing of elements according to some specific criter-
ion. It was noted that some relations had certain properties, other relations
did not. We intentionally emphasized those properties that characterize
equivalence relations. We were motivated by two main purposes:

1. The concept of an equivalence class will be especially useful in our
discussion of the system of rational numbers.

2. The word equals is often used incorrectly in many different contexts
and with different meanings. We hoped to achieve a better under-
standing and appreciation of the equals relation as indicating
identity as contrasted with equivalence which, as we have seen, need
not mean equality (but includes equality as a special case).

Exercise 3.7

1. State the criterion for the equals relation to hold in each of the follow-
ing situations:

(a) 4 and B are sets. 4 = B.
(b) m and n are numbers. m = n.
(c) (a, b)and (c, d) are ordered pairs. (a, b) = (¢, d).

2. Explain the meaning of the word “equal” in the statement, ““All men
are born free and equal.”

3. The statement, “A half plus a half is equal to a whole,” is not neces-
sarily true. Would you be willing to accept two halves of an automobile
tire for a whole tire? Give other examples where the truth of the state-
ment depends on the interpretation of the word “‘equals.”

4. Suppose two people, both of whom like a particular cake, want to
divide the cake equally. Cutting a cake into two equal parts is a difficult
task. Knowing this, the two people agree that a reasonable criterion for
dividing the cake equally would be that each should be satisfied with the
piece he receives. How should they divide the cake with just a single cut?

5. Refer to problem 4, and decide how three people would cut the cake.

3.8 RELATIONS AS SETS

The emphasis on equivalence relations and the reflexive, symmetric,
and transitive properties may be somewhat misleading. To dispel any
notions that these are the only relations of interest or that there are no
other properties of relations that are useful, we include a brief formal
treatment of relations. This approach leads naturally to other useful

54 Relations and Their Properties / CH 3



concepts, in particular to the concept of function.

Before we become formal, let us investigate some relation-related ideas
in a programmed learning exercise.

This exercise is in the form of a simple game. The effectiveness of this
approach to learning will be self-evident provided you follow instructions
carefully and complete the exercise. Before we begin, recall that two
ordered pairs (g, b) and (x, y) are the same if and only if a = x and b = y.

The elements of a particular set are given a few at a time. As soon as you
think of an element which belongs to this particular set, write it down. As
the game proceeds continue to write elements which you believe belong to
the particular set.

(@) The elements in the first particular set are all ordered pairs. Here
are a few elements: {(Martha, George), (Mary, Abe), . . .}. Before reading
further, try to name an element of this set.

Here are some additional elements of the same set:

(Mary, Joseph)
(Blondie, Dagwood)

By now you should have an element which you think belongs to this
set. Try to fill in the criterion for belonging in the following description of
this set:

HE) | I }.

Fill in the blank in (Maggie, ). How do you determine whether a
particular ordered pair belongs to this particular set or not? We might say
that the person whose name is the first component of the ordered pair is
the wife of the person whose name is the second component. If we use (x, y)
to denote an arbitrary element of this set as we have indicated previously,
x would stand for a woman’s name and y would stand for a man’s name
and (x, y) would belong to the set if and only if x ““is the wife of 7 y.

Let us try a different set.

(b) The elements in the second particular set are also ordered pairs.

Here are some elements: {(Austin, Texas), (Atlanta, Georgia)...}.
Before you read further, write down what you think is another element
of this set.

Additional elements are:

(Albany, New York)
(Helena, Montana)

By now you should be able to name an element you think belongs to
this set. To be certain, fill in the blank of each of the following:

), (Springfield,

(—, Maine), (Sacramento,

).

In the set-builder notation we would write

{e,n]...2...2...2.
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In this instance, x is the name of a city, y is the name of a state, and (x, y)
belongs to this particular set if x “‘is the capital of ” y.

If we want to talk about the set in (a), above, we might describe the set as
the set of all ordered pairs (x, y), where x is the name of a woman, y is the
name of a man, and (x, y) belongs to the set if, and only if, x *“is the wife
of” y. This description is adequate but long-winded and even somewhat
redundant. It did not take too many ordered pairs in this set to know how
x is related to y. On the other hand, if we know the relation of x to y, we
would know the ordered pairs in this set. This being so, we might intro-
duce a simple symbol to stand for “is the wife of ” such as @, and instead
of writing x “is the wife of” y, simply write x ® y. We could then write
this set as

{Ge,y)|x ® 9y}

We might even ask, “What is this set?” Frequently, the set itself is called
the relation and we might write ® = {(x, y)|x @ y}. Here ® is used to de-
note the set defining the relation as well as the relation itself. This may
result in some confusion, but is consistent with mathematical convention.

The set in (b) above is the set of ordered pairs whose first component is
the name of a city and its second component is the name of a state. A par-
ticular ordered pair is in this set if and only if the first-place member is
the capital of the second-place member. If we use the symbol © in place
of “‘is the capital of ”’ we can specify this set as

{(x,p)|x © y}.

Following the convention of the previous paragraph, we could call
this set the relation “is the capital of”” and denote it by ©. If we do this,
it should be noted that we can either write (Atlanta, Georgia) € © or
Atlanta © Georgia. Both would be read, “Atlanta is the Capital of Geor-
gia.” It is worth noting again that if the relation between the first-place
member and the second-place member of the ordered pairs is known,
then we would know the ordered pairs and, conversely, if we know the
ordered pairs, we would know the relation. This fact has led to the
definition of a relation as a set of ordered pairs.

Definition 3.8a. A relation is a set of ordered pairs.

In the relation ““is the wife of,” it is understood that the names in the
first component of the ordered pair (x,y) are the names of married
women and the names in the second component are the names of married
men. The set of married women is called the domain of the relation and
the set of married men is called the range of the relation. In the relation in
(b), the domain is the set of capital cities and the range is the set of states
in the United States.

In earlier discussions we used special symbols to designate relations that
occur often enough to have become conventional. We used < for
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less than, > for greater than, | for divides, and < for less than or equal to.
We also used the symbol ® to denote an arbitrary relation and wrote
a ® b to indicate that a is ®-related to b. As we have just indicated, we can
also consider a relation ® as a set, each member of which is an ordered
pair. Note that we write, interchangeably, x ® yor (x,y) € ®.

Definition 3.8b. The set of all first components of elements of
a relation is called the domain of the relation.

Definition 3.8¢c. The set of all second components of elements of a
relation is called the range of the relation.

In general, the domain and the range of a relation are distinct sets.
If the domain and the range of a relation are in the same set, the relation
is said to be defined in the set. A relation with domain 4 and range B is a
subset of A X B. A relation in a set A is a subset of 4 X 4.

Example 1
Consider the set 4 = {1, 2, 3, 4}. Then the set 4 X A4 is given by the
following table:

4 1,49 @49 G (49

3 (1,3 (2,3 (3,3 (43)

2 (1,9 (22 6.3 492

1 @) @) 31D @D
1 2 3 4

From the set A X 4 consider the subset consisting of
{(1,1),2,2),3,3), 4,9}

4 (1,4) 2,4) 3,4 4,4

L3 23 B3 43

L2 @2 62 42

Ly ¢En En @G
1 2 3 4

- ND QO

Suppose you were told that these pairs were selected because the first
component bears a special relation to the second and that only these
ordered pairs of the set 4 X A have this relation. Certainly you would
conclude that the relation described is the equals relation.

Example 2
Consider the subset {(1, 4), (1, 3), (1,2), (2,4), (2, 3), 3, D}

Ly @9 G9 “9Y

-3 @3 63 43

L2 @2 62 42

Ly @y GH @D
1 2 3 4

— NO QO W
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This subset also defines a relation. After examining the ordered
pairs in the set, you should see they describe the relation is less
than.

Example 3

Consider the subset {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4),
3,3), 4, 4)}.

L4 29 G4 &9

6L3) 23 63 43

L2 22 32 42

1, 1) (2,1) 3, 1) “4,1)
1 2 3 4

— N 0O W

This subset defines the relation divides in the set A. The relation divides
is a subset of the Cartesian product 4 X A4.

Notice that if the subset of 4 X 4 contains the diagonal elements, that
is, (1, 1), (2, 2), (8, 3), (4, 4), whatever the remaining elements of the subset
may be, we must conclude that the relation defined by the subset is re-
Slexive. Can similar statements be made with reference to the symmetric
and transitive properties of relations?

We repeat: A relation with domain A4 and range B is quite frequently
defined as a subset of the Cartesian product, 4 X B. A relation in a set
Ais asubsetof 4 X A.

A continuation of our programmed learning exercise leads to part (c).

(¢) The elements in this particular set are all ordered pairs of numbers.
Here are some elements in this set: (7,9), (1, 3), and (10, 12). With so few
ordered pairs, the relation being suggested may not be evident. Here are
some more elements in the set: (2, 4), (3, 5), and (4, 6). Can you fill in the
blank in (11, )? Can you fill in the blank in (x, )?

Describe the set in set-builder notation as

{(, 9] ...}

An ordered pair of numbers belongs to this set if and only if the second-
place number is larger by 2 than the first-place number. Thus, if the first-
place number is x, the second-place number is x+ 2. We write

{(x, y)| yis 2 greater than x} or

{(x,x+2)| xis a number}.
Since these two sets are the same,

(x,9) = (x,x+2) forallx.*

*Of course we might have been considering y = x+ 2+ (x — 7)(x — 1)(x — 10)x? since when
x = 7, this expression also yields 9 for y and similarly gives y = 3 whenx = 1 and y = 12 when
x=10. But throughout this discussion we are assuming the ‘‘natural” and “simplest”
relations possible.
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But this is so if and only if x = x and y = x+ 2. Since x is always equal to
x, we might say that this relation is determined by the equation

y=x+2.
(d) What relation does the following set suggest?

{(1,1),(2,4),3,9), 4,16), (5,25), .. .}.

Think of this as {(x, y)|(criterion for pairing x and y)}. This set can also
be thought of as {(x, x?)| x is a number}. Since these two sets are the same.

(%,9) = (x,x?) forallx.
Thus this relation is determined by
y=x%
The last two relations (¢) and (d) are examples of a special kind of re-
lation called a function.
Relations may be classified in terms of the manner in which they pair

the elements. This pairing is sometimes called a correspondence. There
are four kinds of correspondences. They are:

1. One-to-one correspondences.

2. Many-to-one correspondences.
3. One-to-many correspondences.
4. Many-to-many correspondences.

These correspondences occur quite naturally and are illustrated in the
following diagrams.

?‘jdem ?
ool

One-to-one Many-to-one
o <
ol o ® ® ® ©®
o o ®0 0 (06006
One-to-many Many-to-many
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The one-to-one and many-to-one relations are of special interest and are
called functions.

Definition 3.8d. A relation is single valued if it is a one-to-one or
many-to-one correspondence. This is often expressed as, x ® y
and x ® z cannot happen unless y = 2.

In set notation (x,y) € ® and (x,z) € ® cannot happen unless y = z.
Definition 3.8e. Single-valued relations are called functions.

Functions play a central role in mathematics. For relations that are
functions, single letters are used. Such relations are usually referred to
as the function f, the function g, etc.

Since functions are relations, a function is a set of ordered pairs. If the
first-place member is denoted x, the second-place member is frequently
denoted by f(x). Thus a function can be thought of as: f= {(x, f(x))|x
i1s in the domain of the function and f(x) is paired to x according to a speci-
fic condition or criterion}. Thus

(%, 9) = (x, f(x)) if and only if y = f(x)

and x is in the domain of f. Thus the function is determined by the
equation

y=f ).
Note that y=x+2 and y=x? are both instances of this more general
situation.
Every relation has an inverse.

Definition 3.8f. The inverse of a relation ® is the set of all ordered
pairs (y,x) for which (x,y) is in ®. We use the notation ®! to
denote the inverse relation.

Example 4
If ® is the relation <, then ®'is the relation >.
3 <5h h>3

3,5) € ® 5,3) € ®

Example 5

If ® is the relation “is a factor of” in the set of natural numbers, then
®~1is the relation “is a multiple of.”
21isa factor of 6, (2,6) € ®
6 is a multiple of 2, (6, 2) € ®!

Example 6

An alternate way of depicting the relation of example 2, Section 3.8,
is by using the convention described in Section 2.7, but deleting the
ordered pairs.
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Here the dots in the diagram repre-
sent the ordered pairs. Those that
are circled are the pairs defining the
relation {(1,2), (1,3), (1,4), (2,3),
(2,4), (3, 4)}. The set of points which
depicts the relation is called the
graph of the relation. The elements
of the domain are plotted along the
horizontal axis. The elements of the
range are plotted along the vertical
axis.

Example 7

The graph of the relation discussed in (c) of this section is shown below.

5 —
4 L
3
2
y=x+2
1 —
0 | | | L
0 1 2 3 4 5
Example 8
The graph of the relation discussed in (d) of this section is shown
below.
5 ——
4 -
3 —
2 y=x
1 -
o | | | L
0 1 2 3 4 5

38 | RELATIONS AS SETS

61



62

Exercise 3.8
1. Let4 = {Boise, Helena, Olympia, Salem}.
B = {Idaho, Montana, Washington, Oregon}.

(a) Construct 4 X B.
(b) Indicate the subset defined by the relation ‘“is the capital of.”
(c) Indicate the set defined by the inverse of the relation in (b).

2. If fis a function, the inverse of fis a relation. When is the inverse of
fafunction?

3. What is the difference in meaning between the symbols

(a) (a,b)and (b, a)?
(b) (a, b) and {a, b}?

4. (a) Which of the relations described by the following graphs are
functions? (See Example 6, Section 3.8).
(b) State the domain and range of each relation that is a function.
() Which of the relations have inverses that are functions?

y y
4 o} 4 o]
3 o} 3 . -0
2 o} 2 o}
1 o} 1 . .
X —
1 2 3 4 1 2 3 4
(a) (b)
y y
4 o - 4
3| - o o - 3 © ©
2| 6 o - © 2
1o - e - 1| o o}
T (4
1 2 3 4 1 2 3 4
(o) (d)

5. Define an order relation in the set consisting of the pupils at Garfield
Elementary School.

6. Let W denote the set of whole numbers, {0, 1, 2, 3,...}. Define a

® = {(a,b)|la € Wand b € W and a—bis divisible by 3}.
Which of the following are true and which are false?
Justify each answer.

(@ (1,13) e® b) (—2,13) € ® (c) 1®4
(d) 5®27 (e) ®is symmetric (f) ®is transitive
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REVIEW EXERCISE 1

1.

Provide the word or phrase to replace the dash that makes each of the follow-

ing a true statement. Supply enough words to make the statement complete.

(a) is a name for a number.

(b) is a set of symbols and some scheme for using these to give names
to numbers.

() is an example of an additive system of numeration.

(d) is an example of a multiplicative system of numeration.

(e) is an example of a place-value system of numeration.
(f) A unique feature of the decimal system of numeration is
(g) MCMLXVII is the Roman numeral for (decimal numeral).
(h) Thesymbolsa € X means .
(1) For two sets, A4 and B, if every element of 4 is an element of B
and every element of B is an element of 4.
) is the set which has no elements.
(k) The union of two sets 4 and B is the set
() The intersection of two sets 4 and B is the set
(m) If A C U, then the complement of 4 with respect to U is the set of all
elements .
(n) Two sets, 4 and B, are said to be disjoint if
(0) There are subsets of a set of n elements.
(p) The Cartesian product of two sets 4 and B is the set of all ordered pairs
(a, b), such that .
(@ A relation® defined on a set S is reflexive if, for allain S, .
(r) A relation®defined on a set S is symmetric if, for alla and b in S,
(s) A relation® defined on a set S is transitive if, for all @, b,and cin S.
(t) An equivalence relation is one that is
(u) If set A can be placed in one-to-one correspondence with the set {1, 2,

3,4,5,...,n}, then nis said to be of the set 4.
(v) Relations described in terms of correspondences fall into four classes.
They are .

(w) A relation defined by a set of ordered pairs, no two of whose first com-

ponents are the same, is called
(x) For two sets, 4 and B, 4 is a subset of B if
(y) Arelation defined on a set 4 is a subset of
(z) A single-valued relation is called a

In each of the diagrams on page 64, shade the region that is symbolized below
each diagram.

In each of the diagrams on page 64 write the set of symbols below each diagram
that describes the shaded region.

. Let T = {m|m = 3k, k a whole number}.

(a) Is T asubset of W, the set of whole numbers?

(b) Is T a proper subset of W?

(c) T (has fewer elements than), (has more elements than), (can be matched
with) W. Choose one answer.

. Let W denote the set of whole numbers, {0, 1,2, 3, 4, ...}. Define the relation

® in Wby
® = {(a,b)|la € Wand b € W and a—bis divisible by 2}.
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e
b

<D

(ANC)UB (BUONA (ANB)UC
B B
B
A
\/ !
) ] \)Q/C
(ANB)U(ANC) (AUC)NB (ANB)NC
Diagrams for problem 2
A
B B
Y B ﬂv
c c A C

Diagrams for problem 3

State whether the following are true or false and give a reason for your
answer:

(a) (13,1) E®. (b) (—2,13) E®. (c) 4®1.
(d) 27® 5. (e) ®is symmetric. (f) ®is transitive.
(g) ®is reflexive.

6. Give the cardinal number of each of the following:

(@ o (b) {4}
(© {0} (d) {(a,B)}

7. Simplify, but leave as powers

2 27-3°
@ aey o) 23
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10.

33 . 57
(©) BCE (d) 8-27¢

() 9-37*

The following is a partial list of characteristics and distinguishing features of
numeration systems:

(a) symbols for powers of the base

(b) symbol for zero

(c) order of symbols important

(d) subtraction principle

(e) repeated use of a symbol

(f) multiplicative principle

(g) additive principle

(h) place value

(1) asingle distinguishable symbol for ten

Use the letters to indicate which of these are characteristics

(aV of the Egyptian system of numeration.

(b) of the Roman system of numeration.

(c) of the Chinese-Japanese system of numeration.
(d) of the decimal system of numeration.

. Given the following correspondence of decimal numerals to symbols repre-

senting the same number:

Decimal Numeral Symbol

0 o

1 1

2 L

3 F

4 E

5 B
25 B?
125 B3
625 B*

(a) List the symbols that would be used in an additive system of numeration.

(b) List the symbols that would be used in a multiplicative system of numera-
tion.

(c) List the symbols that would be used in a place-value system of numeration.
Complete the following table:

Decimal Additive Multiplicative ~ Place-Value
Numeral System System System
(d) 98
(e) 1884 B*B*B*BIIII —_—
(f) 1930 E— FOLIO

Use symbols to indicate that:

(a) xis an element of the set B.
(b) xis not an element of the set C.
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(c) the set 4 is a subset of the set B.

(d) A is the set which contains no elements.

(e) Cisthe union of sets 4 and B.

(f) Dis the intersection of sets A and B.

(g) sets A and B have no elements in common.

11. Thirty students go on a camping trip. Twelve students return with both
sunburns and insect bites. Twenty report sunburns. How many suffered insect
bites if it is known that only three students suffered neither?

12. LetU={1,2,3,4,5},C={1, 3}, and 4 and B be nonempty sets.
(@ AUB=UANB=g@,andB={1},4="7?
(b) A C Band4 U B={4,5},B="?
() ANB={3},4UB=1{2,3,4tandB U C={1,2,3}. 4=">
13. Let us try to make up a system of numeration. Since the place-value system is

the most efficient, we will use the symbols A, —, C, 2, and the ideas of place value
as follows:

n(g) =A.

n({A}) =—.
n({A,—}) = C.
n({A,—, C})= 3.

(a) In this system, what is the cardinal of the set {¢,x, w, ¢, 7, g}?
(b) What number follows 2 A3?

(¢) What number is four times 2, C —?

(d) What number is one-fourth of 3 C —?

REVIEW EXERCISE 2

1. Let 0 represent zero, I represent one, L represent two, and a, b, ¢, d represent
3, 3%, 3%, 3% respectively. Make a table as follows and, using the necessary
symbols from this set, represent the given decimal numbers in (a) an additive
system of numeration, (b) a multiplicative system of numeration, and (c) a
place-value system of numeration, where the resepctive place values are units,
threes, nines, twenty-sevens, eighty-ones, and so on.

Additive Multiplicative Place-Value
9
25 _ _

109

2. Let I denote the set of all people.

M denote the set of all male people.

W denote the set of all female people.

R denote the set of all red-haired people.

T denote the set of all people 21 or more years old.
Describe the following subsets of I in words. (For example, W N R is the set
of all red-haired females.)

@ MNR ®OGYRUT
@OMOW AMUT
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10.

Let4={1,2,3,4},B = {a, b, c}.

(a) Make the table of 4 X B.

(b) Make the table of 4 X 4.

(c) Pick the subset of 4 X A such that the numbers of the ordered pairs are
related by “less than.”

. Given the set 4 = {1, 2, 3, 4, 5, 6}, produce a set matched to 4, that is, one

that is related to 4 by the “matching” relation.

. GiventhesetM = {1,2,3,4,} and N = {a, b, ¢, d},

(a) establish a one-to-one correspondence between M and N.
(b) How many such correspondences are there?

. GivenM = {1,2,3},

(a) list all subsets of M,
(b) How many subsets are there of a set of five elements?

. Consider U={1,2,3,4,5,6,7};

A4=1{1,2,3,7}; B={3,4,6,7); C={45}

(a) Draw a Venn diagram of the sets U, 4, B,and C
(b) Describe the following sets by listing the elements:
() ANB 2 AU (BUC)

(3 AUB (4 AN (BUC)
GYAN(BNC) (6)4U(BNC)

. List the properties (i.e., reflexive, symmetric, transitive) p-<sessed by each of

the following relations defined on the specified sets:

Set Relation
(a) The natural numbers “is greater than”’
(b) The natural numbers “divides”
(c) Straightlinesinaplane  ‘“is parallel to”
(d) Pupils at Paxon School “is in the same grade as”
(e) Animals “is the same specie as”’

(f) Which of the above relations are equivalence relations?

. Define the following:

(a) The union of two sets.

(b) The intersection of two sets.

(¢) The empty set.

(d) The Cartesian product of two sets.
(e) Subset.

(f) Equivalence relation.

(g) Function.

(h) Order relation.

Letd={1,2,3},B={1,2,3,4},and C = {4,5,6, 7}.
(a) Find n(4), n(C), n(4 U C), and n(4 N C). Write n(4 U C) in terms of
n(A),n(C),and n(4 N C).
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(b) Find n(A4), n(B), and n(4 X B). Write n(4 X B) in terms of n(4) and
n(B).

(c) Find n(C X B) and write it in terms of n(C) and n(B).

(d) Find n[(4 U C) X B] and write it in terms of n(A4), n(B), and n(C).
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The System of Whole Numbers

4.1 INTRODUCTION

Teaching a child to count is more than teaching him to repeat the words
one, two, three, etc. Teaching a child to count is actually teaching him to
recognize the common property of matched sets and properly label this
abstraction, just as teaching a child the various colors involves distinguish-
ing the colors and properly labeling them. “Number blindness” is not yet
listed as a physiological disorder as is “color blindness.” The matching
process distinguishes sets with a precision that cannot be accomplished by
the eye in distinguishing colors. The number concept should be easy to
teach and interesting to learn.

In previous chapters we introduced the notion of sets, relations, and
properties of relations, and we examined a few examples of relations de-
fined on sets. Various relations were seen to have certain properties in
common. Those relations that are reflexive, symmetric, and transitive
occur so frequently in mathematics and are so important that they are
designated by a special name, equivalence relations (see Section 3.4). The
effect of an equivalence relation on the set on which it is defined is to
partition the set into subsets, which we call equivalence classes. The matching
relation defined on sets in terms of the fundamental concept of one-to-one
correspondence is an equivalence relation, and the common property of the
sets in an equivalence class of this matching relation is called a cardinal
number.

The names and symbols given to these abstractions are called numerals.
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Thus the symbol “1” represents the number which is the distinguishing
feature of the equivalence class of all sets with the property of “oneness.”
When we write the symbol “1”, we can form a set that consists of this
symbol. We denote this set {1}. The symbol “2” represents the number
which is the distinguishing feature of the equivalence class of all sets with
the property of “twoness.” A representative set for this class is the set
{1,2}. In the same way we can form the sets {1,2,3}, {1,2,3,4},...,
{1,2,3,4,5,...,n},and {1,2,3,4,5,6,7,...}. Intheset {1,2,3,4,5,6,
7, ...}, the dots indicate that the sequence of numbers continues inde-
finitely. This set is called the set of natural numbers. We will use the capital
letter N to denote this set.

N={1,2,3,4,5,...}.

4.2 COUNTING SETS

The sets {1}, {1, 2}, {1, 2,3}, ..., are representative sets of the equiva-
lence classes under the matching relation to which each belongs. These
sets we will call counting sets. Notice that they are ordered. That is, the num-
ber 1 always comes first in each set. The number 2 always follows the
number 1 in these sets.

Note: Some authors use the convention of replacing the curly brackets,
or braces, with parentheses when denoting ordered sets. Thus they would
write (1,2, 3, 4) as we have done with ordered pairs. This is sound mathe-
matical convention, but we will not be using ordered sets, except for or-
dered pairs, in what follows.

To introduce the whole numbers with the natural order referred to
previously, we modify a conventional procedure for the sake of simplicity.

4.3 THE WHOLE NUMBERS
The number zero is defined as the cardinal of the empty set.
0 = n(f).

The number 1 is then defined as the cardinal of the set which contains
only the element 0 as a member.

1 = n({0}).

The number 1 is called the successor of 0. The number 2 is defined as the
cardinal of the set which consists of the elements 0 and 1.

2 = n({0, 1}).

The number 2 is called the successor of 1. The number 3 is defined in like
manner, etc.

3 =n({0, 1, 2}).
4=n({0,1,2,3}).
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5=n({0,1, 2,3, 4}).

etc.

The number 3 is the successor of 2, the number 4 is the successor of 3, etc.
The successor of the number £ is denoted by £+ 1. Continuing indefinitely
we obtain the set {0,1,2,3,4,5,6,...}. This set, which we denote by W,
is called the set of whole numbers. (The particular choice of name for this set
is a matter of personal preference. Some authors call this set the set of
natural numbers. We choose to use the term natural numbers for the set
which begins with the number 1 and which does not include the number 0.)

The idea of the successor of a number serves to distinguish the natural
order of the whole numbers as opposed to another kind of order which
will be discussed in detail later. It should be pointed out that it is this
natural order which children must learn when they first learn numbers.

Example 1

There is a difference in the statements ‘4 is the successor of 3 and
“4is greater than 3.”

The counting sets start with the number 1. Counting is simply the pro-
cess of establishing a one-to-one correspondence between the set being
counted and the appropriate counting set with this natural order. The last
number in the ordered counting set is the cardinal of the set being counted.

Any number in the set of whole numbers is the cardinal of some finite
set. As we said before, a set which can be put into one-to-one correspond-
ence with one of the ordered counting sets with a last number is called a
finite set. The empty set has cardinal number 0. A set is countably infinite if
there is a one-to-one correspondence between the elements of the set and
the set of all natural numbers. Thus the set of natural numbers is itself
countably infinite, as is the set {2,4,6,8, . ..}.

Infinite sets can be characterized in other ways. Thus a set may be de-
fined as infinite if it admits a one-to-one correspondence of the whole set
with a proper subset of itself. Thus, in terms of this definition, N is infinite

since it has a one-to-one correspondence with one of its proper subsets,
{2,4,6,8,...}.

4.4 ORDINAL AND CARDINAL USE OF NUMBERS

Although there is a technical difference between ordinal and cardinal
numbers, we will not make this distinction in this book but rather emphasize
the ordinal and cardinal use of the numbers.

When we use a number in answer to the question, *“How many?”’ we are
making cardinal use of the number. That is, when a number is used to
designate the “‘size” of a set, it is being used cardinally.
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On the other hand, any use of these numbers that depends on the pre-
scribed order is the ordinal use of the numbers. The number represented
by the numeral at the top or bottom of a page in a book is an example of
the ordinal use of the number. It is the 82nd page. When a number is
used to designate a counted position, it is being used ordinally. The team
is in third place in the league standings. When we use a number to answer
the question, ““Which one?”’, we are making ordinal use of the number.
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Example 1

A person entering a bowling alley is given a slip of paper with the
numeral 9 on it. It means he is the 9th person who is waiting to bowl. This
is the ordinal use of the number. The bowler would have 8 people ahead
of him on the waiting list. This is the cardinal use of the number 8.

Exercise 4.4

1. In Little League baseball 19 boys turn out for a team. Of these, 11 are
wearing baseball shirts and 14 are wearing baseball pants. Each boy is
wearing part of a uniform and, of course, some have both. Let § denote
the set of children wearing baseball shirts and let P denote the set of
children wearing baseball pants.

(a) Whatis n(S)?

(b) What is n(P)?

(c) Whatisn(S U P)?

(d) Whatisn(S N P)?

(e) When finding the cardinal of each of the sets S and P, which boys
were counted twice?

(f) How are the numbers of parts (a), (b), (c), and (d) related?

2. A group of 40 students goes on a camping trip. Of these, 12 return
with both sunburns and insect bites, and 20 report sunburns. How many
suffered insect bites if it is known that only 13 students suffered neither?

3. If the cardinal of set 4 is 132, the cardinal of set B is 97, and the cardin-
alof set A N Bis 43, what is the cardinal of set 4 U B?
4. LetT= {m|m =3k, k € W}.

(a) What elément in T corresponds to the first element in W?

(b) What element in T corresponds to the third element in W?

(c) Is T a proper subset of W?

(d) How is the cardinal of the set T related to the cardinal of the set W?
5. LetQ={nln=2k—1,k € N}.

(a) What element in Q corresponds to the first element in N?
(b) What is another name for the set Q?
(o) fR={j|j=2i+1,i € W}, howis R related to Q?

6. If A= {a,b,c,d,e} and B = {d, e, n, m, k}, what is the cardinal of each
of the following?
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@) n(4 U B)=">?
(b) (4 N B)="?
(c) n(AXB) =?

7. LetA=1{a,a,b,c,c}.

(a) Whatisn(4d U g)?
(b) Whatisn(4 N &)?
(c) Whatis n(4 X @&)?

8. (a) What does it mean to say that a set is finite?
(b) What does it mean to say that a set is countably infinite?

9. Distinguish between the cardinal use and the ordinal use of the
natural numbers by citing examples involving the same numbers.

10. (a) Verify that “same color as” is an equivalence relation in the set of
fruit.

(b) One of the equivalence classes under this relation contains an
element which has the same name as the equivalence class. What
isit?

11. We define the relation “=" on the set W= {0,1,2,3, ...} as follows.
For any two whole numbers m and n, m = n if they both give the same
remainder when divided by 12, for example, 14 = 38, 17 = 5, etc. Verify
that this is an equivalence relation and describe the equivalence classes
by listing several representative elements from each of the equivalence
classes.

Special Problem (from the Scientific American)

You face the problem of crossing a desert that is 800 miles across. You
have a vehicle that is capable of hauling enough gasoline to travel 500
miles, including regular supply and cargo. What is the least number of
trips required to cross the desert?

4.5 SYSTEMS OF NUMERATION AND NUMBER SYSTEMS

A number as a counting concept is one notion. A number as an element
of a number system is quite different. The harmonious integration of
these two ideas comprises the fundamentals of arithmetic. For this pur-
pose it is helpful to reiterate what we mean by a system of numeration and
at the same time to give a naive, intuitive definition of 2 number system.

A system of numeration is a set of symbols and a scheme for using these
symbols to give names to all the numbers. We have examined a few of the
many systems of numeration that man has developed to meet his particu-
lar needs. These should be recalled and the symbols and schemes re-
examined in broad outline.

The system offering the greatest advantages from the standpoint of
simplicity, economy of symbols in expressing numbers of any magnitude,
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and computation is the place-value system of numeration. Such systems
with different bases will be examined in detail in Chapter 5.

By a number system we mean, from an intuitive standpoint, a set of num-
bers, operations defined on the numbers in the set, and rules governing
these operations. Without prescribed operations and specific rules deter-
mining the behavior of the elements under these operations, the numbers
would be no more interesting than a bag of marbles or a handful of
checkers. It is in terms of the set, the operations, and the rules that struc-
ture of the number system has meaning. By changing the set of numbers,
we change the structure of the number system. By changing the rules or
adding new rules, we change the structure of the number system. It is in
reference to these ideas that we will examine in some detail the following
number systems:

The system of whole numbers
The system of integers

The system of rational numbers
The system of real numbers

We shall approach each system intuitively, using the background of the
reader, precise definitions, and a certain amount of work on the reader’s
part to gain insight into the structure of each system. But first we must
look further into the “equals” concept.

Exercise 4.5

1. What is meant by an additive system of numeration?

2. Discuss the Egyptian system of numeration, stressing the underlying
scheme.

3. How does the Roman system differ from the Egyptian?

4. How does the Greek system of numeration differ from the Roman
and Egyptian systems of numeration?

5. In abase three place-value system of numeration let

0 = n(§).
1 =n({0}).
2 =n({0, 1}).

(a) What number follows 204rce?

(b) What number follows 22, ce?

(c) What number follows 12;e?

(d) What number immediately precedes 100 ce?
(e) What number immediately precedes 20yre?

6. Which number is larger?
(a) 2@ or (22)
(b) 36® or (3%)°
(c) 1040 or (10wW0)*°
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7. (a) Inwhat ways is football like soccer?
(b) How do these games differ?
(c) Do they differ in structure?

8. Distinguish between the game of checkers and the game of chess. Do
they differ in structure?

4.6 THE EQUALS RELATION

One of the sources of difhiculty in learning mathematics is the use of
symbols. The opposite should actually be true since symbols are merely
linguistic tools used to aid in communicating ideas and techniques. Most
often the difficulty stems from our forgetting the meanings that we have
agreed to give to the symbols. At other times, there is some confusion
resulting from using the same symbol in a variety of seemingly different
situations. The equals relation and the symbol for equals have in the past
been an example. Most often “=""is used in the sense that if a denotes an
object, concrete or conceptual, and if b also denotes an object, thena =15
(read ““a equals b”’) means that the object denoted by a is identical with the
one denoted by b. For the uninitiated and, in particular, in arithmetic,
the difficulty arises in the criterion for identical.

Definition 4.6. We say that two numbers, a and b, are equal and
write a = b if and only if @ and b are names for the same number.

Example 1

The symbols 2+ 3 and 5 are different numerals for the same number;
therefore we write 2+ 3 = 5.

Note that in the foregoing definition, we have defined equals for num-
bers. Previously, we defined equals for sets, and equals for ordered pairs. In
each instance we could have used either the usual meaning of “=" or the
“names of the same object” definition. We chose to define the equals rela-
tions in the different situations because in each instance we wanted to
emphasize what was necessary to determine whether the “objects” are
identical or not. That is, we wanted to stress the criteria for the relation to
hold.

It is immediately obvious to the reader that 2+ 3 = 5, but it is not imme-
diately obvious that 2483 X 17,986 = 44,659,238. The symbol “=" will be
used in other situations and in each instance the ‘‘names of the same
object”” meaning will suffice. Nevertheless, a specific criterion will usually
be included to emphasize what must be done to determine whether the
relation holds or not. Regardless of the explicit sense in which the term is
used, the relation “equals” (=) is an equivalence relation. That is,

1. For any a, a = a. (reflexive)
2. If a = b, then b = a. (symmetric)
3. If a=band b = ¢, then a = ¢. (transitive)

Where we have explicitly defined the relation, we will usually ask the
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student to use numerical examples to illustrate these properties. It is very
easy to verify them, but the details of the proofs are not always warranted.

Exercise 4.6

1. Give the specific criterion for “="to hold in each of the following:

(a) 4 and B are sets. 4 = B.
(b) (a, b) and (¢, d) are ordered pairs. (a, b) = (c, d).

2. LetN=1{1,2,3,4,5,.. }and W={0,1,2,3,...}.

(a) List some elementsin W X N.
(b) Define “="" for elements of W X N as follows
(a, b) = (c, d) if and only if ad = bc.

Use numerical examples to illustrate the reflexive, symmetric, and transi-
tive property of this relation.

3. Define “=" for elemenis in W X W as follows:

(n,m) = (r,s)ifand onlyif n +s=m+r.

Use numerical examples to illustrate the reflexive, symmetric, and transi-
tive property of this relation.

4. There are numerous situations in which one particular name for a
number is more appropriate than another. For instance, when buying
yard goods, 175 is more appropriate than 52/3. Can you think of other
situations for which this is true?

4.7 BINARY OPERATIONS

Addition of numbers is a binary operation. Multiplication of numbers is
also a binary operation. The operation of addition, which we denote by +,
assigns to each ordered pair of numbers, say (2, 3), a third number, 2 + 3.

+
(2,3) B, 2+3

. operation
ordered pair the assigned

number

Multiplication, which we denote by -, assigns to each ordered pair of num-
bers, for instance (2, 3), a third number, 2 - 3.

2,3) —L 2-3
operation
ordered pair the assigned

The term binary refers to the two numbers in the ordered pair. The term
ordered pair is used because it is not immediately obvious to a beginning
student that addition assigns to (9, 4) the same number as it does to the
ordered pair (4,9). In an application, adding the number 4 to the number
9 is not always the same as adding the number 9 to the number 4. (Ask
any first-grade pupil!)

Returning to the assigned number, we should note that there has been
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and still is the tendency to look at 29+ 33 as something to do, rather than
as a number. It is, in fact, a number. So also is 29 - 33. Computation is
simply the process of finding other names for these numbers. (Admittedly,
the symbols are numerals, but we will not overemphasize the distinction
between numbers and numerals unless it is essential for clarity.) Even
though the reader knows how to add, multiply, subtract, and divide, we
review the basic operations of addition and multiplication in terms of
sets in such a way as to make meaningful many of the ideas previously
learned in arithmetic by rote. In other words, the binary operations
themselves become objects of study.

Definition 4.7. A binary operation, denoted by *, defined on a set §
assigns to each ordered pair (m, n) of elements of S a uniquely deter-
mined element which we denote m = n.

That the element m * n is uniquely determined means that the binary
operation * assigns to each ordered pair of elements (m, n) one and only one
element. The element m x n may have other names. One of the tasks of
arithmetic is to discover systematic procedures for finding other names of
the resultant when the binary operation is addition or multiplication. This
is nothing more or less than arithmetic computation.

In some of the steps involved in these computations it may be more con-
venient to use different names for the same number; for example, we may
use 3 +4 instead of 7 or 5 - 1 instead of 5. This is a property of the “‘equals”
relation, called the substitution property of equals. This property is implicit
in our statement that the resultant of a binary operation is uniquely
determined. It is stated in general as follows:

1. A number may be substituted for its equal in any expression.
As a consequence of the substitution property it follows that

2. If equal numbers are added to equal numbers, their sums are equal
thatis,ifa =bandc=d,thena+c¢=b+d.

3. If equal numbers are multiplied by equal numbers, their products
are equal, that is, if « = b and ¢ = d, then ac = bd.

We shall often use this property in what follows and refer to it by saying
either ‘“‘unique products or sums” or “the substitution property.”

The process of finding other names of the resultant of the binary opera-
tion of addition is also called addition. Similarly, the process of finding
another name of the product of the binary operation of multiplication is
also called multiplication. That is, the terms addition and multiplication
are used for both the process and the operation. We shall discuss the
properties that addition and multiplication have as operations, and then
see how they are used in making addition and multiplication meaningful
as processes.
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4.8 PROPERTIES OF BINARY OPERATIONS

4.8a The Closure Property

Let us use the symbol ® to denote an arbitrary binary operation defined
in the set S. Let the letters a, b, ¢, etc., denote elements of the set S. The
specific operation may be addition, or multiplication, or some other binary
operation which we may use as an illustration. The assigned element
(a ® b) may or may not be in the set S. If the assigned element (a @ b)is a
uniquely determined element in the set S for all ordered pairs of elements
of S, we say that the binary operation @ has the closure property. Another
way of saying this is that the set S is closed with respect to the binary
operation.

Note that the closure property depends both on the operation and the
set. Also note that (a @ b) is treated as an element rather than something
to do!

Example 1

The set of odd numbers is not closed under addition, but it is closed
under multiplication.

Example 2

The set of even numbers is closed with respect to both addition and
multiplication.

4.8h The Commutative Property

The binary operation ® is said to have the commutative property if it
assigns to the ordered pairs (a, b) and (b, a) the same element in the set S.
We indicate this by writing

a®b=b®Da.

foralleaand bin S.

Generally, (a, b) is different from (b, a), but if the binary operation @ is
commutative, (¢ ® b) and (b @ a) are different names for the same element
inS.

To digress momentarily, recall the common meaning associated with
the word “commute.” A commuter is one who travels from home to work,
from work to home. He ‘“‘changes places.” When two elements commute
with respect to a binary operation, they “‘change places.”

It is quite common to speak of adding the number 2 to the number 9.
We indicated earlier that in the concrete sense this is quite different from
adding the number 9 to the number 2. The commutative property of
addition says that it is immaterial whether you add the number 2 to the
number 9 or add the number 9 to the number 2; the sum will be the same.
That is, the order of adding numbers is immaterial.
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4.8¢ The Associative Property
The binary operation ® is said to have the associative property if for any
a, b, and cin the set S

@®PH)BPc=a® (b ® o).

Initially, the parentheses in the expression (a ® b) @ ¢ indicate that we
first determine the element (a ® b) and then find (¢ ® b) ® c.

(d, b) @ (a @ b)
((a ® b),c) ® (@®b) Dec.

In the expression a ® (b @ ¢), the parentheses indicate that we first find
the element (b ® ¢) and thena @ (b ® ¢).

(b, c) @ b®c)
(a, (b D)) ® a® (b® o).

The associative property of the binary operation ® permits us to group
(i.e., associate) the elements as we choose. In fact, it also permits us to
insert parentheses or remove parentheses:

PP D)=aPb@Dc=@®bh) Dc.

We are interested in the associative property because there are both
associative and nonassociative systems in mathematics and associative
and nonassociative situations in physics.

4.8d The Existence of an Identity

The set § is said to have an identity with respect to the binary operation
@ if there is an element, which we denote by i, in the set S such that for
any element a in the set S, both of the following are true:

a®@i=a and 1D a=a.

The most familiar identities are the identity for addition and the identity
for ‘multiplication. The term unity element is also used and the identity
element for multiplication is often called the unit. This is not true, how-
ever, for the identity for addition.

4.8e Inverses

An element a in the set S is said to have an inverse with respect to the
binary operation @ if there is an element in S, which we denote by a7,
such that the binary operation assigns to the pair a and ™ the identity
element. That is, @™ is the inverse of a with respect to the binary operation
@if

a®a'l=4 and a'®@a=i.

The inverse with respect to multiplication of numbers is sometimes called
the reciprocal. The inverse with respect to addition of numbers is some-
times referred to as the negative and sometimes as the opposite.
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Example 1

The inverse of 3 with respect to addition is —3 and the inverse of 3
with respect to multiplication is %.

Exercise 4.8

1. Let S denote the set of whole numbers which can be written in the
form 2k, where k is a whole number. That is,

S={m|m=2k andk € W}.

(a) Does the set § have an identity element with respect to ordinary
addition?

(b) Does the binary operation of addition have the closure property?
Use numerical examples to help justify your answer.

(c) Does the set S have inverses with respect to the binary operation
of addition? Use numerical examples to help justify your answer.

(d) Does the binary operation of addition have the commutative
property? The associative property? Use numerical examples to
help justify your answers.

2. Employ the set S of Exercise 1 and let the binary operation be ordinary
multiplication.

(a) Does the set S have an identity element with respect to the binary
operation of multiplication?
(b) Does the binary operation of multiplication have the closure
property?
(c) Does the set S have inverses with respect to the binary operation
of multiplication?
(d) Does the binary operation of multiplication have the commutative
property? The associative property? Illustrate.
3. Let Q denote the set of whole numbers which can be written in the
form 2k + 1, where & is a whole number.

Q={m|m=2k+1,andk € W}.
Answer the same questions as in problems 1 and 2 for the set Q.

4. Let the set T denote the set of whole numbers which can be written
in the form 5k, where k is a whole number. That is,

T={m|m=>5kandk € W}.
Answer the same questions as in problems 1 and 2 for the set T.

5. Let W denote the set of whole numbers. We define the binary opera-
tion @ as follows. For m and 7 in W, let @ assign to the ordered pair
m @ n be the number obtained by taking m to the power n. That s,

m® n=m".
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(a) Whatisb @ 3?

(b) Does the binary operation @ have the closure property?

(c) Whatis (2 D 3) D 2?

(d) Whatis2 & (3 © 2)?

(e) Whatis3 @ (3 @ 3)?

(f) Whatis (3 & 3) & 3?

(g) Whatis 101°?

(h) Is there an identity element with respect to this binary operation?

(i) Does the binary operation have the commutative property?
Use a numerical example to justify your answer.

(j) Does the binary operation @ have the associative property?

Use a numerical example to justify your answer.

6. Let W denote the set of whole numbers and define the binary opera-
tion © as follows. For m and n in W, let © assign to the ordered pair
(m, n) the element in the first component. That is,

m@®n=m.

(a) Whatis3 ® 7?

(b) Does the binary operation © have the closure property?

(c) Does the binary operation © have the commutative property?

(d) Does the binary operation @ have the associative property? Use
a numerical example to justify your answer.

7. Let W denote the set of whole numbers and define an operation
as follows. For m and n in W, let m . n be a whole number which divides
both m and n. (The whole number a divides the whole number b if there
is a unique whole number ¢ such thatb =a - ¢.)

(a) Does the operation . have the closure property?
(b) Is 12.. 18 unique?
(c) Does this operation satisfy Definition 4.7?

8. Let U= {a, b, ¢, d} and let S denote the set whose elements are sub-
sets of the set U. Recall that there are 16 such sets including the empty
set # and the universal set U. Let the binary operation U defined on the
set S be the operation which assigns to an ordered pair of sets the union
of the two sets.

(@) Does the binary operation U have the closure property? Use
specific subsets to help justify your answer.

(b) Does the binary operation U have the commutative property? Use
specific subsets to help justify your answer.

(c) Does the binary operation U have the associative property? Use
specific subsets to help justify your answer.

(d) Does the set S have an identity element with respect to the binary
operation of union?

4.8 | PROPERTIES OF BINARY OPERATIONS 81



9. Using the sets U and S of the previous problem, let the binary opera-
tion N assign to ordered pairs of elements of $ the intersection of the
two sets.

(a) Does the binary operation N have the closure property? Use
specific subsets to help justify your answer.

(b) Does the binary operation N have the commutative property?
Use specific subsets to help justify your answer.

(¢) Does the binary operation N have the associative property?
Use specific subsets to help justify your answer.

(d) Does the set § have an identity element with respect to the binary
operation of intersection?

4.9 ADDITION AND MULTIPLICATION OF WHOLE
NUMBERS

We define addition and multiplication of whole numbers so that the
properties of each as binary operations are more plausible. Once estab-
lished, we choose to call the properties laws because they guide us in what
we can do and what we cannot do in arithmetic and indeed, in mathe-
matics. We will see how these laws enable us to save work in computation,
how they help us to find and understand shortcuts, as well as make mean-
ingful many of the things we may have learned in the past by rote.

4.10 ADDITION IN W

For whole numbers, and only for whole numbers, we define addition as
follows. The whole numbers were introduced as the cardinal of sets.
Thus if a and b are whole numbers, a is the cardinal of a set 4, and &
is the cardinal of a set B. If the sets 4 and B are disjoint, the whole number
a+ bis the cardinal of the set 4 U B.

Definition 4.10a. 1f a = n(4) and b = n(B) are whole numbers and
A N B= g, the binary operation of addition (+) assigns to the
ordered pair (a, b) the whole number a+ b which is the cardinal
of the set A U B. We write this

ifa=n(4), b=n(B),and 4 N B =, then
a+b=n(A U B).

Example 1

Let A= {a, b, ¢} and B = {x, 5, z, w}. Then 3 =n(4), 4= n(B), and
ANB=g.3+4=n U B)=n{a,bcxyzw})="T

This is not a practical way to add, but this definition does lend itself to
establishing the properties of the binary operation of addition. For
example, if A is the set of automobiles licensed in the State of New
York in 1971 and B is the set of automobiles licensed in the State of Cali-
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fornia in 1971 we would not normally find a+ b by counting the elements
in the set 4 U B. However, it is the way we actually teach children how to
add whole numbers.

Without going into unwarranted details of proof, we state simply that
two finite sets that can be matched under a one-to-one correspondence
have the same cardinal. In particular, two equal sets obviously have the
same cardinal. Closure follows from the fact that the union of two finite
sets is also finite. What is needed for uniqueness is that if, also, a = n(C)
and b=n(D), C N D= ¢, then (4 U B) = n(C U D). This follows not
only from A-C and B-D but from the (unproved) fact that if 4-C and
B-D,ANB=CND=4#,thend U B-C U D.

For any sets 4, B, and C we have

AUB=B U 4.
(AUB)YUC=A4 U (B U C).
AU g=¢g U4d=A.

In Sections 4.10 and 4.11, a is the cardinal of the set 4, b is the cardinal
of the set B, ¢ is the cardinal of the set C, and the sets 4, B, and C are
mutually disjoint,i.e.4 N B=#,4 N C=#,andB N C=4.

4.10a The Closure Law for the Addition of Whole Numbers

For any two elements a and b in the set W, the sum a+b is a uniquely
determined element in W.

As indicated earlier, this simply states that the sum of two whole num-
bers is a whole number. We will use this fact in an interesting way when
we compare numbers.

4.10b The Commutative Law of Addition of Whole Numbers
For any two elements @ and & in W it is always true that

at+b=b+a.
To prove this we write

atb=n(A)+n(B)=n(4 U B).
bta=n(B)+nd)=nB U 4)=n(4 U B).

By the transitive property of equals.

at+b=b+a.

That is, addition of whole numbers is commutative.

4.10c The Associative Law of Addition of Whole Numbers
For any three elements a, b, and ¢in W

(at+bytc=a+(b+c).
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To prove this we write

(a+b)+c=n(4 U B)+n(C)=n{(4 U B) U C)
=n{d U B U C).

a+(b+c)=n(A)+n(B U C)=n(4 U (B U C))
=n(4 U B U C).

By the transitive property of equals,
(a+b)+c=a+(b+c).

That is, addition of whole numbers is associative.

Repeated applications of the commutative law and the associative law
permit us to rearrange and regroup terms in an indicated addition
without changing the sum. That is, by the commutative law we can
change the order of the numbers in an indicated addition, and by the
associative law we can group the numbers in any manner which makes the
addition as a process easier without changing the final outcome.

4.10d  The Identity for Addition of Whole Numbers

There is a unique whole number 0 such that for any element in W
a+0=0+a=a.

To prove this we note that 4 N @ = 6 for all sets A and write
a+0=n(A)+n@)=n(d U f)=n(d)=a.

Then by the transitive property of equals, for all whole numbers a
a+0=a.

That is, zero is the additive identity.

Historically the symbol 0 played the role of a place holder in early
place-value systems of numeration. In our discussion it was introduced
as the cardinal of the empty set. As an element of the system of whole
numbers it is the identity element for the binary operation of addition. It
is that unique element of the number system which when added to any
number gives a sum that is identically equal to that number. Thus 7+0
= 7. Everyone is familiar with this fact. However, everyone is not familiar
with how to use this fact to advantage in arithmetic and in mathematics.
Some instances will be presented later.

Exercise 4.10d

The following are examples of the application of either the commuta-
tive law of addition or the associative law of addition. Designate which
law is being applied in each example.

1. 2+8=38+2
2. 2+3)+4=2+3+4)
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.atb=b+a
L xt+(yt)=(x+y)+z

L2483 4+54+7=2+3)+(5+7)

3
4
5. (a+b)+c=(b+a)+c
6
7. 2+ @+3)+b=@2+a)+3+b)
8

. Group the numbers 2, 3, 5, and 8 as a sum in several different ways;
carry out the addition and compare the final sums.

9. Distinguish between the cardinal use of the number 0 and 0 as an
element of a number system.

10. Use the definition of the additive identity to show that there is only
one additive identity in W, namely 0.

11. Let A= {u,v,w},B=1{a,a,b,b,c}, and C = {e, i, 0, k}. Verify each of
the following:

(@ AUB=BUA
b)AUBUC)=AUBYUC
AU g=gud=4

4.11 MULTIPLICATION IN W

Many of us learned multiplication of whole numbers as repeated addi-
tion. This is a valid approach, tried and tested. For instance,

5-4=4+4+4+4+4=20.

This approach is consistent with sound mathematical convention. It is
common practice to write in place of the expression a+a+a+a the
shorter expression 4-a or simply 4a. In the special instance that a is a
number, this is nothing more nor less than multiplication.

Definition 4.11a. If a and b are whole numbers, the binary opera-
tion of multiplication assigns to the ordered pair (a, b) the whole
number a- b or simply ab which is another name for the sum
b+b+b+ - - - until we have a terms of b.

a-b=b+b+b+---+b.
(a terms)

The problem with the repeated addition approach is that it fails when
a = 0. (To argue that 0 terms of 4 is 0 is sheer sophistry!)

On the other hand, in keeping with the set-theoretic approach to arith-
metic, we may, as we did for addition, define multiplication of whole
numbers in the language of sets.
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Example 1
LetA={1,3,9} and B={J,K,M,P}. Then

L.J), (1, K), (1, M), (1, P)
AXB=13,]),(3,K),(3,M),(3,P)
9.J), 9, K), (9, M), (9, P)

n(d)=3,
n(B) = 4,
3-4=n(d) n(B)=n(dXB)=12.

Definition 4.11b. If a and b are whole numbers, the binary opera-
tion of multiplication assigns to the ordered pair (e, b) the car-
dinal of the set A X B, where

= n(A) and b = n(B). That is, for all whole numbers a and b,
a-b=n(A4) n(B)=n(4XB).

Observe that, except when a =0, this definition is equivalent to the
addition approach.

Neither the repeated addition nor the Cartesian product approach is
universally accepted. Certainly it would not be reasonable to expect any-
one to multiply 789 X 987 by forming a sum of 789 terms of 987 any more
than it would be to expect anyone to count the elements in the set 4 X B
where 789 = n(4) and 987 = n(B). Sound arguments can be proposed by
the advocates of both procedures for defining multiplication of whole
numbers. Neither approach is entirely free of severe criticism from some
authoritative sources. In the interest of providing the widest possible
background for the preservice teacher, we discuss both approaches in
some detail. Since there is no way of knowing which approach will be
stressed in a particular school curriculum, some familiarity with both is
desirable and helpful.

Children can be led to discover that 3 X 6 is the same as 6 X3, 4X7 =
7% 4, and so on. They can even be led to generalize. That is, they can be
led to conjecture that, in general, when two numbers are multiplied, it is
immaterial whether the first is multiplied by the second or the second is
multiplied by the first. That is, for all whole numbers a and b,

a-b==b-a.

There should be no expectation that children should be able to prove this
fact or even to understand a proof. This fact and others should be made
reasonable and understandable. The two definitions of multiplication of
whole numbers just presented offer two ways of making reasonable the
facts about multiplication.

4.11a The Repeated Addition Approach

The repeated addition definition of multiplication of whole numbers
has the historical advantage of being more familiar to the average teacher,
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which is a very important factor in their teaching effectiveness. Further-
more, this definition requires less in the way of sophistication and back-
ground. Finally, it is the method most often resorted to in learning the
elementary facts for multiplication. This will be borne out when we work
with arithmetic in other bases (see Chapter 5).

4.11b The Cartesian Product Approach

The Cartesian product approach to multiplication of whole numbers
has the advantage that once certain facts about Cartesian products have
been established, the properties of multiplication follow easily and reason-
ably. This is not to imply that this approach is simpler than the repeated
addition approach. The logical difficulties simply occur in a different way
and in a different setting.

The following facts about Cartesian products can be easily verified for
finite sets 4, B, and C with small numbers of elements as you will be asked
to do in the exercises. They are also true for all sets 4, B, and C.

1. There is a one-to-one correspondence between the elements of 4 X B
and B X A4, and so

mAXB)=n(BXA).

2. There is a one-to-one correspondence between the elements of
(AXB)YXCand A X (B X C),and so

n[(AXB)X C]=n[d X (BXC)].

3. There is a one-to-one correspondence between the elements of
{e} X A and A.

n({e} X 4) = n(4).
4. AX(BUC)=(A%XB) U (4XC).
5. # X A= @ foranysetA.

Exercise 4.11b
LetA = {x,y,z},B={0,3},and C = {i,, k}.

1. Exhibit a one-to-one correspondence between 4 X B and B X 4.

2. Exhibit a one-to-one correspondence between (4XB)XC and
AX(BXC).

3. Exhibit a one-to-one correspondence between the set 4 and the set
{e} x A4.

4. Show that the relation A X (B U C) = (4 X B) U (4 X C) holds for the
sets A, B, and C.

5. Showthat g X4 = @.
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4.11c Closure Law

That the product of two whole numbers is a uniquely determined
element in the set W is a consequence of the definitions and some facts
about sets.

4.11d The Commutative Law of Multiplication
If a and b are whole numbers, it is always true that
ab=b-a.
This is a consequence of statement 1 about Cartesian products.
a-b=n(d) nB)=n(AXB)=nBXA)=b"a.
4.11e The Associative Law of Multiplication

Earlier we used parentheses to denote ordered pairs and, in general,
ordered sets. Parentheses are also used to denote numbers such as (2 - 4)
and (449). If such expressions occur with other operations or other
parentheses, it is understood that the operations within the innermost

parentheses or other signs of grouping such as brackets are to be executed
first.

Examples
3-(5+6)=3 11=33.
2+(3-49)=2+12=14.
5(8+203+4)]1=5(3+2-7=53+14)=5-17=85.
2-49)+@2-6)=8+12=20.

If a, b, and ¢ denote whole numbers, it is always true that
a-(b-c)y=(a-b)-c

The associative law of multiplication of whole numbers is a consequence

of statement 2 about Cartesian products.
a-(b-c)=n(A) - n(BXC)=n[AX(BXC)]
=n[(AXB)XC]=n(AXB) -n(C)=(a"b)-c.

—4

D

3.5 354 (3-5)-4

Figure 1
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That multiplication of whole numbers satisfies the associative law means
that in an indicated product of more than two factors, it is immaterial
where the parentheses are placed. In such a product parentheses may be
removed or inserted. This is simply another way of saying that it is im-
material how the factors in a product are grouped (i.e., associated), the
result is the same.

Example 1

Letx, y, and z denote numbers. Then
(2x) - (v 32) = 2xy32 = (2xy) - (32) = (2x)(y3) * z.

A combination of the associative and commutative laws for multiplica-
tion permits us to carry out the following manipulations: (a:b)-c=
a-(b-c)=a-(c-by=(@-¢c) b= (c-a)-b, etc. In particular, a-b-c is
meaningful even though the operation of multiplication is a binary opera-
tion. It dosn’t matter whether we consider a- b ¢ to mean (a-b) ¢ or
a-(b-c),since(a-b)y-c=a-(b-c).

Exercise4.11e

1. The following are examples of the application of either the commuta-
tive law of multiplication or the associative law of multiplication. Desig-
nate which law is being exemplified by each example.

@5-4=4-5 (b) (5-4)-8=5-(4-8)
() 5-4)-8=8-(5-4 () a-b=b-a
€ (x3)-z=x-(y-20 (£)3-5-7-4=3-5)-(7-4)

2. Group the numbers 3, 5, 7, and 4 as a product in several different
ways; carry out the multiplication and compare the results.

3. The following are examples of the application of one of the laws of
multiplication or addition. Identify the law exemplified by each.

@ 5-3+7)=5-(7+3)
(b)5-3+2=3-5+2

© 5-B3+2)=(3+2)-5
da-b+a-c=b-at+c-a

@ a-b-cy=(0®B-¢)-a

() (@+b):-(c+d)=(a+b) - (d+0)
(g)3-4+5+6)=3-(4+(5+6))
h)y@-b)y-c=a-b-c

4.11f The Multiplicative Identity

The number 1 plays a special role as a member of a number system. It is
the element of the number system which when multiplied by any number
gives a product identically equal to that number. It is called the multi-
plicative identity. That is, for all whole numbers a,

la=a-1=a.
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Not only do we have 1-a=a ora" 1 = abut by the symmetric property
of equality we have a=1-a or a = a - 1. This important fact is often over-
looked and is the source of some common errors in arithmetic and algebra.

To show that 1-a=a-1=a, we use statement 3 about Cartesian
products.

1-a=n({e}) n(d)=n({e} XA4)=n(d)=a.
4.11g The Distributive Law

In our discussion so far we have been considering two binary opera-
tions, addition and multiplication, on the set W. The distributive law
concerns the behavior of these two binary operations when they are com-
bined in an arithmetic operation. To illustrate:

XXX XXXXX
XXX XXXXX
XXX XXXXX

If we want to express the total number of X’s, it can be done in two ways.
We have 3 X’s in each of (3 +5) columns, or 3(3+5) X’s, which is equal to
24 X’s. We also have 3 rowsof 3 X’sand 3 rowsof 5 X’sor (3-3+3-5) X’s.
But this is also 24 X ’s. This tells us that

3(3+5)=(3-3)+@3 - 5).

Executing the operations indicated within the parentheses firstin 3(3 +5),
we add and then multiply. In (3 - 3)+ (3 : 5) we would multiply first and
then add. Since in our example the result is the same in either instance,
it is immaterial whether we added first and then multiplied or multiplied
first and then added.

In general, if a, b, and ¢ are elements of W, it is always true that

a-(b+cy=a-b+a-c.

This is the distributive law. We say that multiplication is distributive with
respect to addition in the set W.

This law can be made reasonable by making use of fact 4 of Cartesian
products. For sets 4, B, and C,

AX(B U C)y=(AXB) U (AXC).
In particular, when B and C are disjoint, we have

n[AX(B U C)]=n[(AXB) U (4AXC)].
If a=n(A), b= n(B), and ¢ = n(C), on the left we have,

n[AX (B U C)]=n(d) - [n(B U C)] = n(A) - [n(B) +n(C)] = a(b+¢).
On the right we have

n(AXB) U (AXC)=n(AXB)+n(AXC)=mn(4d) - n(B)

+n(4) - n(C).

90 The System of Whole Numbers / CH 4



That is,
a(b+c)y=a-b+ta-c, or
a(b+c)=ab+ac.

Example 1

1. 23+4)=2-3+2-4=14.
2. 23+x)=2:3+2-x=6+2x.
3. a(l+b)y=a-14+a-b=a+ab.

Recall that the equals relation has the property of being symmetric. As
a consequence, the distributive law can be written as follows:

a-b+a-c=ab+o).

In this form it reminds us that much of factoring in algebra is simply an
application of the distributive law. Thus, for example,

2:x+a-x=2+a)x.

4.11h Properties of Zero in Mulitiplication

The special role of 0 as a number is particularly bothersome to many
teachers. There are many people who still do not think of 0 as a number.
Yet they have no trouble with 0 in situations involving addition or sub-
traction. Asking them, however, to multiply by 0 or divide into 0, gives
rise to the wildest kind of responses.

For any number q,

0-a=a-0=0.

In terms of statement 5 about Cartesian products, this property of 0
follows simply. We have

0-a=n{@) n(d)=n@x4)=n@) =0.

and by the commutative law, ¢ - 0=0-a = 0.
In the special instance where ¢ = 0 we have

0-0=0,

Note that, from the point of view of multiplication as repeated addition,

3 -0, for example, has more meaning than 0 -3, since we can consider
3-0as04+0+0=0.

Exercise 4.11h

Apply the distributive law to rename the following:

1. a(b+2) 2. 2a+ac 3. 232+1)
4. 2-102+3 - 102 5.30-10+2-10

6. (a+b)c+d)=alc+d)+blc+d)
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7. (@a+b)(c+d)=(a+b)c+ (a+b)d
8. (a+b)a+b)=(at+bla+(atb)

9. x(y+2) 10. 2x+ bx 11. 2ax+ 3x
12. 2ax+b5a 13. 3-(10-10)+2- 10
14. 10-3-10+2-10 15. 2xab+a 16. (20+3)2

Assume that the operations symbolized by A and @ are defined on a
set S, and using a, b, and ¢ as elements of §, symbolize that

17. Ais commutative.
18. @is commutative.
19. Ais associative.
20. @ is associative.

21. A is distributive with respect to @.

4.12 THE SYSTEM OF WHOLE NUMBERS

We summarize our previous statements in a formal definition.

92

Definition 4.12. By the system of whole numbers we mean the set
w=1{0,1,2,3,4,...},

the binary operations, addition (+) and multiplication (-), and the
following laws. For m, n, and kin W,

Closure Laws

1. There is a uniquely determined sum which we write as m+n
inW.

9. There is a uniquely determined product which we write as
m-nin W.
Associative Laws

3. m+n+k)=(m+n)+k

4. m-(n-k)=(@m-n) k.

Commutative Laws
5. m+n=n+m.
6. m-n=n-m.

Distributive Law

7. m-n+Rky=m-n+m-k
Identities

8. There is a unique element 0 such that for any m in W,
0+m=m+0=m.

9. There is a unique element 1 such that for any m in W,
l-m=m-1=m.
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Exercise 4.12

1. Show that the multiplicative identity is unique. (Hint: Assume lis any
other multiplicative identity.)

2. Assuming that m -0 =0, show that (n+ 1) - 0 = 0. State the law used
at each step.

3. 1-5 =5 because 1 is the multiplicative identity. There are occasions
when we also write 5= 1- 5. Give an example of a situation in which it
is convenient to use 1 - 5 in place of 5. (Hint: Write 5+ 10m as a multiple
of 5.)

4. (a) Can you write 4 as a multiple of 0?
(b) Can you write 0 as a multiple of 4? Explain.

5. (a) Does 5 “divide” 0? Explain.
(b) Does 0 “divide” 5? Explain.

6. Distinguish between 0 and 1 as cardinal numbers and as elements of a
number system.

7. Show that (a +b)(c +d) = ac + ad + bc + bd, and justify each step.
8. Show that (a+b)*> = a®>+2ab+ b?, and justify each step.

9. Which number is larger?
(a) (2%)° or 287
(b) (2% or 9(0%)

4.13 ORDER RELATIONS FOR THE WHOLE NUMBERS

In much of arithmetic, in fact, in much of our everyday life, we are
interested in the biggest, the smallest, the least expensive, the most profit-
able, and so on. In the simplest instances these comparisons are easy to
make, but we do meet situations where some work is needed before we
can reach a conclusion.

Example 1

The symbol 7 denotes the number which expresses the ratio of the
circumference of a circle to its diameter. In computations involving this
symbol one is often told to use 22/7 and at other times to use 3.1416. How
do these three numbers compare? Are any two equal? If not, which is
the largest and which the smallest?

We do not intend to answer these questions at this time. It is our inten-
tion to make precise certain concepts which will in time enable the reader
to answer these questions and supply sound reasons to support his
answers. We begin by making precise the meaning of “less than” for the
whole numbers.

We define the relation “less than” (denoted by <) in terms of the one-
to-one correspondence for sets. We remarked earlier that the concepts of
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“more than” and “less than” may have had meaning in the earliest civil-
izations, even in the absence of counting systems. Preschool children
comprehend these concepts in terms of pieces of candy. Their idea of
sharing equally appears in the familiar “one for you and one for me,”
but this is the matching relation or one-to-one correspondence. If the
“one for you and one for me” ends while “‘me”" still has several unmatched
pieces, the “less than” concept has dramtic meaning for one person,
at least.

Definition 4.13. 1f A and B are finite sets and A4 can be matched to
a proper subset of B under a one-to-one correspondence, we say
that the cardinal number n(4) of the set A is less than the cardinal
number n(B) of the set B.

We write this
n(A) < n(B).

We can also read this as “n(B) is greater than n(A).” This is written
n(B) > n(A4).

Example 2

The cardinal number of the set {a, b, ¢} is 3. The cardinal number of
the set {1,2,3,4,5} is 5. The set {a, b, ¢} can be matched with a proper
subset of the set {1,2,3,4,5} so 3 < 5. The cardinal number of the
empty set is 0. The cardinal number of the set {1} is 1. Since the empty
setis a subset of {1}, we have 0 < 1.

The “less than” relation in the set of whole numbers is trivially a trans-
itive relation. A transitive relation is called an order. It is not sufficient for
an order relation to be transitive to make comparisons. It must be lnear
also. An order relation is linear if it satisfies the trichotomy law.

4.13a The Trichotomy Law

Definition 4.16a. The trichotomy law. If m and n are any two
whole numbers, then one and only one of the following relations
holds:

1. m=n.
2. m < mn.
3. m>n.

The word “trichotomy” is suggestive of the three choices which are
available. The word “‘linear” is suggestive of a “number line.”

Although the concept of the number line is familiar, we review it briefly.

On a horizontal line, which we denote by L, we choose an arbitrary
point and label this point 0. We then choose any other point on the line L
to the right, with respect to the viewer, of the point labled 0 and label
this point 1.
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We use the line segment from the point labeled 0 to the point labeled 1 to
mark off consecutive points to the right and we label these points with
the natural numbers, consecutively. Each natural number corresponds to
just one such point, and each point corresponds to just one such number.
Disregard the point labeled 0 for the moment and consider the rest.
There is a one-to-one correspondence between the natural numbers and
the points obtained in this manner.

© 1 2 3 4 5

Hereafter we shall not distinguish between these points and their cor-
responding labels. This allows us to speak of the numbers between 5 and
17, for example, with the concept of “‘between-ness” suggested by the
number line.

Given any two points on a horizontal line one is to the left or to the
right of the other or they are identical, much as the numbers are related
to each other by size. Intuitively, one number x is ““less than” another
number y if the number x is to the left of the number y on the number
line. The number line is a useful device for depicting the very important
and useful order properties of the numbers. We add, multiply, subtract,
divide, and, in general, calculate with numbers, but equally important,
we compare numbers.

0 3 5 x y
3<5 x<y

It is important to note in the statement of the trichotomy law that one
and only one of three statements is true of any two given numbers. The
implication of this is that if we know that one of the statements is not true
then one or the other of the two remaining must be true.

Example 1

Let A = {n|n is a whole number and » > 5}. Think of a whole number
which is not in the set A. The number under consideration must be not
greater than 5, that is, it must be either 5 or any whole number less than
5. We indicate this as follows. Let & be the number, then % is one of the
numbers in the set

A' = {m|mis a whole number and m < 5}. (See figure on page 96.)

s

“Not greater than,’
written <.

written ¥, is equivalent to “less than or equal,”
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To say that two numbers m and » are distinct means that either m < n
orm > n.If a < nand n < b, we abbreviate and writea < n < b.

Exercise 4.13

1. Let A= {n € W|n > 7}. Use the symbol 4’ to denote the elements
in W which are not in 4. Write the set 4’ in two ways and indicate the
sets 4 and 4’ on the number line.

2. Let X= {x € W|2x+3 = 11}. Write the set X’ in two ways and indi-
cate the sets X and X' on the number line.

3. LetY={n € W|3 <n<9}and Z= {n € W|2n > 12}. List the ele-
mentsinY N Z. List the elementsinY N Z'.

4. If 3 < 5, how is 3 + n related to 5+ n for any whole number n?
5. If 3 < 7, how is 3 - nrelated to 7 - n for n a whole number?
6. Let S= {n € W|5 < n =< 10}. Write S’ using the set-builder notation.

4.13b Bounds on Sets

We can now introduce the idea of a bound on sets of numbers.

Definition 4.13b. Let S denote a set of whole numbers. We say that
¢ is an upper bound of the set S if a = ¢ for each ain §. Similarly, we
say that b is a lower bound for the set Sif b = afor eachain §S.

Example 3

Let A = {2, 3,19}. An upper bound of 4 is 20 and 1 is a lower bound of
A. Also, 100 is an upper bound. Note that 19 is also an upper bound and 2
is a lower bound. Furthermore, 19 is an upper bound and is less than any
other upper bound.

Definition 4.13c. (1) If ¢ is an upper bound of a set 4, (2) if d is any
other upper bound, and (3) ¢ = d, then we call ¢ the least upper
bound of the set 4, that s, ¢ is the smallest of the upper bounds.

Definition 4.13d. (1) If b is a lower bound of a set 4, (2) if ¢ is any
other lower bound, and (3) ¢ = b, then we call b the greatest lower
bound of the set 4, that is b is the largest of the lower bounds.

A set of whole numbers may have many upper bounds but it has only
one least upper bound; it may have many lower bounds but it has only
one greatest lower bound.
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It may be of interest to remark that there is no biggest number less than
10. We shall say more about this later. Now it is sufficient to note that there
is a biggest whole number less than 10. It is the number 9.

Exercise 4.13a
In the following, consider n € W, and recall that the expression
a<n < bmeansthatn > agandn < b.
1. (a) Letd = {n|3 <n < 12}.
List the elements in the set 4. List an upper and lower bound of
the set 4.
(b) Let B = {n|0 < n < 4}.
List the elements of the set B. List two distinct upper bounds of the
set B.
2. If C={n|3 < n}andD = {n|n < 12},thenC N D="7?
3. List the elements in the set4 N B for the sets A and B of problem 1.

4. List the elements in the set 4 X B for the sets 4 and B of problem 1.

5. LetC = {nl6 = n = 12}.
List the elements of C. What is the least upper bound of C? List the ele-
ments of B U C (set B of problem 1).

6. List the elements in the set B N C (set B of problem 1 and set C of
problem 5).

7. Describe the sets of whole numbers satisfying the following inequalities:
() 8+n < 10.
(b) n+2 <6.
() 3+n <9and2+n <6.

8. For whole numbers, a, b, and ¢, show that if a = b, thena+c¢=b+c.
Is the converse true?

9. For whole numbers a, b, and ¢, show that if a =5, then a-¢c=1b-c.
Is the converse true?

10. State each of the properties of equality given in problems 8 and 9 in
another way.

Show that the following equalities hold by beginning with the left side
and, using the fundamental properties of the system of whole numbers,
transforming it so that it is identical with the right side. Assume the letters
are to represent whole numbers, for example,
toshow5+6+a=6+a+5

5+6+a=5+(6+a) by theassociative law of addition
= (6+a)+5 by the commutative law of addition
=6+a+5 by the associative law of addition
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Hence, by the transitive property of equals, the given equality holds.
1. x+2=2+x«

12. (x+3)+(+2)=2+3)+(x+y)
13. 3xy = x(3y)

14. (3b)*> = 9b®

15, 3(x+2y) = 6y +3x

16. 3-10°+4-10°=7-10°

17. 2-102+8-102=1-103

18. 13-102=1-10°+3 - 102

19. 3+2)4+1)=25 (two ways)
20. B3+x)2+y)=6+3y+ 2x+xy
21. (a+b)(a+b) = a®>+2ab+b?

4.13b Open sentences in one variable

The expression n < 5 is a sentence. It is read “n is less than 5.” It is an
open sentence. It becomes a statement when we substitute a whole number
in place of n.

If we replace n by 2, we also use the expression “let n equal 2,” we get
the statement

2<5 “21s less than 5”
If we let n equal 7 we get the statement

7<5 “7 is less than 5

Both 2 < 5 and 7 < 5 are declarative statements. The former is true and
the latter is false.

The numbers, which when substituted for =, give true statements con-
stitute the solution set of the open sentence. The set {6, 7, 8, . . .} is the solu-
tion set of the open sentence n > 5. (The solution set is sometimes called
the Truth Set.)

Open sentences in elementary arithmetic books often look like the
following:

1. 3+00=10
2. 245=A
3.n+4=06

The symbols [, A, and n are called variables (see section 2.2a). These
open sentences become true or false statements when the variables are
replaced by whole numbers. The sentences above are examples of simple
sentences. They are simple sentences in the same sense as used in English
grammar.
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The following open sentences are called compound sentences:

1.3<n<10
2.x=<5

The first is read “‘n is greater than 3 and n is less than 10.” It is the con-
junction of two simple sentences. If we let n =4, then both of the simple
sentences 4 > 3 and 4 < 10 are true and the compound statement is
also true.

If we let n =12, we get 12 > 3 which is a true statement and 12 < 10
which is a false statement. In this case, the compound statement is false.
The solution set of the first compound open sentence is the set {4,5,6,7,
8,9}.

—0——0—@‘
2 3 4 5 6 7 8 @9 10 11 12 13 14

Notice that the solution set of the open compound sentence is the inter-
section of the solution sets of the two open simple sentences.

The second open sentence is read “x is less than 5 or x is equal to 5.” It
is the disjunction of the two simple sentences x < 5 and x = 5. In this case,
the compound statement is true if either of the two simple statements is
true. That is, the solution set in this case is the union of the solution sets
of the two simple open sentences.

x<5 /
A\
1 2 3 4 5 & 7 & o5 1o
e x=5

Exercise 4.13b
1. Identify each of the simple sentences in the following compound
sentences.
@ 2<n=12
(by4=n<20

© B<n<Tl

2. What is the least upper bound of the solution set in each of the prob-
lems in (1)?

3. A useful convention in plotting solution sets is to use square brackets
through the point corresponding to the number when = or = is involved
and parentheses when < or > is involved.
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[&)] —1& A
B
3
g lIA
g

Plot the solution sets of the open sentences in problem 1.

4. Here are some mathematical sentences. Identify which are simple
sentences and, if they are compound, identify the simple components.

(@) a € 4 (b) a & A4
(c ACB (d) A4 ¢B
(e) 6] 18 (f) 6118

Sentence (b) is the negation of sentence (a). Sentences (d) and (f) are the
negations of sentences (c) and (e), respectively. Note that if sentence (a)
is true, then its negation (b) is false. This is more obvious in statements
(e) and (f).

4.14 FINGER COUNTING

The choice of the number ten as the base for numeration systems prob-
ably has an anatomical basis, as mentioned earlier, in that a man has ten
fingers. Some historians refer to the choice of ten as the base as a “physio-
logical accident.” But equally plausible bases on these grounds are base
five (the digits of one hand) or base twenty (the digits of both hands and
both feet). Once one exponential-positional system is known, other bases
present no problem. In fact, other bases have been and are being used.

Let us see how and why other bases might be used as well as base ten.
We are interested in this for the simple reason that investigating place-
value systems with bases other than ten leads to a better understanding of
the basic concepts involved.

After years of experience you are so familiar with counting and compu-
tation in the decimal system of numeration (the base ten system) that you
may be unaware of the difficulties a pupil experiences in his first attempts
at counting and computation.

Let us suppose you are a beginner in order that you may realize better
the problems of learning. Since you are not a “‘beginner” with the decimal
system of numeration, we will turn to some other system. It may even be
profitable to look at several other systems. We realize you do not quite have
the status of a beginner, for you have the advantage of having some
general knowledge about systems of numeration. In particular, the ideas
of place value, the symbols themselves, and the meaning of the symbols
are not strange to you. In spite of this advantage, however, you should be
able to relive some of the difficulties inherent in learning to count and
compute.

To introduce you to other methods of counting, let us describe a pro-
cedure we shall call “finger counting.” Consider the open right hand as
descriptive of zero—we have not begun to count. As we count we fold the
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fingers in, beginning with the little finger. We count—‘“‘one,” ‘‘two,”
“three,” “four”’—and we have run out of fingers. We could fold in the
thumb and make a fist to indicate five, but then we would have no more
“digits” on that hand with which to keep arecord of our counting. Instead,
let us use the left hand to record the “fists.” Now we have one finger fold-
ed in on our left hand to indicate one “fist” (five) and can open our right
hand to continue the counting. Now, instead of saying ‘six, seven, eight,”
etc., which are decimal names for numbers, let us say, ‘“‘one fist and one,”
“one fist and two,” “‘one fist and three,” “one fist and four”’; here we must
stop to consider again. If we fold in the right thumb, we really have “one
fist and one fist” or “two fists.” We can record this by folding in a second
finger on our left hand and opening our right hand. Next in our counting
comes “two fists and one,” “two fists and two,” “two fists and three,” etc.
Continuing in this manner, we soon come to “four fists and four,” then
“four fists and a fist,” or a whole fistful of fists, and we need to look for
another place to record “fistfuls of fists.”” We could turn to our toes as a
new place for keeping this record, but it is rather difficult to control toes
as one does fingers.

In any event, we have gone far enough with our discussion for you to
recognize that what we are really doing is counting in a system of numera-
tion with base five. We see that if we use the properties of a place-value
system and if we borrow symbols from the decimal system, a numeral such
as 12 would then mean ‘“‘one fist and two,” or, ‘“‘one five and two,” or,
1-5+2, or 1-5'4+2-5% (Recall that 5° = 1.) This is the expanded form
of our numeral 12 using base five.

Let us compare counting in a base five system with the base ten, or
decimal, system.

Base ten Base five

1 one 1 one

2 two 2 two

3 three 3 three

4 four 4 four

5 five 10 one five and zero

6 six 11 one five and one

7 seven 12 one five and two

8 eight 13 one five and three

9 nine 14 one five and four
10 ten 20 two fives and zero
11 eleven 21 two fives and one
12 twelve 292 two fives and two
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23 twenty-three 43 four fives and three

24 twenty-four 44 four fives and four
25 twenty-five 100 one five-fives, zero fives, and zero
33 thirty-three 113 one five-fives, one five, and three

orl-524+1-51+3-5°

Since we are borrowing symbols from the decimal system of numeration,
we are inclined to borrow names also, but there is a limitation. The numeral
12 is not “twelve” in the quinary (base five) system. We would read it as
“one five and two,” or “one-two, base five,” and symbolize it 124y, to dis-
tinguish it from the decimal numeral 12. Similarly, 214y, is “two fives and
one” or ‘“‘two-one, base five,” not “twenty-one.”

We should point out here that it is not at all necessary to use the deci-
mal symbols in our quinary system. Our familiarity with their meaning
leads us to borrow decimal symbols. We could, for instance, take five
arbitrary letters such as O, E, T, F, M, and give them, respectively, the
meaning we associate with zero, one, two, three, and four. Then the num-
erals to represent the first fifteen (decimal language) counting numbers
would look like this:

Decimal: 1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15
Quinary:E, T, F, M, EO, EE, ET, EF, EM, TO, TE, TT, TF, TM,
FO

In spite of occasional confusions, such as mistaking 12, for “twelve,”
it is easier to work with the familiar symbols 0, 1, 2, 3, 4, and we will con-
tinue to do so.

4.15 PLACE-VALUE SYSTEMS WITH BASES
OTHER THAN TEN

In a quinary system the first place to the left of our reference point (is
this a decimal point?) is the units position. This is true of all exponential-
positional systems. We associate 5° (5°= 1) with this place as its “place
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value.” The next place to the left represents the number of fives (5' = 5),
the next place the number of five-fives, or twenty-fives (5* = 25), the next
place the number of five (five-fives), or the one hundred twenty-fives
(5° = 125), the next the number of six hundred twenty-fives (5* = 625),
and so forth. We symbolize these place values by the powers of five, using
the decimal language symbol 5°, 5, 52, 5%, 5%, etc.

The first place to the right of the reference point has associated with it
571 (571 =1/5), and a digit in this place represents the number of fifths.
The next place to the right has associated with it 572 (572 = 1/5? = 1/25),
and a digit in this place represents the number of twenty-fifths, etc.

Example 1

Consider 18, the symbol for the number called eighteen in our deci-
mal language. Expressing this in a base five system of numeration is
essentially the regrouping of a representative set § where n(S) = 18.

set S set S
[XXXXXXXXXX][XXXXXXXX] (XXXXX)
[(XXXXX):'[XXX]
1-10+8-10° (XXXXX)
851435

To accomplish this without the mechanics of regrouping, and using our
knowledge of decimal computation, we ask “What is the highest power of
five that is less than eighteen, and what is the greatest multiple of this
power that is less than eighteen?” Of course, the answers are 5land 8 - 5'.
This means that in our quinary numeral we can use a “3” in the 5
place. This, however, is not enough since we have accounted for only
fifteen of the eighteen. This means that we need three more, so we can
use a “3” in the 5°, or units, place. Now our quinary numeral looks like
this: 33¢ve. We conclude 18, = 33ve.

Example 2
Similarly, for 333, we see that
333en = 250+ 83
=2-5+4+75+8
=2:53+3-524+5+3

—9-543-541-5+3 Regrouping
=2-534+3-52+1-5'4+3-5°
= 23134ive-
Example 3
23414, =2-53+3-5*4+4-5'+1-5° Expanded form with decimal
=250+75+20+1 numerals
= 346 ep.

415 | PLACE-VALUE SYSTEMS WITH BASES OTHER THAN TEN 103



Example 4

42.32140e=4-5"42-5°+3 - 571425241 53
=20+2+3+H&+ds
=20+2+15+ 10+ w0
= 22.688en.

This notion of counting in systems with bases other than ten can be
extended to any choice of base. Table 1 gives the representation for num-
bers in base ten (decimal), base five (quinary), base two (binary, and base
twelve (duodecimal).

Table 1

Symbols Base Ten:0,1,2,3,4,5,6,7,8,9
Base Five: 0,1,2, 3,4
Base Two: 0,1
Base Twelve: 0,1,2,3,4,5,6,7,8,9, T, E

Base Ten Base Five Base Two Base Twelve
(Decimal)  (Quinary) (Binary) (Duodecimal)

1 1 1 1
2 2 10 2
3 3 11 3
4 4 100 4
5 10 101 5
6 11 110 6
7 12 111 7
8 13 1000 8
9 14 1001 9
10 20 1010 T
11 21 1011 E
12 22 1100 10
13 23 1101 11
14 24 1110 12
15 30 1111 13
16 31 10000 14

Note that in the last row of Table 1 we have: “one ten and six units,”
“three fives and one unit,” ““one sixteen, zero eights, zero fours, zero twos,
and zero units,” and “one twelve and four units,” all representing the
same number. Is this possible? This is as though we call John Arthur
Palmer, “John,” “John Arthur,” “Art,” or “Palmer.” Each is simply a
different name for the same person.

i1}

16ien = 31gve = 100004y, = 14iwelve.
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Exercise 4.15

1. Write the following number in base five and then in base ten:
2-5°+38-52+4-5'+2-5°

2. Write the first fifty (decimal language) numerals as quinary numerals,

borrowing the symbols from the decimal system of numeration.

3. Write each of the following in expanded form and find the decimal
(base ten) equivalent:

(a) 320, (b) 1215y (c) 203¢ve
(d) 2115y, (€) 1.11give

4. Rename as quinary system numerals the following decimal system
numerals (for example, 27;en = 1024,):

(a) 14ten (b) 14Oten (C) 327ten

5. The following line is the number line in a base four system. The first
two points have been labeled.

(a) Finish labeling the points using base four numerals.
(b) Plot the base four numerals 1.2; 2.3; 2.12; 10.1; and 20.2.

6. A group of four people want to divide evenly 2331.332¢,,: ounces of
petunia seeds. How much should each receive?

7. You move to a country that has 2 monetary system that consists of the

following coins:
United States

Coin name Coin symbol equivalent
Sens 1¢
Fens ® 74
Qens ® 25¢
Dens @ $1.25
Mens @ $6.25
Nens ® $31.25

You want to convert your United States money to that of this new
country so that you will have the least number of coins to carry. Convert
the following amounts:

(a) $3.56 (b) $13.50
(c) $29.32 (d) $76.19

For example, $5.36 would be four dens, one quens, two fens, and one sens.

@@ @ @ @ ® ® o
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8. What follows EE in base twelve?

9. What comes after TT in base twelve?
10. What number follows 99 in base twelve?
11. Is the base twelve number 4E even or odd? Explain why.
12. Is the base twelve number 7T even or odd? Explain why.
13. Which base twelve number is larger and by how much?

(a) 9T or T9?
(b) ET or EE?
(c) 9Eor E1?

14. What base five number follows 447

15. What base five number follows 4?

4.16 THE ALGORITHMS

An algorithm is simply a procedure for performing an operation such
as addition or multiplication. Whenever we perform operations with
single-digit numbers, we recall the necessary facts from memory or use a
table of elementary facts. When faced with computation involving mul-
tiple-digit numerals, however, we turn to an algorithm. The algorithms
enable us to carry out complicated computations by using elementary
facts and knowing the procedure. The place-value or exponential-posi-
tional system of numeration and the fact that the numbers are elements of
a number system make the algorithm possible. The algorithms we use
now are not the only possible ones. There have been changes in the past
in the algorithms of arithmetic, and possibly there will be others in the
future. Improvements in the algorithms lead to more efficient use of the
system.

It will be noted as we proceed that the algorithms presented are pro-
cedures for naming the numbers determined by the binary operations of
the system of whole numbers and do not depend on the base of the system
but simply on the fact that we have a place-value system. This implies that
the procedures will work as well in base five, base twelve, base two, or any
other base, as they do in the base ten, or decimal, system.

4.17 COMPUTATION IN BASE FIVE

First let us consider some computations in a base five system of numera-
tion. You will recall that after you learned to count in the decimal system
the next step in the learning process was concerned with the elementary
facts of addition and multiplication, the addition combinations and the
multiplication tables. We will avoid having to memorize these facts by
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presenting tables of elementary facts as follows:

+]/0 1 2 3 4 -1 2 3 4
ofo 1 2 3 4 11 2 3 4
1yf1r 2 3 4 10 212 4 11 13
212 3 4 10 11 313 11 14 22
313 4 10 11 12 414 13 22 31
414 10 11 12 13

We read these tables as follows: to find 2+ 4, we go down the left-hand
column until we find the numeral 2, then across that row until we are in
the column headed 4, where we find the numeral 11. This means that in
base five arithmetic, 2+ 4 = 11. We read this, ‘“Two plus four is one-one,
base five.” It would be incorrect to say, “Two plus four is ‘eleven.’”
“Eleven” is a decimal word, and we are dealing in base five, or quinary,
arithmetic.

The multiplication table is used similarly. Consider the product 3 - 4.
We go down the left-hand column until we find the numeral 3, then across
that row until we are in the column headed 4, where we find the numeral
22. This means that in quinary arithmetic 3 - 4 = 22. We read this, ‘““Three
times four is two-two, base five.”

With the use of these tables, a little intuition, and an understanding of
the system of whole numbers, we can carry out computations in base five.
Let us try a few simple problems.

4.17a The Addition Algorithm
First, using properties of our system of whole numbers, and tables of
elementary facts, we shall show that 13qye + 215ive = 34tive. We shall then
compare the complete algorithm with our usual procedure. (Note that in
what follows, 10 = 10g¢e = Hien.)

(a) 13+21=(1-10+3-10%+(2-10'+1-10° by our system of
numeration.

(b) 1-10'+3-109%+(2-10'+1-10%=1-10"+(3-10°+2- 10"+
1 - 10° by the associative law of addition.

() 1-10"+(3-10°+2-10")+1-10°=1-10"+(2-10'+3 - 10°) +
1 - 10° by the commutative law of addition.

(d) 1-10'+@2-10'+3-10%+1-10°=(1-10*+2-10")+ (3 - 10°+
1 - 10°) by the associative law of addition.

) (1-10'+2-101)+(3-10°+1-10% = (142)- 10!+ (3+1) - 10° by
the distributive law.

) 14+2)-10'+3+1)-10°=3-10'+4 - 10° by the table of elemen-
tary facts.

(g) 3-10'+4 - 10° = 34 by our system of numeration.

(h) 13421 = 34 by the transitive property of equals.
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In our usual procedure we would first write the problem in the form

13
21

Steps (a), (b), (c), (d), and (e) of the complete algorithm show that we are
justified in such an arrangement of work in that we will get the same
result if we perform column addition.

13
21
34ﬁve

Steps (f), (g), and (h) indicate the performance of the addition.
Let us consider an example involving a “carry” and show how that
appears in the complete algorithm. Consider the problem 13¢ye + 24gye.

(@) 13+24=(1-10'+3-10°+(2-10'+4-10" System of numera-

tion
(b) =1-10"4+(3-10°+2-10")+4 - 10° Associative law of
addition
(©) =1-10'+(2-10'+3-10°+4 - 10° Commutative law of
addition
(d) =(1-10'+2- 10+ (3-10°+4-10°  Associative law of
addition
(e =(1+4+2)- 101+ (3+4)- 10° Distributive law
&) =3-101+12-10° Table of elemen-
tary facts
(8 =3-10'+(1-10*+2 - 10° - 10° System of numera-
tion
(h) =3-10"+(1-10Y) - 10°+ (2 - 10°) - 10° Distributive law
) =3-10"+1-(10*-10°+2- (10°- 10° Associative law of
multiplication
6 =3-101+1-104+2-10° Law of exponents
(k) =3-100+1-10)+2-10° Associative law of
addition
(1) =(3+1)-10"+2-10° Distributive law
(m) =4-10"4+2-10° Table of elemen-
tary facts
(n) =42 System of numera-
tion
(o) 13+24=42 Transitive property
of equals

In this algorithm, the first five steps justify our arrangement of the
problem for column addition, that is, column addition can be thought of
as arranging the powers of the base five so that the distributive law can
be applied. Step (f) is an indicated addition, and if this is written as
column addition it would appear as follows:
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13
24
12
30 base five
Steps (g) through (k) justify the carry, and this is usually written as

carry —> 1
13
24
42 base five

Steps (e) through (o) complete the computation and justify our writing
the sum as a column sum with the appropriate carry.

The addition algorithm applies to sums of more than two numbers. In
writing out the complete algorithms for such problems we simply extend
the ideas used in the simpler problems.

We wish to emphasize that our addition algorithm is based on elemen-
tary facts and properties of our system of whole numbers. Each step we
take in carrying out a computation can be justified in terms of one or
more of the fundamental concepts.

Example 1
Add 234ﬁve and 432ﬁve:

I Procedure

234 lst column: From the table, 4+2 = 11. Write 1 and carry 1 as in
439 decimal arithmetic.
1221 2nd column: From the table, 343 = 11. 11 +1 (the carry) = 12.
Write 2, carry 1.
3rd column: From the table, 2+4 = 11. 11+ 1 (the carry) = 12.
Write 12.

We can easily check our result by converting the base five numerals
to decimal numerals and computing in decimal arithmetic.

234gve=2-5°+3-5'+4-5° Expanded form with
=50+15+4 decimal numerals
= 69ten

Similarly,

432400 = 117ten'

69+ 117 = 186. Decimal arithmetic
122159 =1-53+2-5242 - 5141 - 5°, Expanded form with
=125+50+10+1. decimal numerals
= 186yep.

This implies that our quinary arithmetic is correct. We obtained the
same sum in both systems, and we feel quite confident that the decimal
arithmetic is correct.
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Example 2
Add 323f1ve, 413ﬁve, and 343ﬁvel

11
323
413
843

2134

Procedure

1st column:

carry 1.
2nd column: 4+1=10,10+2 =12, 12+ 1 = 13. Write 3, carry 1.
3rd column: 3+4=12,12+3=20,20+ 1= 21. Write 21.

From the table 3+3 = 11; then 11 +3 = 14, Write 4,

Notice that in the procedure for this problem some of the additions
performed in finding the sum of a column are problems in themselves.

The answers are not found directly from the table. For example,
12+3 = 20.

4.17b The Multiplication Algorithm

Using the tables of elementary facts and the properties of our system of
whole numbers, we will show that (14¢ve)(25ive) = 33tive-

(2)

(b)
(0)

(d)
(e)

()
(g)

(h)

(i)
()

(k)
)

(m)
(n)

(0)

(14)©2) = (1 - 101 +4 - 10°(2 - 10°)

= (1-10")2 - 10%)+ (4 - 10°(2 - 10°
=1-(10"-2)-10°+4 - (10° - 2) 10°

=1-(2-10%)-10°+4-(2- 10°) - 10°

= (1-2)(10" - 10° + (4 - 2)(10° - 10°)

(1-2)(10%)+ (4 - 2)(109
2-10'+13 - 10°

2101+ (1 - 10'+3 - 10°) - 10°

2101+ (1 - 10") - 10°+ (3 - 10°) - 10°
9-10"+1- (10" - 1043 - (10° - 109

1014110143 - 10°
= (210t +1-101)+3 - 10°

©@+1)-10'+3% - 10°
3-101+3 - 10°

33

(p) (14)2) =33 base five
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Step (a) is usually shortened to

(10+4)2.

The distributive law (step b) allows us to multiply 10 by 2 and 4 by 2 first and
then add

10-2+4-2.

Steps (f) through (m) show why we multiply 1 by 2 first and then add the 1
carried over from the previous multiplication. This might be written in the
following way, which is suggestive of what is actually taking place:

14
2
13
20
33 base five

The usual practice of finding products is a much abbreviated procedure
as is indicated in the following example.

Example 1
In multiplying 123gye by 323yve we are actually finding the sum of the
following products:

(a) (100+20+3)3
(b) (10020 +3)20
(©) (100+ 20+ 3)300

This represents several applications of the basic laws. If we carry out
the indicated addition as column addition, it would appear as in Column
I in the following. Columns II and I1I give some indication of the actual
steps that are omitted in the usual procedure.

I I I
123 123 123
393 393 323
= 220 223
(a) { 110
3000 3124 3124
110
(b) [ 400
2000 3010 301

1400

© [ 11000
30000 42400 424

104034 104034 104034
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Notice in column III that we “indent” the 301 because we are actually
multiplying by 20, not 2. We indent the 424 two places because we are
actually multiplying by 300, not 3.

It is left to the student to check this example by converting to base ten
arithmetic as in Example 1.

Example 2
Multlply 342ﬁve by 23five:

b
842
23
2181

1234
20021

Procedure

Multiplying by 3: 3-2=11. Write 1, carry 1. 3-4=22, 22+1
(the carry) = 23. Write 3, carry 2.

3 -3 =14, 14+ 2 (the carry) = 21. Write 21.

Multiplying by 2: same as for the 3 except that the 2 is in the
second place, and we must set the partial products one place to
the left as in decimal arithmetic.

The check by conversion to base ten:
3424y =3-52+4-5'+2-59=T75+20+2 = 97,
234ive =2 51+3-5°=10+3 = 13,,,.
200214y =2-5*+0-53+0-52+2-51+1-5°= 1250+ 10+ 1.

= 1261ten-

13-97=1261 Decimal arithmetic.
Hence the quinary arithmetic is correct.

Subtraction and division can also be accomplished with the use of the
addition and multiplication tables. The addition table answers the ques-
tion a+b =? for a and b quinary digits, but it may also answer the ques-
tion a+?=c. For example, to find 11—3 in quinary arithmetic, we
consider the problem 3+? =11. To find the answer we go down the
left-hand column until we find the numeral 3, then across the row until
we find the numeral 11. The numeral that names the number that must
be added to 3 to obtain 11 is at the top of this column. Hence 11—3 = 3.
Similarly, 12—4=3,10—2=3,11—2 =4, etc.

Example 3
Subtract 2341 from 4332 in quinary arithmetic:

312,

4332
2341
1441

Procedure

Istcolumn: 1+?=2,1+1=2. Writel.

2nd column: Borrow,then4+? = 13,4+ 4 = 13. Write 4.
3rd column: Borrow,then3+4?=12,3+4=12. Write 4.
4th column: 24?=3,241=3. Write 1.

We can use our multiplication tables for division in the sense that the
question a<+b = ? can be interpreted as b - ? = a.
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Example 4
Divide 33011 by 4 in quinary arithmetic:

4224 Procedure
4)83011 Same as for decimal arithmetic, using the base five multiplica-
31 tion table to find the partial quotients.
20
13 For example, 33+4=7?; 4-?=33; 4- 4= 31, which is as close
"91  as we can get to 33. So 4 is the first quotient figure. Multiply,
13  subtract, bring down the next digit of the divident, then con-

31 tinue as before.
31
We have presented the traditional approach to this division problem.
It is well to point out that the modern approach involves returning to an
older format, or arrangement, of the work as follows:

4)33011] 4000
31000
2011 200
1300,
211 20
130
~31 4
31

4224

This format indicates a more complete procedure. Here the partial quo-
tients are obtained in essentially the same way as in the traditional ap-
proach, using the multiplication table to assist in making estimations.

Exercise 4.17b

1. Check Examples 2, 4, and 5 by converting the quinary numerals to
decimal numerals and doing the arithmetic in the decimal system.

2. Carry out the following addition problems in base five arithmetic:

(a) 231 (b) 2342 (c) 2013

413 1341 4002
3124 2144
3241

3. Carry out the following multiplication problems in base five arith-
metic:

(@) 2342  (b) 1341  (c) 2144
3 32 234
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4. Carry out the following subtraction problems in base five arithmetic:

(a) 413 (b) 2342 (c) 3000
231 1424 2143

5. Carry out the following division problems in base five arithmetic:
(a) 42033  (b) 3)1414  (c) 10)204320
6. Check your results for problem 2 by converting to the decimal system.

7. Construct the tables of elementary facts for base three (ternary) arith-
metic and carry out the following computations.

(a) Add: (b) Subtract: (c) Multiply:
212 222 212 2121 212 21022
20 11 12 212 2 20

(d) Divide 21021 by 12. Divide 21020 by 12.

8. What is the minimum number of weights required to weigh objects
weighing up to 41 ounces with a two-pan balance?

4.18 COMPUTER ARITHMETIC

In base two (binary) arithmetic we need but two symbols, and it is con-
venient to use the decimal symbols 0 and 1. The elementary facts needed
for computation in base two are elementary indeed! Bearing in mind the
special properties of zero and one, we see that the only other fact needed
is 1+1 = 10 in base two.

It may seem a waste of time even to consider a base two arithmetic, so
you may be surprised to learn that the binary system has many useful and
practical applications. Binary numbers are used in statistical investigations
and in the study of probabilities, in analyzing games, and in the arithmetic
units of some of the electronic computers. Whenever a situation may be
described in terms of “on” or “off,” “yes” or “no,” ‘“charge” or “no
charge,” or similar dual choices, the binary system of numeration is useful
in its analysis.

Example 1
Add 10114y, and 1100;,.
Procedure
1011 1stcolumn: O-+1= 1. Write 1.
1100 2nd column: 041 = 1. Write 1.
10111 3rd column: 140 = 1. Write 1.
4th column: 1+1 = 10. Write 10.

Example 2
Add in base two, 1011, 1101, 1001.
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Procedure
1011 Istcolumn: 1+1=10,10+1=11. Write 1, carry 1.
1101 2nd column: 0+0=0, 0+1=1, 1+1 (carry) = 10. Write 0,
1001 carry 1.
100001 3rd column: 0+4+1=1,140=1,1+1=10. Write 0, carry I.
4th column: 1+1=10,10+1=11, 114+ 1 = 100. Write 100.

Again, as in quinary arithmetic, some of the additions performed in find-
ing the sum of a column are problems in themselves. For example, 11+ 1
= 100 is not found directly from the table.

Example 3
Multiply the binary numbers: (1011)(101).

Procedure
1011 We follow the same procedure as in decimal arithmetic. The
101  problem of multiplying is much simpler, however. In multiply-
1011 ing by a 1 all we need do is copy the multiplicand in proper
10110  position.
110111

Subtraction can be carried out with the use of the addition facts as in
Example 4 of the preceding section.

In dividing binary numbers it is not necessary to estimate a trial quotient.
Because of the nature of the system we have but two choices at each step
in the division process. Either the divisor “goes” or it does not. A simple
example is sufficient to illustrate this.

Example 4
Divide the binary numbers: 1000010101 by 1101.

101001
1101) 1000010101
1101

1110
1101
1101
1101

4.18b Radix Fractions

In decimal arithmetic we have decimal fractions such as 0.25, 0.375, etc.
We must also have a representation for such numbers in other bases.
Since the word ‘““decimal” is associated with a base ten system, we do not
use it in arithmetic of other bases. In place of ‘“decimal” point we use
“reference” point and in place of “decimal” fraction we use “radix”
fraction and we must identify the base in which we are working.
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Let us consider some binary radix fractions.

Example 5
(a) 0.1y, in expanded form in decimal language is 1 - 27! or $ which would
be 0.5¢p.
(b) 0.11 in expanded form in decimal language is 1 -27'+1-272 or 3+ =
$=10.75n.
() 0.8754, =0.500+0.250+0.125 =+ i+§=1-2"1+1-272+1-273 =
0.111,.

Note that 0.l = 0.5¢, and 0.0l = 0.25,. Moving the reference
point one place to the left in a binary numeral divides the number being
represented by two. It is true in general that moving the reference point
one place to the left has the effect of dividing the number represented
by the base. Moving the reference point one place to the right has the
effect of multiplying the number represented by the base.

Example 6
(a) 11.1iw, represents a number one-half as large as 111.¢y,
(b) 23.44.. represents a number one-fifth as large as 234.,.
(c) 21.44, represents a number one-tenth as large as 214,
(d) 100.(, represents a number ten times as large as 10.e,
(e) 101..y, represents a number twice as large as 10.14y,

You might think that conversion of decimal fractions to binary radix
fractions would be a difficult task to accomplish with a computer. The
procedure can be illustrated as in Example 7.

Example 7
_ 2\ _ 0.750 _ 0 (0.750 @)z‘
(1375mn-(0375)(2)._ =gt ( ) 2=

0 05y(2y_0 1 10_0_ 1 1
_2+%+< )@) stet e 9tety

But this is the expanded form (in decimal language) for the binary
numeral 0.011. So, 0.375¢en = 0.011y,.

This procedure can be shortened as indicated by the following example.

Example 8
0.375
2
binary radix 0.750
fraction 2
digits 1.500
2

1.000 0.3754en = 011440
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0.390625

2
0.781250
2
1.56250
binary radix 2 0.390625,¢, = 0.011001,y,,
fraction 1.1250
digits 2
0.250
2
0.50
2
1.0
0.52
5
quinary radix 2.60 0.524en = 0.23¢ive
fraction 5
digits 3.0
Exercise 4.18
1. Check Examples 1, 3, and 4 of Section 4.18 by converting the binary

numerals to decimal numerals and carrying out the computation in

decimal arithmetic.

2.

4.

Carry out the following addition problems in binary arithmetic:

(a) 101+111 (b) 1101 +1001+ 1111
(c) 1001+1111+101 (d) 10011 + 1001+ 100
(e) 11011+11100+10111 (f) 1111+ 1111+ 1111

. Compute in binary arithmetic

(a) (1011)(111) (b) (11010)(101) (c) (11011)(1101)
(d) 11011 —1101 (e) 10011—1010 (f) 1100100+ 1010

An application of binary arithmetic is involved in the following num-

ber game. Consider the following cards:

Card A Card B Card C Card D Card E

16
17
18
19
20
21
22
23

24 8 24 4 20 2 18 1 17
25 9 25 5 21 3 19 3 19
26 10 26 6 22 6 22 5 21
27 11 27 7 23 7 23 7 23
28 12 28 12 28 10 26 9 25
29 13 29 13 29 11 27 11 27

30 14 30 14 30 14 30 13 29
31 15 31 15 31 15 31 15 31
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A student is given these cards and asked to indicate which ones have his
age printed on them. He looks them over carefully and then answers that
his age is printed on cards 4 and E. The owner of the cards quickly adds
the upper left-hand numbers on these two cards and says, ‘“You are 17
years old.”

Try this with your friends. You will find the system infallible.

What is the system? Figure out the “why” behind this simple trick. As a
beginning you might write the binary numerals from one to thirty-two
and use these as a guide.

4.19 DUO-DECIMAL ARITHMETIC

Duo-decimal (base twelve) arithmetic can be carried out as in base five
or base two. There is one difference, however —the symbols for the deci-
mal digits will be insufficient in number. We need twelve symbols for a
base twelve system of numeration, as indicated in Section 4.15. The tables
of elementary facts for addition and multiplication would be as shown in
Tables 2 and 3.

Table 2 Addition, Base Twelve

+ 0 1 2 3 4 5 6 7 8 9 T E
0 0 1 2 3 4 5 6 7 8 9 T E
1 1 2 3 4 5 6 7 8 9 T E 10
2 2 3 4 5 6 7 8 9 T E 10 11
3 3 4 5 6 7 8 9 T E 10 11 12
4 4 5 6 7 8 9 T E 10 11 12 13
5 5 6 7 8 9 T E 10 11 12 13 14
6 6 7 8 9 T E 10 11 12 13 14 15
7 7 8 9 T E 10 11 12 13 14 15 16
8 8 9 T E 10 11 12 13 14 15 16 17
9 9 T E 10 11 12 13 14 15 16 17 18
T T E 10 11 12 13 14 15 16 17 18 19
E E 10 11 12 13 14 15 16 17 18 19 1T

In the duo-decimal system of numeration we do have some names for
some of the powers of the base. For the name of the power of the base in
the first place to the left of the reference point we can use “units,” just as
we do for the decimal system. The next place to the left could have the
name ‘‘dozens,” just as we say ‘“tens” in the decimal system. The next
place would be called “‘gross” (a dozen dozens) and the next *‘great loss”
or “dozen gross,” and so on.

The duo-decimal system has been advocated by many people as a
standard system of numeration instead of the decimal system. It has cer-
tain advantages over the decimal system, but the problem of conversion
on a national or international scale would be almost insurmountable. The
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student will be asked in the next set of exercises to name some of the ad-
vantages of the duo-decimal system over the decimal system.

Table 3 Multiplication, Base Twelve

1 2 3 4 5 6 7 8 9 T E
1 1 2 3 4 5 6 7 8 9 T E
2 2 4 6 8 T 10 12 14 16 18 1T
3 3 6 9 10 13 16 19 20 23 26 29
4 4 8 10 14 18 20 24 28 30 34 38
5 5 T 13 18 21 26 2E 34 39 42 47
6 6 10 16 20 26 30 36 40 46 50 56
7 7 12 19 24 2E 36 41 48 53 5T 65
8 8 14 20 28 34 40 48 54 60 68 74
9 9 16 23 30 39 46 53 60 69 76 83
T T 18 26 34 42 50 5T 68 76 84 92
E E 1T 29 38 47 56 65 74 83 92 T1

4.19a The Addition Algorithm

The complete algorithm for the sum T4yeive T 16iweive is as follows:

T4+16 = (T - 10"+ 4 - 10°)+ (1 - 101 +6 - 10°)

=T -10"+4-10°+1-10Y)+6- 10°

=T-10'+(1-10'+4-10%+6- 10°

=(T-10'41- 10"+ (4- 10°+6 - 10°

= (T+1)- 10"+ (4+6) - 10°

=E-10'+T- 10°
=ET
T4+16 = ET

System of numeration
Associative law of addi-

tion

Commutative law of
addition

Associative law of addi-
tion

Distributive law

Table of elementary facts

System of numeration

Transitive property of
equals

Notice that the algorithm is independent of the base, that is, the proce-
dure that is followed is the same in base twelve as in base five, or asin base
ten. This also holds true for the algorithms of subtraction, multiplication,

and division.

Example 1

Add TET45yerve and 21372¢ye1ve.-

Procedure
7ET45
21872
T11E7

Ist column:
2nd column: 447 = E. Write E.
3rd column: T+3 = 11. Write 1, carry L.

4th column:
5th column:

54+2="7. Write 7.

1 (carry)+E = 10,10+ 1 = 11. Write 1, carry 1.
1 (carry)+7=28,8+2=T. Write T.
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Example 2

Multiply T45weive 2nd 3724yeive-
Procedure
745 Muliplyingby2:2-5=T. WriteT.2-4= 8. Write8.2- T =18.
372 Write 18.
188T Multiplying by 7: 7 - 5 = 2E. Write E, carry2.7-4=24,24+2 =
606E  26. Write 6, carry 2. 7 - T = 5T, 5T +2 = 60. Write 60. Multiply-
2713 ing by 3: 3:-5=13. Write 3, carry 1. 3-4=10, 10+1=11.
31367T Write 1, carry 1.3 - T = 26,26+ 1 = 27. Write 27.

Subtraction and division can be carried out in a manner similar to that
used for arithmetic in the other bases discussed. This type of computation
will be left for the exercises.
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Exercise 4.19

1. What are some of the advantages of the binary system over the decimal
system?

2. What are some of the advantages of the duo-decimal system over
the decimal system?

3. Carry out the following computations in duo-decimal arithmetic:

(a) BE+T4 (b) 204+ 60T

(c) 1702+91TE6  (d) 188TE+ETE03T
(e) 607 — T4 (f) 312—5T

(g) 18E8T—5TE4  (h) 60475 —231E4
(1) (4T)(E3) (j) G4H(214E)

(k) (2E4)(5467) (1) (325)(TE41)

(m) 2937 (n) 11418 +5

(0) E4684E (p) 12E114+214

4. Use the addition algorithm and decimal arithmetic to find the follow-
ing sums: Give reasons for each step.

(@) 27+9 (b) 36+8 (c) 379+96 (d) 432+899

5. Use the multiplication algorithm and decimal arithmetic to find the
following products:

(@) 36)9) (b)) UN®) (o) B6)45)  (d) (57)(92)

6. (a) What is the effect of multiplying a number by the base of the
system of numeration?

(b) Multiply the base five number 3424, by the base.

(c) Multiply the base twelve number TET 7,1y by the base.

7. Use the table of elementary facts in Section 4.19 and the addition
algorithm to find the sum of each of the following:

(@) 9E7+T  (b) TT+T () EE+E (d) TE+9
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8. Use the table of elementary facts in Section 4.19 and the multiplication
algorithm to find the following products:

@) (EE)9) () (TET)®) (o) (EXT5)  (d) (6T)(E)

9. The following exercises illustrate additional applications of base two
arithmetic.

The question of multiplication in the Egyptian hieroglyphics has un-
doubtedly occurred to the reader. Addition is a simple process in this
system of numeration and multiplication can be thought of as addition
of one of the numbers to itself as many times as indicated by the second
number. Thus 3 -6 = 6+6-+6. This is the way multiplication is carried
out on a desk calculator. This method was probably the way multiplica-
tion was carried out for a long time by the Egyptians. However, their
writing tools and working conditions dictated a more compact multiplica-
tion process. A very ingenious process called “‘doubling and summing”
shortened their work considerably. This process was based on the fact
that any number can be expressed as a sum of powers of 2. (This is the
base two idea.) The base two notation was not used, however. Let us
consider an example.

Find (39)(46).

Expressing 39 as a sum of powers of 2 we get 39 = 32+4+2+1, or
39 = 95+ 92+ 91 4+ 9°. Hence multiplying by 39 is the same as multiplying
by 1,2, 4, and 32 and summing (use of the distributive law).

1 46
2 92
4 . 184
8§ ... 368
16 .......... 736
32 ... 1472

Note that successive numbers in each column are obtained by ‘‘doub-
ling” the preceding number.

(a) Which numbers in the right-hand column should be added to obtain
the product of 39 and 467

(b) Multiply (27)(49) by this method.

(c) Multiply (325)(202) by this method.

A variation of this method is called “‘halving and doubling.” The work
would be laid out as follows:

39 ..o 46*
19 ... ... 92%*
9 ... 184*
4 368
2 736
1 .o 1472%
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Notice that in the process of “halving”” we disregard remainders. To
obtain the product, (39)(46), add the numbers in the right-hand column
opposite the odd numbers in the left-hand column, that is,

(39)(46) = 46+ 92+ 184+ 1472 = 1794.
(d) Use this method for the problems in (b) and (c).

Consider the procedure for halving and doubling and this time write
the remainder after each “halving” as follows:

39 ..o 1
19 ... 1
9 ... 1
4 o 0
2 0
I o 1

Now write the remainders from left to right in the same order they
appear from bottom to top, that is, 100111.

(e) What is the binary numeral 100111 as a decimal numeral?

4.20 THE “100” COUNTING TABLE

A useful and interesting device for teaching counting in any base is the
“100” counting table. The counting table shown in Table 4 is for bases two
through twelve.
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Table4 The “100” Counting Table

1 2 3 4 5 6 7 8 9 T E 10

11 12 13 14 15 16 17 18 19 1T 1E 2

21 22 23 24 25 26 27 28 29 2T 2F 30
31 32 33 34 35 36 37 38 39 3T 3E 40
41 42 43 44 45 46 47 48 49 4T 4E 50

51 52 53 54 55 56 57 58 59 BT HE 60

61 62 63 64 65 66 67 68 69 6T 6E 70

71 72 73 74 75 76 77 78 79 T IE 80

81 82 8 84 8 8 87 8 8 8T 8E 90

91 92 93 94 95 96 97 98 99 9T 9E TO

TV T2 T3 T4 T5 T6 T7 T8 T9 TT TE EO

El E2 E3 E4 E5 E6 E7 E8 E9 ET EE 100
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As shown, it is the “100” counting table for base twelve. By covering
the columns headed T and E and the rows beginning with 7'l and E1,
(except the last entry 100), we obtain the base ten counting table. By cover-
ing the columns headed 7, 8,9, T, and E, and the rows beginning with 71,
81, 91, T1, and E1, (except for the last entry 100), we have the counting
table for base seven.

To make a “100” counting table for other bases, cover the appropriate
rows and columns.

REVIEW EXERCISES |

1. What is the primary reason for studying place-value systems of numeration to
bases other than ten?

2. Let us make up a base four place-value system of numeration using symbols
other than the decimal numerals. The new symbols are as follows:

n(@) =A

n({A}) =—
n({A,—pH=nN
n({A,— NH=3%

(a) Write the first fifteen numerals in this system.
(b) What is the successor of 2337
(c) Which is larger, NZ or 3" ?
(d) What is the decimal numeral for—A. N N?
3. Using the system of numeration of problem 2, carry out the indicated opera-
tions.
@ N3-3 4+ 3SAN=>?
(b) N 2-3 - —AA="?
4. Construct a number line for the whole numbers and label the points using the

system of numeration in problem 2.

5. On the number line of problem 4, plot the following points: — N, A.—N,
n.N—.

6. Let W denote the set of whole numbers and N denote the set of natural num-
bers. We define a relation in the set W X N as follows:

(a, b) = (c. d) if and only if ad = bc.

(a) List three elements which are related to (3, 5).

(b) Which of the following elements do not belong to W X N:
(2,1 (1, 1) (6,0)(1,8) (0,0) (0, 1)?

(c) Use numerical examples to convince yourself that this is an equivalence
relation.

7. Define the binary operation@® in W X N as follows:
(@, b), (¢, )] —2— (a, b) ® (¢, d) = (ad+ be., bd).

(a) Whatis (7, 5) @(6, 8)?
(b) What s (3, 4) ®(0, 4)?
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9.

10

11.

12.

13

14.

15.

16.

- Does the binary operation defined in problem 7 satisfy the closure law?
Ilustrate.

Does the binary operation defined in problem 7 satisfy the commutative law?
Ilustrate.

. Does the binary operation defined in problem 7 satisfy the associative law?
Ilustrate.

Is there an element which acts as an identity for the binary operation defined
in problem 7? What is it?

In the set W X W, define a relation as follows:
(@,8)=(¢c.,d)ifand onlyifa+d = b+c.

(a) Use numerical examples to convince yourself that this is an equivalence
relation.
(b) List elements in the equivalence class to which (3, 3) belongs.

.

Define the binary operation © in W X W as follows:
[(@, b), (¢, d)] —2— (a, b) © (¢, d) = (ac+ bd, ad + bc)

(a) Whatis (7, 5) © (6, 8)?
(b) Whatis (3,8) e (7, 7)?

Does the binary operation defined in problem 13 satisfy the closure law?
INlustrate.

Does the binary operation defined in problem 13 satisfy the commutative law?
The associative law?

Is there an element which acts as an identity for the binary operation defiNed
in problem 13? What is it?

REVIEW EXERCISES Il

1. What do we mean by the statement, “The set B has cardinal 87, or cardinal
number 87”7
2. Use the set-builder notation in any way you can to specify the empty set @.

3. The number 0 is a unique number in many ways. List some of these ways.

ly

Show that 0 is unique as an element of the system of whole numbers (that is,
show that there is one and only one additive identity in the system of whole
numbers).

5. Show that 3 - 0 = 0, and justify each step.
6. If 4 = {2,3,5, 16}, what is the least upper bound of A?

7. In the indicated multiplication,

372
39
3348
1116
14508
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explain why the fourth row of digits is indented one place to the left before

the addition is performed.
Give precise definitions of each of the following:
8. The order relation “<”’ for the whole numbers.
9. The order relation “=" for the whole numbers.
10. The subset of a set.
11. The union of two sets.
12. The empty set.
13. The Cartesian product of two sets.
14. Equality of ordered pairs.
15. A relation: (a) intuitively, (b) in terms of sets.
16. Range of arelation.
17. The “equals” relation for numbers.
18. The cardinal of a set.
Give examples of relations possessing the following properties:
19. Reflexive and transitive, but not symmetric.
20. Transitive, but not reflexive and not symmetric.

21. Single-valued.
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The System of Integers

5.1 INTRODUCTION

Historically the natural numbers were invented for the purpose of
counting. The rational numbers (fractions) were introduced in connection
with problems of measuring. It took a very long time for zero to be
accepted as a number. The same was true of negative numbers. Although
some irrational numbers were known by the early Greek mathematicians,
it was not until comparatively recently that a complete theory of irrational
numbers was developed. Almost the same sequence of development is
followed in the teaching of numbers in our present educational system.
Numbers, when introduced in this sequence, are probably learned more
efficiently than in any other order because it is easy to relate each new
number concept to physical experiences. The concept of a half of some-
thing is learned long before 7 is introduced as a number. By the time 3 is
introduced as a number it is easy to relate the fact that two halves of a cake
are the same as a whole cake to the fact that 3+ %= 1. These analogies
must be selected carefully. Thus, to state that two halves of something
are equal to the whole has meaning only in certain contexts. Not many
people would be willing to accept two halves of an automobile tire for a
whole tire!

We depart from tradition and treat the negative numbers before we
treat the fractions (the rational numbers). This should present no diffi-
culties, for this is not a first course in arithmetic. It does allow us to present
the various number systems in what seems to us a reasonable order. This
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approach permits us to emphasize the power and limitations of each
system and to gain insight into the structure of the various number systems.
The idea of the structure of number systems is important in the under-
standing of the structure of mathematics. We hope, finally, to clarify the
arithmetic processes in terms of the systems of numeration and the
structure of the number systems.

For a discussion of the teaching of arithmetic of signed numbers to
elementary students see, ‘A Rationale in Working with Signed Numbers,”
Louis S. Cohen, The Arithmetic Teacher, November, 1965.

5.2 THE SET OF INTEGERS

Recall that the set N of natural numbers is the set of “‘counting num-
bers,” {1,2,3,...}. The set W of whole numbers is the set {0, 1,2, 3,4, . . .}.
By the system of whole numbers we meant the set W, the two binary opera-
tions, + and -, and the rules governing the behavior of the numbers under
the binary operations.

The system of whole numbers is a system in which we can answer the
following simple questions.

First, what is the number 2+ 3? We write this

2+3="7>
or
24+3=mn, n="7

Second, “I am thinking of a number. If I add 3 to this number, I get 5.
What is the number?’’ We write this

n+3=5 n=?

(We are essentially doing subtraction.)

There are, however, severe limitations to the system of whole numbers.
Questions similar in form to the second question just presented need not
have answers. For example, what number must be added to 5 to get 4?
What number added to 3 is 0?

5+?=4.
3+2=0.

In order to answer these simple questions and similar ones we define a
new set, J, which we call the integers.
Let us say that

~3 is the number which when added to 3 gives 0
and is the only such number.

~1 is the number which when added to 1 gives 0
and is the only such number.

~15 is the number which when added to 15 gives 0
and is the only such number.
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In general, if n is any number, ~% is the number which when added to n
gives 0 and is the only such number. The new number, ~n, is called the
additive inverse of n.

The number n may be any element of ], and since 3 is the number which
when added to ~3 gives 0 and the only such number, the additive inverse of
nis a more appropriate name than “negative n.”

Note that
34+3=0,
and
3+7(78) =0,

and since ~3 has only one additive inverse
“(73)=3
In general, from the definition of additive inverse it is clear that
~(~m) = m for any integer m. (I-1)

We shall use this freely in what follows and refer to this fact by the symbol
I-1.

Definition 5.2. The set | of integers consists of the set N of natural
numbers, zero, and for each n in N, the number ~n, such that
n+"n=0.

J={..,7n...,743,72,"1,0,1,2,3,4,...,n,...}.

The numbers ~1, 72, 73, etc., when associated with the number line are
plotted to the left of the point labeled 0 in the same way as 1, 2, 3, etc.,
were plotted to the right (see Section 4.13a).

5.3 PROPERTIES OF THE SET OF INTEGERS

Notice that the set N of natural numbers is a subset of the set J of
integers. As integers, we will refer to the natural numbers as positive
integers. The additive inverses of the positive integers will be called
negative integers.

The Set |

The set N
——t———
o 7473,72,71, 0, 1,2,3,4,5,6,...

Negative integers Zero Positive integers

When we say m is an integer, only one of the following statements must
be true.

1. m=0,o0r

2. mis positive, or

3. ~mis positive.
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For example: 0 = 0; 1 is positive; ~1is such that ~(71) is positive; etc. That
is, the set of integers is partitioned into three mutually disjoint sets, and any
integer can belong to one and only one of these three sets. This is a state-
ment of the trichotomy law.

5.3a Properties of the Positive Integers

Recall that the natural numbers are the positive integers when con-
sidered as a subset of the integers. But the natural numbers are closed
under the binary operations of addition and multiplication. We restate the
closure laws (1 and 2 of the following), for they will be useful later in
establishing properties of the order relation.

1. The sum of two positive integers is a positive integer.
2. The product of two positive integers is a positive integer.
3. If mis an integer and m # 0, then either m is positive or “m is positive.

We will extend the binary operations of addition and multiplication to
the set of integers and require that the closure laws, the commutative
laws, the associative laws, and the distributive law are satisfied. The new
system, consisting of the set J of integers, the binary operations defined on
J and the laws governing these operations, is called the system of integers.

Exercise 5.3
1. Is 0 a positive number? Why?

. Is 70 a negative number?

. Is 0 = ~0? Show why.

w0 N

. If a is an integer, is ~("a) positive? What is the meaning of ~(Ta)?
What is it equal to? Whatis ~(73)? What is ~m if m = 72?7

. State the trichotomy law for the integers in another way.
. Is “m a negative integer if mis an integer?

. Whatis ~(m+n)?

. What is the additive inverse of ~3?

© W M, W

. What is the additive inverse of ~m?

10. What is the additive inverse of 0?

5.4 THE SYSTEM OF INTEGERS

The set of integers can be thought of as an enlarged set of numbers
which contains the set of natural numbers and the singleton set {0} as
proper subsets. When we speak of the system of integers, we mean the set |
defined in Section 5.2 and binary operations, addition and multiplication,
satisfying certain laws. We want addition of the integers to be an extension
of the binary operation of addition of the natural numbers in the sense
that when we think of the natural numbers as positive integers, addition
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of the positive integers should be consistent with the addition of natural
numbers. The same is true for multiplication.

In the system of integers, which is an enlargement of the system of
whole numbers, we require the binary operations to satisfy the same laws
as for the whole numbers and one new law concerning the existence and
uniqueness of the additive inverse of any element.

Definition 5.4. By the system of integers we mean the set
J=1{ .. m...,74,73,72,71,0,1,2,3,4,...,n,...},

the binary operations, addition (+) and multiplication (-), and
the following laws.

Closure Laws

1. For m and = in J there is a uniquely determined sum, which
we write m+n, in J.

2. For m and n in J there is a uniquely determined product,
which we write m - n, in J.

Associative Laws. For m, n, and k in /s
3. m+(n+k)=(m+n)+k
4. m-(n-k)y=(m-n) -k

Commutative Laws. For m and n in J
5. m+n=n+m.
6. m-n=n-m.

Disiributive Law. For m, n, and k in I
7. m-(n+k)=m-n+m-k

Identities

8. There is a unique element 0 such that for any m in J, m+0
=0+m=m.

9. There is a unique element 1 such that for any min J, 1-m
=m-1=m.

Additive Inverses
10. For each m in J there is a unique element ~m in J such that
m~+"m="m+m=0.

5.4a Addition of Integers

The use of the foregoing laws enables us to extend the binary operation
of addition to the set of integers, using what we already know about
addition in the set of whole numbers.

The positive integers are the natural numbers renamed so that addition
of the positive integers is addition of the natural numbers.

130 7 System of Integers / CH 5



To extend the binary operation of addition to the negative integers we
make use of our knowledge of the addition of positive integers. If m and n
are any two integers, we assert that

“m+"n="(m+n). (A-1)

This assertion states that the binary operation, addition, assigns to the
ordered pair (“m, n) the number we write as (“m+ "n), which has
another name, ~(m+n). This “other name” for the number is the one
that enables us to find the sum in terms of addition of positive integers.

The following example indicates the procedure for establishing this
assertion, using positive integers for m and n. The general proof is left as
an exercise for the reader.

Example 1
We wish to show that (724 73) = ~(2+3).
~(2+3) + (2+3) = 0 by the property of additive inverses.
(724+73)+(2+3)=(2+73)+(83+2) Why?
="2+(3+3)+2 Why?

I

=-24+0+2 Why?
="2+2 Why?
=0 Why?

We have
“(2+3)+(2+3)=0
and
(2+73)+(2+3) =0.

Since the additive inverse of any number, in this case (2+3), must be
unique (one and only one), we conclude that

(2+73) ="(2+3).

To extend the binary operation of addition to the addition of a negative
integer and a positive integer, using properties already developed, we
assert that if m and n are integers, ("m+n) is the number which when
added to m gives n.

This assertion states that the binary operation, addition, assigns to the
ordered pair (“m,n) the number we write as ("m+n). Itis the solution to
the equation

m+?=n.

We shall indicate the procedure for establishing this assertion and
actually finding a new name for the number (“m+ n) by several examples.
For this purpose, recall the simple equation

3+x=7, x=7?
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What number must be added to 3 to get 7?
Let us proceed to “solve” this equation. Adding the additive inverse of 3
to each side of the equation we get

B34+ (B83+x)=7+"3
(T343)+x= (7+73) Why?
0+x=(74+73) Why?
x=(7+73) Why?

But from the table of elementary facts we know that 4+ 3 = 7. Then by
substitution we have

x=(4+3)+73
=44+ (3+"73) Why?
=4+0 Why?
=4 Why?

This tells us that (7+ ~3) is just another name for 4, or that (7+~3) =4.

By convention we write this as (7 —3) instead of (7+73).

This may seem like an unnecessarily complicated way of solving a very
simple problem. We admit that it may seem so, but the object of this
example is to illustrate the role of the basic laws in understanding arith-
metic. The following problem is essentially the same as the last problem
but one which is usually avoided at primary and intermediate levels
because of the fact that the result is a negative integer.

9+x=4, x=7

What number added to 9 gives 4?
Again, we proceed by “‘solving” this equation.

9+x=14
9+ (9+x)=4+9 Why?
(9+9)+x=4+"9 Why?
O+x=4+"9 Why?
x=4+"9 Why?

x=44+"(4+5) Why?
x=44+ ("4+75) Why?
x=((4+"4)+75 Why?
x=0+75 Why?
" x="7H Why?

It is essential to see (7 —3), that is, (74 ~3), is the number which when
added to 3 gives 7. Also, (11—5), which is (11 +75), is the number which
when added to 5 gives 11.

These remarks lead naturally to the generalization that (n—m) is that
number which when added to m gives n.

(n—m)+m=n.
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Furthermore, since

m+ (Tm+n) =n,

then

(Cm+n)=(n+"m)=n—m.

(A-2)

This expression may not have meaning in the system of whole numbers
because n—m may not be a whole number. In elementary arithmetic
n—m is usually interpreted as the difference of n and m or as m subtracted
from n. “Subtraction” as a binary operation is neither associative nor
commutative (see Sections 4.8b, 4.8¢).

To summarize this section on the addition of integers, let us consider
several numerical examples.

Example 2

(@ 5+ 9="(5+9)="14

(b) 5+ 9="5+(5+4)=(5+5)+4=0+4=4

() 5+ 9=5+"(5+4)=5+(5+"4)=(5+5)+"4

=0+4="4

Example 3

(@) 6+715="(6+15) = 21
(b) 6+ 15="6+(6+9)=(6+6)+9=0+9=9
() 6+715=6+"(6+9)=6+(6+"9)=(6+"6)+"9

=0+-9="9

Exercise 5.4a

1.

2
3
4.
5

Add 9+ 73, showing and justifying each step.

. Add ~7+4, showing and justifying each step.
. Rewrite the problems of Examples 2 and 3, justifying each step.
Show that (“m+ ~n) = ~(m+n) for any integers m and n.
. Write the additive inverses of each of the following:
(@) 12 (b) 2 (c) 73 @ 1
(e) 0 f) a (g) "a (h) 2+a
(i) 2+a () at+2 (k) 3+3 {) 5+3

(m) (a+b)+2 (n) 2+ (at+b) (o) a+tb+3 (p) 3+2

Add

(@) 3+75 (b) 2+-1+76
) a+-3+"1 (d) “13+8

(e) “184+3+-7 () (18+-3)+~7

(g) 18+ (73+77) (h) 9+-13
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7. Find the solution set for each of the following open sentences.

(a) 3+n=10.

(b) n+5=1.

(c) a+x = b, consider x as the variable.
(d) »+a = b, consider n as the variable.

8. Show that 17— 12 is another name for 5.
9. Show that 372 — 176 is another name for 196.

10. We break a yardstick into two pieces. If one piece is n in. long, how
long is the other piece.

11. Where would you break the yardstick if the longer piece is to be 3
times the length of the shorter piece?

12. Is subtraction as a binary operation commutative? Use a numerical
example to justify your answer.

13. Is subtraction as a binary operation associative? Use a numerical
example to justify your answer.

14. Use the properties of the system of integers (see Definition 5.4) to
prove thatm - 0 = 0 - m = 0 for any integer m.

5.4b Multiplication of Integers

The set of positive integers is the same as the set of natural numbers.
Thus multiplication of the positive integers will be the same as multiplica-
tion of the natural numbers.

In order to extend the operation of multiplication to the integers, we
show that, for m and n integers,

(m)(n) ="(m-n). M-1)

Before attempting the general case, let us look at a numerical example.
We shall use the fact that a number can have only one additive inverse to
show that (74) (3) = ~19.

134

Example 1
“12+12=0  Why?
“(4-3)+(4-3)=0  Why?

Thus ~(4 - 3) is the additive inverse of (4 - 3).
But

(49 (3)+(4)(3)=("4+4)3  Why?
(T4+4)3=0-3=0  Why?

Hence (74)(3) is also an additive inverse of (4-3). But the additive
inverse of any number is unique. Hence (74)(3) = ~(4 - 3) = ~12.
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Now let us show, in general, that ("m) (n) = ~(m - n).

“(m-n)+(m-n)=0 by the properties of the additive
inverse.

(Tm) (n) + (m)(n) = ("m+m)n by the distributive law.

(Cm+m)n=0-n=0 by the properties of the additive

inverse and zero (see problem
14, Exercise 5.4a).

We have shown that ~(m - n)+ (m-n) = 0. We have also shown that
("m)(n)+ (m-n) =0. But (m-n) has only one additive inverse, so
(Tm) (n) =~ (m - n).

In particular, note that we have now shown how to find the product of a
positive integer and a negative integer in terms of the product of two
positive integers.

Similarly, for any integers m and =,

(m)("n) ="(m-n).

The proof of this will be left as an exercise for the reader.

The foregoing statements may be summarized by saying that the binary
operation of multiplication assigns to any ordered pair which consists of
an integer and the additive inverse of an integer, the additive inverse of
the product of the integers. The statement, ‘“A negative number times a
positive number is a negative number,” is seen to be a simple consequence
of the basic laws.

We now consider the product of the additive inverses of any two
integers. We will show that

(m)("n) =m-n. M-2)

To do this we proceed as follows:

= (=m)(—n) +(0)(n)
= (=m)(=n) + (—m-+m)(n)
= (—=m}(—n)+ [(=m) (n) + (m) (n) ]
= (=m)(=n) + (=m) (n) + (m)(n)
= [(=m) (—=n) + (—m) (n) ] + (m) (n)
= (=m)(—=n+n)+ (m)(n)
= (=m)(0) + (m) (n)
=0+ (m) (n)
= (m)(n)
Hence (“m)(™n) =m-n. This implies the familiar rule, “A negative

number times a negative number is a positive number.”” We have demon-
strated this to be a fact which is a consequence of the basic laws.

(=m)(=n) = (=m)(—n) +0
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Exercise 5.4b

Establish the following equalities, using the properties of the system of
integers, I-1, A-1, A-2, M-1, M-2, and properties of zero:

1. (1-1)="1
for example, (1-1)=("1)(1) byM-1.
="1 by mult. identity.
2. "H(CH) =1
3. (72)(3) = (2)(3).
4. (75)(0) =o0.

(T2 (73)(T4) = 24,
. (72) (73 +74) = 14, in two ways.

5

6

7. (73)("4+75) =27.

8. 8(7—3) = 32, in two ways.
9

. 8(3—7) = ~32, in two ways.
10. ~(7—-3) = (3—17).
11. ~(m—n) = (n—m).
12. ~(73) = 3.
13. (72)(3) = ~(2-3).
14. (m)("n) = ~(m - n).
15. (n)(0) = 0.

5.5 THE CANCELLATION LAWS

We have seen that » - 0 = 0 in general. (See problem 14, Exercise 5,4a.)
This is somewhat surprising to most people. In fact, most people confuse
the number 0 with the meaning of the word “nothing.” We repeat that 0
is not nothing, 0 is a number, a very important and useful number. Pre-
viously, the number 0 was used to define the additive inverses. We will use
this number again when discussing order in the integers. For the present
we consider another seemingly obvious arithmetical statement involving 0.

The system of integers has no zero divisors. By this we mean that the product
of two integers is zero if and only if one of the factors is zero, that is,
a-b=0if and only if either a =0 or b = 0. (The “or” here is the inclusive
or.) This statement would undoubtedly mean more if one were familiar
with a mathematical system where the product of two nonzero elements is
zero. This is considered in Section 5.14b. For the present consider the
following examples:

2:-0=3%-0 becauseboth 2:-0=0 and 3-0=0.
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In general,
x-0=y9-0
Now consider the following:
x-2=y-2
Adding the additive inverse of y - 2 to both sides of the equation we obtain

x-24"(y:2)=9-2+"(y-2)
=(.

Then (x+ "y) - 2 = 0 by the distributive law.

Notice that we are looking at the product of two terms, one being (x+ ~y)
and the other, 2. Using the fact that the product of two terms is 0 if and
only if one of the factors is 0, we see that, since 2 is not 0, (x+ ~y) must be
0, that is,

(x+7y)=0.
Then (x+y) +y=0+y
x+ (y+y)=y Why?
x+0=y Why?
x=y Why?

This is an example of the cancellation law for multiplication.
If a is an integer and a - x = a - y, can we conclude that x = y?» We have
seen that if a = 0, we cannot. If a # 0, then we can say thatx = y.

The Cancellation Law for Multiplication. If a # 0 and a-x=a -y, then
x =9y

We are not “dividing” by a. This is a subtle point which will be explained
further when we discuss the system of rational numbers.

There is also a cancellation law for addition. However, this law does not
need conditions on the terms.

Cancellation Law for Addition. If a+x = a+y, thenx =y.
The cancellation law for addition can be proved as follows:

atx=a+ty Hypothesis
“a+ (a+x) ="a+ (a+y) Why?
(Cata)+x= (Cat+a)+y Why?
0+x=0+y Why?
X=1y Why?

Exercise 5.5

1. What is the solution set of the open sentence (x—3) (x—7) = 0? (This
type of argument is used in solving quadratic equations by factoring.)
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2. If x+3 = y+ 3, what can you say about x? Why?
3. Ify = 6/(x—1), what must be true about x? Why?

4. Name the law that is exemplified by each of the following:

(a) xy = yx.

(b) (x+y)+z=x+(y+2)
(©) xy+xz=x(y+2z)

(d) x+a=a+x

(e) (2a)b= 2(ab)

fyat+t0=a
(g a=1-a
h)0=a+"a

() (Ca)(b+76) = (Ta)(b) + (Ta) (7b)

5. State the reason that justifies each of the following steps in proving
that (Ta) (") = (a) (b):

(Ca)(CB) = (") (Th) +0
(Ta) (") + [ (a) (b) + (a) (b)]
(Ca) (CB) + [(Ta) (b) + (a) (b)]
= [(Ta) (7b) + (Ta) (b) ] + (@) (b)
= (Ta) (Cb+b)+ (a) (b)
= (7a) (0) + (a) (b)
=0+ (a) (b)
= (a) (b)
(Ta)(7b) = (a) (b)

. What is meantby ~(~a)?

. Whatis ~(7a)? Can you prove your assertion?

. What is the solution set of the open sentence (x—3) (x—7) > 0?

© 0 o

. If mis an integer, is ~(m?) necessarily a negative number?

10. If m and n are integers, is ("m) ("n) necessarily a positive integer?
11. Justify each step in the proof of the cancellation law for addition.
12. What do we mean by zero divisors?

13. State the cancellation law for multiplication of integers.

5.6 PRIME NUMBERS AND COMPOSITE NUMBERS

We introduced the divisibility concept for the natural numbers earlier.
Thus 12 is divisible by 3, 72 is divisible by 12, and 72 is also divisible by 9
and 8. We extend this concept to the integers.

Definition 5.6a. An integer n is divisible by an integer m, m # 0, if
there is a single integer k2 such thatn = m - k.
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Definition 5.6b. We say that m is a divisor of n if n is divisble by m.
We also say that m is a factor of n.

It is obvious that 1 divides every integer n and also that n divides
nif nis a nonzero integer, sincen =n ' 1.

Definition 5.6c. We say that m is a proper divisor of n if m is a divisor
of nand m # 1, m # —1, m # n, and m # —n. In this case m is
called a proper factor of n.

(Note: Here and in what follows we use the traditional —n for the
additive inverse of n.)

Thus 2 is a proper divisor of 18; 9 is also a proper divisor of 18; and 2
and 9 are proper factors of 18.

Note that we cannot say that 0 divides any number. Suppose we ask,
“Does 0 divide 22" If so, we should be able to write 2 as some multiple of 0.
But 0 times any number is 0, not 2. On the other hand, every nonzero
integer divides 0, since 0 =10 * n.

Now let us consider the following subset of the set of positive integers:

{2,8,5,7,...}

What do you think the next integer should be? It is 11. What is the next
one? It is 13. What criterion are we using to determiifc whether an integer
belongs to this set?

{2,8,5,7,11,18,...}

These numbers have no proper factors and are called prime numbers.

Definition 5.6d. An integer, p, p > 1, is a prime if it has no proper
divisors.

The only divisors of a prime, p, are 1,—1, p, and —p.

Definition 5.6e. A positive integer different from 1 which is not a
prime is called a composite.

The negative integers may be classified similarly by considering the
negative integer (—n), n # 1, as (—1)(n) and examining the positive
integer n.

Exercise 5.6

1. List all the primes less than 50.
. List all the positive divisors of 36. The prime divisors.
. List all the positive divisors of 52. The prime divisors.

2
3
4. List all the positive divisors of 14. The prime divisors.
5. List all the positive divisors of 39. The prime divisors.
6

. Find all primes less than 100 by first throwing away multiples of 2,
then multiples of 3, then multiples of 5, and so on.
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7. How can you tell whether a number is divisible by 2? By 3? By 4? By 5?
By 9?

8. List the common divisors of 50 and 52; of 36 and 39; of 39 and 52.

9. Write the following numbers as products of prime factors: (a) 72,
(b) 356, (c) 512, (d) 1000.

10. Is 1 divisible by 0? Why? Is 0 divisible by 1? Why?

5.7 PRIME FACTORIZATION

The set of positive integers greater than 1 is partitioned into two dis-
joint sets, the set consisting of the primes and the set consisting of the
composites. The primes are, in a sense, the building blocks of the com-
posites as indicated in the next statement.

The Fundamental Theorem of Arithmetic

Any integer, different from 0 and %1, can be written as a product of
primes and +1 in one and only one way, except possibly for the order in
which the factors occur.

Example 1

Consider the integer 72. We can think of this as 9 - 8, then factoring
further as 3-3-8=3-3-2-4=3-3-2-2-2=32-25 On the other
hand, we could think as follows: 72=6-12=2-3:-12=2-3-3-4=
2:3-3-2-2=2-2-2-3-3=2%-3% We have looked at the factoriza-
tion of 72 into prime factors in two different ways but have arrived at a
unique factorization except for order of the factors.

The fundamental theorem of arithmetic can be proved by using some
of the elementary notions of number theory and mathematical induction.
For our purposes we shall accept it as a fundamental principle.

The problem of finding the prime factors of a number is, in general,
tedious. For large numbers the problem has been turned over to modern
high-speed computers. There are a few divisibility facts which enable one
to tell by inspection whether a given number is divisible by the first few
small numbers. We present these, some with proof and some without, to
assist in prime factorization of numbers. It should be especially noted that
these tests for divisibility rely heavily on the fact that our numeration
system is a place-value decimal system.

Divisibility by 2. A number is divisible by 2 if and only if the units digit of
its numeral is even. The reason for this is that every power of 10 except 10°
is divisible by 2. Hence the number is divisible by 2 if and only if the units
digit of its numeral is divisible by 2.

Divisibility by 3. A number is divisible by 3 if and only if the sum of the
digits of its numeral is divisible by 3. We make this seem reasonable by
giving an example.
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378 =3-10°+7-10+8
=3-100+7-10+8
=3(994+1)+7(9+1) +8
=3-994+3-14+7-9+7-1+8
= (3-99+47-9)+ (3+7+8)
= (3-33+73)8+(3+7+8)

We see that 3 divides the first term on the right in the last equality. If it
also divides the second term (3 + 7+ 8), then it must divide 378. Hence, if
3 divides (3 +7+8), 3 divides 878. Furthermore, if 3 divides 378, it must
divide (3 + 7+ 8). This argument is based on the distributive law and the
meaning of “divides.” Note that the same rule and a similar argument
applies to divisibility by 9.

Divisibility by 5. A number is divisible by 5 if and only if the units digit of
its numeral is 0 or 5.

Divisibility by 7. A technique for testing divisibility by 7 can best be
illustrated by an example.

Example 1

5236 is divisible by 7 if 523 —2 - 6 = 511 is divisible by 7.

511 1is divisible by 7if 51 —2 - 1 = 49 is divisible by 7.

49 is divisible by 7, so 511 is divisible by 7, and 5236 is divisible by 7.

Example 2

25,252 is divisible by 7 if 2525 — 2 - 2 = 2521 s divisible by 7.
2521 is divisible by 7 if 252 —2 - 1 = 250 is divisible by 7.

250 is divisible by 7if 25 —2 - 0 = 25 is divisible by 7.

25 is not divisible by 7, so 25,252 is not divisible by 7.

Divisibility by 11. A similar procedure can be used to check for divisibility
by 11. The only change is that the units is subtracted from the whole
number part of one-tenth of the number instead of twice the units digit.

Example 3

25,256 is divisible by 11 if 2525 — 6 = 2519 is divisible by 11.
2519 is divisible by 11 if 251 —9 = 242 is divisible by 11.

242 is divisible by 11 if 24 —2 = 22 is divisible by 11.

But 22 is divisible by 11, so 25,256 is divisible by 11.

[See “A General Test for Divisibility by any Prime (except 2 and 5)”
by Benjamin Bold.]

Exercise 5.7

1. List all the positive divisors of 72.

2. List the prime numbers less than 100.
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3. Express each of the following as a product of prime factors: (a) 84,
(b) 198, (c) 975, (d) 144, (e) 4455, and (f) 10*2.

An integer d is a common divisor of a set of integers if it is a divisor of each
of them.

4. List all common divisors of 198 and 144.
5. List all common divisors of 84, 198, and 405.
6. Write 21,489 as a product of prime factors.

7. Write 4408 as a product of prime factors.
8. List the common divisors of 4408 and 72.

9. Test the following for divisibility by 2, 3, 4, 5, 6, 7, 8, 9, 10: (a) 627,433,
(b) 2,288,817, (c) 324,244, (d) 625,530.

10. Remembering that the multiplication table for 9 seems to be difficult
for some people, consider the following:

Ix4=? 10—4=6, 9—6=3, hence9Xx4=36.
9x8=7? 10—8=2, 9—2=17, hence9Xx8=72.
9xH5=? 10—5=5, 9—5=4, hence9Ixb=45.

(a) Why does this give the correct answer?
(b) Can you extend this idea to 9 times any nonnegative number
less than ten?

5.8 THE DIVISION ALGORITHM

Although the “divides” relation holds only between certain ordered
pairs of integers, we can still say something about any given pair. For
example, given the integers 16 and 7, we can express 16 as a multiple of
7 plus a remainder of 2.

16 ="7-2+2.

This very obvious arithmetical statement illustrates the division algorithm.
The Division Algorithm. If m and n are any two integers, such that n is
greater than 0, then there is a unique pair of integers, g and r, such that

m=n-q+r

where 7 is less than n and greater than or equal to 0. If r=0, then n
divides m.

The division algorithm is a statement deducible from other basic
assumptions; however, we accept it here as a fundamental principle that
is intuitively plausible.

The division algorithm is a comparative statement about the pair of
integers m and n. If we think of n as some fixed positive integer (say 3),
then the division algorithm says that any integer m can be written as a
multiple of 3 with only 0, 1, or 2 as possible remainders. If we let n = 7,
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the remainders of integers when divided by 7 are 0, 1, 2, 3, 4, 5, 6. We shall
refer to this again. For the present we shall see how it can be applied in
finding the greatest common divisor and the least common multiple of
a pair of integers.

5.9 THE GREATEST COMMON DIVISOR

In later sections of this book we will need to “reduce” fractions. We
may find it convenient to write § instead of £}. The idea of “reducing”
involves the greatest common divisor.

Definition 5.9a. A positive integer, d, is the greatest common divisor
of the integers a and b if d is a common divisor of @ and b and is a
multiple of every other common divisor.

The abbreviation “g.c.d.” designates greatest common divisor.

Example 1

g.c.d. (36, 60) = 12.
g.c.d. (—10,35) = 5.
g.cd. (6,12) = 6.
gcd. (5, 7)=1.

Definition 5.9b. 1f g.c.d. (a, b) = 1, we say a and b are relatively prime.

5.9a The G.C.D. Using Prime Factorization

The problem of finding the g.c.d. of two integers is simple when the
integers are small, and can usually be done by inspection. There are
systematic procedures for determining the g.c.d. of two integers. We shall
examine two methods. The first method is illustrated with numerical
examples.

Example 2
We wish to find the g.c.d. (6, 15). Factoring, we have

6=2-3,
and
15=3-5.

We note that 3 is a divisor both of 6 and of 15 and is the only positive
common divisor other than 1. Thus g.c.d. (6, 15) = 3.

Example 3

We wish to find the g.c.d. (72, 90). Factoring, we have
72=2:2.2-3.3=23.32
and

90=2-3-3-5=2-32-5.
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The only power of the prime 2 which divides both 72 and 90 is 2. The
highest power of the prime 3 which divides both 72 and 90 is 3%. These
numbers can be expressed as

79 = (2 . 32) . 22’
and
90=(2-3%-5,

which shows that (2 - 3%) is a common divisor of 72 and 90. It is the great-
est common divisor of 72 and 90. It is the product of the highest powers
of the primes common to both numbers.

In general, the g.c.d. of two numbers, m and n, is the product of the
highest powers of the primes common to the factorizations of both m and n.

Exercise 5.9a
. Find the g.c.d. of 84 and 198; of 36 and 54.
. Find the g.c.d. of 975 and 144; of 17 and 51.
. Find the g.c.d. of — 84 and 144; of —96 and 336.

1
2
3
4. Find the g.c.d. of 198 and 975.

5. Find the g.c.d. of — 198 and — 144.
6. Find the g.c.d. of 84,198, and 144.
7. Find the g.c.d. of 144, 198, and 975.
8

. 11 divides (10+ 1), (102—1), (10*+ 1), (10* — 1), etc. Using a procedure
similar to the check for divisibility by 9, determine a check for divisibility
by 11.

9. If pis a prime and n is any integer, what is the g.c.d. (p, n)?

5.9b The G.C.D. Using the Division Algorithm
The second method of finding the g.c.d. of two integers involves the
division algorithm. Suppose we are interested in finding the g.c.d. of 58
and 16. The division algorithm allows us to write

58=16-3+10, where 0 =10 < 16.

Notice that any number that divides 58 and 16 must also divide 10 because
we can write

10=58—16 - 3.

In particular, the g.c.d. of 58 and 16 must divide 10. This is a consequence
of the distributive law and the meaning of “‘divides.” It implies that this
g.c.d.—let us call it d—is a common divisor of 16 and 10. Further, it must
be the greatest common divisor of 16 and 10 because if there were another
common divisor greater than d, this divisor would also have to divide 58

144 The System of Integers / CH 5



and d would not be the g.c.d. of 58 and 16. Furthermore, any number
which divides 16 and 10 must divide 58 so
g.c.d. (58, 16) = g.c.d. (16, 10).
Now we have reduced our problem to that of finding the g.c.d. of 16
and 10. Applying the division algorithm again, we have

16=10-1+6.

Again, any number that divides 16 and 10 must also divide 6 because we
have

6 =16—10.

In particular, the g.c.d. of 16 and 10 must divide 6. Also, any number
which divides 10 and 6 must divide 16, so

g.c.d. (16, 10) = g.c.d. (10, 6).

By using the transitivity of equals we have reduced the problem to that
of finding the g.c.d. of 10 and 6. Applying the division algorithm and
reasoning as before, we have

10=6-1+4,
and 6=4-1+2,
and 4=2-2.

The last statement, which identifies d, states that g.c.d. (4, 2) =2.
Following back up the chain of equations, we have 2|2 and 2|4, so 2|6;
2|4 and 2|6, so 2|10; 2|6 and 2|10, so 2|16; 2|10 and 2|16, so 2|58; 2|16 and
2|58, and it has been identified as the g.c.d. at each step; hence g.c.d.
(58, 16) = 2.

Example 1

Find the g.c.d. (84, 198):

198=284-2+30 g.c.d. (198, 84) = g.c.d. (84, 30)
84=30-24+24 g.c.d. (84,30) = g.c.d. (30, 24)
30=24-1+6 g.c.d. (30,24) = g.c.d. (24,6)
24=6-4 g.c.d. (24,6) = 6.

Hence 6 is the g.c.d. (84, 198).

Example 2
Find the g.c.d. (198, 144):

198 = 144 - 1 +54 g.c.d. (198, 144) = g.c.d. (144, 54)

144 = 54 -2+ 36 g.c.d. (144, 54) = g.c.d. (54, 36)
54=136-1+18 g.c.d. (54, 36) = g.c.d. (36, 18)
36=18-2 g.c.d. (36, 18) = 18.

Hence g.c.d. (198, 144) = 18.
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The computation for finding the g.c.d. by the division algorithm may
be performed as follows. We want the g.c.d. (84, 198).

2
84/1—9§ 198 = 84 - 2430
168 2
m 84=30-24+24
60 1 _
94/ 30 30=24-14+6
24 4 _
m 24=6-4

g.c.d. (84, 198)—

This procedure for finding the g.c.d. is called the Euclidean algorithm.

The greatest common divisor of three or more numbers, say a, b, and
¢, can be found by pairing. First find g.c.d. (a, b) = d; then g.c.d. (d, ¢) =
g; then g.c.d. (a, b, c¢) = g (see problem 3c, Exercise 5.9b).

Example 3
Find the g.c.d. (12, 18, 33):
g.c.d. (12,18) =6.
g.c.d. (6,33) = 3.
Hence g.c.d. (12, 18, 33) = 3.

Exerctse 5.9b

1. Find the g.c.d. of the following sets of numbers by the prime factor-
ization method:

(a) 84,198 (b) 252,144
(c) 36,54 (d) 12,30, 42

2. Find the g.c.d. of the following sets of numbers by the Euclidean
algorithm:

(a) 14,198 (b) 210, 126
(c) 735,858 (d) 84,210, 126

3. We define the binary operation ® on the set J of integers as follows.
For integers m and n, not both zero,
mOn = g.c.d. (m, n).

(a) Isthe set] closed with respect to this operation?

(b) Is this operation commutative? Illustrate numerically.
(c) Is this operation associative? Illustrate numerically.
(d) Is there an identity element? If so, what is it?

4. In which type of arithmetic computation is the g.c.d. used? Illustrate
numerically.
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5. Find the g.c.d. of the following pairs: (a) 0, 9, (b) 0, —12, (¢) —9, 0,
o, 1.

6. What can you say about g.c.d. (0, n) for any integer n?

7. Whatis g.c.d. (p, ) if p and g are both prime numbers?

5.9¢ Special Properties of the G.C.D.

An interesting and useful property of the g.c.d. of a pair of numbers,
a and b, which is also a consequence of the division algorithm, is that the
g.c.d. (a, b) can be written as the sum of some multiples of a and b.

Example 1

gcd (7,17) =1

Multiples of 7: 7, 14, 21, 28, 35,42, . ..
Multiples of 17: 17, 34, 51,68, . . .

1= B)7)+ (—2)(17).

Example 2

g.cd. (6,15)=3
Multiples of 6: 6,12, 18, 24, 30, . . .
Multiples of 15: 15, 30, 45, 60, 75, . . .

3 = (1)(15) + (= 2)(6).

Theorem 1. In general, if g.c.d. (a, b)) =d, then there are multiples
s+aand!-bof aand b such that

d=s-a+t-b.
The proof of this theorem is not difficult but we consider it unnecessary
for our purposes.

We now prove some simple theorems concerning prime numbers that

serve as a review of some of the definitions and concepts we have intro-
duced.

Theorem II. 1f p is a prime and p divides the product a - b, then either
p divides a or p divides b.

Proof. 1f a is a multiple of p, then p divides a. If a is not a multiple
of p, since p is a prime whose only divisors are £p and + 1, g.c.d.
(a, p) = 1 (see problem 9, Exercise 5.9a).

Hence

l=s-a+t-p. Theorem I

Multiplying by & we have

b=s(ab)+t(pb).

We assumed that p divides ab, so p divides s(ab). Also, p divides
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t(pb), since this is a multiple of p. The distributive law implies
that p divides s(ab) + t(pb). Hence p divides b.

Theorem III. If m and n are relatively prime and m divides n - a, then m
must divide a.

Proof. 1=5s-m+t-n Why?
a=sm-att-n-a Why?
Then m divides a. Why?

Theorem IV. 1f a and b are relatively prime and a divides m and b divides
m, then ab divides m,

Proof. m=a- k. Why?
b divides ak. Why?
Hence b divides k. Theorem III
Hence k= b - ¢, for some e. Why?

Substituting b - e for k in the first equation we obtain

m=a-b-e.
Hence a - b divides m.

5.10 THE LEAST COMMON MULTIPLE

The least common multiple, 1.c.m., of a pair of positive integers m and n,
is the smallest positive integer that is divisible by both m and n. The l.c.m.
of 6 and 5 1s 30; the l.c.m. of 12 and 18 1s 36.

Definition 5.10. The positive integer d is the Lc.m. of positive
integers m and n, (1) if m divides d and n divides d and (2) if % is
any other multiple of m and », then d divides &.

The Lc.m. of three or more positive integers can be found by finding
the Lc.m. of pairs in the same way that the g.c.d. of three or more num-
bers was found; that is, to find the L.c.m. (a, b, ¢), first find l.c.m. (a, b) = k;
then lL.c.m. (k, ¢) = m. Then Lc.m. (a, b, ¢) = m (see problem 5c, Exercise
5.10).

5.10a The L.C.M. by Prime Factorization

The problem of finding the l.c.m. of a set of positive integers is an
essential step in handling rational numbers (fractions). Here again there
is more than one way of determining the l.c.m. We first examine the
method involving prime factorization.

Example 1
Find the l.c.m. of 12 and 18:

12=2%2.3,
18=2-32,
The L.c.m. evidently must contain factors of 2 and 3. Furthermore, the
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2 must be of the second power. The same is true for the 3. Then Lc.m.
(12,18) = 92 - 32 = 36.

In general, the l.c.m. of two positive integers m and n is the product of
the highest powers of all the different factors that occur in the prime
factorization of either integer.

Example 2
We wish to find the L.c.m. of 60 and 36. Factoring, we have

60=22-3-5,
and
36 = 22 - 32,

We see that the different prime factors that occur in either factorization
are 2, 3, and 5. The highest power of 2 that occurs is 2%, the highest of
3 that occurs is 32, and the highest of 5 that occurs is 5.

Thus the l.c.m. (60, 36) = 2% - 3% - 5 = 180.

5.10b Finding the L.C.M. from the G.C.D.

Another method of finding the L.c.m. of a pair of positive integers m
and 7 is to divide their product by their g.c.d. This is intuitively evident.
If d is the g.c.d. of m and n, thenm=d-a; n=d - b; and g.cd. (a,b) = 1.
Hence m-n= d-a-d-b. But a-d-b is a multiple of both m and n,
since a - n = adb = m - b, and it is the L.c.m. (m, n). That s,

dadb _ m-n
d g.c.d.(m,n)

When the numbers are large, this is the most practical way of finding the
Lc.m.

l.c.m. (m, n) = adb =

Example 1
Find the L.c.m. (285, 76):

285 =176 -3+57
76=57-1+19
57=19-3

Hence, g.c.d. (285, 76) = 19.

Then Le.m. (285, 76) = Z396) _ o854y — 1140,

19
Exercise 5.10
1. Find the L.c.m. of each of the following, using the prime factorization
method:

(a) 32,40  (b) 8,18,27
(c) 36,56  (d) 17,7
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2. Find the l.c.m. of each of the following using the g.c.d.:

(a) 18,84  (b) 36,27
(©) 96,84  (d) 252,33

3. Find the g.c.d. of each of the following pairs of numbers:

(a) (9, 16) (b) (22, 46)

(€) (26-35-72,32-55- 7%  (d) (31-72-11%,3% - 7 - 11%)
(e) (42,90) (F) (74,111)

(g) (10,100 (h) (10%°, 105)

(i) (806, 1116) G) (1936, 3630)

(k) (72, 1000000) ) (54, 1000000)

4. Find the l.c.m. of each of the pairs of problem 3.

5. We define the binary operation x on the set J of integers as follows:
for integers m and n, neither of which is zero,

m=n=1lcm. (m,n).

(a) Isthe setJ closed with respect to this operation?

(b) Is this operation commutative? Illustrate numerically.
(c) Is this operation associative? Illustrate numerically.
(d) Isthere an identity element? If so, what is it?

6. In which type of arithmetic computation is the l.c.m. used? Illustrate
numerically.

5.11 ORDER RELATIONS FOR THE INTEGERS

We defined a “less than” relation and a “less than or equal to”” relation
for the whole numbers in terms of one-to-one correspondence between
sets. Since this is not very meaningful for negative integers, we define
these relations for integers in terms of the positive integers.

Definition 5.11a. 1f m and n are any two integers, we say m ““is less
than” n if (n —m) is a positive integer.
We denote this m < n. Expressions involving the relation < are called

inequalities, or strict inequalities.

Definition 5.11b. 1f m and n are any two integers, we say m is “less
than or equal to” n if either (n —m) is a positive integer or (n—m)
is 0.

We denote this m = n. The relation, =, is also called an inequality, or a

weak inequality.

Example 1

5 < 7,since 7—5 = 2, a positive integer.
0 < mfor any positive integer m, since m — 0 = m, a positive integer.
—7 < —5, since =5 — (—7) = 2, a positive integer.
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We indicate hereafter that a number m is positive by the symbol m > 0.

The order relation < for the integers does not have the reflexive prop-
erty because n—n =0 and 0 is not a positive integer. On the other hand,
= is reflexive.

Neither the < nor the = relation is symmetric.

Both relations are transitive, that is, if m < n and n < k, then m <k,
also, if m = n and m = k, then m = k. In establishing this for the “less
than” relation, we observe that

m < nmeansn—m > (.

and
n < kmeansk—n > (.

It is necessary to show that these two statements imply m < , that is, that
k—m > 0. Note that

(k—n)+(n—m)=[k+(—n)]+ [n+ (—m)]
=k+[(—n)+n]+(—m)
=k+(—m)
=k—m.

Since the sum of two positive integers is a positive integer, and (k—m) and
(m—mn) are positive, k—m is a positive integer. Then, by definition, m < k.
The proof for = can be made by replacing < by = throughout.
Defining order for the integers in terms of the positive elements of the
system has certain algebraic advantages; for example, the trichotomy law
can be stated as follows.

The Trichotomy Law for Integers

If m # 0, then eitherm > 0 or —m > 0.

This can be stated alternately in the following way:
If m and n are any two integers, then one and only one of the following
statements is true:

(1) m=n.
Q) m < n.
3) m > n.

The trichotomy law states that any two integers can be compared. This,
after all, is one of the most important things we do with numbers.

We empbhasize the trichotomy law because a precise statement of it is
extremely useful. Students in higher mathematics sometimes have difh-
culty because they are not fully aware of the importance of this idea and
its relation to the order properties of the numbers we use.

The order relations have some additional properties that are both
interesting and useful.
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Properties of the Inequalities < and <

Fora, b,and ¢ integers

1. Ifa < b,thena—+c¢ < b+c.
2. Ifa < bandc¢ > 0, then ac < bc.
3. Ifa < band ¢ < 0, then ac > bc.

These statements can also be written with < in place of <. The last state-
ment says that multiplying both members of an inequality by the same
negative number reverses the sense of the inequality.

152

Exercise 5.11

1. Describe the following sets:
(@) 4 ={n|nisanintegerand —3 < n < 5}.
(b) B={n|nisanintegerand 0 < n < 7}.
(c) C={n|nisaninteger and n < 0}.
(d) N= {n|misan integer and 0 < n}.
() O={n|nisaninteger and n = —n}.
(f) J={n|nis aninteger}.

2. Write the simple open sentences for each of the compound open
sentences of problem 1.

3. Describe the complements of the sets of problem 1.

4. Specity each of the sets in problem 3 in the manner of problem 1.
5. Describe N X N (set N of problem 1).

6. Describe J X J (set J of problem 1).

7. Is there a smallest integer? Is there a smallest positive integer? If so,
what is it?

8. Is there a smallest non-negative integer? If so, what is it?
9. Istherea largest negative integer? If so, what is it?

10. How many integers satisfy the inequalities —5 < n < 5? List them
and indicate them on the number line.

11. Show thatifa < b,thena-+c¢ < b+<.
12. Show thatife < band ¢ > 0, then ac < be.
13. Show thatifa < band ¢ < 0, then ac > bc.

14. How many solutions does the inequality 3+ < 10 have in the set of
natural numbers? In the set of integers?

15. What is the sum of the first 5 positive integers?

16. What is the sum of the first 10 positive integers? Here is an easy way
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to add the first 5 positive integers:

1+2+3+4+5
5+4+34+2+1
6+6+6+6+6

Five 6’s are 30, but we added each of the numbers twice, so we must divide
our answer by 2. Hence the sum of the first 5 positive integers is 5(6)/2.

17. Write out the sum of the first 10 positive integers in the same way and
find the sum.

18. Find the sum of the first 20 positive integers by the method suggested
in problem 16.

19. Find the sum of the first 50 positive integers.

20. Write an expression for the sum of the first » positive integers in the
form suggested by problem 16.

21. What is the sum of the first 3 positive odd integers?

22. What is the sum of the first 4 positive odd integers?

23. What is the sum of the first 5 positive odd integers?

24. Write an expression for the kth positive odd integer.

25. How are the answers to problems 21, 22, and 23 related?
26. What is the sum of the first 10 positive odd integers?

27. What is the sum of the first 11 positive odd integers?

28. Write an expression for the sum of the first n positive odd integers in
the form suggested by problems 21 through 27.

5.12 ABSOLUTE VALUE

We use the familiar concept of number line to introduce absolute value
(see Sections 4.13a).

5.12a Distances onthe Number Line

If we wish to know the number of intervals between pairs of points, it is
simple enough to count them. This, however, is not necessary if we use the
names we have attached to the points.

6 7 8 9 10 11 12 13 14 15 16

For example, we might ask how many units it is from the point labeled 7 to
the point labeled 13. The result can be obtained if we notice that the 7 label
actually can be interpreted to mean that there are 7 intervals between that
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point and the point labeled 0. Also, the 13 label indicates that there are 13
intervals between 0 and 13. We see immediately that there are 13—7 = 6
intervals from the point labeled 7 to the point labeled 13.

We might be tempted to say, in general, that the number of intervals
from the point labeled m to the point labeled 7 is n—m. However, if we
ask how many intervals there are between the point labeled 13 and the
point labeled 7, our generalization would yield —6, which is meaningless
as an answer to the question, ‘“‘How many?”

The number of intervals between points on a line is called the distance
between points on the line. To define properly the distance between points
in terms of the labels attached to the points we introduce the concept of
absolute value of a number.

Definition 5.12a. If m is a number, the absolute value of m, denoted
by |m|, is defined as follows:

If m > 0, then |m| = m.
If m=0, then |m| = 0.
If m < 0, then |m| =—

Example]
|3] = 8, since 3 > 0.

|—7| =17, since—7 < 0and —(—7) = 7.
0] = 0.

5.12b Properties of Absolute Value

1. The absolute value of the product of two numbers is the product of
the absolute values of the numbers.

lm - n| = |m| - |n]|.

2. The absolute value of the sum of two numbers is not always the same
as the sum of the absolute values. It may be less but never greater. We
indicate this as follows:

|m~+mn| < |m|+ |n|.

Definition 5.12b. The distance between points labeled m and n on
the number line is |m —n|.

5.12c¢ Properties of Distance

1. The distance between two points is a nonnegative number. It may be
0. This happens when the two points are the same.

2. The distance from point 4 to point B is the same as the distance from
point B to point 4.

3. The distance from 4 to B plus the distance from B to C is greater
than or equal to the distance from 4 to C. This property is referred to as
the triangular inequality. Why?

Heretofore we have been speaking of distances along a line. We can
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also speak of distances in a plane. Here there are two kinds of distances
familiar to most people, the “street” distance and the distance “‘as the
crow flies.”” Consider a portion of a city map as shown in Figure 1.
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How far is it from the Smith’s house (S) to the Jones’ house (J)? If you
drive, the answer is 4 blocks east and 3 blocks south, or a total of 7 blocks.

We might also say 3 blocks south and 4
blocks east. This is one meaning of “dis-
tance” in the plane. We could also be
concerned with how far it was between
houses “as the crow flies.”” Here we mean
the straight-line distance from house to
house. You may recall that we compute
this as shown in Figure 2.

We have two distances from Smith’s to
Jones’, by following the streets (7 blocks)
and as the crow flies (5 blocks). We assert
that both ““distances” satisfy the properties
of distances listed at the beginning of this
section.

Figure 2.
Jones): V42+ 32 =V25=05,

5.12d Interpretation of Absolute Value Statements

The expression |m—4| < 3 can be interpreted in two useful ways. One
way to read it is ‘‘the number m whose distance from 4 is less than 3 on the
number line.” If we draw the number line, plot the number 4, then mark
off a distance of 3 units in both directions from the number 4 we have a

picture of the expression.

Distance (Smith to

) 3 ~ {

- & ® £ &—@—= .
0 1 2 3 4 5 6 7 8
— J
Y
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The numbers 2, 3, 4, 5, 6 are those whose distance from 4 is less than 3.
The expression |m| < 3 can be written as [m — 0| < 3 and interpreted in
the same way.
The other way of interpreting the expressions |m| < 3 and |m—4| < 3
is as open sentences. The open sentence |m| < 3 is a compound open
sentence. Itis the same as

—3 <m <3.
It is the conjunction of the two simple sentences
—3<m and m < 3.

The solution set or truth set of this compound sentence is the intersection
of the solution sets of the simple open sentences.

=-3<m

~

o - Lo (o) (o) (o) (o)
& A\ &7 A4 A

-5 -4 =3 -2 <=1 0 1

N
w
IS
&

A

m<3

The open sentence |m—4| < 3 is the same as

It is the conjunction of the two simple sentences
—3<m—4
and m—4 <3,

Using property (1), Section 5.11, we see that we can add 4 to both terms of
the inequalities.

—3<m—14

—34+4<m—4+14
1<m

and

m—4 <3

m—4+4 < 3+4
m<7
\ 1<m
)

0 1 2 3 4 5 @& 1 =8 9 10

m<7
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The expression |m| > 3 can be written |m—0] > 3 and interpreted as
before. The solution set consists of all numbers m whose distance from 0 is
greater than 3 on the number line.

m<-3 | \ m>3
1 |
—>—0©—® * > . o > — D —O —©S—@—
-6 =5 =4 =3 =2 =1 0 1 2 3 4+ 5 6 7

This suggests that |m| > 3 can be interpreted as the disjunction of the
two simple open sentences m > 3 or m < —3. The solution set may be
described by

{m € Jlm >3 0orm < —3}.

The expression [m+2| > 5 can be written as |m—(—2)| > 5 and inter-
preted as the set of all numbers m whose distance from —2 is greater than
5 on the number line.

m+2< —5[ ] m+2>5
& P~ . . - . - . @ @)
& ® * - ®
-9 -8 -7 -6 =5 -4 -3 =2 -1 0 1 2 3 4 5

This suggests that |[m+2| > 5 can be written as the disjunction of the
two simple open sentences, m+2 > 5and m+2 < —5. That s,

m+2>5 or m+2 < —5
m+2+"2>5+72 m+2+7"2<—5+72
m >3 m<—17

The solution set may be described by
{m € Jlm >30rm <—7}.

Exercise 5.12

1. Find the following sets and plot the sets and their complements on the
number line:

@ {m € J||ml <5} (b) {m € J| |m| <4}
() {m € J|m<5andm >-—-2} (d) {m € J | Im—5] <2}

2. Find the following sets and plot the sets and their complements on the
number line:

(@ {n € J| |n| =3} by {neEJ||n—8 =2}
© {neJ|inl =1} (d) {n € J| |n+5| =3}
() {n€J||n—6]=2}

3. If a < b, how is ac related to bc?
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4. Use numerical examples to illustrate [m+n| = |m| + |n].

(a) Under what conditions does the equality hold?
(b) Under what conditions does the strict inequality hold?

5. (a) Write an expression for the distance from the point 3 to the point
9 on the number line.
(b) Write an expression for the distance from the point 11 to the point 8.

6. (a) Write an expression for the distance from the point 4 to the point
n.
(b) Writeanexpression for the distance from the point n to the point 18.

7. On the number line for the integers, which integers correspond to
points whose distance from 7 is 3?

8. Which integers correspond to points whose distance from 7 is less
than or equal to 3?

9. If mand n are integers, is (—m)(n) a negative integer?

5.13 CLOCK ARITHMETIC

Suppose it is 9 o’clock and we had breakfast two hours ago. We plan to
have a meeting in four hours (see Figure 3).

Figure 3

Two hours before 9 o’clock is 7 o’clock. Four hours after 9 o’clock is
1 o’clock. If we think of adding and subtracting hours, we have

9—2=7.
9+4=1.

If we did not know we were speaking about “time,” this would be a strange
arithmetic indeed. What time is 17 hours after 6 o’clock?

6+17=11.

Because one needs to know whether the time is morning or evening, the
time is sometimes expressed in terms of a 24-hour clock. Thus 2200 hours
is 10 o’clock p.M. 0300 hours is 3 o’clock a.M. 1200 hours is noon. Note that
in these four-digit numerals related to time, the first pair range from 00
to and including 24 and the second pair range from 00 to and including 59.

In working time problems on the 12-hour clock it does not take long to
realize that the correct time is obtained by acdding the clock hours to the
given hours, dividing by 12, and taking the reraainder as the result.
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Example 1

9+4=13=12-1+1= 1.
9+17=26=12-2+2 = 2.
8+8=16=12-1+4=4.

I

Whenever we add or subtract & hours to a given time ¢, we obtain the
“sum,” using the division algorithm as follows:

t+h =12 g+, and ris the clock time.

Example 2
Add 26 hours to 9 o’clock.

9+26=35=12-2+11.

Hence the clock time is 11 o’clock.

Exercise 5.13
1. What s the clock time in each of the following:

(a) 75 hours after 3:00 A.m.? Willit be A.M. or P.M.?

(b) You plan to serve a roast which takes 15 hours to cook. Dinner is
to be at 7:00 p.M. What time do you put the roast in the oven?

(c) It takes 7 hours to climb Harding Peak. You want to reach the
summit at 3:00 p.M. What time should you start the climb?

2. Add the following in “clock arithmetic”: (2) 9+5, (b) 11+6, (c) 8+ 15,
(d) 4+22.

3. Whatis the clock time of the following:

(a) 112 hours after 3:00 p.Mm.?
(b) 64 hours after 7:00 A.M.?
(¢) 42 hours after 5:00 p.M.?

5.14 THE CONGRUENCE RELATION

The congruence relation is a familiar one although we have not called
it by this name before; in fact, we didn’t give it a special name (see prob-
lem 5, Exercise 3.5b and problem 11, Exercise 4.4). In these problems we
defined the relation, denoted by =, as follows: For integers m andn,m=n
if m—n is a multiple of 4 (or 5), or, alternately, m = n if they each give the
same remainder when divided by 4 (or 5). Let us define this relation more
specifically.

Definition 5.14a. 1f a and b are integers and m is a positive integer,
a is congruent to b, modulo m, if (¢ — b) is a multiple of m.

Symbolically,

a=b(modm) if a—b=k-m,forsomeinteger k.
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The definition given here is equivalent to the definition that a is con-
gruent to b, modulo m, if they each give the same remainder when di-
vided by m. It is also equivalent to the definition that a is congruent to b,
modulo m, if a—b is divisible by m. The student will be asked to verity this
in Exercise 5.14a.

Example 1

39 = 3 (mod 12) because 39 —3 = 36, a multiple of 12.

65 = 113 (mod 12) because 65— 113 = —48, a multiple of 12.
Or we could say

39 = 3 (mod 12) because 39 =3 -12+3, 3=0-12+3; they both give
the same remainder when divided by 12.

Similarly, 65 and 113 both give a remainder of 5 when divided by 12.

Recall the definition of an equivalence relation. (See Section 3.4). Let us
show that the congruence relation possesses the necessary properties of
an equivalence relation.

The Reflexive Property.
a = a(modm) because a—a=0==0-m.

The Symmetric Property. If a = b (mod m), then b = a (mod m). To prove this
we note that a = b (mod m) means a—b=*% - m, for some k. Thenb—a =
(—k)m, but this is also a multiple of m. Hence, if a = b (mod m), then b = a
(mod m).

The Transitive Property. If a = b (mod m) and b = ¢ (mod m), thena = ¢
(mod m). To prove this we note that ¢ = b (mod m) means a—b=1F%-m,
and b = ¢ (mod m) means b—c = j - m, for integers k and j.

Adding

(@=by+(b—c)=k-m+j-m
a—b+b—c=(+j)m
a—c=(k+j)m.

But (k+j) is an integer, so a—c¢ is a multiple of m. This means that if
a = b (modm) and b = ¢ (mod m), then a = ¢ (mod m).

Since the congruence relation as just defined has the reflexive, sym-
metric, and transitive properties, it is an equivalence relation. Recall again
the effect of an equivalence relation defined on a set (see Section 3.4). The
relation partitions the set into disjoint subsets called equivalence classes.

Let us see what the congruence relation, modulo 12, does to the set I
the integers.

We first ask, “What numbers are congruent to 0, mod 12?” Obviously,
they are multiples of 12. We call this the 0-class.

We next ask, “What numbers are congruent to 1, mod. 12?” These are
1, 13, 25, etc., and, in general, any number in the 0-class+ 1. How do we
obtain the numbers congruent to 2, mod 1¢? How many classes will we
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have? We answer the last question by asking, “How many remainders are
possible when integers are divided by 122
We have 12 class s as follows:

—24 —12 0 12 24 36
—23 —11 1 13 25 37
—22 —10 2 14 26 38
—21 -9 3 15 27 39
—20 —8 4 16 28 40
—19 =7 5 17 29 41
—18 —6 6 18 30 42
—17 —5 7 19 31 43
—16 —4 8 20 32 44
—15 —3 9 21 33 45
—14 —2 10 22 34 46
—13 —1 11 23 35 47

Notice that any number in any row has the same remainder when
divided by 12, as any other number in the same row. These rows, where
the dots indicate that these are unending sequences of integers, are the
equivalence classes, modulo 12, of the set of integers. Notice that each in-
teger occurs in one and only one class. The classes are disjoint subsets
of the set of integers, i.e., the set of integers is partitioned into disjoint
equivalence classes.

Let us name the classes the 0-class, 1-class, etc., and use the following
symbols:

(01, [11, (21, (3], [4], [5], [6], [71, [8], [9], [10], [11].

We call the system consisting of the set of equivalence classes, modulo 12,
with addition and multiplication as defined in the following sections, ;5.

5.14a AdditioninJ,,

Now we observe an interesting phenomenon. Consider the numbers
27 and 38, whose sum is 65. Notice that 27 is in the class labeled [3] and 38
is in the class labeled [2], and their sum is in the class labeled [5]. Now try
any number in [2] and any number in [3]. Their sum will always be in [5].
We indicate this by writing

[21+[8] = [5].

We interpret this to mean that any number in the 2-class added to any
number in the 3-class is a number in the 5-class.
Let us try some more “‘class” addition.

[B1+9]1=">
5isin [5],and 9isin [9]; 5 +9 = 14; 14 isin [2].
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Hence
[5]+[91 = [2].

If this seems like a strange kind of arithmetic, recall that in our “clock”
arithmetic 9 hours added to 5 o’clock was 2 o’clock.

We now consider the new set, which we have labeled J;,, and whose ele-
ments are [0], [1], [2], [8], [4], [5], [6], [7], [8], [9], [10], [11].
Previous examples lead us to define a binary operation in J;,, which we call
“addition.” If we let [a] and [b] be any elements in J;,, then

[a] +[b] = [a+b],

where [a+b] is the class of «+ b reduced modulo 12. To show that this
“operation” is ‘“‘well defined,” we must show that the “operation” is
independent of the representatives of the classes; that is, regardless of
which representative of the classes [a] and [b] are chosen, the “sum” will be
in the class labeled [a+ b]. Some numerical examples illustrate this. The
formal proof is not difficult and is left as a challenge to the student.

Table 1 shows ““addition” for this system.

Table1 AdditioninJ,,

+] 100 10 120 8 [ 51 (71 8] [9) [0 (1]
orgyo 1 2 3 4 5 6 7 8 9 10 11
ayr 2 3 4 5 6 7 8 9 10 11 0
R1f2 3 4 5 6 7 8 9 10 11 0 1
3113 4 5 6 7 8 9 10 11 0 1 2
414 5 6 7 8 9 1011 0 1 2 3
[b1{5 6 7 8 9 10 11 0 1 2 3 4
61y6 7 8 9 101 0 1 2 8 4 5
(717 8 9 10 11 0 1 2 3 4 5 6
B8 9 101 0 1 2 3 4 5 6 7
@19 10 11 0 1 2 3 4 5 6 7 8
(rojjt0 11 0 1 2 3 4 5 6 7 8 9
(rijf1rr o 1 2 3 4 5 6 7 8 9 10

We observe from the addition table the following interesting properties
of “addition” as it is defined in the set J,,. (Note that in the body of the
table we have omitted the square brackets.)

The commutative property of “‘addition” results in the symmetry about
the upper-left to lower-right diagonal; that is, [a] + [6] = [ 8] + [a].

The first row and the first column in the body of the table indicate that
[0] is the additive identity.

The element [0] occurs once and only once in each row or column. This
means that the pair of elements whose sum is [0] are additive inverses of
each other; for example, [5]+ [7] = [0]. Hence [7] is the additive inverse

162 The System of Integers / chs



of [5] and [5] is the additive inverse of [7]. The element [6] is its own
additive inverse.

Not immediately evident but still something that can be shown is the
fact that “‘addition” in this system is associative.
Exercise 5.14a

1. Use numerical examples to illustrate the fact that “‘addition” in f;, is
associative.

2. Solve the following equations in J;,:

@ [81+[x]=1[7] (b) [4]+[5] = [x]
(© [8]+ [x] =[0] (d) [8]1+[8] = [«]
(e) [x]+[x]=1[0] () [x]+ [x] = [6]

3. Show that the alternate methods of defining the congruence relation
are equivalent (see Section 5.14).

4. How would you interpret — [3]?

5. Explain the following:
(@ — (8] =[-3] (b) —[3]=[9]
(c) —[6]=1[6] (d) [—=2] = [10]
5.14b MultiplicationinJ,,

We now define another binary operation, which we call “multiplication,”
in much the same way that we defined “‘addition.”
If we let [a] and [b] be any elements in ], then

[a] - [b] = [a - b],

where [a - b] is the class of a - b reduced, modulo 12. This “‘operation” is
also well defined. The proofis again left as a challenge to the reader. Table
2 shows “multiplication” for this system.

Table 2 MultiplicationinJ,

(1) 121 (381 [41 51 [6] (71 (8] [9] [10] [11]
mfr 2 3 4 5 6 7 8 9 10 11
22 4 6 8 10 0 2 4 6 8 10
B3 6 9 0o 3 6 9 0 3 6 9
44 8 0o 4 8 0 4 8 0 4 8
1 5 100 3 8 1 6 11 4 9 2 7
61| 6 o 6 0o 6 0 6 0 6 0 6
m{7 2 9 4 11 6 1 8 3 10 5
g8 4 0 8 4 0 8 4 0 8 4
@]9 6 3 0 9 6 3 0 9 6 3
[loyfro 8 6 4 2 0 10 8 6 4 2
[tipfir 10 9 8 7 6 5 4 3 2 1
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Examining the table closely, we observe that “multiplication” is com-
mutative. Notice the symmetry about the main diagonal.

The first row and the first column in the body of the table indicate that
[1] is the multiplicative identity.

The system has many “‘zero divisors”; that is, [3] # [0] and [4] # [0]
but [3] - [4] = [0]. By our definition of “divides,” [3] and [4] are both
nonzero divisors of zero.

We note that J;, is a mathematical system. [t is closed under two binary
operations, which are commutative and associative, and the distributive
law of mutliplication with respect to addition holds. The system possesses
an additive identity and a multiplicative identity, and there are inverses
under addition. This system contains zero divisors and the cancellation
law for multiplication does not hold.

5.14¢ Congruence Modulo 2
For integers a and b, a = b (mod 2) if b—a is a multiple of 2. This is
equivalent to saying a and b have the same remainders when divided by 2.
The division algorithm tells us that the only possible remainders when
dividing integers by 2 are 0 and 1. The congruence relation divides the
set of integers into two disjoint subsets —those that have remainder 0 (the
even integers) and those that have remainder 1 (the odd integers).

Equivalence classes, mod 2

{--—14,-12,—10,~8,—6,—4,—-2,0,2,4,6,8,10,12, 14, . . .}
{--—=18,—-11, —9,—-7,—5,-3,—1,1,8,5,7,9,11,13,15, .. .}

Addition table mod 2 Multiplication table mod 2
+ | [y : (1]
[0] | 0 1 | ——E] 1
[1] 1 0
Exercise 5.14c

1. Interpret the addition table mod 2 ir. terms of addition of even and
odd integers.

2. Use numerical examples to illustrate the fact that multiplication is
associative in Js.

3. Can you always find a solution for the equation
[a] - [x] = [6]? (modulo 12)
4. Solve the equation (modulo 12):

(@) [x] - [x] = [0] (b) [x] - [x] = [x]
(© B8] [x]=1[3] (d) [3] - [x] = [5]

5. Does the cancellation law for multiplication hold in J,? Illustrate
with a numerical example.
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6. If [x+3]-[x+4]=[0] in J;;, what can you say about x? List some
solutions of this equation.

7. Let J; denote the equivalence classes, modulo 3. Use [0], [1], and [2] to
denote the elements. Construct the addition and multiplication tables
for this system.

8. Does J; have zero divisors?

9. What is the additive inverse of [2] in [5?

10. What is the multiplicative inverse of [2] in J5?

11. What is the g.c.d. (7980, 2310)? The l.c.m. (7980, 2310)?
12. What is the g.c.d. of 300, 210, and 230? The L.c.m.?

13. What is the fallacy in the following argument? Let a = b. Then

a? = ab
a2—b=ab— b
(a—b)(a+b) = bla—b)
atb=b
2a=a
2=1

REVIEW EXERCISES

1.
2.

. If a, b, and m are integers, and m # 0,

. The

. The

Anintegerp,p > l,isa

if it has no proper divisors.

states that an integer p, p # 0 and p # =1, can be written as a product
of primes and *1 in one and only one way except possibly for the order in
which the factors occur.

if a— b is a multiple of m.

. If a binary operation defined on a set S assigns to each ordered pair of ele-

ments of S a uniquely determined element which is an element of S, we say the
operation satisfies the

. If W is the set of whole numbers, + is a binary operation defined on W, and for

all elements x in W there is an element a in W such thata+x = x+a = x, then
ais called the

. If J is the set of integers, + is a binary operation defined on [, and for each

element x in | there is an element x' in J such that x+x' =x"+x =0, the
additive identity, then x" is called

is the set J closed with respect to the operations of addition and
multiplication, with each operation commutative and associative, with multi-
plication distributive with respect to addition, with identity elements for each
operation, and with an additive inverse for each element in J.

of a set of integers is the largest positive integer that divides each
integer of the set.
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10.

11.
12.

13.
14.
15.
16.

17.

18.
19.

20.

. The

of a set of integers is the smallest positive integer such that each of
the given integers divides it.

Identify each of the simple open sentences in. the following compound open
sentences:

@ |n—7 >4
(b) In—5] =3
(©) |n| =2

Find the solution set for each of the problems in Exercise 10.

Find the solution set of each of the following compound sentences:

(a) |x+9] <3
(b)—8<n<4

What is the additive inverse of 5?
What is the additive inverse of ~5?
What is =2?

Designate the fundamental property of the system of integers that is illustrated
by each of the following:

(a) a+bisaninteger b)a+b=b+a
(©) a(b+c) =ab+ac (d) abis an integer
(€ at-a=0 f) at0=a

(g8) (a+b)+c=a+ (b+c¢) (h) a(bc) == (ab)c
(i) Ifa+c=b+c,thena=1b (j) ab=ba

kKya-1=1-a=a
Give reasons for each step in the following proof that

atac+b+bc= (a+b)(1+¢):
(@) atac+b+bc=a+ (ac+b) +bc

(b) =a+ (b+ac)+bc
(c) = (a+b) + (ac+bc)
(d) = (a+b)+ (a+b)c

(e) (a+b) -1+ (a+b)c
(£) = (a+b)(1+¢)
(g) atac+b+bc= (a+b)(1+c)

Show that “3 + 8 = 5, justifying each step.

(a) List all positive divisors of 30.
(b) List all positive divisors of 75.
(c) Underline the prime divisors of 30 and the prime divisors of 75.
(d) Circle the g.c.d. of 30 and 75.

State which of the following numbers are prime. For those that are composite
give the prime factorization:

(a) 147 (b) 251 (c) 493 (d) 1,000,000
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21. Find the g.c.d. and L.c.m. of 180 and 10*%.

22. Find the g.c.d. and l.c.m. of 1116 and 806 using the Euclidean algorithm.

23. (a) Make a partial listing of each of the equivalence classes modulo 7.
(b) Construct addition and multiplication tables for J;.
(c) What is the additive inverse of [3]in J?
(d) What is the multiplicative inverse of {5]in J;?
(e) Arethere zero divisors in J;? If so, list them.

REFERENCES

Bold, Benjamin, “A General Test For Divisibility by Any Prime (except 2 and 5),”
The Mathematics Teacher, April 1965, Vol. LVIII, No. 4.

Cohen, Louis S., “A Rationale in Working with Signed Numbers,” The Arithmetic
Teacher, Vol. 12, Number 7, November 1965.

REFERENCES 167



The System of Rational Numbers

6.1 INTRODUCTION

Just as an individual may be a teacher, a baseball player, a father, and a
homeowner, the symbols which we call nuraerals have more than one
interpretation. The natural numbers can be -hought of as elements of the
system of whole numbers. When considered as a subsystem of the system of
integers, they are called the positive integers. We are making ordinal use of
the natural numbers in answering the question, ‘“Which one?” We are
making cardinal use of the natural numbers in answering the question,
“How many?”

6.2 INTERPRETATIONS OF NUMBER PAIRS

We now consider those numbers commonly referred to as fractions and
written in the form £, &, ¥, etc. Again we have several seemingly un-
related interpretations of the symbols for these number pairs. We dis-
tinguish four principal meanings or interpretations of these number pair
symbols. They are familiar to the reader but may not have been dis-
tinguished and fully appreciated.

The interpretations are:

1. The “element of a mathematical system’ interpretation.
2. The “‘division” interpretation.

3. The “‘fraction” or “partition” interpretation.

4. The “ratio” or ‘‘rate pair” interpretation.
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Number Division Partition Rate pair
system (fractions) (ratio)
nx=m ™ e b=men Measurement Relative comparison
xr=n Secimal Magnitude of quantities or sets
" ) . m of n equal parts “mton”
The multilicative representation e Pettent
inverse
Figure 1

Each of these interpretations is much used, important, and in no danger
of being made obsolete in any modern approach to arithmetic. Any
restriction to a single interpretation can be as misleading and narrow as
the interpretation of one of the six blind men who examined the elephant.
Each interpretation is associated with a reasonably well-defined problem
situation. The schematic diagram of Figure 1 presents some of the ideas
associated with the various interpretations.

We shall consider the number pairs first as elements of that mathe-
matical system called the system of rational numbers. The other interpreta-
tions will be treated where appropriate.

Exercise 6.2

1. Indicate the ordinal or cardinal use of the numbers in the following:
(a) The numbers used to indicate the ranking of the baseball teams in
the American League.
(b) The score in the championship basketball game.
(c) The number at the top of this page.
2. Discuss the cardinal use of 1 and 0.
3. Discuss the numbers 1 and 0 as elements of the system of integers.
4. Give a precise definition of the additive identity; the multiplicative
identity.
5. Numbers are often used for the sole purpose of naming objects,
events, or even people. In this sense the only property of the numbers
used is that they are an endless source of new, distinct names. Social
Security No. 517-16-1722 identifies one and only one person. Give other
examples of the use of numbers as names.

6.3 THE SET OF RATIONAL NUMBERS

The number systems discussed so far can be considered in terms of the
type of mathematical questions that can be answered in a particular

system. The system of whole numbers is adequate for the following
questions:

m+n=7?
m-n=?>2

6.3 /| THE SET OF RATIONAL NUMBERS 169



In these questions m and n represent any elements in the system of whole
numbers. The arithmetic operations are used to find names for these
numbers.

The following questions may or may not have answers in the system of
whole numbers:

m—+?=n.
n-?=m.

For example,

9+7=4.
3.2=2.

Since there is no whole number that when added to 9 gives 4, we define
new numbers—1,—2,—3,...,—n,...sothat—1+1=0,—2+2=0,...,
—n+n=0,.... These numbers, together with the whole numbers and
with addition and multiplication defined appropriately, constitute the
system of integers. The system of integers can be thought of as an en-
largement of the system of whole numbers in which the question

m+r=n

can be answered for any integers m and n.
This enlarged system is still inadequate for answering the question

n-r=m.

(Note that if n is zero, so is m, since 0 - ¢ = 0 for all a. We therefore rule out
zero as a candidate for 7.)

We are now interested in a mathematical system in which not only
m— ? = nis solvable, but also in which

a-?=b

has solutions in the system for any a and b, a # 0. The question has
integer solutions for some pairs. For example,

3-7=15

has the solution 5. (Recall that we say that 3 “divides” 15.) For other pairs
there is no integer solution. For example,

3.-2=2

We are looking for a number that when multiplied by 3 is the number 2.
The fact that this number is intimately related to the numbers 2 and 3 is
recognized and incorporated into the symbol representing that number.
We must turn to “ordered pairs” of integers to answer our question.

Definition 6.3. A rational number is a class of ordered pairs of
integers. The ordered pairs are written in the form m/zn, with the
restriction that n is never 0.
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That rational numbers are defined as classes will be made clear in what
follows. Initially we will treat them as ordered pairs of integers, and the
reader should be cautioned that in so doing we are assuming the identi-
fication of a particular ordered pair with a class.

That we require n # 0 is an acknowledgment of the “division” inter-
pretation. In the ordered pair m/n, m is called the numerator and n is called
the denominator. This terminology has its roots in the “fraction” inter-
pretation.

Up to this point we have discussed natural numbers, positive integers, negative
integers, and now we are introducing rational numbers. We emphasize that the
terms are used as names of sets. Later we will speak of irrational numbers, real
numbers, imaginary numbers, and complex numbers. Again, the terms are used
strictly in the sense that they are names of various sets of numbers. The choice of
names is very unfortunate because the literal meanings which the terms carry
prejudice the student and tend to obstruct the learning of mathematics. The
terms reflect the attitudes and suspicions which the number concepts have had to
survive. There is no reason why this distrust and nonacceptance should be pro-
mulgated and the teaching of arithmetic made to suffer as a consequence. Hence,
we repeat, the term negative integers does not mean nonintegers, but is the name
of a definite set of numbers. The term rational numbers is the name of a definite
set of numbers. The term irrational numbers is the name of a definite set of
numbers.

There is a mathematical distinction between integers and rational
numbers. Eventually we want to interpret the integers as rational numbers.

When we consider the set of all possible ordered pairs of integers, m/n,
n # 0, there are many ordered pairs that appear different but that we are
accustomed to regard as the same.

Example 1
12345 6

For simple ordered pairs it is easy to recognize this relationship. It is not
so obvious for the numerals

27,946 and 307,406
845,692 9,302,612

These numerals may be names for the same number, but how do you
determine whether they are or not? To answer this question we define a
relation in the set of ordered pairs of integers, m/n, n # 0.
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6.4 EQUIVALENCE RELATION FOR ORDERED PAIRS
OF INTEGERS

Definition 6.4. We say two ordered pairs of integers, m/n and p/q,
are equivalent and write

— ==& if and only if mq = np.

We use the symbol = instead of = to emphasize that this is a new rela-
tion defined on the set of ordered pairs of integers in terms of the relation,
“equals,” on the set of integers. This relation will eventually be written as
“=" with the “names of the same number” meaning except when the
ordered pairs are interpreted as ratios or rate pairs. The connection
between = and =is clarified in Section 6.7.

Exercise 6.4

1. Write five numerals equivalent to each of the following:

w:  m O
@) et o7
® Wy OF
0 0 0o

2. Which of the following are equivalent?

27946 11 3,157,808 3333 63,27
854,602° 45" 96,580,196° 13,320° 253,251

3. Which of the following are equivalent?

33 33—2 2-33 2+33
29° 29—2° 2-29° 2429

4. Show that each of the following pairs are ¢ quivalent:

—2 2 —4 8
(a) 3 and _—3 (b) 1 and §
(© -5 and 10 (d) ™ oond 2
3 —6 —m m
0 0 1 3
(e) 5 and 6 (f) T and g
0 0 —m m
i bt _m ond
(8 = 1 and 1 ) n R n

5. Find the rational number equivalent to each of the following for
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which the g.c.d. of the numerator and denominator is 1:

3964 57 144
@ 37958 ®) 76 © %04

6. There are some open sentences of the type ax+ b = ¢ that are under-
standable to elementary-level students if they are stated in a reasonable
manner. “I am thinking of a number. By doubling it and adding 1, T get
9. What is the number?”” Try this with fourth or fifth graders and obtain
their response.

State the following problems in words:

(a) 3x+1=7 (b) 2% +3 =13 () 3x+1=10

7. Make a partial list, including both positive and negative integers, of
each of the equivalence classes of the integers modulo 13.

6.4a Properties of the Equivalence Relation =

The relation = is transitive. The proof of this assertion proceeds as
follows. We must show that if a/b = ¢/d and if ¢/d = e/f, then a/b = ¢ff, for
a/b, c/d, and e/f ordered pairs of integers, b, d, and f not zero.

a ., ¢ .
1. 7= dmeansad—bc.

£.¢
d f
If we show that af = be, then afb = elf.

Multiplying (1) by £ and (2) by b we get

adf = bcf and bef = bde.

By the transitivity of “‘equals” we have adf = bde.

Using the cancellation law of multiplication for the integers, we have
af = be or alb = elf.

The relation = is symmetric. We need to show that if a/b = ¢/d, then
c/ld = alb. We leave this as an exercise.

2.

means ¢f = de.

The relation = is reflexive. This is also left as an exercise.

If a/b is an ordered pair of integers and x is an integer, x # 0, then
alb = ax/bx.

Proof. (ab)x = (ab)x by the reflexive property of equals in the
system of integers.
(ab)x = (ba)x by the commutative property of multi-
plication in the system of integers.

a(bx) = b(ax) by the associative property of multi-
plication in the system of integers.
a_. ax by the definition of = in the set of
b bx ordered pairs.
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6.5 EQUIVALENCE CLASSES OF ORDERED PAIRS OF INTEGERS

We have shown that the relation = is reflexive, symmetric, and transi-
tive. This relation is an equivalence relation. An equivalence relation
partitions the set in which it is defined into disjoint subsets.

Recall how the congruence relation modulo m, defined in the set of
integers, partitioned the set into equivalence classes. The relation = has
a similar effect on the set of ordered pairs of integers. We shall tabulate a
few of the classes.

The class to which $ belongs is as follows:

:5_—_4—_3:2“112§é2§l

10 -8—-6—4—-2246810012°14 "

We denote this class by [3], although any other pair of the class could be
used. The bracket notation denotes the class to which the object enclosed
by the brackets belongs; [4§] denotes the same equivalence class as [2], % is
simply a representative of the class [3].

The class to which %2 belongs is as follows:

8 6 4 2 —2-—-4-6-8-10—-12—-14
1296 =3 369127 15 187 21"

We denote this class by [_?2] It is the same as [:9§] or [—_—4—6]

The class to which -i— belongs is as follows:

—6-5-4-3-2-1123456

=65 —4—-3-2-11'23456"""

It is denoted by [1] and will play a special role in operations with rational
numbers.

Similarly, the class to which ¢ belongs plays a special role. The class is
denoted by [?] and is as follows:

0 0 0 0 0 0000000
—6'—5—4—3—2—1'1'23456
Exercise 6.5
1. Show that = has the symmetric property.
2. Show that = has the reflexive property.
3. Indicate as in Section 6.5 the class to which each of the following
numerals belong:

54 16 19
@ 37 b) 75 © 5

174  1he System of Rational Numbers / cHe



0 0 7
(d) 100 (e) s () 3%

4. Indicate as in Section 6.5 the class to which the following numerals

belong:
@5 b=
O
W5 Gty 0=
4 wE a2

5. (a) Show thatg and 2——Qbelon to the same class.
g Gy goeions
(b) Show that% and i—z are related by = for any integer n # 0.
(c) Show that o and 2m are equivalent.
n 2n

(d) Show that % and Z—Z are equivalent. n # 0.
.39 -3 . . ..
6. Use the ordered pairs—, —, and — and illustrate that the = relation is

.. 515 -5
transitive.

7. What can you say about [?2] and [__13]7

8. What do we mean when we write

-0

9. What do we mean when we write

6]_[=3
[E] N [—3]?
6.6 RATIONAL NUMBERS AS EQUIVALENCE CLASSES

In the previous section we constructed several equivalence classes. We
saw how any member of a class might act as a representative of the class
to which it belongs. This is the reason for identifying particular ordered
pairs with a class. The ability to think of a rational number as an equiva-
lence class of ordered pairs of integers will be helpful in understanding
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fractions in arithmetic. This idea is not new. It is, in fact, a familiar con-
cept. What comes to mind when you see ? What comes to mind when you
see 82 What comes to mind when you see % or §? When one adds 3 and
%, the usual procedure is to add § and & That is, & is the same, in some
sense, as 3.

The objects in the system of rational numbers will be these equivalence
classes. We will define the binary operations on these classes.

The binary operations are defined in terms of representatives of the classes.
Addition and multiplication as we define them may not yield directly the
most convenient methods of finding the sum and product of two rational
numbers, but the usual (convenient) way of performing these operations
can be made reasonable in terms of our definitions.

6.7 ADDITION OF RATIONAL NUMBERS

Let 4 and % be representatives of the equivaience classes [§] and [3],
respectively. The usual procedure for handling rational numbers does not
make the distinction between the representative of a class and the class
itself. For clarity of presentation and ease in understanding computations
involving “fractions,” we wish to keep this distinction for the present.

To the ordered pair (3, §) the binary operation ‘‘addition’ assigns the
numeral which we write as (3 +4). We want this to be an ordered pair of
integers to satisfy the closure law. Furthermore, we want this to be consis-
tent with the addition of integers when we interpret the integers as a
subset of the rational numbers.

There are several ways of determining which ordered pair of integers
this should be. We discuss the usual procedure involving the ‘“least
common denominator” later. For the present, we find the ordered pair
represented by % + & in the following way:

Example 1
3-6+4-1 18+4 22

8.1 _18+4_
4 6 4-6 24 24

Notice that we are using the ‘“names for the same number” interpreta-
tion of =. Since the relation = as defined for the ordered pairs has the
same properties as =, when we wish to use the “names for the same num-
ber” interpretation, we shall drop the new symbol and revert to the
symbol=.

In general, we define addition of a/b and ¢/d as follows:
Definition 6.7. For a/b and ¢/d representatives of rational numbers,

a ¢ _a-d+b-c
ptdT bd

176 The System of Rational Numbers / cre



The expression (ad+ bc)/bd represents an ordered pair of integers
because the set of integers is closed with respect to addition and multi-
plication. This procedure is not the usual way of adding numbers such as
% and . However, it is consistent with the procedure for addition of in-
tegers when the ordered pairs are interpreted as integers (see problem 9,
Exercise 6.7).

There are at present only a few schools that are teaching secondary
school students computer languages, but we shall see much more of this
in each succeeding year. When these students commence programming,
they will discover that the method of addition of fractions by use of the
least common denominators is not the easiest method to program, but
rather that the method of Definition 6.7 is the easiest. One of the reasons
for this is the fact that writing a program for the computer to find the
least common denominator is quite involved.

The usual procedure uses the least common denominator with con-
siderable economy of manipulation as follows:

Example 2

3. 1_9 2 942 11
4+6_12+12‘ 12 12

The two methods involve essentially the same amount of work when the
denominators are relatively prime.

Example 3

3,1 _3-5+4-1_15+4 19
45 4-5 20 o
3,1_15 4 15+4 19
45 220 2 2

In either case, the important thing to note is that the sums may not look
the same but they will be related by “equals” in the sense 0f “names for
the same number.” From the foregoing Examples 1 and 2, % = 4 because
these numerals are simply different names for the same number. Think-
ing of the rational numbers as equivalence classes, we see that % and 4
are different representatives of the class [1}].

Let us recapitulate. We wanted to define addition of “rational num-
bers.” We wanted addition to satisfy the closure law. We also wanted the
sum to be uniquely determined, that is, we wanted the binary operation
to assign to any particular pair of numbers one and only one number.
This is the reason we define the operation on the classes. Thus a represen-
tative of the class [4] added to a representative of the class [#] is a represen-
tative of the class [+ %].

We have seen that this class can be determined in two ways One way
identified this class as [3}], another way as [#]. But £ = 4,50 [& = 1].
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gisin{ —_6 __3 ﬁ g B E
4 -8 —4 8 1271 167207 "
T OB
6 T —127 =6’ 12°] 18°24°30° """
§+lisin{ —22 -1l g1l 33
4 6 =94 —127 | 12 36’

The circled numbers indicate addition as defined. The numbers in
squares indicate addition in the usual way.

We state, but do not prove, the fact that addition as defined on the classes
is independent of the representatives of the classes. Any representative of 3
added to any representative of [4] is in the class [$+3]. In other words,
the class of the sum is uniquely determined. This is essentially the reason
why the procedure as defined produces the “‘same” result as the method
of least common denominators. The latter method merely uses a more
convenient set of representatives of the classes. This usually results in
less work in determining the class of the sum.

Exercise 6.7

1. Verify that (ad+ bc)/bd is an ordered pair of integers with nonzero
denominator if b and d are nonzero integers.

12 4 . . 33
2. Add 6 and % and show that your result is equivalent to 36"

3. Add :—3 and 1 and show that your result is equivalent to 1

4 6 12
4. Explain the following: B] + [%] o EJré]
5. Explain the following: B-i——é] = [3—%—41]

6. Add the following:

2.0 0, 4
@ 3" ®r3*3
2 —4 11
©3*% @3ty

7. Add the following:

39 54 369 39
@ 97 144 ®) 588306

8. Show that addition as defined on the classes is independent of the
representatives chosen.

9. Let the integer m correspond to the rational number \:%], and the

178  7hes ystem of Rational Numbers / CH®6



integer n correspond to the rational number [Lll] Then show that addi-

tion as defined for rational numbers produces a sum that corresponds
to (m+n).

6.8 MULTIPLICATION OF RATIONAL NUMBERS

Let ¢ and £ be representatives of the equivalence classes to which they
belong. The binary operation, multiplication, assigns to the pair (4, %) the
numeral (}-%). Again, we want this product to be an ordered pair of
integers so that multiplication will satisfy the closure law. This ordered
pair is determined as follows:

13_1-3_3
25 25 10
Bear in mind that the numerals 3, £, and 3 are representatives of the
classes [3], [2], and [&].
In general, we define multiplication of rational numbers as follows:

Definition 6.8. For m/n and r/s, representatives of rational num-
bers

3
<

n-s

E
s

The product represents an ordered pair of integers.
The binary operations “addition” and “multiplication” for rational
numbers could more properly be written as follows:

o)L= 15"
o] [a] =12

The brackets denote the equivalence class to which the numeral between

the brackets belongs. We repeat, it is only in terms of the equivalence
classes that the binary operations are well defined.

Exercise 6.8

L. Multiply: @ (é) 2. Multiply: (g) (g).
3. Multiply: <1—8)) (g) 4. Multiply: (%) (l))

i i 14_2-7
5. Write each of the following as a product, for example, 0= 575

- ()6
(@) 30 ®) 3
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6. Show that multiplication is well defined; that is, show that the product
is independent of the representative chosen.

7. Let the integer m correspond to [711] and the integer n correspond to
[7{] Show that multiplication as defined for rational numbers gives a

product that corresponds to m - n.

8. Carry out the indicated binary operation as defined.

5 5 9. 4 4 0
@7ty O 373 ©3%3
0,2 16 , 12 0.2
—3 .3 3,3 4.0
@5+ MWytZy @t
4, 4 9094 . 779,922
() gt=g & 376658 19,197,245

9. Carry out the indicated binary operation as defined.

2.6 9 .10 13 1
@ 33 ®) 3% © 7113
71 40
@33 @ )73
6 8 5 4 71
® 39 (th) 7-3 17
G 2.1 () 2294 . 779,992
V19 876,658 9,197,945

10. Explain the meaning of each of the following:
o l-B @B
o [ER1 gL
o -1

11. Explain the meaning of each of the following:
o[BI o EE-0
OB -
o -3
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12. (a) Give a numerical example illustrating the fact that addition of
rational numbers is commutative.
(b) Give a numerical example illustrating the fact that addition of
rational numbers is associative.

13. (a) Give a numerical example illustrating the fact that multiplication
of rational numbers is commutative.
(b) Give a numerical example illustrating the fact that multiplication
of rational numbers is associative.

14. (a) §~%]+[§%]=? (b) %*'?I] [g]=
[5 161 [7 16 [5..7].[16
@[3yl 53] = o [3+4]-[5]-
0, 5. [7]_ 6, 2 [17]_
16. (a) _1+5] [7]—? ) [5+= ] [19]_
784,327 9,548,012 784,327 9,548,012 _
17. (a) 012 _ (b)
2,004,463 ' 1,988,544 9,094,463 1,988,544

6.9 NAMING THE CLASSES (REDUCING FRACTIONS)

Any of the number pairs in an equivalence class can be used to name the
class. However, among all the number pairs in an equivalence class, there
is always one that is in some sense the simplest or most convenient, for
example, 1% is in the following class:

—14—-12-10 -8 —6 —4—2246 8 10 12

2= 18—-15—-12-9-6—-3369 121518 """

When one encounters s one naturally thinks of 3, so we tend to identify 1%
with §. We do not mean to imply that the two numerals are identical. We
mean simply that 15 and % are in the same class, namely the class [§] which

we call 3. We call this class % because % is the representative that is in simpli-
fied or reduced form.

Definition 6.9. A representative po of a rational number [;], is in

reduced form if the greatest common divisor of the integers m and
nis 1, n positive.

Notice that % is in reduced form, % is in reduced form, 4} is not in reduc-
ed form. If the equivalence class is written out as done previously, the
reduced form is easy to pick out. It is that element whose denominator is
the least positive integer in the set of denominators.

Without writing out the equivalence class, there are essentially two ap-
proaches to “reducing” fractions. One approach uses the fundamental
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theorem of arithmetic. The other is based on finding the g.c.d. of the two
integers. We discuss both approaches because both are used.

Let us simplify g and f'li 332 ggg When we simplity, or reduce, %, it is

easily recognized as % To a beginner, however, the process appears as i

3-2 . . 3-2. . 3 .
7.9 - We saw in Section 7.5 that 7918 equivalent to ; that is, we factor the
two integers and use the definition of our relation. This same technique

. ' 1,439,900 .
will work for reducing 3496900 but involves a great deal of computation.

1,439,900 . .
An alternate method for reducing m is by finding the greatest

common divisor of the number pair using the Euclidean algorithm. The
. . . . . md
reduced form is easily recognized as soon as it is put in the form d where

dis the g.c.d. of the two integers. The problem of finding the reduced form
of this particular number is left as an exercise. One gains a healthy respect
for the Euclidean algorithm in such applications.

Exercise 6.9

Find the name of the class to which each of the following belong. That
is, simplify each of the following:

72 5 797
" 144 ' 1441
3 163,264 4 1,439,900
" 9,754,108 * 3,496,900
5, 3927 6. 22819
* 5296 *204-19
39 26 72,16
T 59797 8. 38110
—b54 108
9. <1 10. — 75
0 27
11 ¢ 12. 52

6.10 THE SYSTEM OF RATIONAL NUMBERS

We review briefly the development of the system of rational numbers as
far as we have progressed. We considered all possible ordered pairs of
integers of the form m/n, where n # 0. We defined a criterion for deter-
mining when these ordered pairs are “related.” This relation, =, was
shown to be an equivalence relation. This brought a certain amount of
orderliness to the collection of the ordered pairs of integers; that is, the
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set of ordered pairs of integers was partitioned into disjoint classes of
m . .
related elements. We denoted these classes by [Z] The binary operations

were defined on these classes in terms of representatives of the classes.

Example 1
2], [5]_[2.5]_[2:6+3-5
3+ [8)- 3] - (257
HCR R gy
3] L6 3 6 3-6] "
Recall the meaning of these symbols. They are to be interpreted to mean

o 2 o
that any representative in the class [§ added to any representative in the

class [E] is an element of the class of the ordered pairs obtained by carry-

ing out the indicated operations in the last brackets. Simplifying fractions,
then, amounted to finding the usual name of the class of the resultant;

that is, the name of the class [2—%] is found by reducing 12 815

?—; to % We write this [%] + [?‘J = [g] For convenience and economy of

symbols, this can be shortened to g + g g without loss of meaning.

The same applies to multiplication.

6.10a Identities and Inverses

The additive identity for the system of rational numbers is that element
which when added to any other element leaves it unchanged.
|

Example 1

0 3 0'7+1-8_0+3 3
7 1-7 7 7

a 0_a-1+b6-0_a+0_a

b1 b-1 b b’

It appears that § is the additive identity. But ¢ is just one representative of
the class [¥]. Another element of this class is §.

Example 2

§+Q__3~5+7~0 3-5+0 E
75 7-5 715 -5
But

35,3

7-5 7
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It is more appropriate to write

3 0 3
1+5 =13
7+ =[]
If we interpret this statement correctly, any member of [¢] can act as an
additive identity, that is,
0.a

a
a,9.¢a #0.
ptas e "

The multiplicative identity is defined in much the same way with respect
to multiplication. The multiplicative identity for the system of rational num-
bers is that element which when multipiied by any rational number gives
a product which is identically equal to that number.

Example 3
41 _4-1_4
51 5-1 5

Remembering that § and 1 are representatives of the classes to which they
belong, we should write

3-8

We are saying that any member of the class [1] can act as the multipli-
cative identity, that is

%'% = % for any integer n # 0.

By the additive inverse of the element m/n in the system of rational num-
bers we mean that element which when added to m/n gives us the additive
identity of the system of rational numbers. Just as the additive inverse of n
in the system of integers is denoted by —n, the additive inverse of m/n
is denoted by —(m/n). Thus

Note, however, that

ﬂ+<_m)=9_

n n 1

m , ~m_mn+mn) 0 .0
~—+—=——-—=—2:—,
n n nn n 1
and

m_ m _—mntmn_ 0 .0
n —n —nn —nz 1

That is, ™ and _m; behave the same as (—%) We found earlier that
” ”
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-m

[—] = [—111] (See problem 4h, Exercise 6.4.) We are now saying that

R e [

m_—m_ m .
In general—; = Ty where we are using the ““names of the same

number” meaning of the “equals” relation. We adopt the convention

L. . . 7 2.
here, as we did with the integers, and write, for example, - —3 instead of

5 3
7 (_ 2)
L+(-3).
Recall that we introduced the negative integers so that we would have a
mathematical system rich enough to provide a solution to the equation
m+x=n,

tor any pair of whole numbers m and n. This system was called the system
of integers.

We constructed the rational numbers in order to have a number system
rich enough to provide a solution to the equation

n-x=m,

for any pair of integers m and n, except when n = 0. More generally, we

constructed a number system that could provide a solution to the equation
a*x=>,

for any pair of numbers a and b in our system, where a is not in the zero

class. Since the elements of our system of rational numbers can be written

- m . .
in the form [—n—], we are saying that our number system is complete

enough to provide solutions to the equation

)=l

where [%] and [ﬂ are any rational numbers and [%] # [%]
Example 4
Find x so that

3 1
Trx=.

1 1
We have
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since

:u:
1-3

— | o

3.1
3

[SLREE

The multiplicative inverse of any rational number [%] #* [%], is that
element which when multiplied by [%] gives the multiplicative identity.

-1
The multiplicative inverse of [%} will be denoted by [%J .

If we use the letter a to represent a rational number, we will write the
multiplicative inverse of a as a™. The multiplicative inverse is also called

the reciprocal.
We defined [%]

m]. ﬁ]“_H
[n] [n L
Example 5

3 71871 1
il =T

Notice, however, that

1
as that element which when multiplied by [%] is [ﬂ

-t 11
The numbers <%> and £y both give the multiplicative identity when

-1
multiplied by % Thus we write [%] = [%] in the sense that these are

both names of the same number.
In general,
5 -1]
n " m]
That s,
=)
n m 1f
In the special case whenn = 1,
5= )
1 m]
Exercise 6.10

1. Write the additive inverse of each of the following and carry out the
addition to verify the correctness of your choice.

m_m
2T and we have
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5 187 —19 2
@7 Gz ©3 (d) _—

6 5 0 -3
© — O3 ® = )=

. 0 . 239 m

My g ®T 0=
2. Write the multiplicative inverse of each of the following rational
numbers in two ways and carry out the computation to verify the correct-
ness of your choice.

17 100
@: by O @y

—2 — 6
@ = @ @

O] Oy ©F 05
) @i @ o
3. Carry out the indicated operations and simplify.
wbt )
© 5 (5+3) @5+

A2 A
@) +6)
4. What is the additive inverse of each of the numbers in problem 2?

5. What is the multiplicative inverse of each of the numbers in problem

1?.
6. Carry out the indicated operations.
2 (N 5 (T\™*
@5-() 5= (5)
11 4 3 0
© 53 @39

The reader was asked in Exercise 6.8 to illustrate the commutative,
associative, and distributive properties of addition and multiplication of
rational numbers through the use of numerical examples. We still state
these as laws which govern the behavior of operations with rational num-
bers, even though they can be proved to be satisfied by using the proper-
ties of the integers and the definitions of equality, addition, and
multiplication of rational numbers.
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Definition 6.10a. By the system of rational numbers we mean the set

R = {xlx = [%], aand b integers, b # O},

the binary operations, addition (+) and multiplication (-), the
relation % = cﬁl if and only if ad = bc, and the following laws:

(Hereafler, for simplicity, we will omit the use of the square brackets.)

Closure Laws
1. For % and ;Cl, in R there is a uniquely determined sum, which

ad~+ bc inR.

..a,c__
wewrltez—l-zi- bd

2. For % and <in R there is a uniquely determined product

£

b d
a.c_
b

—inR.

. . a-c.
which we write 4

<
d
Associative Laws. For %, é, and ; inR
a (e, ey (a,cy ¢
s 8e(Gre) = (005) 2
4 2.<£.£)=<2.£) NG
b \d f b d) [

Commutative Laws. For % and 2 inR

b
a,c_c_ a
5. b+ p d+b .
a.c_c a
6% a=d's
. ac e.
Distributive Law. For s and ] nR
a (c,ey_a c,a ¢
Identities
8. There is a unique element, % such that for any % in R,
a,0_0,a_a
pTITIT Ty
9. There is a unique element, T such that for any % in R,
al_1la_a
b1 1 b b

]. 88 The System of Rational Numbers / CH§6



Additive Inverses

10. For each % in R there is a unique element, _gb = —Ta in R
a a a\,a_0 0. ce .
such that; + ( Z) = (_Z> +Z =7 where 1 the additive identity.

Multiplicative Inverses

-1
11. For each Zin R, 2 9, there is a unique element, (2) _b
b b1 b a
. a (a\7' _ f(a\' a 1 1. R
in R such that b (3) = (3) 3T where 1 is the multiplicative

identity.

Exercise 6.10a

1. Use numerical examples to illustrate each of the laws in the preceding
section.

2. State in words the meaning of each of the laws in the preceding section.
3. Is the set of rational numbers closed with respect to subtraction?

4. Use the properties of the system of integers and the definition of
addition and multiplication for rational numbers to show that

C [
(a) Z+E_E+;
a ¢ c a
® 5 i=a

a [c e a ¢ a e
— _+_ =_._+_.__
© 3 (d f> b'd b f
5. Write a cancellation law for the addition of rational numbers and
prove it.

6. Write a cancellation law for the multiplication of rational numbers and
prove it.

7. Ifa-b=0,thena=00rb=0.

Proof

If a = 0, then the statement is true.
If a # 0, then 1/a is the multiplicative inverse of a.
(a) Use this fact to show thatif a # 0, then b = 0.

(b) Use the statement to show that if (x—3)(x—7) =0, then x=3 or
x=17.
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6.10b The Integers as a Subsystem of the Rational Numbers

We have studied the system of integers as a number system apart from
the system of rational numbers. The realization that each is a number
system with its own interesting properties is of considerable importance.
It represents the point of view of the algebraists and number theorists
who are interested in the structure of mathematics. This concept is funda-
mental in the understanding of the solvability of equations. As we have
repeatedly emphasized in our development, the solvability of equations
depends on the number system in which the equation is to be solved.

It is desirable to interpret the system of integers as a subsystem of the
system of rational numbers. Eventually we will consider the system of
rational numbers as a subsystem of the system of real numbers.

We have identified [?] with m and [ﬂ with n, where m and = are in-
tegers, and examined their behavior under the binary operations (see
problem 9, Exercise 6.7 and problem 7, Exercise 6.8). Addition and multi-
plication of those rational numbers identified with the integers were
consistent with addition and multiplication of the integers.

We now see that this same identification of integers with rational
numbers, that is, m corresponding to m/1, gives us

m! =% (see Section 6.10).

This is also consistent with the definition of exponents (see Section 1.5b).

Example 1
7 5 7-1+1-5 7+5 12 .
1 +T = 1 =4 -7 Rational numbers
7+5=12 Integers
12
12 = T Names for the same number
75 75 35 .
1111 1 Rational numbers
7-5=235 Integers
35
35 = T Names for the same number

Thus the system of rational numbers actually contains a subsystem
which acts just like the integers. They are not exactly the same as the
integers because they are classes of ordered pairs of integers. We will take
the naive point of view that because they act exactly like the integers they

can be interpreted as integers. Hereafter we will use m and 7 inter-
changeably as names for the same number.
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6.11 ORDER IN THE RATIONAL NUMBERS

We introduce order in the rational numbers in much the same way that
order was introduced in the integers. First we define the positive rational
numbers and then define the order relation in terms of them.

Definition 6.11a. The rational number m/n is positive if the in-
teger n * m is a positive integer.

We use the notation

LAY
n

to indicate that 7, 18 positive. The numeral , i a representative of the class
[E] If 7, 18 positive, so also is every member of the class [Z]’ that is, the

definition of positiveness is independent of the representative. We assert
that this is true and the interested reader will find it easy to verify.

6.11a The Trichotomy Law and Order for Rational Numbers

If we let the single letter r represent a rational number, one and only
one of the following statements is true:

1. 7is positive,
2. r=0,o0r
3. —ris positive.

If 7 is positive, —r is called a negative rational number.

The set of rational numbers is separated into three sets, the positive
rational numbers, the negative rational numbers, and 0. (Hereafter we
treat the integers as a subset of the rational numbers.)

The positive rational numbers are closed under addition and multiplica-
tion in the same way as the positive integers.

1. The sum of two positive rational numbers is positive.
2. The product of two positive rational numbers is positive.
We are now ready to define order in the rational numbers.

Definition 6.11b. 1f r and s denote rational numbers, then r “is
less than” s if s —r is positive.

We use the same notation used earlier:
: r<s if and only if s—r>0.

We also write » = s if and only if s—» = 0, and this is true if either r <'s
orr=s.

We use the notation r < x < s to mean that both r < x and x < s hold
simultaneously.
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We list some of the properties of order. For rational numbers p, r, and s,

1. ifr <s,thenr+p <s+p.
2. ifr <s,and p > 0, thenrp < sp.

3. if0<r<s,then%>;l.

4. ifr <s,and p <0, thenrp > sp.

192

Exercise6.11a

1. Verify that each of the following mathematical statements are true:

3 39 11 11

@ 5<% ® =<3 © 10<7%
19 1 ] 9 9463
D0<100 © 100 “1000 P 33183

2. Verify that each of the following mathematical statements are true:

-2 2 —1 1 1
(@) 5 < 3 (b) Ve < = (€ —=5< =3
-1 1 1
(d)_—§<2— (e) -3 <2 (f)g<%

3. Ifa > 0and b > 0andifa < b, how is 1/a related to 1/6?

4. (a) Prove your assertion in problem 3.
(b) Given the inequality 2 < 3, what is the effect of multiplying both
sides of the inequality by 2? By —3? By —1? By —3?

5. (a) What is the solution set of the open sentence, —3 < x = 5,if xisan
integer?
(b) List the positive integers which satisfy the open sentence —3 < x
= 5. .
(c) Use inequalities to specify the set consisting of
{—8,—2,-1,0,1,2,3}.

6. (a) Show that if n’pq > ¢*mn, then m/n < p/q. (Hint: n*pq > ¢*mn if
n’pg— ¢*mn > 0. Divide by ¢*n?.)
(b) Show thatifm/n < p/q, then n’pq— g*mn > 0. (Hint: m/n < p/qif and
only if p/g—m/n > 0. Use Definition 6.12a.)

7. (a) If m, n, and k are positive integers, show that m/k < n/kif and only
ifm <mn.
(b) Use (a) to show that if m, n, p, g, are positive integers then m/n <
p/qif and only if mq < np.

8. List some rational numbers which satisfy
@ iI<x<i b) —F<x<}

9. Illustrate each of the properties, (1), (2), (3), and (4), of order.

The System of Rational Numbers / CH6



10. Locate each of the following numbers on the number line:

5116 9 —4—-3519

@075 81 Ol 5T

11. What number lies one third of the distance from 5 to §?

6.11b Absolute Value
We repeat an earlier definition in terms of the rational numbers.

Definition 6.11c. For each rational number r we define

rifr >0
|r| =1—rifr <0
Oifr=0
The number 7| is called the absolute value of .
Example 1
-2 2 4] 4
=5 roi=s -3

The following are some useful properties of absolute value.

cational numbers a and b.

1. ifa # 0, then |a| > 0,and |a| =0if and only ifa = 0.
2. la—b| = |b—al.

3. la+b| = |a|+|b].

4. |a- bl = |al - |b].

5. |lal = [l] = la—b].

Exercise 6.11b

For

1. Find the solution set in the set of integers for each of the following

open sentences:

@@ x| =3 (b) [x—13] =2
(©) |x+5| =3 d) |[x—6] <1
(e) |x+3] =2

(f) Use set notation and inequalities to describe the complements of the

solution sets of (a) through (e)

2. Find the integer solutions.

(@) [3x+2|=5 (b) |2x—3| =7

3. Use numerical examples to illustrate the properties of absolute value,

(1) through (5), in Section 6.11b.

4. Give a numerical example of properties (3) and (5) of absolute value in

which the strict inequality holds.

5. If ais rational and 1 < a, how is a related to a??
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6. If ais rational and 0 < a < 1, how is a related to a2?
7. If ais rational and @ < —1, how is a related to a??
8. If ais rational and —1 < a < 0, how is a related to a2?

6.11c The Property of Denseness

By associating to each rational number the point on the number line
whose distance from some fixed point (see Sections 5.12b and 5.12¢) is the
rational number, we define a one-to-one correspondence between the
rational numbers and a subset of the points on the line. We shall see in
Section 7.1 that there are points on the number line which do not
correspond to rational numbers (see Figure 2).

=2 -1 0 1 2 3
-4 =3 —2 =1 [ 1 2 3 4 5 3
2 2 3 2 2 2 2 2 2 2 2
0 1 2 3 4 5 & A 8 El

3 3 3 3 3 3 3 3 3 3

-8 -4 0 1 2 3 4 5 6 7 8 9 10 1 12
2 2 7 4 % 4 3 3 71 3 1 71 71 1

If we let a and b be any two rational numbers (assume a < b), then it is
always possible to find another rational number ¢ such that ¢ is “‘between”
a and b; that is, given @ and b with a < b we can find another rational
number ¢ such that

a<c¢c<hb.
One way to do this is to take half of the sum of a and b; that is, to let
a+b
>

Using the properties of order we can see this easily:

a _b by property 2,
< . —_— _—
@a<b henceg <35 gection.l1

b by property 1
d =4,a_4a,b y property [,
and a=9%9<9%9  Section6.11.
Al a, b _b. b by the same
9 + 2 <79 + 2 property
Thus a<“;b<b

Speaking geometrically, we note that the point ¢ = (a+5)/2 is the mid-
point of the line segment from a to .

a+bd

P

a b
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Example 1

Find the midpoint of the line segment from 3 to 7 and verify that it is
between 3 and .

1 9 11+18
271 T2
2 2 44
1
P I +3
0 29 1

44

9
Toshow thaltl < 2 < g, we first show thatl < 2 and then show that

2 44 11 2 44
29 9 29 1 58—44 14 . 1 29
44<11.44 5= 88 —8—8>051nce 14 - 88 > 0. Hence2<44
9 29 396—319 77 . 29 9
0 2~ 482 —@>Osmce77 484>0.Hence44<11.

The fact that we can always find another rational number between any
two distinct rational numbers implies that there are infinitely many
rational numbers between any two distinct rational numbers. Why? No
matter how “close together” two rational numbers may be, another
rational number can be found which lies between them. This interesting
property of the rational numbers is called denseness.

Definition 6.11d. To say that the rational numbers are dense-in-
themselves (or dense) means that between any two distinct rational
numbers one can always find another rational number.

This is merely a way of saying that the rational numbers are densely
distributed along the number line, that is, there is no part of the number
line that contains two rational numbers without containing infinitely many
rational numbers. The idea of denseness is closely related to the idea of
approximations. This concept is extremely important in any situation
involving measurements and indeed in much of mathematics itself. We
examine it in Chapter 7.

6.11d Plotting Solution Sets
In plotting or graphing solutions sets we have adopted the convention
of using parentheses to indicate that the endpoints of the interval are not
to be included in the set. If the endpoints are to be included, square
brackets are used.
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Example 1

Plot the set and its complement for
A={x € R|3 <x < 5}.

The graph of 4:
A
. -~ d d -
-5 -4 =3 =2 -1 0 1 2 3 4 s 6
The graph of 4"
A A’
i
3 - )
-5 -4 -3 -2 -1 0 1 2 3 4 5 g
Example 2
Plot the set and its complement for
B={x € R|x| = 2}.
The graph of B:
B
: 3 .
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
The graph of B":
B’ B’
3 4
T \

-5 =4 =3 =2 -1 0 1 2 3 4 5 6

Exercise 6.11¢c

1. Find a rational number between 0 and 1.
2. Find 5 rational numbers between 0 and 3.

3. Find 5 more rational numbers different from those in problem 2 which
lie between 0 and 4.

4. Is there a smallest rational number bigger than 1?7 Why?
5. Is there a largest rational number less than 3? Why?
6. Is there a smallest positive integer? What is it?

7. Is there a smallest positive rational number? What is it?
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8. What number lies half way between 0 and 1/2" for n a positive integer?
9. Is there a smallest rational number greater than 3?

10. Is there a largest rational number smaller than §?

11. What is the smallest integer greater than —9?

12. What is the largest integer less than — 5?

13. What is the smallest rational number x such that x = §?

14. What is the smallest rational number x such thatx = §?

15. What do we mean when we say two rational numbers are close
together?

16. Extend Definitions 4.13b, c, and d to the set of integers. To the set of
rational numbers.

17. What is the least upper bound of the set 4 in each of the following
(x rational)? (see Definition 4.13c.).

(@) 4= {xx| < 10} (b) A= {xflx| <1}
(© A={x[-3<x<0} (d) A={x| =5 <x <=2}

18. Plot the sets of problem 17 and their complements.

6.12 INTERPRETATIONS OF RATIONAL NUMBERS

As indicated in Section 6.2, we now turn to the other interpretations of
rational numbers.

6.12a The “Division” Interpretation
We have identified the integers with particular rational numbers, that is,

2_ _2

1= 2 or 2= T

3_ =3

i= 3 or 3= i

2= or n==%

1" Ik
etc. But £ is just one of the representatives of the class [¥]. We could use
%54 and o forth, as representatives of this class:

— 6 __ 8 __
$=%=4=2

To establish a connection between m/n and division, let us return to our
definition of ““divides” on the set of integers. Recall that a|b if there is an
integer & such that & =a - k. This can also be stated, b “‘divided by” aisk
or, with the usual symbol, b + a = k.

Since 8 = 4 - 2, 4|8. Using the “divided by” language, we have 8 +~4 = 2.
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But from the previous statement we see that § = 2. Then § can be inter-
preted as 8-+4. This is the “division” interpretation of the rational
number §.

Generalizing, we say that m/n can be interpreted as m + n.

The “division” interpretation serves many purposes. We will see in a
later section how it is used to obtain a very useful representation of
numbers.

6.12b Division of Fractions

The usual rule associated with the division of fractions is ‘“invert the
denominator and multiply.”

Example 1

14

|N4\l|03

_3.n_3
7 2

Ja
|

The explanation of this procedure is based on the fact that a/a can be
used as a representative of the class [1], the multiplicative identity for the
rational numbers. The choice of a is that which, when multiplied by the
denominator, gives = 1. In this example we would choose a to be the
multiplicative inverse of &.

Example 2
(2)-1
11 2
H FF &Y 1 4

11
That is, that 7 is a form of the multiplicative identity.
2

Example 2 illustrates the procedure that is being presented in many of
the newer arithmetic textbooks.

An alternate approach to the division of fractions would be to consider
the type of problem that requires a number of the form 4/& as an answer.
This can be interpreted as a special case of b/a, where b/a is that number
which when multiplied by a gives b, where a and b are rational numbers,
that is, b/a is the solution of the problem

a-x=>b.

The number 4/# can be interpreted as the solution of the equation:

2 =3
i1 X=7.
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We can solve for x by multiplying both sides of the equation by the
multiplicative inverse of & and making use of the commutative and
associative laws.

Fox=3
) Fex =t )
=3 (#)
x=%-%
It follows that
F_3.u
2 -7 2
11
Exercise 6.12b

1. Carry out the indicated operations.

oo | walre

(@) (b)

ales | len

(©

oo [tsfen

2. Solve each of the following equations:
(@ §-x=% (b) ¥ -x=% () 7-x=1%

3. Find the multiplicative inverse of each of the following:

(@) % (b) 1 © 3

CINC (e) 31 ® @7
4. Find the additive inverse of each of the following:

@ 3 (b) i+3 (0 i—4%

5. Explain in detail why the numerator is multiplied by the reciprocal of
the denominator to get the quotient of two rational numbers.

6. Carry out the indicated operations.

1 1 + 1 1 + 2
@ % (b) = © 37—
2 6 2 3
: i+
) @ % @G-% (f) B
3 2 5
7. Solve each of the following equations:
@ Fx—f=t B Ex=i-F  (©a+i=i

8. Give an example of a problem situation in which it would be useful to
write 1 - 3 instead of 8. (Hint: Factor 3x+ 3.)

9. Give an example of a problem situation in which it would be useful to
write ¥ instead of 5. (Hint: Add 5to 5.)
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10. Give an example of a problem situation in which it would be useful to
write 1 as £.

6.12c “Fraction” Interpretation

In the early development of fractions in almost any arithmetic textbook
you will encounter an illustration similar to the following.

Example 1

In Figure 3, the disc is marked off in 3 equal parts. The numbers 2 and
3 can be used to tell how much of the disc is shaded.

This tells the number of equal parts. % N Two of the parts are
shaded.

J— Many other examples could be cited. This is the
W W” “fraction” interpretation or, as some authors term
it, the “partition” interpretation of the rational
| number. This is probably the most familiar inter-
pretation of rational numbers, so it needs but little
explanation here.

T In the rational number m/n, used in the “frac-
tion” sense, the 7 is called the denominator and the
m is called the numerator. Denominator is derived
from the Latin word denominatus, “‘to call by name.”
It designates by name (number name) the parts
into which the whole is divided. Numerator is derived from the Latin
numeratus, ‘‘to count,” and “‘counts” the parts under consideration. The
symbol, m/n, under the “fraction” interpretation designates m of n equal
parts.

Figure 2. Theration-
al number line.

Figure 3

Example 2

In Figure 3, how do we express the shaded portion of the circles, 25 or ¥ ?

The symbol 2% is recognized and accepted as the name of a number. It is
read, “two and five-sixths.” It means 2+ &. As written, it is the sum of an
integer and a rational number. We know how to add integers to integers
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and rational numbers to rational numbers, but we have not defined addi-
tion of integers to rational numbers.

To give the numeral (2+§) meaning, we must turn to the system of
rational numbers. We must interpret the integer 2 as a rational number
as we agreed earlier could be done. The obvious choice for a rational
number to represent 2 would be £. By 2 we mean [£]. We have considerable
freedom in choosing a representative of [{].

The term ““five-sixths” suggests the “fraction” or ‘‘partition” inter-
pretation of the rational number, 3 The “5 of 6 equal parts” approach
is conventional but, technically, it requires caution. To introduce the
fraction § as

F=d+i+i+i+d

assumes that the learner knows how to add rational numbers or to multi-
ply an integer by a rational number.

F+d+itiri=5-4=%
To avoid this assumption we introduced the system of rational num-

bers before we discussed the various interpretations. From our previous
discussions we can proceed as follows:

ojen

5.,
1

ot

But 2 = 5, so we can write

5 5 1 1
3=315=5"%

In the interpretation of (2+2) we can choose ¥ as the representative of
[2] and write this as 12 - . We then have

2+%=l1‘ 6+5 &
Using the distributive law, we have
Pedried=(P+D-
= (12+5) %
7%
7

Il
Y.

,.‘,_.AA

csl

This is a tedious way to show that 2% = ¥, but it is based on the fundamen-
tal properties of the number systems we have discussed. The usual pro-
cedure is to write
5_12 5 1245 17
2 =9+2=22, 5 i
6 6 6 6

The question arises as to which is the more useful name, 2§ or ¥? The
form 2% reflects its origin in measuring and suggests magnitude or size.
The expression, “¥ yd of material,” is not a familiar way to order yard

goods. On the other hand, there are times when ¥ is a more convenient

6.12 /| INTERPRETATIONS OF RATIONAL NUMBERS 201



form that 23. For example, if 2§ yd of material is to be divided among six
people, how much does each recieve?

2%+6="7
76— 17,1 17
6 6 6 7 36

Each person would recieve 3¢ yd or 17 in.
To conclude this section we illustrate the use of 2& and ¥ as names for
the same number in computation.

Example 3
28)(12) = 2+8)(1+3) @513 = (B
=Q+HD+2+HE)

17-3
=9.1 -1 .1_|_ .1 —

2-1+%-1+2-3+3%-3 6.9
=2+3+1+5%

17
=@+D+GE+H) =53
=Q2+DH+E+H)
=3+ =7

1243 16+1
=3 T4
=3+5+5 =144
=@+)+1 =4+%
=4+i=4 =4}

Example 4

B+13=2+3+1+3 28+ 14=Y+%
=Q2+D+E+D =943
=3+@E+3

1749
=3+ ==
=3+——6:;2 —
PP _24+2

’ 6
=B+D+14 =%+3
=4 =4+4%

Exercise 6.12¢

1. (a) Add 2¢to 3%as you were taught in arithmetic.
(b) Add the same numbers as in Example 4, Section 6.12c, and justify

each step.

2. Carry out the indicated operations and write your answer as a rational
number and as an integer plus a rational number.
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2+ 5
@ 23 ) 3
@ G @) eye

3. Give an example of a situation in which each of the following numerals
is in a convenient form.

(a) 4 (b) it (© %
(G (e) 9% (f) 4+7

4. The following diagram represents the product (24)(33). Label each part
properly.

l
|
|
|
|
I A Ep
|
f
[
l
!

5. Carry out the computation and explain each step in the following:

173

6. Carry out the indicated operations.

() 23 = 43 (b) 1+%
© (5 +-§> - (5 +%) ) 4;
() 2+ 5% 0 S

7. Solve for x: (3%)x = 42,

8. Multiply each of the following by direct application of the distributive
law.

@ G+H6+% (b) 6+35)9+%)
(c) Represent each product as area and label each part.

(d) Change the numerals of (a) and (b) to rational form and carry out
the multiplication.
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9. Carry out the indicated operations and simplify.

3+3 37143
@ %3 (b) *
5—3% 2_1
(©) I d) 2G—%
©+@+y (O 54
10. How much is one half of
(a) 0.00000000012? (b) 10%%?
(c) 5+32

6.12d “Rate Pair” Interpretation (Ratio)

We have had occasion to consider whole numbers in situations in which
the only properties used were their distinctiveness and their inexhaustible
supply. In these situations the numbers are used as names of objects or
places, for example, telephone numbers, positions on a baseball team, etc.
Addition and multiplication in these situations have no meaning. The
numbers are used as names and not as numbers.

Similarly, many situations call for the use of ordered pairs of whole
numbers; for example, “Mary bought 3 pencils for 10 cents.” The pair of
whole numbers (3, 10), is an ordered pair. “Mary bought 10 pencils for 3
cents” describes a completely different situation. (One looks like a bargain.)
Another way of describing this situation is to say that Mary bought pencils
which cost ““3 for 10 cents.” The sign in the window of the store probably
read, “pencils, 3/10¢.”

The ordered pair of whole numbers is being used here to describe a
many-to-many correspondence, in this instance, a 3 to 10 correspondence. The
statement, ‘“The odds are 8 to 5 on the Yankees to win,”” describes an 8 to
5 correspondence. As stated before, these situations involve the ordered
pairs of natural numbers but not as numbers in a number system. What
would it mean to add or multiply the ordered pairs in these situations?
The number pairs are used as rate pairs. As such, they are often written in
the same way as ordinary rational numbers. As rate pairs they should be
read ““3 for 10,” or “3 to 10,” or 8 to 5,” and not as three-tenths or eight-
fifths.

In many situations involving these ordered pairs, different pairs describe
the same situation. Thus 3 pencils for 10¢ describes the same situation as
6 pencils for 20¢ or 12 pencils for 40¢. Similarly, 20 miles to 1 gal is equival-
ent to 40 miles to 2 gal, or 100 miles to 5 gal. The criterion for determining
when two rate pairs describe the same many-to-many correspondence is
the same as determining when two rational numbers are equivalent. Thus
the rate pair, m/n, will be equivalent to the rate pair, 7/s, if and only if m - s =
n - r as integers. Let us use the symbol = to indicate that two rate pairs
describe the same many-to-many correspondence.
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Example 1

because 3-20=10-6.
because $-30=10-9.
because 8-10= 5-16.

[
25 Yo Yo

It

@ 5'“ 5}""

This relation between rate pairs is an equivalence relation and partitions
all rate pairs into equivalence classes. The essential difference between
working with the ordered pairs as rate pairs as opposed to working with
ordered pairs as rational numbers is that as rational numbers they are
added, multiplied, subtracted, and divided. These operations associate
with ordered pairs of two classes, an ordered pair of a third class. On
the other hand, rate pairs involve essentially working with one class at a
time.

The usual problem situation involving the rate pairs is built around the
following simple idea. Three of the four components of two equivalent rate
pairs are known. The problem is to find the fourth.

Example 2

If 6 apples cost 25¢, how much do 30 apples cost?
The equivalence class to which the rate pair 5 belongs is

6 12 18 24 30 36

255 505 755 100> 1255 1505 « » » »

Now the answer to the question is quite obvious. The rate pair with 30 as
its first component is %, which is to be interpreted as 30 apples for $1.25.
This is usually shortened as follows:

Let N be the cost of the 30 apples; then

6 30 . .
BN ifand onlyif 6-N=25-30.
Then
25 - 30
N= 6
and
N = 125.
Exercise 6.12d

1. Give five examples of the use of numbers as names only.
2. What is the meaning of the baseball expression, “Out, 6 to 3”’?
3. What is the meaning of the numbers on the doors in a building?

4. A certain canned food sells at 3 cans for 38¢. How many cans can you
get for $1.90?

5. A bank charges $3 for every $500 of the amount of a certified check
it issues. If the charges on a certain check was $12, what was the value
of the check?
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6. On a map lin. represents 16 miles. What distance is represented by
5%in.?

7. A tree 60 ft high casts a shadow 45 ft long. What is the height of a tree
that casts a shadow 30 ft long at the same time of day?

8. A man in an automobile made a trip of 125 miles in 24 hours. At the
same rate how long would it take him to make a trip of 500 miles?

9. The scale in an architect’s drawing is 1 ft to fin. A distance of 10in.
on the drawing represents how many feet in the structure?

10. Every 3 gal of radiator fluid contains 2 qt of pure antifreeze. How
many quarts of antifreeze are there in 45 gal of this mixture?

6.12e “Rate Pair” Interpretation (Percent)

The rate pair is also used in making relative comparisons. Thus a
person invests $3000 in a particular stock and sells it for $3450. He earns
$450 profit. Another person invests $450 in some stock which he sells for
$900. He also shows a profit of $450. The total amount earned was the
same, but the rate of return on the original investment is markedly differ-
ent. The rate pairs, 555 and 33§, describe quite different aspects of this
investment situation. It is possible to make a comparison of these two
rate pairs; however, rate pairs with the same denominator are more con-
veniently compared. The usual practice is to use 100 as the common de-
nominator. Rate pairs whose common denominator is 100 are called
percents. Percents are rate pairs in which the second place number is 100,
and when this is understood, they are usually written with the symbol %
or “percent” in place of the 100 in the denominator.

From these examples we have

450 . 15 —
3000 — 100 15%

Thus 15% really means 15 per 100. In terms of percent, the investment
situation can be compared by inspection.

The problem of changing from percent to decimal form and vice versa
simply involves remembering what percent means:

_15 _
16% =155 = 0-15
_2 _
0.02 = 756 = 2%

Most rational numbers can be expressed only approximately in decimal
form. The same is true of rate pairs and percents. The rate pair  can only
be approximated by a percent. For example,
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Convention has given meaning to the following rate pairs:
335%  663%

The meaning here is clear. Strangely enough, we seldom see such rate
pairs as

14%  815%%  T45%

These are usually expressed as “about 14%,” “about 82%,” and ‘“‘about
75%.” We simply mention this as a convention and do not attempt to
clarify it as a mathematical idea.

The traditional approach has been to present percent problems, or
problems involving percent, as three different types or cases. With the use
of rate pairs the percent problems are essentially of one type —finding the
fourth component of two equivalent rate pairs when the other three com-
ponents are known.

Let P symbolize percent. Then, for example, 32% would give us P = 32
and would be expressed as the rate pair 4. When using P to represent the
percent, P/100 is the rate pair. For the other equivalent rate pair in the
percent problem we shall use 4/B, where 4 is called the “amount” and B
the “base.” Now the “three” types of percent problems can be expressed
in terms of these two rate pairs.

. 32 A .
Find 32% of 400. 100 = 400° A =1928.
. P 128
? _— —
What percent of 400 is 128: 100 = 200’ P=32.
. . 32 128 _
128 is 32% of what number? 00~ "B B = 400.

Exercise 6.12¢
1. Express the following rate pairs as percents:
(@ 46 (b) (
(e) % ) s (

2. Express the following percents as rate pairs:

(a) 25% (b) 34% (c) 40% (d) 85%
(e) 125% (f) 250% (g) 400% (h) 12.5%

<)
)

g

<l

3. Use the rate pair idea to answer the following questions:

(a) Whatis 15% of 80?

(b) What is 45% of 2300?

(c) What percent of 248 is 31?

(d) What percent of $2000 is $160?

(e) 65% of a number is 260. What is the number?
(f) 34% of a number is 170. What is the number?
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6.13 DECIMAL FRACTIONS

Some of the problems in earlier sections suggest that some other re-
presentation of the rational numbers is needed; a representation which is
amenable to arithmetic computation and which gives the user a readily
understandable idea of magnitude. For instance, which of the two rational
numbers listed below is the larger and what is their sum?

3,692,846 29,487,692
15,496,321 58,836,857

Without some other representation, computations using numbers of this
form would have to be, and have been, performed with not much more
than brute force and perseverance. The necessary innovations in our
system of numeration have occurred in relatively recent times. The use of
exponents to express extremely small and extremely large numbers
originated in the seventeenth century. The idea of the decimal fraction
was introduced the century before. We turn our attention to the latter.
Historians report that Al-Kashi was using decimal fractions systematically
in the fifteenth century (see “Historically Speaking,” The Mathematics
Teacher, April 1964). Before this report, more available records showed
that during the middle of the sixteenth century, Simon Stevin, a Belgian,
introduced the idea of decimal fractions. By combining the idea of using
fractions whose denominators are integral powers of the base with the
idea of place value, the arithmetician is freed of computations of the fore-

going type.
Definition 6.13. A decimal fraction is a rational number whose
denominator is an integral power of 10.

Example 1

25 814 21 337,601
100" 10,000° 100,000° 10,000

In place of writing the power of 10 in the denominator, a point called
the decimal point is inserted between two digits of the numerator so that
the number of places to the right of this point tells the power of the base in the
denominator. The point serves as a “separatrix.” Digits to the left of the
point form the whole or integer part of the number and digits to the right
of the point form the numerator of the fraction whose denominator is the
power of 10 with exponent equal to the number of digits to the right of the
decimal point.

Example 2
2% _ 95 _
100 102 0.25.
874 _ 874 _
10,000 100 0.0874.
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337,601 337,601
10,000~ 10¢

= 33.7601.

The number of digits to the right of the decimal point is called the
number of decimal places in the numeral.

Example 3

1. The numeral 3.1416 is given to four decimal places.

31,416
10,000

= 3.1416.

2. The numeral 0.000163 is given to six decimal places.

163

W = (.000163.

3. The numeral 0.001 is given to three decimal places.

1
1000~ 0.001.

6.13a The Number Line
If we consider the number line again, it is a straight line along which

the integers are evenly marked in both directions from the origin which we
labeled 0.

-2 -1 0 1 2

The decimal fractions which we call tenths separate the line segment
into equal segments so that ten such segments fit between any consecutive
pair of integers.

14 15
1 2

The hundredths divide each of the tenths into ten equal parts. The
thousandths divide each of the hundredths segments into ten equal
parts. The ten thousandths, hundred thousandths, millionths, and so on
are scattered along the number line in the same way as just indicated. If

141
14 Nian s

the line is divided into millionths, there would be one million such seg-
ments between any two consecutive integers. This suggests that the deci-
mal fractions are also dense on the number line. This is actually the case
although the fact requires proof.
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One can imagine plotting the numbers 0.3, 0.33, 0.333. . . indefinitely,
approaching in the limit the rational number 4. Conversely, it is plausible
that if we let the letter r denote the point on the number line correspond-
ing to the number r, by taking successive subdivisions, tenths, hundredths,
thousandths, and so forth, choosing at each successive step the nearest
mark to the point r, we will either arrive at the point corresponding to r or
we will approximate the number r by a decimal fraction. By continuing
indefinitely, the number r can then be expressed as an infinite decimal.

Exercise 6.13a
1. Plot the points 0.1, 0.14, and 0.142.

2. Find decimal approximations of 3§. Compare these to table values

of V2.
3. Find the decimal approximations %% and compare these to table
values of V2.

4. Find decimal approximations of % and compare them to the value of
7 given by the mnemonics in Section 8.13c.

5. Find decimal approximations of 35, 333, {33 and compare these to 7.

6. The decimal fractions are dense in the real numbers.

(a) Interpret this statement, using V/2 as an illustration.
(b) Interpret this statement, using 7 as an illustration.

6.13b Computations with Decimal Fractions

There is nothing essentially new in computations involving decimal
fractions. Decimal fractions are, after all, special rational numbers written
in ““decimal form.” At most, ‘“‘placement of the decimal point’ in the resul-
tant of a binary operation is the only new procedure not previously dis-
cussed. We consider this problem only briefly, for it can be explained as a
simple consequence of the behavior of exponents and the properties of
the system of rational numbers.

6.13c Addition of Decimal Fractions
The usual procedure in adding two or more decimal fractions is to add
the numbers by column after lining up the decimal points. As in the case
of addition by column of integers, the decimal points are “lined up” so
that the distributive law can be applied.

Example 1

Find the sum of 3.92, 406.7273, and 0.076.
3.92

406.7273
0.076

410.7233
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These three numbers can also be added as rational numbers, remem-
bering that the number of decimal places indicates the power of the base
in the denominator.

392 4,067,273 76

3.92 +406.7273 + 0.076 = W—FT-FW.

Writing these rational numbers with a common denominator, we have

39,200 4 4,067,273 = 760 judicious choice of representatives
10,000 10,000 10,000 of the classes
_ 39200+ 40672784760y ihe distributive law.
10,000

The indicated addition in the numerator of the last expression can be
carried out by “column addition” (the distributive law again).

39,200
4,067,273
760
4,107,233

Notice that the digits are lined up in the same columns as they are in the
decimal form. We have then

4,107,233

o = 410.7233.

The reason for the procedure of lining up the decimal points in the
decimal numbers to be added in column addition may be more apparent
if the numbers are written in the expanded form. A numeral written in a
place-value system of numeration is a convenient expression for a sum of
mulliples of powers of the base. For instance, the integer 1066 can be written in
“expanded form” as follows:

1066 =1-10°+0-10*+6- 10*+6 - 10°,

Using negative exponents, decimal numerals can be written in the
expanded form.

Example 2

1. 2033.3906 = 2-10°+0-10°+3-10'+3 - 10°+3 - 107!
+9-10%4+0-102+6-10~*

2.0.027=0-10""+2-1072+47-1072

The addition algorithm can be extended to decimal numerals directly,

and the distributive law applied to the “like’ powers justifies the column
addition as before.
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6.13d Multiplication of Decimal Fractions

Multiplication is quite literally a binary operation. Indicated products of
more than two numbers can be expressed because of the associative law,
but the actual computation is strictly binary. The placement of the decimal
point in the product of two decimal numerals is again no problem. We
illustrate with a numerical example.

Example 1

339
497
2373
6780

135600
144.753

To place the decimal point in the product, add the number of places in
the multiplier and the multiplicand. The number of places in the product
is this sum. This procedure is an immediate consequence of the behavior
of exponents.

10% 103

(0.0339) (0.427) = (%%?) : <427) = 14L.755 _ 0.0144753.

6.13e Division of Decimal Fractions
The usual procedure in placing the decimal point in the quotient of two
decimal numbers is as follows. Move the decimal point in the dividend and
the divisor enough places to the right to produce whole numbers, adding
zeros where needed. Carry out the division as whole numbers with the
decimal point in the quotient directly above the decimal point in the new
position in the dividend.

10®

Example 1
60.69+0.017 ="
0.017.7Y60.690.

17)60690. 3000
51000

9690 500
8500

1190 70
190

3570. quotient

Moving the decimal place in both the divisor and the dividend to pro-
duce division of integers, as we have indicated, is actually accomplished by
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multiplying the divisor and dividend by a high enough power of 10 to
produce integers. If the indicated division is expressed in rational form,
then multiplying the dividend and the divisor by the same power of 10 is
the same as multiplying by the multiplicative identity.

Example 2

60.69 (60.69) . (103> _ (60.69) (10°) _ 60,690

0017 \0.017) "\10°) ~ (0.017) (10°) 17

An alternative procedure, which is quite common, is to perform the
division as a division of rational numbers. In using this procedure, the
decimal points are moved just enough places to the right to produce a
whole number divisor, adding zeros where necessary. Place the decimal
point in the quotient directly above the decimal point in the dividend in
its new position.

= 3570.

Example 3
6069
6.069 _ 10° _(6069)'(1_02>_(6069)_( 1 )26()6.9
017 17 \1¢) \17/) {10/ \17 17
102
85.7
0.17.76.06.9
o ~—A

Exercise 6.13¢

1. Add the following rational numbers:

3 2 2 6
@15 00 ® 67 1000

7 9 2 3 7
© 100 1000 @ 797700 1000

2. Find the solution set of the open sentence:

(a) 0.0065 < 1026 = 6.5 x 10"
(b) 740 X 1072 = 7.4 X 10"
(c) 10™- 10" = 103%°

3. A number is written in expanded form when it is written multiplica-
tively as a sum of powers of the base 10; for example,

78.25=7-10'+3-10°+2-107'+5- 102
Write each of the following in expanded form:

(a) 700.125 (b) 333.3333  (c) 10,000.0001
(d) 27.272727  (e) 3.1416
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4. Carry out the indicated operations.

() (3.1416) - (17.74) (b) 17.74 + 3.1416
(c) 3.1416+17.74 (d) (293.004) (7.46) (2.917)
(e) 1001.0102+0.005

5. Carry out the indicated operations.

(a) (2.99776 - 10'°) (1.673 - 1072%) (b) (3.5-10%)(7.69)
(c) (6.0228-10%)(1.673 - 1072%) (d) (8.015-10%) = (0.005)
(e) (6.45-1073) + (2.4 -10%)

6. If we take the diameter of a silver dollar to be the unit length of a

number line, how many of these units must the dollar roll in order for it
to start with the head upright, turn over once, and end upright?

7. If two George Washington quarters are placed next to each other with
the heads on both coins upright and one coin is rolled over the top of the
other, what will be the position of the head on the rolled coin when it
comes to rest on the side opposite from which it started? Try this with
coins.

8. Find the smallest » such that 107" < 0.00005.
9. Find the largest n such that 1/96000000 < 107"

REVIEW EXERCISES

. Define the binary operation © on W X N as follows:

((m,n), (p.q)) == (m,n) O (p.q) = (mp. nq)

(a) Is W X N closed with respect to O?

(b) Does © obey the commutative law?

(c) Does © obey the associative law?

(d) Is there an identity element for ©? If so, what is it?

. The even numbers are numbers of the form 2k, where % is in W. The odd

numbers are numbers of the form (2t —1) or (2k+ 1), where kisin W.

(a) Show that the product of two even numbers is even and justify each step.
(b) Show that the sum of two even numbers is even and justify each step.
(c) Show that the product of two odd numbers is odd and justify each step.

Give precise definitions of each of the following:

. A proper subset of a set.

. The intersection of two sets.

. The universal set.

. The “inclusion” relation for sets.

. An equivalence relation.
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8. Domain of a relation.
9. The “divides” relation for natural numbers.
10. A one-to-one correspondence.
11. A system of numeration.
12. The order relation, <, for the integers.
13. Denseness of the rational numbers.
14. Absolute value of n, for n an integer.
List the properties of each of the following relations (a and b are integers):
15. a ® bifand onlyif [a—b| =k > 0.
16. a ® bif and only if |a—b| = 0.
17. a ® bifand only if (a—b) = 0.
18. a®bifand onlyif (a—b) > 0.
Give a formal definition of each of the following:
19. The system of integers.
20. The system of rational numbers.
21. What does it mean to say that a set is finite?

22. What does it mean to say that a set is infinite?

REFERENCE

“Historically Speaking”, The Mathematics Teacher, April 1969.
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The System of Real Numbers

7.1 INTRODUCTION TO IRRATIONAL NUMBERS

Some numbers are rational numbers, some are not; for example, %is a
rational number, % is a rational number. Because we also interpret m/n as
a division, we may consider 5 as a rational number; 0 is also a rational
number; 1,—1, 4%, 5, — % are rational numbers.

Numbers that are not rational numbers are called érrational numbers.
Examples of irrational numbers are \/5, \3/5, \s/ﬁ, \/1—3, a,.... It is not
uncommon to find people who see V2 or V87 as some complicated arith-
metic operation. (We remind the reader again that the addition algorithm,
the multiplication algorithm, and now the square root algorithm are
merely arithmetic procedures for determining another name of a num-
ber.) We repeat: 2+ 5 is the name of a number and we recognize it as the
number 7. So also is 3,746,297 + 894,299. A student may feel that he has to
know how to add before he can say that it is @ number. Still it is a perfectly
good number as it is written. In this spirit, /2 is a number. It is that positive
number which wher. multiplied by itself gives the number 2.

V2-V2 =29,

This number is not a rational number. It is called an irrational number
and occurs quite naturally. There is a well-known theorem in geometry
which was known to the Babylonians almost 2000 years B.c. but whose
discovery is frequently credited to the Greeks. It s called the Pythagorean
Theorem. The theorem states that the sum of the squares on the legs of a
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right triangle is equal to the square on the

hypotenuse (see Chapter 8). If we label the

leg of the triangle @ and b and the hypo-

tenuse ¢, then the theorem states that 2
a®+ b* = ¢ (see Figure 1).

Let us consider the triangle formed by )
. . (4 b| b
the diagonal and two sides of a square N
whose sides are of unit length. Then we
have
12+12=2, a2

This means the hypotenuse ¢ must have a
length such that ¢*=2. The Greeks re-
ferred to the hypotenuse of such a triangle Figure 1. a?+4h2=c?

as incommensurable. We will see that the

set of rational numbers developed for the purpose of measuring was
found to be inadequate for the simplest kind of measurement.

Example 1

The side of a square whose area is 2 is V2 and V2 is an irrational
number.

The side of a square whose area is 3 is V3 and V3 is an irrational
number.

The side of a cube whose volume is 2 is ¥2 and ¥/2 is an irrational
number.

The radius of a circle whose area is 1 is V7r/m and Var/# is an irrational
number.

These simple examples suggest that there are many numbers which are
irrational numbers (not rational). There are, in fact, many more irrational
numbers than rational numbers. They may not be as familiar as the
rational numbers, but such numbers exist. For example, 7 is an irrational
number, but it was a long time before it was shown to be irrational. The
number whose symbol is ¢ is familiar to the student of calculus. It is useful
as a base for a system of logarithms.

At this point we demonstrate that V2 is not a rational number to
strengthen the assertion that irrational numbers do, in fact, exist.

7.1a The Irrationality of V2
The argument to show that there is no rational number x such that x?> = 2
is an example of the method of indirect proof. The procedure is as follows.
We suppose that there is a rational number p/q whose square is 2. By using
correct mathematical operations we arrive at a contradictory situation.
Since we arrive at this contradiction by mathematically correct steps, the
only conclusion left is that our original assumption is false.

Statement to be Proved. There is no rational number p/q such that (p/q)? = 2.
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Assumption. Suppose the statement is false; that is, suppose there does
exist a rational number p/g such that p?/¢* = 2.

1. We assume that p/q is in reduced form; that is, p and ¢ have no com-
mon factor except +1 or —1. We may do this without loss of generality.
For if p*/¢* = 2 where p/q is not a rational number in simplest form, then

d ’ ’
§=d—§,=§ where g.cd. (p'.q¢') =1.

Thatis, p'/q’ is in reduced form.

2. P*1g* = 2,50 p* = 24~

3. p* = 2¢* implies p? is even. But if p* is even, so also is p. For if pis odd,
#?is odd. Hence pis even.

4. pis even so we can write p in the form p = 2m, where m is an integer.

5. Hence p? = 2m - 2m = 4m?, that is, p? = 4m? = 242

6. 4m> = 2¢%, so 2m® = ¢°.

7. Hence ¢ is even. But this means ¢ is even. So p and ¢ must have the
common factor of 2. This cannot happen if their only common factor is +1
or—1.

8. Hence our assumption must be false.

9. Therefore V2 is irrational.

7.2 THE NUMBER LINE

In Sections 6.11 and 6.13 we discussed the disttribution of the rational
numbers on the number line. We noted then that the rational numbers
were dense. Intuitively this means that no matter which point we choose on
the number line, there are infinitely many rational numbers arbitrarily
close to it. The “point on the number line” of the last sentence may not be
a rational number. In Section 7.1 we indicated that there are numbers such
as V2 and 7 which are not rational. We now show informally that there
are points on the number line which correspond to these irrational num-
bers and that there are rational numbers arbitarily close to them.

Let a square with sides of length 1 have the line segment from 0 to
1 as a base (see Figure 2). Consider the diagonal with one end at 0. The
length of this diagonal is V2. If we rotate the diagonal clockwise about the
point 0 until it lies on the line, the free end of the diagonal marks the point

&

1
| | |
-2 -z -1 0 \ 2
Figure 2
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whose distance from 0 is V2. We label this point V2. If we rotate the
diagonal counterclockwise until it lies on the number line, the free end
marks the point which we label —V/2.

The irrational number V2 lies between 1 and 2. In fact, V2 lies between
1 and §, since 12 = 1 and (3)? = § = 2. Any rational number between 1 and
% will be reasonably close to V2, for example, the midpoint of the line seg-
ment from 1 to . (This midpoint is also called the arithmetic mean or
average of the numbers 1 and $.)

3
1—;—2 = % first approximation
5\_25 _32 _
(4) 16 16 %

We see that § is greater than V2 and % is less than V2. (These rational
numbers which are close to V2 will be called estimates or approximations
of V2)

In order to obtain a closer approximation to V2, we divide 2 by the first
estimate, , and take the average of this quotient and %.

% = % quotient

3

548

4 ; 5 — % second approximation

[-\E
57 3 8
20 2 5

—
ISE]
PN

One might wonder why we went through this unexpected procedure to
obtain our second approximation. Actually it is a very reasonable proce-
dure. The symbol V2 is the name of the number which when multiplied
by itself gives 2:
V2-Va=2.
We are looking for a number, call it x, such that
x-x=2.
In our first attempt, we try 3. We have the following relation to consider:
F-x=2

If we solve this relation for x, we get x = §. Since we are using  as an esti-
mate of V2, itis reasonable to expect £ also to be an approximation of V2.
Furthermore, if one of these estimates is too small, the other will be too
large. This is the reason we take the average of these two “‘estimates’ to
obtain % as a better approximation. This process of dividing the number
by the last approximation and taking the average can be continued
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indefinitely. In this way we get a sequence of rational numbers approach-

ing V2.

Any of the rational numbers £, 33, . . . can be used as rational approxima-
tions to V2. We saw earlier that there is no rational number whose square
is 2, but the fact that the rational numbers are dense means that there are
rational numbers whose squares differ from 2 by less than any preassigned
amount.

Exercise 7.2

1. Divide §§ into 2 and take the average of this quotient and £ as a new
approximation to V2. Compare this approximation to the last approxi-
mation by looking at the difference of 2 and the squares of the approxi-
mation.

B7\2
|?‘(@)

l 9_ ( third >2

estimate
2. Find the fourth approximation to V30, using 5 as your first approxi-
mation. Check your result by squaring.

30 _
5
5+6 11 . .
—_——— second approxlmatlon

2

=7

=3

6

3. Find the third approximation to V300, using 17 as your first estimate.

4. If a circle of diameter 1 which touches the number line at 0 is rolled
along the number line, the point on the circle which was touching 0 will
touch the line again at the point corresponding to the irrational number

220

What are some rational numbers close to 7r?

5. Find the third approximation to V2, using ¥ as your first estimate.
Compare this with the third approximation obtained in problem 1.

6. Find the second approximation to V30, using & as the first approxi-
mation, and compare this with the third approximation obtained in
problem 2.
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7.2a More Irrational Numbers on the Number Line

We plotted the irrational numbers —V/2 and V2 on the number line by
placing the lower left-hand corner of the unit square on the point 0. If we
place this corner of the square at the point + and again rotate the diagonal,
the free end of the diagonal will determine new numbers. This translation
of the unit square corresponds to the operation of adding % to each of the
numbers — \(}2— and V2.

The binary operation addition assigns to the pair of numbers 3 and V2
a number which we write as $+V/2. Similarly, for the pair &, —V?2) we
write 3+ (—V2) or +— V2. When we add % and % we write this + + 1, but
then we find a new name for this number, 2. For 4 and V2, the numeral
£4+V2 is a name of the number. It is not the only name; another is
(1+2V2)/2.

These new numbers 4+ — \/f_7 and ++ V2 are again irrational numbers
(see Figure 3). The following argument can be used to prove this. Suppose
++ V2= p/q, where p/q is a rational number; then —4+3++ V2 =—3}+p/q;
this is, V2 = —4+ p/q. But —%+ p/q is the sum of two rational numbers. By
the closure law for addition of rational numbers we infer V2 is rational,
but this is not so. Hence $+ V2 cannot be rational.

These statements are true if we use any rational number n/m in place of
%, that is, for each rational number n/m, the numbers n/m— V2 and
n/m+ V2 are irrational numbers. Thus it is seen that there are as many
irrational numbers of the form n/m+ V92 as there are rational numbers.

7-V2 o & 13 V2
Figure 3

Also, there are as many irrational numbers of the form n/m — V2 as there
are rational numbers; the same is true for n/m -+ m, n/m — 7, n/m+ \/-3_, and
many more. Therefore it is reasonable to believe that there are more
irrational numbers than rational numbers. Such is actually the case.

These arguments indicate that the rational number line is full of “‘holes.”
These “holes” in the line correspond to the irrational numbers. The set of
all numbers which correspond to the points on the line is called the set of
real numbers. Hereafter we shall refer to the line to which the real numbers
correspond as the real line. The irrational numbers which fill the “holes”
in the line make the set of real numbers complete. This fact is extremely
important in mathematics and will be discussed further in the next
section.
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Exercise 7.2a

1. Show that 5+ V2 is an irrational number.

2. Show that—$+ V2is an irrational number.

3. What is the largest integer less than $? Less than 0?

4. Is there a largest rational number less than 5?

5. List several upper bounds of each of the following sets:

(a) A= {x|x =17}

(b) B={x|x=1—1/n for na positive integer}
() C={x|x® =2}

(d) D = {x|x* = 25}

6. State informally the meaning of the statement that the rationals are
dense in the real numbers.

7. If we lived in a world in which there were no irrational numbers, it
would be possible for a circle to pass through the number line without
“cutting”’ the line.

Give an example of such a circle.

7.3 THE SET OF REAL NUMBERS

The set of real numbers was introduced loosely as consisting of the
rational and irrational numbers which correspond to the points on the
real line. Without proving it, we have indicated that there is a one-to-one
correspondence between the points on the real line and the set of real
numbers. This is a very useful idea. It is the link between arithmetic and
geometry. If we think of the points on the line as being indexed or
addressed by the real numbers, it allows us to locate the points very con-
veniently. The plane can then be thought of as the Cartesian product of
the real line with itself. The points in the plane will then be in one-to-one
correspondence with the ordered pairs of real numbers (see Figure 4).

Rather than pursue this geometric line of thought we return to the
arithmetic of the real numbers.

We note that we have not fully attempted to answer the question, “What
is a real number?” Answering this question involves ““limiting processes”
and operations involving infinite sets. We will discuss this informally in the
section on decimal fractions later. For the present we say that the set of real
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(x,5)¢
i

Figure 4

numbers consists of the rational numbers (which include the integers) and
the irrational numbers, as introduced earlier.

We indicate briefly a connection between rational numbers and irra-
tional numbers, using V2 as an example. Recall that in Section 7.2 we
showed how we could find infinitely many rational numbers m/n such that
(m/n)?is close to 2. Among these there are those which we write as p/q such
that (p/q)? < 2 and those which we write as /s such that (7/s)? > 2; that is,
some are greater than V2 and some are less than V2. We denote the two
sets of rational numbers as follows:

At
q

B= {1

s

The number V2 is an upper bound of the set A and a lower bound of the

set B. It is, in fact, the smallest or least upper bound of the set 4. It is also the

largest or greatest lower bound of the set B. Similarly, every real number may

be thought of as the least upper bound of a set of rational numbers as is the

case here with V2. For instance, 3 can be thought of as the least upper

bound of the set of all rational numbers of the form 3 — 1/n, where n is a

positive integer. Whenn =1,3—1=2; whenn=2,3—3= 3%, whenn =3,
3—3=14%; and whenn =4, 3 —{ = 4" This set looks like this:

{2$ %9 %9 %a 1_54'. .. .}-

This is the concept involved in the statement that the set of real numbers
is complete. We state this more precisely.

p2 < 2(]2}

r2 > 2% and% > 0}.

Definition 7.3a. A set S of real numbers is bounded if there is a
positive number b such that |s| = bforallsin S.

Definition 7.3b. The statement that the set of real numbers is
complete means that every nonempty bounded set of real numbers
has a least upper bound.

Once we admit irrational numbers, such as \/5, V30, 5+ \/7, ,...,the
following questions arise, “How are such numbers used in arithmetic

7.3 /| THE SET OF REAL NUMBERS 223



computation? How are such numbers used to describe the quantitative
aspects of our environment?”’

Example 1

How many feet of fencing must be purchased to
/@ enclose a field in the shape of a right triangle whose

\9@0 1000 legs are 1000 feet long? We see that

length = 1000+ 1000+ 1000V/2 feet, or
length = 2000+ 1000V/2 feet.

1000 Example 2

What is the circumference of a circle whose radius is

V22 Itis 27rV2.

7.4 ORDER RELATIONS IN THE REALS

The order relations < and < in the real numbers are defined in the
same way as in the system of rational numbers and in the system of
integers. In each instance we specified positive elements and defined the
order relations in terms of the positive elements. We do the same now. We
indicate that the real number r is positive by the notation 7 > 0 or 0 < r.
We indicate that it is nonnegative by the notationr = 0 or 0 < 7,

How we determine whether a real number is positive or negative
depends on the way the real numbers are introduced.

If we think of the real numbers as numbers corresponding to the points
on the real line, then the real number is positive if it is associated with a
point to the right of the 0 point (the origin). If r and s are any two num-
bers,r < sorr = sifs—r > Qors—r = 0, respectively.

If we think of the real numbers as infinite decimals, the decimal frac-
tion approximation obtained by neglecting all the decimal places after a
particular decimal place is a rational number. A positive real number has a
positive decimal approximation. A negative real number has a negative
decimal approximation. Thus the positive elements can again be deter-
mined and the order relations defined.

7.5 THE SYSTEM OF REAL NUMBERS

There are other ways of defining the real numbers. They can be defined
as equivalence classes of Cantor sequences (Cauchy sequences). The real
numbers can also be defined as ‘“Dedekind Cuts.” Our informal treat-
ment below of the real numbers as infinite decimals on the one hand and as
the least upper bounds of sets of rational numbers on the other introduces
the student to both of the formal approaches previously indicated in a way
which makes the nature and properties of the real numbers more acces-
sible. Each of the number systems previously studied in this book is a sub-
system of the system of real numbers. The natural numbers are real
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numbers. The integers are real numbers. The rational numbers are real
numbers. Without formally listing the properties, as was done with the
other number systems, we define the system of real numbers as a number
system which satisfies the same laws as the system of rational numbers and
which has an order relation with respect to which the set is complete. A
mathematical system which satisfies the same laws as the system of rational
numbers is called a field. In this language, the real numbers are specified
as a complete ordered field. Rather than pursue the discussion in this direc-
tion further, we make a few comments regarding computations with real
numbers. Arithmetic at the elementary level is primarily concerned with
the arithmetic processes: addition, subtraction, multiplication, division,
comparing, and estimating square roots. Arithmetic computations are
limited to these operations involving rational numbers except in a few
isolated instances, such as V7 - V7 =7.

Computations using irrational numbers involve infinite processes;
hence, in actual numerical calculations, the irrational numbers are re-
placed by decimal fractions.

Awareness of this situation is important and has been stressed in this
book.

7.6 THE REAL NUMBERS AS INFINITE DECIMALS

The decimal 0.333 . . . is called an infinite decimal. We indicated that 4 can
be expressed as an infinite decimal. On the other hand, decimal fractions
of the form 0.5, 0.25, etc., are called finite decimals or terminating
decimals. However, if we adjoin zeros to 0.5 in an unending sequence as

0.50000. . .,

we can think of the decimal fraction representation for 3 as an infinite
decimal. We must add a note of caution. The number 1 can be written as
an infinite decimal as 1.00000 . . . , but at the same time the infinite decimal
0.99. .. is also the whole number 1 in the same sense that $=0.333 . ... If
we identify 0.999... with 1 as well as 3.279999. .. with 3.28, and so on,
then we can express any rational number uniquely as an infinite decimal.
This is also true of any irrational number, although it is not always easy
to find the decimal representation of an irrational number. In fact, the
square root algorithm is simply the process of finding the decimal represen-
tation of the square root of a number. We can now define the real num-
bers.

Definition 7.6. The real numbers are the numbers named by the
infinite decimals.

The set of real numbers was first introduced as those numbers correspond-
ing to points on the number line. We defined the real numbers as named
by the infinite decimals. We used both approaches to the real numbers in
order to have a broader understanding of the nature of the real numbers.
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These two approaches are quite different but in no way inconsistent. The
definition of the real numbers in terms of the infinite decimals is a unify-
ing concept not inconsistent with the other approach.

7.6a Infinite Radix Fractions
A change of bases in our system of numeration leads to infinite radix
fractions. Following the procedure described in Chapter 6 we find that

0.2ien = 0.001100110011. . 1o
0.333. . .en = 0.01010101. . ..\,

Any finite binary radix fraction can be expressed as a finite decimal
fraction since $+ = 0.5 and (3)” = (0.5)”. The converse is not true, how-
ever, as illustrated above. The finite decimal fraction 0.2 is represented by
an infinite binary fraction.

7.7 REPEATING DECIMALS

We were careful to distinguish between rational numbers and irrational
numbers, rational numbers being of the form m/n, where m and n are
integers and n # 0. Irrational numbers cannot be expressed in this form.
We now ask, “Can these numbers be distinguished when expressed in
decimal form?” The answer is “Yes.” Some rational numbers are finite or
terminating decimals; the other rational numbers turn out to be those
infinite decimals which “repeat,” that is, a certain block of consecutive
digits will be repeated over and over in an unending sequence.

Example 1
0.825 .. .. .
075 Finite or terminating decimals.
0.97979797 . . :nﬁn.ite :epeating ?r n(c)ln- -
0.463146314631. .. ;lrlml‘)“j ‘?fdr.:pfa ;ﬁg ec";?:‘
99.37854854854. . . ¢ bars indicates the repeating

“blocks.”

That such is the case can be easily verified by using the “division” inter-
pretation on a few rational numbers, such as £, 4, i¥. We are interested
more in why the rational numbers have representations as infinite repeat-
ing decimals.

In examining the division process which yields the decimal representa-
tion of a rational, such as %, we see that we are actually dividing repeatedly
by the same number 7.

0.7

7)5.0
49 50=7-7+1
1
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The next step is to divide 7 into 10.

0.71
7)5.00
490  10=7-1+3
10
7

3
The next step is to divide 7 into 30.

0.714
7)5.000
4900  30=17-4+2
100
70
30
28
2

Notice that at each step we are dividing 7 into the remainder from the
previous division times a power of 10. But, how many different remainders
can we have when we divide all possible numbers by 7? We saw in Section
5.8 that the only possible remainders when dividing by 7 are 0, 1, 2, 3, 4, 5,
6. Now let us continue the division:

0.714285714285
7)5.000000000000
49
10
7
30
28
20
14
60
56
40
35
50

It is quite obvious now that 714285 will repeat endlessly. Can you look
at the above division and tell what the decimal expansion of %, %, £, etc.,
will be?

The reason that rational numbers are infinite repeating decimals is
actually embodied in what we have previously called the division algorithm.
To reiterate, if m and n are anytwo positive integers, then there are positive
integers gand rsuch thatm =n - g+rand 0 = r < n.
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Since there are only = distinct integral values that the remainder r can
assume, the argument implies that the decimal numeral for m/n will be
repeating. This is not to be interpreted as saying that the number of digits
in the repeating sequence will be equal to the divisor n. It does say that it
can be less than or equal to the divisor but never greater.

It can be shown that, conversely, every repeating decimal is the decimal
representation of a rational number; that is, given a repeating decimal, we
can find a rational number whose repeating decimal is the given one. We
indicate how this is done. Let us use the letter N to denote an infinite
repeating decimal. Suppose

N =0.273273273273 . . ..

We multiply by that power of 10 whose exponent is equal to the number of
digits in the repeating block and subtract N from this product. Thus

103N = 1000N = 273.273273975 . . .
N= IN= 0.278273273...

999N = 273
913
N = 999"

Modifications of this procedure must be made for those infinite repeating
decimals which do not start repeating immediately, for example,

N = 32.49631631631631 . . . .

We want the repeating blocks to “match up” so that subtraction will
eliminate the decimal fraction. Hence we multiply first by 10° and then by
102,

10°N = 100,000N = 3,249,631.631631631 . . .

102N = 100N = $,249.631631631 . . .
99,900N = 3,246,382
\ _ 3.246.382
99,900 -

The previous argument indicates that every rational number is a repeating
decimal and the foregoing examples suggest that every infinite repeating
decimal is a rational number. This leaves but one conclusion. The irrational
numbers are the infinite nonrepeating decimals. If one reflects about this fact
for a moment, it may seem reasonable that there are many more irrationals
than rationals.

Exercise 7.7
1. (a) How many possible remainders are there when 11 is the divisor?
List them.
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(b) Write 1 as an infinite repeating decimal.
(c) Write & as an infinite repeating decimal.
(d) Write £ as an infinite repeating decimal.

2. (a) How many possible remainders are there when 12 is the divisor?
(b) Write % as an infinite repeating decimal.
(c) Write & as an infinite repeating decimal.
(d) Write £ as an infinite repeating decimal.

3. (a) How many possible remainders are there when 13 is the divisor?
(b) Write 4 as an infinite repeating decimal.
(c) Write & as an infinite repeating decimal.

4. Each of the infinite repeating decimals represents a rational number.
Find the rational numbers.

(a) 0.177217721772 . . .

(b) 0.314314314314 . ..

(c) 0.2935353535. ..

5. Find a decimal fraction which approximates each of the rational num-
bers of problem 4 to within an error of one part in 10,000.

6. Find the rational number represented by each of the following infinite
repeating decimals:

() 4.999999 ...

(b) 0.100100100100 . . .

(c) 0.009009009009 . . .

7.8 APPROXIMATIONS

Returning to the definition of a decimal fraction as a rational number
whose denominator is a power of 10, we find that very few rational num-
bers can be written exactly as decimal fractions. The prime factors of 10
are 2 and 5, so that any nontrivial positive power of 10 is a product of the
corresponding powers of 2 and 5.

10=2-5
102=10-10=(2-5)(2 - 5) =2%- 5
103=10-10-10=2%-5°

10" = 2n - 5"
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This means that in order for a rational number in lowest terms to be written
exactly as a decimal fraction, its denominator can include only powers of 2
and/or powers of 5 as factors.

Example 1
L3=3-2=2-05
2 i=1 2=B -0
3. 4=5-5=2=02
4. %=ﬁ=%-%=ﬁ=%=ws
SR NS S S R Y
Thus rational numbers of the form 3, 1, ... which have primes other

than 2 and 5 as factors of the denominator cannot be written exactly as
decimal fractions. This undoubtedly prevented the predecessors of Simon
Stevin from discovering this powerful innovation in arithmetic. The idea
essential to the discovery of decimal fractions was one of the problems of
antiquity. It is embodied in such familiar problems as the frog which at
each hop leaps half of the distance from itself to the end of the log. Simon
Stevin’s inspiration must have come from his realization that most
numerical situations do not demand exactness as much as accuracy to within
an allowable error. This is a very important idea. It is essentially the idea of
approximations which we used earlier in this section.

We have referred to approximation as an idea. Itis, in fact, a very import-
ant one. It is the idea of using a simpler, more workable, acceptable re-
presentation in lieu of something inaccessible, unknown, or inconvenient.
As a mathematical idea it is related to the concept of denseness. We found
that the rational numbers are densely distributed along the number line.
This means that such numbers as \/5, 7r, and other irrational numbers
which lie on the number line must have many rational numbers very close
to them. The rational number ¥ is larger than the irrational number =
but is close enough to 7 so that for many problem situations involving
circles, the error involved in using % instead of = is allowable. We found
several rational numbers “close” to V2. Some of these may be used
instead of V2 in some situations.

Exercise 7.8

1. List ten rational numbers that can be written exactly as terminating
decimal fractions. Write these numbers in decimal form.

2. List five rational numbers that can be written exactly as terminating
decimal fractions. Write them as rational numbers with powers of 10 in
the denominator, and in decimal form.
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3. A rectangular field is 1276.32 ft long and 789.44 ft wide.

(a) Compute the area of the field rounding given measurements to
the nearest foot.

(b) Compute the area to two decimal places, using the numbers as
given.

(¢) What is the difference in these two results?

4. How would you find the approximate area of a field shaped in the
following way?

5. How would you obtain a more accurate measure of the area? Could
you justify that this would be more accurate?

6. What are some other rational numbers which are very close to the num-
ber 7? What decimal fractions are close to 7?

7. What are some rational numbers close to V10? Use the divide and
average process to find five of them.

8. What are some rational numbers close to V5? Use the divide and
average process to find five of them.

7.9 DECIMAL APPROXIMATION OF RATIONAL NUMBERS

Section 7.8 showed that we cannot express all rational numbers exactly
as decimal fractions. However, we can find decimal fractions which differ
from a particular rational number by an amount which we are willing to
neglect, the particular amount depending on the problem situation. We
find this decimal approximation by the simple process of division; that is, we
find decimal approximations of § by dividing 1 by 3 to obtain 0.3, 0.33,
0.333, and so on.

We have been careful to call the decimal fractions 0.3, 0.33, and 0.333
decimal approximations of 3. The numerals 0.3, 0.33, and 0.333 are con-
venient numerals which we use instead of J, &5, and 35, respectively.
From this form it is easy to compute the error involved in using these
decimal fractions in place of the rational number 4.
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These computations indicate that § is larger than any of the decimal
fractions 0.3, 0.33, 0.333, etc. If we were to continue the division process
indefinitely, we would have infinitely many decimal fractions of the form
0.3333, 0.33333, . ... Again, } is an upper bound of the decimal fractions of
this type and, indeed, 3 is the least upper bound of all such decimal fractions.
This is the same idea used in regarding V2 as the least upper bound of
the rational numbers of the form p/q, where p? < 24> For this reason we
use the convention that the rational number } is the same as the decimal

number 0.333 ..., where the dots indicate that the 3’s continue without
end; that is, we write

$=0.3333....
Any one of the numerals 0.3, 0.33, 0.333, . . . is a decimal approximation

involving an error which can be computed. This error can be made
smaller by using a decimal fraction with more decimal places. At some
point one must decide when the convenience of using decimal fractions
outweighs the error or loss of accuracy and what is the maximum error
that one is willing to accept.

Exercise 7.9

1. How much would it cost to accept 0.3 of a $100 gift instead of § of $100?

2. How many places in a decimal approximation of % would you use in
order to have an error of less than one-millionth?

3. How many places in a decimal approximation of + would you use in
order to have an error of less than one-millionth?

4. What is the error involved in using a three-place decimal approxima-
tion of 7? A four-place decimal approximation?

5. Find a ten-place decimal approximation of + and of J.

7.10 ROUNDING OFF DECIMAL APPROXIMATIONS

Since it is physically impossible to write down an infinite decimal, the
decimals after a certain finite number of places are dropped. The part
that is retained is a decimal fraction, and the part that is dropped consti-
tutes the error involved in using the approximation:

$=0.714285714285 . . . .
1=10.3333....
3 =(.7142+0.000085714285 . . . .

decimal fraction
approximation error

$=0.333+0.000333333 . . ..

decimal fraction
approximation error
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The usual purpose of “rounding off’ a decimal fraction is to reduce the
error involved in the approximation. There are several conventions used
in rounding off numbers. The procedure we shall use is to look at the first
digit dropped. If this digit is 0, 1, 2, 3, or 4, the last digit in the approxima-
tion is retained. If the first digit dropped is 5, 6, 7, 8, or 9, the last digit of
the approximation is increased by 1. Thus we would use 0.333 as a three-
place decimal approximation of % and 0.7143 as a four-place decimal
approximation of 2.

Decimal numerals, in general, are often rounded off to a certain number
of significant digits. A digit of a numeral naming an approximate number
is significant unless its only function is to help place the decimal point.
Whenever digits to the right of the decimal point are dropped, they must
never be replaced by zeros in keeping with the meaning of significant
digits. All nonzero digits in a number are significant. All zeros between
significant digits are significant. A zero following a nonzero digit may or
may not be significant.

Example 1

673,924 has six significant digits.

674,000 as a rounding of 673,924 has three significant digits. As an
independent numeral it has three or more, possibly six,
significant digits.

0.07003 has four significant digits.

0.07 has one significant digit.
1.2370 has five significant digits.
200,001 has six significant digits.
Example 2

The population of Montana in the 1970 census was listed as 680,000.
This is to be interpreted as a number of two significant digits. The popu-
lation at the time of the census might have been any number, such as
682,924, or any other number between 675,000 and 685,000, but because
the population is constantly changing as a result of people moving into
or out of the state for one reason or another, it is meaningless to list
682,924 exactly. For most purposes the approximate figure 680,000 is
accurate enough.

7.11 DECIMAL APPROXIMATIONS OF IRRATIONAL NUMBERS

The full significance of characterizing the rational numbers as termin-
ating decimals or infinite repeating decimals, and irrational numbers as
infinite nonrepeating decimals may not have been realized. Finding the
decimal representation of a rational number involves only a simple
division process, and when the repeating block of digits has been deter-
mined, the division process does not have to be continued; that is, it is
always possible to determine the exact digit in any decimal place in an
infinite repeating decimal once the repeating block has been determined.
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Example 1

What digit is in the 105th decimal place of the infinite repeating deci-
mal of the rational number 1? Since there are six digits in the repeating
block of digits and since 105 = 3 (mod 6), the digit in the 105th place is
the same as the digit in the third place of the repeating block.

It is also possible to compute the exact error involved in using a decimal
fraction as an approximation to a rational number. Such is not the case
when decimal fractions are used to estimate irrational numbers. Without
actually computing the decimal, there is no known way of predicting the
digit in the fifth decimal place of 7, or the digit in the seventh decimal place
of V3, or the digit in any decimal place of any irrational number. This
means we cannot compute the exact error involved in using decimal frac-
tions in place of irrational numbers. It is possible to give bounds on the
error. We can do this using only the properties of the place-value system
and what we mean by rounding off a number. We illustrate with some
examples.

Example 2

What does it mean to say 1.4 is a one-place decimal approximation of
V/2? This means that V2 is a number which is between 1.35 and 1.45.

1.835 = V2 =< 1.45.

The error involved in using 1.4 as an approximation to V2 is less in
absolute value than 0.05; that is, 0.05 is a bound on the error. By extracting
the square root of 2 to two decimal places we get 1.41. The error in using
1.41 as an approximation to V2 is less in absolute value than 0.005.
Similarly, the error in using 3.1416 in place of = is less in absolute value
than 0.00005 or five parts in one hundred thousand.

Exercise 7.11

1. In what sense is 3.14 an approximation of 7? Is 3.142 an approxima-
tion of 7? Is 3 an approximation of 7?

2. Which is the better approximation of m, 3.142 or 3?

3. What is the error in using 0.6666667 for 3?

7.12 SQUARE ROOTS

Before considering the problem of finding decimal approximations of
the square roots of numbers (square root algorithms), we shall discuss
more fully the meaning of the square root of a number. It was carefully
pointed out earlier in this chapter that the symbol “V/2” is a numeral, that
is, a name for that number which when multiplied by itself gives the num-
ber 2. It was also pointed out that many people do not distinguish V2
from some complicated arithmetic operation. Indeed, many people do
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not think of V2 as a number at all. Unfortunately, there are many
teachers in the elementary and secondary schools who think of V2 not
as a number but as something to do. This is partly because of the existence
of certain natural numbers which are perfect squares. The perfect squares
are the squares of the natural numbers.

1,4,9,16,25, 36,49, ...

These numbers are part of the real number system, so there is a natural
answer to the question, ‘“What number multiplied by itself is 4, or 9, or
16, etc.?” This is indicated by

V4=29
Vo=3

V144 = 12
V625 = 25

V2401 =7

V82369 = »

When the number N? becomes unfamiliarly large, such as 2401 or 82,369,
the question naturally arises whether these numbers are perfect squares,
and if they are how does one find their square roots? One way, of course,
is to write down the squares of the natural numbers to see if these numbers
occur among the squares. That there is actually an algorithm which can be
used to answer the question is part of the reason for the confusion between
the number and the algorithm.

The square root of a number a is actually a solution of the equation

x*=aq.

We noted repeatedly that the solvability of equations, in general, depends
on the number system in which the coefficients lie, that is, if the letter “a”
denotes a perfect square and we require the solution to be a natural num-
ber, there is only one solution. If we allow integer solutions, there are two
solutions; for example, if

x%2 =25,
then

x=>5 or x=—bh.
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If we allow a to be any positive rational number and require rational solu-
tions, we may have no solution or two solutions, depending on the nature
of a; that is, if a is the square of a rational number, we will have two solu-
tions. If a is not the square of a rational number, we will have no rational
solutions. The equation

=%

has two rational solutions,

x=3 and x=—3,
whereas
x2 =2

has no rational solutions, since there is no rational number whose square
is the number 2.

If we allow a to be a nonnegative real number and allow the solutions of
x* = a to be real numbers, there will be exactly two solutions when a # 0.
We indicate the two square roots of the number a by the symbols Va and
—Va. The square roots of 3 will be written V3 and — V3. The V3 is the
positive number which when multiplied by itself gives the number 3,
whereas —V/3 is the additive inverse of V3 and is the negative number
which when multiplied by itself gives 3. In order to avoid any confusion
about the square roots of those numbers written as squares, we use the
absolute value to define V2.

Definition 7.12. For every real number a, Va2 = |a| and —Va? =
—lal.

Example 1

V(=3)*=|-3| =3.

There is one situation that we have not yet discussed and that is the
case when a is allowed to be a negative number in the equation x* = a
that is, do the equations

x2=—1,
x?=—5,

have solutions? These equations do not have solutions which are real/ num-
bers. In the same way that we introduced the negative integers as solutions
of the equation

at+x=0b,
and the rational numbers as solutions of the equation

ax=b,
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and the irrational numbers as solutions of the equation

2 —

x> =a when a>0,

we now introduce the number ¢ as the solution of the equation

x>4+1=0
or
x2=—1
Hence
2=—1
It follows that
PB=11=—1,
and
=2 2=1.

In general, numbers of the form 2+3i, 1414, 74, 3+ (\/'275 i, T—1 are
called complex numbers. Numbers of the form 7i, 21, V/3i are called pure
imaginary numbers. The terms complex and pure imaginary are used here
simply as the names of sets of numbers. The reader is cautioned about
attaching any literal meaning to these terms. The system of complex num-
bers is a number system which is very much a part of the scientific world,
but will not be discussed further in this book.

Exercise 7.12
1. Is 3+ V5 anumber?

. What are the sum, difference, and product of 3 — V5 and 3+ V5?
. What are the sum, difference, and product of Va+Vband Va—Vb?

2
3
4. V10is approximately 3.162. Give a decimal approximation for 1/V10.
5. V/2is approximately 1.4142. Give a decimal approximation for 1/Ve.
6. Give a decimal approximation for 1/(2+ \/5).

7. Give a decimal approximation for 1/(10— \/5).

8. Give a decimal approximation for V10/10, V2/2, (2+V2)/2,
(V10+V2)/8.

9. Give a decimal approximation for 2/\/5, 10/V10, (2+ V§)/(2 — \/E).

10. Express the following, using the number i (for example, V—5 = V5,
since (iV5)? = i#(V5)2 =—5.

V—4,V=9,V=7,V—1,V=50+V—-32.

7.12 | SQUARE ROOTS 237



7.12a The Square Root Algorithm
A square root algorithm is an arithmetic process of finding or approxi-
mating the square root of a number. We review a standard process.

Example 1
Find V82369.
Step 1. Mark off the digits in pairs to the left, starting *EOF.

from the decimal point. Each pair determines a place in V. 8'23'69.
the square root.

2 %
Step 2. Find the largest whole number whose square is 8793769,
less than or equal to the number in the left-hand pair or 4
single digit: P
P=4<B8<9=32
Write 2 above this ““pair.” Square 2 and subtract from 8.
Bring down the two digits of the next pair.
Step 3. Double the number 2 in the root and place an 2k
asterisk as indicated to the right of the 4. 8'23'69.
4
4(*) 423
Step 4. Estimate how many times 40 divides 423. We try 29 *,
9. Replace the asterisk with 9 and multiply by 9. 9 is too V[ 8'23'69.
large. We try 8. Replace the asterisk with 8 and multiply 4
by 8. Place 8 above the pair brought down. 4(9)|4 23
94 41
Step 5. Repeat steps 3 and 4. 28 7.
V[823'69.
4
4(8) 4 23
83 84

56(7)|39 69
7 139 69
V82369 = 287.

We now consider what takes place at each step. Recall that multiplying a
number by 100 moves the decimal point two places to the right. But multi-
plying a number by 100 only multiplies the square root of the number by
10. This follows from the fact that the square root of a product is equal to
the product of the square roots.
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VM-N=VM-VN.
V36=V4-9=V4-V/9=2-3=6.
V100 - N = V100 - VN = 10VN.

This is the reason that the digits in the number are marked off in pairs.
The number of pairs determines the number of digits in the square root.

At each step of the algorithm we are interested in finding the largest
whole number whose square is less than or equal to the number deter-
mined by those pairs directly concerned. In step 2, for instance, we esti-
mate the largest whole number whose square is less than or equal to 8. In
the next step we seek the largest whole number whose square is less than
or equal to 823. At this point we are working with two pairs, so the square
root of 823 is a two-digit number of which the first digit is 2. We can write
this as 20 +x. We want to estimate the largest integer x so that the square
of the number 20+ x is less than or equal to 823; that is, we would like the
largest x which satisfies

(20+x)* = 823.

Squaring (20 +x), we get
400+2 - 20x +x* = 823.

Subtracting 400 from both sides of this inequality, we see that
2+ 20x + x* = 423.

This step corresponds to subtracting 4 from 8 and bringing down the
next pair of digits (note this step in the example).

(2-20+x)x = 423.
(40+x)x = 423.

This accounts for doubling the digit in the root and leaving a place for a
digit as indicated by the * in the example. We divided 423 by 40 to get an
estimate of x. This procedure is based on the observation that 40 is much
larger than the digit x so that dividing by 40 is almost like dividing by
40+x. This is the reason that we often overestimate x. We saw in the
example that 9 was too large so 8 is the number we sought.

The next step is essentially a repetition of the previous step. We want
the largest whole number whose square is less than or equal to 82,369. This
is a three-digit number whose first two digits are known. That is, we seek
the largest whole number x such that

(280 +x)% = 82,369

78,400+ 2 - 280x + x> = 82,369.
560x + x* = 3969

(560 +x)x = 3969

x=17

280+ 7 = 287
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We extracted the square root of the square of a natural number. The
algorithm is valid for any positive real number and the process may be
continued beyond the decimal point. We must add zeros to make as many
pairs to the right of the decimal point as we want decimal places in the
square root. We illustrate with the following:

Example 2

Find V/3.4 to three decimal places.
1.8 43
V/[3.40'00'00
1
28 (2 40
8224
364 |16 00
4 14 56
3683 | 1 44 00
311049

If we carry the work out one place further, we would find that V3 4 is
closer to 1.844 than to 1.843. This extra step is less troublesome than
worrying about “least absolute remainders.” We point out instead that we
can greatly improve the approximation by a simple division process which
is discussed in the next section.

Exercise 7.12a

. Find V502.3 rounded to 3 decimal places.
. Find V50.23 rounded to 3 decimal places.
. Find V1000. rounded to 4 decimal places.
. Find V5.023 rounded to 4 decimal places.
. Find V0.5023 rounded to 4 decimal places.

Ot OO N

7.12b Newton’s Method of Approximating Square Roots

The method of approximating the square root of a number by the
“divide and average” process discussed earlier is actually a very special
case of Newton’s method of approximation. (Sir Isaac Newton, 1642-1727, an
Englishman, was one of the great scientists of all time. Newton made
many contributions to mathematics and physics, many of which still bear
his name. At about the same time as Gottfried Wilhelm Leibnitz, 1646—
1716, but independently, he originated the calculus.)

Newton’s method is based on the calculus and is a powerful method for
approximating roots of very general equations. In the particular case of
approximating square roots, the method reduces to a very simple iterative
or repetitive process. The repetitive nature of the process, “divide and take
the average, divide and take the average’ makes this method well suited
to our modern high-speed electronic computers. Another important fea-
ture of Newton’s method is the fact that the first “guess” or approxima-
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tion does not have to be very accurate, that is, making a “poor guess” the
first time does not always mean the work has to be abandoned and the
process begun all over again. It may mean that another one or two repeti-
tions of the process will be needed to yield an accurate approximation. We
illustrate the method by finding a decimal approximation to V300. We
label our first “guess’ 4, and successive approximations 4, As, . . . .

Example 1
Find V300

Step 1. Since 172 = 289 < 300 < 324 = 182, we choose 17 as a reasonable
first guess.

A, =17 first approximation

Step 2. Divide the number N by 4,, that is, 300 by 17, and carry out the
division to twice as many digits as in the previous approximation and
round off the last digit to an even number. To get the second approxima-
tion A4, take the average of this quotient and the previous approximation.

300
T = 17.64.
Rounding to the nearest even digit we get 17.64 to twice as many digits as
inA,.
17. . L
Ay = 76—4;@ =17.32 second approximation

Notice that 4, verifies our first guess as being a good guess because when
we round off 17.32 to a two-digit number we get 4, = 17.
Repeating the process, we have

300
_ T7.33 P 17320090 47 391016+ 17.320000
2 B 2

=17.320508  third approximation

A3

The fact that 4; verifies 4, implies 4, is accurate to two decimal places.
Aj is accurate to within 1 in the last place.

To show that a poor guess yields the same decimal fraction after a few
more repetitions of the process, suppose we let

A1=10
o,
A2=—-2—=20.

Notice that 4, does not verify 4, because A4, rounded to two digits is not
equal to 4;. We carry out the division to one less than twice as many
digits in the previous approximation when the verification fails.
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300

-—120.0
20
A —_— — .
3 9 17.5
300
——+17.5000
A, = 17.5 5 _ 17.142;—17.500= 17.391

As = 17.320508.

Newton’s method can be used to approximate cube roots as well as
square roots.

The various corrective measures in those cases where the approxima-
tion fails to verify the previous approximation were presented as ‘“rules to
follow.” The reasons for the validity of these measures as well as the
method itself have their roots in the calculus. The method was presented
here as another way of estimating square roots, a method adaptable to
electronic computers.

Exercise 7.12b

1. Find V3 rounded to 7 decimal places.

2. Find V30 rounded to 7 decimal places.
3. Find V3000 rounded to 6 decimal places.
4. Find V5 rounded to 6 decimal places.

5. Find V50 rounded to 7 decimal places.
6. Find V500 rounded to 6 decimal places.

7. Find V3.4 rounded to twice as many digits as in Example 2 of the
previous section.

REVIEW EXERCISES

1. With 4 as the first estimate of \/fg, use the divide and average method with
rational numbers to find the third estimate.

2. Show that 5+ V2 is an irrational number.
3. Consider the set {x|x = 1 — 1/n, n a positive integer}.

(a) List the first five elements of this set.
(b) Give an upper bound for this set.
(c) Whatis the least upper bound for this set?

4. Write 3.1416 in expanded form.

5. How many places in the decimal approximation for the rational number %
would you need in order to have an error less than one one-millionth?

6. (a) Express £ as an infinite decimal.

(b) Express 0.1717 .. . as a rational number.
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10.

Find V5.023 rounded to two decimal places.

. Ifa=1.8%and b = 0.5, find

(a) a+b (b) a—b
() a-b (d) a/b

. If V2is approximately 1.414, then

(a) 1/V2 = ? Give the answer as a three-place decimal fraction.

(b) Y(1+V2) =>

(a) Infinite repeating decimals are called —.
(b) Infinite nonrepeating decimals are called —.

REVIEW EXERCISES
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Topucs from Geometry

8.1 [INTRODUCTION

Until now we have been concerned with numbers and their properties.
However, numbers are not the only things in mathematics that should
interest the elementary school teacher. Points, lines, planes, and space are
also discussed in current mathematics programs for the elementary school.

It is our objective in this chapter to present some of the basic concepts of
geometry without the formality of an axiomatic development. In many
instances we shall rely on the conventional interpretation of terms rather
than formalize definitions.

8.2 POINTS, LINES, AND SPACE

We are inclined to associate physical things with the ideas of geometry.
It is true, however, that abstractions form the basis for the study of
geometry. It is impossible to make a precise definition of “point” in the
geometric sense. It is also impossible to find a precise physical example.
Certainly we use the word “point” in a sense comparable to the abstract
geometric concept, such as pen point, pencil point, and point of a pin or
needle. But these are not precisely the interpretation we wish to give the
word in a geometric sense. Current texts for the elementary school use the
notion of “fixed location in space” as descriptive, but emphasize that
the concept of geometric point is undefined. Similarly, the concept of space
is undefined but may be thought of as the set of all points. Geometric space

244



and geometric points are, like numbers, abstractions existing in the mind.
The concept of line is also undefined, but we may think of it as a set of
points and hence, a subset of space.

Just as with numbers, these abstractions may be symbolized, but, as with
numbers, we must bear in mind that we are symbolizing for communica-
tion purposes and that the symbol is not the concept itself. We symbolize
points with pencil dots and chalk dots, space with our everyday three-
dimensional environment, and draw “paths’” on paper or on the black-
board to symbolize lines. It is well to remember that these are but
representative symbols for communication purposes and not to be
confused with the abstract concepts.

8.3 NOTATION FOR BASIC CONCEPTS

In writing of these abstract concepts it is customary to use capital letters
to represent points in space. We may refer to a particular point as “the
point 4,” or “the point B.”” We may generalize, as we do in algebra, and
say, “Consider any point C in space.”

If we have two distinct points 4 and B in space we often consider the set
of points that could be represented by an endless, tightly drawn, fine cord
through the points 4 and B. This set of points is symbolized AB, where the
doubleheaded arrow is used to indicate that a line is endless (see Figure 1).

A B

Figure 1

Here we are assuming ‘“‘straight” line. Other *“‘paths’ through 4 and B are
referred to as curves. The straight line (or simply line) is a special element of
the set of all curves through the given points, that is, the straight line is
regarded as a special kind of curve.

There are infinitely many lines through a single point 4, but given two
distinct points 4 and B, there is only one line through both A and B. We say
that two distinct points in space determine a line.

When it is not necessary to associate lines with particular points, lower-
case letters are used to symbolize them, such as ““the line {”’ or “the line m.”

A point of a line (we use the word “‘of”” because a point is an element of
the set of points comprising the line) separates the line into three disjoint
subsets, the singleton set consisting of the point itself, and the two disjoint
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subsets called half-lines. Each of these half-lines together with the point of
separation is called a ray (see Figure 2).

4
[+ ]

o—>
AB

O—>
BA
Figure 2

A ray through distinct points 4 and B with endpoint A is symbolized AB.
From the line of Figure 2 we can obtain the rays AB and BA. Note that
the ray AB is not the same as the ray BA. Since lines and rays are sets of
points we can use the familiar set notation and write:

o> o> >
AB U BA = AB.
The intersection of these two rays is also a familiar and interesting set
that we refer to as a line segment. We symbolize this AB. We have

AB N BA=4B.
The points 4 and B are called the endpoinis of the segment. We say a point
C is between points 4 and B if C is distinct from 4 and Band C € AB.

8.3a Open and Closed Segments

It is interesting at this point to reconsider the real number line. Without
the real numbers labeling the points, the line is just the geometric line but
with the numbers attached we say that the line is coordinatized.

If we consider a portion of the line coordinatized with the real numbers
we can speak of special kinds of line segments.

The line segment AB above is said to be closed. This is just another way
of saying that the line segment includes the endpoints. We use the con-
vention of using the dots to indicate this. For example, we might consider
the segment from 3 to 7 on the number line which includes the point
labeled 3 and the point labeled 7. This segment is a closed line segment.

3 7 } —
. . 3 7

Now let us delete the two endpoints. The line segment without the end-
points is called an open line segment. We use the convention of putting
parentheses in place of the points to indicate that the endpoints are
missing. Note that the line segment now has no point at either end.
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To understand this phenomenon, remember that the real numbers are
dense on the number line. This means that between any two distinct real
numbers we can find a third number. If, after we delete the point labeled
7, there were a “‘next” point on the end of the line segment, it would have
a real number different from 7 associated with it. Now, using the dense-
ness of the reals, we can find a distinct number between it and 7. There
would be a point associated with it which would lie between the so-called
“next” point and the point labeled by the number 7. This argument gives
credibility to the idea of the open line segment.

A ray, as discussed above, is a closed half line. We can also speak of an
open half line as meaning the ray without the endpoint.

A B

‘ \ .
|

‘ Exercise 8.3a

1. Plot the solution sets of each of the following compound open sen-
| tences where the variable x denotes a real number.

@0<x<1l (bo=x=1
() |xf <2 d) |x| =2

2. In problem 1, indicate which of the solution sets constitutes an open
line segment and which are closed line segments.

3. On the coordinatized line, let the points 4, B, and C be associated with
the points labeled 7, 10, and 12, respectively:

A B Cc

6 7 8 9 10 11 12 13 14 15 16

Use open compound statements to describe the following:

(2) 4B b 4C

() ABUBC (dABENB

8.4 LENGTHS OF LINE SEGMENTS

The length of a straight-line segment has been discussed indirectly in
Section 5.12. There we spoke of “distance” between two points on the
number line where the integers were used to label the points. The
distance from a point labeled “a” to a point labeled “b” is defined to be
|6—al. This can be defined as the length of the line segment from the point
labeled “a” to the point labeled “b.” Note the distinction between “a
point labeled a” and “the point A.” In the first instance “a” represents a
real number and in the second “4” is a name for a point. The length of

the straight-line segment from point 4 to point B is usually symbolized
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m(’?@o ). If, in the correspondence of real numbers to points on the line
AB, point 4 is associated with the real number a, and point B is associated
with the real g.lllomber b, then the distance from 4 to B, or the length of the
line segment AB is

|6—al =m(ﬁ).

711(;1—1_3o ), then, is a real number and properties of the real number system
apply to such measures. Moreover, the properties of distance, as listed in
Section 5.12c, apply. It should be noted that the length of a closed line
segment is the same as the length of an open line segment.

8.5 PLANES AND HALF-PLANES

As with points, lines, and space, the concept of geometric plane is un-
defined. It is a particular set of points, hence a subset of space, and can be
characterized by thinking of it in relation to a flat table top extending
indefinitely in all directions. Any flat surface, such as a wall of a room, a
floor, or a flat sheet of cardboard, is suggestive of a plane. A geometric
plane can best be characterized by properties. Given any two distinct
points in space there are infinitely many planes that contain these
two points. Given any three, distinct, noncollinear (not on the same
line) points in space, there is one and only one plane that contains all
three points. We say any three distinct noncollinear points determine a plane. If
two distinct points of a line are in a plane, then all points of the line are in
the plane. Since two intersecting lines have at least three noncollinear
distinct points as subsets, we can say that two distinct intersecting lines
determine a unique plane.

Two distinct lines in a plane either intersect (have exactly one point in
common) or they are parallel (have no points in common).

If we have a line BC that is a subset of a plane 7 it partitions the set of
points of 7 into three disjoint subsets, the line BCand two open half-planes,
denoted by 7, and .. We have

145’—(:' UmUm=m.

If there is a point 4 such tha‘t_zg Em,AE& 1‘3_5, we speak of 7, in relation
to BC and m, as the 4-side of BC (see Figure 3).

d
L7
L7
-7

ne

T

2

R R
Figure 3
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8.6 ANGLES AND THEIR MEASURE

An angle can be defined as the union of two rays with a common end-
point (see Figure 4). We symbolize this ZBAC. The common endpoint 4
is called the vertex of the angle, and when
three letters are used in the symbol for an B
angle, the letter associated with the vertex
occurs between the other two. The order
of the other two is immaterial. If no
ambiguity results, the single letter associ- Y
ated with the vertex is used to designate Figure 4
the angle.

£BAC = LCAB = LA.

An angle is a set of points made up of the union of two distinct rays with
a common endpoint.

o—>

LBAC = AB U AC.

If rays AB and AC are such that AB U AC = CE (see Figure 5) then the
angle thus formed is called a straight angle.

Qe

A B
Figure 5

The intersection of the C-side of 4B and the B-side of AC is called the
interior of the angle (see Figure 6). The set consisting of points in the plane

that are not in ZBAC and not in its interior is referred to as the exterior
of £BAC.

7
L~
B| 4
. 1
Exterior o Interior
— 8 E BN >
. zZ
Exterior ~ Exterior

e

Ve

Figure 6
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Associated with angles, as with line segments, is a one-to-one corres-
pondence between angles and real numbers, or more commonly, a subset
of the real numbers. The usual measure associated with angles is the
degree measure. The instrument used to establish this correspondence is
called a protractor. The unit of measure is called the degree and is a real
number between 0 and 180. We symbolize this as, for example,

mLBAC = 45.
Notice that we do not say, “The measure of the angle is 45 degrees.”

However, it is common practice to say, ‘“Angle BAC is a 45-degree angle.”
We will not dwell on the difference.

D A C
Figure 7

An angle formed by two identical rays is said to have measure 0 or to be
a 0° angle (zero-degree angle). A straight angle has measure 180 or is said
to be a 180° angle. Two angles, ZBAC and £BAD, where 4, B, C, and D
are distinct points and where 4 is between D and C, are said to be supple-
mentary (see Figure 7). If two supplementary angles have the same
measure, they are called right angles and each has measure 90. If m£ BAC <
90, ZBAC is called an acute angle. 1f 90 < m/BAC < 180, LBAC is called
an obtuse angle.

8.7 PLANE FIGURES

A closed curve in a plane can be thought of as a ““path” which, if one
follows with a trace of some sort, leads back to the point of origin (see
Figure 8).

Start

Figure 8
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A simple closed curve in a plane is a closed curve which does not “intersect
itself” (see Figure 9).

Figure 9

A circle is a simple closed curve. The portion of the plane bounded by a
circle is called a disc. (An abuse of language should be noted when we
speak of the area of a circle. We really mean the area of a circular region

or the disc.)

Circle Disc

The disc consists of the circle and the portion of the plane bounded by the
circle. It is also called the closed disc. The term “closed” is used in two
distinct ways. On the one hand, a closed curve is a curve which comes back
to itself. On the other hand, a closed disc is a disc which includes the circle
which bounds it. The expression “open curve” is not used nor does it
have any specific meaning. On the other hand, “open disc” is commonly
used and refers to the disc with the bounding circle deleted.

7
/

Closed disc Open disc

The open disc has a most interesting property. For any point p in the open
disc, we can always find another open disc which contains the point p and
which is itself contained in the open disc.
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Students in middle school find these ideas extremely
interesting.

The open line segment discussed in Section 8.3a
has a similar property. That is, for any point p in the
open interval, we can always find another open
interval which contains the point p and is itself con-
tained in the open interval.

p
=

—— Another way to think of the open disc is to consider
Ve AN aclosed line segment AB. Now delete the point B and
/ ‘3 \ rotate the segment about the point 4. The region

‘\ A / “swept out” is the open disc.
\ Y Several plane figures are made up of the union of
S~ line segments. A triangle may be defined as the union

of three line segments which, by pairs, have a com-
mon endpoint but are otherwise distinct. For example, consider three
noncollinear points 4, B, and C. Then the triangle associated with these
points and symbolized A ABC is
AABC =A4B U AC U BC,

where AB, AC, and BC are called the sides of the triangle. Associated with
a triangle are three “interior” angles. The angles are not subsets of the
triangle since angles are formed of rays and not line segments; therefore
we say the angles are “associated” with the triangle (see Figure 10).

E

Figure 10

The portion of the plane consisting of the triangle and the part bounded
by the triangle is called a closed triangular region. If the triangle is deleted,
the portion remaining is an open triangular region. The open triangular
region has the same interesting property as the open disc.

/é\ A&

- e
Closed triangular region Open triangular region
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A triangle is said to be a right triangle if one of its associated angles is a
right angle. (Although incorrect, the expression, “one of its angles” is
often used.) If two of its sides are equal in measure, the triangle is called
isosceles and it can be shown that the angles opposite the equal sides must
also be equal in measure. If all three sides are equal in measure, the
triangle is said to be equilateral. An equilateral triangle is also equiangular.

Other plane figures may be defined in a similar way. Once we are
tamiliar with operations on sets and definitions of rays, line segments, etc.,
as sets of points, we find these definitions very straightforward and easy to
understand. Rather than give this further treatment we choose to turn to
other geometry-related topics of interest.

Exercise 8.7

1.

4.

How many different lines may contain:

(a) one specific point?
(b) aspecific pair of distinct points?

. How many different planes may contain:

(a) one specific point?
(b) aspecific pair of distinct points?
(c) aset of three distinct noncollinear points?

. (a) If two distinct lines intersect, how many points are there in the

intersection?
(b) If two distinct planes intersect, how many lines are there in their
intersection? How many points?

Mark three p01ms A, B, and C in that order from left to right on the

o—-»o——>o—>o—>

same line. Indicate AB BA, BC, CA, CB. Which of these are names for the
same ray?

5.

Mark a point P on a sheet of paper. Draw three distinct rays with end-

point P. How many rays are there with endpoint P?

6.

Draw a ray AB How many rays are there with endpoint 4 which con-

tain point B? Is AB contamed in AB? How many line segments are there
which are subsets of 4B and which have A4 as endpoint?

7.

Label two distinct points on a sheet of paper P and Q.

(a) Draw a ray with endpoint P.

(b) Draw a ray with endpoint Q.

(c) Draw the raﬁ’o_é.

(d) Draw a ray QP.

(e) Make a heavier line to indicate the segment PQ

. How many endpoints has

(a) aline?
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(b) aray?
(c) aclosed line segment?
(d) an open line segment?

9. How many lines can be drawn through four points, a pair of them ata
time, if the points lie:

(a) in the same plane? Draw a figure to illustrate.
(b) not in the same plane? Draw a figure to illustrate.

10. Consider

A B c D

(@) 4B U BC =»
(b):@.‘fu CB =»
(© ACu D=2
d)BCUBAd=>

11. Draw examples of each of the following:

(a) curves that are neither closed nor simple.
(b) curves that are closed but not simple.
(c) curves that are both closed and simple.

12. Name the angle, the vertex, and sides of each of the following

angles:
B
N
A o -—
(@ M ® 0
X Y D
E F
¥4
A
© @

13. Consider the accompanying figure:

(a) Isthe point C in the interior of ZBAD?
o>
(b) IsAC N {4}’ in the interior of ZBAD?
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14. Consider the accompanying figure and answer the questions in
problem 13.

15. An angle is a 37 degree angle.
(a) The unit of measure is —.
(b) The measure of the angle is —.
(c) The angle is referred to as a—angle.

8.7a Convexity
Some plane figures are convex and others are not. The following
figures are convex:

The following figures are not convex:

hd @

Comparing with the figures shown above, classify each of the following
figures as convex or not convex.
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(a) (b) (© @

Figures (a) and (b) are convex and (d) is not.

Definition 8.7a. A plane figure is convex if for any two points in
the figure the line segment joining the two points also lies in the

figure.

Convex Not convex

The figure labeled (c) above is not convex.

Another way of describing a convex figure is as follows: Every point
in the set can “see” every other point.

Just as open sets and closed sets are used in higher mathematics, so
also is the concept of convexity. Here is a simple way it arises in applica-
tion.

Take a piece of string and tie it into a loop. Place the loop on a flat
surface.

Rearrange the string so that it encloses the region having the largest
area. You may recall that this is the situation which confronted Dido, the
legendary lady who founded the city of Carthage. She received from a
king as much land as could be encompassed by an ox hide. She cut the
hide into very thin strips and made a long cord to encompass enough land
to build the city of Carthage. Mathematically, this is a well-known problem
called the isoperimetric problem. A simple argument shows that the region
bounded by the cord must be convex. Assume the string is laid out so that
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the region enclosed is not convex. Suppose the string is laid out as shown
below.

Since the region is not convex, there are points P and Q such that the line
segment joining them is not in the region.

Using the idea of symmetry, flip the string below the line to the other side
of the line as shown below.

G0

The shaded region increases the area bounded by the same length of
string. Continuing in this way wherever the region is not convex has the
effect of “blowing out” the string to bound the maximum area. Other
arguments show, in fact, that the region should be circular.

Special problem: Use the definition of convex sets and the intersection of
sets to show that the intersection of convex sets is convex.

8.8 THE LENGTH OF A SEGMENT OF A CURVE

The length of a segment of a curve is not easily defined; when it s
defined, the task of determining it generally requires the use of calculus.
Consider the special case of the arc of a circle. With the help of a little
imagination and by proceeding carefully step by step, we will arrive at a
suitable definition of the length of an arc of a circle.
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Figure 11

Consider the circular arc, which we denote 4B, as in Figure 11. We wish
to define the length of AB. We use the length of straight-line segments,
the triangular inequality, and the concepts of least upper bound and
greatest lower bound to arrive at the definition.

o

Figure 12

Let C be the point on the arc (Figure 12) midway between 4 and B
(C can be found by construction). Then, considering the straight-line
segments AC and &;,, we can regard the sum of the lengths of the straight-
line segments as an approximation to the length of 4B. Let m(A4C)
denote the length of the straight-line segment AC. (Note that m(/?!—Co)
is a real number.) Then our first approximation to the length of AB,
denoted by /, (the ““2” for two segments), is

L, = m(AC)+m(CB)

For a second approximation, choose points D and E such that D is on
the arc midway between 4 and C, and E is on the arc midway between
C and B (see Figure 13).

Figure 13
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Then a second approximation, /4, to the length of AB is given by
= m(AD)+m(DC) +m(CE)+m(EB)

Notice that L, </, by the triangular inequality (see Section 5.12c, 3),
that is,

m(AC) m(AD)+m(DC)
and m(CB) < m(CF)+m(EB)
50 L, = m(AC)+m(CB) < m(AD)+m(DC)+m(CE) +m(EB) = L,

Continuing in this manner we can obtain inscribed polygonal paths from
A to B of 2, 4, 8, 16, etc., sides. Let us designate the approximation
obtained by using a path of 2" sides by /,,.

Associated with each inscribed polygonal path is a circumscribed
polygonal path obtained by constructing the tangents at the endpoints of
the arc and at each point selected. These tangents meet to form polygonal
paths as indicated in Figure 14.

Figure 14

Let L, designate the length of the circumscribed path associated with
the length of the inscribed path L. Using the triangular inequality, it can be
shown that

L, <L, foreveryn,
and L, <l,, foreveryn.
The sequence of numbers b, I, ls, . . . L, . . . is an increasing sequence of
real numbers bounded above by the number L,. By the property of com-
pleteness (see Section 7.3b) this sequence has a least upper bound. Similarly,
the lengths of the circumscribed paths form a decreasing sequence of
numbers bounded below by the length of the chord AB. Again by the
property of completeness this sequence has a greatest lower bound. 1f the
least upper bound of the increasing sequence is equal to the greatest lower
bound of the decreasing sequence, the common value is defined to be the
length of the circular arc AB.
In the case of the circle, the length is called the circumference. In a circle
of radius r it is given by the formula ¢ = 277,

8.8 | THE LENGTH OF A SEGMENT OF A CURVE 259



Example 1

To illustrate this procedure let us use successive approximations as
outlined previously to estimate the length of a semicircular arc of a circle
of diameter 2, which we know has length 7.

Figure 15

m(i’ﬁs") =2  Lengthof AB=m =3.14
=m(AC) +m(TEB) = V2+ V2 = 2(1.4112) = 2.83
m(AD)+m(DC)+m(CE)+m(EB) but since :ﬂ)o, oD_é, OC_EO,
and E B are equal by construction,
= 4m(AD), where m(ID) can be computed from AAPD, Figure

15.

@By = J(1-2) + (L) = VievETIT
=V2—V2 = V2-T41421356 = 0.76537
——4m(AD) = 40.76537) = 3.06
m(Af_)°+m(FD)+m(DG)+m(GC)+m(CH)+m(HE)+m(EI)
+m(IB), but, by constructlon these are all equal, so
lg = 8m(AF), where m(AF) can be computed from AAQF, Figure
16.

2 -

Figure 16
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m(AF) = \/(2—\/?737+[1—\/1‘(2—\/—;—\7_2_>]

=V2—-V2+V2
= V92—V3.41421356 = V2—1.8477
= V0.1523 = 0.39
. = 8(0.39) = 8.12
2.83 < 3.06 < 3.12 < 3.14
L<l<l<m.

Notice that the third approximation yields accuracy to two significant
figures.

Exercise 8.8
1. Show that/, = [,, using Figure 13.
2. Show that lgn = lzn+l.

3. Find [, for a semicircular arc of diameter 3.

4. Estimate the length of the following curved path consisting of two
semi-circles by

(a) using a ruler to estimate the measure of each segment of poly-
gonal paths on a full-size drawing.
(b) using the calculations from problem 3.

3" 3”

5. }&Scctionﬁ? we usotzglO the triangular inequality to show that
m(AC) = m(AD)+ m(DC). Sketch the triangle involved and verify the
validity of our argument.

6. What is the exact length of the arc of problem 4?
7. Sketch the triangles referred to in Figure 14 and verify that I, < L.

8. Label the figure properly and verify that I, < L,.
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8.9 AREAS

In this section we present derivations of the standard formulas for the
areas of a few selected plane figures.

As with the length of a line segment, the area of a plane figure is also a
measure; that is, the area of a plane figure is a nonnegative real number
such that if a plane figure P is contained in a plane figure Q, then the
area of P, denoted a(P), is less than or equal to the area of Q, a(Q).
If the plane figures P and Q are disjoint, then the area of the union of the
two plane figures is equal to the sum of the area of P and the area of
Q. The “length” of a line segment, as a measure, has these properties.
The “volume” of an object in space, which will be discussed briefly in a
later section, is also a measure and has these properties. Since we use these
properties implicitly in what follows, we list them in the language of
area and refer to them briefly.

Let P denote a plane figure and a(P) its area; then

1. a(P) = 0. Nonnegative
2. If P C Q,thena(P) < a(Q). Monotone
3. IftP N Q=40 thena(P U Q) =a(P)+a(Q). Finitely additive

Since we are interested in how to determine the area of a plane figure,
we review what is meant by the area of a rectangle.

First choose a unit of length. Then a square one unit of length on a side
is said to have one square unit of area. From Figure 17 we see that if we had
three unit squares side by side we would want to count the area 3 square
units. Similarly, if we have a rectangle with sides of length 2 and 4, by
counting squares we would want to call its area 8 square units. A square
% unit length on each side is { square unit in area, since four such squares
precisely fill a unit square. A rectangle whose sides are 2 and 2% units in
length has area 5 square units, as we see by counting.

i
1 1 1 1 1 1 1
i
1 1 1 1 1
1
ry
1 1 1 1 1 1
i
2
%
1 1 1 1 1 1
1
4
4 21
Figure 17
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Using our imagination we can see how this idea of counting could be
extended to any rectangle whose length and width were given in terms of
rational numbers, and we find that the counting procedure gives us the
same result as multiplying length by width (see problem 4, Exercise
6.12c).

We therefore define the area of a rectangle with length l and width w
to be lw square units, where the real numbers ! and w are given in the
same units of length. If we use 4 to designate the area, then

A=lw.

For a square, which is just a special case of the rectangle with /= w,
we usually use the symbol s to denote the length of a side. Then the area
of a square is given by

A =s2

The area of plane figures, in general, can be defined in terms of the
areas of rectangles. (See Section 8.13 for an example of the general
procedure.) For our purposes we derive the formula for the area of a
triangle and use this information to derive the formulas for the area of
other plane figures.

8.9a Area of Triangles

The diagonal of a rectangle divides the rectangle into two equal parts.
(See if you can recall enough of plane geometry to prove this. Try the
theorem, “Two right triangles are congruent if the hypotenuse and a side
of one are equal, respectively, to the hypotenuse and a side of the other.”)

Each of these parts is a right triangle
(see Figure 18). If the area of the rec-
tangle is lw, then the area of the right
triangle is #/w. We usually designate R
the length of the two legs of a right
triangle by b and h, b for the base and %
for the height. Then the area of a b
right triangle is the product of 3, the Figure 18
base, and the height.

A = §(bh).

Notice that we are using the additive property of area, that is, the area of
the rectangle is equal to the sum of the two equal numbers which represent
the area of the right triangles.

To obtain the area of a general triangle, drop a perpendicular from a
vertex to the opposite side (see Figure 19).
The length of the segment CDis designated as an altitude or height of the
triangle and denoted k. The segment CD divides the triangle into two
triangles, (1) and (2), each of which is a right triangle. Let us denote the
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Figure 19

length of the base of (1) by x and the length of the base of (2) by b—x.
They both have height 4. Applying the known information about right
triangles, we have

Area of (1) = (xh),
Area of (2) = $(b—x)h = §(bh) —}(xh),

and
Area (1) + Area (2) = $(xh) +3(bh) —§(xh) = %(bh).

Hence the area of the general triangle is also given by the product of %,
the base, and the height.

A = 3(bh).
Notice that we rely on the additive property of area.

8.9b Area of Parallelograms

Let us turn to the parallelogram, a four-sided plane figure whose
opposite sides are parallel and equal (see Figure 20).

A b B

Figure 20

Here we designate the length of the perpendicular line segment be-
tween two parallel sides, called the “altitude” of the parallelogram, 4, and
the length of one of these parallel sides, called the base, b. If we draw the
diagonal AC, we note that this divides the parallelogram into two triangles,
each of which has base of length & and height of length 4. Thus
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Area of triangle (1) = 3(bh),

Area of triangle (2) = 3(bh),
and  Area (1) + Area (2) = $(bh) + 3(bh) = bh.
Hence the area of a parallelogram is the product of the lengths of the base
and the height.

A = bh.

8.9c Area of Trapezoids

The trapezoid is a plane figure bounded by four straight-line seg-
ments, two of which are parallel (see Figure 21).

Figure 21

Again we designate the length of the perpendicular line segment be-
tween the two parallel sides by £, called the height. The length of one of
the parallel sides is denoted b and the other a. By drawing a diagonal, as
indicated in Figure 21, we see that the trapezoid is divided into two parts,
each of which is a triangle. One triangle has base of length b and height of
length & and the other has base of length a and height of length h. We
have

Area of triangle (1) = 3(bh),
and  Area of triangle (2) = ¥(ah).

Then Areaoftrapezoid = Area (1)+ Area (2) = 3(bh) + 3(ah)
=3(b+a)h Distributive law

This is usually written
A = th(a—+b).

In words, the area of a trapezoid is found as the product of 3, the height,
and the sum of the two “bases.” Notice that we again rely on the additive
property of area.

8.9d The Area of Regular Polygons

Next we establish the formula for the area of a regular n-gon, a regular
polygon of n sides. This is a plane figure that has equal sides and equal
angles. The simplest plane figures of this type are the equilateral triangle
and the square. In establishing a formula that yields the area of any
regular n-gon we will illustrate the regular hexagon for references (see
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|
|
|
|
|
|
|
|
I
s

Figure 22

Figure 22). Associated with each regular polygon is a circumscribed circle.
Let us designate the center of this circle as the center of the regular poly-
gon. If we draw straight lines from the center to each of the vertices, we
construct a triangle for each of the sides of the polygon. The distance
from the center of a regular polygon to one of its sides (that is, perpen-
dicular distance) is called the apothem. We shall designate its length by a.
This is also the altitude of the triangle formed by one of the sides of the
polygon and the lines from its endpoints to the center. Let us designate
the length of one of the sides of the polygon by s; then the area of one of
the triangles is %(as). If the polygon has n sides, there are n such triangles
in the polygon. Using the additive property of area, we have

A = }a(ns).
But ns is the “perimeter” (distance around) the regular polygon; hence
A = Hap).

In words, the area of a regular polygon is the product of 3, the apothem,
and the perimeter.

Exercise 8.9

1. Find the areas of the triangles shown, using the dimensions given.

8cm 7 yd!

5" 8 cm 8yd
@) (b) ©)
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¥ ;,'
.
@ Q]

2. Find the areas of the parallelograms shown, using the dimensions
given.

I\

3yd 10 cm
(b) (0
I
l 7cm
|
1I5 cm
@ (e)

3. A man owned a rectangular lot 150 ft by 100 ft. From one corner A,a
fence is placed to a point M in the center of the longer opposite side as
shown.

A 150’ c
100
B i D

(a) Find the area of ABCD.
(b) Find the area of AMB.
(c) Find the area of AMDC.

4. (a) In the drawing below, measure ;1730 and DS. Using these measures,
find the area of the parallelogram.
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D/ O\ c
N
| N
| ~
~
| ~
~

[ ~

| AN

I AN
A JS; B

(b) Measure AD and RB. Using these measures, find the area of the
parallelogram.
(¢) Do your results in (a) and (b) agree? Since measurement is ap-

proximate, they may not be exactly the same, but they should be
close.

5. Find the area of the following trapezoids, using the dimensions given:

37 -
|
| 4o
|4 e
|
|
0O ml
7 7
@ (b)
5 10 yd
I
I |
:5, | 3vyd
|
I 0o
|
- 8 yd
7
(CY)
(c)

6. Using rational approximations for the irrational numbers, find an
approximation to the area of a rectangle whose length js V2 ft and whose

width is V3 ft.

8.9e Area of a Circular Region

The area of a circular region which is bounded by a circle of radius r is
given by the formula

A=,
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The formula is derived by using the tools of calculus but it can and should
be made plausible to the students who have not had calculus. One of the
first questions that students often ask is “Why is the area of a circular
region given in square units?”’ There are several ways of responding to this
question. Here is one which has worked successfully.

Let a circle have a radius of 5 units. From the formula for the area we get

A=m-5=7m-25 = (3.1416)(25)

The area is approximately 78.54 square units.

Draw a circle with a radius of 5 units. Construct squares on the two
horizontal radii above and below the diameter as shown in Figure 22a.
Each of the squares has an area of »* = 25 square units. The area of the
large square is 47 square units, since it consists of the four smaller squares
each with area 72 = 25 square units. The units are squares.

T

(a) (b)
Figure 22a Figure 22b

The circular region is entirely contained in the large square whose area
is 472 units. By property 2 (Section 8.9), the area of the
circular region is less than 472 By constructing the dia-
gonals (Figure 22b) and using symmetry, it is easy to see
that the area of the circular region is greater than 2r>.
The question is: How much less than 47 and how much
greater than 272 is the area of the circular region? Just
by comparing that portion of the circular region lying
in the outer triangles it is plausible to estimate that the
area is close to 372,
The validity of the formula may now be made plausible with the help
of the following argument. Draw and cut out a disc, then cut it into two
parts along a diameter (Figure 22c).
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(c) d
Figure 22¢ Figure 22d

Now cut matching slices and spread out each half disc as shown in Figure
22d.
Notice that the side of each pie-shaped slice has length r, the radius of the
disc. Notice also that the length of the curved edges on one half of the
disc add up to 7r.

Now fit the two halves together as in Figure 22e. The resulting figure
resembles a parallelogram with scalloped sides.

(e
Figure 22e

If we had made narrower slices, the slanted sides would be more vertical
and the serrated edges would be less bumpy. Try to imagine cutting the
half discs into one million slices and fitting them together. The rectangu-
lar shaped figure would actually approximate a rectangle of dimension r
by mr quite closely. That is, the area of the disc is the limiting value of this
process which approaches (r)(7rr) = mr? square units.

r
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Exercise 8.9¢

1. What is the area of a circle of radius 10 inches?

2. What is the area of a circle of radius 1000 inches?

3. What is the circumference of a circle of radius 10 inches?
4. What is the area of a circle of radius 20 inches?

5. What is the circumference of a circle of radius 20 inches?

6. How does the circumference of a circle of radius 20 inches compare
with a circle of radius 10 inches? How do their areas compare?

7. How does the ratio of the circumference to the diameter of a circle of
radius 10 inches compare with one of radius 20 inches?

8.10 VOLUME AND SURFACE AREA

In this section we present some of the standard formulas for volume.
First we define a unit of volume. As with area, choose a unit of length. A
cube one unit of length on each edge is said to have one cubic unit of volume.
From Figure 23 we see that if we had 3 cubes side by side, we would want

! ' //]I //‘l
| ; ] |
| |
! 1 L L
! 1 | Pl | !
| 1 : | | | |
I by
e /)_ | /} I~
1 - [ [ 1
1 1 1 1
<
:‘i t '
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2 11 <11 s
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]z 1| !
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/; 1/E |/i /J-__ 27 7 1
- || L [ !
\ ; Lo [ |
SINERREN
| |
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Figure 23
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to count this as 3 cubic units. Similarly, by counting, we see that if we had
a rectangular solid 2 units by 3 units by 2 units, we would want to call this
12 cubic units. A cube ¥ unit on an edge would be counted as 4 cubic unit,
for it takes precisely 8 of them to “fill”’ one cubic unit.

As with area, if the units of measure of the dimensions of the rectangu-
lar solid are given in terms of rational numbers, we can obtain the num-
ber of units of volume by “counting,” and the result is the same as if we
multiplied “length” by “width” by “height.” If we designate the length,
width, and height by [, w, and &, respectively, /, w, and & real numbers,
then the volume ¥ of the rectangular solid is defined by

V = lwh.

The derivation of the formulas for each of the solids given in the follow-
ing paragraphs can be made precise with the use of calculus. We shall
simply describe the type of figure under discussion and present the for-
mula for that figure.

8.10a Prism

In the same sense that we referred to a two-dimensional figure bounded
by straight lines as a polygon, we speak of a three-dimensional figure
bounded by planes as a polyhedron.
A prism is a polyhedron two of whose
faces (called bases) are congruent poly-
gons (exactly the same size and shape)
in parallel planes, and whose remain-
' i ing faces (called lateral faces) are
) . parallelograms (see Figure 25).
W A prism, each of whose faces and
l bases is a rectangle, is called a rec-
tangular solid or a rectangular parallele-
piped. The volume of a parallelepiped
(box-shaped figure) is given by the
product of the lengths of three concurrent edges. (Concurrent means
“meeting at one point”)(see Figure 24).

V = lwh.

Figure 24

The total area of such a figure is the sum of the areas of the faces and
bases. The lateral area is the total area less the area of the bases. Letting T
denote the total area and S the lateral area, we have

T = 2(lw+ lh+ wh),
and S = 2(lw + wh).

To speak in general of prisms it is convenient to define what is meant
by a “right section.” A right section of a prism is the polygon formed by
the intersection of the prism with a plane which is perpendicular to each
of the lateral faces (see Figure 25).
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Lateral
|_—Altitude

A——F——

AN S

Parallelepiped Prism

Lateral
edge

Right section

Figure 25
Then, in general, for a prism we have

T = (perimeter of a right section) X (lateral edge)+ (area of the
bases),
§ = (perimeter of a right section) X (lateral edge),

and
V = (area of a right section) X (lateral edge),
V' = (area of the base) X (altitude).
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8.10b Circular Cylinder
A right circular cylinder resembles a prism

whose bases are right sections except that the
bases are circles rather than polygons. The

h formulas for the prism also hold true for the
o right circular cylinder, but they may be stated
- BN in language involving 7 (see Figure 26).
Q’/ If 7 is the radius of the base and 4 the altitude,
then (see Section 9.13a)

Figure 26 S =9mrh

T =2marh+ 2772,
and V = ar2h.

8.10c Pyramid

A pyramid is a three-dimensional figure whose base is a polygon and
whose lateral faces are triangles. If the base is a regular polygon, and a
line from the vertex of the pyramid to the center of the base is perpen-
dicular to the base, then the pyramid is called a regular pyramid (see Figure
27).

Altitude

Figure 27

For a regular pyramid, Figure 27.

V = § (area of base) X (altitude),
and = § (perimeter of base) X (slant height).

For the general pyramid this formula for the volume continues to hold,
but the given formula for lateral surface area does not.

8.10d Cone
The right circular cone resembles a regular pyramid except that the base
is a circle. Formulas for the regular pyramid will also serve for the cone.
As with the cylinder, we can express these formulas in terms of 77, namely
(Figure 28).
S = mr VITT T,
and  V=j3nwrh.
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Figure 28

A frustrum of a regular pyramid or cone, or a truncated pyramid or
cone, is illustrated in Figure 29. Let b, " denote the areas of the bases and
h the altitude, then

Figure 29

S = #(sum of perimeters of bases) X (slant height),
and =3h(b+b +Vb-b).

8.10e Regular Polyhedra

A regular polyhedron is a polyhedron whose faces are congruent regular
polygons.

There are only five (except for size) regular polyhedra, as shown in
Figure 30. (See Table 1.)

Although the argument required to show that there are five and only
five regular polyhedra is not difficult, it will not be given here. (Consult
What is Mathematics?, by Courant and Robbins.)
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Tetrahedron Hexahedron (cube)
Octahedron
Dodecahedron
Icosahedron
Figure 30
Table 1 Regular Polyhedra
Name Nature of surface Total Area  Volume
Tetrahedron 4 equilateral triangles 1.732054%*  0.11785a°
Hexahedron 5 squares 6.00000a*>  1.00000a°
Octahedron 8 equilateral triangles 3.46410a>  0.4714043
Dodecahedron 12 pentagons 20.64573a>  7.66312a®
Icosahedron 20 equilateral triangles 8.660254>  2.18170a°

*““a” denotes the length of an edge.

8.10f Sphere

For a sphere (see Figure 31) let r represent the radius, d the diameter;
then

S =4mr = wd?,
and V=23%mr’=twd>
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8.10g Circular Torus

Consider a line segment, O4, of length a and a
circle with center O and radius r, where r < a.
Fix the point 4 and cause the line segment, with
the circle, to rotate in a plane perpendicular to d
the plane of the circle. The circle will “sweep

out” a doughnut-shaped figure called a circular

torus (see Figure 32).

Figure 31
S = 47%ar
and V =2x%ar?.

Figure 32

Exercise 8.10

1. Find the volume and total surface area of rectangular solids of the
following dimensions:

(@) 4in. by 5in. by 12in.
(b) 3.5 ft by 7.2 ft by 8.6 ft.
(c) 3ftbybftby 18in.

(d) 44 yd by 23 yd by 8 yd.

2. Find the surface area and volume of a sphere whose radius is
@) 3in. (b) 4ft
(c) 14in. (d) 4 cm

(Use 3.14 or # as an approximation to 7.)
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3. Find the total surface area, lateral surface area, and volume of the
following:

8.11 SIMILAR PLANE FIGURES

In this section we discuss what is meant by similar plane figures with the
primary objective of using similar right triangles in indirect measurement.
Two triangles are said to be similar to each other if corresponding angles
are equal in measure and corresponding sides are proportional in measure.
This relation is symbolized ~ (see Figure 33).
AABC ~ AA'B'C’
mszA=mlA ,ms/B=miB . mLC=m/C’.

m(AB) _ m(AQ) _ m®BE  wmUB) _mAdB)
m(AB) mAC) mBC) m(AC) mAC)’

tc.
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C&A ¢ o

Figure 33

Two polygons are similar to each other if their corresponding angles are
equal in measure and their corresponding sides are proportional in meas-
ure (see Figure 34).

E A B A

Figure 34

Polygons ABCDE and A'B'C'D’E’ are similar.
msLA=msA', m/B=m/B', m/C=msC’,
msD=msD', m/E=m/LE'.
mAB) _ mBC) _ m(D) _ m(DE) _ mED
mAB) mBC) mCD) mDE) mEA)
As a special case we can show that if an acute angle of one right triangle
is equal to an acute angle of another right triangle, then the triangles are

similar. This simple criterion for determining similarity of right triangles
leads to their use in indirect measurement.

Example 1

A lake lies between points 4 and C (Figure 35). The problem is to deter-
mine the distance from A4 to C by using the properties of similar right
triangles. oo o—o

First we locate a point B such that AB and BC are at rlght angles to 0 one
another, and we plck a point D on ACand a point E on B BC such that DE is
perpendicular to BC. Then triangles ABC and DEC are similar rlght
triangles because LC is common to both. We measure and find m(EC) 4
units of length, m(BC) =52 units of length, and m(DC) =5 units of
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Figure 35

length. From the properties of similar triangles we have

m(AC) _m(BC) m(AC) 52

- —0. » or - =,
m(DC)  m(EC) 5 4
therefore

o—o 60 .
m(AC) = 2T = 65 units of length.

Exercise 8.11

1. Find the height of the tree in the accompanying diagram.

2. A man 6 ft tall casts a shadow of 9 ft when standing 24 ft away from a
point directly under a street lamp. How high above the ground is the
street lamp?
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3. In the following diagram, if A4ABC ~ ADCE and m(AC)=12yd,
m(AB) = 20 yd, m(CE) = 100 yd. Find DE. the length of the lake.

4. In the following diagram, A4BC ~ AADE. Find .

5. In the following diagram, A4BC ~ AADE. Find x.
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6. In the following diagram, A4BC ~ AADE. Find x.

1 B a D

8. Examine your results of problems 4, 5, 6, and 7 and give a general
geometric interpretation of multiplication and division.

9. Give a geometric interpretation of addition and subtraction.

8.12 THE PYTHAGOREAN THEOREM

Pythagorean Theorem. The square of the length of the hypotenuse of
a right triangle is equal to the sum of the squares of the lengths of the
legs.

Before we give any proofs of the Pythagorean Theorem we state a
theorem about right triangles for which the reader can supply a proof.

Figure 36
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Theorem. The altitude to the hypotenuse of a right triangle forms two
right triangles which are similar to the given triangle (see Figure 36):

AADC ~ AABC ~ ABDC

From this and by using the properties of similar triangles, we obtain
(see Figure 37):

1. The length of the altitude CD to the hypotenuse is a mean propor-
tional between the lengths of the two segments AD and DB formed on
the hypotenuse. (Mean proportional: x is a mean proportional between
aand bif a/x = x[b, or x* = gb.)

2. The length of leg AC of a right triangle 4BC is the mean propor-
tional between the length of the hypotenuse AB and the length of an
adjacent segment AD on the hypotenuse formed by the altitude CD from
the right angle (see Figure 37).

C
|
|
|
A T B
Figure 37
) m(AD) _ m(CD) @) m(AD) _ m(4C)
m(CD) m(DB) m(AC) m(AB)

m(AC)2 = m(;ﬂ)o) . m(;;ﬁ)

Let us now consider the proof of the theorem of Pythagoras. —

Let CD be the altitude from the right angle to the hypotenuse 4B (see
Figure 38). Let d, ¢, a, b, and ¢ be the lengths of AD, DB, BC, AC, and 4B,
respectively. Then d/b= bjc, or d = b?*/c, and e/a = a/c, or ¢ = a*/c. But

|
|
|
|
|
I
1

¢ D

Figure 38
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d+ e = c. By substitution

d+e=c,
b | a?
or —+—=c,
c ¢
therefore B+a2=c? or @+b=c2

Interpreting the Pythagorean Theorem in terms of “area” (Figure 39)
we have:

B
©)]
c2
@
a2 a .
b
C A
@)
b2

Figure 39. Area(1)+ Area (2) = Area (3).

For every right triangle the square on the hypotenuse has an area equal
to the sum of the areas of the squares on the other two sides (see Section
7.1).

For a proof of the theorem based on this interpretation, consider the
diagram of Figure 40.

Figure 40
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The area of the large square of side a+b is equal to the area of the
small square of side ¢ plus the area of the four right triangles with legs
aand b.

(a+ b)? = 2+ 4(3ab)
a?+2ab+b* = 2+ 2ab
a’+ b2 =2

A demonstration involving areas which may be used at the elementary
level involves cutting and matching. First construct the diagram shown
in Figure 41 in relation to any right triangle ABC.

T N 7
|
D | 3 4 |
AN | l
AN

~ | |

| c2 |

|

|

b2 b > |

5 5

a B ‘{

c ~

/ ~. |

4 / AN |

| / AN

a2 AN

| // ¥ N
| Y NE

| / |

[ _ _J

Figure 41

Cut out the figure on the line DABE and compare the two sections by
matching. Carefully done, this will illustrate that the areas are identical.
By pairing like areas on opposite sides of this line and ““subtracting” them
from the original equal areas, we obtain

a?+ b = 2.

The reader is to be cautioned that this does not form a “proof.” It is
merely a demonstration to add credibility to the statement of the theorem.

As an example of how “proofs” by cutting and fitting may be mis-
leading, consider Figure 42.

The square is 8 by 8, hence has area 64. The rectangle is 5 by 13, hence
has area 65. Where did the additional unit of area come from? Before
reading further, see if you can develop an explanation.
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3 B ¢ 13 D
5 5 8
3 H
8 / 8 5 5
G
° 8 5
3
A B3 F E
3
8
Figure 42

The angles at C and F are right angles, which means that the “fit’” along
the lines HF and CG is perfect. This leaves only the diagonal AD as a
possible place for the extra square unit to hide. It may be that AGHD is
not a straight line as it appears to be, or we might investigate angles BAF
and CDE to make sure that they are right angles.

Let us use the properties of similar triangles. We know that AFE i isa
straight line. Why> Looking at the figure we see that HEF is parallel to DE
and if AGHD is a straight line, then AAFH ~ AAED. If these triangles
are similar, then their corresponding sides are proportional. But § # 2;
hence these triangles are not similar. If the triangles are not similar, then
AGHD is not a straight line. A slight bend in the line at G and H would
account for the extra unit of area (see Figure 43).

C

A E
F

Figure 43. A square unit of area “hiding in a crack.”

Exercise 8.12

1. Find the area of a square inscribed in a circle of radius
(a) 1lin. (b) b ft.

2. Find the area of a regular polygon of six sides (regular hexagon)
inscribed in a circle of radius

(2 10in.  (b) 8 ft.
3. Find the area of an equilateral triangle inscribed in a circle of radius

(a) 10in. (b) 18in.
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4. In a 30, 60, 90° right triangle, the side opposite the 30° angle is equal
to one-half the hypotenuse.

(a) What is the area of a parallelogram with sides 20 and 16 and in-
cluded angle of 30°?

(b) What is the area of a parallelogram with sides 20 and 16 and in-
cluded angle of 60°?

5. (a) The length of the diagonal of a square is 18. Find its area.
(b) The length of the diagonal of a square is 50. Find its area.

6. Prove that if two triangles are similar, the ratio of their areas is equal
to the ratio of the squares of the lengths of two corresponding sides.

7. An alternate proof of the Pythagorean Theorem based on the area
concept can be developed from the following figure:
Label the figure and complete the proof.

8.13 THE NUMBER =

The symbol 7 is much misunderstood. Many people think that it is
something used in arithmetic to “stand for” 37, or 3.1416, and they are
surprised to learn that 7 is a symbol for a particular number, just as 3 and
V5 are symbols for numbers. 7 is an irrational number and as such would
be an infinite nonrepeating decimal. The numbers symbolized by 37, 3.14, and
3.1416 are rational approximations to .

The number symbolized by the Greek letter 7, has a very interesting
history. We will present a brief chronology of this number later in this
section. First let us see if we can establish the existence of such a number.

8.13a The Existence of 7+ and the Area of a Circular Region

Consider any two circles with centers O and O’ of radii r and 7, respec-
tively, and r < 7’ (see Figure 44). For simplicity let us reconstruct the circle
with center O’ so that it will be concentric with the circle with center O,
that is, have the same center. From the common center O draw a line
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Figure 44

cutting the smaller circle at 4 and the larger circle at A’. From O draw a
second line, different from OA’, cutting the smaller circle at B and the
larger circle at B'. Draw the segments AB and A'B’. It is easy to show
that AOAB ~ AOA'B’ (see Figure 45). Using the properties of similar
triangles, we have

m(AB) _ m(A'B")
n n'
But this is an equality of ratios of real
numbers; hence for any number n

()m(AB) _ (W)m(AB")
A n n, ’
or (nym(4B) _ (n)m(A'B’)
(2)n (2)n'
Figure 45 If the circle were divided into n equal arcs

and triangles formed by drawing in the

chords and radii, then (rn)m(AB) would
be the perimeter of the inscribed polygon and (2)n would be the diam-
eter of the smaller circle. Similarly, (n)m(4'B’) and (2)n’ would be the
perimeter of the inscribed polygon and diameter of the larger circle.
Then the equation

(n)m(AB) _ (n)m(A'B’)
2)n 2)n'

means that the ratio of the perimeter of a regular inscribed polygon of n
sides to the diameter of the circle is the same regardless of the size of the
circle.

Now let us suppose n is allowed to become very, very large. The peri-
meters of the inscribed polygons come closer and closer to the circum-
ference of the circle. In fact, the least upper bound of the sequence of real
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numbers denoting the perimeters is the length of the circumference of
the circle (see Section 8.8). We would then have

circumference of smaller circle _ circumference of larger circle
diameter of smaller circle diameter of larger circle

This means that the ratio of the circumference of a circle to its diameter is
the same regardless of the size of the circle, that is, this ratio is a constant.
The name given to this constant is pi and it is symbolized 7.

Definition 8.13a. The number 7 is the ratio of the circumference

of any circle to its diameter.

Let ¢ represent the circumference of any circle and dits diameter;

then

m=—"

d
This approach to the existence of pi also leads to a reasonable explana-

tion of the formulas ¢ = 277 or ¢ = md for the circumference and 4 = mr*
for the area of a circle of radius r. Recall the formula developed for the
area of a regular polygon with n sides of length s, namely,

A = (3ap) or A = }a(ns),

where a denotes the apothem and p the perimeter ns. As n becomes very
large, the apothem a approaches the radius r of the circle and the peri-
meter ns approaches the circumference ¢ of the circle. In fact, the least
upper bounds of the sequences representing a and p are r and ¢, respec-
tively. Then

A = ¥(rc).
But from the definition of 7, ¢ = wd or ¢ = 27rr, and
A = 3r(2mr),

or A = mr?

8.13b Calculation of =

The classical method of computing a numerical approximation to 7
makes use of inscribed and circumscribed regular polygons. Since m = ¢/d,
the circumference of a circle of unit diameter is 7. The computation may
be begun by using an equilateral triangle or a square as the initial poly-
gon; then, by doubling the number of sides, obtain polygons of 6, 12, 24,
36,...0r8, 16,32, 64, ... sides, respectively. Let us examine the procedure,
using the square as the initial polygon.

As our first approximation we have (see Figure 46)

PAVERS T <4,

or 2.82 < m < 4.
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For our second approximation let us double the number of sides of the
inscribed polygon and the circumscribed polygon (see F igure 47). The
length of a side of the inscribed octagon is

s=\/<V§)2+<2;\/2>2_ 2 4—4VI+2

4 7 )=V 16

2—V2 1./
VoV

The perimeter is then 8(4V2 — V?2) or approximately
4(0.7654) = 3.06.

For the circumscribed polygon of side s’,
1
: s _ 1
( Vo— V9 x’
4
,  Wwhere
5 Ve -5
x=A\ll5) —\——— )"
2 4
Figure 46 Solving for 5" and using approximate square
roots yields
s
9= 0.2071.

Then the perimeter of the circumscribed polygon is

(16) (%) = 16(0.2071) = 3.31.

Figure 47
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Hence, for our second approximation, we have

3.06 < 7 < 3.3l

This procedure can be continued indefinitely. Each successive computa-
tion yields a closer approximation to 7.

The method of using inscribed polygons is called the “classical method™
for computing 7. It dates back to the time of Archimedes, about 240 B.c.
(see Section 8.13c and Eves).

A method for computing 7 that involves area is based on the fact thata
circle of radius 1 will have area 7.

Figure 48

Considering just one quadrant to simplify calculations, we have, from
the trapezoid and triangle, our first “lower”” approximation to the area of
the circle (see Figure 48).

4 (area of trapezoid + area of triangle)

-0
(BB )

which is approximately 2.732.
Using the rectangles, we have as our first “upper” approximation

[@)4)-2evs

which is approximately 3.732. Then
2.732 < m < 3.732.
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Figure 49

By dividing the radius into four equal parts we have three trapezoids
and a triangle approximating the area (see Figure 49).

“Lower” approximation:

4[1<4+\/1_5)+1<\/E+2\/§)

8\ 4 8 4
A7)

-, LS BB, 4

=%(4+2\/E+4\/§+2\/7),

which is approximately 2.9957 .
“Upper” approximation:

1)+ (56 )6 )6
Vis, V3 V7

sttt
which is approximately 3.4957.
Our second approximation is

3.00 < 7w < 3.50.

As with the inscribed polygons, this procedure can be continued in-
definitely, each successive computation yielding a closer approximation
to .

There are other geometric procedures that may be used at elementary
levels which do not involve so much computation. Many experiments are
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suggested in standard texts to give the pupil information about 7 be-
yond the definition. One simple one is to construct a unit circle on squared
paper (graph paper) and count squares to obtain an approximation to the
area. This will be left as an exercise for the student.

8.13¢c Chronology of =

This will not be a true “chronology” of 7 in that it is not a date-by-date
itemizing of the history of #. It is, rather, an informal discussion of
selected items in the chronology of 7.

We are led to believe that in ancient times the ratio of the circumference
to the diameter of a circle was taken to be 3 (see the Biblical references:
I Kings 7:23; II Chronicles 4:2). The Rhind papyrus gives us 7 = (4/3)* =
3.1604. . .. It is believed the first scientific attempt to compute 7 was made
by Archimedes about 240 B.c. Using the classical method, he determined
that 77 was between 223/71 and 22/7. This represents remarkable accuracy
in approximating square roots with rational numbers. ,

About 400 years later Ptolemy of Alexandria in this famous Syntaxis
Mathamatica developed a table of chords of a circle subtended by central
angles of each degree and half degree. From this, using a regular in-
scribed polygon of 360 sides, he obtained a value, given in sexagesimal
notation, as 3 8'30". Transcribed to decimal language this would be
377/120 or 3.1416 rounded to four places.

About 480 A.p. Tsu Ch’ung-chih, Chinese, gave the rational approxima-
tion 355/113. In decimal language this is 3.1415929 . . . , Which is accurate
to six places. Around 1150 a.p. the Hindu mathematician, Bhaskara, gave
3927/1250 as an accurate value of 7, 22/7 as an inaccurate value, and V10
for ordinary work.

In the late 1500’s and early 1600’s the following computations of 7 were
carried out:

Frangois Vieta, a French mathematician, found 7 correct to 9 decimal
places by the classical method, using polygons having 6(2'¢) = 393,216
sides.

Adriaen van Roomen of the Netherlands found 7 correct to 15 decimal
places by the classical method, using polygons having 23° = 1,073,741,824
sides.

Ludolph van Ceulen of Germany computed 7 to 35 decimal places by
the classical method, using polygons having 2% = 4,611,686,018,427,387 -
904 sides. This was considered such an unusual accomplishment that, for
a time in Germany, this 35-place approximation to 7 was called the
Ludolphian Number.

One is led to wonder why so much time and effort were spent in the
computation of 7. One reason might be that these men were looking for
a repeating sequence in the decimal approximation to . If it could be
found, they would then know that 7 was a rational number.

8.13 | THE NUMBER » 293



Later computations were based on infinite series:

Abraham Sharp— 71 correct places. 1699.
De Lagny — 112 correct places. 1719.

Much speculation came to an end when in 1767 Johann Heinrich
Lambert proved that = is irrational. This did not stop the “zr computers,”
however. William Shanks of England computed # to 707 places. For a long
time this remained the most fabulous piece of calculation ever performed.
It occupied Shanks for more than 15 years. In 1946 D. F. Ferguson of
England found errors in Shanks’ value of 7. He published a corrected
value to 710 places. In the same month J. W. Wrench, Jr., of the United
States published an 808-place value of 7, but Ferguson found an error in
the 723rd place. In January 1948 they jointly published a corrected and
checked value for 7 to 808 places.

To conclude this summary on the calculations of 7, we turn to the elec-
tronic computer. The ENIAC (Electronic Numerical Integrator and
Computer) at the Army Ballistic Research Laboratories in Aberdeen,
Maryland, in about 70 hours gave  to 2035 places, checking the Ferguson-
Wrench result of 808 places. (Compare this with the efforts of Shanks.)
For a more recent discussion relating to m, see the article by R. K. Pathria
cited in the references.

Also, recently computers were used to compute the decimal fraction for
7 to one million digits. The objective was to test the sequence of digits
for randomness. That is, in an arbitrary place in the decimal approxima-
tion for 7, does each of the ten digits, 0-9, have equal probability of occur-
ring? Studies are continuing.

Among the curiosities connected with 7 are various mnemonics that
have been devised for the purpose of remembering = to a large number
of decimal places. In the following, by A. C. Orr, one has merely to replace
each word by the number of letters it contains to obtain 7 correct to 30
decimal places.

Now I, even I, would celebrate

In rhymes unapt, the great

Immortal Syracusan, rivaled nevermore
Who in his wondrous lore,

Passed on before,

Left men his guidance

How to circles mensurate.

Another similar mnemonic is
See, I have a rhyme
Assisting my feeble brain,
Its tasks ofttimes resisting.

For a more complete chronology of 7, see Eves and Schepler.

294 Topics from Geometry / CHS8




Exercise 8.13
1. Draw a circle of radius 10 units ( in.) on graph paper of % in. squares.

(a) Cross out all squares the circle passes through.

(b) Count all squares inside the circle not crossed out.

(c) Count the number of crossed-out squares.

(d) From the foregoing draw some conclusions about the value of 7.

2. Calculate the third approximation for r, using the “area” method.

3. If a is the side of a regular polygon inscribed in a circle of radius r,
then

b= V22— rVyt—g?

is the side of a regular inscribed polygon having twice the number of
sides.
(a) Use this information to calculate the third approximation to 7 with
an inscribed polygon of 16 sides.

4. In the Middle Ages, a common approximation for a square root was
Vau=Va+b= a+§a_t-)(*_l'

By taking n = 10 = 32+ 1, show why it may be that V10 was so frequently
used for 7.

5. Find the perimeter of a regular 12-sided polygon inscribed in a circle
of radius 1, thus finding an approximation for .

6. What does the irrationality of 7w imply about its decimal representation?

7. A radian is the measure of the central angle in a circle subtended by
an arc equal in length to the radius of the circle.

(@) If 0 is the measure of a central angle of a circle given in radian
measure, show that the length of the arc cut off by the sides of this
angle is given by 76.

(b) How many radians are equivalent to 360°?

8.14 [INTRODUCTION TO COORDINATE GEOMETRY

We have used the concept of the number line to strengthen the concept
of numbers themselves. There is also an interesting relation between the
concept of the number line and geometry. When the terms “point” and
“line” are used in plane geometry, they are undefined objects endowed
with certain properties determined by the axiom. In order to have some
intuitive idea of how these terms might be interpreted in the physical
world, expressions such as “‘a point is like the tip of a pin” or “a straight-
line segment is like the edge of a ruler” are used. Postulates such as “‘there
is one and only one line through two distinct points” and “two distinct
lines are parallel or meet in a point” sharpen our concept of “point” and
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“line.” The “plane” can be discussed informally in the same way and made
precise by a set of postulates. Since the points and lines are undefined, we
might have a geometry in which the “line” is the number line for the inte-
gers or the number line for the rational numbers. We discussed the num-
ber line for the integers, the rational numbers, and the real numbers. The
number “line” for the integers should be depicted as the set of points
equally spaced with no points between consecutive pairs:

..—3-2—-10123...
.. 5—4—-3-2-1012345...

The rational number “line” is difficult to depict because the rational
numbers are dense, that is, between any two distinct rational numbers
there is an infinite number of distinct rational numbers. Furthermore,
the set of rational numbers is not complete. This would imply there are
“holes” in the rational number “line.”

The real number line is the “continuous” line one usually visualizes.
This is the “line” referred to in plane geometry. We indicated in problem
7, Exercise 7.2a, that the rational number “line” has too many “holes” for
the purposes of ordinary geometry. It is possible to have two rational

number “lines” in a plane which are not parallel and which do not have
a point in common (see Figure 50).

Figure 50

8.14a The Euclidean Plane

The pictorial representation of R X R, where R is the set of real num-
bers, is called the Euclidean Plane. Just as we labeled the points on the real
number line with the real numbers, so also we label the points in the plane
with the ordered pairs of R X R. We use the ordered pair (x, y) to denote
an arbitrary ordered pair of real numbers and refer to it as the point
(x,9) in the geometric representation. To establish this one-to-one corre-
spondence between the set of ordered pairs of real numbers and the
points in the plane, we choose a pair of perpendicular lines (usually
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horizontal and vertical) and call these the axes of the system. The horizon-
tal line is called the x-axis and the vertical line the y-axis. Their point of
intersection is called the origin and the ordered pair (0, 0) is made to
correspond to this point. The ordered pairs (x, 0) are made to correspond
to points on the x-axis in the same manner as the real numbers x were
made to correspond to the points on the real number line. The ordered
pairs (0, y) are made to correspond to the points on the y-axis in a similar
manner, with the upward direction taken as the positive direction.

We obtain the point corresponding to the ordered pair (x, y) by drawing
a line parallel to the y-axis through the point (x, 0) and a line parallel to
the x-axis through the point (0, y). The point of intersection of these lines
corresponds to the ordered pair (x, y) (see Figure 51).

—_——— e e e — ——— ———

(x,0)

—— — ————

]

|

- o 4
(=40) (3,00 (=20

I oo 4y evl | 6o @) 6o

O-Dg——————— -l

(0, -2)

e

————— +40,-3)

Figure 51

Exercise 8.14a
1. Describe the set J X J, where [ is the set of integers.

2. If the set J X J was represented pictorially, as in Section 2.6, indicate
what this would look like by plotting a few points. Circle those points
in the pictorial representation of J X J whose distance from the origin
(0, 0) is less than or equal to 5.

3. Plot several of the points in the pictorial representation of R XR
whose coordinates are related as follows:

(a) The second coordinate is twice the first coordinate, that is, (0, 0),

8.14 / INTRODUCTION TO COORDINATE GEOMETRY 297



(1,2), (2,4), etc. This relation can be described by the equation
y = 2x. The set of points in the pictorial representation is called
the graph of y = 2x and is a straight line.

(b) The second coordinate is the same as the first. This relation can be
described by the equation y = x.

4. Plot the points (x,y) whose coordinates are given by the following

equations:
(@ y=2x+3 (b) y=x+4
(0 y=—x (d) y=—3x+5
5. Indicate, by shading, the set of points (x,y) satisfying the following
inequalities:
(@Qx=3 (b)yy=0
(c) 3=x=3 (d) [x] =3

) 0=x=4and0 =y =3 ) x+y=5

8.14b Point Sets in the Plane

In problems 3, 4, and 5, Exercise 8.14a, we discussed particular point
sets in the plane. The circle in plane geometry can also be described as a
point set. It is usually defined as the set of points equidistant from a given
point. What can we say about the coordinates of those points equidistant
from the origin (0, 0)? We saw earlier that there are many ways of defining
“distance.” These were examples of distance, “following the streets”
and “as the crow flies.” The “distance” in ordinary geometry is the latter,
the “straight-line distance.” Since the coordinates of a point in the plane
are given by the ordered pair of real numbers (x, y), we can compute the
distance “as the crow flies” from (0, 0) to (x, y) (see Figure 52).

If we let d denote the distance from (0, 0) to (x, ), then

d=Vux*+y2

Let us consider the circle centered at (0, 0) with radius 5 (see Figure
53). What are the coordinates of some of the points on the circle? We list

(x, )

_=__

©,0)

Figure 52
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©,5)

(-s.o)< mm s

©, =5)

T 1T

Figure 53

a few: (0, 5), (0,—5), (5, 0), and (—5, 0). Notice that each of these points is
five units from the origin along one of the axes.

Any other point (x, y) on the circle must also be at a distance of 5 units
from the origin, that is, its coordinates must satisfy the relation

Var+y? =5,

We can write this equation without the radical sign by squaring both
sides. We get the equation whose graph is a circle of radius 5, centered at
the origin (Figure 54):

x?+y% = 25.

/: (x,5)
I 5
Ly
\Hlnx

Figure 54

The relation of the algebra of real numbers to the study of point sets in
the plane (plane geometry) leads to the investigation of geometry by
analytic methods. This is formally called analytic geometry and further
development of the concepts involved is beyond the scope of this book.
(See any recent textbook in introductory college mathematics.)
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Exercise 8.14b

1. (a) How far is the point (5, 12) from the point (0, 0) in straight-line

distance?

(b) How far is the point (—12, 5) from the point (0, 0) in straight-line
distance?

(c) Plot these points and two other points whose distance from (0, 0) is
the same as the points in (a) and (b). ‘

(d) Write the equation describing the set of all points whose distance
from (0, 0) is the same as in (a), (b), and (c).

2. Write the equation of a circle of radius r centered at (a) the origin, (b)
the point (a, b).

3. (a) What would be the distance from the point (0, 0) to the point (3, 4),
using the “along the street” distance?
(b) What would be the distance from the point (0,0) to the point
(x, ), using the “along the street” distance?
(c) Using the “‘along the street” distance, plot several points whose
distance from (0, 0) is equal to 7.

4. If we retain the definition of circle as the set of points equidistant from
a fixed point, and use the “along the street” interpretation of distance as
in problem 3(c), describe this new “circle.”
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Appendix

Table1 Powers and roots

N N2 VN N N2 VN

1 1 1 26 676  5.099
2 4 1414 27 729  5.196
3 9 1.732 28 784  5.292
4 16 2 29 841  5.385
5 25 2.236 30 900  5.477
6 36  2.449 31 961  5.568
7 49  2.646 32 1,024  5.657
8 64  2.828 33 1,089  5.745
9 81 3 34 1,156  5.831

10 100  3.162 35 1,225 5916
11 121 3.317 36 1,296 6
12 144  3.464 37 1,369  6.083
13 169  3.606 38 1,444  6.164
14 196  3.742 39 1,621  6.245
15 225  3.873 40 1,600  6.325
16 256 4 41 1,681  6.403
17 289  4.123 42 1,764  6.481
18 324  4.243 43 1,849  6.557
19 361  4.359 44 1,936  6.633
20 400  4.472 45 2,025  6.708
21 441  4.583 46 2,116  6.782
22 484  4.690 47 2,209 6.856
23 529  4.796 48 2,304 6.928
.24 576  4.899 49 2,401 7
25 625 5 50 2,500 7.071
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Table 1 (continued)

N N2 VN N N2 VN
51 2,601 7.141 76 5,776  8.718
52 2,704 17.211 77 5,929  8.775
53 2,809 7.280 78 6,084 8.832
54 2916 7348 79 6241 8.888
55 3,025 7416 80 6,400 8.944
56 3,136  7.483 81 6561 9

57 3,249 7550 82 6,724  9.055
58 3364 7616 83 6889 9.110
59 3,481  7.681 84 7,066 9.165
60 3,600 7.746 85 7,225  9.220
61 3,721 7810 8 7,396 9.274
62 3,844 7874 87 7569 9.327
63 3969 7.937 88 7,744 9.381
64 4.09 8 89 7,921 9.434
65 4225 8062 90 8,100 9.487
66 4,356 8124 91 8981 9.539
67 4,489 8185 92 8464  9.592
68 4,624 8246 93 8,649 9.644
69 4,761 8307 94 8836 9.695
70 4,900 8367 95 9,025 9.747
71 5041 842 96 9216 9.798
72 5,184 8485 97 9400 9.849
73 5,329 8544 98 9,604 9.899
74 5476 8602 99 9,801  9.950
75 5625 8660 100 10,000 10
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Table 2 Prime Numbers Between 1 and
1000

2 109 269 439 617 811

3 113 271 443 619 821

5 127 277 449 631 823

7 131 281 457 641 827
11 137 283 461 643 829
13 139 293 463 647 839
17 149 307 467 653 853
19 151 311 479 659 857
23 157 313 487 661 859
29 163 317 491 673 863
31 167 331 499 677 877
37 173 337 503 683 881
41 179 347 509 691 883
43 181 349 521 701 887
47 191 353 523 709 907
53 193 359 541 719 911
59 197 367 547 727 919
61 199 373 557 733 929
67 211 379 563 739 937
71 223 383 569 743 941
73 227 389 571 751 947
79 229 397 577 757 953
83 233 401 587 761 967
89 239 409 593 769 971
97 241 419 599 773 977
101 251 421 601 787 983
103 257 431 607 797 991
107 263 433 613 809 997
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Answers to Selected Exercises

Exercise 1.3a

Lomrn oW R ows enn

2. (a) 1,220,453 (c) 1,033,306 3. (3 ﬁ“@-@g 2%
4. (b)is largest. (d) is smallest.

Exercise 1.3b

1. (a) XXVI (o) XLIX (e) CDXXXI (g) MDLI (i) MMCDIX
2. (a) 37 (c) 94 (e) 457 (g) 1151 (1) 2999
4. (a) MMVI (c) DXLIII 5. (a) MCML 6. MMCMXXIX
7. (a) LXXIV (c) CLXXXVIII (e) CMXIV (g) MMCCCII
(i) MMMMMCMXCVIII

Exercise 1.3¢

1. (@) Ad (c) no (e) vha (g) o' drva 1) B0
2. (a) 44 (c) 653 (e) 172 (g) 6435 (1) 54,567
4. (a) o7d 5. xmn is largest. xv8 is smallest. 6. (a) 7 (g) aMB'o

Exercise 1.4a

Lag © @7 @F 0F
T4 8 5 8
* e x

~ r

2. (a) 36 (c) 208 (e) 2535
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Exercise 1.5b

1. (a) 107 (c) 28 2: 100,000 () 1/3 (e) 1
3. (a) 1/8 (c) 3%"=(19,683)° = 7,625,597,484,987 (e) 28 =256

Exercise 1.5¢

1. 1-104+0-103+2-10*+0-103+3 - 1024+0 - 10*+4 - 10°
3. 1-10'+0-10° 5. 3-10%3-10%3-10°

6. (a) 2° (c) a® (e) m? (g) l/x*=x"*

7. (a) 100,000 () 8—1=7 (e) 625 (g) 1/8

Exercise 1.5d

L(a 1:1004+2-10° (c) 3-1024+0-1014+2-10°
(€) 1-10*4+0-10°+0-10°+0-10'+0-10°  (g) 1-10'+1-10°
2. () 10% 100,000  (c) 10 10,000,000,000  (e) 27128  (g) 2';2
3. (12) (@) XIL )N ;) 8. (302) (@) CCCII; )N Il; () 78
(10,000) (a) X; (b) N I ; (€) M. (1)@ Xi; )N |; (©)
.13 6.(a) 6-10" (c) 18-10°= 1.8 105
. (@) 65-100% () 8-10°  (e) 6102
. (a) 8,700,000,000  (c) 0.000000087  (e) 0.000000005
. (a) 102,100  (c) 10° 1
(e) (7.25)(2.16)(10~%) = 15.66(1073) = 1.566(10~2) = 0.01566

L 00 ~J Ut

Exercise 1.7

1. 385 (a) 99 Anan I|:| (C) TTe

AAAA

(b)

SOl

2. (a) 27

4. (2) 1,10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110,

1111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001,

(b) 1010140 = 214en; 111001110 = 115,00

A,C,D

. See answer to problem 5.

. (a) 28-38 8. (a) 10,000 (c) 2,000,000 =2 -10°

. (a) 2° 11. A symbol for one; the additive property.

. (a) 25 = Aol 100 = OAAD; 197 = CEET (b) 25 =IALI;
100 = IOLAD; 197 = FOICT (c) 25=1ILI; 100 = ILIO; 197 = FOII

13. (a) 360 = EEFFFFLL (b) 360 = LELO

TR RN

e

Exercise2.2

1. 32is a numeral and {32} is a singleton set.

2. (a) Easy; {April, June, September, November} (c) Easy; {44, 46, 48, 50,...}

(e) Easy; {0} (g) Diflicult (i) Difficult

3. (@) 0,2,4,6,8,10,12, 14, 16, 18 (¢) The even whole numbers
(€) m = 2k and % a whole number

4. (a) 1,3,5,7,9,11,13, 15,17, 19 (¢) The odd whole numbers
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Exercise 2.3

N Ov e

11.

. (@) P,S,Q,and @ (c) P

. Yes, every element of § is an element of P.

. Yes, every element of S is an element of §

. (a) For example, Sevem = {0, 2, 4, 6, 8}; Seanr = {1, 3,5, 7} () {2}; &;

{0,1,2,3,4,5}; Sitself; {5, 6,7, 8} (e) {0,1}
S = {x|xis an even number}; T'= {x|x is an odd number}

. (a) No (c) Yes

(@) {The first president of the United States}, { The “father of our country”},
{The husband of Martha Washington}.

Exercise 2.4

1. 3. 5.

C (o

13.

14.

@BNAUC)=BNA UBNCOC)
AU BNC)y=AUB)YN (A4UC)
(a) Ted, Tim (c) Ted, Tim, john, Jill

Exercise 2.6

1

3.

N G

(a) The union of a set with itself is the set itself. The union of a set with the
empty set is the set itself. The union of a set with the universal set is the uni-
versal set. (c) If a set is a proper subset of each of two other sets then itis a
proper subset of their union. (e) The intersection of a set with itself is the
set itself. The intersection of a set with the universal set is the set itself. The
intersection of a set with the empty set is the empty set. (g) If asetisa
proper subset of each of two others, then it is a subset of their intersection.

. (@ 4UB=1{1,2,3,4,5};,ANB=¢

(c) AU B=1{1,2,3,5};4 N B={1,3} (e) A UB=1{1,2,3};

AN B=1{2,3}

(@ EuU=U (c) A U B is the set of odd natural numbers and 2, 4, and 6
e ENU=E (g) 4 N Bis the first three odd natural numbers; {1, 3, 5}
(i) (4 U B) N Eis the first three even natural numbers; {2, 4,6}

(k) (EN A) UB=8:{1,2,3,4,5,6}

(@ ¢ (04 (e AN B
.@A4UB (B (edUB
. () 4=1{2,3,4,5} () A=1{8,4};B={2,3}
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7. (a) % i
C Ll
V77720 : N\ (AU By I
A’ N B’ 3888

9. 2° = 32 subsets; 31 proper subsets
10. (a) The set of specimens that react to both the A-test and B-test.
(b) The set of specimens that react to the B-test.
(¢) O-Neg, 4-Neg, B-Neg, and 4B-Neg.
(d) O-Negand B-Neg.

() A B RI
) o
(® A B Rh

(h) All of them.
11. (a) A,B,A N B (c) AU B U RR

Exercise 2.7

1. {(blue, 31), (blue, 43), (blue, 47), (blue, 59), (green, 31), (green, 43), (green, 47),
(green, 59), (gray, 31), (gray, 43), (gray, 47), (gray, 59)}

2. (@) {0,1}, {0}, {1},0 (o) {(0,2),(1,2)}

3. (a) X = {n|nis an even whole number}
(c¢) Z = {k|kis an odd whole number}

(@) ©

A}{B A B

C

ANB AUBNO
5. 218 = 65,536 subsets
6. (a) {2,3} (o) {3} (e) ¢ (8) {(2,2),(2,3),3,2),(8,3)}
@) {(4,4),4,5),(5,4),(5,5)}
7.0 ANC (A () ANB

~..J-a—"w
»
]

N,

S ¢

Alllll BUC= (ANB)U(ANC)
AN(BUC)=B
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10. (a) Ted, Tim, Jack, June (c) Ted, Tim (e} Ted, Tim (g) Tom,
Tim, Ted, Tobe, Jim, Joan, Jack, June, John, Jill, Jane, Jan, Sam, Sono, Sue,
Sara; 16 attended party

11. Total 932.

Exercise 3.4

1. ®is not reflexive, not symmetric, but is transitive
3. ©is not reflexive, not symmetric, and not transitive
5. They are all multiples of 7, or exactly divisible by 7

Exercise 3.5a

2. 120 ways

3. (a) 7|35 because85="7"5 (c) 3|51 because 51 =3 -17

5. Letn © 2nforn=1,2,...

7. 5040 ways

8. 1,307,674,368,000 possible permutations. At the rate of 6 per min (360/hr) the
time required is 3,632,428,800 hr, or 454,053,600 8-hr days, or 1,816,214.4 250-
working-day years.

Exercise 3.5b

1. “1—1" is reflexive since a set may be placed in one-to-one correspondence with
itself. “1—1" is symmetric by the definition of the relation, that is, “1—1"
means “both ways.” 4 “1—1” B implies there is a 1 —1 correspondence of 4 to
B and B to A; hence B “1—1" A. ““1—1" is transitive. Consider sets 4, B, and C.
Fora € A,b € B,and ¢ € C, let a < b, b <> ¢; then from a <> b <> ¢ we can
obtaina <> c. Hence 4 1—-1B and B1—1Cimplies4 1-1C.

3. Reflexive since any student is “‘same sex as” himself. Symmetric since if student
A is the same sex as student B, then student B is the same sex as student 4.
Transitive since if student A4 is the same sex as student B, for example, both
boys, and student B is the same sex as student C, then C must be a boy. Hence 4
“is the same sex as”’ C. The equivalence classes are the boys and the girls.

5. Call the relation ®. For a, b, and ¢ integers: a ® a because a—a=0=0"-4;
hence ® is reflexive. a ® b means a—b = k - 4 for some integer k; then b—a =
(—k)4; hence b ® a.® is symmetric. a® bmeansa—b=14k 4 and b ® ¢ means
b—c=m-4;then (a—b)+(b—c)=k-4+m-4ora—c= (k+m)4; but k+m
is an integer; hence a® ¢. ® is transitive. It is an equivalence relation. The
equivalence classes are those integers related to 0, 1, 2, and 3, respectively.

Exercise 3.6

1. 10 3. 12 5. 20 7.0 9. 16=10+12—6
11. 100 13. 56, or more 15. 24

Exercise 3.7

1. (a) If 4 and B have exactly the same elements (c) fa=candb=d
4. One cut and the other choose first
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Exercise 3.8

2. When the ordered pairs of fhave no two second components the same

4. (b) is a function of x and has domain {2, 3, 4} and range {2, 3, 4}; (d) is a func-
tion of x and has domain {1, 2, 3, 4} and range {1, 3}; (a) is a function of yand
has domain {1, 2, 3,4} and range {4}; () is a function of y and has domain
{2, 3,4} and range {2, 3, 4}

6. (a) Truesince 1 —~13 = —12 and — 12 is divisible by 3
(c) Truesince 1 —4 = —3 and — 3 is divisible by 3
(e) True since a ® b implies a—b=+%-3, k € W. Then b—a= (—k) -3, or
b®a

Exercise 4.4
1. (a) 11 (c) 19 (e) Those with complete uniforms
3. 1324+97—43 = 186 4. (a) 0 (c) Yes 5. (a) 1 ) R=Q
6. (a) 8 (c) 25 7. @) n(4 U P)=n(4)=3
8. (a) Thesetcanbe placedin 1—1 correspondence with theset {1,2,3,4,5, ..., n}
9. Cardinal: There are 3 boys in the group

Ordinal: Heis 3rd in line
Cardinal: Ihave read 10 pages.
Ordinal: Istopped reading on page 10.
10. (b) Orange
11. Equivalence classes:

0 12 24 36 48
1 13 25 37 49
2 14 26 38 50
3 15 27 39 51
4 16 28 40 52
5 17 29 41 53
6 18 30 42 54
7 19 31 43 %)
8 20 32 44 56
9 21 33 45 57
10 22 34 46 58
11 23 35 47 59
Exercise 4.5

1. See Section 1.3

3. Letters for symbols instead of special characters; use of “intermediate”
symbols; use of the multiplicative principle applied in large numbers.

. 2lthree (C) 20three (e) 12three

. (a) Same (c) 1000

. (a) For example, both outdoor games, both use balls, both involve kicking the
ball, and both have goals.
(b) For example, balls are different shape, different rules for moving the ball,
and different ways of scoring.

T W

3 10 Answers to Selected Exercises



Exercise 4.6

1. (@) If4A C BandB C 4
2. (a) (0,1),(0,2),(0,3),(1,1),(1,2),(1,3)
3. (2,3) =(8,4)since2+4=3+3
Reflexive: (2,3) = (2,3)since2+3=3+2
Symmetric: (2,3) = (3,4) implies2+ 4 =3+ 3 or 3 + 3 = 4+ 2 which implies
(3,4) = (2,3)
Transitive: If(2,3) = (3,4)and (3,4) = (4, 5),is (2,3) = (4, 5)?
Yes, since 2+5 = 3+ 4.

Exercise 4.8

1. (a) Yes, 0 (c) No, there is no whole number x such that 6 +x = 0.
2. (a) No (¢) No
3. (a) No identity element for addition. 1 is the identity for multiplication.
(c) Noinverses for addition or multiplication.
4. (a) 0Ois the additive identity. There is no multiplicative identity.
(c) Noinverses for addition or multiplication.
5. (a) 53 =125 (c) 64 (e) 3% (g) A 1followed by 100 zeros.
(1) No,since2®3=22=8,302=32=9.
. (a) 3 (¢) No. 3O07=3but703=7
. (@) Yes (c) No
. (a) Yes.{a,b} U {b,c}={a,b,c} €S
(c) Yes.({a,b} U {b,c}) U {d}={a,b,c} U {d}=U
{a, b} U ({b,c} U {d}) ={a,b} U {b,c,d}=U
9. (a) Yes.{a,b} N {b,c}={b} €S
(c) Yes. ({a,c} N {b,¢c}) N {c,d}={c} N {c,d} = {c}
fa,c} N ({6,c} N {c,d}) ={a,c} N {c} ={c}

W 3

Exercise 4.10d

. Commutative law.

. Commutative law.

. Commutative law.

. Associative law.

. Zero is used as the cardinal number of the empty set. As an element of a

number system zero is the additive identity.

10. Assume there is a 0 € W, 0 # 0, such that for anyn € W, 0+n=n+0=n,
that is, assume there is more than one additive identity in W. Then 0+0=10
since 0 is an additive identity; and 0+ 0= 0 by the foregoing assumption.
Then 0 = 0 by the transitive property of equals. This contradicts 0 # 0, so the
assumption must be false. In other words, 0 is the only additive identity in W.

11. (@) 4 U B={u,v,w,a,b,c}.B U A={a,b,c,u,v,w}=A4 U B

(© 4V 8= {uv,w} UF={u,v,w}=4

BUA=pU {u,v,w} ={u,v,w}=4

WO S O G

Exercise 4.11b

1. Forany (a,b) € (AXB), (b,a) € (BxXA).Let (a,b) < (b, a)
3. Foranyw € Aletw © (e,w) € {e} X4
5. XA ={(x,y)|x € Pand y € A} Since there is no x such thatx € #, X4 =9
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Exercise4.11e

1. (a) Commutative law of multiplication
(¢) Commutative law of multiplication
(e) Associative law of multiplication

3. (a) Commutative law of addition
(c) Commutative law of multiplication
() Commutative law of multiplication
(g) Associative law of addition

Exercise 4.11h

.ab+a-20rab+2a

. 23-2423-1=169

. (80+2)10

. actbc+ad+bd

L xytx-2

11. (2a+3)x

13. (3-104+2)10

15. (2xb+1)a

17. aAb=bAa

19. (aAb)yAc=alA (bAc)
2. a A (6Dc)=(aAb)D (aAc)

O =T O L9

Exercise 4.12

1. Let 1 represent the multiplicative identity and suppose there is another, call it
I'. Then 1-1' = 1’ because 1 is the multiplicative identity; also 1 - 1’ = 1 since
we are supposing 1’ is another multiplicative identity. Then 1’ = 1 by the transi-
tive property of equals. Hence the multiplicative identity is unique.

4. (a) No

5. (a) Yes, 5 “divides” 0 because 0 =5 - 0.

8. (a+b)>= (a+b)(a+b) by defn. of exponents
=a(a+b)+blatb) by the distributive law
= a®+ab+ ba+ b? by the distributive law
= a*+ab+ ab+ b? by the com. law of mult.
= a’+ (ab+ab) + b2 by the assoc. law of add.
=a’+ (1 -ab+1-ab)+52 1isthe mult. identity
=a*+ (1+1)ab+ 5 by the dist. law
= a%+ 2ab+ b? by the tables of elem. facts

9. (a) 26”

Exercise 4.13

LA={neWn=7 4={0,1,2,34,5,6,7}

A A
A A
T\

01 2 3 4 5 &6 7851011121314151617

3. Y NZ={7,8,9} YNZz=4{4,5,6}
5.3-n<7 nifn #0, 3-n=T7-nifn=0
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Exercise 4.13a

1. (a) 4=1{4,5,6,7,8,9,10,11}; Lub. 11; g1lb. 4
(by B= {1, 2, 3}; for example, 3 and 4
.ANB=¢
. C=1{6,7,8,9,10,11, 12}; Lu.b.is 12; {1,2,3,6,7,8,9, 10, 11, 12}
L@ {n0=n<17} (b) {n|0 =n < 4} (© {n|0 =n <4}
s (k3 F+F (9 +2) =x+ (B3+y)+2 Assoc. law of add.
=x+(y+3)+2 Com. law of add.
= (x+9)+(3+2) Assoc.law of add.
= (3+2)+ (x+y) Com.law of add.
= (2+3)+ (x+y) Com.law of add.
(x+3)+(y+2)=(2+3)+ (x+y) Trans. prop of equals
14. (3b)%2 = (3b)(3b) Defn. of exponent

N =3 Ot oo

=3(b3)b Assoc. law of mult.
=3(3b)b Com. law of mult.
= (3-3)(bb) Assoc.law of mult.
= 9p? Defn. of exponent and tables
(3b)2 = 9p? Trans. prop. of equals
16. 3-10°+4-10°= (3+4)10° Dist. law
=17-10° Tables
18, 13-10>= (1-10'+3-10°) 102 System of numeration

= (1-10")10%+ (3 - 10°)10% Dist. law

= 1(10"-10%) +3(10° - 10%) Assoc. law of mult.

=1-103+3-10? Law of exponents

13-102=1-103+3 - 102 Trans. prop. of equals
20. (3+x)(2+y) =3(2+y) +x(2+y) Dist. law

=3-2+38y+x-2+xy Dist.law
=6+3y+x-2+xy Tables
=6+3y+2x+xy Com. law of mult.

Exercise 4.13b
1. (@3 n>2and (n < 120rn=12) () n>"75and n < 77

2. (a) 12 (c) 76

3. (@ - { }
0 12 3 45 6 7 8 9 1011 121314 15 16

(<)

©
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

4. (a) simple (c) simple (e) simple

Exercise4.15

1. (a) 2342ﬁve 347ten

3. (@) 3-52+2-514+0:5%= 85y,
(©) 2-5°4+0-5143-50="53,
(€) 1-5%41-5714 152 =124,

4. (a) 24ﬁve (C) 2?"02ﬁve

5. (a) —e - -
0 1 2 3 10 11 12 13

6. 233.1332¢,u Ounces.
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7. (a) Two dens, four gens, one fen, and one sen. (c) Four mens, three dens,
two gens, one fen, and two sens.
9. TE.
11. Odd, since it is not a multiple of 2.
13. (@) T9; T9—-9T=E (c) E1; E1—9E =12

15. 10

Exercise 4.17b

2. (a) 1144  (c) 22,010

3. (@) 13,131  (c) 1,130,011

4. (a) 132 (c) 302

5. (a) 232  (c) 20,432

7. (a) 1202; 1110  (c) 20,211; 122,120,021

8. 4 weights: 1 0z, 3 0z, 9 0z, and 27 oz. Use weights in both pans as needed.

Exercise 4.18

2. (@) 1100  (c) 11,101  (e) 1,001,110
3. (a) 1,001,101  (c) 101,011,111  (e) 1001

Exercise 4.19

1. Fewer symbols; fewer elementary facts; and adaptable to yes-no or on-off type
problems.

3. (@) 123 (c) 935E8  (e) 526  (g) 13,096 (i) 4646 (k) 1370874
(m) 49 (0) 239—15rem

4. (a) 274+9=(2-10*+7-10° +9-10° System of numeration
=210+ (7-10°+9-10% Assoc. law of add.
=2-10'+ (7+9)10° Dist. law
=2-10'+16-10° Tables
=2:10"+ (1-10'+6-10%10° System of numeration

=2-101+ (1-10%)10°+ (6 - 10°)10° Dist. law
=2+10"+1(10'-10°) +6(10°- 10°)  Assoc. law of mult.

=2-10'+1-10'+6-10° Law of exponents

=(2-10*+1-10")+6-10° Assoc. law of add.

=(2+1)10'+6 - 10° Dist. law

=3-10'+6-10° Tables

= 36 System of numeration
27+9=36 Trans. prop. of equals

(c) 379+96 = (3-102+7-10'+9-10° + (9 - 10!

+6-10°% System of numeration
=3-10°+7-10'+ (9-10*+9-10°)

+6-10° Assoc. law of add.
=3-10>+7-10'+ (9-10'+9 - 10°)

+6-:10° Com. law of add.
=3-102+ (7-10'+9-10") + (9-10°

+6-10% Assoc. law of add.
=310+ (7+9) - 10*+ (9+6) - 10° Dist. law
=3-102+16-10'+15 - 10° Elem. facts
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=3-10%+ (1-10'+6-10°10'+ (1 - 10

+5-10°% - 10°

=3-10%+ (1-10")}10*+ (6 - 10°)10?

+ (1-10")10°+ (5 - 109)10°

=3-10%2+1(10* - 10*) +6 - (10°- 10Y)

+1(10*-10%) +5(10°- 10°)

=3-10°+1-10°+6-10'+5 - 10°
=(3-102+1-10%)+ (6-10'+1-10)

+5-10°

=(3+1)10*+ (6+1)10'+5 - 10°
=4-10+7-10'+5-10°
=475

379496 = 475

5. (a) (36)(9)

I

(3-10*+6-10%(9-10°
(3-10")(9-10° + (6 -10° (9 -10°)

= 3(10'-9)10°+6(10°- 9)10°
=3(9-10")10°+6(9 - 16°)10°

Il

P

(3-9) (10" - 10°) + (6 - 9) (10° - 10°)
(3-9) (10%) + (6 - 9) (10°)
27 - 101+ 54 - 10°

= (2-10'+7-10°)10"+ (5 - 10"

fl

+4-10°)10°

(2-10Y) (10") + (7 - 10°) (10%)

+ (5-101) (10°) + (4 - 10°) (10%)

=2(10"-10") +7(10°- 10*) +5(10* - 10°)

+4(10°-10%)
-102+7-10"+5- 10"+ 4 - 10°
<102+ (7-10*+5 - 10*) +4 - 10°
<102+ (7+5)10*+4 - 10°
-102+12-10'+4 - 10°
-10%+ (1 - 10*+2 - 10°) (10*) +4 - 10°
- 102+ (1 -10%) 10+ (2 - 10°) 10!
+4-10°
-102+1(10* - 10*) +2(10° - 10%)
+4-10°

=2-102+1-102+2-10'+4-10°

(2-10%+1-10%)+2-10'+4-10°
2+1)102+2-10"+4-10°

=3-102+2-10'+4-10°
= 324
(36) (9) = 324

(c) (36)(45) =

(3-10*+6-10%(4-10'+5 - 10°)
(3-10")(4-10'+5 - 10°) + (6 - 10°)
X (4-10'+5 - 10°)
(3-10')(4+10") + (3 -10") (5 - 10°
+(6-10°)(4-10*) + (6 - 10°) (5 - 10°)

= 3(10" "4)10'+3(10* - 5)10°+6(10° - 4)

X 101+ 6(10° - 5)10°

=3(4-10")10'+3(5 - 10*)10°+6(4 - 10%)

X 10+ 6(5 - 10°)10°

Answers to Selected Exercises

System of numeration
Dist. law

Assoc. law of mult.
Law of exponents

Assoc. law of add.
Dist. law

Elem. facts

System of numeration
Trans. prop. of equals
System of numeration
Dist. law

Assoc. law of mult.
Com. law of mult.
Assoc. law of mult.
Law of exponents
Elem. facts

System of numeration
Dist. law

Assoc. law of mult.
Law of exponents
Assoc. law of add.
Dist. law

Elem. facts

System of numeration

Dist. law

Assoc. law of mult.
Law of exponents
Assoc. law of mult.
Dist. law

Elem. facts

System of numeration
Trans. prop. of equals
System of numeration
Dist. law

Dist. law

Assoc. law of mult.

Com. law of mult.
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= (3-4)(10*-10") + (3 - 5) (10" - 10%)
+ (6-4)(10°-10") + (6 - 5) (10° - 10°)

Assoc. law of mult.

= (3-4)102+ (3 -5)10*+ (6 - 4)10°

+(6-5)10° Law of exponents
=12-102+15 - 10"+ 24 - 10'+ 30 - 10° Elem. facts
=12-102+ (15 -10*+24 - 10*) +30 - 10°  Assoc. law of add.
=12-10>+ (15+24)10'+ 30 - 10° Dist. law
=12-102+39 - 10*+30 - 10° Add. algorithm
= (1-10'42-10°10%+ (3 - 10*4+9 - 10°) 10!

+(83-10'4+0- 10°)10° System of numeration

= (1-10Y)102+ (2 - 10°)10%+ (3 - 10*) 10!

+ (9 10°10+ (3 - 101)10°+ (0 - 10°)10°

= 1(10t - 10?) +2(10° - 102) +3(10" - 10)
+9(10° - 101) +3(107 - 10°) +0(10° - 10°)
=1-10°+2-102+3 - 102+9 - 10'+3 - 101
+0 - 100

Dist. law
Assoc. law of mult.

Law of exponents

=1-10+(2-10*+3-10%) + (9-10"+3 - 10")

+0-10°
=1-1024+ (2+3)102+ (9+3)10' -0 - 10°
=1-103+5-102+12-10'+0 - 10°
=1-103+5-10%+ (1-10*+2-10°) 10!
+0-10°
-10%+5 - 102+ (1 - 10Y) 101+ (2 -
40-10°

+0-10°
10345 - 102+ 1-102+2 - 10'+0 - 10°
2103+ (5 - 102+ 1-102) +2 - 10!
+0-10°
210+ (5+1)102+2- 10140 - 10°
=1-1034+6-1024+2- 10140 - 10°
= 1620
(86) (45) = 1620
7. @) 9E7+T = (9-10°+E - 10'+7 - 10°) + T - 10°

-103+5 - 1024+ 1(10" - 10") +2(10° - 10*)

Assoc. law of add.
Dist. law
Elem. facts

System of numeration

10%) 10!

Dist. law

Assoc. law of mult.
Law of exponents

Assoc. law of add.
Dist. law

Elem. facts

System of numeration
Trans. prop. of equals
System of numeration

Note that the base has the same symbol but 10);, = 12),.

102+ E -
102+ E -
102+ E -
102+ E -
102+ E -

=9.
=9.
=9.
=9.
=9.

101+ (7 - 10°4 T - 10°)
10+ (74 T)10°
101+ 15 - 10°
10"+ (1-10'+5 - 10°)10°
10"+ (1 - 10%)10°

+ (5-10°)10°
10"+ 1(10* - 10°)

+5(10° - 10°)
“1024+E - 10141 - 101+ 5 - 100
=9-102+ (E-10'+1-10") +5 - 10°
=9-102+ (E+1)10'+5 - 10°
=9-102+10-10'+5 - 10°
=9-102+ (1-10140-10°10'+5 - 10°
=9-102+ (1-10")10*+ (0 - 10°)10!
+5-10°

102 +E -
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Assoc. law of add.
Dist. law

Tables

System of numeration

Dist. law

Assoc. law of mult.
Law of exponents
Assoc. law of add.
Dist. law

Tables

System of numeration

Dist. law



=9-102+1(10"- 10') +0(10° - 10%)
+5-10°

=9-102+1-10240-10'+5 - 10°

= (9-102+1-102) +0-10'+5 - 10°

= (9+1)10240- 10*+5 - 10°

=T-102+0-10'+5 - 10°

=T05

9E7+T=T05

(c) EE+E= (E-10'+E-10°) +E-10°

=FE-10'+ (E - 10°+ E - 10°)
=E-10'+ (E+E)10°
=E-10'+17T-10°
=E-10'+ (1-10'*+T-10°)10°
=E-10'+ (1-10Y)10°+ (T - 10°)10°
=E-10*+1(10*-10%) + 7 (10°- 10%)
=E-10'+1-10'+T-10°
=(E-10'4+1-10")+T-10°
=(E+1)10'+T-10°
=10-10'+T - 10°
=(1-10'+0-10*+T7-10°
= (1-10*)10*+ (0-10%10'+ T - 10°
=1(10'- 10*) +0(10°- 10*) + T - 10°
=1-10*+0-10'+T7-10°
= 10T

EE+E=10T

8. (a) (EE)9) = (E-10'+E - 10° (9 - 10°)
= (E-10")(9 - 10°) + (E - 10°) (9 - 10°)
= E(10"'- 9)10°+ E(10° - 9)10°
= E(9-10%)10°+E(9 - 10°)10°
= (E-9)(10" - 10°) + (E - 9) (10° - 10°)
= (E-9)10'+ (E - 9)10°
=83-10"+83 - 10°
= (8-10'+3-10°10"+ (8 - 10!
+3-10%)10°
= (8-10")10'+ (3 - 10°)10* + (8 - 10')10°
+ (3 -10°)10°
= 8(10" - 10') +3(10° - 10*) + 8(10" - 10°)
+3(10° - 10°)
=8-1024+3-10'+8-10'+3 - 10°
=8-10+ (3-10'+8-10") +3 - 10°
=8-10%4 (3+8)10'+3 - 10°
=8-102+E-10'+3 - 10°
=8E$
(EE)(9) = 8E3
(©) (TEXT5) = (7-10'+E - 10° (T - 10'+5 - 10°)
= (7-10'4+E - 10°) (T - 10") + (7 - 10"
+E-10° (5 - 10°
= (7-10)(T - 10") + (E - 10°) (T - 10Y)
+(7-10") (5 - 10°) + (E - 10°) (5 - 10°)

Assoc. law of mult.
Law of exponents.
Assoc. law of add.
Dist. law

Tables

System of numeration
Trans. prop. of equals
System of numeration
Assoc. law of add.
Dist. law

Elem. facts

System of numeration
Dist. law

Assoc. law of mult.
Law of exponents
Assoc. law of add.
Dist. law

Elem. facts

System of numeration
Dist. law

Assoc. law of mult.
Law of exponents
System of numeration
Trans. prop. of equals

System of numeration
Dist. law

Assoc. law of mult.
Com. law of mult.
Assoc. law of mult.
Law of exponents
Tables

System of numeration
Dist. law

Assoc. law of mult.
Law of exponents
Assoc. law of add.
Dist. law

Tables

System of numeration
Trans. prop. of equals
System of numeration

Dist. law

Dist. law
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=7(10'-T)Y10'+E(10°- T)10!

+7(10'-5)10°+ E(10°-5)10° Assoc. law of mult.
=7(T-10)10'"+E(T - 10°) 10!

+7(5-101)10°+ E(5 - 10°)10° Com. law of mult.
=(7-T)(10'-10Y) + (E - T) (10°- 10Y)

+(7-5)(10*- 10°) + (E - 5) (10°- 10°)  Assoc. law of mult.
= (7-T)102+ (E-T)10'+ (7-5)10!
+ (E-5)10° Law of exponents

=5T-102+92 - 10'+ 2E - 101 +47 - 10° Elem. facts
=5T-10+ (92 - 10"+ 2E - 10') +47 - 10° Assoc. law of add.
=5T-10%+ (92+2E)10'+ 47 - 10° Dist. law
=5T-102+101 - 10+ 47 - 10° Add. algorithm

= (5-10'+T-10%10%+ (1-102+0 - 10?
+1-10°)10"+ (4 10'+7-10°)10° System of numeration
= (5-10')10%4 (T - 10°) 102+ (1 - 102) 10!
+(0-10*)10+ (1 - 10°) 10"+ (4 - 10*)10°
=+ (7-10°10° Dist. law
=5(10"- 10%) + T(10° - 10%) + 1(10% - 10")
+0(10* - 10*) +1(10°-10') +4(10" - 10°)
+7(10°-10°)  Assoc. law of mult.
=5-10°+T-10°+1-10%+0 - 10>+ 1 - 10"
+4-10'+7-10° Law of exponents
=5-10°+ (T-104+1-10%) +0 - 102
+1-10'+4-10'+7-10° Assoc. law of add.
=5-103+(1-103+T-10%) +0- 102
+1-10'+4-10'+7-10° Com. law of add.
= (5-103+1-10%) + (T -102+0 - 10?)
+(1-10'+4-10')+7-10° Assoc. law of add.
G+D103+ (TH+0)102+ (1+4) 10!
+7-10° Dist. law

M

=6-103+T-10*+5-10"+7 - 10° Elem. facts
= 6757 System of numeration
(7E)(T5) = 6T57 Trans. prop. of equals

Exercise 5.3

1. No. Zero is neither positive nor negative.

3. Yes. 0+ "0 = 0 by the property of the additive inverse. 0+ ~0 = ~0 by the prop-
erty of the additive identity. Hence 0 = ~0 by the transitive property of equals.

5. For any two integers m and n, either m = n,or m < n,orn < m.

7. ~(m+ n) is the additive inverse of (m+ n); also “(m+n) = “m+ ~n.

9. “("m) =m.

Exercise 5.4a

1.9+ 3=(6+3)+"3
=6+ (3+73) Assoc. law of add.
=640 Additive inverse
=6 Additive identity
2. 7T+4="(3+4)+4 Tables
=(3+74)+4 A-1
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34+ ("4+4)
“3+0

=3
4. (m+n)+-(m+n)=0

i

(m+n)+ (m+"n)=m+ n+"m)+n
=m+(m+n)+"n
= (m+"m)+ (n+n)

=0+0
=0

Assoc. law of add.
Additive inverse
additive identity

Additive inverse
Assoc. law of add.
Com. law of add.
Assoc. law of add.
Additive inverse
Additive identity

Hence ~(m+n) = (“m+ ~n) since the additive inverse is unique.

5. (a) "12 (c) 8 (e) 0 @ a ) (24+a)=2+"a
(k) (3+3)=3+3=0 (m) a+b+ 72 (0) a+b+73

6. (a) 8 (c) a+74 (e) 22 (g) 8

7. (a) 3+n=10 Given

3+3+n="3+10
(78+3)+n="3+10

0+n="34+10
n="34+10
n=7
©) atx=1b

ata+x="a+b
(ta+a)+x="a+b

O+x="a+b
x="a+b
x=b+"a
x=b—a

9. 372—176 =372+ "176

= (196+176) + ~176
=196+ (176 + "176)

=196+0

=196

3724176 = 196

11. At9in. or 27 in.
13. No. (12—5) —

14. 0+0=0
m(0+0)=m-0
m-0+m-0=m-0

m-0+m-0+m-0=m-0+"m-0
m-0+(m-0+"m-0)=(m-0+"m-0)

m-0+0=0
m-0=0

Exercise 5.4b
3. (=2)(=3) = (2)(3) by M-2

5. (=2)(=3)(—4) = [(=2)(=3)](—4)
=[2B®]1=4

(6)(—4)
—(6)(4)
—24

Uniqueness of sums
Assoc. law of add.
Additive inverse
Additive identity
Addition of integers
Given

Uniqueness of sums
Assoc. law of add.
Additive inverse
Additive identity
Com. law of add.

A-2

A-2

Substitution prin.
Assoc. law of add.
Additive inverse
Additive identity
Trans. prop. of equals

=7-2=5;12—(5—-2)=12—3=9

Additive identity
Uniqueness of products
Dist. law

Uniqueness of sums
Assoc. law of add.
Additive inverse
Additive identity

Assoc. law of mult.
M-2

Tables

M-1

Tables
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7. (73)(T4+75) = (3)("4) + (73)("5)  Dist. law

= (3)(4) + (3)(5) M-2

=12+15 Tables

=27 Addition algorithm
or
(73)(T4+5)=(3)[(4+5)] A-1

=(73)(9) Tables

=(3)(9) M-2

=27 Tables

8. 8(7—3) = (8)(7+73)

Il

=56+ 24
= (32+24) +24
=32+ (24+724)
=324+0
=32
or
8(7—3) =8(7+73)
=8[(4+3)+ 3]
=8[4+(3+73)]
=8(440)
= 8(4)
=32
11. ~(m—n) = ~(m+ n)
="m+"("n)
="m+n
=n+"m
=n—m
13. M-1
15. See problem 14,5.4a

Exercise 5.5

1. Either x =3 orx = 7. The product (x—3) (x—7) = 0 if and onlyif (x—3) =0,

A-2

(8)(7) +(8)("3) Dist. Law
8)(7)+-(8)(3) M-1

Tables
Substitution
Assoc. law of add.
Additive inverse:
Additive identity

A-2
Tables and substitution
Assoc. law of add.
Additive inverse
Additive identity
Tables

A-2

A-1

I-1

Com. law of add.

A-2

in which case x = 3, or (x—7) = 0, in which case x = 7.

3. x # 1. If x = 1 is substituted into the expression, we would have y = &, If the
expression { is interpreted as division, it would be undefined.

5. Additive identity; Additive inverse and Substitution; m — 1; Associative law of
addition; Distributive law; Additive inverse; 0 - m = 0 for any m; and Additive

identity.

7. ~("a) is the additive inverse of ~a; ~(~a) = a

9. Yes,if m %~ 0

11. Uniqueness of sums; Associative law of addition; Additive inverse; and Addi-

tive identity.

13. Ifa-x=a-yanda # 0, thenx =y

Exercise 5.6

1. 2,3,5,7,11,13,17,19, 23, 29, 31, 37, 41, 43, 47
3. 1,2,4,13, 26, 52; primes 2, 13
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5.
7.
9.

1,3, 13, 39; primes 3, 13
See Section 5.7
(a) 23-32 (b) 22-89 (c) 2° (d) 23-5°

Exercise 5.7

T Ut 00

@

.

1,2,3,4,6,8,9, 12, 18, 24, 36, 72

(a) 2¢-3-7 (c) 3-52-13 (e) 3*-5-11
1,3,—1,—3

23-19-29

(a) None (c) 2and 4

Exercise 5.9a

© N3O0

. 6;18
. 12; 48
. 18

3

If n =0 then g.c.d. (p, n) = | p|. If n is a multiple of p then g.c.d. (p, n) =

n # 0 and not a multiple of p then g.c.d. (p, n) = 1.

Exercise 5.9b

1. (a) 6 (c) 18

2. (a) 2 (b) 42

3. (@) Yes (b) Yes (c) Yes (d) Yes, 0
5. (a) 9 () 9

7.1

Exercise 5.10

1. (a) 160 (c) 504

5.

2. (a) 252 (c) 672
3.
4. @) 144 (0) BT (e) 630 (g) 10° (i) 14,508

(a) 1 (c) 441 (e) 6 (g) 10% (i) 62 (k) 8

(k) 26 . 32 . 56
(a) Yes (b) Yes (c) Yes (d) Yes, 1sincel.cm. (m, 1) =m.

Exercise 5.11

1. (a) The set A4 consists of the integers ~2,—1,0, 1,2,3,4,5

the set of negative integers (e) The set O is the singleton set {0}.

2. (a) n>—3%andn <5

(c) simple
(e) simple

|pl. If

(c) ThesetCis

3. (a) The complement of 4 consists of theset {...,—5,—4,—3,6,7,8,9,...}

(b) The complement of C consists of the nonnegative integers
(e) The complement of O consists of all the integers except zero
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4. (@) A’ = {n|nis anintegerand n < —3 orn > 5}
(¢) C' = {n|nisaninteger and n = 0}
(e) O’ = {n|nisan integer and n # 0}

5. NXN={(m,n}|m >0 and n > 0}, NXN is the set of all ordered pairs of
positive integers.

7. No; yes, 1

9. Yes,—1

11. a < bif and only if 5—a > 0. We must use this fact to show that b+c)—(a+c)
>0 or that a+¢ <b+ec. But (b+c)—(a+c)=b+c+-a+c=b+-a+c+
c=b+"a+0=b+"a=b—a>0. That is, (b+c)—(a+c) >0, so a+c <
b+ec.

13. If a < b then b—a > 0. If ¢ < 0 then 0—¢=—¢ > 0. —¢(b—a) > 0 since the
product of two positive integers is positive. But —c(b—a) = ~¢(b+ ~a) = —cb+
ca = ca—cb > 0, which means ca > cb.

15. 15
10-11

17. 9 = 55

19. 3051 _ 1975

21. 9

23. 25

25. Each is the square of the number of terms in the indicated sum, and each
differs from the next by the (n+ 1)st term of the sum.

27. 112=121

28. 1+3+5+7+---4+(2n—1) = n%, where n is the number of terms in the sum.

Exercise 5.12

1. (a) —4,-3,—2,—1,0,1,2,3, 4

Solution set o—@ >—o® ®
—5=4-3-2-~101 2 3 4 5 6 7

Complement—e ® —
-5=~4-3-2-1 012 3 4 5 6 7
() —1,0,1,2,3,4
Solution set O——O—O——0—@
~5=4~3-2~1 012 3 4 56 7
Complement ® O——@ @
=5-4-3-2-1 01 2 3 4 5 6

2.

() —3,—2,—1,0,1,2,3

Solution set ©
=-5=4~-3~2~-101 2 3 4 5 6

Complement: o—@ ® @
=5=4<3=2-1 01 2 3 4 5 6 7
(c) —1,0,1
Solution set
=5=4=3=2=1 012 3 4 5 6
Complement: o—® 0@ ®
—6=5=4-3=2<-1 012 3 4 5 6 7
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(e) 4,8

Solution set
-5=4-3-2-1 01 2 345 6 7 8 9
Complement © Og © ©
-~6-5-4-3-2~-1 01 2 3 4 5 6 7 8 9
3. a<bthenac < bcifc > 0.a < bthenac > bcif ¢ < 0.
5. (a) [3—9|
6. (a) [4—n|
7. 4,10
9

. Not necessarily

Exercise 5.13

1. (a) 6:00 A.Mm. (c) 8:00 a.Mm.
2. (a) 2 (© 11
3. (a) 7:00 a.m. (c) 11:00 a.m.

Exercise 5.14a

22.@ M ©M (¢ (6]

Exercise 5.14c

3. Notin general; [4] - [x] = [3] has no solution.

4. (@) [x]=[0]or[x] =[6] (o) [x]=[1]or[5]or[9]
5. No, for example, [3] - [4] = [0]
7

.+ 07 a1 f2 . 2]
(o | o1 0] 2 (| ol 2]
m | m @ 0o (3 I 2 N R ¥
(224 I B 3 B (U R O
9. [1]

11. 210; 87,780
13. a— b = 0; cannot divide by 0

Exercise 6.2
1. (a) ordinal (b) cardinal (c¢) ordinal
3. 0is the additive identity, thatis,0+a=a

1 is the multiplicative identity, thatis, 1-a = a.

Exercise 6.4
1. (a) —:—g, :—g, :—g,%,%,g,etc. (c) E%,:—},%,%, %, etc.

2. First and third; fourth and fifth.
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3 38.2:33
297229

4. () (=2)(=3)=(2)(3)

(&) )6 =0; (1(0) =0
(© 2

1982
5. (@) 73699

(©) (=5)(=6) =+(5)(6) = +30, (3)(10) = 30

(g) 0)1)=0;(—1)0)=0

6. (2) What number multiplied by 3 and added to 1 yields a sum of 7?

(c) What s the number which when multiplied by 3 and added to 1 gives 10?

7. , -39, —26, - 13, 0, 13, 26,
R — 38, —25, —12, 1, 14, 27,
s —37, —24, —11, 2, 15, 28,
, — 36, —23, —10, 3, 16, 29,
, —35, —22, -9, 4, 17, 30,
s —34, —21, —8, 5, 18, 31,
, —33, —20, -7, 6, 19, 32,
, -32, —19, —6, 7, 20, 33,
. —31, —18, —5, 8, 21, 34,
, —30, -17, —4, 9, 22, 35,
, —29, —16, —3, 10, 23, 36,
, —28, — 15, -2, 11, 24, 37,
R —27, — 14, -1, 12, 25, 38,

Exercise 6.5

1. If a/b = c/d, then ad = bc; but if ad = bc, then bc = ad by the symmetric property
of equals and ¢d = da by the commutative law of multiplication; then ¢b = da

implies ¢/d = a/b by the definition of =.

ralf] ©ff] © i

voly] oFf] of] oF of] o
5.(a)%i%sinceﬂ?-g)=2‘6=12and3(2’2)=3-4=12

(c) % = Q—msince m(2n) = (m-2)n = (2m)n = 2(mn) and

2n

n(2m) = (n-2)m = (2n)m = 2(nm) = 2(mn)
7. The two classes are equal (set equality)
9. The class to which 6/6 belongs is the same class as the one to which —3/—3
belongs.

Exercise 6.7

L. a, b, ¢, and d are integers; ad+ bc is an integer since the system of integers is
closed under addition and multiplication; bd is also an integer; bd # 0 since
b # 0and d # 0; hence (ad+ b¢) /bd is an ordered pair of integers.

3 ;3.*_1:_18_4_____22:___(*2)(11) =
‘~4 6 —24 ~24 (—=2)(12) 12
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5. The class of % +% is the same as the class of 3

6. (a) % (c) %

131
@ 55

9. [ﬁ] + [ﬁ] = [m + n]; z T L corresponds to the integerm+n

Exercise 6.8

14
1. 57

1
3.-1-

L0 @8 w6

m nl_[m-n]_[m-n . )
7. [1] [1]—[—1'1] [————1 ]whlchcorrespondstom n

80 4 7 0 .4 355,630,706,103
8@ @3 @7 ®@7 Og & 5051419908605

7 1,167,543,234

4 1 7 8 .
. @5 @7 @75 ®@7 OF & 3557419.203,605

10. (a) Any member of the class contammg % added to any member of the class
containing § gives a sum which is in the class 3.

11. (a) Any member from the class containing % multiplied by any member from
the class containing § gives a product which is a member of the class containing

12. (a) forexample,2 2 2'5_’-3'2=10+6=E-

35 3-5 15 15’

2. 2 2-3+5-2_6+10_ 16 2,2_2 2

573~ 5.3~ 15 15 penee gtp=zt

23_2-3_632_3-2_ 6 23_32
13. (a) forexampleg =3.5-1553- 5315 hence 35°5 3

14. (a) [3 95]

15. (a) [%]
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16. (a) [ﬂ

30,150,837,407,444

17. (a)

Exercise 6.9

Exercise 6.10

29 275
3. (a) 10 (© 68

0
6. (a) 1 (c) —;—

Exercise 6.10a

3. Yes

a

4. () 2+5=

_d-a+tc-

d-b

=L“b+d‘

a-d+b-
b b-d

5,954,621,431,472

@2

Defn. of add. for ratl. nos.

Com. law for mult. of integers

Com. law for add. of integers
Defn. of add. for ratl. nos.

Trans. prop. of equals
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ac_ac
(b) 34 b d Defn. of mult. for ratl. nos.
c-a .
=7 Com. law for mult. of integers
¢ a
=% Defn. of mult. for ratl. nos.

ac ¢ a

3 4°4% Trans. prop. of equals

a (c e a (cf+de

(=45 =8, Defn. of add.

(c)b<d+f> b(df) efn. of a
= %‘}(;—e)— Defn. of mult.
= %‘;—(ﬂ Dist. law for integers
_al(ef) ta(de) b . .
=== @ 5 Mult. by the identity
_ la(¢f) +a(de)] - b
= 5N ] - b Defn. of mult.
— latd) %b(l;;) ga.(;ie)] 2 Dist. law for integers
_ (ac) (bf) + (bd ) (ae) Assoc. and com. laws for
(bd ) (bf) mult. of integers
ac | ae
=% + _b7 Defn. of add.
a c,a e

—ZE-FZ? Defn. of mult.

c e a

5 (G937

S

1Y
i

Trans. prop. of equals

6. Cancellation law for multiplication of rational numbers:

then
Proof: 3 d-b F Hypothesis
b (a. ﬁ) _5. (2 : _e_) Uniqueness of products
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a b/ d \a b) f
1 ¢ 1 e T
1d=17 Multiplicative inverse
c_e T .
a7 Multiplicative identity

Exercise6.11a

(é : 2) L= (é . 2) £ Assoc. law of mult.

32 3 _32-5—-51-3_160—153 7 . 3 32
L@ 5= 51~ s gm0 O hence g<i
2_—2_2-3-3(-2)_6+6_12 _ -2_2
2.(a)3 3 = 3.3 =79 —9>0, hence 3<3
1 1
3. Z > Z
5. (a) —2,—1,0,1,2,3,4,5 () —4<x=3
Exercise 6.11b
1. (a) —3,—2,—1,0,1,2,3 (c) —8,—7,—6,—5,—4,—3,—2
2. (a) 1
5. a <a’
7. a < a?
Exercise 6.11c
4. No. The rational numbers are dense
6. Yes.
8. 1/2n+1
10. No
12. —6
4. 7
17. (a) 10 () 0
18. -20 =15 =10 <=5 0 5 10 15 20 25
A t }
@ -20 =15 =10 =5 0 5 10 15 20 25
a } 4
A +——3
© -9 -6 =3 0 3 6 9
A 3+t
-9 -6 -3 0 3 6 9
Exercise 6.12b
L@sf (©F%

2. (@ % (7
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—
LY
~

el S | roles
—_
0
N
[
_
o

Pl ol o
—_—
28R

Exercise 6.12¢

2. (@) #orlzr  (c) For2h
6. (@ % ©F (=
7. %

8. (a) 1827

9. @3 ©3F ()%

10. (a) .00000000006 () 2%

Exercise 6.12d

4. 15

5. $2000
7. 40 ft.
9. 40 ft

Exercise 6.12¢

1. (a) 32% (©) 5%  (e) 16% (g) 24%
2@ Wi @i @1
3. (@ 12  (0) 125%  (e) 400

Exercise 6.13a

1.

/0.142

0.1 0.110.12 013 0.14 0.15 0.16 0.17 038 0.19 0.2

3. 1.41425; (table) 1.41421
5. 3.14160 ...;3.1416...; 3.141592 . . . ; table value of 7 to 15 places:
3.141592653589793 . . .

Exercise 6.13¢

L @# (0%
2. (a) 23 (c) 15
3. (@) 7-10°40-10'+0-10°4+1-10"'4+2-1072+5 - 10°
() 1-10*+0-10°4+0-10>°+0-10"4+0-10°4+0- 10!
+0-10724+0-103+1-10"*
(e) 3-10°4+1-107'+4-102+1-102+6-10*
4. (a) 55.731984 (¢) 0.1771 (e) 200,202.04 or 200,000 to one significant digit.
5. (a) (2.99776)(1.673)(107%) = (5.015)(107*%)
(c) (6.0228)(1.673)(10~!) = 1.008 (e) (6.45+2.4)(1078) = (2.7)(107%)
6. 7 units
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7. (Hint: AB = AB', hence /BOA= LB'O'A. Since OB|C'0’, LBOA = 2/ AO'C.
LB'0'C’ =2(LAOB).)

9. 7

Exercise 7.2

1. & = 1.4142; 0.0306; 0.000115
3. Istapprox. 17; 2nd approx. 17.32; 3rd approx. 17.320508
5. Istapprox. 1.4; 2nd approx. 1.414; 3rd approx. 1.4142136

Exercise 7.2a

1. Assume 5+ V2= plq, where p/q is a rational number. Then V9 = plg—5=
(p—>5q)/g. But (p—>5q)/q is a rational number and V2 is not rational. Hence
the assumption is false and 5+ V2is irrational.

3. 2;,—1

5. (a) for example, 17, 20, 25 (c) for example, 2, 10, Vo

7. Circle with radius V2 or V5, etc.

Exercise 7.7

1. (a) {0,1,2,8,4,5,6,7,8,9,10} (c) 0.18.. ..
2. () 12 (c) 0.16.....
3. (a) 13 (c) 0.153846. ..

OE - IRCE R

5. (a) 0.1772  (c) 0.2935
6. (@) 5 () sswormy

Exercise 7.8

1. 0.5;1=0.25; + = 0.125; %5 = 0.0625; £ = 0.2; £ = 0.4; 2 = 0.6; = 0.8;
1.0; &5 =10.1; etc.

3. (a) 1,006,764 (b) 1,007,578.06 (c) 814.06

5. Use more subdivisions.

ofen M=
[
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Exercise 7.9

1. $3.33
3.6
5. 0.1428571429; 0.0909090909

Exercise 7.11
1. 3.14=7=+0.01

1 _
3. 3.107°F 0.00000003 . . .

Exercise 7.12

Yes

. sum: 2 \/;; product: a — b; difference: 2 Vb
0.7071

0.1165

. 1.414; 3.162; 5.8284

© N g oe

Exercise 7.12a

1. 22.412
3. 31.6228
5. 0.7087

Exercise 7.12b

1. 1.7320508
3. 54.772256
5. 7.0710678
7. 1.843909

Exercise 8.3a
1. (a)

-6 -5 -4 -3 -2 -1' 0 1 2 3 4 5 6

(c) ﬁE}

-6 =5 -4 -3 =2 -1 0 1 2 3 4 5 6

2. (a) open  (c) open
3. @ 7=sx<10 ©7<x=<12

Exercise 8.7

1. (a) Infinitely many (b) Only one
2. (a) Infinitely many (c) Only one
3. (a) Onlyone (b) Only one line but infinitely many points
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AB

A B c
BA

A B c
BC

A B C
—_—
aAc

A B C
CA

A B C
CB

— — — —
AB=AC and CA=CB

5. 1§’

Infinitely many.

A B
Only one AB C AB Infinitely many.

5 ~ /
QP

8. (a) None (c) 2
9. (a) 6, oo
10. (a) AC (c) AD

e 000 HFe LD A O

12. (a) £BAC, vertex A, sides AB and AC
(c) £XYZ, vertexY,sides YX and YZ

13. (a) Yes

14. (a) No

15. (a) degrees (c) 37°
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Exercise 8.8

L L= m(AC)+m(CB) I, = m(AD)+m )+m(CE)+m(EB) m(AC) = m(AD)
+m(DC) and m(CB) = m(CE) +m(EB by the trlangular inequality. Hence
m(AC)+r§_(_gB) = m(AD)+m(DC)+m(CE)+m(EB)and I, =1,

2. l,=2"-m(AC), where m(AC) is the length of AC one of the equal line seg-
ments of the polygonal path of length /. Let B denote the midpoint of 4C.
Then m(;m ) < m(AB) + m(BC ) by the triangular inequality. Hence 2" - m(A C)
< 9"(m(4B) +m(BC)). But Lnt1= 2"“(m(AB)) = 2"[2(ab)] = 2"(m(AB) +
m(T)) Hence lyn < [yn+1,

3. 4.59 (Compare with arc length of approx. 4.71, using % as an approximation
to.)

3
6. 9

Exercise 8.9

1. (a) 10sqin. (c) 28sqyd (e) 65sqft
2. (a) 12sqft (c) 80sqcm (e) 105sqcm
3. (a) 15,000sq ft (c) 11,250 sq ft

5. (a) 20sqin. (c) 30sqft

6. (1.414)(1.732) = 2.449

Exercise 8.9¢

1. 1007
3. 207
5. 407
7. same

Exercise 8.10

1. (a) 240 cuin.; 256 sq in. (c) 22.5 cu ft; 54 sq ft
2. (a) 114sqin.; 84sqin.; 72 cuin. (c) 96 sq ft; 60 sq ft; 48 cu ft
(€) 156 sq units; 126 sq units; 84 cu units

3. (a) ¥ sqin; ¥ cuin. (c) 2464 sqin.; *3* cuin.

Exercise 8.11

1. 375 ft
3. 1664 yds
5. 2

7. ab

Exercise 8.12

. (a) 2sqin.

. (a) 150V3sqin.
. (a) 75\/§sq in.
(a) 160 sq units
(a) 162 sq units

A A
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Exercise 8.13

3.5

0.195; 7 = 16(0.195) = 3.12

* s o o o

o o o o o

x

4. (a)

5. (a)

///ﬁ%/

\

\

e o o o o
® o o o o
* o o o
* o e o o

L. JXJ = {(m, n)|m and n are integers}.
3. (a)

5. Third approximation to #: 3.1056

Exercise 8.14a

4. (c)

Exercise 8.14b

(d) a2+ =182

(b) 13

1. (a) 13

2

2. (@) x*+y* =
3.@7 (b |x|+]yl
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Index

Abacists, 19
Abacus, 17
Absolute value, 153,193, 236
Accuracy, 230
Addition, as a binary operation, 78, 82
of decimal fractions, 210
of integers, 130
inJp, 114
inJ17,118
of rational numbers, 176
of whole numbers, 82
Additive, identity, 84, 130, 162, 183, 188
inverse, 128, 130, 162, 184, 189
principle, 3
systems, 3
Algorists, 19
Algorithm, 19, 106, 142, 146
addition, 107
multiplication, 110
square root, 238
Allowable error, 230
Angle, 249, 250
Apothem, 266
Approximations, 219, 229, 231
denseness, 195
using decimal fractions, 229, 231
Area, 262
properties of, 262
Arithmetic mean, 219
Associative law, 79
addition, 83,92, 130, 188
multiplication, 88, 92, 130, 188, 190
Average, 219, 240

Base, 3, 10, 106
changing, 102

computation in other bases, 106, 114,118

counting in other bases, 101, 104, 122

other bases, 104

percent, 207
Between-ness, 95, 194, 246
Binary number system, 114
Binary operation, 76

addition, 76, 82

definition, 77

multiplication, 76, 85
Bound, 223

greatest lower, 96, 223

least upper, 96, 223

lower, 96,223

on errors, 234

upper, 96, 223

Calculi, 17
Cancellation laws, 136
Cardinal number, 51, 71
Cardinal use, 71
Carry, in addition, 108,110, 112
Cartesian product, 38, 57, 87
pictorial representation, 40, 297
relations as, 57
Chinese-Japanese system, 9
Classes, equivalence, 47
(mod 12), 161
ordered pairs of integers, 174
Clock arithmetic, 158
Closed disc, 251
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Closure law, 78
property of positive integers, 129
system, of integers, 130
of rational numbers, 188
of whole numbers, 83, 88, 92
Columnwise addition, 108, 115
Common divisor, 142
Commutative law, 78
of addition, 83, 92, 130, 188
of multiplication, 88, 92, 130, 188
Complement of a set, 33, 196
Completeness, 223, 259, 221
definition of, 223
Complex numbers, 171, 237
Component of ordered pairs, 38, 57
Composite number, 139
Compound sentences, 99
Computation, 77
decimal fraction, 210
in other bases, 106, 114,118
Computer arithmetic, 114
Condition, 25
Cone, 274
Congruence relation, 159
definition of, 159
(mod 2), 164
(mod 12), 160
Conjunction, 99
Convex, 255
Coordinate geometry, 295
Correspondence, 49, 59
many-to-many, 59
one-to-one, 49, 52,94, 194
Counter, 17
Counting, 52, 70, 107
finger, 100
other bases for, 100, 122
subsets, 29
Counting board, 16
Counting table, 122
Curves, 257
Cylinder, 274

Decimal, fractions, 208
point, 10,13, 102
system of numeration, 13
Decimal approximations, 229
of irrational numbers, 233
of rational numbers, 231
Decimals, infinite, 225
repeating, 226
rounding off, 232
terminating, 226, 229

Degree, 250
Denominator, 171, 200
Denseness, 194, 220, 296
of decimal fractions, 209
Difference, 133
Digital computer, 19, 294
Digits, 1¢
Hindu-Arabic, 10, 13
Disjoint, 28, 31
Disjunction, 99
Distance, 153, 207
number line, 153, 155
in the plane, 298
properties of, 154
Distributive law, 90, 92, 107, 108
in the system, of integers, 130
of rational numbers, 188
of whole numbers, 90, 92

Divide and average method of approximating

square roots, 219, 240
Divides relation, 45, 58
definition of, 45
Divisibility, 140
Division. in base 2, 115
in base 5,113
of decimal fractions, 212
of fractions, 198
Division algorithm, 142, 144

Division interpretation of number pairs, 169, 197

Divisor, 139

common, 142

proper, 139
Domain, 25,57, 60
Doublingand summing, 121
Duo-decimal, 118

Egyptian hieroglyphic, 4, 121
Element, of J12, 162
of a mathematical system, 169
of sets, 23
Elementary facts, 107
base 12,118,119
Empty set, 28
Equals, 27, 54
for numbers, 75
for ordered pairs, 39
for rational numbers, 172, 188
for sets, 27
as subset of Cartesian product, 57
Equiangular, 253
Equilateral, 253
Equivalence classes, 47, 69
of the congruence relation, 161, 164



of ordered pairs of integers, 174
Equivalence relation, 47, 160, 172
congruence relation, 159
for ordered pairs of integers, 172
Equivalent rate pairs, 204
Equivalent sets, 50
Error, 230, 232, 233,234
Estimates, 219
Euclidean algorithm, 146
Euclidean plane, 296
Exactness, 230
Expanded form, 14, 103, 109, 116
Exponents, 11

Factor, 11, 139
proper factor, 139
Finger counting, 100
Finite, decimal, 226
set, 52,71
Fraction, 168, 200
Function, 55, 60
Fundamental Theorem of Arithmetic, 140

Geometry, 244

Greatest common divisor, 143, 183
as a binary operation, 146
properties of, 147
using division algorithm, 144
using prime factorization, 143

Greatest lower bound, 96, 223, 259

Half-line, 246

Half-plane, 248

Halving and doubling, 121
Hieroglyphic, 4
Hindu-Arabic, 10, 13

Identities, 84, 92, 130, 188
additive identity, 84, 92,130, 183, 188
multiplicative identity, 89, 92, 130, 184,
188
Imaginary, 237
Incommesurable quantities, 217
Inequalities, 96, 150
in the integers, 150
properties of, 152
in the rationals, 191
in the whole numbers, 94
Infinite, decimal, 225, 226, 228
set, 52,71
Integers, negative, 128
properties of, 128
set of, 128, 130
as a subsystem of rational numbers, 190
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system of,, 130
Interior, 249
Interpretation of number pairs, 168, 197
Intersection of sets, 31
Inverses, 79, 183
additive, 128, 162, 184
multiplicative, 186
of a relation, 60
Ionic-Greek, 8
Irrationality of V2,217
Irrational numbers, 216
as infinite nonrepeating decimals, 233
Iterative process, 240

Least common denominator, 176
Least common multiple, 148

as a binary operation, 150
Least upper bound, 96, 223, 259
Length, 247,257, 259
Less than, 94, 150, 191
Linear, 94
Lines, 244
Line segment, 246
Lower bound, 96, 223

Many-to-many correspondence, 59, 204
Matching relation, 50, 69
Measure, 247, 249, 257, 262
Membership tables, 34
Multiplication, algorithm, 110
of decimal fractions, 212
of integers, 134
inJy2,163
of rational numbers, 179
of whole numbers, 85
Multiplicative, identity, 89, 92, 130, 184, 188
inverse, 186
principle, 6, 9
systems, 9

Names of sets, 24, 171
Natural numbers, 70, 71
set of, 36,45,70
Negation, 100
Negative, integers, 128
rational numbers, 191
real numbers, 224
Newton’s method, 240
Number, 1, 2, 51, 69
Number line, 95
Number pairs, 168
Number systems, 73, 92, 129, 182
Numeral, 1, 69
Numerator, 171, 200
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One-to-one correspondence, 49, 52, 59, 94,
194
Open sentences, 98
Operations, 76, 162
binary, 76
Opposite, 79
Order, in the integers, 150
in the rational numbers, 191
in the real numbess, 224
in the whole numbers, 93
Ordered pairs, 38
operations on, .76, 77, 78, 82
rational numbers as, 168, 170, 172
relations as, 56
Ordered set, 70
Ordering, 7
Ordinal, 71

Pairing, 27, 44, 54
Parallelepiped, 272
Parallelogram, 264
Parentheses, 70, 79, 88
Partition of a set, 49, 69
Percent, 169, 206
Perfect squares, 235
Periods, 15
Permutation, 50
Pi, 93, 287, 293
calculation of, 289
chronology of, 293
existence of, 287
Place-value systems of numeration, 10, 13,
74,102
Plane, 248
Point sets in the plane, 298
Points, 244
Polygons, regular, 265
Polyhedra, regular, 275
Postiive, integers, 128, 129
rational numbers, 191
reals, 224
Power, of the base, 3,9, 10
Prime, 139
divisors, 139
factorization, 140, 143, 148
numbers, 138
Prism, 272
Process, 77
Proper subset, 26
Properties of, absolute value, 154
area, 262
congruence relation, 160
denseness, 194
distance, 154

equals, 75,77
greatest common divisor, 147
inequalities, 152
positive integers, 128
positive rationals, 191
relations, 44

Pyramid, 274

Pythagorean theorem, 216, 282

Quinary, 104, 107, 112
Quinary arithmetic, 108, 112

Range of a relation, 57
Rate pair, 169, 204
percent, 206
ratio, 204
Ratio, 204
Rational riumbers, 170
set of, 188
Ray, 246
Real line, 218, 221
Real numbers, 222
Reciprocal, 186
Reduced form, 181
Reducing fractions, 181
Reference set, 2
Reflexive property, 44, 75, 160
Regular, polygon, 265
polyhedra, 276 )
Relation, 43
as a set, 57
definition of, 56
divides, 45
equivalence, 47
inverse of, 60
equivalence, 47
amtching, 50
order, 94, 150, 191
see also Equals
Relatively prime, 143
Repeating decimal, 226
Repetitive, principle, 3
process, 219, 240
Right angle, 250
Right section, 273
Roman, abacus, 18
counting board, 17
numerals, 6
system of numeration, 5
Rounding off, 232
R,S,T, properties, 47

Scientific notation, 14
Separatrix, 208



Set builder notation, 25
Set of, integers, 128
natural numbers, 70, 71
rational numbers, 169, 188
real numbers, 222
Sets, 22
Significant digits, 233
Simple closed curve, 251
Simple sentences, 98
Singleton set, 27
Single-values relations, 60
Solution set, 98
Solvability of equations, 190
Soroban, 19
Space, 244
Sphere, 276
Square root algorithm, 238
Square roots, 234
Structure, 1, 74
Suan pan, 18
Subsets, 26, 45
counting, 29
proper, 26

Substitution property of equals, 77
Subtraction as a binary operation, 133

Subtractive principle, 6
Successor, 70
Supplementary angle, 250
Surface area, 271
Symbols, Chinese-Japanese, 9
Egyptian, 4
Hindu-Arabic, 10, 11
Tonic Greek, 8
Roman, 6

Symmetric property, 46, 75, 160

System of, integers, 129
rational numbers, 188
real numbers, 224
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whole numbers, 92
System of numeration and number systems, 73
Systems of numeration, additive, 3
multiplicative, 9
place-value, 10

Terminating decimals, 229
Torus, 277
Transitive property, 46, 75, 160
Trapezoid, 265
Triangle, 252
Triangles, area of, 263
Triangular inequality, 154
Trichotmoy law, 94, 151, 191
in the integers, 151
in the ratjonals, 191

Union of sets, 31
Unit of, area, 262
volume, 271
Universal set, 28
Upper bound, 96, 223

Variable, 25,98
Venn diagram, 32
Void set, 28
Volumes, 271

Weak inequality, 150
Whole numbers, 70
set of, 71

Zero, in addition, 84
as a cardinal number, 52
in division, 93, 170, 171
in multiplication, 91
Zero divisors, 136, 164
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